WO2004065119A1 - 積層体およびその製造方法 - Google Patents

積層体およびその製造方法 Download PDF

Info

Publication number
WO2004065119A1
WO2004065119A1 PCT/JP2004/000403 JP2004000403W WO2004065119A1 WO 2004065119 A1 WO2004065119 A1 WO 2004065119A1 JP 2004000403 W JP2004000403 W JP 2004000403W WO 2004065119 A1 WO2004065119 A1 WO 2004065119A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
laminate according
cyclized
film
Prior art date
Application number
PCT/JP2004/000403
Other languages
English (en)
French (fr)
Inventor
Shizuo Kitahara
Tetsuya Toyoshima
Kouichirou Maeda
Junji Kodemura
Yutaka Katoh
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to EP04703496A priority Critical patent/EP1586445A4/en
Priority to JP2005508080A priority patent/JP4293186B2/ja
Priority to US10/540,377 priority patent/US8147953B2/en
Publication of WO2004065119A1 publication Critical patent/WO2004065119A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31696Including polyene monomers [e.g., butadiene, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing

Definitions

  • the present invention relates to a laminate and a method for producing the same. More specifically, even when a polymer substrate is made of a non-polar polymer, dry deposition such as a chemical vapor deposition method or a vacuum deposition method is performed on the substrate. Laminate having excellent adhesion to thin films laminated by the method and production thereof
  • metal-deposited products made by depositing metal on plastic molded products have been used widely in food containers and the like because of their excellent decorative properties, gas barrier properties, and light-blocking properties.
  • the deposited laminated film has transparency and is used as a packaging material having high gas barrier properties.
  • plastic molded products or plastic film surfaces are physically roughened by corona discharge, flame radiation, radiation irradiation, etc., and are deposited using the anchor effect.
  • a method for improving the adhesion to a thin film is known. Further, a method is also known in which a polymer having polarity, such as a polyester resin or a polyamide resin, is applied to the surface subjected to the roughening treatment, and then vapor deposition is performed.
  • a polymer having polarity such as a polyester resin or a polyamide resin
  • An amorphous carbon film is an amorphous carbon film that does not show a distinct crystal structure by X-ray diffraction, or hydrogenated carbon in which hydrogen is bonded to dangling bonds of carbon existing in the carbon film. It is also called a-C: H film, i-C film, and diamond-like carbon (DLC) film.
  • a-C H film, i-C film, and diamond-like carbon (DLC) film.
  • Amorphous carbon film has high hardness (Hv30000 or more), excellent wear resistance, excellent surface smoothness, low friction coefficient, excellent release properties, chemical resistance ⁇ corrosion resistance Excellent properties such as excellent gas barrier properties against oxygen and water vapor, excellent near-infrared transmittance, and excellent insulation properties. Due to its simplicity, expectations for surface treatment of various substrates are increasing.
  • a method for forming an amorphous carbon film for example, a method is known in which a raw material containing carbon atoms is gasified under high heat in a vacuum to form an amorphous carbon film on a substrate surface.
  • a method for forming an amorphous carbon film for example, a method is known in which a raw material containing carbon atoms is gasified under high heat in a vacuum to form an amorphous carbon film on a substrate surface.
  • high heat is applied to the base material, there is a problem that the base material is limited to those having high heat resistance such as metal and ceramic.
  • Japanese Patent Application Laid-Open No. 11-58587 discloses a gas-barrier laminated film in which an amorphous carbon film having a thickness of 0.1 ⁇ m is formed on a polyethylene terephthalate film.
  • No. 0 0 1—4 9 4 3 3 discloses a laminate in which a high-hardness transparent amorphous carbon film having a thickness of 2 to 3 m is formed on the surface of a polar polymer such as polycarbonate and polymethyl methacrylate. Is disclosed.
  • Japanese Patent Application Laid-Open No. 2000-117881 discloses a gas-parallel laminate having a 0.025 / m-thick amorphous carbon film formed on the inner surface of a polypropylene container.
  • a gas barrier laminated film in which an amorphous carbon film having a thickness of 0.04 ⁇ m is formed on a polyethylene film or a polypropylene film.
  • the present invention has been made in view of the above circumstances, and even when a polymer substrate made of a nonpolar polymer is used, a dry film forming method such as a chemical vapor deposition method or a vacuum evaporation method is used. It is an object of the present invention to provide a laminate excellent in adhesion to a laminated thin film and a method for producing the same.
  • the present inventors have found that the ability to provide a primer layer containing a cyclized rubber on the surface of a polymer base material or a polymer base obtained by blending a cyclized rubber with a polymer molding material. It has been found that the use of a material can significantly improve the adhesion between the polymer substrate and the thin film laminated by the dry film formation method, and based on this finding, the present invention has been completed.
  • a laminated body comprising: a laminated thin film
  • the polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group, a hydroxyl group, an ester group, an epoxy group, and an amino group.
  • a primer containing a cyclized conjugated polymer or a cyclized rubber that is a derivative thereof is applied to the surface of the polymer base material to form a primer layer on the surface of the polymer base material.
  • a method for manufacturing a laminate comprising laminating a thin film on a layer surface by a dry film formation method.
  • the derivative of the cyclized conjugated polymer is a derivative obtained by introducing a polar group into the cyclized conjugated polymer by a modification reaction using a polar group-containing compound.
  • the polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group, a hydroxyl group, an ester group, an epoxy group and an amino group.
  • the compounding amount of the cyclized rubber is 0.1 to 100 parts by weight of the polymer molding material. 04 000403
  • the above-described laminate which is up to 50 parts by weight.
  • the adhesion between the substrate and a thin film laminated by a dry film formation method such as a chemical vapor deposition method or a vacuum evaporation method is improved.
  • a dry film formation method such as a chemical vapor deposition method or a vacuum evaporation method
  • An excellent laminate and a method for producing the same are provided.
  • the adhesion is significantly improved even if the thickness of the amorphous film is increased.
  • the laminate according to the first aspect includes a polymer substrate, a primer layer formed on a surface of the polymer substrate, and containing a cyclized rubber of a conjugated conjugated polymer or a derivative thereof, and the primer layer. And a thin film laminated on the surface by a dry film forming method.
  • the primer layer in this embodiment contains a cyclized rubber which is a cyclized conjugated polymer or a derivative thereof.
  • the cyclized rubber content in one primer layer is preferably at least 10% by weight, more preferably at least 30% by weight, particularly preferably at least 50% by weight. If the content is too low, the effect of improving the adhesion tends to be poor.
  • the cyclization rate of the cyclized rubber used in this embodiment is usually 10% or more, preferably 40 to 95%, and more preferably 60 to 90%. When the cyclization ratio is in this range, the property of improving the adhesion of the thin film becomes good.
  • the cyclization rate refers to the cyclization reaction of a conjugated gen polymer by proton NMR analysis. 0403
  • the weight average molecular weight (Mw) of the cyclized rubber is a value measured by the gel permeation 'chromatography (GPC) method (standard polystyrene conversion value), and is usually from 1,000 to 1,000,000, preferably. Ranges from 10,000 to 500,000, more preferably from 30,000 to 300,000. If the Mw of the cyclized rubber is excessively small, the adhesiveness of the thin film tends to decrease. Conversely, if the Mw of the cyclized rubber is excessively large, it tends to be difficult to form a primer layer having a uniform film thickness.
  • GPC gel permeation 'chromatography
  • the glass transition temperature (Tg) of the cyclized rubber is not particularly limited and can be appropriately selected depending on the application. Usually, the temperature is from 50 to 200 ° C, preferably from 0 to 100 ° C, and more preferably from 20 to 100 ° C. To 90 ° C, particularly preferably 30 to 70 ° C. If the Tg force of the cyclized rubber exceeds these ranges, there may be a problem in the recovery and properties.
  • the gel amount of the cyclized rubber is usually 10% by weight or less, preferably 5% by weight or less, but a cyclized rubber having substantially no gel is particularly preferable. When the amount of the gel is large, there is a possibility force s problems in the coating process of during the primer layer formed to be described later.
  • the cyclized conjugated polymer is obtained by acid-conjugating a conjugated gen polymer obtained by (co) polymerizing a conjugated gen monomer or another monomer copolymerizable with the conjugated gen monomer. It is obtained by cyclization in the presence of a catalyst.
  • conjugated diene monomers examples include 1,3-butadiene, isoprene, 2,
  • Other monomers copolymerizable with the conjugated diene monomer include, for example, styrene, o-methylstyrene, p-methylstyrene, m-methylenstyrene, 2,4-dimethylene Norestyrene, ethynolestyrene, p-tert-butylinolestyrene, ⁇ -methinolestylene, ⁇ -methizole- ⁇ -methinolestyrene, ⁇ -chloronostyrene, m-chloronostyrene, p-chloronostyrene, p-bromostyrene, 2-methyl- Aromatic butyl monomers such as 1,4-dichlorostyrene, 2,4-dibutene mostyrene, and biernaphthalene; linear olefin monomers such as ethylene, propylene, and 1-butene; pentene, 2-norbornene, etc
  • Cyclic olefin monomers include non-conjugated diene monomers such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; methyl ( (Meth) acrylates such as methacrylate, ethyl (meth) acrylate, etc .; Acrylonitrile, (meth) acrylamide and the like. These monomers may be used alone or in combination of two or more.
  • the content of the conjugated gen monomer unit in the conjugated gen polymer is a force appropriately selected within a range that does not impair the effects of the present embodiment. Usually, at least 40 mol%, preferably at least 60 mol%, more preferably 80 mol% or more. If this content is small, it will be difficult to increase the cyclization rate, and the desired effect of improving physical properties tends to be hardly obtained.
  • the polymerization method of the conjugated diene polymer may be a conventional method.For example, a solution is prepared by using a conventionally known catalyst such as a Ziegler-based polymerization catalyst containing titanium or the like as a catalyst component, an alkyllithium polymerization catalyst, or a radical polymerization catalyst. It is carried out by polymerization or emulsion polymerization.
  • conjugated diene polymers include natural rubber (NR), styrene-butadiene rubber (SBR), polyisoprene rubber (IR), polybutadiene rubber (BR), isoprene-isobutylene copolymer rubber (IIR), and ethylene rubber.
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • IIR isoprene-isobutylene copolymer rubber
  • ethylene rubber examples include propylene-one-gen copolymer rubber and butadiene-isoprene copolymer rubber (BIR).
  • BIR butadiene-isoprene copolymer rubber
  • BIR butadiene-isoprene copolymer rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • the cyclization of the conjugated diene polymer is usually carried out by dissolving the conjugated diene polymer in a hydrocarbon solvent and reacting in the presence of an acid catalyst.
  • the acid catalyst may be any of those usually used in cyclization reactions, and examples thereof include sulfuric acid; fluoromethanesulfonic acid, difluoromethanesulfonic acid, p-toluenesulfonic acid, 00403
  • Organic sulfonic acids such as xylenesolephonic acid, alkylbenzenesulfonic acid having an alkyl group having 2 to 16 carbon atoms, and organic sulfonic acid compounds such as anhydrides and alkyl esters thereof; boron trifluoride, trichloride Metal halides such as boron, tin tetrachloride, titanium tetrachloride, aluminum chloride, getyl aluminum monochloride, ethylammonium chloride, aluminum bromide, antimony pentachloride, hexachloride tungsten, and iron chloride; No.
  • These acid catalysts may be used alone or in combination of two or more. Among them, organic sulfonic acid compounds are preferable, and p-toluenesulfonic acid is more preferable.
  • the amount of the acid catalyst to be used is generally 0.05 to 10 parts by weight, preferably 0.1 to 5 parts by weight, and more preferably 3 to 2 parts by weight per 100 parts by weight of the conjugated diene polymer. It is.
  • the hydrocarbon solvent used in the reaction is not particularly limited as long as it does not inhibit the cyclization reaction.
  • Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; n-pentane, n-hexane And aliphatic hydrocarbons such as n-heptane and n-octane; alicyclic hydrocarbons such as pentane and hexane.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • n-pentane n-hexane
  • aliphatic hydrocarbons such as n-heptane and n-octane
  • alicyclic hydrocarbons such as pentane and hexane.
  • the solvent used for the polymerization reaction of the conjugated diene polymer can be used as it is, and in this case,
  • the amount of the solvent to be used is such that the solid content concentration of the conjugated gen-based polymer is usually 5 to 60% by weight, preferably 20 to 40% by weight.
  • the cyclization reaction can be carried out under increased pressure, reduced pressure or atmospheric pressure, or under a shifted pressure.However, it is preferable to carry out the cyclization reaction under atmospheric pressure from the viewpoint of simplicity of operation. When the reaction is performed in an atmosphere of nitrogen or dry argon, side reactions due to moisture can be suppressed.
  • the reaction temperature and the reaction time may be in accordance with a conventional method, and the reaction temperature is usually 50 to 15 ° C, preferably 80 to: I10 ° C. 0.5 to: I 0 hours, preferably 2 to 5 hours.
  • the cyclized product of the conjugated diene polymer obtained as described above is usually prepared by deactivating the cyclization catalyst, removing the cyclization catalyst residue, removing the inert solvent, PT / JP2004 / 000403
  • the derivative of the cyclized conjugated polymer a derivative obtained by introducing a polar group into the cyclized conjugated polymer by a modification reaction using a polar group-containing compound can be used.
  • the polar group-containing compound used in the modification reaction is not particularly limited as long as the compound can introduce a polar group into the cyclized conjugated polymer, and examples thereof include an acid anhydride group, a carboxyl group, a hydroxyl group, Examples include ethylenically unsaturated compounds having a polar group such as a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen.
  • an acid anhydride group, a carboxyl group, a hydroxyl group, an ester group, an epoxy group, or an amino group are preferable in terms of excellent effect of improving the adhesion of the thin film, and an acid anhydride group, a carboxyl group, and a hydroxyl group are more preferable. preferable.
  • Examples of the compound having an acid anhydride group or a carboxyl group include ethylenic anhydrides such as maleic anhydride, itaconic anhydride, aconitic anhydride, norponenedicarboxylic anhydride, atarylic acid, methacrylic acid, and maleic acid. Saturated compounds may be mentioned. Among them, maleic anhydride is awarded for its reactivity and economy.
  • Examples of the compound containing a hydroxyl group include: hydroxyalkyl esters of unsaturated acids such as (meth) acrylic acid 2-hydroxyshethyl, (meth) acrylic acid 2-hydroxypropyl and the like; N-methylol (meth) Unsaturated acid amides having a hydroxyl group such as acrylamide, N- (2-hydroxyxethyl) (meth) acrylamide; polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate Polyalkylene glycol monoesters of unsaturated acids such as poly (ethylene glycol propylene glycol) mono (meth) acrylate; polyhydric alcohol monoesters of unsaturated acids such as glycerol mono (meth) acrylate; And the like. Of these, hydroxyalkyl esters of unsaturated acids are preferred, and 2-hydroxyethyl acrylate and 2-hydroxyx methacrylate are particularly preferred.
  • Examples of other ethylenically unsaturated compounds containing a polar group include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl ( Meta) Atearliest Dimethylaminopropyl (meth) acrylate, (meth) acrylamide,
  • the method for introducing the polar group-containing compound into the cyclized conjugated polymer is not particularly limited.
  • a known reaction generally called an ene addition reaction or a graft polymerization reaction is used. Just follow it.
  • This addition reaction is carried out by reacting the cyclized conjugated polymer and the polar group-containing compound in the presence of a radical generator, if necessary.
  • a radical generator include peroxides such as di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxide benzoate, methylethyl ketone peroxide; Azonitrile such as azobisisobutyronitrile and dimethyl 2,2'-azobis (2-methylpropionate); and the like.
  • the addition reaction may be performed in a solid state or in a solution state, but is preferably performed in a solution state because the reaction can be easily controlled.
  • the solvent to be used for example, those similar to the hydrocarbon solvents in the cyclization reaction described above can be used.
  • the amount of the polar group-containing compound to be used is appropriately selected, but the ratio of the introduced polar group is usually 0.1 to 200 mmol, preferably, per 100 g of the modified cyclized rubber. The range is from about! 100 to about 100 mmol, more preferably from about 5 to about 50 mmol.
  • the reaction for introducing a polar group can be carried out under any pressure, reduced pressure or atmospheric pressure.However, it is desirable to carry out the reaction under atmospheric pressure from the viewpoint of simplicity of operation. When the reaction is performed in an atmosphere of dry nitrogen or dry argon, side reactions due to moisture can be suppressed.
  • the reaction temperature and the reaction time may be in accordance with a conventional method, and the reaction temperature is usually 30 to 250 ° C, preferably 60 to 200 ° C, and the reaction time is usually 0. 5 to 5 hours, preferably 1 to 3 hours.
  • the cyclized rubber further contains additives such as a filler, an antistatic agent, an antioxidant, a lubricant, a cross-linking agent, an anti-blocking agent, a coloring agent, a light-blocking agent, and an ultraviolet absorber, as necessary. Is also good. T JP2 ⁇
  • the primer layer contains the above-mentioned cyclized rubber as an essential component, but depending on the type of polymer substrate and the type of thin film, acrylic resin, urethane resin, epoxy resin, melamine resin, alkyd resin, chlorinated olefin Other polymer components such as resin, silicone rubber, and acrylic rubber; additives such as pigments, dyes, fillers, antioxidants, ultraviolet absorbers, defoamers, thickeners, dispersants, and surfactants; May be contained.
  • the thickness of the primer layer in this embodiment is not particularly limited, it is usually 0.1 to 200 m, preferably 0.5 to 100 ⁇ 111, and more preferably 1 to: ⁇ 00 ⁇ , Particularly preferably, it is in the range of 1 to 50 ⁇ ⁇ , most preferably in the range of 5 to 50 im.
  • the polymer constituting the polymer base material in the present embodiment include a thermoplastic resin, a cured resin, an elastomer, and the like.
  • thermoplastic resin examples include a hydrocarbon resin, a polyester resin, a polyamide resin, a polyimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, and a polyetheretherketone.
  • Base resin polycarbonate resin, polyvinyl butyrate resin, polyarylate resin, and the like.
  • curable resin examples include acrylic resin, phenol resin, cresol resin, urea resin, melamine resin, alkyd resin, furan resin, unsaturated polyester resin, epoxy resin, urethane resin and the like.
  • Curing methods include, for example, those that cure by irradiating actinic radiation such as ultraviolet rays or electron beams, those that cure by polymerizing monomers by applying heat in the presence of a catalyst, and that mix two liquids. After that, those cured by heating are exemplified.
  • Elastomers include, for example, vulcanized rubbers such as natural rubber, polybutadiene rubber, styrene-butadiene rubber, atarilonitrile-butadiene rubber, olevine-based thermoplastic elastomer, styrene-based thermoplastic elastomer, and polyester-based thermoplastic. Elastomers, polyamide-based thermoplastic elastomers 1, and mer.
  • the adhesiveness of a thin film is remarkably improved in a polymer substrate composed of a nonpolar polymer.
  • non-polar polymers include hydrocarbon resins, among which are chain-like resin and cyclic-olefin resin.
  • it is a resin.
  • chain-olefin resin examples include homo- or copolymers of a-olefin having 2 to 4 carbon atoms, such as ethylene, propylene, and butene.
  • a-olefin having 2 to 4 carbon atoms such as ethylene, propylene, and butene.
  • polyethylene and polypropylene resins are preferred, and polypropylene resins are more preferred, in terms of versatility.
  • the polypropylene resin is not particularly limited as long as it is a polymer or a copolymer obtained by polymerizing a monomer containing propylene as a main component. Examples thereof include a propylene homopolymer and propylene-ethylene random. Copolymer, propylene- ⁇ -olefin random copolymer, propylene-ethylene- ⁇ -olefin terpolymer and the like.
  • the cyclic olefin resin there can be mentioned, for example, a norpolene resin described in Japanese Patent Application Laid-Open No. Hei 7-23028.
  • the norbornene-based luster is obtained by polymerizing at least a substance containing a norbornene-based monomer, and includes, for example, (i) a ring-opening (co) polymer of a norbornene-based monomer, and A polymer modified according to maleic acid addition or cyclopentadiene addition, (ii) a resin obtained by hydrogenating the above (i), and (i ii) addition polymerization of a norbornene monomer.
  • a resin obtained by addition-type copolymerization of a norbornene monomer and an olefin monomer such as ethylene or ⁇ -olefin (iv) a resin obtained by addition-type copolymerization of a norbornene monomer and an olefin monomer such as ethylene or ⁇ -olefin.
  • the polymerization method and the hydrogenation method can be performed by a conventional method.
  • norbornene-based monomer examples include norbornene, and its alkyl and ⁇ - or alkylidene-substituted products, for example, 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-12-norbornene, and 5-pentinolene.
  • the norbornene-based resin that can be used in this embodiment has a weight average molecular weight of usually 1,000 to 1,000,000 as measured by gel permeation chromatography (GPC) method using toluene or cyclohexane solvent. 000, preferably 100,000 to 500,000, more preferably 20,000 to 100,000. If the weight average molecular weight is too small, the physical strength of the polymer base will be poor, and if too large, molding may be difficult.
  • GPC gel permeation chromatography
  • the hydrogenation ratio is preferably 90 from the viewpoint of heat deterioration resistance and light deterioration resistance. % Or more, more preferably 95% or more, particularly preferably 99% or more.
  • the above polymers can be used alone or in combination of two or more.
  • the polymer base material may be used, if necessary, such as fillers, antistatic agents, anti-aging agents, lubricants, cross-linking agents, anti-blocking agents, coloring agents, light-blocking agents, ultraviolet absorbers, etc. It may contain additives.
  • the shape of the polymer substrate is not particularly limited, various shapes depending on the final product, such as a sphere, a rod, a column, a plate, a sheet, and a film, may be used.
  • the polymer substrate is usually used after being molded by a conventionally known molding method. Examples of the molding method include an extrusion molding method, a cast molding method, a calendar molding method, a vacuum molding method, an injection molding method, an inflation molding method, and a blow molding method.
  • Examples of the molded article of the polymer substrate include a film molded article, an injection molded article, an extrusion molded article, a vacuum molded article, and a blow molded article. Among them, a film molded product and an injection molded product can be preferably used.
  • this unstretched film is further subjected to uniaxial stretching, tenter, sequential biaxial stretching, and tenter simultaneous biaxial stretching.
  • It may be a stretched film manufactured by a stretching method such as stretching or tubular simultaneous biaxial stretching. Among them, a stretched film can be preferably used.
  • the thickness of the film is appropriately selected depending on the application, but is usually from 1 to 100 m, preferably from 5 to 500 im, and more preferably from 10 to 200 m.
  • the width and length of the film are not particularly limited and can be appropriately selected depending on the application.
  • the thin film according to this embodiment is to be laminated on the surface of the primer layer by a dry film forming method.
  • the dry film formation method generally refers to a method in which a metal, a metal oxide, an organic substance, or the like is converted into a gas to form a film on the surface of a substrate. This method is classified into a physical film formation method and a chemical film formation method.
  • Examples of the physical film forming method include a vacuum evaporation method, a sputtering method, an ion plating method, an ion implantation method, an ion beam sputtering method, and a plasma ion implantation method.
  • Examples of the chemical film formation method include a chemical vapor deposition method (CVD) such as a thermal CVD method, an optical CVD method, and a plasma CVD method (microwave CVD method, high-frequency CVD method, etc.).
  • CVD chemical vapor deposition method
  • thermal CVD method thermal CVD method
  • optical CVD method optical CVD method
  • plasma CVD method microwave CVD method, high-frequency CVD method, etc.
  • Examples of the material of the thin film include metals such as aluminum, zinc, nickel, zirconium, gold, copper, tin, indium, titanium, and chromium; Metal oxides such as lumidium, magnesium oxide and zirconium oxide; metal nitrides such as SiN, CrN, TiN and TiA1N; CxHy (including amorphous carbon film) And the like having a typical composition. Among these materials, in the amorphous carbon film, the adhesion of the thin film is remarkably improved. .
  • An amorphous carbon film is an amorphous carbon film that does not show a clear crystal structure by X-ray diffraction, or a hydrogenated carbon film in which hydrogen is bonded to dangling bonds of carbon existing in the carbon film.
  • the formation of the amorphous carbon film may be performed according to a conventional method.
  • the methods disclosed in JP-A-2001-240115, JP-A-2001-310412, JP-A-2001-31648, and the like can be used.
  • Specific formation methods include, for example, physical film forming methods such as ion plating, sputtering, ion beam sputtering, and plasma ion injection, plasma CDV, microwave CVD, and high-frequency CVD.
  • Chemical film formation methods such as the method. These methods involve generating plasma in the film forming apparatus to ionize or excite the source gas, for example, a method in which the source gas is subjected to plasma decomposition by applying a DC voltage, a method in which a high frequency is applied to perform plasma decomposition.
  • the microphone mouth-wave plasma method and the electron cyclotron resonance method are preferable when the film forming speed is to be increased and the film forming temperature is to be lowered, and the high-frequency plasma method is preferable when forming a large-area substrate surface. preferable.
  • alkane-based gases such as methane, ethane, propane, butane, pentane, and hexane; , Propylene, butene, pentene, and other alkene-based gases; pentadiene, butadiene, and other alkane-based gases; acetylene, methylenoleacetylene, and other alkyne-based gases; benzene, toluene, xylene, indene, Aromatic hydrocarbon gases such as naphthalene and phenanthrene; cycloalkane gases such as cyclopropane, cyclopentane and cyclohexane; alcohol gases such as methanol and ethanol; ketone gases such as acetone and methyl ethyl ketone. Aldehyde-based gases such as metan
  • Other source gases include a mixed gas of the above-mentioned gas containing a carbon atom and a hydrogen atom and a rare gas; Mixed gas; mixed gas of hydrogen gas and gas composed of only carbon and oxygen atoms, such as carbon monoxide gas and carbon dioxide gas; composed of only carbon and oxygen atoms, such as carbon monoxide gas and carbon dioxide gas Mixed gas of oxygen gas and water vapor.
  • the mixing amount of hydrogen gas, oxygen gas (oxygen-containing gas), and rare gas in these mixed gases is appropriately selected according to the type of the film forming apparatus to be used, the type of the mixed gas, the film forming pressure, and the like. By selecting those conditions, the hydrogen atom concentration and oxygen atom concentration contained in the formed amorphous carbon film can be adjusted to desired values.
  • Examples of a carbon source used for forming an amorphous carbon film by an ion beam sputtering method include solids of carbon isotopes such as graphite and diamond. These are installed and used in a plasma under a hydrogen gas or rare gas atmosphere.
  • the amorphous carbon film formed on the substrate surface by the above method can be confirmed by Raman spectroscopy.
  • the concentration of hydrogen and oxygen atoms in the amorphous carbon film can be confirmed by SIMS (secondary ion mass spectroscopy).
  • Thickness of the thin film is not particularly limited, usually, 1 nm ⁇ 1 0 0 ⁇ m , preferably 1 O nm ⁇ l 0 ⁇ outcomes.
  • the thin film is an amorphous carbon film
  • its thickness is appropriately selected according to the purpose of use.However, if the thickness is excessively large, there is a risk of peeling or deformation due to internal stress of the film. 100 ⁇ or less, preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less.Conversely, when the thickness is excessively thin, the function of the thin film is reduced. It is 0.001 or more, preferably 0.001 lm or more, more preferably 0.01 zm or more, and most preferably 0.05 ⁇ or more.
  • the material of the thin film for example, coloring, hiding, slipping, anti-blocking, antistatic, gas barrier, water vapor barrier, water resistance, hydrophilicity, abrasion resistance, anti-fog, It is possible to obtain a laminate having functions such as easy writing properties and anti-glare properties.
  • the thin film may be formed over the entire surface of the polymer substrate, partially formed, or formed in a specific pattern.
  • the laminate of this embodiment may have a structure in which one or more thin films of a material different from that of the thin film are formed on the surface of the thin film by a dry film forming method.
  • the method for producing a laminate according to the present embodiment is characterized in that a primer containing a cyclized rubber of a conjugated conjugated polymer or a derivative thereof is applied to the surface of a polymer base material, and the primer is applied to the surface of the polymer base material. After forming the layer, a thin film is laminated on the surface of the primer layer by a dry film forming method.
  • a primer containing the cyclized rubber is applied to the surface of the polymer substrate.
  • the primer is usually obtained by dissolving or dispersing the above-mentioned cyclized rubber and an additive compounded as required in a solvent.
  • the solvent used at this time is not particularly limited, but includes, for example, aliphatic hydrocarbon solvents such as pentane, hexane and heptane; alicyclic hydrocarbon solvents such as cyclopentane, cyclohexane and methylcyclohexane.
  • Aromatic hydrocarbon solvents such as benzene, toluene and xylene; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Ester solvents such as ethyl acetate and propyl acetate; Alcohols such as ethanol, propyl alcohol and butyl alcohol System solvents; ether solvents such as getyl ether and dibutyl ether; halogen solvents such as chloroform and dichloroethane; and water.
  • aliphatic hydrocarbon solvents aliphatic hydrocarbon solvents, alicyclic hydrocarbon solvents, aromatic hydrocarbon solvents, ester solvents, and ketone solvents can be preferably used.
  • the solid content of the primer is not particularly limited, usually, 0 to 5 0 by weight 0/0, preferably 0 5-4 0 weight 0/0, more preferably from 1 to 3 0 wt% It is.
  • the viscosity of the primer, the force S which varies greatly depending on the application method, usually, It is in the range of 0.01 to 100 dPa's.
  • the method for applying the primer is not particularly limited, and a conventionally known method can be used.
  • Examples of the coating method include various printing methods such as a gravure printing method, a relief printing method, an offset printing method, a gravure offset printing method, a screen printing method, a flexographic printing method, a dry offset method, an inkjet printing method, and an electrostatic printing method.
  • a gravure printing method a relief printing method
  • an offset printing method a gravure offset printing method
  • a screen printing method a flexographic printing method
  • a dry offset method an inkjet printing method
  • electrostatic printing method electrostatic printing method.
  • Spin coating, roll coating, comma coating, gravure coating, microgravure coating, flow coating, knife coating, air knife coating, mouth coating, kiss coating, lip coating, die coating, Spray coat method, dip coat method and the like can be mentioned.
  • the solvent is usually volatilized by heating or the like.
  • the primer When the primer is to be cured by actinic radiation such as ultraviolet rays or electron beams, it can be cured by irradiation with actinic radiation.
  • a thin film is laminated on the surface of the primer layer by a dry film formation method.
  • the conditions of the dry film formation method may be appropriately selected according to the type of the dry film formation method to be employed, the material of the thin film, and the thickness of the thin film.
  • the laminate according to the second embodiment is a polymer base material in which a cyclized conjugated polymer or a derivative thereof is compounded with a polymer molding material, and a dry film-forming method on the surface of the polymer base material. And a thin film formed by:
  • the cyclized rubber used in the present embodiment is a polymer obtained by mixing the cyclized rubber in a polymer molding material. It is.
  • the compounding amount of the cyclized rubber is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the polymer molding material. Department. If the amount is too small, the adhesiveness of the thin film tends to be inferior. If the amount is too large, the mechanical strength of the polymer substrate may decrease.
  • Polymer molding materials may be used in addition to the above polymers, if necessary, such as fillers, antistatic agents, anti-aging agents, lubricants, cross-linking agents, anti-blocking agents, coloring agents, light-blocking agents, ultraviolet absorbers, etc. It may contain additives.
  • the method of blending the cyclized rubber with the polymer molding material is not particularly limited, but usually a method of melt-kneading is employed.
  • the shape, molding method, molded product, thickness, and the like of the polymer substrate are the same as those described in the first embodiment, and a description thereof will not be repeated.
  • the thin film according to this embodiment is a film that is laminated on the surface of the polymer substrate by a dry film forming method, and the same film as described in the first embodiment can be used.
  • the thin film By selecting the material of the thin film, a laminate having various functions can be obtained as described in the first embodiment. Further, as in the first embodiment, the thin film may be formed on the entire surface of the polymer base, partially formed, or formed in a specific pattern.
  • the laminate of this embodiment may have a structure in which one or more thin films of a different material from the thin film are formed on the surface of the thin film by a dry film forming method.
  • a thin film is laminated by a dry film-forming method on the surface of a polymer base material in which a cyclized conjugated polymer or a derivative thereof is compounded in a polymer molding material. It is characterized by the following.
  • the conditions of the dry film formation method may be appropriately selected according to the type of the dry film formation method to be employed, the material of the thin film, and the thickness of the thin film.
  • the laminate of the present invention can be used for various applications.
  • automobile exteriors such as bumpers, corners / impellers, bumper air dam skirts, mudguards, side monolles, wheel caps, boilers, side steps, and door mirror bases Parts
  • automotive interior parts such as instrument panels, levers, knobs, dashboards, and door liners
  • electrical equipment parts such as connectors, cap plugs, pots, refrigerators, lighting fixtures, audio equipment, OA equipment
  • color boxes, storage Cases and other daily necessities gas-barrier packaging such as food packaging such as cups, confectionery and vegetables, and textile packaging such as Y-shirts, T-shirts and pantyhose It can be suitably used as a film material
  • the metal-deposited film can be particularly suitably used for packaging foods such as potato chips which require moisture proofing and oxygen paring.
  • the weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the cyclization rate was determined by —N MR measurement according to the method described in the following documents (i) and (ii).
  • the cyclized rubber modified with maleic anhydride has an acid anhydride group derived from the added maleic anhydride and a carboxyl group obtained by hydrolyzing the acid anhydride group.
  • the Fourier transform infrared spectrum of this cyclized rubber was measured, the peak intensity of the acid anhydride group (1760 to 1780 cm “ 1 ) was measured, and the content of the acid anhydride group was determined by the calibration curve method.
  • the peak intensity of the carboxyl group (1700 cm- 1 ) was measured and determined by the calibration curve method. The carboxyl group content was measured.
  • the hydroxyl value of the cyclized rubber modified with the hydroxyl group-containing compound was measured according to the method described in “Standard Oil and Fat Analysis Test Method (Japan Oil Chemistry Association)” 2, 4, 9, 2-83. From this hydroxyl value, the amount of hydroxyl groups in the modified cyclized rubber was determined.
  • the cutter is used to make 1 cut each at 1mm intervals from the top of the deposited film at 1mm intervals, crossing each other at right and left angles. Is pulled off in the direction perpendicular to the surface of the vapor-deposited film, and is indicated by the number of unpeeled out of 100 eyes.
  • polyisoprene cut into 1 Omm squares (cis_1, 4 units 73%, transformer 1,4 units 22%, 3,1 4 300 parts of 5 units per unit, weight average molecular weight of 174,000) were charged together with 700 parts of toluene (polymer concentration: 30%). After the inside of the reactor was replaced with nitrogen, the mixture was heated to 80 ° C and the polyisoprene was completely dissolved in toluene with stirring. Then, 2.07 parts of p-toluenesulfonic acid (anhydrous) was added, and 80 ° C was added. A cyclization reaction was performed at C.
  • a 25% aqueous sodium carbonate solution containing 0.8 part of sodium carbonate was added to stop the reaction.
  • 2 parts of a filter aid (radiolite) was added, and the catalyst residue was removed using a glass fiber filter (GA-100 manufactured by Advantech Toyo Co., Ltd.) having a pore size of 1 ⁇ . Removed.
  • polyisoprene cut into 10 mm square (cis 1, 4 units 70%, transformer 1, 4 units 24%, 3, 4 units 4- Units 6%, weight average molecular weight 141,000) 300 parts were charged together with 700 parts of toluene (polymer concentration 30%). After the inside of the reactor was replaced with nitrogen, the mixture was heated to 80 ° C and the polyisoprene was completely dissolved in toluene with stirring. Then, 2.69 parts of p-toluenesulfonic acid (anhydrous) was added, and The cyclization reaction was performed at ° C.
  • polyisoprene cut into 1 Omm square (cis_1, 4 units 68%, transformer 1,1, 300 units of 4 units 25%, 3,4 1 unit 7%, weight average molecular weight 92, 100) were charged together with 700 parts of toluene (polymer concentration 30%). After the inside of the reactor was replaced with nitrogen, the mixture was heated to 80 ° C and the polyisoprene was completely dissolved in toluene with stirring. Then, 2.07 parts of p-toluenesulfonic acid (anhydrous) was added, and 80 ° C was added. A cyclization reaction was performed at C.
  • a 25% aqueous sodium carbonate solution containing 0.8 part of sodium carbonate was added to stop the reaction.
  • 2 parts of a filter aid radiolite
  • the catalyst was filtered using a glass fiber filter with a pore size of 1 / m (GA-100: manufactured by Advantech Toyo). The residue was removed.
  • the solution antioxidant (Iruganokkusu 1010: Chipa Su made Bae rice tea 'Chemicals, Inc.) was added 0.3 parts, 160 ° and toluene was removed C, 50 to 60 weight solid concentration of the solution 0 / 0 in Natsuta time, hydroxy E chill ⁇ chestnut rate 1 5 parts, ⁇ zone based initiator AC HN (1, 1-Azobisu to single 1 Shiku port Kisankarubo nitrile) was charged with 1.5 parts of 140 ° The reaction was carried out at C for 1 hour.
  • This sheet is stretched 5 times in the machine direction using a drawer heated to 125 ° C, then 10 times in the transverse direction in a tenter in which hot air at 155 ° C is circulated.
  • Biaxially stretched film by heat setting for 2 seconds Got.
  • the thickness of the film was 25 m.
  • Each of the above primers was applied to the i-plane of the biaxially stretched film so that the film thickness became 10 to 20 ⁇ , and then dried at 80 ° C.
  • a roll-to-roll vacuum evaporator was used on the primer-coated surface of the obtained film, and SiO 2 (manufactured by Sumitomo Citix Co., Ltd.) was used as the evaporating material. under the conditions of 10- 5 to rr, it was laminated a silicon oxide film having a thickness of 25 nm.
  • a laminated film having a silicon oxide film laminated thereon was obtained in the same manner as in Example 1 without using a primer.
  • the adhesion of the silicon oxide film in this laminated film was evaluated by observation with a transmission electron microscope, and the results are shown in Table 1.
  • a pellet of a thermoplastic saturated norbornene resin (ZEONEX280, number average molecular weight about 28,000, glass transition temperature 140 ° C: manufactured by Zeon Corporation) is dried at 90 ° C for 3 hours, and then a mold temperature of 100 ° C. C. Injection molding was performed at a resin temperature of 290 ° C. to obtain a molded plate of 2 mm ⁇ 5 Omm ⁇ 50 mm.
  • ZEONEX280 number average molecular weight about 28,000, glass transition temperature 140 ° C: manufactured by Zeon Corporation
  • the above-mentioned primer was applied on the above-mentioned molded plate with a spin coater, and dried by heating at 80 ° C.
  • the thickness of the primer layer was about 5 m.
  • a 30-nm-thick silicon oxide (Siox) thin film was formed on the surface of this primer layer by sputtering using a 13.56 MHz high frequency power supply.
  • the film was formed using a reactive sputtering method with oxygen targeting silicon having a purity of 99.99% and a pressure of 0.2 Pa and a power of 120 W for 5 minutes.
  • This laminate was heat-treated at 90 ° C. for 60 minutes and then allowed to cool to room temperature.
  • a test piece having a 30-nm-thick silicon oxide (Siox) thin film formed on a molded plate in the same manner as in Example 5 without applying the primer was obtained.
  • the adhesion of the silicon oxide thin film in this test piece was evaluated by a grid test, and was 0.
  • the silicon oxide thin film was peeled off, and the adhesion was extremely poor.
  • a laminated film having a silicon oxide film laminated was obtained in the same manner as in Example 6, except that the cyclized rubber A was replaced with (modified) cyclized rubbers B to D, respectively.
  • the adhesion of the silicon oxide film to each film was evaluated by transmission electron microscope observation. Table 2 shows the results.
  • a silicon oxide film was prepared in the same manner as in Example 6 except that the compounded amount of polypropylene (F-200S: manufactured by Idemitsu Petrochemical Co., Ltd.) was changed to 100 parts without compounding the cyclized rubber A. To obtain a laminated film. The adhesion of the silicon oxide film to the film was evaluated by transmission electron microscope observation. The results are shown in Table 2.
  • Table 2
  • the stretched polypropylene film without cyclized rubber was silicon oxide While the laminate has extremely poor adhesion to the thin film (Comparative Example 3), the stretched propylene film blended with the cyclized rubber of the present invention has a laminate excellent in adhesion to the silicon oxide thin film. (Examples 6 to 9).
  • the present invention will be described in further detail by showing examples in which the amorphous carbon film is used as the thin film in the first embodiment or the second embodiment.
  • the analysis and evaluation were performed as follows.
  • the proton NMR analysis measures the peak areas of the protons derived from the double bond before and after the cyclization reaction of the conjugated gen polymer, and the ratio of the double bond remaining in the cyclized product when the value before the cyclization reaction is set to 100. I asked. Then, the cyclization rate (%) was determined by the following formula: (100—the proportion of the double bond remaining in the cyclized product).
  • the carboxyl group content was determined from the acid value.
  • Acid value The acid value of the modified polymer was measured according to the method described in "Standard Fat and Oil Analysis Test Method" (Japan Oil Chemists' Society) 2, 4, 1-83.
  • a cutter After forming the amorphous carbon film on the base material surface, use a cutter to make 11 cuts on the amorphous carbon film surface that reach the substrate at 2 mm intervals, and make similar cuts so that they intersect at right angles.
  • 1 I made one and made 100 2mm square grids.
  • the cellophane adhesive tape is stuck on the grid, and this is 45. It was peeled off in the direction, and the number of grids with the painted surface remaining was counted and evaluated in the following three steps.
  • polysoprene cis 1,4-isoprene unit 73%
  • transformer 1,4-isoprene unit 22% 3, 4300 parts of isoprene unit 5%, weight average molecular weight was 174,000
  • the weight average molecular weight of the cyclized rubber E was 134,800, the cyclization ratio was 74%, and the gel amount was 0%.
  • polyisoprene 70% of 1,4-isoprene unit, 24% of 1,4-isoprene unit, 6% of 3,4-isoprene unit 300 parts (weight average molecular weight: 141,000) were cut into 1 Omm squares and charged together with 700 parts of toluene. After the inside of the reactor was replaced with nitrogen, the mixture was heated to 80 ° C., and polyisoprene was dissolved in toluene with stirring.
  • the weight average molecular weight of the modified cyclized rubber F was 113,800, the cyclization rate was 79%, and the gel amount was 0%.
  • the amount of the carboxyl group added to the modified cyclized rubber F was 38 mmol per 100 g of the polymer.
  • the molded plates X and Y were thoroughly washed with water and dried. Using a spray gun with a diameter of 1.0 mm, the combination shown in Table 5 so that the film thickness after drying on the molded plate surface becomes 10 / im under the conditions of a spray pressure of 3.5 to 5.0 OMPa. Then, after applying the primer, it was dried.
  • a laminate having an amorphous carbon film formed thereon was obtained in the same manner as in Example 10, except that the primer containing the cyclized rubber was not applied.
  • a cross-cut (adhesion) test was performed on the laminate, and the results are shown in Tables 5 and 6. Table 5
  • each blended component was mixed with a Henschel mixer, and the mixed portion was charged into a twin-screw extruder (35 ⁇ ), kneaded at 200 ° C and a screw rotation speed of 200 rpm, and the polymer base was mixed. A pellet of the composition was obtained. Next, injection molding was performed using this pellet to produce a molded plate having a thickness of 3 mm, a width of 5 Omm, and a length of 8 Omm.
  • a laminate having an amorphous carbon film having a film thickness of 1 ⁇ was formed on the surfaces of these formed plates by plasma ion implantation using acetylene gas as a raw material gas under conditions of an initial pressure of 2 ⁇ 10 2 Pa. Was.
  • a cross-cut (adhesion) test was performed on the laminate, and the results are shown in Table 6.
  • the laminate having the primer layer containing the cyclized rubber and the laminate of the polymer base compounded with the cyclized rubber are superior in the adhesion of the amorphous carbon film (Example 10). ⁇ 16). Moreover, even when the thickness of the amorphous carbon film is increased, the adhesion of the amorphous carbon film is excellent (Examples 11 to 16).
  • Industrial applicability The laminate of the present invention is applied to various uses such as various containers and packaging materials as a plastic molded product having been subjected to surface treatment such as decorativeness, gas barrier properties, light blocking properties, transparency, chemical resistance, and corrosion resistance. it can.

Abstract

本発明は、非極性のポリマーからなるポリマー基材であっても、該基材と化学的気相成長法や真空蒸着法等の乾式成膜法により積層された薄膜との密着性に優れる積層体およびその製造方法を提供することを目的とするものである。 上記目的を達成するために、本発明は、ポリマー基材と、前記ポリマー基材の表面に形成された、共役ジエン重合体環化物またはその誘導体である環化ゴムを含有するプライマー層と、前記プライマー層表面に乾式成膜法により積層された薄膜と、を有する積層体およびその製造方法を提供する。 また本発明は、ポリマー成形材料に共役ジエン重合体環化物またはその誘導体である環化ゴムが配合されたポリマー基材と、前記ポリマー基材の表面に乾式成膜法により積層された薄膜と、を有する積層体およびその製造方法を提供する。

Description

積層体およびその製造方法 技術分野
本発明は、 積層体およびその製造方法に関し、 さらに詳しくは、 非極性のポリ マーからなるポリマー基材であつても、 該基材と化学的気相成長法や真空蒸着法 等の乾式成膜法により積層された薄膜との密着性に優れる積層体およびその製造 明
方法に関するものである。 書
背景技術
従来、プラスチック成形品に金属を蒸着させた金属蒸着製品は、優れた装飾性、 ガスバリア性および光遮断性を有することから、 広く食品容器等に用いられ、 ま た、 プラスチックフィルムに酸化珪素膜を蒸着した積層フィルムは、 透明性を有 し、 かつ、 ガスバリア性の高い包装材等に用いられている。
しかしながら、 ポリプロピレン樹脂ゃポリエチレン樹脂等の非極性のポリヤー を原料とした場合、 蒸着された薄膜の密着性に劣り、 剥離しやすいといった問題 があった。
このような問題点を解決するために、 プラスチック成形品もしくはプラスチッ クフィルム表面を、 コロナ放電、 火炎放射、 放射線照射等により物理的に粗面処 理を施し、 これによるアンカー効果を用いて蒸着された薄膜との密着性を向上さ せる方法が知られている。 さらに粗面処理を施した表面に、 ポリエステル樹脂や ポリアミ ド樹脂などの極性を有する重合体を塗布した後、 蒸着する方法も知られ ている。 しかしながら、 このような方法を用いても、 蒸着された薄膜の密着性は 不十分であった。
また、 プラスチック材料に添加剤を配合することにより蒸着膜との密着性を向 上させる方法も提案されている。 例えば、 無水マレイン酸をグラフト重合させた 無水マレイン酸変性ポリプロピレンをポリプロピレンに配合する方法 (特開昭 5 0 - 6 1 4 6 9号公報) や、 酸化マグネシゥムおよぴ珪酸マグネシゥムを結晶性 のプロピレン一 a—ォレフィン共重合体に配合する方法 (特開平 8— 1 0 4 9 7 7号公報) が挙げられる。
し力 しながら、これらの方法では添加剤を均一に分散させることが困難であり、 プラスチック材料と蒸着膜との密着性にムラが生じ易く、 かつ、 蒸着された薄膜 の密着性は満足いくものではなかった。
一方、 近年、 上記のような薄膜の一種として非晶質炭素膜が注目されている。 非晶質炭素膜は、 X線回析ではつきりとした結晶構造を示さないアモルファス状 の炭素膜、 あるいは該炭素膜中に存在する炭素の未結合手に水素を結合させた水 素化炭素膜であり、 a— C : H膜、 i一 C膜、 ダイヤモンドライクカーボン (D L C ) 膜とも呼ばれている。
非晶質炭素膜は、 高硬度 (H v 3 0 0 0以上) である、 耐摩耗性に優れる、 表 面平滑性に優れる、 摩擦係数が小さい、 離型性に優れる、 耐薬品性 '耐食性に優 れる、 酸素 ·水蒸気等のガスバリア性に優れる、 近赤外線の透過率に優れる、 絶 縁性に優れる等、 物性的にはダイヤモンドに近い特性を有し、 その成膜条件がダ ィャモンド薄膜に比べ簡単なことから、 種々の基材の表面処理膜としての期待が 高まっている。
従来、 非晶質炭素膜の成膜方法としては、 例えば、 炭素原子を含有する原料を 真空下、 高熱でガス化して基材表面に非晶質炭素膜を形成する方法が知られてい る。 しかしながら、 この方法では、 基材に高熱がかかるので、 基材としては金属 やセラミック等の耐熱性の高いものに限定される問題があった。
近年、 非晶質炭素膜形成のドライプロセス技術が進歩し、 低温での膜形成が可 能となり、 ポリマー基材の表面処理への応用が進んでいる。
例えば、 特開平 1 1— 5 8 5 8 7号公報には、 ポリエチレンテレフタレート製 フィルムに膜厚が 0 . 1 μ mの非晶質炭素膜を形成したガスバリァ性の積層フィ ルムが、 特開 2 0 0 1— 4 9 4 3 3号公報には、 ポリカーボネートゃポリメチル メタクリレートなどの極性の重合体表面に、 膜厚が 2〜 3 mの高硬度で透明な 非晶質炭素膜を形成した積層体が開示されている。 しかしながら、 上記のような 重合体と非晶質炭素膜との密着性は比較的良好であるものの、 ポリマー基材とし て、 ポリプロピレンなどの非極性の重合体を用いると、 該ポリマー基材と非晶質 炭素膜との密着性に乏しく、 剥がれやすい問題がある。
例えば、 特開 2000— 1 17881号公報には、 ポリプロピレン製容器の内 表面に膜厚が 0.025 / mの非晶質炭素膜を形成したガスパリア性の積層体力 また、 特開 2001— 310412号公報には、 ポリエチレンフィルムやポリプ ロピレンフィルムに膜厚が 0. 04 μ mの非晶質炭素膜を形成したガスバリァ性 の積層フィルムが開示されている。 これらの積層体は、 ポリマー基材と非晶質炭 素膜との密着性に劣る上に、形成する非晶質炭素膜の膜厚を厚くしょうとすると、 非晶質炭素膜の内部応力が増大し、 より剥がれ易くなる問題がある。
発明の開示
本発明は、 上記事情に鑑みてなされたものであり、 非極性のポリマーからなる ポリマー基材であっても、 該基材と化学的気相成長法や真空蒸着法等の乾式成膜 法により積層された薄膜との密着性に優れる積層体およびその製造方法を提供す ることを目的とする。
本発明者等は、 上記課題を解決すべく鋭意研究を重ねた結果、 ポリマー基材表 面に環化ゴムを含有するプライマー層を設ける力 または、 ポリマー成形材料に 環化ゴムを配合したポリマー基材を用いることにより、 ポリマー基材と乾式成膜 法により積層された薄膜との密着性を著しく改善できることを見いだし、 この知 見に基づいて本発明を完成するに至った。
かくして本発明によれば、 以下の発明 1〜25が提供される。
1. ポリマー基材と、 前記ポリマー基材の表面に形成された、 共役ジェン重合 体環化物またはその誘導体である環化ゴムを含有するプライマー層と、 前記ブラ イマ一層表面に乾式成膜法により積層された薄膜と、 を有する積層体。
2. 環化ゴムの重量平均分子量が 1, 000〜1, 000, 000である前記 の積層体。
3. 環化ゴムの環化率が 10 %以上である前記の積層体。
4. 環化ゴムのゲル量が 10重量%以下である前記の積層体。
5.プライマー層中の環化ゴムの含有量が 10重量%以上である前記の積層体。
6. 共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性反応 で共役ジェン重合体環化物に極性基が導入されたものである前記の積層体。
7. 極性基が酸無水物基、 カルボキシル基、 水酸基、 エステル基、 エポキシ基 およびアミノ基からなる群より選ばれた少なくともひとつの基である前記の積層 体。
8. 導入された極性基の比率が、 環化ゴム 100 g当たり、 0. 1〜200ミ リモルである前記の積層体。
9. プライマー層の膜厚が 0. 1〜200 μπιである前記の積層体。
10.ポリマー基材を構成するポリマーが炭化水素系榭脂である前記の積層体。 1 1. 薄膜の膜厚が 1 nm〜 100 mである前記の積層体。
12. 薄膜が非晶質炭素膜である前記の積層体。
13. ポリマー基材の表面に、 共役ジェン重合体環化物またはその誘導体であ る環化ゴムを含有するプライマーを塗布して、 前記ポリマー基材の表面にブラィ マー層を形成した後、 前記プライマー層表面に乾式成膜法により薄膜を積層する ことを特徴とする積層体の製造方法。
14. ポリマー成形材料に共役ジェン重合体環化物またはその誘導体である環 化ゴムが配合されたポリマー基材と、 前記ポリマー基材の表面に乾式成膜法によ り積層された薄膜と、 を有する積層体。
15. 環化ゴムの重量平均分子量が 1, 000〜1, 000, 000である前 記の積層体。
16. 環化ゴムの環化率が 10%以上である前記の積層体。
1 7. 環化ゴムのゲル量が 10重量%以下である前記の積層体。
18. 共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性反 応で共役ジェン重合体環化物に極性基が導入されたものである前記の積層体。
1 9. 極性基が酸無水物基、 カルボキシル基、 水酸基、 エステル基、 エポキシ 基およびアミノ基からなる群より選ばれた少なくともひとつの基である前記の積 層体。
20. 導入された極性基の比率が、 環化ゴム 100 g当たり、 0. 1〜200 ミリモルである前記の積層体。
21. 環化ゴムの配合量が、 ポリマー成形材料 100重量部に対して、 0. 1 04 000403
5
〜5 0重量部である前記の積層体。
2 2 . ポリマー成形材料を構成するポリマーが炭化水素系樹脂である前記の積 層体。 ..
2 3 . 薄膜の膜厚が 1 n m〜 1 0 0 μ mである前記の積層体。
2 4 . 薄膜が、 非晶質炭素膜である前記の積層体。
2 5 . ポリマー成形材料に共役ジェン重合体環化物またはその誘導体である環 化ゴムが配合されたポリマー基材の表面に、 乾式成膜法により薄膜を積層するこ とを特徴とする積層体の製造方法。
本発明によれば、 非極性のポリマーからなるポリマー基材であつても、 該基材 と化学的気相成長法や真空蒸着法等の乾式成膜法により積層された薄膜との密着 性に優れる積層体およびその製造方法が提供される。 特に、 薄膜として非晶質炭 素膜を用いた場合に、非晶質膜の膜厚を厚くしても、密着性が著しく改善される。 発明を実施するための最良の形態
以下、 本発明の積層体およびその製造方法について、 第 1の態様と第 2の態様 に分けて、 それぞれ説明する。
A. 第 1の態様
第 1の態様の積層体は、 ポリマー基材と、 前記ポリマー基材の表面に形成され た、 共役ジェン重合体環化物またはその誘導体である環化ゴムを含有するプライ マー層と、 前記プライマー層表面に乾式成膜法により積層された薄膜と、 を有す ることを特徴とする。
本態様におけるプライマー層は、 共役ジェン重合体環化物またはその誘導体で ある環化ゴムを含有する。 プライマ一層中の環化ゴム含有量は、 好ましくは 1 0 重量%以上、 より好ましくは 3 0重量%以上、 特に好ましくは 5 0重量%以上で ある。 この含有量が低すぎると、 密着性の改善効果が劣る傾向にある。
本態様で用いる環化ゴムの環化率は、 通常、 1 0 %以上、 好ましくは 4 0〜9 5 %、 より好ましくは 6 0 ~ 9 0 %である。 環化率をこの範囲にすると、 薄膜の 密着性を改善する特性が良好になる。
ここで、 環化率とは、 プロ トン NMR分析により共役ジェン重合体の環化反応 0403
6 前後における二重結合由来のプロトンのピーク面積をそれぞれ測定し、 環化反応 前を 100とした時の環化物中に残存する二重結合の割合を求め、 計算式 = ( 1 00—環化物中に残存する二重結合の割合) により表される値である。
環化ゴムの重量平均分子量 (Mw) は、 ゲル ·パーミエーシヨン 'クロマトグ ラフ (G PC) 法 (標準ポリスチレン換算値) での測定値で、 通常、 1, 000 〜1, 000, 000、 好ましくは 10, 000〜 500, 000、 より好まし くは 30, 000〜300, 000の範囲である。 環化ゴムの Mwが過度に小さ いと、 薄膜の密着性が低下する傾向にあり、 逆に過度に大きいと均一な膜厚のプ ライマー層を形成しにくくなる傾向にある。
環化ゴムのガラス転移温度 (Tg) は、 特に限定されるものではなく、 用途に 応じて適宜選択できるが、 通常、 一50〜200°C、 好ましくは 0〜 100°C、 より好ましくは 20〜90°C、 特に好ましくは 30〜 70°Cの範囲である。 環化 ゴムの Tg力、これらの範囲を超える場合は取极レ、性に問題が生じる場合がある。 環化ゴムの環化度 (n) 、 すなわち環のつながりは、 通常、 n = l〜3の範囲 である。 環化ゴムのゲル量は、 通常、 10重量%以下、 好ましくは 5重量%以下 であるが、 実質的にゲルを有しない環化ゴムであることが特に好ましい。 ゲル量 が多いと、 後述するプライマー層形成に際しての塗布工程に問題が生じる可能性 力 sある。
共役ジェン重合体環化物は、 共役ジェン単量体、 または共役ジェン単量体及び 共役ジェン単量体と共重合可能な他の単量体を (共) 重合させた共役ジェン重合 体を、 酸触媒の存在下に環化させて得られるものである。
共役ジェン単量体としては、 例えば、 1, 3—ブタジエン、 イソプレン、 2,
3—ジメチルー 1, 3—ブタジエン、 2—フエニノレー 1, 3—ブタジエン、 1, 3 _ペンタジェン、 2—メチノレー 1, 3—ペンタジェン、 1, 3 _へキサジェン、 4, 5—ジェチルー 1 , 3—ォクタジェン、 3ーブチルー 1 , 3—ォクタジェン などが挙げられる。 これらの単量体は、 単独でも 2種類以上を組み合わせて用い てもよい。
共役ジェン単量体と共重合可能な他の単量体としては、 例えば、 スチレン、 o ーメチルスチレン、 p—メチルスチレン、 m—メチノレスチレン、 2, 4一ジメチ ノレスチレン、 ェチノレスチレン、 p— t e r t—プチノレスチレン、 α—メチノレスチ レン、 α—メチゾレ一 ρ—メチノレスチレン、 ο—クロノレスチレン、 m—クロノレスチ レン、 p—クロノレスチレン、 p—ブロモスチレン、 2ーメチルー- 1 , 4—ジクロ ルスチレン、 2, 4 _ジブ口モスチレン、 ビエルナフタレンなどの芳香族ビュル 単量体;ェチレン、 プロピレン、 1—ブテンなどの鎖状ォレフィン単量体;シク 口ペンテン、 2 _ノルボルネンなどの環状ォレフィン単量体; 1 , 5 —へキサジ ェン、 1, 6—へブタジエン、 1 , 7—ォクタジェン、 ジシクロペンタジェン、 5ーェチリデンー 2—ノルボルネンなどの非共役ジェン単鼉体;メチル (メタ) アタリレート、 ェチル (メタ) クリレートなどの (メタ) ァクリル酸エステル; (メタ) アクリロニトリル、 (メタ) アクリルアミドなどが挙げられる。 これら の単量体は、 単独でも 2種類以上を組み合わせて用いてもよい。
共役ジェン重合体における共役ジェン単量体単位の含有量は、 本態様の効果を 損なわない範囲で適宜選択される力 通常、 4 0モル%以上、 好ましくは 6 0モ ル%以上、 さらに好ましくは 8 0モル%以上である。 この含有量が少ないと、 環 化率を上げることが困難になり、 所期の物性改善効果が得にくい傾向にある。 共役ジェン重合体の重合方法は常法に従えばよく、 例えば、 チタンなどを触媒 成分として含むチーグラー系重合触媒、 アルキルリチウム重合触媒、 またはラジ カル重合触媒などの従来公知の触媒を用いて、 溶液重合または乳化重合により行 われる。
かかる共役ジェン重合体の具体例としては、 天然ゴム (N R) 、 スチレン一ブ タジェンゴム (S B R ) 、 ポリイソプレンゴム (I R) 、 ポリブタジエンゴム (B R) 、 イソプレン一イソブチレン共重合ゴム ( I I R) 、 エチレン一プロピレン 一ジェン系共重合ゴム、 ブタジエン一イソプレン共重合ゴム (B I R) 等を挙げ ることができる。 なかでも、 ポリイソプレンゴム ( I R) およびポリブタジエン ゴム ( B R) が好ましい。
共役ジェン重合体の環化は、 通常、 共役ジェン重合体を炭化水素系溶媒中に溶 解し、 酸触媒の存在下で反応させることにより行われる。
酸触媒は、 環化反応に通常用いられるものであればよく、 例えば、 硫酸;フル ォロメタンスルホン酸、ジフルォロメタンスルホン酸、 p—トルエンスルホン酸、 00403
8 キシレンスノレホン酸、 炭素数 2〜1 6のアルキル基を有するアルキルベンゼンス ルホン酸などの有機スルホン酸おょぴこれらの無水物またはアルキルエステルな どの有機スルホン酸化合物;三フッ化ホウ素、 三塩化ホウ素、 四塩化スズ、 四塩 化チタン、 塩化アルミニウム、 ジェチルアルミニウムモノクロリ ド、 ェチルアン モニゥムクロリ ド、臭化アルミニウム、五塩化アンチモン、六塩ィ匕タングステン、 塩化鉄などの金属ハロゲン化物類;などが挙げられる。 これらの酸触媒は、 単独 でも、 2種以上を組み合わせて用いてもよい。 なかでも、 有機スルホン酸化合物 が好ましく、 p—トルエンスルホン酸がより好ましい。
酸触媒の使用量は、 共役ジェン重合体 1 0 0重量部当たり、 通常、 0 · 0 5〜 1 0重量部、 好ましくは 0 . 1〜5重量部、 より好ましくは◦. 3〜 2重量部で ある。
反応に用いる炭化水素系溶媒としては、 環化反応を阻害しないものであれば特 に限定されないが、 例えば、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼンな どの芳香族炭化水素; n—ペンタン、 n—へキサン、 n—ヘプタン、 n—ォクタ ンなどの脂肪族炭化水素;シク口ペンタン、 シク口へキサンなどの脂環族炭化水 素;などが挙げられる。 なかでも、 沸点が 7 0 °C以上のものが好ましい。 また、 共役ジェン重合体の重合反応に用いられる溶媒をそのまま用いることもでき、 こ の場合は、 重合が終了した重合反応液に酸触媒が加えられる。
溶媒の使用量は、共役ジェン系重合体の固形分濃度が、通常、 5〜6 0重量%、 好ましくは 2 0〜4 0重量%となる範囲である。
環化反応は、加圧、減圧または大気圧レ、ずれの圧力下でも行うことができるが、 操作の簡便性の点から大気圧下で行うことが望ましく、 なかでも乾燥気流下、 と くに乾燥窒素や乾燥アルゴンの雰囲気下で行うと水分由来の副反応を抑えること ができる。
また、 反応温度や反応時間は常法に従えばよく、 反応温度は、 通常、 5 0〜1 5◦ °C、 好ましくは 8 0〜: I 1 0 °Cであり、 反応時間は、 通常、 0 . 5〜: I 0時 間、 好ましくは 2〜 5時間である。
以上のようにして得られた共役ジェン重合体環化物は、 通常、 常法により、 環 化触媒を不活性化した後、 環化触媒残渣を除去し、 不活性溶媒を除去して、 固形 P T/JP2004/000403
9 物として取得する。
前記共役ジェン重合体環化物の誘導体としては、 極性基含有化合物を用いる変 性反応で前記共役ジェン重合体環化物に極性基を導入したものが使用できる。 変性反応に使用する極性基含有化合物は、 共役ジェン重合体環化物に極性基を 導入することができる化合物であれば特に限定されるものではなく、 例えば、 酸 無水物基、 カルボキシル基、 水酸基、 チオール基、 エステル基、 エポキシ基、 ァ ミノ基、 アミ ド基、 シァノ基、 シリル基、 ハロゲンなどの極性基を有するェチレ ン性不飽和化合物が挙げられる。
極性基としては、 薄膜の密着性の改良効果に優れる点で、 酸無水物基、 カルボ キシル基、水酸基、エステル基、エポキシ基、 ァミノ基が好ましく、酸無水物基、 カルボキシル基、 水酸基がより好ましい。
酸無水物基またはカルボキシル基を有する化合物としては、 例えば、 無水マレ ィン酸、無水ィタコン酸、無水ァコニット酸、ノルポルネンジカルボン酸無水物、 アタリル酸、 メタクリル酸、 マレイン酸などのエチレン性不飽和化合物が挙げら れる。 なかでも、 無水マレイン酸が反応性、 経済性の点で賞用される。
水酸基を含有する化合物としては、 例えば、 (メタ) アクリル酸 2—ヒ ドロキ シェチル、 (メタ) アタリル酸 2—ヒ ドロキシプロピルなどの不飽和酸のヒドロ キシアルキルエステル類; N—メチロール (メタ) アクリルアミ ド、 N— ( 2 - ヒ ドロキシェチル) (メタ) ァクリルアミ ドなどのヒ ドロキシル基を有する不飽 和酸アミ ド類;ポリエチレングリコールモノ (メタ) アタリレート、 ポリプロピ レングリコールモノ (メタ) アタリレート、 ポリ (エチレングリコーノレ一プロピ レングリコール) モノ (メタ) クリレートなどの不飽和酸のポリアルキレングリ コールモノエステル類; グリセロールモノ (メタ) ァクリ レートなどの不飽和酸 の多価アルコールモノエステル類;などが挙げられる。 これらの中でも、 不飽和 酸のヒ ドロキシアルキルエステル類が好ましく、 特にアクリル酸 2—ヒ ドロキシ ェチノレ、 メタクリル酸 2—ヒ ドロキシェチノレが好ましい。
その他の極性基を含有するエチレン性不飽和化合物としては、 例えば、 メチル (メタ) アタリレート、 ェチル (メタ) アタリレート、 ブチル (メタ) アタリレ 一卜、 グリシジル (メタ) アタリレート、 ジメチルアミノエチル (メタ)アタリレ 一ト、 ジメチルァミノプロピル(メタ) ァクリレート、 (メタ) ァクリルアミ ド、
(メタ) アクリロニトリルなどが挙げられる。
極性基含有化合物を共役ジェン重合体環化物に導入する方法は特に限定されな いが、 エチレン性不飽和化合物を付加する場合には、 一般にェン付加反応または グラフト重合反応と呼ばれる公知の反応に従えばよい。
この付加反応は、 共役ジェン重合体環化物と極性基含有化合物とを、 必要に応 じてラジカル発生剤の存在下に反応させることによつて行われる。 ラジカル発生 剤としては、 例えば、 ジー t e r t一ブチルパーォキシド、 ジクミルパーォキシ ド、 ベンゾィルパーォキシド, t e r t—ブチルパーォキシドベンゾエート, メ チルェチルケトンパーォキシドなどのパーォキシド類;ァゾビスィソブチロニト リル、 ジメチル 2, 2 ' ーァゾビス ( 2—メチルプ口ピオネート ) などのァゾニ トリル類;などが挙げられる。
付加反応は、 固相状態で行なっても、 溶液状態で行なってもよいが、 反応制御 がし易い点で、 溶液状態で行なうことが好ましい。 使用される溶媒としては、 例 えば、 前述したような環化反応における炭化水素系溶媒と同様のものが拳げられ る。
極性基含有化合物の使用量は、適宜選択されるが、導入された極性基の比率が、 変性後の環化ゴム 1 0 0 gあたり、 通常、 0 . 1〜 2 0 0ミリモル、 好ましくは ;!〜 1 0 0ミリモル、より好ましくは 5〜 5 0ミリモルとなるような範囲である。 極性基を導入する反応は、 加圧、 減圧または大気圧いずれの圧力下でも行うこ とができるが、 操作の簡便性の点から大気圧下で行うことが望ましく、 なかでも 乾燥気流下、 特に乾燥窒素や乾燥アルゴンの雰囲気下で行うと水分由来の副反応 が抑えることができる。
また反応温度や反応時間は常法に従えばよく、 反応温度は、 通常、 3 0〜 2 5 0 °C、 好ましくは 6 0〜 2 0 0 °Cであり、 反応時間は、 通常、 0 . 5〜 5時間、 好ましくは 1〜 3時間である。
環化ゴムは、 さらに必要に応じて、充填剤、帯電防止剤、老化防止剤、潤滑剤、 架橋剤、 ブロッキング防止剤、 着色剤、 光線遮断剤、 紫外線吸収剤などの添加剤 を含有してもよい。 T JP2麵麵
11 プライマー層は、 上記の環化ゴムを必須成分として含有するが、 ポリマー基材 の種類や薄膜の種類に応じて、 アクリル樹脂、 ウレタン樹脂、 エポキシ樹脂、 メ ラミン樹脂、 アルキッド樹脂、 塩素化ォレフイン樹脂、 シリコーンゴム、 ァクリ ルゴムなどの他のポリマー成分;顔料、 染料、 充填剤、 老化防止剤、 紫外線吸収 剤、 消泡剤、 増粘剤、 分散剤、 界面活性剤などの添加剤;などを含有していても よい。
本態様におけるプライマー層の膜厚は、 特に限定されないが、 通常、 0 . 1〜 2 0 0 m、 好ましくは 0 . 5〜1 0 0 ^ 111、 より好ましくは 1〜: ί 0 0 μ πι、 特に好ましくは 1〜5 0 μ ΐα^ 最も好ましくは 5〜5 0 i mの範囲内である。 本態様におけるポリマー基材を構成するポリマーとしては、 例えば、 熱可塑性 樹脂、 硬化' !■生樹脂、 エラストマ一などが挙げられる。
熱可塑性樹脂としては、 例えば、 炭化水素系樹脂、 ポリエステル系樹脂、 ポリ アミ ド系樹脂、 ポリイミ ド系樹脂、 ポリエーテルイミ ド系樹脂、 ポリサルホン系 樹脂、 ポリエーテルサルホン系樹脂、 ポリエーテルエーテルケトン系樹脂、 ポリ カーボネート樹脂、 ポリビュルプチラート樹脂、 ポリアリレート榭脂などを挙げ ることができる。
硬化性樹脂としては、 例えば、 アクリル榭脂、 フエノール樹脂、 クレゾール樹 脂、 尿素樹脂、 メラミン樹脂、 アルキッド樹脂、 フラン樹脂、 不飽和ポリエステ ル樹脂、 エポキシ樹脂、 ウレタン樹脂などが挙げられる。
硬化様式としては、 例えば、 紫外線や電子線などの活性照射線を照射すること により硬化するもの、 触媒の存在下、 熱を加えることにより単量体を重合させて 硬化させるもの、 2液を混合した後、加熱して硬化させるものなどが挙げられる。 エラストマ一としては、 例えば、 天然ゴム、 ポリブタジエンゴム、 スチレン一 ブタジエンゴム、 アタリロニトリル一ブタジエンゴムなどの加硫ゴム、 ォレブイ ン系熱可塑性エラストマ一、 スチレン系熱可塑性エラストマ一、 ポリエステノレ系 熱可塑性エラストマ一、 ポリアミ ド系熱可塑性エラス 1、マーなどが挙げられる。 前記のポリマーの中でも、 非極性のポリマーからなるポリマー基材において、 薄膜の密着性が著しく改善される。 このような非極性のポリマーとしては、 炭化 水素系樹脂が挙げられ、 なかでも鎖状ォレフィン系樹脂おょぴ環状ォレフィン系 樹脂であることが好ましい。
鎖状ォレフィン系樹脂としては、 具体的には、 エチレン、 プロピレン、 ブテン などの炭素数 2〜 4を有する a—ォレフィンの単独重合体または共重合体を挙げ ることができる。 なかでも、 汎用性のある点から、 ポリエチレンおよびポリプロ ピレン樹脂が好ましく、 ポリプロピレン樹脂がより好ましい。
ポリプロピレン樹脂としては、 プロピレンを主成分とする単量体を重合して得 られる重合体または共重合体であれば、 特に限定されるものではなく、 例えば、 プロピレンの単独重合体、 プロピレン一エチレンランダム共重合体、 プロピレン 一 α—ォレフィンランダム共重合体、 プロピレン一エチレン一 αーォレフイン三 元共重合体などが挙げられる。
環状ォレフィン系樹脂としては、 特開平 7— 2 3 1 9 2 8号公報に記載のノル ポルネン系榭脂等を挙げることができる。 このようなノルボルネン系榭月旨は、 少 なくともノルボルネン系単量体を含むものを重合したものであり、 例えば、 (i) ノルボルネン系単量体の開環 (共) 重合体、 及び必要に応じてマレイン酸付加、 シクロペンタジェン付加のごときポリマー変性を行なつたもの、 (i i)前記の(i) を水素添加した樹脂、(i ii)ノルボルネン系単量体を付加型重合させた榭脂、(iv) ノルボルネン系単量体とエチレンや α—ォレフィンなどのォレフィン系単量体と 付加型共重合させた樹脂などが挙げることができる。 重合方法および水素添加方 法は、 常法により行なうことができる。
ノルボルネン系単量体としては、 例えば、 ノルボルネン、 およびそのアルキル および Ζまたはアルキリデン置換体、 例えば、 5—メチルー 2一ノルボルネン、 5 -ジメチルー 2—ノルボルネン、 5—ェチル一 2—ノルボルネン、 5一プチノレ 一 2—ノル'ボルネン、 5—ェチリデン一 2—ノルボルネン等、 およびこれらのハ 口ゲン等の極性基置換体; ジシクロペンタジェン、 2 , 3—ジヒドロジシク口ぺ ンタジェン等;ジメタノォクタヒ ドロナフタレン、 そのァルキルおよぴ /または アルキリデン置換体、 およびハロゲン等の極性基置換体、 例えば、 6—メチルー 1 , 4 : 5 , 8—ジメタノ一 1 , 4, 4 a , 5 , 6 , 7 , 8 , 8 a—ォクタヒ ド ロナフタレン、 6ーェチルー 1 , 4 : 5 , 8—ジメタノ一 1 , 4, 4 a , 5, 6 , 7 , 8 , 8 aーォクタヒ ドロナフタレン、 6—ェチリデンー 1 , 4 : 5 , 8—ジ メタノー 1, 4, 4 a , 5, 6, 7, 8, 8 a—ォクタヒドロナフタレン、 6— クロロー 1, 4 : 5, 8—ジメタノ一 1, 4, 4 a , 5, 6, 7, 8, 8 a—ォ クタヒドロナフタレン、 6—シァノー 1, 4 : 5, 8—ジメタノ一 1, 4, 4 a , 5, 6, 7, 8, 8 a—ォクタヒ ドロナフタレン、 6—ピリジノレー 1, 4 : 5, 8—ジメタノー 1, 4, 4 a , 5, 6, 7, 8, 8 a—ォクタヒドロナフタレン、 6—メ トキシカノレポ二ルー 1, 4 : 5, 8—ジメタノ一 1, 4, 4 a , 5, 6, 7, 8, 8 a—ォクタヒ ドロナフタレン等;シクロペンタジェンとテトラヒ ドロ ィンデン等との付加物;シクロペンタジェンの 3〜 4量体、例えば、 4, 9 : 5, 8—ジメタノ一 3 a , 4, 4 a , 5, 8, 8 a , 9, 9 a—ォクタヒ ドロー 1H —ベンゾィンデン、 4, 1 1 : 5, 10 : 6, 9一トリメタノー 3 a, 4, 4 a, 5, 5 a, 6, 9, 9 a, 10, 10 a, 1 1, 1 1 a-ドデカヒ ドロー 1 H— シク口ペンタアントラセン;等が挙げられる。
本態様に用いることができるノルボルネン系榭脂は、 トルエンまたはシクロへ キサン溶媒によるゲル ·パーミエーシヨン ·クロマトグラフ (GPC) 法で測定 した重量平均分子量が、 通常、 1, 000〜1, 000, 000、 好ましくは 1 0, 000〜 500, 000、 より好ましくは 20, 000〜 100, 000の 範囲のものが好適に用いられる。 重量平均分子量が過度に小さいと、 ポリマー基 材の物理的強度が劣り、 逆に過度に大きいと成形し難くなる場合がある。
ノルボルネン系榭脂がノルポルネン系単量体の開環重合体を水素添加して得ら れるものである場合、 その水素添加率は、 耐熱劣化性、 耐光劣化性などの観点か ら、 好ましくは 90 %以上、 より好ましくは 95 %以上、 特に好ましくは 99 % 以上である。
上記のポリマーは、 それぞれ単独で、 または 2種以上を混合して用いることが できる。
ポリマー基材は、上記のポリマー以外に、必要に応じて、充填剤、帯電防止剤、 老化防止剤、 潤滑剤、 架橋剤、 ブロッキング防止剤、 着色剤、 光線遮断剤、 紫外 線吸収剤などの添加剤を含有してもよい。
ポリマー基材の形状としては、 特に限定されないが、 球状、 棒状、 円柱状、 板 状、 シート状、 フィルム状など、 最終製品に応じた種々の形状が挙げられる。 ポリマー基材は、 通常、 従来公知の成形方法によって成形されて用いられる。 成形方法としては、 例えば、 押出成形法、 キャスト成形法、 カレンダー成形法、 真空成形法、 射出成形法、 インフレーション成形法、 ブロー成形法などが挙げら れる。
ポリマー基材の成形品としては、 例えば、 フィルム成形品、 射出成形品、 押出 成形品、 真空成形品、 ブロー成形品などが挙げられる。 なかでも、 フィルム成形 品および射出成形品が好ましく使用できる。
フィルム成形品としては、 例えば、 押出成形法やキャスト成形法で成形された 未延伸フィルムであっても、 さらに、 この未延伸フィルムを、 一軸延伸、 テンタ 一式逐次二軸延伸、 テンター式同時二軸延伸、 チューブラー式同時二軸延伸など の延伸方法により製造した延伸フィルムであってもよい。 なかでも、 延伸フィル ムが好ましく使用できる。
フィルムの厚みは、 用途に応じて適宜選択されるが、 通常、 1〜1 , 0 0 ◦ m、 好ましくは 5〜5 0 0 i m、 より好ましくは 1 0〜2 0 0 mである。 フィルムの幅や長さは、 特に制限なく、 用途に応じて適宜選択することができ る。
本態様における薄膜は、 プライマー層の表面に乾式成膜法により積層されるも のである。
本態様において、 乾式成膜法とは、 通常、 金属、 金属酸化物、 有機物などをガ ス化して基材表面に成膜する方法をいう。 この方法は、 物理的成膜法と化学的成 膜法とに分類される。
物理的成膜法としては、 例えば、 真空蒸着法、 スパッタリング法、 イオンプレ 一ティング法、 イオン注入法、 イオンビームスパッタリング法、 プラズマイオン 注入法などが挙げられる。
化学的成膜法としては、 例えば、 熱 C V D法、 光 C V D法、 プラズマ C V D法 (マイクロ波 C V D法、 高周波 C VD法等) などの化学的気相成長法 (C V D) が挙げられる。
薄膜の材質としては、例えば、アルミエゥム、亜鉛、ニッケル、ジルコニウム、 金、 銅、 錫、 インジウム、 チタニウム、 クロムなどの金属;酸化ケィ素、 酸化ァ ルミ二ゥム、 酸化マグネシウム、 酸化ジルコニウムなどの金属酸化物; S i N、 C r N、 T i N、 T i A 1 Nなどの金属窒化物; C xHy (非晶質炭素膜を含む) を代表的な組成とするものなどが挙げられる。 これらの材質の中でも、 非晶質炭 素膜において、 薄膜の密着性が著しく改善される。 .
ここで、 非晶質炭素膜について説明する。 非晶質炭素膜は、 X線回折ではっき りとした結晶構造を示さないアモルファス状の炭素膜または炭素膜中に存在する 炭素の未結合手に水素を結合させた水素化炭素膜である。
非晶質炭素膜の形成は、 常法に従えばよく、 例えば、 特開平 5— 221691 号公報、 特開平 1 1一 701 52号公報、 特開平 1 1一 92935号公報、 特開 平 1 1一 102518号公報、 特開平 1 1一 246975号公報、 特開 2000 - 11 7881号公報、 特開 2000— 2721 56号公報、 特開 2001— 1 80700号公報、 特開 2001— 232714号公報、 特開 2001— 240 1 15号公報、 特開 2001— 31041 2号公報、 特開 2001— 31 648 9号公報などに開示される方法を用いることができる。
具体的な形成方法としては、 例えば、 イオンプレーティング法、 スパッタリン グ法、 イオンビ一ムスパッタリング法、 プラズマィォン注入法などの物理的成膜 法やプラズマ CD V法、 マイクロ波 CVD法、 高周波 CVD法などの化学的成膜 法が挙げられる。 これらの方法は、 膜形成装置内でプラズマを発生させ原料ガス をイオン化または励起させる方法であり、 原料ガスを、 例えば直流電圧を印加し てプラズマ分解する方法、 高周波を印加してプラズマ分解する方法、 マイクロ波 放電によってプラズマ分解する方法、 電子サイクロトロン共鳴による加熱によつ て熱分解する方法等が挙げられる。 これらの中でも、 成膜速度を大きく且つ成膜 温度を低くしたい場合はマイク口波プラズマ法や電子サイクロ トロン共鳴法が好 ましく、 大面積の基材表面を成膜する場合は高周波プラズマ法が好ましい。
非晶質炭素膜の原料ガスとしては、 通常、 炭素原子と水素原子とを含有するガ スが用いられ、 例えば、 メタン、 ェタン、 プロパン、 ブタン、 ペンタン、 へキサ ン等のアルカン系ガス ;エチレン、 プロピレン、 ブテン、 ペンテン等のアルケン 系ガス ;ペンタジェン、 ブタジエン等のア^^カジエン系ガス ; アセチレン、 メチ ノレアセチレン等のアルキン系ガス ;ベンゼン、 トルエン、 キシレン、 インデン、 ナフタレン、 フエナントレン等の芳香族炭化水素系ガス ;シクロプロパン、 シク 口ペンタン、 シクロへキサン等のシクロアルカン系ガス ;メタノール、 エタノー ル等のアルコール系ガス;ァセトン、 メチルェチルケトン等のケトン系ガス;メ タナール、 ェタナール等のアルデヒド系ガス等が挙げられる。 これらの原料ガス は、 単独で、 あるいは 2種以上を組み合わせて用いることができる。
他の原料ガスとしては、 上記の炭素原子と水素原子とを含有するガスと希ガス の混合ガス;一酸化炭素ガス、 二酸化炭素ガスなど炭素原子と酸素原子のみから 構成されるガスと上記ガスの混合ガス;一酸化炭素ガス、 二酸化炭素ガスなど炭 素原子と酸素原子のみから構成されるガスと水素ガスとの混合ガス;一酸化炭素 ガス、 二酸化炭素ガスなど炭素原子と酸素原子のみから構成されるガスと酸素ガ スゃ水蒸気との混合ガスなどが挙げられる。
これらの混合ガス中における水素ガス、 酸素ガス (酸素含有ガス) 、 希ガスの 混合量は、 使用する膜形成装置の種類、 混合ガスの種類や成膜圧力等に応じて適 宜選択する。 それらの条件を選択することにより、 成膜された非晶質炭素膜に含 まれる水素原子濃度および酸素原子濃度を所望の値に調節できる。
また、 イオンビームスパッタリング法により非晶質炭素膜を形成する際に用い られる炭素源としては、黒鉛、ダイヤモンド等の炭素同位体の固体が挙げられる。 これらは水素ガスや希ガス雰囲気下のプラズマ中に設置して使用される。
以上の方法により、 基材表面に形成された非晶質炭素膜は、 ラマン分光法によ つて確認することができる。 また、 非晶質炭素膜中の水素及び酸素原子濃度は S I M S (二次イオン質量分光法) により確認することができる。
薄膜の膜厚は、 特に限定されないが、 通常、 1 n m〜 1 0 0 μ m、 好ましくは 1 O n m〜l 0 πιでめ 。
薄膜が非晶質炭素膜である場合、 その膜厚は、 使用目的に応じて適宜選択され るが、 過度に厚くなりすぎると膜の内部応力により剥離や変形等のおそれがある ため、 通常、 1 0 0 μ πι以下、 好ましくは 5 0 /i m以下、 より好ましくは 1 0 μ m以下、 最も好ましくは 5 / m以下であり、 逆に過度に薄くなると薄膜の機能が 低下するため、 通常、 0 . 0 0 0 1 以上、 好ましくは 0 . O O l ^ m以上、 より好ましくは 0 . 0 1 z m以上、 最も好ましくは 0 . 0 5 μ πι以上である。 薄膜の材質を選択することにより、 例えば、 着色性、 隠蔽性、 滑り性、 ブロッ キング防止性、 帯電防止性、 ガスバリア性、 水蒸気バリア性、 耐水性、 親水性、 耐摩耗性、 防曇性、 易筆記性、 艷消し性などの機能を有する積層体を得ることが できる。
薄膜は、 ポリマー基材表面の全面に形成されていても、 部分的に形成されてい ても、 特定のパターン状に形成されていてもよい。
本態様の積層体は、 前記薄膜の表面に、 さらに、 乾式成膜法により該薄膜とは 異なる材質の薄膜を 1層または複数層形成したものであってもよい。
本態様の積層体の製造方法は、 ポリマー基材の表面に、 共役ジェン重合体環化 物またはその誘導体である環化ゴムを含有するプライマーを塗布して、 前記ポリ マー基材の表面にプライマー層を形成した後、 前記プライマー層表面に乾式成膜 法により薄膜を積層することを特徴とする。
本態様においては、 まず、 ポリマー基材の表面に、 前記の環化ゴムを含有する プライマ一を塗布する。
プライマーは、 通常、 前記の環化ゴム及び必要に応じて配合される添加剤を、 溶媒に溶解もしくは分散したものである。 この際に用いる溶媒としては、 特に限 定されないが、 例えば、 ペンタン、 へキサン、 ヘプタンなどの脂肪族炭化水素系 溶媒;シクロペンタン、 シクロへキサン、 メチルシクロへキサンなどの脂環式炭 化水素系溶媒;ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素系溶媒;メ チルェチルケトン、 メチルイソプチルケトンなどのケトン系溶媒;酢酸ェチル、 酢酸プロピルなどのエステル系溶媒;エタノール、 プロピルアルコール、 ブチル アルコールなどのアルコール系溶媒;ジェチルエーテル、 ジブチルエータルなど のエーテル系溶媒;クロロホルム、 ジクロロェタンなどのハロゲン系溶媒;水な どが挙げられる。 これらの中では、 溶解性および揮発性などの観点から、 脂肪族 炭化水素系溶媒、 脂環式炭化水素系溶媒、 芳香族炭化水素系溶媒、 エステル系溶 媒、 ケトン系溶媒が好ましく使用できる。 - 前記プライマーの固形分濃度は、 特に限定されないが、 通常、 0 . 1〜5 0重 量0 /0、 好ましくは 0 . 5〜 4 0重量0 /0、 より好ましくは 1〜 3 0重量%である。 また、プライマーの粘度は、塗布方法により大幅に異なるものではある力 S、通常、 0 . 0 1〜1 0 0 d P a ' sの範囲内である。
プライマーの塗布方法としては、 特に限定されるものではなく、 従来公知の方 法を用いることができる。
塗布方法としては、例えば、グラビア印刷法、凸版印刷法、オフセット印刷法、 グラビアオフセット印刷法、 スクリーン印刷法、 フレキソ印刷法、 ドライオフセ ット法、 インクジェット印刷法、 静電印刷法等の各種印刷法;スピンコート法、 ロールコート法、 コンマコート法、 グラビアコート法、 マイクログラビアコート 法、フロ一コート法、ナイフコート法、エアーナイフコート法、口ッドコート法、 キスコート法、 リップコート法、 ダイコート法、 スプレーコート法、 ディップコ ート法などが挙げられる。
プライマーを塗布後、 通常、 加熱等により溶媒を揮発させる。 プライマーが、 紫外線や電子線などの活性放射線により硬化するものである場合は、 活性放射線 を照射して硬化させることもできる。
以上のようにして、 前記ポリマー基材の表面にプライマー層を形成した後、 前 記プライマー層表面に乾式成膜法により薄膜を積層する。
乾式成膜法の条件は、 採用する乾式成膜法の種類、 薄膜の材質および薄膜の膜 厚に応じて、 適宜選択すればよい。
B . 第 2の態様
第 2の態様の積層体は、 ポリマー成形材料に共役ジェン重合体環化物またはそ の誘導体である環化ゴムが配合されたポリマー基材と、 前記ポリマー基材の表面 に乾式成膜法により積層された薄膜と、 を有することを特徴とする。
本態様に用レ、る環化ゴムは、 第 1の態様で説明したものと同じものを使用でき 本態様に用いるポリマー基材は、 ポリマー成形材料に前記の環化ゴムが配合さ れたものである。環化ゴムの配合量は、ポリマー成形材料 1 0 0重量部に対して、 通常、 0 . 1〜5 0重量部、 好ましくは 0 . 5〜2 0重量部、 より好ましくは 1 〜 1 0重量部である。 配合量が少なすぎると薄膜の密着性が劣る傾向にあり、 逆 に多すぎるとポリマー基材の機械的強度を低下させる場合がある。
前記のポリマー成形材料を構成するポリマーとしては、 第 1の態様のポリマー 3
19 基材の項で説明したものと同じものを使用できる。
ポリマー成形材料は、 上記のポリマー以外に、 必要に応じて、 充填剤、 帯電防 止剤、老化防止剤、潤滑剤、架橋剤、ブロッキング防止剤、着色剤、光線遮断剤、 紫外線吸収剤などの添加剤を含有してもよい。
ポリマー成形材料に環化ゴムを配合する方法としては、 特に限定されないが、 通常、 溶融混練する方法が採用される。
ポリマー基材の形状、 成形方法、 成形品、 厚み等については、 第 1の態様で述 ベたものと同じであるので、 ここでの説明は省略する。
本態様における薄膜は、 前記のポリマー基材の表面に乾式成膜法により積層さ れるものであり、 第 1の態様で説明したものと同じものを使用できる。
薄膜の材質を選択することにより、 第 1の態様で述べたように種々の機能を有 する積層体を得ることができる。 また、 第 1の態様と同様、 薄膜は、 ポリマー基 材表面の全面に形成されていても、 部分的に形成されていても、 特定のパターン 状に形成されていてもよい。
本態様の積層体は、 前記薄膜の表面に、 さらに、 乾式成膜法により該薄膜とは 異なる材質の薄膜を 1層または複数層形成したものであってもよい。
本態様の積層体の製造方法は、 ポリマー成形材料に共役ジェン重合体環化物ま たはその誘導体である環化ゴムが配合されたポリマー基材の表面に、 乾式成膜法 により薄膜を積層することを特徴とする。
乾式成膜法の条件は、 採用する乾式成膜法の種類、 薄膜の材質および薄膜の膜 厚に応じて、 適宜選択すればよい。
本発明の積層体は、 種々の用途に用いることができ、 例えば、 バンパー、 コー ナ一/ ンパー、 バンパーエアーダムスカート、 マッドガード、 サイドモーノレ、 ホ ィールキヤップ、 スボイラー、 サイドステップ、 ドアミラ一ベースなどの自動車 外装部品;インスツルメントパネル、 レバー、 ノブ、 ダッシュボード、 ドアライ ナーなどの自動車内装部品;コネクター、 キャッププラグ、 ポット、 冷蔵庫、 照 明器具、 オーディォ機器、 O A機器などの電気機器部品;カラーボックス、 収納 ケースなどの日用雑貨品;カップ麵、 菓子、 野菜などの食品包装や Yシャツ、 T シャツ、 パンティーストッキングなどの繊維製品包装などのガスバリァ性の包装 フィルム材;などとして好適に使用できる。また、金属蒸着を施したフィルムは、 防湿性や酸素パリァ性を必要とするポテトチッブス等の食品の包装に、 特に好適 に使用できる。 なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は例 示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の技 術的範囲に包含される。 実施例
以下に実施例を示して、 本発明をさらに具体的に説明する。 なお、 以下の記载 における 「部」 および 「%」 は特に断りのない限り重量基準である。
分析おょぴ評価は以下のように行なった。
(1) 重合体の重量平均分子量 (Mw)
ゲル ·パーミエーシヨン .クロマトグラフ (GPC) 法により、 標準ポリスチ レン換算値で、 重量平均分子量 (Mw) を求めた。
(2) 環化ゴムの環化率
環化率は、 下記 (i) 及び (i i) の文献に記載された方法に準じて、 — N MR測定により求めた。
( i ) M. a. Go l u b a n d J. He l l e r. Ca n. J. Ch e m, 41, 937 (1 963)
( i i ) Y. T a n a k a a n d H. S a t o, J . P o l ym. S c i : P o l y. Ch em. E d. , 1 7, 3027 (1 979)
(3) 変 'I生環化ゴム中の極性基量
無水マレイン酸で変性した環化ゴムは、 付加した無水マレイン酸に由来する酸 無水物基と該酸無水物基が加水分解したカルボキシル基を有する。 この環化ゴム のフーリエ変換赤外スぺクトルを測定し、 酸無水物基のピーク強度 (1 760〜 1 780 cm"1) を測定して、 検量線法により酸無水物基の含有量を求めた。 同 様にカルボキシル基のピーク強度 (1 700 cm-1) を測定して、 検量線法によ りカルボキシル基の含有量を測定した。
水酸基含有化合物で変性した環化ゴムの水酸基価を、 「基準油脂分析試験法(日 本油化学協会) 」 2, 4, 9, 2— 83に記載される方法に準じて測定した。 こ の水酸基価から、 変性環化ゴム中の水酸基量を求めた。
(4) 密着性 (透過型電子顕微鏡観察)
得られた積層フィルムの断面を透過型電子顕微鏡で観察し、 酸化珪素膜の密着 性を、 以下の基準で判定した。 結果を表 1に示す。
〇:観察される断面全体に亘り、 酸化珪素膜の剥がれがない。
X :観察される断面全体に苴り、 酸化珪素膜が剥がれている。
(5) 碁盤目試験
蒸着膜の上からカッターにより 1mm間隔で縦横互いに直角に交わる各 1 1本 の切れ目を入れ、 1mm四方の碁盤目を 100目作り、 市販のセロハン粘着テー プ (積水化学製) を貼り、 粘着テープを蒸着膜表面に対して垂直方向に引っ張つ て剥し、 100目中の剥離しなかった目の数で示す。
(合成例 1 )
攪拌機、 温度計、 還流冷却管および窒素ガス導入管を備えた耐圧反応器に、 1 Omm角に裁断したポリイソプレン (シス _ 1 , 4単位 73%、 トランス一 1, 4単位 22%、 3, 4一単位 5 %、重量平均分子量 1 74, 000) 300部を、 トルエン 700部とともに仕込んだ (ポリマー濃度 30%) 。 反応器内を窒素置 換した後、 80°Cに加温して攪拌下でポリィソプレンをトルエンに完全に溶解し た後、 p—トルエンスルホン酸 (無水) 2. 07部を投入し、 80°Cで環化反応 を行った。 約 4時間後、 炭酸ナトリウム 0. 8部を含む 25%炭酸ナトリウム水 溶液を投入して反応を停止した。 80°Cで 30分間攪拌後、 ろ過助剤 (ラジオラ ィ ト) 2部添加し、 孔径が 1 μπιのガラス繊維製のフィルター (GA— 100 アドバンテック東洋 (株) 製) を用いて、 触媒残渣を除去した。
この溶液に老化防止剤 (ィルガノックス 1010 :チバ ·スぺシャリティー · ケミカルズ社製) 0. 3部を添加した後、 160°Cでトルエンを除去し、 溶液の 固形分濃度が 70〜 75重量%になつた時点で、 フッ素樹脂をコーティングした 金属製バットに流し込み、 75 °Cにて減圧乾燥して環化ゴム Aを得た。 得られた 環化ゴム Aの分析を行い、 結果を表 1に示す。
(合成例 2)
ポリイソプレンとしてシス一 1, 4単位 68%、 トランス一 1,4単位 25 %、 3, 4—単位 7 %、 重量平均分子量 92, 100のものを使用すること、 p—ト ルエンスルホン酸 (トルエン中で、 水分量が 1 50 p p m以下になるように、 還 流脱水したもの) の使用量を 2. 81部に変えること、 炭酸ナトリウム.1. 08 部を含む 25 %炭酸ナトリゥム水溶液を投入して反応を停止すること以外は、 合 成例 1と同様にして環化ゴム Bを得た。 得られた環化ゴム Bの分析を行い、 結果 を表 1に示す。
(合成例 3 )
攪拌機、 温度計、 還流冷却管および窒素ガス導入管を備えた耐圧反応器に、 1 0mm角に裁断したポリイソプレン (シス一 1 , 4単位 70%、 トランス一 1, 4単位 24%、 3, 4—単位 6 %、重量平均分子量 141, 000) 300部を、 トルエン 700部とともに仕込んだ (ポリマー濃度 30%) 。 反応器内を窒素置 換した後、 80°Cに加温して攪拌下でポリイソプレンをトルエンに完全に溶解し た後、 p—トルエンスルホン酸 (無水) 2. 69部を投入し、 80°Cで環化反応 を行った。 約 4時間後、 炭酸ナトリウム 1. 03部を含む 25%炭酸ナトリウム 水溶液を投入して反応を停止した。 80°Cで 30分間攪拌後、 ろ過助剤 (ラジオ ライト) 2部添加し、孔径が 1 μ mのガラス繊維製のフィルター (GA— 100 : アドバンテック東洋 (株) 製) を用いて、 触媒残渣を除去した。
この溶液に老化防止剤 (ィルガノックス 1010 : チバ ·スぺシャリティー · ケミカルズ社製) 0. 3部を添加した後、 160°Cでトルエンを除去し、 溶液の 固形分濃度が 70〜 75重量%になった時点で、 無水マレイン酸 9部を投入し、 18 (TCで 1時間反応させた。 反応後、 1,80°Cで窒素を流しながら、 未反応無 水マレイン酸およびトルエンを除去した後、 75 °Cにて減圧乾燥して変性環化ゴ ム Cを得た。 得られた変性環化ゴム Cの分析を行い、 結果を表 1に示す。
(合成例 4)
攪拌機、 温度計、 還流冷却管および窒素ガス導入管を備えた耐圧反応器に、 1 Omm角に裁断したポリイソプレン (シス _ 1, 4単位 68%、 トランス一 1, 4単位 25%、 3, 4一単位 7 %、 重量平均分子量 92, 100) 300部を、 トルエン 700部とともに仕込んだ (ポリマー濃度 30%) 。 反応器内を窒素置 換した後、 80°Cに加温して攪拌下でポリィソプレンをトルエンに完全に溶解し た後、 p—トルエンスルホン酸 (無水) 2. 07部を投入し、 80°Cで環化反応 を行った。 約 4時間後、 炭酸ナトリウム 0. 8部を含む 25%炭酸ナトリウム水 溶液を投入して反応を停止した。 80°Cで 30分間攪拌後、 ろ過助剤 (ラジオラ ィ ト) 2部添加し、 孔径が 1 /mのガラス繊維製のフィルター (GA—100 : アドバンテック東洋 (株) 製) を用いて、 触媒残渣を除去した。
この溶液に老化防止剤 (ィルガノックス 1010 :チパ ·スぺシャリティー ' ケミカルズ社製) 0. 3部を添加した後、 160°Cでトルエンを除去し、 溶液の 固形分濃度が 50〜 60重量0 /0になつた時点で、 ヒドロキシェチルァクリレート 1 5部、 ァゾ系開始剤 AC HN (1, 1—ァゾビス一 1ーシク口へキサンカルボ 二トリル) 1. 5部を投入し、 140 °Cで 1時間反応させた。 反応後、 140 °C で窒素を流しながら、未反応ヒ ドロキシェチルメタァクリレート及びトルエンを 除去したのち、 フッ素樹脂をコーティングした金属製パットに流し込み、 75°C にて減圧乾燥して、 変性環化ゴム Dを得た。 この変性環化ゴム Dの分析を行い、 結果を表 1に示す。
A. 第 1の態様の積層体
(実施例 1〜 4 )
環化ゴム A〜Dを、 トルエン/メチルェチルケトン = 8Z2 (重量比) 混合溶 液に、 20%となるように溶解して、 プライマーを調製した。
ポリプロピレン (F— 200 S :出光石油化学株式会社製) 100部およびィ ルガノックス 1010 (チバ。スぺシャリティ一 'ケミカルズ¾:製) 0. 01部 をヘンシェルミキサーで混合し、 その後、 二軸押出機を用いて、 200°Cで溶融 混練して、 ペレットを得た。 このペレットを、 単軸押出機を用いて、 マルチマ二 ホールド型 Tダイから樹脂温度 250°C、冷却ロール温度 30°Cの条件で押出し、 厚さ 1000 μπιのシートを得た。 このシートを 125 °Cに加熱した延伸口一ノレ を用いて縦方向に 5倍延伸し、 次いで、 155°Cの熱風を循環させたテンター内 で横方向に 10倍延伸し、 さらに、 70 で 2秒間熱固定して二軸延伸フィルム を得た。 フィルムの厚みは 25 mであった。
この二軸延伸フィルムの i 面に、膜厚が 10〜20 μπιになるように上記の各 プライマーを塗布した後、 80°Cで乾燥した。
得られたフィルムのプライマー塗布面に、 卷取り式真空蒸着装置を使用し、 蒸 着材料として S i O (住友シチックス (株) 製) を用い、 それを高周波加熱方式 で蒸発させ、 圧力 8 X 10— 5To r rの条件下で、 膜厚 25 nmの酸化珪素膜を 積層した。
得られた積層フィルムにおける酸化珪素膜の密着性を透過型電子顕微鏡観察に より評価した。 結果を表 1に示す。
(比較例 1 )
プライマーを使用せずに、 実施例 1と同様に、 酸化珪素膜を積層した積層フィ ルムを得た。 この積層フィルムにおける酸化珪素膜の密着性を透過型電子顕微鏡 観察により評価し、 その結果を表 1に示す。
-表 1 実施例 比較例
1 2 3 4 1
(変性) 璟化ゴム A B C D 一 軍罱平均分子畳 134, 800 73, 000 1 13, 800 76, 000 一 環化率 (%) 74 75 79 75 一 極性基含有量(mm o I Z 100 g)
酸無水物基 一 ― 23 一 ― カルポキシル基 一 ― 25 一 ― 水酸基 一 一 ― 36 ― 薄膜の密着性 o o O O X
(実施例 5)
変性環化ゴム Cを、 トルエン Z酢酸ェチル =3Zl (重量比)混合溶媒に、 2% になるように溶解して、 プライマーを調製した。
熱可塑性飽和ノルボルネン系樹脂 (ZEONEX280,数平均分子量約 28 , 000、 ガラス転移温度 140 °C:日本ゼオン株式会社製)のペレッ トを、 90 °C で 3時間乾燥した後、 金型温度 100°C、 樹脂温度 290°Cで射出成形して、 2 mmX 5 OmmX 50 mmの成形板を得た。
上記の成形板上に、 上記のプライマーを、 スピンコーターにて塗布し、 80°C にて加熱乾燥した。 プライマー層の膜厚は約 5 mであった。
このプライマー層の表面に、 13. 56MH zの高周波電源を用いたスパッタ リングにより、 膜厚 30 nmの酸化珪素 (S i Ox) 薄膜を形成した。 成膜条件 は純度 99. 99%のシリコンをターゲットとした酸素との反応性スパッタリン グ法を用い、 成膜時の圧力は 0. 2 P a、 投入電力 120 Wで 5分間成膜した。 この積層体を、 90°Cで 60分間熱処理した後、 室温まで放冷した。
得られた試験片における酸化珪素薄膜の密着性を碁盤目試験により評価したと ころ、 100であり、 密着性に優れていた。
(比較例 2 )
プライマーを塗布せずに、 実施例 5と同様に、 成形板上に膜厚 30 nmの酸化 珪素 (S i Ox) 薄膜を形成した試験片を得た。 この試験片における酸化珪素薄 膜の密着性を碁盤目試験により評価したところ、 0であり、 酸化珪素薄膜は剥が れてしまい、 密着性に極めて劣っていた。
B. 第 2の態様の積層体
(実施例 6 )
環化ゴム A 5部、 ポリプロピレン (F— 200 S :出光石油化学株式会社製) 95部およびィルガノックス 1010 (チバ ·スぺシャリティー ·ケミカルズ社 製) 0. 01部をヘンシェルミキサーで混合し、 その後、 二軸押出機を用いて、 200°Cで溶融混練して、 ペレットを得た。 このペレットを、 単軸押出機を用い て、 マルチマ二ホールド型 Tダイから樹脂温度 250°C、 冷却ロール温度 30°C の条件で押出し、 厚さ 1000 μιηのシートを得た。 このシートを 125 °Cに加 熱した延伸ロールを用いて縦方向に 5倍延伸し、 次いで、 1 5 5 °Cの熱風を循環 させたテンター内で横方向に 1 0倍延伸し、 さらに、 7 0 °Cで 2秒間熱固定して 二軸延伸フィルムを得た。 フィルムの厚みは 2 5 // mであった。
得られたフィルムの表面に、 卷取り式真空蒸着装置を使用し、 蒸着材料として S i O (住友シチックス (株) 製) を用い、 それを高周波加熱方式で蒸発させ、 圧力 8 X 1 0— 5 T o r rの条件下で、 膜厚 2 5 n mの酸化珪素膜を積層した。 得られた積層フィルムにおける酸化珪素膜の密着性を透過型電子顕微鏡観察に より評価した。 結果を表 2に示す。
(実施例 7〜 9 )
環化ゴム Aを、 それぞれ (変性) 環化ゴム B〜 Dに代える以外は、 実施例 6と 同様にして、 酸化珪素膜を積層した積層フィルムを得た。 それぞれのフィルムに おける酸化珪素膜の密着性を透過型電子顕微鏡観察により評価した。 それらの結 果を表 2に示す。
(比較例 3 )
環化ゴム Aを配合せず、 ポリプロピレン (F— 2 0 0 S :出光石油化学株式会 社製) の配合量を 1 0 0部に代える以外は、 実施例 6と同様にして、 酸化珪素膜 を積層した積層フィルムを得た。 このフィルムにおける酸化珪素膜の密着性を透 過型電子顕微鏡観察により評価した。 その結果を表 2に示す。 表 2
Figure imgf000028_0001
表 2より、 環化ゴムを配合しないポリプロピレンの延伸フィルムは、 酸化珪素 薄膜との密着性に極めて乏しい積層体である (比較例 3) のに対して、 本発明の 環化ゴムを配合した リプロピレンの延伸フィルムは、 酸化珪素薄膜との密着性 に優れた積層体 (実施例 6〜 9) となっていることがわかる。
C. その他
第 1の態様または第 2の態様において、 薄膜として非晶質炭素膜を使用した例 を以下に示し、 本発明をさらに詳しく説明する。 なお、 分析および評価は以下の ように行った。
(6) 重合体の重量平均分子量 (Mw)
上記と同様の方法により求めた。
(7) 共役ジェン重合体環化物 (環化ゴム) の環化率
プロトン NMR分析により、 共役ジェン重合体の環化反応前後における二重結 合由来プロトンのピーク面積をそれぞれ測定し、 環化反応前を 100としたとき の環化物中に残存する二重結合の割合を求めた。 そして、 計算式 = (100—環 化物中に残存する二重結合の割合) により環化率 (%) を求めた。
(8) 重合体のゲル量
重合体 0. 2 gをトルエン 200 m 1に 48時間浸漬した後、 トルエンに溶解 せずに残存する不溶解分 (乾燥固形分) の重量割合 (%) を求めた。
(9) 変性共役ジェン系重合体環化物 (変性環化ゴム) 中の極性基量
カルボキシル基量は酸価から求めた。
酸価:変性重合体の酸価は、 "基準油脂分析試験法" (日本油化学協会) 2, 4, 1-83に記載される方法に準じて測定した。
(1 0) 碁盤目試験 (密着性試験)
基材表面に非晶質炭素膜を形成後、 カッターを用いて、 非晶質炭素膜面上に 2 mm間隔で素地に達する切れ目を 1 1本作り、 それと直角に交わるように同様の 切れ目を 1 1本作り、 2mm四方の碁盤目を 1 00個作成した。 その碁盤目上に セロファン粘着テープを密着させて手前 45。 方向に引き剥がし、 塗装面が残存 する碁盤目の個数を計測し次の 3段階で評価した。
〇: 50/100以上
△: 30/100〜49/100 03
29
X: 29/1 00以下、 カッター切り時に剥がれたもの、 または非晶質炭素膜 の形成がされなかったもの。
(合成例 5 )
攪拌機、 温度計、 還流冷却管、 及び窒素ガス導入管を備えた耐圧反応器にポリ ィソプレン (シス一 1 , 4一イソプレン単位 7 3%、 トランス一 1, 4一イソプ レン単位 22%、 3, 4一イソプレン単位 5 %、 重量平均分子量が 1 74, 00 0) 300部を 1 Omm角に裁断し、 トルエン 700部とともに仕込んだ。 反応 器内を窒素置換した後、 80°Cに加温して、 攪拌下でポリイソプレンをトルエン に溶解した。 完全に溶解した後、 p—トルエンスルホン酸 (無水) 2. 0 7部を 投入し、 溶液を 80°Cに保ち、 攪拌を続けて環化反応を行った。 約 4時間後、 炭 酸ナトリウム 0. 80部を水 4部に溶解した水溶液を投入して反応を停止した。
80°Cで 30分間攪拌後、 ろ過助剤 (ラジオライト) 2部添加し、 孔径 の フィルターを用!/、て触媒残渣を除去した。
この溶液に老化防止剤 (ィルガノックス 1 0 1 0 :チバ ·スぺシャリティー ' ケミカルズ製) 0. 3部を添加した後、 1 60°Cで撹拌を行いながらトルエンを除 去し、 固形分濃度が 70%になった時点で、 四フッ化工チレン樹脂製パットに流 し込んだ。 75 °Cにて減圧乾燥して環化ゴム Eを得た。
環化ゴム Eの重量平均分子量は 1 34, 800、環化率は 74 %、ゲル量は 0 % であった。
(合成例 6 )
攪拌機、 温度計及び窒素ガス導入管を備えた耐圧反応器にポリイソプレン (シ スー 1, 4—ィソプレン単位 70%、 トランス一 1 , 4—ィソプレン単位 24%、 3, 4一イソプレン単位 6 %、 重量平均分子量が 14 1, 000) 300部を 1 Omm角に裁断し、 トルエン 700部とともに仕込んだ。 反応器内を窒素置換し た後、 8 0°Cに加温して、 攪拌下でポリイソプレンをトルエンに溶解した。 完全 に溶解した後、 p—トルエンスルホン酸 (無水) 2. 6 9部を投入し、 溶液を 8 0°Cに保ち、 攪拌を続けて環化反応を行った。 約 4時間後、 炭酸ナトリウム 1. 0 3部を水 5. 2部に溶解した水溶液を投入して反応を停止した。 8 0 °Cで 30 分間攪拌後、 ろ過助剤 (ラジオライト) 2部添加し、 孔径 1 imのフィルターを 用いて触媒残渣を除去した。
この溶液に老化防止剤 (ィルガノックス 1010 : チバ ·スぺシャリティー ' ケミカルズ製) 0. 3部を添加した後、 180°Cで撹拌を行いながらトルエンを除 去し、 固形分濃度が 70%になった時点で無水マレイン酸 9. 0部を投入し、 そ の温度を保ちながら、 1時間反応させた。次いで、 1 80°Cで窒素を流しながら、 未反応無水マレイン酸及びトルエンを除去したのち、 四フッ化工チレン榭脂製バ ットに流し込んだ。 それを、 75 °Cで減圧乾燥して変性環化ゴム Fを得た。
変性環化ゴム Fの重量平均分子量は 1 13, 800、 環化率は 79 %、 ゲル量 0%であった。 また、 変性環化ゴム Fに付加したカルボキシル基量は、 重合体 1 00 gあたり、 38 mm o lであった。
(実施例 10〜 14 )
表 3に示すポリマー成形材料を射出成形して 2種類の成形板 (厚さ 3 mm X幅 5 OmmX長さ 80 mm) を作成した。 表 3
Figure imgf000031_0001
環化ゴム Eおよび Fを用い、表 4に示すプライマー処方に準じて高速攪拌機(デ イスパー) で 10分間混合した後、 流動性を流下時間で 13〜14秒になるよう にトルエンで希釈し、 2種類のプライマー Eおよび Fを調製した。 ここで、 前記 の流下時間は、 J I S K 5400に規定されたフォードカップ No. 4法に 準じて、 20°Cにおける流下時間のことである。 表 4
Figure imgf000032_0001
成形板 X及び Yを水でよく洗浄して乾燥した。 口径 1 . 0 mmのスプレーガン を用いて、 スプレー圧 3 . 5〜5 . O M P aの条件で、 成形板表面に乾燥後の膜 厚が 1 0 /i mになるように、表 5に示す組み合わせで、プライマーを塗布した後、 乾燥した。
次いで、 アセチレンガスを原料ガスとして初期減圧度 2 X 1 0 2 P aの条件で プラズマイオン注入法により、 プライマー層表面に、 S莫厚がそれぞれ表 5に示す 厚みになるように、 非晶質炭素膜を形成した積層体を得た。 積層体の碁盤目 (密 着性) 試験を行い、 それらの結果を表 5に示す。
(比較例 4 )
環化ゴムを含有するプライマーを塗布しない以外は、 実施例 1 0と同様に行い 非晶質炭素膜を形成した積層体を得た。 この積層体の碁盤目 (密着性) 試験を行 レ、、 その結果を表 5およぴ表 6に示す。 表 5
Figure imgf000033_0001
(実施例 15および 16)
表 6に示す配合処方で、 各配合成分をヘンシェルミキサーで混合し、 その混合 部を二軸押出機 (35πιπιφ) に投入して、 200°C、 スクリュー回転数 200 r p mで混練し、 ポリマー基材組成物のぺレッ トを得た。 次に、 このペレッ トを 用いて射出成形して、 厚さ 3mmX幅 5 OmmX長さ 8 Ommの成形板を作製し た。
これらの成形板表面に、 アセチレンガスを原料ガスとして初期減圧度 2 X 10 2P aの条件でプラズマイオン注入法により、 膜厚が 1 μπιの非晶質炭素膜を形 成した積層体を得た。 積層体の碁盤目 (密着性) 試験を行い、 それらの結果を表 6に示す。
表 6
Figure imgf000034_0001
* 1 : J-3054HP (出光石油化学 (株) 製)
* 2 :ィルガノックス 1 01 0 (チバ 'スぺシャリティ 'ケミカルズ (株) 製) 表 5および 6から以下のようなことがわかる。
プライマーを塗布することなく、 ポリプロピレン樹脂のみからなるポリマー基 材表面に、 非晶質炭素膜を形成した比較例 4の積層体は、 非晶質炭素膜の密着性 に極めて劣っている。
比較例 4に比べ、 環化ゴムを含有するプライマー層を有する積層体および環化 ゴムを配合したポリマー基材の積層体は、非晶質炭素膜の密着性に優れている(実 施例 10〜16) 。 しかも、 非晶質炭素膜の膜厚を厚くした場合においても、 非 晶質炭素膜の密着性に優れている (実施例 1 1〜16) 。 産業上の利用可能性 本発明の積層体は、 装飾性、 ガスパリア性、 光遮断性、 透明性、 耐薬品性、 耐 食性などの表面処理を施したプラスチック成形品として、 各種容器、 包装材など の種々の用途に適用できる。

Claims

請求の範囲
1. ポリマー基材と、 前記ポリマー基材の表面に形成された、 共役ジェン重合体 環化物またはその誘導体である環化ゴムを含有するプライマー層と、 前記プライ マー層表面に乾式成膜法により積層された薄膜と、 を有する積層体。
2. 環化ゴムの重量平均分子量が 1, 000〜1, 0 00, 000である前記請 求の範囲第 1項に記載の積層体。
3. 環化ゴムの環化率が 1 0%以上である前記請求の範囲第 1項または第 2項に 記載の積層体。
4. 環化ゴムのゲル量が 1 0重量%以下である前記請求の範囲第 1項〜第 3項の いずれかに記載の積層体。
5. プライマー層中の環化ゴムの含有量が 1 0重量%以上である前記請求の範囲 第 1項〜第 4項のいずれかに記載の積層体。
6. 共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性反応で 共役ジェン重合体環化物に極性基が導入されたものである前記請求の範囲第 1項
〜第 5項のいずれかに記載の積層体。
7. 極性基が酸無水物基、 カルボキシル基、 水酸基、 エステル基、 エポキシ基お よびアミノ基からなる群より選ばれた少なくともひとつの基である前記請求の範 囲第 6項に記載の積層体。
8. 導入された極性基の比率が、 環化ゴム 1 00 g当たり、 0. 1〜 200ミリ モルである前記請求の範囲第 6項または第 7項に記載の積層体。
9. プライマー層の膜厚が 0. 1〜200 μπιである前記請求の範囲第 1項〜第 8項のいずれかに記載の積層体。
1 0. ポリマー基材を構成するポリマーが炭化水素系樹脂である前記請求の範囲 第 1項〜第 9項のいずれかに記載の積層体。
1 1. 薄膜の膜厚が 1 nm〜l 00 mである前記請求の範囲第 1項〜第 1 0項 のいずれかに記載の積層体。
1 2. 薄膜が非晶質炭素膜である前記請求の範囲第 1項〜第 1 1項のいずれかに 記載の積層体。
1 3. ポリマー基材の表面に、 共役ジェン重合体環化物またはその誘導体である 環化ゴムを含有するプライマーを塗布して、 前記ポリマー基材の表面にプライマ 一層を形成した後、 前記プライマー層表面に乾式成膜法により薄膜を積層するこ とを特徴とする積層体の製造方法。
14. ポリマー成形材料に共役ジェン重合体環化物またはその誘導体である環化 ゴムが配合されたポリマー基材と、 前記ポリマー基材の表面に乾式成膜法により 積層された薄膜と、 を有する積層体。
15. 環化ゴムの重量平均分子量が 1, 000〜1, 000, 000である前記 請求の範囲第 14項に記載の積層体。
16. 環化ゴムの環化率が 10 %以上である前記請求の範囲第 14項または第 1 5項に記載の積層体。
1 7. 環化ゴムのゲル量が 10重量%以下である前記請求の範囲第 14項〜第 1
6項のいずれかに記載の積層体。
18. 共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性反応 で共役ジェン重合体環化物に極性基が導入されたものである前記請求の範囲第 1
4項〜第 1 7項のいずれかに記載の積層体。
1 9. 極性基が酸無水物基、 カルボキシル基、 水酸基、 エステル基、 エポキシ基 およぴァミノ基からなる群より選ばれた少なくともひとつの基である前記請求の 範囲第 18項に記載の積層体。
20. 導入された極性基の比率が、 環化ゴム 100 g当たり、 0. 1〜200ミ リモルである前記請求の範囲第 18項または第 1 9項に記載の積層体。
21. 環化ゴムの配合量が、 ポリマー成形材料 100重量部に対して、 0. 1〜 50重量部である前記請求の範囲第 14項〜第 20項のいずれかに記載の積層体。
22. ポリマー成形材料を構成するポリマーが炭化水素系榭脂である前記請求の 範囲第 14項〜第 21項のいずれかに記載の積層体。
23. 薄膜の膜厚が 1 nm〜l 00 mである前記請求の範囲第 14項〜第 22 項のいずれかに記載の積層体。
24. 薄膜が、 非晶質炭素膜である前記請求の範囲第 14項〜第 23項のいずれ かに記載の積層体。
2 5 . ポリマー成形材料に共役ジェン重合体環化物またはその誘導体である環化 ゴムが配合されたポリマー基材の表面に、 乾式成膜法により薄膜を積層すること を特徴とする積層体の製造方法。
PCT/JP2004/000403 2003-01-20 2004-01-20 積層体およびその製造方法 WO2004065119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04703496A EP1586445A4 (en) 2003-01-20 2004-01-20 MULTILAYER BODY AND METHOD FOR PRODUCING THE SAME
JP2005508080A JP4293186B2 (ja) 2003-01-20 2004-01-20 積層体およびその製造方法
US10/540,377 US8147953B2 (en) 2003-01-20 2004-01-20 Laminate and process for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003011686 2003-01-20
JP2003-011686 2003-01-20
JP2003-011687 2003-01-20
JP2003011687 2003-01-20
JP2003-123205 2003-04-28
JP2003123205 2003-04-28

Publications (1)

Publication Number Publication Date
WO2004065119A1 true WO2004065119A1 (ja) 2004-08-05

Family

ID=32776803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000403 WO2004065119A1 (ja) 2003-01-20 2004-01-20 積層体およびその製造方法

Country Status (4)

Country Link
US (1) US8147953B2 (ja)
EP (1) EP1586445A4 (ja)
JP (2) JP4293186B2 (ja)
WO (1) WO2004065119A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335360A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 酸素吸収性多層チューブ
JP2007008582A (ja) * 2005-05-31 2007-01-18 Nippon Zeon Co Ltd 多層プラスチック容器
WO2009022526A1 (ja) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. 蒸着膜を備えた生分解性樹脂容器及び蒸着膜の形成方法
JP2012179915A (ja) * 2005-03-23 2012-09-20 Nippon Zeon Co Ltd 酸素吸収性ガスバリアー多層構造体
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
JP5136551B2 (ja) * 2007-06-06 2013-02-06 東洋製罐株式会社 生分解性樹脂ボトル及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462033B2 (ja) * 2004-12-27 2010-05-12 日本ゼオン株式会社 酸素吸収性多層フィルム、これからなる包装材料及び包装容器
CN100584600C (zh) * 2004-12-27 2010-01-27 日本瑞翁株式会社 氧吸收性多层片材、由其构成的包装材料以及包装容器
JP4661790B2 (ja) * 2004-12-27 2011-03-30 日本ゼオン株式会社 酸素吸収性多層フィルム、これからなる包装材料及び包装容器
WO2006129605A1 (ja) * 2005-05-31 2006-12-07 Zeon Corporation 酸素吸収剤、酸素吸収性フィルム及び包装容器
WO2007100363A1 (en) * 2006-03-03 2007-09-07 Chameleon Scientific Corporation Chrome coated surfaces and deposition methods therefor
WO2008063241A1 (en) * 2006-11-22 2008-05-29 Entegris, Inc. Diamond like carbon coating of substrate housing
EP2183289A2 (en) * 2007-08-31 2010-05-12 Corning Incorporated Reactive surface on a polymeric substrate
US20090179158A1 (en) * 2008-01-16 2009-07-16 Varian Semiconductor Equpiment Associate, Inc. In-vacuum protective liners
KR100958078B1 (ko) * 2009-12-28 2010-05-13 재단법인 구미전자정보기술원 채색유리판용 유기 프라이머 조성물
CN104456992B (zh) * 2013-09-23 2017-02-15 宁夏银晨太阳能科技有限公司 一种改进的太阳能板用复合盖板
CN110691698A (zh) * 2017-05-31 2020-01-14 国立大学法人大阪大学 层叠体及其制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072702A (ja) * 1973-10-31 1975-06-16
JPS5239672B2 (ja) * 1974-07-23 1977-10-06
JPS5913237A (ja) * 1982-07-14 1984-01-24 Kuraray Co Ltd フォトレジスト組成物の製造方法
JPS63114636A (ja) * 1986-10-31 1988-05-19 大日本印刷株式会社 金属光沢を施こしたプラスチツク成形品
JPH05221691A (ja) 1992-02-14 1993-08-31 Asahi Glass Co Ltd 硬質カーボン膜の密着性改善方法
JPH1170152A (ja) 1997-06-16 1999-03-16 Mitsui Chem Inc 薬品容器用フィルム
JPH1192935A (ja) 1997-09-19 1999-04-06 Daido Steel Co Ltd 耐摩耗性硬質炭素被膜
JPH11102518A (ja) 1997-09-30 1999-04-13 Kao Corp 磁気記録媒体の製造方法
JPH11246975A (ja) 1998-03-04 1999-09-14 Niigata Institute Of Technology アモルファス炭化水素でコーティングする方法及びその装置
JP2000117881A (ja) 1998-10-20 2000-04-25 Toppan Printing Co Ltd ガスバリア性プラスチック製容器
JP2000272156A (ja) 1999-03-26 2000-10-03 Fuji Photo Film Co Ltd カーボン膜の成膜方法
JP2001180700A (ja) 1999-12-27 2001-07-03 Toyo Seikan Kaisha Ltd 外層の全面に熱転写によりバリア性層を配設したプラスチック容器とその製造方法
JP2001232714A (ja) 2000-02-24 2001-08-28 Hokkai Can Co Ltd Dlc膜および炭素膜コーティングプラスチック容器
JP2001240115A (ja) 2000-02-24 2001-09-04 Mitsubishi Shoji Plast Kk 乾燥固体食品用プラスチック容器
JP2001310412A (ja) 2000-04-28 2001-11-06 Mitsui Chemicals Inc ガスバリアーフィルム
JP2001316489A (ja) 2000-04-28 2001-11-13 Mitsui Chemicals Inc ポリオレフィン系フィルム
JP2002225170A (ja) * 2001-01-30 2002-08-14 Matsushita Electric Ind Co Ltd 気体遮蔽性フィルム、その製造方法およびそれを用いた真空断熱体
JP2003004526A (ja) * 2001-06-18 2003-01-08 Nissha Printing Co Ltd 赤外線透過カバーパネル、赤外線透過カバーパネル用加飾シート
JP2003011255A (ja) * 2001-06-28 2003-01-15 Matsushita Electric Ind Co Ltd 機能性膜とその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024211A (en) * 1956-09-06 1962-03-06 Us Rubber Co Plastic composition of isotactic monoolefin polymer and cyclized natural rubber
NL6405712A (ja) * 1964-05-22 1965-11-23
DE1521249C3 (de) 1966-04-29 1975-03-06 Bayer Ag, 5090 Leverkusen Verfahren zum Oberflächenvergüten von Kunststoffen
US3682693A (en) * 1969-01-06 1972-08-08 Avisun Corp Metallized polyolefin substrates containing maleic resins
JPS5714377B2 (ja) 1973-10-02 1982-03-24
GB2008265B (en) * 1977-10-07 1982-06-23 Canon Kk Image holding member for holding electrostatic images or toner images
JPS57145103A (en) 1981-03-03 1982-09-08 Kuraray Co Ltd Production of cyclized polymer
JPS5996112A (ja) 1982-11-26 1984-06-02 Toyo Soda Mfg Co Ltd 高純度イソプレン重合体環化物の製造方法
US4687680A (en) * 1983-12-28 1987-08-18 Oike Industrial Co., Ltd. Stamping foil
JPH0269545A (ja) * 1988-09-05 1990-03-08 Kuraray Co Ltd 接着性に優れたゴム組成物
US6472081B1 (en) * 1994-09-26 2002-10-29 Exxonmobil Oil Corporation Semi-transparent high barrier film
JPH08104977A (ja) 1994-10-05 1996-04-23 Chisso Corp 金属蒸着ポリプロピレンフィルム
US5827615A (en) * 1996-07-15 1998-10-27 Mobil Oil Corporation Metallized multilayer packaging film
JPH1158587A (ja) 1997-08-12 1999-03-02 Mitsui Chem Inc 酸化防止用包装フィルム
JP2001049433A (ja) 1999-08-02 2001-02-20 Asahi Chem Ind Co Ltd 非晶質炭素膜が被覆された樹脂基体及び成膜方法
US6723431B2 (en) * 2000-01-24 2004-04-20 Exxonmobil Oil Corporation Multilayer metallized polyolefin film
US6649279B2 (en) * 2001-05-30 2003-11-18 Exxonmobil Oil Corporation Monoweb metallized film suitable for direct surface printing
WO2003033255A1 (en) 2001-10-16 2003-04-24 Zeon Corporation Composite molding with adhesive composition layer comprising conjugated diene polymer having cyclic structure, and coating material
JP4210849B2 (ja) 2001-10-22 2009-01-21 日本ゼオン株式会社 加硫接着剤および複合成形体

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072702A (ja) * 1973-10-31 1975-06-16
JPS5239672B2 (ja) * 1974-07-23 1977-10-06
JPS5913237A (ja) * 1982-07-14 1984-01-24 Kuraray Co Ltd フォトレジスト組成物の製造方法
JPS63114636A (ja) * 1986-10-31 1988-05-19 大日本印刷株式会社 金属光沢を施こしたプラスチツク成形品
JPH05221691A (ja) 1992-02-14 1993-08-31 Asahi Glass Co Ltd 硬質カーボン膜の密着性改善方法
JPH1170152A (ja) 1997-06-16 1999-03-16 Mitsui Chem Inc 薬品容器用フィルム
JPH1192935A (ja) 1997-09-19 1999-04-06 Daido Steel Co Ltd 耐摩耗性硬質炭素被膜
JPH11102518A (ja) 1997-09-30 1999-04-13 Kao Corp 磁気記録媒体の製造方法
JPH11246975A (ja) 1998-03-04 1999-09-14 Niigata Institute Of Technology アモルファス炭化水素でコーティングする方法及びその装置
JP2000117881A (ja) 1998-10-20 2000-04-25 Toppan Printing Co Ltd ガスバリア性プラスチック製容器
JP2000272156A (ja) 1999-03-26 2000-10-03 Fuji Photo Film Co Ltd カーボン膜の成膜方法
JP2001180700A (ja) 1999-12-27 2001-07-03 Toyo Seikan Kaisha Ltd 外層の全面に熱転写によりバリア性層を配設したプラスチック容器とその製造方法
JP2001232714A (ja) 2000-02-24 2001-08-28 Hokkai Can Co Ltd Dlc膜および炭素膜コーティングプラスチック容器
JP2001240115A (ja) 2000-02-24 2001-09-04 Mitsubishi Shoji Plast Kk 乾燥固体食品用プラスチック容器
JP2001310412A (ja) 2000-04-28 2001-11-06 Mitsui Chemicals Inc ガスバリアーフィルム
JP2001316489A (ja) 2000-04-28 2001-11-13 Mitsui Chemicals Inc ポリオレフィン系フィルム
JP2002225170A (ja) * 2001-01-30 2002-08-14 Matsushita Electric Ind Co Ltd 気体遮蔽性フィルム、その製造方法およびそれを用いた真空断熱体
JP2003004526A (ja) * 2001-06-18 2003-01-08 Nissha Printing Co Ltd 赤外線透過カバーパネル、赤外線透過カバーパネル用加飾シート
JP2003011255A (ja) * 2001-06-28 2003-01-15 Matsushita Electric Ind Co Ltd 機能性膜とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1586445A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179915A (ja) * 2005-03-23 2012-09-20 Nippon Zeon Co Ltd 酸素吸収性ガスバリアー多層構造体
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
JP5181671B2 (ja) * 2005-03-23 2013-04-10 日本ゼオン株式会社 酸素吸収性ガスバリアー樹脂組成物及びこれを含有してなる酸素吸収性ガスバリアー構造体
JP2006335360A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 酸素吸収性多層チューブ
JP2007008582A (ja) * 2005-05-31 2007-01-18 Nippon Zeon Co Ltd 多層プラスチック容器
JP5136551B2 (ja) * 2007-06-06 2013-02-06 東洋製罐株式会社 生分解性樹脂ボトル及びその製造方法
WO2009022526A1 (ja) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. 蒸着膜を備えた生分解性樹脂容器及び蒸着膜の形成方法
JP5321459B2 (ja) * 2007-08-14 2013-10-23 東洋製罐株式会社 蒸着膜を備えた生分解性樹脂容器及び蒸着膜の形成方法
US8950614B2 (en) 2007-08-14 2015-02-10 Toyo Seikan Kaisha, Ltd. Biodegradable resin container with a vacuum-evaporated film and method of forming a vacuum-evaporated film

Also Published As

Publication number Publication date
EP1586445A1 (en) 2005-10-19
US20060127655A1 (en) 2006-06-15
JP2009078566A (ja) 2009-04-16
JPWO2004065119A1 (ja) 2006-05-18
JP4867982B2 (ja) 2012-02-01
JP4293186B2 (ja) 2009-07-08
US8147953B2 (en) 2012-04-03
EP1586445A4 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4867982B2 (ja) 積層体およびその製造方法
EP0193126B1 (en) Primer composition for olefin resin
US7267887B2 (en) Composite molding with adhesive composition layer comprising conjugated diene polymer having cyclic structure, and coating material
EP0317359B1 (en) Modified polyolefin resin
JP2012500293A (ja) 平らな貼合せシートを製造するための付着助剤としてのシラン変性されたポリオレフィンの使用
JPH03217432A (ja) 熱可塑性樹脂成形体の表面活性化方法
JPH03217433A (ja) 熱可塑性樹脂成形体の表面活性化方法
JPH03217430A (ja) 成形品の表面処理及び塗装方法
US5077082A (en) Method of treating surface of shaped body formed of polypropylene resin
US3783012A (en) Vacuum metallized polyolefins
JP2006328358A (ja) 樹脂成形体、それを用いた積層体および該積層体の製造方法
JP2004292756A (ja) プライマー組成物
CN100548667C (zh) 层合件及其制造方法
JPH0395235A (ja) 樹脂成形体の処理方法および樹脂成形体
JPH0556377B2 (ja)
JPS6049045A (ja) オレフィン系重合体組成物
WO2012063855A1 (ja) 架橋オレフィン系エラストマー
JP2007063356A (ja) 光学基板およびその製造方法
JPH06313068A (ja) オレフィン系重合体組成物およびその製造方法
JPS58154732A (ja) オレフイン系重合体組成物の成形物の塗布方法
JP2023152621A (ja) 積層体
JP2023142912A (ja) 積層体
JPS6264848A (ja) プロピレン単独重合体組成物
JP2023073865A (ja) フィルムおよびフィルムの製造方法
JP3046655B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508080

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006127655

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540377

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2004703496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004703496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048023972

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004703496

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540377

Country of ref document: US