WO2004082019A1 - プリント配線基板、その製造方法、リードフレームパッケージおよび光モジュール - Google Patents

プリント配線基板、その製造方法、リードフレームパッケージおよび光モジュール Download PDF

Info

Publication number
WO2004082019A1
WO2004082019A1 PCT/JP2004/002722 JP2004002722W WO2004082019A1 WO 2004082019 A1 WO2004082019 A1 WO 2004082019A1 JP 2004002722 W JP2004002722 W JP 2004002722W WO 2004082019 A1 WO2004082019 A1 WO 2004082019A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor plate
lead
wiring
electrode
conductor
Prior art date
Application number
PCT/JP2004/002722
Other languages
English (en)
French (fr)
Inventor
Takehiro Shirai
Masayuki Iwase
Original Assignee
The Furukawa Electric Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co. Ltd. filed Critical The Furukawa Electric Co. Ltd.
Priority to EP04717227.5A priority Critical patent/EP1603158B1/en
Priority to JP2005503493A priority patent/JP4514709B2/ja
Publication of WO2004082019A1 publication Critical patent/WO2004082019A1/ja
Priority to US11/109,656 priority patent/US7355862B2/en
Priority to US12/041,457 priority patent/US7832092B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4277Protection against electromagnetic interference [EMI], e.g. shielding means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09554Via connected to metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09754Connector integrally incorporated in the printed circuit board [PCB] or in housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0323Working metal substrate or core, e.g. by etching, deforming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49156Manufacturing circuit on or in base with selective destruction of conductive paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a printed circuit board 3-wire substrate, a manufacturing method thereof, a lead frame package, and an optical module. Background technology.
  • a semiconductor device has a bond between a mounted semiconductor element and a wiring pattern.
  • the optical module 1 shown in FIG. 22 has a lid frame package 5, an intermediate member 7a, and a mounting block 8, and these components are connected by bonding wires W. After that, it is sealed with an electrically insulating synthetic resin and integrated with a ferrule 9 having an optical fiber 9a to obtain a product.
  • a printed wiring board (PWB: Printed Wiring Board) 2 and a lead frame 3 are molded with a synthetic resin 4.
  • the printed wiring board 2 has a microstrip line structure are sequentially formed a fine wiring pattern 2 d consisting of an insulating layer 2 b and the conductive layer on the predetermined shape to shaped conductor plate 2 a, Installed semiconductor elements (electronic circuit elements) 6 and wiring patterns 2 d Are connected with bonding wire W.
  • the mounting block 8 includes an optical semiconductor element 8 b in which light enters and exits the silicon substrate 8 a in a direction perpendicular to the substrate surface, such as a planar type light emitting / receiving element (VCSEL (Vertical Cavity Surface Emitting Laser). ), Planar PD (Photo Diode)) is provided.
  • the printed wiring board 2 employs a microstrip line structure to achieve impedance matching in the optical module 1 and suppress deterioration in signal transmission characteristics.
  • the planar light emitting / receiving element 8 b is fixed to the first surface 8 a 1 of the mounting block 8, and the surface 8 a 2 is perpendicular to the first surface 8 a 1. It is fixed on the intermediate member 7a.
  • the tip of the conductor plate 7 b is bent vertically downward along the end surface of the intermediate member 7 a in order to facilitate wire bonding with the first surface 8 a 1 of the mounting block 8.
  • One end of the bonding wire W is bonded to this bent portion. For this reason, there was also a problem that the manufacturing cost of the intermediate member 7a was increased.
  • the present invention reduces the number of wire bonding portions to suppress the deterioration of signal transmission characteristics due to the length of the bonding wire, and also provides a planar optical semiconductor element to be mounted. It is an object of the present invention to provide a printed wiring board, a manufacturing method thereof, a lead frame package, and an optical module that can easily perform wire bonding work between them and can be manufactured at low cost. Disclosure of the invention
  • a printed wiring board includes at least one conductor plate used as a lead for electrical connection with an external circuit, a plurality of conductor plates spatially separated from each other, and the plurality of conductor plates And / or an insulating layer formed across the plurality of conductor plates, and a plurality of wiring patterns formed on the insulating layer, and at least one conductor plate of the plurality of conductor plates However, it is electrically connected to at least one of the plurality of wiring patterns by a via hole.
  • the plurality of wiring patterns may be formed as microstrip lines having one conductor plate of a plurality of conductor plates as a circle, or have one conductor plate of the plurality of conductor plates as a ground.
  • the daland wiring pattern connected to the ground may be a coplanar type transmission line with daland arranged between two signal transmission lines.
  • the printed wiring board according to the present invention includes the lead portion having one of the plurality of separated conductor plates and the other one of the plurality of separated conductor plates. And a wiring portion electrically connected to the lead portion.
  • the conductor plate of the lead portion is further separated into a predetermined number of signal leads corresponding to the plurality of wiring patterns, and the predetermined number of The signal leads are electrically connected to the corresponding wiring patterns by via holes, respectively.
  • the lead portion includes at least one ground lead disposed between two adjacent signal leads, and the at least one ground lead. From the conductor plate of the wiring part It is formed integrally and is electrically connected to a corresponding wiring pattern of the plurality of wiring patterns through a via hole.
  • the printed wiring board As a result, in the printed wiring board, the ground potential of the ground lead is stabilized, and the adjacent signal leads are effectively shielded. For this reason, the printed wiring board effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between signal leads, and suppresses or prevents the deterioration of signal transmission characteristics, for example, the SZN ratio.
  • crosstalk electromagnetic interference
  • the printed wiring board is a multi-channel light having a plurality of optical semiconductor elements in which the lead portion and the predetermined wiring pattern are electrically connected.
  • a plurality of signal electrode tongues for electrical connection with a semiconductor element, and further comprising a mounting portion on which an electrode pattern is formed on each signal electrode tongue;
  • the wiring pattern for each channel is used as an electrode tongue corresponding to each channel, and leads for connecting external circuits. Since it can be manufactured at the same time, a printed wiring board that can be manufactured at low cost is provided.
  • the plurality of wiring patterns are formed as microstrip lines having the conductor plate of the wiring portion as the ground, or have the conductor plate of the wiring portion II as the ground, they are connected to this bond.
  • the printed wiring board according to the present invention is the mounting unit according to the above invention.
  • at least one ground electrode tongue is disposed between two adjacent signal electrode tongues of the plurality of signal electrode tongues, and the at least one ground electrode tongue is A grounding conductor plate tongue composed of the conductor plate continuously extending from the wiring portion side toward the mounting portion side, an insulating layer laminated on the grounding conductor plate tongue piece, and on the insulating layer And a ground electrode pattern formed, wherein the daland conductor plate tongue is electrically connected to the daland electrode pattern via a via hole.
  • the ground potential of the ground electrode tongue is stabilized in the printed wiring board, and the adjacent signal electrode tongues are effectively shielded.
  • the printed circuit board effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between the signal electrode tongues, and transmits signals to or from the multichannel optical semiconductor element. Characteristics such as inferior S / N ratio are suppressed or prevented.
  • a printed wiring board manufacturing method provides a first board comprising a conductor plate, an insulating layer laminated on the conductor plate, and a conductor layer formed on the insulating layer.
  • a second step in which at least a predetermined portion of the conductor layer is etched or / and laser processed to form the plurality of wiring patterns, and the conductor plate is etched to be separated into a plurality of conductor plates.
  • the third step is to separate one of the plurality of separated conductor plates by separating the plurality of conductor plates. It has a lead part having another and another one of the separated conductor plates, and a wiring part electrically connected to the lead part is formed.
  • the third step corresponds to the plurality of wiring patterns, the conductor plate of the lead portion.
  • the method further includes a step of further separating the predetermined number of signal leads and electrically connecting the predetermined number of signal leads to the corresponding wiring patterns by via holes.
  • a method for manufacturing a printed wiring board is provided with a predetermined wiring pattern from a conductive plate, an insulating layer laminated on the conductive plate, and a substrate formed of the conductive layer formed on the insulating layer.
  • the formed printed wiring board can be formed from a single board at the same time as the leads for connecting external circuits.
  • the leads and each wiring pattern are connected via via holes, wire bonding between them becomes unnecessary, and the signal transmission characteristics are limited due to the length of the bonding wires, and a hard-to-print printed wiring board. Is provided.
  • the third step is formed between two adjacent signal leads and formed from a conductor plate of the wiring portion. And at least one ground lead electrically connected to the corresponding wiring patterns of the plurality of wiring patterns through via holes.
  • the printed wiring board manufacturing method can simultaneously form the signal lead and the ground lead on the printed wiring board. Also, between the adjacent signal leads, a Durand lead made of a conductor plate extending continuously from the second part on the wiring side to the first part on the lead side is integrated. Therefore, the ground potential of the ground lead is stabilized in the printed wiring board, and the adjacent signal leads are effectively electromagnetically shielded. For this reason, the printed wiring board manufactured according to the present invention effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between signal leads, and suppresses or prevents deterioration of signal transmission characteristics, for example, SZN ratio. Is done.
  • crosstalk electromagnetic interference
  • the third step includes the lead portion and the wiring portion, and further includes another one of the plurality of separated conductor plates.
  • the lead portion and the predetermined wiring pattern are electrically connected, and the multi-channel optical semiconductor element having a plurality of optical semiconductor elements is electrically connected.
  • a plurality of signal electrode tongues for connection are formed, each signal electrode tongue piece is provided with a mounting portion on which an electrode pattern is formed, and the conductor plate of the mounting portion is connected to the multichannel optical semiconductor element.
  • the signal conductor plate tongue pieces are further separated into a predetermined number of signal conductor plate tongue pieces corresponding to the channels, and the corresponding electrode patterns are used as the plurality of signal electrode tongue pieces.
  • the method includes a step of electrically connecting to the electrode pattern.
  • the printed wiring board manufacturing method forms the electrode pattern for each channel electrically connected to the multichannel optical semiconductor element on the electrode tongue piece separated corresponding to each channel. Since the electrode tongue can be manufactured at the same time as the lead for connecting an external circuit, a printed wiring board when using a multi-channel optical semiconductor element can be manufactured at low cost.
  • the third step is a step between two adjacent signal electrode tongues among the plurality of signal electrode tongues.
  • a ground conductor plate tongue composed of the conductor plate extending continuously toward the side, an insulating layer stacked on the ground conductor plate tongue, and a ground electrode pattern formed on the insulating layer;
  • the ground conductor plate tongue piece is electrically connected to the ground electrode pattern through a via hole.
  • the manufacturing method of a printed wiring board can form simultaneously the signal electrode tongue piece and the ground electrode tongue piece on the printed wiring board.
  • a ground electrode tongue composed of a conductor plate continuously extending from the second portion on the wiring portion side to the third portion on the mounting portion side may be integrally formed between the signal electrode tongue portions.
  • the ground potential of the ground electrode tongue is stable in the printed circuit board, and the adjacent signal electrode tongue is effectively electromagnetically shielded.
  • the produced printed circuit board effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between the signal electrode tongues.
  • the deterioration of signal transmission characteristics, for example, the S / N ratio, from or to the multi-channel optical semiconductor element is suppressed or prevented.
  • the lead frame package according to the present invention includes at least one conductor plate used as a lead for electrical connection with an external circuit, and a plurality of conductor plates spatially separated from each other; An insulating layer formed on a plurality of conductor plates and Z or straddling the plurality of conductor plates, a plurality of wiring patterns formed on the insulating layer, and at least one conductor plate of the plurality of conductor plates An electrically insulating synthetic resin that molds the lower surface of the at least one conductor plate, and at least one conductor plate of the plurality of conductor plates is electrically connected to at least one of the plurality of wiring patterns by a via hole.
  • the lead frame package according to the present invention is the lead frame package according to the above invention, wherein the lead portion has one of the plurality of separated conductor plates and the other one of the plurality of separated conductor plates. And having a wiring portion electrically connected to the lead portion.
  • the conductor plate of the lead portion is further separated into a predetermined number of signal leads corresponding to the plurality of wiring patterns,
  • the signal leads are electrically connected to the corresponding wiring patterns by via holes, respectively.
  • the lead portion includes at least one ground lead disposed between two adjacent signal leads, and the lead portion is used for the at least one ground.
  • the lead is integrally formed from the conductor plate of the wiring part, and is electrically connected to the corresponding wiring patterns of the plurality of wiring patterns through via holes.
  • the lead frame package according to the present invention is the above-described invention, wherein the lead part and the predetermined wiring pattern are electrically connected to each other and the multi-channel optical semiconductor element having a plurality of optical semiconductor elements is electrically connected.
  • the signal conductor plate tongue pieces are further separated into a predetermined number of signal conductor tongue pieces corresponding to the channels of the above and are configured as a plurality of signal electrode tongue pieces together with the corresponding electrode patterns, and the signal conductor plate tongue pieces are respectively formed by via holes. It is characterized by being electrically connected to the corresponding electrode pattern.
  • the lead frame package eliminates the need for wire bonding between the wiring pattern of the wiring portion and the lead for connecting the external circuit. Therefore, it is difficult for signal transmission characteristics to be limited due to the length of the bonding wire, and each channel when using a multi-channel optical semiconductor element (eg, a laser diode, array photo diode, etc.) Since each wiring pattern can be fabricated integrally with the lead for connecting an external circuit as an electrode tongue corresponding to each channel, a lead frame package that can be manufactured at low cost is provided.
  • a multi-channel optical semiconductor element eg, a laser diode, array photo diode, etc.
  • At least one ground electrode tongue disposed between two adjacent signal electrode tongues among the plurality of signal electrode tongues.
  • the at least one ground electrode tongue piece has a piece extending continuously from the wiring portion side toward the mounting portion side.
  • a ground conductor plate tongue formed of a body plate, an insulating layer laminated on the ground conductor plate tongue, and a ground electrode pattern formed on the insulating layer, the ground conductor The plate tongue piece is electrically connected to the ground electrode pattern through a via hole.
  • the ground electrode tongue piece integrally formed from the conductor plate continuously extending from the 3-wire portion side to the mounting portion side is disposed between the signal electrode tongue pieces. Therefore, in the lead frame package, the ground potential of the ground electrode tongue is stabilized, and the adjacent signal electrode tongue is effectively electromagnetically shielded. For this reason, the lead frame package effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between the signal electrode tongues, and transmits signals to or from the multi-channel optical semiconductor element. Deterioration of characteristics such as S / N ratio is suppressed or prevented.
  • the optical module according to the present invention includes at least one conductor plate used as a lead for electrical connection with an external circuit, and a plurality of conductor plates spatially separated from each other, the plurality of conductor plates
  • An insulating layer formed on the top and Z or straddling the plurality of conductor plates, and a plurality of wiring patterns formed on the insulating layer, and at least one conductor plate of the plurality of conductor plates includes: A printed wiring board electrically connected to at least one of the plurality of wiring patterns by a via hole; an electrically insulating synthetic resin monored case encapsulating a lower surface of at least one of the plurality of conductor plates; An optical semiconductor element electrically connected to the wiring pattern; and an optical fiber optically coupled to the optical semiconductor element.
  • the printed wiring board includes a lead portion having one of the plurality of separated conductor plates, and the separated plurality of conductor plates. And a wiring portion electrically connected to the lead portion.
  • the conductor plate of the lead portion is further separated into a predetermined number of signal leads corresponding to the plurality of wiring patterns, and the predetermined number of signals
  • the lead for use is electrically connected to the corresponding wiring pattern by a via hole.
  • the optical module has a ground lead formed integrally from a conductor plate extending continuously from the wiring portion side to the lead portion side between the signal leads.
  • the ground potential of the ground lead is stabilized, and the adjacent signal leads are effectively shielded from electromagnetic waves. Therefore, in the optical module, the occurrence of electromagnetic interference (crosstalk) between the signal leads is effectively suppressed or prevented, and the deterioration of the signal transmission characteristics, for example, the S / N ratio is suppressed or prevented.
  • At least one electronic circuit element is mounted on the wiring portion or the ground portion, and the electronic circuit element and the wiring portion or the ground portion are connected by wire bonding. It is connected.
  • the optical module according to the present invention is characterized in that, in the above invention, at least one electronic circuit element is fixed or connected to the wiring portion, and the electronic circuit element is flipped to the wiring portion. It is characterized by being fixed or connected by chip bonding.
  • the optical module according to the present invention is the multi-channel optical semiconductor according to the above invention, wherein the printed wiring board has the lead portion and the predetermined wiring pattern electrically connected, and has a plurality of the optical semiconductor elements.
  • the signal conductor plate tongue pieces are further separated into a predetermined number of signal conductor plate tongue pieces corresponding to the channels, and are configured as the plurality of signal electrode tongue pieces together with the corresponding electrode patterns, and the signal conductor plate tongue pieces are respectively formed by via holes. It is electrically connected to the corresponding electrode pattern.
  • the optical module eliminates the need for wire bonding between the wiring pattern of the wiring section and the lead for connecting the external circuit, so that the signal transmission characteristics due to variations in the length of the bonding wire are eliminated.
  • the wiring pattern for each channel when using a multi-channel optical semiconductor element is used as an electrode tongue corresponding to each channel. It can be manufactured integrally with a lead for external circuit connection. This eliminates the need to separately prepare an intermediate member for mounting the multichannel optical semiconductor element, and provides an optical module that can be manufactured at low cost.
  • the optical module according to the present invention is the optical module according to the invention, wherein the mounting portion includes at least one ground between two adjacent signal electrode tongues among the plurality of signal electrode tongues.
  • An electrode tongue piece for grounding, and the at least one ground electrode tongue piece includes a conductor plate tongue piece for ground composed of the conductor plate continuously extending from the wiring portion side toward the mounting portion side, and An insulating layer stacked on the ground conductor plate tongue piece, and a ground electrode pattern formed on the insulating layer, wherein the ground conductor plate tongue piece is formed through the via hole. It is electrically connected to the ground electrode pattern.
  • the optical module has the ground electrode tongue piece integrally formed from the conductor plate continuously extending from the wiring portion side to the mounting portion side between the signal electrode tongue pieces.
  • the ground potential of the ground electrode tongue is stabilized, and the adjacent signal electrode tongue is effectively electromagnetically shielded.
  • the optical module effectively suppresses or prevents the occurrence of electromagnetic interference (crosstalk) between the signal electrode tongues, and transmits signals to or from the multi-channel optical semiconductor element. Properties such as inferior SZN ratios are suppressed or prevented.
  • the optical module according to the present invention is the optical module according to the above aspect, wherein the multi-channel optical semiconductor element is a planar type, and is fixed to a first surface of a mounting block, and the mounting block is connected to the first surface.
  • Each of the channels of the multi-channel optical semiconductor element has a second surface intersecting, and is fixed to the upper portion of the printed wiring board in a state where the second surface is bonded so as to face the printed wiring board. Is electrically connected to the corresponding electrode tongue via at least one wire bonded directly to the end face of the conductor plate of the corresponding electrode tongue.
  • the optical module can provide an optical module that can easily connect a planar multi-channel optical semiconductor element and a wiring pattern by wire bonding.
  • the optical module according to the present invention is the optical module according to the above aspect, wherein the multi-channel optical semiconductor element is a planar type, and is fixed to the first surface of the mounting block.
  • the mounting block is connected to the first surface.
  • the optical module according to the present invention is characterized in that, in the above invention, at least one electronic circuit element is fixed or connected to the wiring portion, and the electronic circuit element is flipped to the wiring portion. It is fixed or connected by chip bonding.
  • the optical module does not need to use wire bonding between the electronic circuit element and the printed wiring board, and deterioration of signal transmission characteristics is suppressed or prevented.
  • An optical module according to the present invention is the optical semiconductor element according to the above aspect.
  • the special feature is that multiple children are arranged in a two-dimensional direction at a predetermined position.
  • the optical module according to the present invention is the optical module according to the above aspect, comprising the electronic circuit element and at least one optical semiconductor element, at least one electrode of the electronic circuit element, and the predetermined wiring The pattern is electrically connected via solder bumps.
  • the optical module according to the present invention includes, in the above invention, a plurality of conductor plates that include at least one conductor plate used as a lead for electrical connection with an external circuit and are spatially separated from each other.
  • An insulating layer formed on the plurality of conductor plates and / or straddling the plurality of conductor plates, and a plurality of wiring patterns formed on the insulating layer, and the plurality of conductor plates A printed wiring board in which at least one conductor plate is electrically connected to at least one of the plurality of wiring patterns by a via hole, and at least one conductor plate of the plurality of conductor plates is fixed,
  • a fixing member having electrical insulation at least at a portion that is in electrical contact with the plurality of conductor plates; an optical semiconductor element electrically connected to the wiring pattern; and optically coupled to the optical semiconductor element And having a fiber a.
  • the optical module according to the present invention is characterized in that, in the above invention, the optical module has a bottom plate on which the fixing member is installed, and a temperature control element is disposed between the fixing member and the bottom plate.
  • the optical module according to the present invention is characterized in that, in the above invention, a plurality of the optical semiconductor elements are arranged in a two-dimensional direction at a predetermined position.
  • the optical module according to the present invention is the optical module according to the above aspect, comprising the electronic circuit element and at least one optical semiconductor element, at least one electrode of the electronic circuit element, and the predetermined wiring The pattern is electrically connected via solder bumps.
  • FIG. 1 is a sectional view showing a printed wiring board according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the substrate used for manufacturing the printed wiring board according to the first embodiment of the present invention, and
  • FIG. 3 is the printed wiring according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a state in which a wiring pattern is formed by etching a conductive layer of a substrate, and FIG. 4 shows a method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a state in which the insulating layer of the substrate is removed by etching and / or laser processing to form a recess for a via hole, and FIG.
  • FIG. 5 is a printed wiring board according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a state in which a conductor plate of a substrate is etched and separated into a wiring portion ground, a plurality of leads, and a plurality of electrode tongue pieces, and FIG. 6 is a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a state in which the printed wiring board of FIG. 1 is molded with a synthetic resin, and FIG. 7 shows a desired lead and a conductive plate tongue from the printed wiring board molded with a synthetic resin.
  • FIG. 8 is a cross-sectional view showing an element cut into a length to form a lead frame package, FIG.
  • FIG. 8 is a perspective view showing an optical module according to a third embodiment of the present invention
  • FIG. FIG. 7 is a cross-sectional view in which a multi-channel optical semiconductor element and a driving electronic circuit component (semiconductor element) are mounted on the lead frame package shown in FIG. 7, and FIG. 10 is sealed with an electrically insulating synthetic resin.
  • Fig. 11 A is a cross-sectional view of an optical module constructed by joining a lead frame package and a ferrule.
  • Fig. 1 1 A shows the lead frame package of Fig. 10 sealed with synthetic resin, with the lead folded.
  • Process FIG. 1 1 B is a cross-sectional view along the width direction of the optical module of FIG. 1 1 A
  • FIG. 1 2 A is the light shown in FIG. FIG.
  • FIG. 12 is a perspective view showing another aspect of the optical module
  • FIG. 13 is a perspective view of the optical module according to the third embodiment
  • FIG. 14 is a perspective view showing a printed wiring board, an electronic circuit component, a bonding wire, a lead, and an electrode tongue except for the stopped synthetic resin and the adhesive layer.
  • FIG. 14 is a perspective view of the mounting portion in FIG.
  • FIG. 15A is a cross-sectional view taken along the ground electrode tongue of FIG. 13
  • FIG. 15B is a cross-sectional view taken along the signal electrode tongue.
  • Fig. 16 shows the optical module of the third embodiment.
  • FIG. 15A is a cross-sectional view taken along the ground electrode tongue of FIG. 13
  • FIG. 15B is a cross-sectional view taken along the signal electrode tongue.
  • Fig. 16 shows the optical module of the third embodiment.
  • FIG. 15A is a cross-sectional view taken along the ground electrode tongue of FIG. 13
  • FIG. 15B is a cross-section
  • FIG. 17 is a cross-sectional view showing an example of mounting an edge-emitting optical semiconductor element on a printed wiring board having only a wiring portion and a lead portion
  • FIG. Fig. A is a cross-sectional view showing an example in which the bonding wire is not used in the optical module
  • Fig. 18B is a diagram of the electrodes in the electronic circuit component (semiconductor element) of Fig. 18A.
  • FIG. 18C is a plan view showing an example of a fixing position between an electrode and a conductor layer serving as a wiring pattern in an electronic circuit component (semiconductor element).
  • 9A is a view showing another form of the mounting portion
  • FIG. 19B is a view showing still another form of the mounting portion
  • FIG. 20 is the same as FIG.
  • FIG. 21 is an enlarged view of the mounting portion PM as viewed from above.
  • FIG. 21 shows a fourth embodiment of the present invention. Is a sectional view showing a certain optical module, the second FIG. 2 is a sectional view showing the structure of a conventional optical module.
  • FIG. 1 is a cross-sectional view showing a printed wiring board.
  • FIG. 2 is a cross-sectional view of a substrate used for manufacturing a printed wiring board.
  • 3 to 5 are sectional views showing a method for manufacturing a printed wiring board.
  • 1 to 5 show a cross section of one unit of the printed wiring board.
  • one unit shown in these figures is repeated planarly over several units (in the figure, one that is connected in the left-right and / or front-back direction) ), The processing described below is performed at once.
  • the printed wiring board 10 includes a plurality of wiring patterns having a cross-trip line structure composed of a conductor layer on an upper surface of a conductor plate 10 a via an insulating layer 10 0 b.
  • a wiring portion PW having a lead 10 d, a lead portion PL, and a mounting portion PM.
  • the printed wiring board 10 is formed by etching and applying Z or laser to the board B shown in FIG. 2 in which the conductor layer 10 c is formed on the conductor plate 10 a via the insulating layer 10 b.
  • the conductor plate 10a is separated into a wiring portion ground 10e, a plurality of leads 10f, and a conductor plate tongue 10h by etching and Z or laser processing.
  • the plurality of wiring patterns 10 d have via holes 1 1 a connected to the leads 10 f and the conductor plate tongues 1 0 h by the stencil layer 1 1 formed in the desired wiring pattern 10 d. Is formed.
  • a through hole monorail may be used to electrically connect the lead 10f and the conductor plate tongue 10h, for example.
  • the substrate B is composed of a conductor plate 10 a made of copper, a copper alloy or an iron or nickel alloy such as 42 alloy, and an insulator made of an elastic body, a solid, or a composite thereof, for example, Insulating layer 1 O b made of polyimide sheet and conductor, for example, conductor layer 10 c made of copper foil, are press-bonded without using adhesive, and each conductor plate 10 a is The thickness is about 0.2 mm, the insulating layer 10 b has a thickness of 30 m, and the conductor layer 10 c has a thickness of 20 ⁇ m.
  • the thicknesses of the conductor plate 10 a, the insulating layer 10 b, and the conductor layer 10 c are appropriately changed in consideration of the desired characteristic impedance, the dielectric constant of the insulating layer 10 b, and the like.
  • a photoresist mask is formed on the entire lower surface and side surface of the conductor plate 10 a and on the surface of the conductor layer 10 c that will later become the wiring pattern 10 d.
  • the exposed conductor layer 10 c is etched with an etching solution.
  • the wiring pattern 10 d shown in FIG. 3 is formed on the substrate B, and the insulating layer 10 b is partially exposed.
  • a photoresist mask is formed on the exposed insulating layer 10 b except for a portion where a via hole is to be formed, and the insulating layer 10 b is removed by etching using hydrazine or laser ablation. As a result, as shown in FIG.
  • the etching solution contains the target metal species, It is arbitrarily selected depending on the etching temperature and time. For example, when the metal is copper or a copper alloy, a ferric chloride solution can be used. Further, a predetermined part of the substrate B may be etched by using several types of etching solutions. Here, the etching may be dry etching. .
  • the conductor plate 10a on which the wiring pattern 10Od is formed are masked with a photoresist, and the lower surface of the conductor plate 10a is etched with an etching solution.
  • the conductor plate 10 a includes a first part on the lead part PL side, a second part on the wiring part PW side, and a third part on the mounting part PM side. Separated.
  • etching is also removed simultaneously between the leads 10 f in contact with P to form a plurality of leads 10 f, and the third part on the mounting part PM side
  • a plurality of conductor plate tongues 10 h are formed.
  • a copper plating layer 11 is formed on the desired wiring pattern 10 d and recess 10 g of the substrate B, and then the wiring pattern 10 0 d and the lead 10 0 f or the wiring pattern (electrode pattern) 10 0 d
  • a via hole 1 1 a is formed to electrically connect the conductor plate tongue piece 10 0 h. In this way, the printed wiring board 10 shown in FIG. 1 is manufactured.
  • the printed wiring board 10 of the present invention is obtained by etching or laser processing the substrate B in which the conductor layer 10 c is formed on the conductor plate 10 a via the insulating layer 10 b.
  • the printed wiring board 10 does not require wire bonding between the lead 10 f and the wiring pattern 10 d or the conductor plate tongue 10 h and the wiring pattern (electrode pattern) 10 d. No restrictions on signal transmission characteristics due to variations in bonding wire length, etc. Since the lead part PL and the mounting part PM can be formed simultaneously from a single substrate, it is inexpensive.
  • the plurality of wiring patterns 10 d is formed as a microstrip line having a wiring part daland (second part) 10 e.
  • a plurality of wiring patterns 10 d have a wiring section daland 10 e, and a daland wiring pattern connected to the wiring section daland 10 e is arranged between two signal transmission paths. It may be formed as a coplanar transmission line with a ground.
  • FIG. 6 shows a method for manufacturing a lead frame package according to the second embodiment of the present invention, and is a cross-sectional view of a state in which a printed wiring board 10 is molded with synthetic grease.
  • FIG. 7 is a cross-sectional view showing how a lead frame package is formed by cutting a lead 10 f and a conductor plate tongue 10 h from a printed wiring board 10 molded with a synthetic resin to a desired length. It is.
  • the lead frame package 20 according to the second embodiment of the present invention is manufactured from the printed wiring board 10 having the lead part PL and the mounting part PM shown in the first embodiment.
  • polyphenylene sulfide (PPS) resin having electrical insulation and thermoplasticity is synthesized by synthetic resin 21 such as polybutylene terephthalate (PBT) resin or epoxy resin having electrical insulation and thermosetting properties.
  • synthetic resin 21 such as polybutylene terephthalate (PBT) resin or epoxy resin having electrical insulation and thermosetting properties.
  • PBT polybutylene terephthalate
  • epoxy resin having electrical insulation and thermosetting properties.
  • FIG. 6 the lower surface of the conductor plate 10 a of the printed wiring board 10 and the mounting portion PM are encapsulated with an insert mold.
  • a stepped portion 2 1 a for mounting a mounting block described later is formed on the mounting portion PM of the printed wiring board 10 by the synthetic resin 21.
  • the lead frame package 20 has the print layout of the first embodiment. It is manufactured by molding the wire substrate 10 with a synthetic resin 21, cutting the leads 10 f and the conductor plate tongues 10 h to the desired length, and polishing and plating the cut end faces. For this reason, the lead frame package .20 is easy to process and can be manufactured at low cost, and since the number of wire bonding points can be reduced, the impedance characteristics are also stable.
  • FIG. 8 is a perspective view of an optical module 30 showing a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view in which a multi-channel optical semiconductor element 32 and a driving electronic circuit component (semiconductor element) 33 are mounted on the lead frame package 20 shown in FIG.
  • FIG. 10 is a cross-sectional view of an optical module 30 configured by joining a lead frame package 20 sealed with an electrically insulating synthetic resin and a ferrule 35.
  • the optical module 30 has four optical semiconductor elements 32 arranged in a horizontal row. As shown in FIG. 8, a lead frame package sealed with a synthetic resin case 3 4 a. The die 20 and the ferrule 35 are joined, and a plurality of leads 10 f 'extending sideways are bent. Ferrule '35 has a main body 35a with guide bins 35b, and four optical fibers 35c in a horizontal row corresponding to four optical semiconductor elements 32 arranged in a horizontal row ing.
  • the optical semiconductor element 32 As the optical semiconductor element 32, a planar type light emitting / receiving element array (VCSEL, PD) or the like in which light enters or exits in a direction perpendicular to the substrate surface is used.
  • VCSEL, PD planar type light emitting / receiving element array
  • the optical module 30 first, as shown in FIG. 9, the first surface 3 1 a of the mounting block (silicon substrate) 3 1 installed on the step 2 1 a of the lead frame package 20
  • four optical semiconductor elements 3 2 are fixed in a horizontal row, and the second surface 3 1 b perpendicular to this surface and the stepped portion 2 1 a are fixed facing each other. Thereby, the substrate surface of each optical semiconductor element 32 is perpendicular to the upper surface of the conductor plate 10a.
  • an electronic circuit component for driving 33 such as an IC is provided on the connection layer 11 of the wiring part PW. And between the mounting block '31 and each optical semiconductor element 32, between the mounting block 31 and the conductor plate tongue 10 h The electronic circuit components 33 and the two plated layers 11 are connected with bonding wires W, respectively.
  • the wiring pattern necessary for electrical connection with the optical semiconductor element 3 2 is formed on the first surface 3 1 a of the mounting block 3 1.
  • the electrical connection between each optical semiconductor element 32 and the conductor plate tongue 1 h is made through this wiring pattern.
  • the bonding wire connecting the wiring pattern on the first surface 3 1 a of the mounting block 3 1 and the conductor plate tongue 10 h is located on the side of the conductor plate tongue 1 Oh. It is connected to the end face 10 j which is substantially parallel to the first face 3 1 a of the hook 31.
  • the optical semiconductor element 32 and the electronic circuit component 33 fixed on the lead frame package 20 are surrounded by a synthetic resin case 3 4a, and four optical semiconductor elements are provided.
  • the plurality of leads 10 f of the lead part PL of the lead frame package 20 are extended from the synthetic resin case 34 a by a predetermined length.
  • the inner space surrounded by the synthetic resin case 3 4 a and the lead frame package 20 is filled with the synthetic resin 3 4 b.
  • the ferrule 35 has two guide bins 35 b for alignment with the multi-core connector 4 2 (see FIG. 12).
  • FIG. 1 1 A which is a cross section along the longitudinal direction of FIG. 10
  • FIG. 1 1 B which is a cross section along the width direction
  • the lead 10 f is bent at a preset position to complete the manufacture of the optical module 30.
  • the optical module 30 manufactured in this way is mounted on a circuit board 40 on which a predetermined circuit is formed, as shown in FIG. 12A, and a predetermined circuit is connected through each lead 10 ⁇ . And is connected to the multi-core connector 4 2 using the guide bin 3 5 b.
  • the optical module 30 optically connects the four optical semiconductor elements 32 and the corresponding optical fibers of the ribbon optical fiber 43.
  • the lead 10 f is bent in a substantially L shape as in the optical module 30 shown in FIG. 12B, and the circuit board 40 has a predetermined position. It is fixed to the through hole provided in the cable and is electrically connected to a predetermined circuit through each lead 10 f.
  • a plurality of optical semiconductor elements 32 are arranged in a two-dimensional direction in a plane at a predetermined position. That is, the optical module 30 shown in FIG. 12B has two rows of up and down optical semiconductor elements 32 arranged in four horizontal rows.
  • the Fenorail 3 5 corresponds to the upper and lower two rows of optical semiconductor elements 3 2, and as shown in Fig. 1 2 B, the main body 3 5 a has four optical fibers 3 5 c in a horizontal row. There are two rows at the top and bottom.
  • the plurality of optical semiconductor elements 3 2 is, for example, 2 in the vertical direction, 6 in the horizontal direction, 12 in total, 3 in the vertical direction, 3 in the horizontal direction, or 9 in total. May be arranged in two-dimensional directions.
  • the lead 10 f may be parallel to the plate surface of the circuit board 40 without being bent. For example, if a hole capable of accommodating the optical module is provided at a predetermined position of the circuit board 40 and the lead 10 f and the wiring of the circuit board 40 are electrically connected, the optical module is moved to a position where it can be electrically connected. The lead 10 f need not be bent. In addition, the lead 10 f and the wiring of the circuit board 40 are wired to a predetermined position on the circuit board 40 to a position where they can be electrically connected. For example, by providing a wiring board, the lead 10 f is bent. There is no need to process. Thus, the shape of the lead 10 f can be designed arbitrarily.
  • the optical module 30 receives the drive current input from the circuit board 40 side as shown in FIG. Lead 1 0 ⁇ ⁇ via hole 1 1 a ⁇ bonding wire W ⁇ electronic circuit component 3 3 ⁇ bonding wire W ⁇ via hole 1 1 a ⁇ conductor plate tongue 1 0 11 ⁇ bonding wire ⁇ ⁇ ⁇ mounting block 3 1 ⁇
  • the light emitted from the bonding wire ⁇ to the optical semiconductor element 3 2 is transmitted through the ribbon optical fiber 4 3 attached with the multi-core connector 4 2.
  • the optical semiconductor element 32 is a planar PD, the optical signal current generated in the optical semiconductor element 32 is guided to an external circuit through a path opposite to the above.
  • the optical module 30 is arranged by etching and Z or laser processing the substrate B on which the conductor layer 10 c is formed on the conductor plate 10 a via the insulating layer 10 b.
  • the line part PW and the lead part PL and Z or the mounting part PM and the force S are formed at the same time, and these parts are electrically connected by the via hole 11a.
  • the optical module 30 has fewer wire bonding locations than the conventional optical module, and therefore, the influence of the inductance variation due to the variation in the length of the bonding wire W is reduced. Since 10 d can be formed with high accuracy and no variation, the impedance characteristics are also stable, and deterioration of signal transmission characteristics can be suppressed. Further, the optical module 30 has an advantage that it can be manufactured at low cost because it is easy to process.
  • the planar type optical semiconductor element 3 2 is fixed to the first surface 3 1 a of the mounting block 3 1 and is joined to the stepped portion 2 1 a on the second surface 3 1 b perpendicular to this surface. As a result, the substrate surface becomes perpendicular to the upper surface of the conductor plate 10a. Therefore, the light incident / exit direction of the optical fiber 35 c is matched with the light incident / exit direction of the planar optical semiconductor element 32.
  • FIG. 13 shows a printed wiring board 10, an electronic circuit component 33, and a bonding wire W in the optical module 30, and a plurality of leads 10 0 ⁇ of the lead part PL are bent. It ’s been cautious. However, in FIG. 13, illustration of the plating layer 11 is omitted.
  • Fig. 14 is a view of the mounting portion ⁇ of Fig.
  • FIG. 15 is a ground electrode tongue piece of the plurality of electrode tongue pieces shown in Fig. 13.
  • FIG. 15B is a sectional view taken along the signal electrode tongue 10 i (S). As shown in FIG. 14, FIG. 15A, and FIG.
  • the signal electrode tongues 10 i (S) are sandwiched between the ground electrode tongues 10 i (G) and alternately arranged to form a plurality of electrode tongues 10 i.
  • the signal electrode tongues 10 i (S) are shown in the figure.
  • ground electrode plate tongue 10 0 h (G) of the ground electrode tongue 10 i (G) is connected to the wiring portion PW through the via hole 1 1 a as shown in FIG. 15A.
  • Wiring pattern (ground electrode pattern) 10d is electrically connected.
  • the signal conductor tongue 1 Oh (S) of the signal electrode tongue 10 i (S) is connected to the wiring pattern PW via the via hole 1 1 a as shown in Fig. 15B.
  • (Signal electrode pattern) 10 d is electrically connected.
  • the signal electrode tongue 10 i (S) the signal conductor plate tongue 10 h (S) and the wiring pattern (signal electrode pattern) 10 d formed thereon are arranged in the wiring section. Without being electrically connected to the ground 10e, it is connected to the wiring pattern 10d of the wiring part PW.
  • the printed wiring board 10 is formed continuously with the ground electrode tongue 10 i (G) force wiring portion ground 10 e as shown in FIGS. 13 to 15. Since it has a grounding conductor plate tongue 1 Oh (G), the ground potential is stable. Therefore, by arranging the signal electrode tongue 10 i (S) between the ground electrode tongues 10 i (G), a plurality of signal electrode tongues 10 i (S) Is effectively electromagnetically shielded. For this reason, in the optical module 30 using the printed wiring board 10, electromagnetic interference between the signal electrode tongues 10 i (S) is effectively suppressed, so that crosstalk between channels is effective. Signal transmission characteristics, for example, S / N ratio degradation is suppressed or prevented.
  • Such a Daland electrode tongue 10 i (G) can be formed simultaneously with the signal electrode tongue 10 i (S) when the printed wiring board 10 is manufactured. That is, when the mounting part PM is separated into a plurality of electrode tongues by etching the conductor plate 10 a into 10 i, the portion that becomes the ground conductor plate tongue 10 h (G) is the wiring part. Do not separate from the PW conductor plate 10 a (wiring section ground 10 e), that is, do not separate the second part on the wiring part P WftlJ and the third part on the mounting part PM side. An etching mask may be formed. Thus, the ground electrode tongue 10 0 (G) can be formed by a very simple method.
  • the electrode tongue piece 10 0 i (G) is formed on the electrode tongue piece 10 i in the mounting portion PM.
  • a ground lead 10 f (G) formed continuously and integrally with the wiring portion ground 10 e can be disposed between the signal leads 10 f (S).
  • the ground potential of the ground lead 10 f (G) is stabilized, and the ground lead 10 0 f (G Therefore, in the optical module 30, the signal transmitted from the circuit board 40 shown in Fig. 1 2 A causes electromagnetic interference in the lead part PL. Is effectively suppressed or prevented, so that crosstalk between channels is suppressed and signal transmission is reduced. Properties, for example, inferior I spoon of S / N ratio can be suppressed or prevented.
  • the ground lead 10 f (G) is connected to the lead PL from the conductor plate 10 0 a (wiring ground 1 0 e) of the wiring section PW in the same manner as the ground electrode tongue 10 0 i (G).
  • the printed circuit board 10 it can be formed at the same time as the signal lead 10 f (S). Yes.
  • the portion that becomes the ground lead 10 f (G) is the conductor plate 10 0 a ( An etching mask may be formed so as not to be separated from the second part on the wiring part PW side and the first part on the lead part PL side so as not to be separated from the wiring part daland 10 e).
  • FIG. 20 is an enlarged view of an example of the mounting portion PM in FIG. 13 viewed from above.
  • via holes 1 electrically connecting the wiring pattern 1 0 d and the conductor plate tongues 1 0 h 1 a is formed such that the positions of the electrode tongue pieces 10 i in the longitudinal direction are different between the adjacent electrode tongue pieces 10 i.
  • the via hole 1 1 a needs to have a certain size, and its diameter is the wiring pattern 10 0 d and Conductor plate tongue is larger than the width of 10 h.
  • the pitch of the optical fiber array can be designed to an arbitrary pitch depending on the type of optical fiber, for example, thickness or shape (cross-sectional shape, or multi-core type such as optical cable or ribbon).
  • the optical module 30 has a configuration in which a plurality of leads 10 f extend in the three sides of the rear side which is the back side with respect to both sides in the width direction and the front portion where the guide bin 35 b is provided.
  • a configuration in which a plurality of leads 10 f extend only on both sides in the width direction may be adopted.
  • the lead 10 f may extend only on one side in the width direction or only from the lower surface of the optical module 30. Further, as shown in FIG.
  • the first surface 31a of the mounting block 31 to which the optical semiconductor element 32 is fixed and the second surface 31b perpendicular to the first surface 31b are continuously connected.
  • a wiring pattern 31 c is formed to connect the semiconductor element 32 and the wiring pattern 10 d
  • the second surface 31 b of the mounting block 31 b is a wiring pattern 31 c force.
  • the mounting block 31 may be fixed on the printed wiring board 10 in contact with 10 d (plating layer 1 1).
  • FIG. 18B when the electronic circuit component 33 is connected in a plane to the conductive layer 10c, which becomes the wiring pattern 10d, via a plurality of electrodes arranged on the plane, The conductive layer 10c is connected via the solder bump 36 corresponding to the electrode.
  • connection positions L11 to L33 of the plurality of electrodes and the plurality of conductive layers 10c are 3 vertical X 3 horizontal or more Therefore, the conductive layer 10c exists at each of the connection positions L11 to L33. For this reason, it is difficult to provide the conductive layer 10c at the connection position L22 surrounded by other connection positions L11 to L33 due to space restrictions. Therefore, when the electronic circuit component 33 has the connection position L 22 surrounded by the other connection positions L 11 to L 33, the conductor at the connection position L 22 via the via hole 37 as shown in FIG. 18B. Connect with layer 10 k. Thereby, in the electronic circuit component 33, the electrode at the connection position L22 is connected to the wiring pattern 10d (conductive layer 10c) via the solder bump 36, the via hole 37, and the conductor layer 10k.
  • a through hole may be used instead of the via hole 37, or the solder bump 36 and the conductor layer 10k may be directly connected.
  • the electronic circuit component 33 can be connected to the conductor layer even when the number of electrodes increases and a connection position surrounded by another connection position occurs.
  • the conductive layer 10 k itself may be formed with a wiring pattern enabling a desired wiring like the wiring pattern 10 d, or electrically connected to a predetermined wiring pattern such as the via hole 11 a. It may be done.
  • the stepped portion 2 1a has an inclination angle of 3 ° to 10 °, preferably 6 ° to 9 °, with respect to the upper surface of the conductor plate 10a.
  • the plane of the planar optical semiconductor element 3 2 fixed to the first surface 3 1 a of the mounting block 3 1 is non-perpendicular to the upper surface of the conductor plate 10 0 a. You may make it become.
  • the mounting block 3 1 is constructed so that the first surface 3 1 a and the second surface 3 1 b of the mounting block 3 1 intersect at an angle other than a right angle.
  • the second surface 3 1 b is fixed to a stepped portion 2 1 a formed in parallel to the upper surface of the conductor plate 10 a, so that the substrate surface relating to the planar type optical semiconductor element 3 2 is guided.
  • the body plate 10 a may be non-perpendicular to the upper surface.
  • a force mounting block 31 (not shown) is moved to the stepped portion 2 1 a at a position rotated about 3 ° to 10 °, preferably 6 ° to 9 ° around an axis perpendicular to the upper surface of the conductor plate 10a. It may be fixed, or the input / output end face of the optical fiber 35 c may be processed obliquely.
  • the optical module 30 is configured such that the input / output surface of the planar optical semiconductor element 32 (parallel to the substrate surface) and the input / output end surface of the optical fiber 35 c are non-parallel. Therefore, the adverse effect of reflected light is suppressed or prevented.
  • an electronic circuit component 33 such as IC for driving the optical semiconductor element 32 may be fixed to the wiring portion PW by flip chip bonding. According to such a configuration, since the number of bonding wires for connecting the electronic circuit component 33 and the wiring pattern 10 d of the wiring part PW of the printed wiring board 10 can be further reduced, the optical module 30 is The deterioration of signal transmission characteristics can be further suppressed. ⁇
  • the electronic circuit component 33 does not have to be provided, and the lead 10 f of the lead part PL and the optical semiconductor element 32 mounted on the mounting part PM include an electronic circuit. It may be connected without going through parts 3 3. Further, in the printed wiring board 10, the mounting part PM is not essential, and only the wiring part PW and the lead part PL may be provided. In this case, as shown in Fig. 17, an edge-emitting semiconductor laser diode or a waveguide-type (edge-receiving type) frame is formed on the adhesive layer 11 of the wiring part PW. An optical semiconductor element 32 such as a photodiode may be fixed and connected to the wiring pattern 10 d with a bonding wire W. .
  • FIG. 21 is a cross-sectional view of an optical module 50 showing a fourth embodiment of the present invention.
  • a lead frame package 20 on which an optical semiconductor element 32 and a driving electronic circuit component (semiconductor element) 33 are mounted is sealed with an electrically insulating synthetic resin.
  • the optical module 50 has a lead frame package 20, a lid 5 1, a side wall 5 2, a bottom plate 5 4, and a ferrule 5 on which an optical semiconductor element 3 2 and a driving electronic circuit component 33 are mounted 5 is sealed.
  • the inside of the optical module 50 is preferably sealed with, for example, nitrogen gas (N 2 ) or a gas whose water content is controlled.
  • N 2 nitrogen gas
  • the optical module 50 includes a fixing member 5 3 that fixes the conductor plates 1 0 e, 1 0 f and 1 0 h upward, and is fixed to the bottom plate 5 4. Extends from the side wall 52 through the insulator 56 to the outside. At this time, the optical module 50 has optical semiconductor elements 32 arranged in a horizontal row. In the electronic circuit component 33, the plurality of leads 33a and the conductive layer 10c are joined by solder. Therefore, the ferrule 55 has a plurality of optical fibers 55 c corresponding to the number of the optical semiconductor elements 32, and each optical fiber 55 c is optically coupled with the channel of each optical semiconductor element 32. ing.
  • the optical module 50 is connected to a multi-core connector (not shown) using a guide bin 55b provided on the body 55a of the ferrule 55, and the optical semiconductor element 32 is connected to the optical fiber 55c. And optically connected to the optical fiber of the multi-core connector.
  • the fixing member 53 in contact with the conductor plates 10 e, 10 f, and 10 h has electrical insulation and thermal conductivity.
  • the optical module 50 can be radiated and heated via the bottom plate 54.
  • the fixing member 5 3 is at least a portion in contact with the conductor plates 10 0 e, 10 f, 10 h
  • Metals with an electrically insulating layer formed on them, non-metals such as thermally conductive synthetic resin, alumina ( ⁇ 1 2 0 3 ), and aluminum nitride (A 1 N) are used.
  • the bottom plate 54 can be made of metal such as copper, copper alloy, heat conductive synthetic resin, non-metal such as alumina (A 1 2 0 3 ), aluminum nitride (A 1 N).
  • the optical module 50 includes a temperature control element between the fixing member 53 and the bottom plate 54, and externally, for example, the optical semiconductor element 32 and the electronic circuit component 33 according to the temperature change are set to a desired temperature. Can be controlled. Furthermore, if a temperature detection sensor is provided at a predetermined position inside the optical module 50, the temperature can be controlled more accurately.
  • the optical module of the present invention is optically coupled to each channel of the optical semiconductor element by an optical fiber of the ferrule, and is coupled to an optical component such as an external optical connector by the ferrule.
  • the optical fiber of the ferrule is made long, and this optical fiber is optically coupled to each channel of the optical semiconductor element and led to the outside. May be.
  • the optical fiber led out to the outside is optically coupled to another optical fiber by an optical connector provided at the end, or optically coupled to another optical fiber by fusion splicing.
  • the light receiving signal received by the light receiving element and converted into electricity is smaller than the magnitude of the electrical light emitting signal that emits light from the light emitting element. Electromagnetic interference (crosstalk) may occur between the signal and the received light signal. Therefore, in such an optical module, for example, a plurality of conductor plates may be configured such that the light emitting element daland and the light receiving element daland are separated.
  • the printed wiring board, the manufacturing method thereof, the lead frame package, and the optical module according to the present invention reduce the number of wire bonding portions and have poor signal transmission characteristics due to variations in the length of bonding wires. Suppress In addition, wire bonding work with a planar type optical semiconductor element to be mounted can be easily performed, and it is useful for manufacturing at low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Light Receiving Elements (AREA)

Abstract

外部回路との電気的接続のためのリードとして用いられる少なくとも1つの導体板を含み、互いに空間的に分離された複数の導体板(10a)と、複数の導体板上及び/又は複数の導体板を跨いで形成された絶縁層(10b)と、絶縁層上に形成された複数の配線パターン(10d)とを有し、複数の導体板の少なくとも1つの導体板が、複数の配線パターンの少なくとも1つとビアホール(11a)によって電気的に接続されているプリント配線基板(10)、その製造方法、プリント配線基板を用いたリードフレームパッケージおよび光モジュール。

Description

明 細 書 プリント配線基板、 その製造方法、 リ一ドフレームパッケージおよび光モジユー ル 技術分野
この発明は、 プリント酉 3線基板、 その製造方法、 リードフレームパッケージお よび光モジュ一ノレに関するものである。 背景技術 .
従来、 半導体装置には、 搭載した半導体素子と配線パターンとの間をボンディ
「'接続し、 樹脂封止したものが知られている (例えば、 特許第 2 5 2 8 1 9 2号公報参照。 ) 。 また、 フィルム本体の表面に形成された配線パターン の端部がフィルム本体から突出してコンタクトビンとされるコンタクトプローブ においては、 フォトレジスト層を形成して配線パターンを形成すること、 配線パ ターンとコンタク トビンをビアホールで電気的に接続すること、 ビアホールを設 けるスペースを確保することが知られている (例えば、 特開 2 0 0 1— 1 9 4 3 8 7号公報参照。 ) 。
このような半導体装置のうち、 例えば、 第 2 2図に示す光モジュール 1は、 リ しドフレームパッケージ 5、 中間部材 7 a及び搭載ブロック 8を有し、 これらの 構成部品をボンディングワイヤ Wで接続した後、 電気絶縁性の合成樹脂で封止し、 光ファイバ 9 aを有するフェルール 9と一体化して製品とされる。
このとき、 リードフレームパッケージ 5は、 プリント配線基板(PWB : Printed Wiring Board) 2とリードフレーム 3とが合成樹脂 4でモールドされている。 一 方、 プリント配線基板 2は、 所定形状に成形された導体板 2 a上に絶縁層2 bと 導体層からなる微細な配線パターン 2 dとを順次形成したマイクロストリップラ イン構造を有し、 搭載した半導体素子 (電子回路素子) 6と配線パターン 2 dと の間がボンディングワイヤ Wで接続されている。 また、 搭載ブロック 8には、 シ リコン基板 8 a上に基板面に対して垂直方向に光が入出射する光半導体素子 8 b、 例えば、 プレーナ型の受発光素子 (V C S E L (Vertical Cavity Surface Emitting Laser) , プレーナ P D (Photo Diode) ) が設けられている。 プリント配 線基板 2は、 マイクロストリップライン構造を採用することによって、 光モジュ ール 1におけるィンピーダンス整合を図り、 信号伝送特性の劣化を抑えるように している。
ところで、 光モジュール 1において構成部品の間をボンディングワイヤ Wで接 続すると、 マイクロストリップライン構造のプリント配線基板 2を用いているに も拘わらず、 ボンディングワイヤ Wの長さに起因したインダクタンスの影響によ り高周波信号の伝送特性が劣化する上、 加工工数が多くなるという問題があった。 また、 リードフレームパッケージ 5を構成するプリント配線基板 2とリードフレ ーム 3、 及びリードフレームパッケージ 5と共に用いられる中間部材 7 aを、 個々に製造してから組立てられていることから製造コス 1、が嵩み、 光モジュール 1も高価になってしまうという問題があった。
また、 従来の光モジュール 1においては、 プレーナ型の受発光素子 8 bが搭載 ブロック 8の第 1の面 8 a 1に固定され、 第 1の面 8 a 1と垂直な面 8 a 2におい て、 中間部材 7 a上に固定されている。 導体板 7 bの先端部は、 搭載ブロック 8 の第 1の面 8 a 1との間でワイヤボンディングの作業を容易にするため、 中間部 材 7 aの端面に沿って下方に垂直に折り曲げられ、 この曲げられた部分に、 ボン デイングワイヤ Wの一端がボンディングされている。 このため、 中間部材 7 aの 製造コストが高くなるという問題もあった。
この発明は、 上述した問題点を解消するため、 ワイヤボンディングの個所を少 なくしてボンディングワイヤの長さに起因した信号伝送特性の劣化を抑え、 また、 搭載されるプレーナ型の光半導体素子との間のワイヤボンディング作業を容易に 行うことができ、 かつ、 安価に製造可能なプリント配線基板、 その製造方法、 リ 一ドフレームパッケージおよぴ光モジュールを提供することを目的とする。 発明の開示
本発明にかかるプリント配線基板は、 外部回路との電気的接続のためのリード として用いられる少なくとも 1つの導体板を含み、 互いに空間的に分離された複 数の導体板と、 前記複数の導体板上及び/又は'前記複数の導体板を跨いで形成さ れた絶縁層と、 前記絶縁層上に形成された複数の配線パターンと、 を有し、 前記 複数の導体板の少なくとも 1つの導体板が、 前記複数の配線パターンの少なくと も 1つとビアホールによって電気的に接続されていることを特徴とする。
, この発明によれば、 配線部の配線パターンと, 外部回路接続用のリードとの間 のワイャボンドが不要となるため、 ボンデイングワイヤの長さに起因した信号伝 送特性の制限を受け難く、 かつ、 安価に製造可能なプリント配線基板が提供され る。 ここにおいて、 複数の配線パターンは、 複数の導体板の 1つの導体板をダラ ンドとして有するマイクロストリップラインとして形成されたものであっても、 あるいは複数の導体板の 1つの導体板をグランドとして有し、 このグランドに接 続されたダランド用配線パターンが 2つの信号伝送路間に配置されたダランド付 きコプレーナ型の伝送路であつてもよい。 ·
また、 本発明にかかるプリント配線基板は、 上記の発明において、 分離された 前記複数の導体板の 1つを有するリ一ド部と、 分離された前記複数の導体板の他 の 1つを有し、 前記リ一ド部と電気的に接続される配線部とを含むことを特徴と する。
また、 本発明にかかるプリント配線基板は、 上記の発明において、 前記リード 部の導体板は、 前記複数の配線パターンに対応した所定数の信号用リ一ドにさら に分離され、 前記所定数の信号用リードは、 ビアホールによって、 それぞれ対応 する前記配線パターンに電気的に接続されていることを特徴とする。
また、 本発明にかかるプリント配線基板は、 上記の発明において、 前記リード 部は、 隣接する 2つの信号用リ一ドの間に少なくとも 1つのグランド用リードが 配置され、 前記少なくとも 1つのグランド用リードは、 前記配線部の導体板から 一体的に形成され、 かつ、 ビアホールを介して、 前記複数の配線パターンの対応 する配線パターンと電気的に接続されていることを特徴とする。
これにより、 プリント配線基板は、 グランド用リードの接地電位が安定化し、 隣接する信号用リード間が効果的に遮蔽される。 このため、 プリント配線基板は、 信号用リード間の電磁干渉 (クロストーク) の発生が効果的に抑制又は防止され、 信号伝送特性、 例えば、 S ZN比の劣化が抑制又は防止される。
, また、 本発明にかかるプリント配線基板は、 上記の発明において、 前記プリン ト配線基板は、 前記リード部と所定の前記配線パターンとが電気的に接続され、 光半導体素子を複数有するマルチチヤンネル光半導体素子との電気的接続のため の複数の信号用電極舌片を有し、 各信号用電極舌片に電極パターンが形成された 搭載部を更に含み、 該搭載部の導体板は、 前記マルチチャンネル光半導体素子の チヤンネルに対応した所定数の信号用導体板舌片にさらに分離されて対応する電 極パターンと共に前記複数の信号用電極舌片として構成され、 前記信号用導体板 舌片は、 ビアホールによつてそれぞれ対応する前記電極パターンに電気的に接続 されていることを特徴とする。
これにより、 プリント配線基板は、 配線部の配線パターンと、 外部回路接続用 のリードとの間のワイヤボンドが不要となるため、 ボンディングワイヤの長さに 起因した信号伝送特性の制限を受け難く、 力つ、 マルチチャンネル光半導体素子 (例えば、 アレイレーザダイオード, アレイフォトダイオード等) を使用する場 合における各チャンネル毎の配線パターンを、 各チャンネルに対応した電極舌片 として、 外部回路接続用のリードと同時に作製することができるため、 安価に製 造可能なプリント配線基板が提供される。 ここにおいて、 複数の配線パターンは、 配線部の導体板をグランドとして有するマイクロストリップラインとして形成さ れたものであっても、 あるいは配 II部の導体板をグランドとして有し、 このダラ ンドに接続されたダランド用配線パターンが 2つの信号伝送路間に配置されたグ ランド付きコプレーナ型の伝送路であつてもよレヽ。
また、 本発明にかかるプリント配線基板は、 上記の発明において、 前記搭載部 は、 前記複数の信号用電極舌片のうちの隣接する 2つの信号用電極舌片の間に少 なくとも一つのグランド用電極舌片が配置され、 この少なくとも一つのグランド 用電極舌片は、 前記配線部側から前記搭載部側に向かって連続して延びる前記導 体板からなるグランド用導体板舌片と、 このグランド用導体板舌片上に積層され た絶縁層と、 この絶縁層上に形成されたグランド用電極パターンとを有してなり、 前記ダランド用導体板舌片は、 ビアホールを介して、 前記ダランド用電極パター ンと電気的に接続されていることを特徴とする。
これにより、 プリント配線基板は、 グランド用電極舌片の接地電位が安定ィ匕し、 隣接する信号用電極舌片間が効果的に遮蔽される。 このため、 プリント配線基板 は、 信号用電極舌片間の電磁干渉 (クロストーク) の発生が効果的に抑制又は防 止され、 マルチチヤンネル光半導体素子に、 又はマルチチャンネル光半導体素子 からの信号伝送特性、 例えば、 S /N比の劣ィヒが抑制又は防止される。
また、 本発明にかかるプリント配線基板の製造方法は、 導体板と、 この導体板 上に積層された絶縁層と、 この絶縁層上に形成された導体層とからなる基板を準 備する第 1の工程と、 少なくとも前記導体層の所定部をエッチング又は/及びレ 一ザ加工して前記複数の配線パターンを形成する第 2の工程と、 前記導体板をェ ツチングして複数の導体板に分離し、 分離された前記複数の導体板を跨ぐ位置に 前記絶縁層と配線パターンとを残す第 3の工程と、 前記複数の配線パターンの少 なくとも 1つを、 分離された前記複数の導体板の少なくとも 1つの導体板とビア ホールを介して電気的に接続する第 4の工程と、 を有することを特徴とする。 また、 本発明にかかるプリント配線基板の製造方法は、 上記の発明において、 前記第 3の工程は、 前記導体板を複数に分離することにより、 分離された前記複 数の導体板の 1つを有するリ一ド部と、 分離された前記複数の導体板の他の 1つ を有し、 前記リード部と電気的に接続される配線部とを形成することを特徴とす る。
また、 本発明にかかるプリント配線基板の製造方法は、 上記の発明において、 前記第 3の工程は、 前記リ一ド部の導体板を、 前記複数の配線パターンに対応し た所定数の信号用リードにさらに分離し、 前記所定数の信号用リードを、 ビアホ ールによって、 それぞれ対応する前記配線パターンに電気的に接続する工程を含 むことを特徴とする。 '
これにより、 'プリント配線基板の製造方法は、 導体板とこの導体板上に積層さ れた絶縁層とこの絶縁層上に形成された導体層とカゝらなる基板から、 所定の配線 パターンを形成したプリント配線基板を、 外部回路接続用のリードと同時に、 か つ、 単一の基板から形成することができる。 また、 リードと各配線パターンとが ビアホールを介して接続されるので、 これらの間のワイヤボンディングが不要と なり、 ボンディングワイヤの長さに起因した信号伝送特性の制限を受け難レヽプリ ント配線基板が提供される。
また、 本発明にかかるプリント配線基板の製造方法は、 上記の発明において、 前記第 3の工程は、 隣接する 2つの信号用リ一ドの間に配置され、 前記配線部の 導体板から形成すると共に、 ビアホールを介して、 前記複数の配線パターンの対 応する配線パターンと電気的に接続される少なくとも 1つのグランド用リ一ドを 形成する工程を含むことを特徴とする。
これにより、 プリント配線基板の製造方法は、 プリント配線基板に信号用リー ドとグランド用リードとを同時に形成することができる。 また、 隣接する信号用 リ一ド間に、 配線部側の第 2の部分からリ一ド部側の第 1の部分に連続して延ぴ る導体板からなるダランド用リ一ドを一体的に形成することができるため、 プリ ント配線基板は、 グランド用リードの接地電位が安定ィ匕し、 隣接する信号用リー ド間が効果的に電磁遮蔽される。 このため、 本発明によって製造されたプリント 配線基板は、 信号用リード間の電磁干渉 (クロストーク) の発生が効果的に抑制 又は防止され、 信号伝送特性、 例えば、 SZN比の劣化が抑制又は防止される。 また、 本発明にかかるプリント配線基板の製造方法は、 上記の発明において、 前記第 3の工程は、 前記リード部及び配線部と共に、 分離された前記複数の導体 板の更に他の 1つを有し、 前記リード部と所定の前記配線パターンとが電気的に 接続され、 光半導体素子を複数有するマルチチヤンネル光半導体素子との電気的 接続のための複数の信号用電極舌片を有し、 各信号用電極舌片に電極パターンが 形成された搭載部を形成し、 該搭載部の導体板を、 前記マルチチャンネル光半導 体素子のチヤンネルに対応した所定数の信号用導体板舌片にさらに分離して対応 する電極パターンと共に前記複数の信号用電極舌片とする共に、 前記信号用導体 板舌片を、 ビアホールによってそれぞれ対応する前記電極パターンと電気的に接 続する工程を含むことを特徴とする。
これにより、 プリント配線基板の製造方法は、 マルチチャンネル光半導体素子 に電気的に接続される各チヤンネル毎の電極パターンを、 各チャンネルに対応し て分離された電極舌片上に形成し、 また、 この電極舌片を、 外部回路接続用のリ ードと同時に作製することができるため、 マルチチャンネル光半導体素子を使用 する場合におけるプリント配線基板が安価に製造できる。
また、 本発明にかかるプリント配線基板の製造方法は、 上記の発明において、 前記第 3の工程は、 前記複数の信号用電極舌片のうちの隣接する 2つの信号用電 極舌片の間に配置される少なくとも一つのグランド用電極舌片を形成する工程を 含み、 この少なくとも一つのグランド用電極舌片は、 エッチング又は/及びレー ザ加工によつて形成され、 前記配線部側から前記搭載部側に向かつて連続して延 びる前記導体板からなるグランド用導体板舌片と、 このグランド用導体板舌片上 に積層された絶縁層と、 この絶縁層上に形成されたグランド用電極パターンとを 有してなり、 前記グランド用導体板舌片は、 ビアホールを介して、 前記グランド 用電極パターンと電気的に接続されていることを特徴とする。
これにより、 プリント配線基板の製造方法は、 プリント配線基板に信号用電極 舌片とグランド用電極舌片とを同時に形成することができる。 また、 信号用電極 舌片間に、 配線部側の第 2の部分から搭載部側の第 3の部分に連続して延びる導 体板からなるグランド用電極舌片を一体的に形成することができるため、 プリン ト配線基板は、 グランド用電極舌片の接地電位が安定ィヒし、 隣接する信号用電極 舌片間が効果的に電磁遮蔽される。 このため、 製造されたプリント配線基板は、 信号用電極舌片間の電磁干渉 (クロストーク) の発生が効果的に抑制又は防止さ れ、 マルチチヤンネル光半導体素子に、 又はマルチチヤンネル光半導体素子から の信号伝送特性、 例えば,、 S /N比の劣化が抑制又は防止される。
また、'本発明にかかるリ一ドフレームパッケージは、 外部回路との電気的接続 のためのリードとして用いられる少なくとも 1つの導体板を含み、 互いに空間的 に分離された複数の導体板と、 前記複数の導体板上及び Z又は前記複数の導体板 を跨レ、で形成された絶縁層と、 前記絶縁層上に形成された複数の配線パターンと、 前記複数の導体板の少なくとも 1つの導体板の下面をモールドする電気絶縁性の 合成樹脂と、 を有し、 前記複数の導体板の少なくとも 1つの導体板が、 前記複数 の配線パターンの少なくとも 1つとビアホールによって電気的に接続されている ことを特徴とする。
また、 本発明にかかるリードフレームパッケージは、 上記の発明において、 分 離された前記複数の導体板の 1つを有するリ一ド部と、 分離された前記複数の導 体板の他の 1つを有し、 前記リード部と電気的に接続される配線部とを含むこと を特 ί敷とする。
また、 本発明にかかるリードフレームパッケージは、 上記の発明において、 前 記リード部の導体板は、 前記複数の配線パターンに対応した所定数の信号用リ一 ドにさらに分離され、 前記所定数の信号用リードは、 ビアホールによって、 それ ぞれ対応する前記配線パターンに電気的に接続されていることを特徴とする。 これにより、 リードフレームパッケージは、 配線部の配線パターンと、 外部回 路接続用のリードとの間のワイヤボンドが不要となるため、 ボンディングワイヤ の長さのばらつき等に起因した信号伝送特性の制限を受け難く、 かつ、 安価に製 造可能なリードフレームパッケージが提供される。
また、 本発明にかかるリードフレームパッケージは、 上記の発明において、 前 記リード部は、 隣接する 2つの信号用リ一ドの間に少なくとも 1つのグランド用 リードが配置され、 前記少なくとも 1つのグランド用リ一ドは、 前記配線部の導 体板から一体的に形成され、 力つ、 ビアホールを介して、 前記複数の配線パター ンの刘 -応する配線パターンと電気的に接続されていることを特徴とする。 これにより、 リードフレームパッケージは、 信号用リード間に、 配線部側から リ一ド部側に連続して延びる導体板から一体的に形成されたダランド用リードが 配置されているため、 リードフレームパッケージは、 グランド用リードの接地電 位が安定化し、 隣接する信号用リード間が効果的に電磁遮蔽される。 このため、 リードフレームパッケージは、 信号用リード間の電磁干渉 (クロストーク) の発 生が効果的に抑制又は防止され、 信号伝送特性、 例えば、 S ZN比の劣化が抑制 又は防止される。
また、 本発明にかかるリードフレームパッケージは、 上記の発明において、 前 記リード部と所定の前記配線パターンとが電気的に接続され、 光半導体素子を複 数有するマルチチヤンネル光半導体素子との電気的接続のための複数の信号用電 極舌片を有し、 各信号用電極舌片に電極パターンが形成された搭載部を更に含み、 該搭載部の導体板は、 前 IEマルチチヤンネル光半導体素子のチヤンネルに対応し た所定数の信号用導体板舌片にさらに分離されて対応する電極パターンと共に前 記複数の信号用電極舌片として構成され、 前記信号用導体板舌片は、 ビアホール によってそれぞれ対応する前記電極パターンに電気的に接続されていることを特 徴とする。
これにより、 リードフレームパッケージは、 配線部の配線パターンと, 外部回 路接続用のリードとの間のワイヤボンドが不要となる。 このため、 ボンディング ワイヤの長さに起因した信号伝送特性の制限を受け難く、 かつ、 マルチチャンネ ル光半導体素子 (例えば、 了レイレーザダイォード, アレイフォトダイォード 等) を使用する場合における各チャンネル毎の配線パターンを、 各チャンネルに 対応した電極舌片として、 外部回路接続用のリードと一体的に作製することがで きるので、 安価に製造可能なリ一ドフレームパッケージが提供される。
また、 本発明にかかるリードフレームパッケージは、 上記の発明において、 前 記複数の信号用電極舌片のうちの隣接する 2つの信号用電極舌片の間に配置され る少なくとも一つのグランド用電極舌片を有し、 この少なくとも一つのグランド 用電極舌片は、 前記配線部側から前記搭載部側に向かって連続して延びる前記導 体板からなるグランド用導体板舌片と、 このグランド用導体板舌片上に積層され た絶縁層と、 この絶縁層上に形成されたグランド用電極パターンとを有してなり、 前記グランド用導体板舌片は、 ビアホールを介して、 前記グランド用電極パター ンと電気的に接続されていることを特徴とする。
これにより、 リードフレームパッケージは、 信号用電極舌片間に、 酉 3線部側か ら搭載部側に連続して延びる導体板から一体的に形成されたグランド用電極舌片 が配置されているため、 リ一ドフレームパッケージは、 グランド用電極舌片の接 地電位が安定化し、 隣接する信号用電極舌片間が効果的に電磁遮蔽される。 この ため、 リードフレームパッケージは、 信号用電極舌片間の電磁干渉 (クロストー ク) の発生が効果的に抑制又は防止され、 マルチチヤンネル光半導体素子に、 又 はマルチチヤンネル光半導体素子からの信号伝送特性、 例えば、 S /N比の劣化 が抑制又は防止される。
また、 本発明にかかる光モジュールは、 外部回路との電気的接続のためのリー ドとして用いられる少なくとも 1つの導体板を含み、 互いに空間的に分離された 複数の導体板、 前記複数の導体板上及び Z又は前記複数の導体板を跨レ、で形成さ れた絶縁層及び前記絶縁層上に形成された複数の配線パターンを有し、 前記複数 の導体板の少なくとも 1つの導体板が、 前記複数の配線パターンの少なくとも 1 つとビアホールによって電気的に接続されているプリント配線基板と、 前記複数 の導体板の少なくとも 1つの導体板の下面を被包する電気絶縁性の合成樹脂モー ノレドケースと、 前記配線パターンに電気的に接続された光半導体素子と、 前記光 半導体素子に光結合した光ファィパと、 を有することを特徴とする。
また、 本発明にかかる光モジュールは.、 上記の発明において、 前記プリント配 線基板は、 分離された前記複数の導体板の 1つを有するリード部と、 分離された 前記複数の導体板の他の 1つを有し、 前記リ一ド部と電気的に接続される配線部 とを含むことを特徴とする。
これ〖こより、 光モジュールは、 配線部の配線パターンと, 外部回路接続用のリ ードとの間のワイヤポンドが不要となる。 このため、 ボンディングワイヤの長さ のばらつき等に起因した信号伝送特性の制限を受け難く、 つ、 安価に製造可能 な光モジュールが提供される。 +
また、 本発明にかかる光モジュールは、 上記の発明において、 前記リード部の 導体板は、 前記複数の配線パターンに対応した所定数の信号用リ一ドにさらに分 離され、 前記所定数の信号用リードは、 ビ'ァホールによって、 それぞれ対応する 前記配線パターンに電気的に接続されていることを特徴とする。
これにより、 光モジュールは、 信号用リード間に、 配線部側からリード部側に 連続して延びる導体板から一体的に形成されたグランド用リ一ドが配置されてい るため、 光モジュールは、 グランド用リードの接地電位が安定化し、 隣接する信 号用リード間が効果的に電磁遮蔽される。 従って、 光モジュールは、 信号用リー ド間の電磁干渉 (クロストーク) の発生が効果的に抑制又は防止され、 信号伝送 特性、 例えば、 S /N比の劣化が抑制又は防止される。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記配線部もし くはグランド部に少なくとも一つの電子回路素子が実装され、 この電子回路素子 · と前記配線部もしくはグランド部がワイヤボンディングにより接続されているこ とを特徴とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記配線部に少 なくとも一つの電子回路素子が固定或いは接続されていることを特徴とし、 前記 電子回路素子は、 前記配線部にフリップチップボンディングにより固定或いは接 続されてレ,、ることを特徴とする。
これにより、 電子回路素子との間にワイヤボンディングを使用する必要がなく、 信号伝送特性の劣化が抑制又は防止可能な光モジュールが提供される。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記プリント配 線基板は、 前記リード部と所定の前記配線パターンとが電気的に接続され、 前記 光半導体素子を複数有するマルチチヤンネル光半導体素子との電気的接続のため の複数の信号用電極舌片を有し、 各信号用電極舌片に電極パターンが形成された ■ 搭載部を更に含み、 該搭載部の導体板は、 前記マルチチャンネル光半導体素子の チヤンネルに対応した所定数の信号用導体板舌片にさらに分離されて対応する電 極パターンと共に前記複数の信号用電極舌片として構成され、 前記信号用導体板 舌片は、 ビアホールによつてそれぞれ対応する前記電極パターンに電気的に接続 されていることを特徴とする。
これにより、 光モジュールは、 配線部の配線パターンと, 外部回路接続用のリ ードとの間のワイヤボンドが不要となるため、 ボンディングワイヤの長さのばら つき等に起因した信号伝送特性の制限を受け難く、 かつ、 マルチチャンネル光半 導体素子 (例えば、 アレイレーザダイオード, アレイフォトダイォード等) を使 用する場合における各チヤンネル毎の配線パターンを、 各チヤンネルに対応した 電極舌片として、 外部回路接続用のリードと一体的に作製することができる。 こ のため、 マルチチャンネル光半導体素子を実装するための中間部材を別途準備す る必要がなくなり、 安価に製造可能な光モジュールが提供される。
また、,本発明にかかる光モジュールは、 上記の発明において、 前記搭載部は、 前記複数の信号用電極舌片のうちの隣接する 2つの信号用電禪舌片の間に少なく とも一つのグランド用電極舌片が配置され、 この少なくとも一つのグランド用電 極舌片は、 前記配線部側から前記搭載部側に向かって連続して延びる前記導体板 からなるグランド用導体板舌片と、 このグランド用導体板舌片上に積層された絶 縁層と、 この絶縁層上に形成されたグランド用電極パターンとを有してなり、 前 記グランド用導体板舌片は、 ビアホールを介して、 前記グランド用電極パターン と電気的に接続されていることを特徴とする。
これにより、 光モジュールは、 信号用電極舌片間に、 配線部側から搭載部側に 連続して延びる導体板から一体的に形成されたグランド用電極舌片が配置されて いるため、 光モジュールは、 グランド用電極舌片の接地電位が安定ィ匕し、 隣接す る信号用電極舌片間が効果的に電磁遮蔽される。 このため、 光モジュールは、 信 号用電極舌片間の電磁干渉 (クロストーク) の発生が効果的に抑制又は防止され、 マルチチヤンネル光半導体素子に、 又はマルチチヤンネル光半導体素子からの信 号伝送特性、 例えば、 S ZN比の劣ィヒが抑制又は防止される。 また、 本発明にかかる光モジュールは、 上記の発明において、 前記マルチチヤ ンネル光半導体素子はプレーナ型であって、 搭載プロックの第 1の面に固定され、 この搭載ブロックは、 前記第 1の面と交差する第 2の面を有し、 該第 2の面が前 記プリント配線基板に向かい合うように接合された状態で前記プリント配線基板 上部に固定されており、 前記マルチチヤンネル光半導体素子の各チヤンネルは、 対応する前記電極舌片の導体板の端面に直接ボンディングされた少なくとも 1本 のワイヤを介して対応する前記電極舌片に電気的に接続されていることを特徴と する。
これにより、 光モジュールは、 プレーナ型のマルチチヤンネル光半導体素子と 配線パターンとのワイヤボンディングによる接続を容易に行うことができる光モ ジュールが提供される。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記マルチチヤ ンネル光半導体素子はプレーナ型であって、 搭載ブロックの第 1の面に固定され、 この搭載ブロックは、 前記第 1の面と交差する第 2の面及び前記第 1の面と前記 第 2の面とに連続して形成された配線パターンを有し、 該搭載ブロックの第 2の 面の配線パターンが、 前記プリント配線基板の搭載部の配線パターンと接触した 状態で前記プリント配線基板に固定されていることを特徴とする。
これにより、 ワイヤボンディングの個所を少なくした光モジュールが提供され る。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記配線部に少 なくとも一つの電子回路素子が固定或いは接続されていることを特徴とし、 前記 電子回路素子は、 前記配線部にフリップチップボンディングにより固定或いは接 続されていることを特徴とする。
これにより、 光モジュールは、 電子回路素子とプリント配線基板との間にワイ ャボンディングを使用する必要がなく、 信号伝送特性の劣化が抑制又は防止され る。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記光半導体素 子は、 所定位置に 2次元方向に複数配置されていることを特 1敷とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記電子回路素 子と少なくとも 1つの前記光半導体素子とを有し、 前記電子回路素子の少なくと も 1つの電極と、 所定の前記配線パターンとが半田バンプを介して電気的に接続 されていることを特徴とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 外部回路との電 気的接続のためのリードとして用いられる少なくとも 1つの導体板を含み、 互い に空間的に分離された複数の導体板と、 前記複数の導体板上及び/又は前記複数 の導体板を跨レ、で形成された絶縁層及び前記絶縁層上に形成された複数の配線パ ターンとを有し、 前記複数の導体板の少なくとも 1つの導体板が、 前記複数の配 線パターンの少なくとも 1つとビアホールによって電気的に接^^されているプリ ント配線基板と、 前記複数の導体板の少なくとも 1つの導体板が固定され、 前記 複数の導体板と少なくとも電気的に接する個所が電気絶縁性を有する固定部材と、 前記配線パターンに電気的に接続された光半導体素子と、 前記光半導体素子に光 結合した光ファイバと、 を有することを特徴とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記固定部材を 設置する底板を有し、 前記固定部材と前記底板との間には温度制御素子が配置さ れることを特徴とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記光半導体素 子は、 所定位置に 2次元方向に複数配置されていることを特徴とする。
また、 本発明にかかる光モジュールは、 上記の発明において、 前記電子回路素 子と少なくとも 1つの前記光半導体素子とを有し、 前記電子回路素子の少なくと も 1つの電極と、 所定の前記配線パターンとが半田バンプを介して電気的に接続 されていることを特徴とする。 図面の簡単な説明
第 1図は、 本発明の第 1の実施形態であるプリント配線基板を示す断面図であ り、 第 2図は、 本発明の第 1の実施形態であるプリント配線基板の製造に使用す る基板の断面図であり、 第 3図は、 本発明の第 1の実施形態であるプリント配線 基板の製造方法を示し、 基板の導体層をェツチングして配線パターンを形成した 状態の断面図であり、 第 4図は、 本発明の第 1の実施形態であるプリント配線基 板の製造方法を示し、 基板の絶縁層をェツチング及び/又はレーザ加工により除 去してビアホール用の凹部を形成した状態の断面図であり、 第 5図は、 本発明の 第 1の実施形態であるプリント配線基板の製造方法を示し、 基板の導体板をエツ チングして配線部グランドと複数のリード及び複数の電極舌片に分離した状態の 断面図であり、 第 6図は、 本発明の第 2の実施形態であるリードフレームパッケ ージの製造方法を示し、 第 1図のプリント配線基板を合成樹脂でモールドした状 態の断面図であり、 第 7図は、 合成樹脂でモールドされたプリント配線基板から リ一ド及び導体板舌片を所望長さに切断してリ一ドフレームパッケージとする様 子を示す断面図であり、 第 8図は、 本発明の第 3の実施形態である光モジュール を示す斜視図であり、 第 9図は、 第 7図に示すリードフレームパッケージにマル チチャンネ 光半導体素子及び駆動用の電子回路部品 (半導体素子) を搭載した 断面図であり、 第 1 0図は、 電気絶縁性の合成樹脂で封止したリ一ドフレームパ ッケージとフエルールとを接合して構成される光モジュールの断面図であり、 第 1 1 A図は、 合成樹脂で封止した第 1 0図のリードフレームパッケージにおいて、 リ一ドを折り曲げ加工して製造した光モジュールの断面図であり、 第 1 1 B図は、 第 1 1 A図の光モジュールにおける幅方向に沿った断面図であり、 第 1 2 A図は、 第 1 1図に示す光モジュールの使用態様を示す斜視図であり、 第 1 2 B図は、 光 モジュールの別の態様を示す斜視図であり、 第 1 3図は、 第 3の実施の形態例の 光モジュールにおいて、 封止した合成樹脂及びめつき層を除いてプリント配線基 板、 電子回路部品、 ボンディングワイヤ、 リード及び電極舌片を示した斜視図で あり、 第 1 4図は、 第 1 3図において搭載部を下面側から見た底面図であり、 第 1 5 A図は、 第 1 3図のグランド電極舌片に沿った断面図、 第 1 5 B図は、 信号 用電極舌片に沿った断面図であり、 第 1 6図は、 第 3の実施の形態例の光モジュ ールの変形例を示す斜視図であり、 第 1 7図は、 配線部とリード部のみを備えた プリント配線基板における端面発光型光半導体素子の搭載例を示す断面図であり、 第 1 8 A図は、 光モジュールにおいてボンディングワイヤを使用しないように構 成した例を示す断面図であり、 第 1 8 B図は、 第 1 8 A図の電子回路部品 (半導 体素子) における電極とビアホールとの接続状態を示す断面図であり、 第 1 8 C 図は、 電子回路部品 (半導体素子) における電極と配線パターンとなる導体層と の固定位置の例を示す平面図であり、 第 1 9 A図は、 搭載部の他の形態を示した 図であり、 第 1 9 B図は、 搭載部の更に他の形態を示した図であり、 第 2 0図は、 第 1 3図における搭載部 PMを上方から見た拡大図であり、 第 2 1図は、 本発明 の第 4の実施形態である光モジュールを示す断面図であり、 第 2 2図は、 従来の 光モジュールの構成を示す断面図である。 発明を実施するための最良の形態
以下、 図面を参照して、 この発明に係るプリント配線基板、 その製造方法、 リ 一ドフレームパッケージおよび光モジュールの好適な実施の形態について説明す る。
(第 1の実施形態)
まず、 本発明の第 1の実施形態であるプリント配線基板について説明する。 第 1図は、 プリント配線基板を示す断面図である。 第 2図は、 プリント配線基板の 製造に使用する基板の断面図である。 第 3図〜第 5図は、 プリント配線基板の製 造方法を示す断面図である。
なお、 第 1図〜第 5図では、 プリント配線基板の 1単位の断面が図示されてい る。 実際にプリント配線基板が製造される場合には、 これらの図に示された 1単 位が、 複数単位に亘つて平面的に繰り返されたもの (図では左右及び/又は表裏 方向に連なったもの) について、 下記で説明する処理が一括して行われる。
プリント配線基板 1 0は、 第 1図に示すように、 導体板 1 0 aの上面に絶縁層 1 0 bを介して導体層からなるャィクロストリップライン構造の複数の配線パタ ーン 1 0 dが形成された配線部 P W、 リード部 P L及び搭載部 P Mを備えている。 プリント配線基板 1 0は、 導体板 1 0 a上に絶縁層 1 0 bを介して導体層 1 0 c がー体に形成された第 2図に示す基板 Bをェツチング及び Z又はレーザにより加 ェして製造され、 導体板 1 0 aは、 エッチング及び Z又はレーザ加工によって配 線部グランド 1 0 eと複数のリード 1 0 f及び導体板舌片 1 0 hとに分離されて いる。 一方、 複数の配線パターン 1 0 dには、 所望の配線パターン 1 0 dに形成 しためつき層 1 1によってリード 1 0 f及び導体板舌片 1 0 hと接続されるビア ホール 1 1 aが形成されている。 このとき、 ビアホール 1 1 aに代えてスルーホ 一ノレを用い、 例えば、 リード 1 0 f と導体板舌片 1 0 hとを電気的に接続しても よい。
ここで、 基板 Bは、 銅, '銅合金あるいは 4 2ァロイ等の鉄一二ッケル合金から なる導体板 1 0 aと、 弾性体や固体又はこれらの複合体等からなる絶縁体、 例え ば、 ポリイミドシートからなる絶縁層 1 O bと、 導体、 例えば、 銅箔からなる導 体層 1 0 cとを接着剤を使用することなくプレスによって圧着したもので、 それ ぞれ導体板 1 0 aは厚さ約 0 . 2 mm、 絶縁層 1 0 bは厚さ 3 0 m、 及び導体 層 1 0 cは厚さ 2 0 μ mである。 但し、 導体板 1 0 a , 絶縁層 1 0 b及び導体層 1 0 cの各厚さは、 所望の特性ィンピーダンスや絶縁層 1 0 bの誘電率等を考慮 して適宜変更される。
本発明のプリント配線基板 1 0の製造に際しては、 先ず、 導体板 1 0 aの下面 および側面の全体と、 後に配線パターン 1 0 dとなる導体層 1 0 cの表面に、 フ ォトレジストマスクを形成し、 露出部分の導体層 1 0 cをエッチング溶液でエツ チングする。 これにより、 基板 Bは、 第 3図に示す配線パターン 1 0 dが形成さ れると共に、 部分的に絶縁層 1 0 bが露出する。 次に、 露出した絶縁層 1 0 bに、 ビアホールを形成する部分を除いてフォトレジストマスクを形成し、 絶縁層 1 0 bをヒドラジンを用いたエッチングもしくはレーザアブレーシヨンにより除去す る。 これにより、 基板 Bは、 第 4図に示すように、 絶縁層 1 0 bに導体板 1 0 a に至る凹部 1 0 gが形成される。 なお、 エッチング溶液は、 対象とする金属種、 エツチング処理温度や時間等により任意に選択するものである。 例えば、 金属が、 銅や銅合金の場合には、 塩化第二鉄溶液等が挙げられる。 また、 エッチング溶液 は、 数種類を使い分けて基板 Bの所定部をエッチングしてもよい。 ここで、 エツ チングは、 ドライエッチングでもよい。.
次いで、 導体板 1 0 aの配線パターン 1 0 dを形成した上面全体及び下面の適 宜個所をフォトレジストでマスクし、 エッチング溶液で導体板 1 0 aの下面をェ ツチングする。 これにより、 第 5図に示すように、 導体板 1 0 aは、 リード部 P L側の第 1の部分と、 配線部 PW側の第 2の部分と、 搭載部 PM側の第 3の部分と に分離される。 このとき、 リード部 P L側の第 1の部分では、 P舞接するリード 1 0 f 間も同時にエツチング除去されて複数のリード 1 0 f が形成され、 また、 搭 載部 P M側の第 3の部分でも、 複数の導体板舌片 1 0 hが形成される。 この後、 基板 Bの所望の配線パターン 1 0 d及び凹部 1 0 gに銅のめっき層 1 1を形成し、 配線パターン 1 0 dとリード 1 0 f 、 又は配線パターン (電極パターン) 1 0 d と導体板舌片 1 0 hとを電気的に接続するビアホール 1 1 aを形成する。 このよ うにして第 1図に示すプリント配線基板 1 0が製造される。
このように、 本発明のプリント配線基板 1 0は、 導体板 1 0 a上に絶縁層 1 0 bを介して導体層 1 0 cがー体に形成された基板 Bをェツチング又はレーザ加工 して製造され、 複数のリード 1 0 ίが形成されたリード部 P Lと、 マイクロスト リップラインからなる複数の配線パターン 1 0 dを有する配線部 PWと、 導体板 舌片 1 0 h及びこの上部の絶縁層 1 0 bと配線パターン (電極パターン) 1 0 d とからなる複数の電極舌片 1 0 iを有する搭載部 PMとを含み、 リード 1 0 f と これに対応する配線パターン (電極パターン) 1 0 d及び導体板舌片 1 0 hとこ れに対応する配線パターン (電極パターン) 1 0 dとがビアホール 1 1 aによつ て電気的に接続されている。 このため、 プリント配線基板 1 0は、 リード 1 0 f と配線パターン 1 0 d又は導体板舌片 1 0 hと配線パターン (電極パターン) 1 0 dとの間のワイヤボンディングが不要となることから、 ボンディングワイヤの 長さのばらつき等に起因した信号伝送特性の制限を受けず、 かつ、 配線部 PWと リード部 PL、 搭載部 PMとを、 単一の基板から同時に形成することができるので、 安価である。
なお、 上記第 1の実施の形態例に係るプリント配線基板 1 0においては、 複数 の配線パターン 1 0 dは、 配線部ダランド (第 2の部分) 1 0 eを有するマイク ロストリップラインとして形成されたものであるが、 複数の配線パターン 1 0 d を、 配線部ダランド 1 0 eを有し、 配線部ダランド 1 0 eに接続されたダランド 用配線パターンが 2つの信号伝送路間に配置されてなるグランド付コプレーナ型 の伝送路として形成してもよい。
(第 2の実施形態) ,
次に、 本発明の第 2の実施形態であるリ一ドフレームパッケージについて説明 する。 第 6図は、 本発明の第 2の実施形態であるリードフレームパッケージの製 造方法を示し、 プリント配線基板 1 0を合成摘 '脂でモールドした状態の断面図で ある。 第 7図は、 合成樹脂でモールドされたプリント配線基板 1 0からリード 1 0 f及び導体板舌片 1 0 hを所望長さに切断してリ一ドフレームパッケージとす る様子を示す断面図である。
本発明の第 2の実施形態であるリードフレームパッケージ 2 0は、 第 1の実施 形態で示したリード部 PL及び搭載部 PMを有するプリント配線基板 1 0から製造 される。 先ず、 電気絶縁性及ぴ熱可塑性を有するポリフエ二レンスルフィ ド (P P S ) 樹脂ゃポリブチレンテレフタレート ( P B T) 榭脂あるいは電気絶縁性及 ぴ熱硬化性を有するエポキシ樹脂等の合成樹脂 2 1によって、 第 6図に示すよう に、 プリント配線基板 1 0の導体板 1 0 a下面及び搭載部 PMをィンサートモ一 ルドによって被包する。 このとき、 合成樹脂 2 1によってプリント配線基板 1 0 の搭載部 PM上部に後述の搭載ブロックを搭載する段部 2 1 aを形成する。
そして、 第 7図に点線で示すように、 合成樹脂 2 1から延出した複数のリード 1 0 f及び導体板舌片 1 0 hを所望長さに切断した後、 これらの切断端面を研磨 すると共に A uめっきをして、 リードフレームパッケージ 2 0とする。
このように、 リードフレームパッケージ 2 0は、 第 1の実施形態のプリント配 線基板 1 0を合成樹脂 2 1でモールドし、 リード 1 0 f及び導体板舌片 1 0 hを 所望長さに切断して切断端面を研磨, めっき処理して製造される。 このため、 リ 一ドフレームパッケージ.2 0は、 加工が容易で、 安価に製造することができるう え、 ワイヤボンディング個所が少なくできるので、 インピーダンス特性も安定し ている。
(第 3の実施形態)
次に、 本発明の第 3の実施形態について説明する。 第 8図は、 この発明の第 3 の実施形態を示す光モジュール 3 0の斜視図である。 第 9図は、 第 7図に示すリ 一ドフレームパッケージ 2 0にマルチチヤンネルの光半導体素子 3 2及び駆動用 の電子回路部品 (半導体素子) 3 3を搭載した断面図である。 第 1 0図は、 電気 絶縁性の合成樹脂で封止したリードフレームパッケージ 2 0とフエルール 3 5と を接合して構成される光モジュール 3 0の断面図である。
光モジュール 3 0は、 横一列に配置される光半導体素子 3 2を 4個有しており、 第 8図に示すように、 合成樹脂ケース 3 4 aで封止されたリ一ドフレームパッケ ージ 2 0とフエルール 3 5とが接合され、 側方へ延出した複数のリード 1 0 f 'が 曲げ加工されている。 フエルール' 3 5は、 本体 3 5 aにガイドビン 3 5 bと、 横 —列に 4つ配置された光半導体素子 3 2に対応して 4本の光ファイバ 3 5 cが横 一列に設けられている。
光半導体素子 3 2としては、 その基板面に対して垂直方向に光が入射あるいは 出射するプレーナ型の受発光素子アレイ (V C S E L , P D) 等が用いられる。 光モジユール 3 0の製造に際しては、 先ず、 第 9図に示すように、 リードフレー ムパッケージ 2 0の段部 2 1 aに設置する搭載プロック (シリコン基板) 3 1の 第 1の面 3 1 aに、 光半導体素子 3 2を横一列に 4個固定し、 この面と垂直な第 2の面 3 1 bと段部 2 1 aとを対向させて固定する。 これにより、 各光半導体素 子 3 2の基板面は、 導体板 1 0 aの上面と垂直となる。 また、 配線部 PWのめつ き層 1 1上に、 I C等の駆動用電子回路部品 3 3を設ける。 そして、 搭載プロッ ク' 3 1と各光半導体素子 3 2との間、 搭載プロック 3 1と導体板舌片 1 0 hとの 間、 電子回路部品 3 3と 2箇所のめっき層 1 1との間を、 それぞれボンディング ワイヤ Wで接続する。
なお、 図示されていなレ、が、 搭載ブロック 3 1の第 1の面 3 1 aには、 光半導 体素子 3 2との電気的接続を行うために必要な配線パターンが形成されており、 各光半導体素子 3 2と導体板舌片 1ひ hとの電気的接続は、 この配線パターンを 介して行われる。 そして、 搭載ブロック 3 1の第 1の面 3 1 a上の配線パターン と導体板舌片 1 0 hとを接続するボンディングワイヤは、 導体板舌片 1 O h側に おいては、 搭載ブ ック 3 1の第 1の面 3 1 aと略平行な端面 1 0 jに接続され ている。
次に、 第 1 0図に示すように、 リードフレームパッケージ 2 0上に固定された 光半導体素子 3 2及び電子回路部品 3 3を合成樹脂ケース 3 4 aで囲繞し、 4個 の光半導体素子 3 2の各チャンネルに刘'応した複数の光ファイバ 3 5 cを固定し たフエルール 3 5を、 各光ファイバ 3 5 cが 4個の光半導体素子 3 2の各チャン ネル光結合するように合成樹脂ケース 3 4 aと接合する。 このとき、 リードフレ ームパッケージ 2 0のリード部 P Lの複数のリード 1 0 f は、 合成樹脂ケース 3 4 aから所定長さ延出される。 そして、 合成樹脂ケース 3 4 aとリードフレーム パッケージ 2 0とで囲まれる内部の空間に合成樹脂 3 4 bが充填される。 なお、 フエルール 3 5は、 多芯コネクタ 4 2 (第 1 2 A図参照) との位置合わせのため の 2本のガイドビン 3 5 bを本体 3 5 aに有している。
次いで、 第 1 0図の長手方向に沿った断面である第 1 1 A図及び幅方向に沿つ た断面である第 1 1 B図に示すように、 合成樹脂ケース 3 4 aから延出している リード 1 0 f を予め設定された位置で折り曲げ加工して光モジュール 3 0の製造 が完了する。 このようにして製造された光モジュール 3 0は、 第 1 2 A図に示す ように、 所定の回路が形成された回路基板 4 0に搭載され、 各リード 1 0 ίを介 して所定の回路と電気的に接続され、 また、 ガイドビン 3 5 bを利用して多芯コ ネクタ 4 2と接続される。 これにより、 光モジュール 3 0は、 4個の光半導体素 子 3 2とリボン型光ファイバ 4 3の対応する光ファイバとが光学的に接続される。 また、 光モジュールの別の態様は、 第 1 2 B図に示す光モジュール 3 0のよう に、 リード 1 0 f を折り曲げ加工した形状が略 L字状であって、 回路基板 4 0の 所定位置に設けられたスルーホールに揷通固定され、 各リード 1 0 f を介して所 定の回路と電気的に接続されるものである。 また、 第 1 2 B図に示す光モジユー ル 3 0は、 所定位置の平面内に複数の光半導体素子 3 2が 2次元方向に配置され ている。 即ち、 第 1 2 B図に示す光モジュール 3 0は、 横一列に 4個配置される 光半導体素子 3 2を上下に 2列有している。 このため、 フエノレール 3 5は、 上下 2列の光半導体素子 3 2に対応して、 第 1 2 B図に示すように、 本体 3 5 aに、 4本の光ファイバ 3 5 cが横一列に上下 2列設けられている。
また、 複数の光半導体素子 3 2は、 例えば、 縦方向に 2個、 横方向に 6個の合 計 1 2個、 縦方向に 3個、 横方向に 3個の合計 9個、 或いはそれ以上の個数が、 それぞれ 2次元方向に配置されたものであってもよい。
なお、 リード 1 0 f は、 折り曲げ加工せず、 回路基板 4 0の板面と平行なもの であってもよい。 例えば、 光モジュールを収容可能な孔を回路基板 4 0の所定位 置に設け、 リード 1 0 f と回路基板 4 0の配線とを電気的に接続可能な位置まで 光モジュールを移動させれば、 リード 1 0 f は折り曲げ加工しなくともよい。 ま た、 回路基板 4 0の所定位置にリード 1 0 f と回路基板 4 0の配線とを電気的に 接続可能な位置まで配線する、 例えば、 配線台を設けることにより、 リード 1 0 f は折り曲げ加工しなくともよい。 このように、 リード 1 0 f の形状は任意に設 計可能である。
これにより、 光モジュール 3 0は、 例えば、 光半導体素子 3 2が V C S E Lで ある場合には、 第 1 1 A図に示すように、 回路基板 4 0側から入力された駆動電 流が、 右端のリード 1 0 ί→ビアホール 1 1 a→ボンディングワイヤ W→電子回 路部品 3 3→ボンディングワイヤ W→ビアホール 1 1 a→導体板舌片 1 0 11→ボ ンディングワイャ\^→搭載ブロック 3 1→ボンディングワイャ^^→光半導体素子 3 2と流れ、 光半導体素子 3 2力ゝら出射された光が多芯コネクタ 4 2 取り付け たリボン型光ファイバ 4 3によって伝送されてゆく。 また、 光半導体素子 3 2がプレーナ P Dである場合には、 上記とは逆の経路を 迪つて、 光半導体素子 3 2で生じた光信号電流が外部回路に導力れる。
このように、 光モジュール 3 0は、 導体板 1 0 a上に絶縁層 1 0 bを介して導 体層 1 0 cがー体に形成された基板 Bをエッチング及び Z又はレーザ加工して配 線部 P Wとリード部 P L及び Z又は搭載部 P Mと力 S同時に形成され、 これら各部が ビアホール 1 1 aによって電気的に接続される。 このため、 光モジュール 3 0は、 従来の光モジュールに比べてワイヤボンディングの個所が少なくなるので、 ボン デイングワイャ Wの長さのばらつき等に起因したィンダクタンスのばらつき影響 が減少し、 また、 配線パターン 1 0 dを高精度にばらつきなく形成することがで きるので、 ィンピーダンス特性も安定し、 信号伝送特性の劣化が抑えられる。 ま た、 光モジュール 3 0は、 加工が容易であることから安価に製造することができ るという利点がある。
また、 プレーナ型の光半導体素子 3 2は、 搭載ブロック 3 1の第 1の面 3 1 a に固定され、 この面に垂直な第 2の面 3 1 bにおいて段部 2 1 aに接合されるこ とにより、 その基板面が導体板 1 0 aの上面と垂直となる。 このため、 光フアイ パ 3 5 cへの光の入出射方向とプレーナ型の光半導体素子 3 2の光の入出射—方向 が合わせられる。 そして、 同時に、 プレーナ型の光半導体素子 3 2と、 導体板舌 片 1 0 hとを電気的に接続するボンディングワイヤ Wの両端が、 搭載プロック 3 1の第 1の面 3 1 aと、 これに略平行な導体板舌片 1 0 hの端面 1 0 jにボンデ ィングされているので、 ワイヤボンディングの作業を効率よく行うことができる。 ここで、 第 1 3図は、 光モジュール 3 0において、 プリント配線基板 1 0、 電 子回路部品 3 3並びにボンディングワイヤ Wを示したもので、 リード部 P Lの複 数のリード 1 0 ίが曲げカ卩ェされている。 但し、 第 1 3図においては、 めっき層 1 1の図示は省略されている。 また、 第 1 4図は、 第 1 3図の搭載部 ΡΜを下面 側から見た図、 第 1 5 Α図は、 第 1 3図に示す複数の電極舌片におけるグランド 用電極舌片 1 0 i (G) に沿った断面図、 第 1 5 B図は、 信号用電極舌片 1 0 i ( S ) に沿った断面図である。 第 14図, 第 15A図, 第 15B図に示すように、 搭載部 PMの隣接する信号 用電極舌片 10 i (S) の間には、 配線部 PWの導体板: L 0 a (配線部グランド 10 e) 力 ら搭載部 PMに向かって連続して延びるグランド用導体板舌片 10 h (G) と、 このグランド用導体板舌片 10 h (G) 上で搭載部 PMと配線部 P と に跨つて積層された絶縁層 10 bと、 この絶縁層 10 上に形成された配線パタ ーン (グランド用電極パターン) 10 d'とからなるグランド用電極舌片 10 i (G) が配設されている。 このようにして、 各信号用電極舌片 10 i (S) がグ ランド用電極舌片 10 i (G) に挟まれて交互に配列され、 複数の電極舌片 10 iが構成されている。 なお、 図では簡単のため信号用電極舌片 10 i (S) は 2 本だけ示した。
そして、 グランド用電極舌片 1 0 i (G) のグランド用導体板舌片 1 0 h (G) は、 第 15 A図に示すように、 ビアホール 1 1 aを介して、 配線部 PWに 繋がる配線パターン (グランド用電極パターン) 10 dと電気的に接続される。 また、 信号用電極舌片 10 i (S) の信号用導体板舌片 1 Oh (S) は、 第 15 B図に示すように、 ビアホール 1 1 aを介して、 配線部 PWに繋がる配線パター ン (信号用電極パターン) 10 dと電気的に接続される。 これにより、 グランド 用電極舌片 10 i (G) においては、 グランド用導体板舌片 10 h (G) とこの 上に形成される配線パターン (グランド用電極パターン) 10 dがともに配線部 グランド 10 eに電気的に接続される。 一方、 信号用電極舌片 10 i (S) にお いては、 信号用導体板舌片 10 h (S) とこの上に形成される配線パターン (信 号用電極パターン) 10 dは、 配線部グランド 10 eに電気的に接続されること なく、 配線部 P Wの配線パターン 10 dにつながることとなる。
このようにして、 プリント配 f泉基板 10では、 第 13図〜第 15図に示したよ うに、 グランド用電極舌片 10 i (G) 力 配線部グランド 10 eと連続して一 体に形成されたグランド用導体板舌片 1 Oh (G) を有するので、 その接地電位 が安定する。 したがって、 グランド用電極舌片 10 i (G) の間に信号用電極舌 片 10 i (S) が配置されることにより、 複数の信号用電極舌片 10 i (S) 間 が効果的に電磁遮蔽される。 このため、 プリント配線基板 1 0を用いた光モジュ ール 3 0では、 信号用電極舌片 1 0 i ( S ) 間の電磁干渉が効果的に抑制される ので、 チヤンネル間のクロストークが効果的に抑えられ、 信号伝送特性、 例えば、 S /N比の劣化が抑制又は防止される。
このようなダランド用電極舌片 1 0 i (G) ·は、 プリント配線基板 1 0を作製 する際に、 信号用電極舌片 1 0 i ( S ) と同時に形成することができる。 すなわ ち、 搭載部 PMを、 導体板 1 0 aのエッチングによって複数の電極舌片に 1 0 i に分離するに際し、 グランド用導体板舌片 1 0 h (G) となる部分が、 配線部 P Wの導体板 1 0 a (配線部グランド 1 0 e ) から分離しないように、 即ち、 配線 部 P WftlJにある第 2の部分と搭載部 P M側にある第 3の部分とに分離しないように エッチングマスクを形成すればよい。 このように、 グランド用電極舌片 1 0 i (G) は、 非常に簡易な方法によって形成することができる。
なお、 上記においては、 搭載部 PMにおける電極舌片 1 0 iにグランド用電極 舌片 1 0 i (G) を形成することについて説明したが、 同様にして、 リード部 P "こおけるリード 1 0 f についても、 信号用リード 1 0 f ( S ) 間に配線部グラ ンド 1 0 eと連続して一体的に形成されたグランド用リード 1 0 f (G) を配設 することができる。 このような構成によれば、 光モジュール 3 0は、 グランド用 リード 1 0 f ( G ) の接地電位が安定となり、 隣接する信号用リード 1 0 f ( S ) 間をグランド用リード 1 0 f (G) で効果的に電磁遮蔽することができる。 従って、 光モジュール 3 0は、 第 1 2 A図に示す回路基板 4 0から伝送される信 号が、 リ一ド部 P Lにて電磁干渉を起こすことが効果的に抑制又は防止されるの で、 チャンネル間のクロストークが抑えられ、 信号伝送特性、 例えば、 S /N比 の劣ィ匕が抑制又は防止される。
この場合、 グランド用リード 1 0 f ( G) は、 グランド用電極舌片 1 0 i (G) と同様、 配線部 PWの導体板 1 0 a (配線部グランド 1 0 e ) からリード 部 P Lに向かって連続して延びる導体板 1 0 aによって構成され、 プリント配線 基板 1 0を作製する際に、 信号用リード 1 0 f ( S ) と同時に形成することがで きる。 即ち、 搭載部 PMを、 導体板 1 0 aのエッチングによって複数のリード 1 O f に分離するに際し、 グランド用リード 1 0 f (G) となる部分が、 配線部 P Wの導体板 1 0 a (配線部ダランド 1 0 e ) から分離しないように、 配線部 PW側 にある第 2の部分と、 リード部 P L側にある第 1の部分とに分離しないようにェ ッチングマスクを形成すればよレヽ。 ' '
ここで、 第 2 0図は、 第 1 3図における搭載部 PMの一例を上方から見た拡大 図である。 第 2 0図に示されるように、 搭載部 PMの複数の電極舌片 1 0 iにお いては、 配線パターン 1 0 dと導体板舌片 1 0 hとを電気的に接続するビアホー ル 1 1 aは、 隣接する電極舌片 1 0 i間で、 電極舌片 1 0 iの長手方向の位置が 異なるように形成されている。 配線パターン 1 0 dと導体板舌片 1 O hとの電気 的接続を確実にするためには、 ビアホール 1 1 aにはある程度の大きさが必要と なり、 その直径は配線パターン 1 0 d及び導体板舌片 1 0 hの幅よりも大きくな る。 このため、 このように大径のビアホールを電極舌片 1 0 iの長手方向におい て同一の位置に並べると、 各電極舌片 1 0 i間のピッチが大きくなり、 通常採用 される光ファイバアレイのピッチ (例えば、 2 5 0 μ ηα) に合わせて作製される マルチチャンネルの光半導体素子におけるチヤンネル間ピッチと整合しなくなる。 そこで、 隣接する電極舌片 1 0 i間でビアホーノレ 1 1 aの位置をずらすことによ つて、 かかる問題を回避し、 電極舌片 1 0 i間のピッチを狭くすることを可能と したものである。 これにより、 本発明のプリント配線基板 1 0を用いて、 小型の 光モジュール 3 0を作製することを可能としたものである。 なお、 光ファイバァ レイのピッチは、 光ファイバの種類、 例えば、 太さや形状 (断面形状、 また光ケ 一ブルやリボン状等の多心型) 等によって任意のピッチに設計することができる。 なお、 光モジュール 3 0は、 幅方向両側並びにガイドビン 3 5 bを設けた前部 に対して背面側となる後部の三方に複数のリード 1 0 f が延出する構成であった 、 用途や設計によっては、 第 1 6図に示すように、 幅方向両側のみに複数のリ ード 1 0 f が延出する構成であってもよい。 また、 リード 1 0 f は、 幅方向片側 のみ、 あるいは光モジュール 3 0の下面からのみ延出するものでもよレ、。 また、 第 18A図に示すように、 光モジュール 30では、 光半導体素子 32を 固定した搭載ブロック 31の第 1の面 31 aと、 これに垂直な第 2の面 31 bと に連続して光半導体素子 32と配線パターン 10 dとの間を接続する配線パター ン 31 cを形成し、 搭載ブロック 31の第 2の面 31 bの配線パターン 31 c力 プリント配線基板 10の搭載部 PMの配線パターン 10 d (めっき層 1 1 ) に接 触した状態で、 搭載プロック 31をプリント配線基板 10上に固定してもよい。 なお、 電子回路部品 33が、 平面上に配置される複数の電極を介して配線パタ ーン 10 dとなる導電層 10 cと平面内で接続されるとき、 第 18 B図に示すよ うに、 電極に対応する半田バンプ 36を介して導電層 10 cと接続する。
このとき、 第 18 C図に示すように、 複数の電極と複数の導電層 10 cとのそ れぞれの接続位置 L11〜L33が、 縦 3つ X横 3つ、 あるいはそれ以上あるとき には、 それぞれの接続位置 L 11〜 L 33に導電層 10 cが存在することになる。 こ のため、 周囲を他の接続位置 L11〜L33によって囲まれている接続位置 L22は、 スペース上の制約によって導電層 10 cを設けることが困難になる。 従って、 電 子回路部品 33が、 他の接続位置 L11〜L 33によって囲まれた接続位置 L 22を有 するとき、 接続位置 L22においては、 第 18B図に示すように、 ビアホー 37 を介して導体層 10 kと接続する。 これにより、 電子回路部品 33においては、 接続位置 L22にある電極が、 半田バンプ 36, ビアホール 37, 導体層 10 kを 介して配線パターン 10 d (導電層 10 c) と接続される。
このとき、 ビアホール 37に代えてスルーホールを用いて接続してもよいし、 半田バンプ 36と導体層 10 kとを直接接続してもよい。 このようにすると、 電 子回路部品 33は、 電極の数が増え、 周囲を他の接続位置によって囲まれている 接続位置が生じても、 導体層との接続が可能となる。 また、 導電層 10 kは、 そ れ自身が配線パターン 10 dのように所望の配線を可能に配線パターンを形成し ていてもよいし、 ビアホール 11 a等、 所定の配線パターンと電気的に接続され ていてもよい。
さらに、 プレーナ型の光半導体素子 32の表面における反射光の影響を抑制す るため、 第 1 9 A図に示されるように、 段部 2 1 aを導体板 1 0 aの上面に対し て 3 ° 〜1 0 °'、 好ましくは 6 ° 〜9 ° 程度の傾角を持った斜面に形成するこ とによって、 搭載ブロック 3 1の第 1の面 3 1 aに固定されたプレーナ型の光半 導体素子 3 2の基板面が導体板 1 0 aの上面に対して非垂直となるようにしても よい。 また、 第 1 9 B図に示されるように、 搭載ブロック 3 1の第 1の面 3 1 a と第 2の面 3 1 bとが直角ではない角度で交差するように搭載ブロック 3 1を構 成し、 第 2の面 3 1 bを導体板 1 0 aの上面に対して平行に形成された段部 2 1 aに固定することによって、 プレーナ型の光半導体素子 3 2に関する基板面が導 体板 1 0 aの上面に対して非垂直となるようにしてもよい。 さらに、 図示しない 力 搭載ブロック 3 1を導体板 1 0 aの上面に垂直な軸の周りに 3 ° 〜1 0 ° 、 好ましくは 6 ° 〜9 ° 程度回転させた位置で段部 2 1 aに固定したり、 または 光ファイバ 3 5 cの入出射端面を斜めに加工してもよい。 上記のような構.成によ れば、 光モジュール 3 0は、 プレーナ型の光半導体素子 3 2の入出射面 (基板面 に平行) と光ファイバ 3 5 cの入出射端面とが非平行となるため、 反射光による 悪影響が抑制又は防止される。
さらに、 光モジュール 3 0では、 配線部 PWに、 光半導体素子 3 2の駆動用の I C等の電子回路部品 3 3をフリップチップボンディングによって固定してもよ い。 このような構成によれば、 電子回路部品 3 3とプリント配線基板 1 0の配線 部 PWの配線パターン 1 0 dとを接続するボンディングワイヤを更に少なくする ことができるので、 光モジュール 3 0は、 信号伝送特性の低下を一層抑えること ができる。 ·
なお、 本発明の光モジュール 3 0においては、 電子回路部品 3 3はなくてもよ く、 リード部 PLのリード 1 0 f と搭載部 PMに搭載される光半導体素子 3 2とが、 電子回路部品 3 3を介することなく接続されていてもよレ、。 また、 プリント配線 基板 1 0において、 搭載部 PMは必須ではなく、 配線部 PWとリ一ド部 P Lのみを 備えていてもよい。 この場合には、 第 1 7図に示すように、 配線部 PWのめつき 層 1 1上に、 端面出射型の半導体レーザダイオードや導波路型 (端面受光型) フ ォトダイォード等の光半導体素子 3 2を固定し、 配線パターン 1 0 dとの間をポ ンデイングワイヤ Wで接続すればよい。 .
(第 4の実施形態)
次に、 本発明の第 4の実施形態について説明する。 第 2 1図は、 この発明の第 4の実施形態を示す光モジュール 5 0の断面図である。 第 3の実施形態の光モジ ユール 3 0は、 光半導体素子 3 2及び駆動用の電子回路部品 (半導体素子) 3 3 を搭載したリードフレームパッケージ 2 0を電気絶縁性の合成樹脂で封止した。 'これに対し、 光モジュール 5 0は、 光半導体素子 3 2及び駆動用の電子回路部品 3 3を搭載したリ一ドフレームパッケージ 2 0 、 蓋 5 1、 側壁 5 2、 底板 5 4 及びフエルール 5 5によって封止されている。 光モジュール 5 0の内部は、 例え ば、 窒素ガス (N 2) 等や水分量等が管理された気体によって封止されているこ とが望ましい。
光モジュール 5 0は、 図 2 1に示すように、 導体板 1 0 e, 1 0 f , 1 0 hを 上方に固定した固定部材 5 3が、 底板 5 4に固定され、 導体板 1 0 f が絶縁体 5 6を介して側壁 5 2から外部へ延出している。 このとき、 光モジュール 5 0は、 横一列に複数個配列された光半導体素子 3 2を有している。 また、 電子回路部品 3 3は、 複数のリード 3 3 aと導電層 1 0 cとが半田によって接合されている。 このため、 フエルール 5 5は、 光半導体素子 3 2の数に対応した複数の光フアイ バ 5 5 cを有し、 各光ファイバ 5 5 cは各光半導体素子 3 2のチャンネルと光結 合されている。 光モジュール 5 0は、 フエルール 5 5の本体 5 5 aに設けたガイ ドビン 5 5 bを利用して多芯コネクタ (図示せず) と接続され、 光半導体素子 3 2が光ファイバ 5 5 cを介して前記多芯コネクタの光ファイバと光学的に接続さ れる。
このとき、 固定部材 5 3は、 少なくとも導体板 1 0 e , 1 0 f , 1 0 hと接す る部分が電気絶縁性と熱伝導性を有することが望ましい。 固定部材 5 3が熱伝導 性を有すると、 光モジユーノレ 5 0は、 底板 5 4を介して放熱や加熱が可能となる。 また、 固定部材 5 3は、 少なくとも導体板 1 0 e , 1 0 f , 1 0 hと接する部分 に電気絶縁層を形成した金属や、 熱伝導性の合成樹脂, アルミナ (Α 1 2 0 3) , 窒化アルミニウム (A 1 N) 等の非金属を使用する。 一方、 底板 5 4は、 鲖, 銅 合金等の金属、 熱伝導性の合成樹脂, アルミナ (A 1 2 0 3) , 窒化アルミニゥ ム (A 1 N) 等の非金属を使用することができる。
また、 光モジュール 5 0は、 固定部材 5 3と底板 5 4との間に温度制御素子を 入れ、 外部から、 例えば、 温度変化に伴い光半導体素子 3 2や電子回路部品 3 3 を所望の温度に制御することができる。 更に、 光モジュール 5 0内部の所定位置 に温度検知センサを設けると、 より正確に温度を制御することができる。
尚、 本発明の光モジュールは、 フエルールが有する光ファイバによって光半導 体素子の各チヤンネルと光結合され、 前記フェルールによって外部の光コネクタ 等の光部品と結合される。 しかし、 本発明の光モジュールにおいては、 例えば、 フエルールが有する光ファィバを長尺なものとし、 この光フアイバが光半導体素 子の各チャンネルと光結合されると共に、 外部へ導出されるものであってもよい。 このとき、 外部へ導出された光ファイバは、 端部に設けた光コネクタによつて他 の光フアイバと光結合されるか、 或いは他の光ファイバと融着接続によって光結 合される。
更に、 発光素子と受光素子を備えた光モジュールの場合には、 発光素子を発光 させる電気の発光信号の大きさ比べ、 受光素子が受光して電気に変換された受光 信号が小さいことから、 発光信号と受光信号との間で電磁干渉 (クロストーク) が発生することがある。 このため、 このような光モジュールにおいては、 例えば、 発光素子のダランドと受光素子のダランドとが分離されるように、 複数の導体板 を構成してもよい。 産業上の利用可能性
以上のように、 本発明にかかるプリント配線基板、 その製造方法、 リードフレ ームパッケージおよぴ光モジュールは、 ワイヤボンディングの個所を少なくして ボンディングワイヤの長さのばらつき等に起因した信号伝送特性の劣ィ匕を抑え、 また、 搭載されるプレーナ型の光半導体素子との間のワイヤボンディング作業を 容易に行うことができ、 かつ、.安価に製造するのに有用である。

Claims

請 求 の 範 囲
1 . 外部回路との電気的接続のためのリードとして用いられる少なくとも 1つの 導体板を含み、 互いに空間的に分離された複数の導体板と、 .
前記複数の導体板上及び/又は前記複数の導体板を跨いで形成された絶縁層と、 前記絶縁層上に形成された複数の配線パターンと、
を有し、
前記複数の導体板の少なくとも 1つの導体板が、 前記複数の配線パターンの少 なくとも 1つとビアホールによって電気的に接続されている
ことを特徴とするプリント配線基板。
2 . 前記プリント配線基板は、 分離された前記複数の導体板の 1つを有するリー ド部と、 分離された前記複数の導体板の他の 1つを有し、 前記リード部と電気的 に接続される配線部とを含む
ことを特徴とする請求の範囲第 1項に記載のプリ'ント配線基板。
3 . 前記リード部の導体板は、 前記複数の配線パターンに対応した所定数の信号 用リードにさらに分離され、
前記所定数の信号用リ一ドは、 ビアホールによって、 それぞれ対応する前記配 線パターンに電気的に接続されている
ことを特徴とする請求の範囲第 2項に記載のプリント配線基板。
4 . 前記リード部は、 隣接する 2づの信号用リ一ドの間に少なくとも 1つのダラ ' ンド用リードが配置され、
前記少なくとも 1つのグランド用リードは、 前記配線部の導体板から一体的に 形成され、 つ、 ビアホールを介して、 前記複数の配線パターンの対応する配線 パターンと電気的に接続されている ' ことを特徴とする請求の範囲第 2項又は第 3項に記載のプリント配線基板。
5 . 前記プリント配線基板は、 前記リード部と所定の前記配線パターンとが電気 的に接続され、 光半導体素子を複数有するマルチチヤンネル光半導体素子との電 気的接続のための複数の信号用電極舌片を有し、 各信号用電極舌片に電極パター ンが形成された搭載部を更に含み、
該搭載部の導体板は、 前記マルチチヤンネル光半導体素子のチヤンネルに対応 した所定数の信号用導体板舌片にさらに分離されて対応する電極パターンと共に 前記複数の信号用電極舌片として構成され、
前記信号用導体板舌片ば、 ビアホールによってそれぞれ対応する前記電極パタ ーンに電気的に接続されている
ことを特徴とする請求の範囲第 2項乃至第 4項のいずれか一つに記載のプリン ト配線基板。
6 . 前記搭載部は、 前記複数の信号用電極舌片のうちの隣接する 2つの信号用電 極舌片の間に少なくとも一つのグランド用電極舌片が配置され、
この少なくとも一つのグランド用電極舌片は、 前記配線部側から前記搭載部側 に向かつて連続して延びる前記導体板からなるグランド用導体板舌片と、 このグ ランド用導体板舌片上に積層された絶縁層と、 この絶縁層上に形成されたグラン ド用電極パターンとを有してなり、 前記グランド用導体板舌片は、 ビアホールを 介して、 前記グランド用電極パターンと電気的に接続されている
ことを特徴とする請求の範囲第 5項に記載のプリント配線基板。
7 . 導体板と、 この導体板上に積層された絶縁層と、 この絶縁層上に形成された ' 導体層とからなる基板を準備する第 1の工程と、
少なくとも前記導体層の所定部をエッチング又は Z及びレーザ加工して前記複 '数の配線パターンを形成する第 2の工程と、 前記導体板をェツチング又は/及びレーザ加工して複数の導体板に分離し、 分 離された前記複数の導体板を跨ぐ位置に前記絶縁層と配線パタ ンとを残す第 3 の工程と、
前記複数の配線パターンの少なくとも 1つを、 分離された前記複数の導体板の 少なくとも 1つの導体板とビアホールを介して電気的に接続する第 4の工程と、 を有することを特徴とするプリント配線基板の製造方法。
8 . 前記第 3の工程は、 前記導体板を複数に分離することにより、'分離された前 複数の導体板の 1つを有するリ一ド部と、 分離された前記複数の導体板の他の 1つを有し、 前記リ一ド部と電気的に接続される配線部とを形成する
ことを特徴とする請求の範囲第 7項に記載のプリント配線基板の製造方法。
• 9. 前記第 3の工程は、 前記リード部の導体板を、 前記複数の配線パターンに対 応した所定数の信号用リ一ドにさらに分離し、
前記所定数の信号用リードを、 ビアホールによって、 それぞれ対応する前記配 線パタ一ンに電気的に接続する工程を含む
ことを特徴とする請求の範囲第 8項に記載のプリント配線基板の製造方法。
1 0. 前記第 3の工程は、 隣接する 2つの信号用リードの間に配置され、 前記配 線部の導体板から形成すると共に、 ビアホールを介して、 前記複数の配線パター ンの対応する配線パターンと電気的に接続される少なくとも 1つのグランド用リ 一ドを形成する工程を含む
ことを特徴とする請求の範囲第 9項に記載のプリント配線基板の製造方法。 1 1 . 前記第 3の工程は、 前記リ一ド部及び配線部と共に、 分離された前記複数 の導体板の更に他の 1つを有し.、 前記リード部と所定の前記配線パターンとが電 気的に接続され、 光半導体素子を複数有するマルチチャンネル光半導体素子との 電気的接続のための複数の信号用電極舌片'を有し、 各信号用電極舌片に電極パタ 一ンが形成された搭載部を形成し、 '
該搭載部の導体板を、 前記マルチチヤンネル光半導体素子のチヤンネルに対応 した所定数の信号用導体板舌片にさらに分離して対応する電極パターンと共に前 記複数の信号用電極舌片とする共に、 ' .
前記信号用導体板舌片を、 ビアホールによってそれぞれ対応する前記電極パタ ーンと電気的に接続する工程を含む
ことを特徴とする請求の範囲第 8項乃至第 1 0項のいずれか一つに記載のプリ ント配線基板の製造方法。
1 2 . 前記第 3の工程は、 前記複数の信号用電極舌片のうちの隣接する 2つの信 号用電極舌片の間に配置される少なくとも一つのグランド用電極舌片を形成する 工程を含み、
この少なくとも一つのダランド用電極舌片は、 ェツチング又は Z及びレーザカロ ェによつて形成され、 前記配線部側から前記搭載部側に向かつて連続して延びる 前記導体板からなるグランド用導体板舌片と、 このグランド用導体板舌片上に積 層された絶縁層と、 この絶縁層上に形成されたグランド用電極パターンとを有し てなり、 前記グランド用導体板舌片は、 ビアホールを介して、 前記グランド用電 極パターンと電気的に接続されている
ことを特徴とする請求の範囲第 7項乃至第 1 1項のいずれか一つに記載のプリ ント配線基板の製造方法。
1 3 . 外部回路との電気的接続のためのリードとして用いられる少なくとも 1つ の導体板を含み、 互いに空間的に分離された複数の導体板と、
前記複数の導体板上及び Z又は前記複数の導体板を跨いで形成された絶縁層と、 前記絶縁層上に形成された複数の配線パターンと、
前記複数の導体板の少なくとも 1つの導体板の下面をモーノレドする電気絶縁性 の合成樹脂と、
を有し、
前記複数の導体板の少なくとも 1つの導体板が、 前記複数の配線パターンの少 なくとも 1つとビアホールによって電気的に接続されている
ことを特徴とするリードフ.レームパッケージ。 .
1 4. 前記リードフレームパッケージは、 分離された前記複数の導体板の 1つを 有するリード部と、 分離された前記複数の導体板の他の 1つを有し、 前記リード 部と電気的に接続される配線部とを含む
ことを特徴とする請求の範囲第 1 3項に記載のリ一ドフレームパッケージ。
1 5 . 前記リード部の導体板は、 前記複数の配線パターンに対応した所定数の信 号用リードにさらに分離され、
前記所定数の信号用リードは、 ビアホールによって、 それぞれ対応する前記配 線パターンに電気的に接続されている
ことを特 Itとする請求の範囲第 1 4項に記載のリ一ドフレームパッケージ。
1 6 . 前記リード部は、 隣接する 2つの信号用リ一ドの間に少なくとも 1つのグ ランド用リードが配置され、
前記少なくとも 1つのダランド用リ一ドは、 前記配線部の導体板から一体的に 形成され、 かつ、 ビアホールを介して、 前記複数の配線パターンの対応する配線 パターンと電気的に接続されている
ことを特徴とする請求の範囲第 1 4項又は第 1 5項に記載のリードフレームパ ッケージ。
1 7. 前記リードフレームパッケージは、 前記リード部と所定の前記配線パター ンとが電気的に接続され、 光半導体素子を複数有するマルチチャンネル光半導体 素子との電気的接続のための複数の信号用電極舌片を有し、 各信号用電極舌片に 電極パタ一ンが形成された搭載部を更に含み、
該搭載部の導体板は、 前記マルチチヤンネル光半導体素子のチヤンネルに対応 した所定数の信号用導体板舌片にさらに分離されて対応する電極パターンと共に 前記複数の信号用電極舌片として構成され、
前記信号用導体板舌片は、 ビアホールによつてそれぞれ対応する前記電極パタ ーンに電気的に接続されている
ことを特徴とする請求の範囲第 1 4項乃至第 1 6項のいずれか一つに記載のリ —ドフレームゾ ッケ―ジ。
1 8 . 前記複数の信号用電極舌片のうちの隣接する 2つの信号用電極舌片の間に 配置される少なくとも一つのグランド用電極舌片を有し、
この少なくとも一つのグランド用電極舌片は、 前記配線部側から前記搭載部側 に向かつて連続して延びる前記導体板からなるグランド用導体板舌片と、 このグ ランド用導体板舌片上に積層された絶縁層と、 この絶縁層上に形成されたグラン ' ド用電極パターンとを有してなり、 前記グランド用導体板舌片は、 ビアホールを 介して、 前記グランド用電極パターンと電気的に接続されている
ことを特徴とする請求の範囲第 1 7項に記載のリ一ドフレームパッケージ。
1 9 . 外部回路との電気的接続のためのリードとして用いられる少なくとも 1つ の導体板を含み、 互いに空間的に分離された複数の導体板と、 前記複数の導体板 上及び/又は前記複数の導体板を跨レ、で形成された絶縁層及び前記絶縁層上に形 成された複数の配線パターンとを有し、 前記複数の導体板の少なくとも 1つの導 体板が、 前記複数の配線パターンの少なくとも 1つとビアホールによって電気的 に接続されているプリント配線基板と、
前記複数の導体板の少なくとも 1つの導体板の下面を被包する電気絶縁性の合 成榭脂モールドケースと、 前記配線パターンに電気的に接続された光半導体素子と、
前記光半導体素子に光結合した光ファイバと、 ' を有することを特徴とする光モジュール。 2 0 . 前記プリント配線基板は、 分離された前記複数の導体板の 1つを有するリ ード部と、 分離された前記複数の導体板の他の 1つを有し、 前記リード部と電気 的に接続される配線部とを含む
ことを特徴とする請求の範囲第 1 9項に記載の光モジュール。 2 1 . 前記リ一ド部の導体板は、 前記複数の配線パターンに対応した所定数の信 号用リ ドにさらに分離され、
前記所定数の信号用リ一ドは、 ビアホールによって、 それぞれ対応する前記配 線パタ一ンに電気的に接続されている
ことを特徴とする請求の範囲第 2 0項に記載の光モジュール。
2 2 . 前記配線部に少なくとも一つの電子回路素子が固定或いは接続されている ことを特徴とする請求の範囲第 2 0項又は第 2 1項に記載の光モジュール。
2 3 . 前記電子回路素子は、 前記配線部にフリップチップボンディングにより固 定或いは接続されていることを特徴とする請求の範囲第 2 2項に記載の光モジュ ' ール。
2 4 . 前記プリント配線基板は、 前記リード部と所定の前記配線パターンとが電 気的に接続され、 前記光半導体素子を複数有するマルチチヤンネル光半導体素子 との電気的接続のための複数の信号用電極舌片を有し、 各信号用電極舌片に電極 パターンが形成された搭載部を更に含み、 '
該搭載部の導体板は、 前記マルチチヤンネル光半導体素子のチヤンネルに対応 した所定数の信号用導体板舌片にさらに分離されて対応する電極パターンと共に 前記複数の信号用電極舌片として構成され、
前記信号用導体板舌片は、 ビアホールによつてそれぞれ対応する前記電極パタ 一ンに電気的に接続されている
ことを特徴とする請求の範囲第 2 0項乃至第 2 3項のいずれか一つに記載の光 モンュ" ~"ノレ。
2 5 . 前記搭載部は、 前記複数の信号用電極舌片のうちの隣接する 2つの信号用 電極舌片の間に少なくとも一つのグランド用電極舌片が配置され、
この少なくとも一つのグランド用電極舌片は、 前記配線部側から前記搭載部側 に向かって連続して延びる前記導体板からなるグランド用導体板舌片と、 このグ ランド用導体板舌片上に積層された絶縁層と、 この絶縁層上に形成されたグラン ド用電極パターンとを有してなり、 前記ダランド用導体板舌片は、 ビアホーノレを 介して、 前記グランド用電極パターンと電気的に接続されている
ことを特徴とする請求の範囲第 2 4項に記載の光モジュール。
2 6 . 前記マルチチヤンネル光半導体素子はプレーナ型であって、 搭載プロック の第 1の面に固定され、
この搭載ブロックは、 前記第 1の面と交差する第 2の面を有し、 該第 2の面が 前記プリント配線基板に向かい合うように接合された状態で前記プリント配線基 板上部に固定されており、
前記マルチチャンネル光半導体素子の各チャンネルは、 対応する前記電極舌片 の導体板の端面に直接ボンディングされた少なくとも 1本のワイヤを介して対応 する前記電極舌片に電気的に接続されている
ことを特徴とする請求の範囲第 2 4項又は第 2 5項に記載の光モジュール。
2 7 . 前記マ 'ルチチャンネル光半導体素子はプレーナ型であって、 搭載ブロック の第 1の面に固定され、 '
この搭載プロックは、 前記第 1の面と交差する第 2の面及ぴ前記第 1の面と前 記第 2の面とに連続して形成された配線パターンを有し、
該搭載ブロックの第 2の面の配線パターンが、 前記プリント配線基板の搭載部 の配線パターンと接触した状態で前記プリント配線基板に固定されている ことを特徴と,する請求の範囲第 2 4項又は第 2 5項に記載の光モジュール。
2 8 . 前記配線部に少なくとも一つの電子回路素子が固定或いは接続されている ことを特徴とする請求の範囲第 2 4項乃至第 2 7項のいずれか一つに記載の光モ ジュール。
2 9 . 前記電子回路素子は、 前記配線部にフリップチップボンディングにより固 定或いは接続されていることを特徴とする請求の範囲第 2 8項に記載の光モジュ 一ノレ。
3 0 . 前記光半導体素子は、 所定位置に 2次元方向に複数配置されていることを 特徴とする請求の範囲第 1 9項乃至第 2 9項のレ、ずれか一つに記載の光モジユー ノレ。 3 1 . 前記電子回路素子と少なくとも 1つの前記光半導体素子とを有し、 前記電子回路素子の少なくとも 1つの電極と、 所定の前記配線パターンとが半 田バンプを介して電気的に接続されていることを特徴とする請求の範囲第 3 0項 に記載の光モジュール。 3 2 . 外部回路との電気的接続のためのリードとして用いられる少なくとも 1つ の導体板を含み、 互いに空間的に分離された複数の導体板と、 前記複数の導体板 上及ぴ Z又は前記複数の導体板を跨レ、で形成された絶縁層及ぴ前記絶縁層上に形 成された複数の配線パターンとを有し、 前記複数の導体板の少なくとも 1つの導 体板が、 前記複数の配線パターンの少なくとも 1つとビアホールによって電気的 に接続されているプリント配線基板と、
前記複数の導体板の少なくとも 1つの導体板が固定され、 前記複数の導体板と 少なくとも電気的に接する個所が電気絶縁性を有する固定部材と、
前記配線パターンに電気的に接続された光半導体素子と、
前記光半導体素子に光結合した光ファィパと、
を有することを特徴とする光モジュール。
3 3 . 前記固定部材を設置する底板を有し、 前記固定部材と前記底板との間には 温度制御素子が配置されることを特徴とする請求の範囲第 3 2項に記載の光モジ ュール。
3 4 . 前記光半導体素子は、 所定位置に 2次元方向に複数配置されていることを 特徴とする請求の範囲第 3 2項又は第 3 3項に記載の光モジュール。
3 5. 前記電子回路素子と少なくとも 1つの前記光半導体素子とを有し、 前記電子回路素子の少なくとも 1つの電極と、 所定の前記配線パターンとが半 田バンプを介して電気的に接続されていることを特徴とする請求の範囲第 3 2項 乃至第 3 4項のいずれか一つに記載の光モジュール。
PCT/JP2004/002722 2003-03-11 2004-03-04 プリント配線基板、その製造方法、リードフレームパッケージおよび光モジュール WO2004082019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04717227.5A EP1603158B1 (en) 2003-03-11 2004-03-04 Optical module, comprising printed wiring board, lead frame and multi-channel optical semiconductor element and method for manufacturing same
JP2005503493A JP4514709B2 (ja) 2003-03-11 2004-03-04 プリント配線基板、その製造方法、リードフレームパッケージおよび光モジュール
US11/109,656 US7355862B2 (en) 2003-03-11 2005-04-20 Printed wiring board, method of manufacturing the printed wiring board, lead frame package, and optical module
US12/041,457 US7832092B2 (en) 2003-03-11 2008-03-03 Method of manufacturing a printed wiring board lead frame package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003065475 2003-03-11
JP2003-065475 2003-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/109,656 Continuation US7355862B2 (en) 2003-03-11 2005-04-20 Printed wiring board, method of manufacturing the printed wiring board, lead frame package, and optical module

Publications (1)

Publication Number Publication Date
WO2004082019A1 true WO2004082019A1 (ja) 2004-09-23

Family

ID=32984496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002722 WO2004082019A1 (ja) 2003-03-11 2004-03-04 プリント配線基板、その製造方法、リードフレームパッケージおよび光モジュール

Country Status (5)

Country Link
US (2) US7355862B2 (ja)
EP (1) EP1603158B1 (ja)
JP (1) JP4514709B2 (ja)
CN (1) CN100440500C (ja)
WO (1) WO2004082019A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228634A1 (de) * 2002-06-26 2004-01-22 Osram Opto Semiconductors Gmbh Oberflächenmontierbare Miniatur-Lumineszenz-und/oder Photo-Diode und Verfahren zu deren Herstellung
JP5197156B2 (ja) * 2007-06-19 2013-05-15 キヤノン株式会社 配線基板
KR101580925B1 (ko) * 2009-04-28 2015-12-30 삼성전자주식회사 칩온 보드 타입의 패키지
CN102263086B (zh) * 2010-05-28 2013-04-17 日月光半导体制造股份有限公司 半导体封装结构
US20120074131A1 (en) * 2010-09-29 2012-03-29 Seagate Technology Llc Integrated resistive heaters for microelectronic devices and methods utilizing the same
KR101434395B1 (ko) * 2011-09-21 2014-09-02 한국전자통신연구원 양방향 광 송수신 장치
US8491315B1 (en) * 2011-11-29 2013-07-23 Plastronics Socket Partners, Ltd. Micro via adapter socket
JP6005362B2 (ja) * 2012-01-19 2016-10-12 日本航空電子工業株式会社 光モジュール及び光伝送モジュール
JP2013225595A (ja) * 2012-04-20 2013-10-31 Shinko Electric Ind Co Ltd リードフレーム及び半導体パッケージ並びにそれらの製造方法
DE102012215449A1 (de) 2012-08-31 2014-03-27 Osram Opto Semiconductors Gmbh Gehäuse für ein elektronisches bauelement, elektronische baugruppe, verfahren zum herstellen eines gehäuses für ein elektronisches bauelement und verfahren zum herstellen einer elektronischen baugruppe
JP6136545B2 (ja) * 2013-05-07 2017-05-31 日立金属株式会社 光配線基板、光配線基板の製造方法、及び光モジュール
JP6790372B2 (ja) * 2016-02-05 2020-11-25 富士電機株式会社 半導体装置
JP6412900B2 (ja) * 2016-06-23 2018-10-24 株式会社東芝 高周波半導体用パッケージ
WO2018110513A1 (ja) * 2016-12-15 2018-06-21 株式会社村田製作所 能動素子、高周波モジュールおよび通信装置
CN107548244B (zh) * 2017-08-30 2020-02-28 景旺电子科技(龙川)有限公司 一种双面夹芯铜基板内部铜基之间绝缘的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697318A (ja) * 1992-09-16 1994-04-08 Dainippon Printing Co Ltd 半導体装置用配線基板
JPH09260560A (ja) 1996-03-21 1997-10-03 Toppan Printing Co Ltd リードフレーム及びその製造方法
US5844307A (en) 1995-07-31 1998-12-01 Nec Corporation Plastic molded IC package with leads having small flatness fluctuation
US5869898A (en) 1997-04-25 1999-02-09 Nec Corporation Lead-frame having interdigitated signal and ground leads with high frequency leads positioned adjacent a corner and shielded by ground leads on either side thereof
CA2331970A1 (en) * 1999-07-23 2002-07-19 Takehiko Nomura Silicon platform for optical modules

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845313A (en) * 1985-07-22 1989-07-04 Tokyo Communication Equipment Co., Ltd. Metallic core wiring substrate
JPH01199497A (ja) * 1987-11-10 1989-08-10 Ibiden Co Ltd 電子部品塔載用基板
JP2528192B2 (ja) 1990-01-12 1996-08-28 株式会社三井ハイテック 半導体装置
US5434750A (en) * 1992-02-07 1995-07-18 Lsi Logic Corporation Partially-molded, PCB chip carrier package for certain non-square die shapes
US5483100A (en) * 1992-06-02 1996-01-09 Amkor Electronics, Inc. Integrated circuit package with via interconnections formed in a substrate
US5661086A (en) * 1995-03-28 1997-08-26 Mitsui High-Tec, Inc. Process for manufacturing a plurality of strip lead frame semiconductor devices
KR100203934B1 (ko) * 1996-02-17 1999-06-15 윤종용 패턴닝된 리드프레임을 이용한 멀티 칩 패키지
JP3171172B2 (ja) * 1998-09-25 2001-05-28 日本電気株式会社 混成集積回路
JP4190111B2 (ja) 1999-10-29 2008-12-03 富士通株式会社 高周波モジュール
JP2001194387A (ja) 2000-01-11 2001-07-19 Mitsubishi Materials Corp コンタクトプローブおよびその製造方法
JP3650001B2 (ja) * 2000-07-05 2005-05-18 三洋電機株式会社 半導体装置およびその製造方法
KR100528950B1 (ko) * 2001-01-29 2005-11-16 제이에스알 가부시끼가이샤 유전체용 복합 입자, 초미립자 복합 수지 입자, 유전체형성용 조성물 및 그의 용도
JP2002333552A (ja) * 2001-05-08 2002-11-22 Fujitsu Ltd 光装置
JP2003007916A (ja) * 2001-06-19 2003-01-10 Sanyo Electric Co Ltd 回路装置の製造方法
JP2003031755A (ja) 2001-07-18 2003-01-31 Sumitomo Electric Ind Ltd 積層リードフレーム及び光通信モジュール並びにその製造方法
JP2003060281A (ja) 2001-08-14 2003-02-28 Sumitomo Electric Ind Ltd 発光モジュール及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697318A (ja) * 1992-09-16 1994-04-08 Dainippon Printing Co Ltd 半導体装置用配線基板
US5844307A (en) 1995-07-31 1998-12-01 Nec Corporation Plastic molded IC package with leads having small flatness fluctuation
JPH09260560A (ja) 1996-03-21 1997-10-03 Toppan Printing Co Ltd リードフレーム及びその製造方法
US5869898A (en) 1997-04-25 1999-02-09 Nec Corporation Lead-frame having interdigitated signal and ground leads with high frequency leads positioned adjacent a corner and shielded by ground leads on either side thereof
CA2331970A1 (en) * 1999-07-23 2002-07-19 Takehiko Nomura Silicon platform for optical modules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1603158A4

Also Published As

Publication number Publication date
CN1757111A (zh) 2006-04-05
JPWO2004082019A1 (ja) 2006-06-15
JP4514709B2 (ja) 2010-07-28
EP1603158A4 (en) 2009-07-15
EP1603158A1 (en) 2005-12-07
US7355862B2 (en) 2008-04-08
US7832092B2 (en) 2010-11-16
EP1603158B1 (en) 2021-06-09
CN100440500C (zh) 2008-12-03
US20050208789A1 (en) 2005-09-22
US20080172871A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US7355862B2 (en) Printed wiring board, method of manufacturing the printed wiring board, lead frame package, and optical module
US8111954B2 (en) Module substrate including optical transmission mechanism and method of producing the same
US7306377B2 (en) Integrated optical sub-assembly having epoxy chip package
JP5461897B2 (ja) 光導波路積層配線基板及びその製造方法と実装構造
WO2010140604A1 (ja) サブマウント、これを備えた光モジュール、及びサブマウントの製造方法
US9588313B2 (en) Optical device package and optical device apparatus
US7315669B2 (en) Photoelectric transducer and photoelectric transducer element array
US7535098B2 (en) Structure of substrate
CN107658691B (zh) 光半导体装置
JP4764669B2 (ja) 光パッケージ、光素子付き光パッケージ及び光導波路モジュール
TW202146953A (zh) 光電傳送複合模組及光電混載基板
US6492698B2 (en) Flexible circuit with two stiffeners for optical module packaging
CN112188731A (zh) 内埋式元件结构及其制造方法
JP5302177B2 (ja) 光導波路基板および光電気混載装置
JP7113325B2 (ja) 光モジュール構造体
JP2737151B2 (ja) 光半導体装置
JP7300625B2 (ja) 半導体装置の実装構造、光モジュール、及び半導体装置の実装構造の製造方法
JP4053453B2 (ja) 光モジュール
JP2900900B2 (ja) 光導波路型デバイス
JP2005077640A (ja) 光導波路付き配線基板
JP2000100496A (ja) 同軸接続子およびそれを用いた半導体実装装置
JP2022046833A (ja) 電子部品搭載用パッケージ及び電子装置
JP2010067860A (ja) 光半導体装置
JP2005079503A (ja) プラスチックパッケージ
JP2003347561A (ja) 光半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11109656

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005503493

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004717227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048058083

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004717227

Country of ref document: EP