WO2004048265A1 - 高濃度シリカスラリー - Google Patents

高濃度シリカスラリー Download PDF

Info

Publication number
WO2004048265A1
WO2004048265A1 PCT/JP2003/014879 JP0314879W WO2004048265A1 WO 2004048265 A1 WO2004048265 A1 WO 2004048265A1 JP 0314879 W JP0314879 W JP 0314879W WO 2004048265 A1 WO2004048265 A1 WO 2004048265A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
silica
concentration
viscosity
less
Prior art date
Application number
PCT/JP2003/014879
Other languages
English (en)
French (fr)
Inventor
Toshio Morii
Brandl Paul
Original Assignee
Nippon Aerosil Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co., Ltd filed Critical Nippon Aerosil Co., Ltd
Priority to JP2004554999A priority Critical patent/JPWO2004048265A1/ja
Publication of WO2004048265A1 publication Critical patent/WO2004048265A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1415Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water
    • C01B33/1417Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water an aqueous dispersion being obtained
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a high-concentration, low-viscosity 1 "raw silica slurry using a silica powder having a uniform particle size and low cohesiveness.
  • the present invention relates to a polishing composition having a high polishing performance using a silica slurry
  • the silica dispersion slurry of the present invention has a silica powder dispersed in a wide concentration range from a low concentration to a high concentration without sedimentation, and has a low viscosity. Therefore, it is easy to handle, has excellent stability over time, and is suitable for high-speed polishing and rough polishing, and is suitable for chemical polishing of semiconductor materials because of its small amount of impurities.
  • CMP chemical polishing
  • a dispersion slurry of fumed silica / colloidal silica is used (see Japanese Patent Application Laid-Open No. Sho 62-200).
  • primary polishing and secondary polishing are used for polishing silicon wafers. Polishing and finish polishing are required, and the final finished surface must be free of scratches and haze, and metal ions, especially metal ions such as sodium, are polished during polishing of the wafer surface.
  • the present invention solves the above-mentioned problems in the conventional silica slurry, and provides a high-concentration silica slurry having a high viscosity, a low viscosity, and a small change in viscosity with time.
  • the present invention relates to a high-concentration silica slurry having the following constitution and a polishing composition thereof.
  • the ratio (DL / DT) between the average particle diameter (DL) based on the laser diffraction particle size distribution and the average particle diameter (DT) based on TEM images is 1.3 or less, and the average primary particle diameter is 0.08!
  • Silicium powder with the impurity concentration of both sodium and steel 1.Oppm or less, aluminum l.O.ppm or less, and sulfur, nickel, chromium and iron in each 0.5 ppm or less The high-concentration silica slurry according to any one of the above (1) to (3), comprising:
  • the silica slurry of the present invention has a ratio (DL / DT) of the average particle diameter (DL) obtained by laser diffraction particle size distribution to the average particle diameter (DT) obtained by TEM photographing of 0.3 or less, and the average primary particle diameter is 0.08 ⁇ !
  • DL average particle diameter
  • DT average particle diameter
  • the silica powder used in the slurry of the present invention has an average primary particle size of 0.08 ⁇ to 0.8 ⁇ . If the average primary particle size of the silica particles is less than 0.08 ⁇ , the slurry tends to be unstable, and the viscosity tends to change over time and the slurry tends to settle. On the other hand, silica particles having an average primary particle size of more than 0.80 tend to settle in the slurry and cause scratches when used for polishing.
  • the ratio of the average particle diameter (DL) according to the laser diffraction particle size distribution to the average particle diameter (DT) according to the TEM photograph (DL / DT) of the slurry powder used in the slurry of the present invention is 1.3 or less.
  • the TEM image is suitable for measuring the primary particle size, and the average particle size (DT) by the TEM image represents the particle size of the primary particles.
  • the measurement by the laser diffraction particle size distribution is suitable for measuring the particle diameter including the secondary aggregate, and the average particle diameter (DL) by the laser diffraction particle size distribution indicates the particle diameter including the secondary aggregate. Therefore, this ratio (DL / DT) indicates the rate of particle aggregation.
  • silica particles having the above average particle diameter ratio (DL / DT) of more than 1.3 have many secondary aggregates, and it is difficult to obtain a high-concentration and low-viscosity silica slurry.
  • the sily powder of the present invention has a small amount of secondary aggregates, and the secondary aggregates also preferably have an average particle diameter of about 1.0 ⁇ or less. 95% or more of them are distributed in a single peak within a diameter of 1.0 m or less. Are preferred. If the distribution peak of one peak of the silica particles is less than 95% or the average particle size of the aggregated particles within the distribution peak of 95% or more is more than 1.0 m, the slurry is unstable and the viscosity changes with time. Becomes larger.
  • the silica powder used in the slurry of the present invention preferably has an impurity concentration of sodium and potassium of 1.0 ppm or less. Both the sodium and potassium impurities have a concentration of impurities higher than 1. Oppm. Slurry in which silica powder is dispersed can be used for polishing of wafers and other materials. During the polishing, impurity ions are taken into the surface of the wafer and cause contamination, which often causes scratches and haze on the polished surface.
  • the impurity concentration of impurities other than the sodium and the power stream be as low as possible.
  • the amount of aluminum is 1.Oppm or less, and the content of each of sulfur, nickel, chromium, and iron is 0.5ppm or less, and the content of each of sulfur, nickel, and chromium is Is more preferably 0.1 ppm or less.
  • the silica powder having a low impurity concentration and a crushed particle diameter in the above range is, for example, fumed silica produced by a dry method such as a flame hydrolysis method. It is difficult to obtain metal powder impurities having a concentration below the above-mentioned concentration level in the silicon powder produced by the wet method.
  • a silica powder produced by the dry method for example, a silica powder produced by the method described in JP-A-2002-3213 may be used.
  • This production method is a method for producing amorphous silica fine particles by introducing a gaseous silicon compound into a flame and hydrolyzing it. The flame temperature is set to the melting point of silica, and the silica concentration in this flame is 0.25 kg.
  • the silica particles generated are kept for a short time at a high temperature higher than the melting point of silica, and the average particle size (median diameter) is 0.08 to 0.80 ⁇ and the specific surface area is 5 to 30 m 2 / g This is a production method for obtaining amorphous silicon force particles.
  • the silicon compound as a raw material is silicon tetrachloride, trichlorosilane, Chlorosilane, methyltrichlorosilane, etc., which are introduced into the oxyhydrogen flame in a gaseous state and cause a hydrolysis reaction at high temperatures, are used.
  • These gaseous silicon compounds such as silicon tetrachloride are suitable for producing high-purity silicide particles because impurities in the raw material can be easily removed by distillation purification.
  • silica powder with an average particle diameter ratio (DL / DT) and average primary particle diameter within the above ranges it is possible to obtain a slurry with a silica concentration of 50% or more but a viscosity of 100 niPa's or less. , And little change in viscosity over time! / A low viscosity silica slurry can be obtained.
  • the silica concentration is 70% or more and the initial viscosity is 80 OmPa's or less, and the ratio of the viscosity A at the time of preparing the slurry to the viscosity B after one month (B / A; A low-viscosity silica slurry having an aging viscosity ratio of 1.5 or less can be obtained. If the viscosity over time (BZA) force is higher than 1.5, the viscosity change over time is large and the slurry is unstable.
  • the silica concentration of the slurry is preferably 80% or less. If the silica concentration is higher than 80%, the viscosity becomes too high and gelation and sedimentation are likely to occur. In addition, the stability over time of the slurry is lowered, for example, the gelling drips easily occur due to daily temperature changes and differences in transportation and storage conditions. Further, if the viscosity of the slurry is higher than 100 OmPa's, there is a problem in handleability. It is desirable that the solvent in which the silica powder is dispersed be a polar solvent such as distilled water. The viscosity of the solvent is suitably 1 OmPa's or less.
  • the silica slurry of the present invention is within the above-mentioned impurity concentration range and within the above-mentioned range of the average particle diameter ratio (DL / DT) and the average primary particle diameter, two or more kinds of particles having different particle diameters are used.
  • Silica powder can be used.
  • other metal oxide powders such as alumina particles, composite oxide particles, and doped materials can be contained together with the silica powder. It is necessary that the amount of the metal oxide powder is within a range that does not impair the above characteristics of the silica slurry of the present invention. By including these metal oxide powders, polishing according to the purpose becomes possible. ⁇ The invention's effect ⁇
  • the silica slurry of the present invention uses a silica powder whose average particle diameter ratio (DL / DT) and average primary particle diameter are adjusted within a certain range to obtain a silica concentration of not less than 5 Owt% and a viscosity of 100 O It is a high-concentration and low-viscosity silica slurry of mPa's or less.
  • the slurry strength is 70 wt% or more to 80 wt% or less, and the viscosity at the time of preparing a slurry is 80 O mPa's.
  • the following is a high-concentration, low-viscosity silica slurry with a viscosity ratio with time (B / A) of 1.5 or less.
  • the slurry viscosity is low and the viscosity changes with time are small. It is a slurry.
  • the impurity concentration of each of sodium and potassium is 1.0 ppm or less
  • the aluminum content is 1.0 ppm or less
  • the sulfur, nickel, chromium, and iron contents are all 0.5 ppm or less. It uses silica powder with few impurities.
  • the high-concentration silica slurry of the present invention is suitable for an abrasive, and has a relatively high polishing rate and excellent polishing accuracy in chemical polishing (CMP) and the like.
  • CMP chemical polishing
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below by way of examples and comparative examples.
  • the viscosity was measured using a RheoStress meter manufactured by HAAK E, and the particle size was measured using a laser-scattering particle size distribution meter manufactured by HORIBA.
  • the viscosity is the value at a shear rate of 100 / s
  • the time-dependent viscosity is the viscosity one month after the slurry was prepared.
  • fumed silica with the impurity concentration shown in Table 1 (product name: VP-0X10, specific surface area: 10 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), add this fumed silica to distilled water, and stir and disperse to form a slurry.
  • the pH was adjusted to 9.2 to prepare a slurry having a silica concentration of 80%.
  • the viscosity of this slurry and the viscosity over time were measured. The results are shown in Table 1 together with the slurry conditions. .
  • fumed silica with the impurity concentration shown in Table 1 (product name: VP-0X30, specific surface area: 30 m 2 / g, product of Aerozir Co., Ltd.), add this fumed silica to distilled water, stir and disperse to form a slurry. The pH was adjusted to 8.9 to prepare a slurry having a silica concentration of 85%. The viscosity of this slurry and the viscosity over time were measured. Table 1 shows the results together with the slurry conditions.
  • a 70% slurry concentration slurry was prepared in the same manner except that a powder slurry produced by a wet process was used instead of the colloidal slurry force. The viscosity of this slurry and the viscosity ratio with time were measured. The results are shown in Table 1 together with the slurry conditions (Comparative Example 2).
  • a silica slurry was prepared in the same manner as in Example 1 except that fumed silica having an average particle diameter ratio (DL / DT) of 5.5 and an average primary particle diameter of 0.012 ⁇ was used. The concentration, viscosity and temporal viscosity ratio of this slurry were measured. The results are shown together with the slurry conditions.
  • the silica slurries of Examples 1 and 2 according to the present invention had an initial viscosity of 70 OmPa's and 80 OmPa's when the slurry was prepared, while the silica concentration was 75% or more. In both cases, the viscosity of the slurry is low. Furthermore, the slurry viscosities after one month are 73 OraPa-s and 85 OraPa's, respectively. Therefore, the viscosity change with time is small and stable. On the other hand, in Comparative Example 1, the average primary particle diameter was too small, and the impurity concentration was high.
  • Comparative Example 2 the average particle diameter ratio (DL / DT) is slightly larger, and the impurity concentration is much higher. Therefore, Comparative Examples 1 and 2 are not suitable for an abrasive. Further, in Comparative Example 3, the average particle diameter ratio (DL / DT) was considerably larger than the range of the present invention, and the average primary particle diameter was small, so that the slurry viscosity was 300 OmPa's despite the low silica concentration of 10%. That's a lot more. table 1
  • DL is the average particle diameter based on the racer diffraction particle size distribution
  • DT is the average particle diameter based on TEM images.
  • DL / DT is the ratio of average particle diameter, and the unit of viscosity is [mPa's]
  • the silica-dispersed slurry of the present invention is a slurry using silica powder having a small amount of impurities, having a high concentration, a low viscosity, and a small change in viscosity with time. Therefore, the slurry of the present invention is suitable as a polishing composition for silicon wafers and the like, and when used for CMP, it is possible to obtain excellent effects in both the polishing rate and the polishing accuracy.

Abstract

レーザー回折粒度分布による平均粒子径(DL)とTEM撮影による平均粒子径(DT)の比(DL/DT)が1.3以下であって、平均一次粒子径が0.08μm~0.8μmのシリカ粉末を溶媒に分散したシリカ濃度50wt%以上、および粘度1000mPa・s以下であることを特徴とし、好ましくは、ナトリウムおよびカリウムの不純物濃度が何れも1.0ppm以下、アルミニウム量1.0ppm以下、硫黄、ニッケル、クロムおよび鉄の各含有量が何れも0.5ppm以下であるシリカ粉末を用いたシリカ濃度70wt%以上~80wt%以下であってスラリー調製時の粘度800mPa・s以下の高濃度シリカスラリー。

Description

明 細 書 高濃度シリカスラリー 技術分野 本発明は、 均一な粒子径であって凝集性の低いシリカ粉末を用いることによって 高濃度でありながら低粘 1"生のシリカスラリーとしたものであり、 このシリカスラリ 一を用いた研磨性能の高い研磨組成物に関する。 本発明のシリカ分散スラリーは低 濃度から高濃度に至る広い濃度範囲でシリカ粉末が沈降せずに分散しており、 しか も低粘性であるので、 取り扱い性が良く、 また経時安定性に優れ、 高速研磨や粗研 磨に適する。 さらに、 不純物が少ないので半導体材料の化学研磨に適する。 また、 高濃度で取り极いできることから安価に供給できる利点を有する。 背景技術 化学的研磨(CMP)において、 フュームドシリカゃコロイダルシリカの分散液スラ リーが用いられている (特開昭 6 2 - 3 0 3 3 3号公報、 特開平 0 5— 1 5 4 7 6 0号公報、 特開 2 0 0 1— 3 4 2 4 5 5号公報)。 一般にシリコンウェハめ研磨は 一次研磨、 二次研磨、 および仕上げ研磨に分けられ、 最後の仕上がり表面の状況は スクラッチやヘイズがないものが求められている。 さらには、 ウェハ表面の研磨中 に金属イオン、 特にナトリウムのような金属イオンが基板表層に取り込まれて金属 イオン汚染を生じることがないような高純度の研磨スラリーが強く求められている。 シリカ粉末分散液について、 金属汚染が少なく、 研磨精度と速度に優れた研磨液 を得るには、 高純度のシリカ粉末を用いると共にシリカ粉末が高濃度であって分散 性が良く、 力つ低粘度で経時安定性に優れたスラリーであることが必要である。 と ころが、 従来のシリ力分散スラリーのシリ力濃度は 40 %程度が限界であり、 シリ 力濃度がこれより髙いと適度な流動性を失うものが多い。 また、 従来の分散液はス ラリーの粘度における経時安定性が低 、と云う問題がある。 特に微細な粒子径のシ リカ粉末にこの傾向が強い。 具体的には例えば平均一次粒子径 7〜 5 Onmのフュー ムドシリカを用いた従来のスラリーは、 スラリー中でシリカ粉末が凝集体として存 在する傾向が強いため、 研磨時の粒子径が均一ではなく、 粘度の経時変化も大きい。 本発明は、 従来のシリカスラリーにおける上記問題を解決したものであり、 高濃 度でありながら粘性が低く、 しかも粘度の経時変化が少ない高濃度シリカスラリー を提供するものである。 発明の開示 本発明は以下の構成からなる高濃度シリカスラリーとその研磨組成物に関する。
(1) レーザー回折粒度分布による平均粒子径(DL)と TEM撮影による平均粒子 径(DT)の比(DL/DT)が 1. 3以下であって、 平均一次粒子径が 0. 0 8 !〜 0. 8 ^ mのシリ力粉末を溶媒に分散したシリ力濃度 5 0 wt%以上、 およぴ粘度 1 000 mPa · s以下であることを特徴とする高濃度シリカスラリー。
(2) シリカ濃度 70 wt%以上〜 80 wt%以下であり、 スラリ一調製時の粘度 8 0 0 mPa' s以下である上記 (1)に記載する高濃度シリカスラリー。
(3) スラリー調製時の粘度(A)と 1月経過時の粘度(B)の比(B/A)が 1. 5以下 である上記 (1)または (2)に記載する高濃度シリカスラリー。
(4) ナトリゥムおよび力リゥムの不純物濃度が何れも 1. Oppm以下、 アルミユウ ム量 l. Oppm以下、 硫黄、 ニッケル、 クロムおよび鉄の各含有量が何れも 0. 5 ppm 以下であるシリ力粉末を用いた上記 (1)〜 (3)の何れかに記載する高濃度シリカスラ リー。
(5) 上記 (1)〜 の何れか記載する高濃度シリカスラリ一を用いた研磨組成物。 〔発明の具体的な説明〕
以下、 本発明を実施形態に基づいて具体的に説明する。 なお、 %は特に示さない 限り重量%である。
本発明のシリカスラリ一は、 レーザー回折粒度分布による平均粒子径(DL)と T EM撮影による平均粒子径(DT)の比(DL/DT)力 .3以下であって、 平均一次粒 子径が 0.08 μη!〜 0.8 mであるシリ力粉末を溶媒に分散したシリ力濃度 50 w t%以上、 および粘度 100 OmPa's以下であることを特: ί敷とする高濃度シリカス ラリーである。
本発明のスラリーに用いるシリカ粉末は、 平均一次粒子径が 0.08 ίΐη〜0.8 μπιのものである。 シリカ粒子の平均一次粒子径が 0.08 μπιより小さいものは スラリ一が不安定になる傾向があり、 粘度の経時変化やスラリ一の沈降を生じやす レヽ。 一方、 平均一次粒子径が 0.80 より大きいシリカ粒子は、 スラリー中で 沈降を生じやすく、 研磨に用いた場合にスクラッチ等の原因となる。
さらに本発明のスラリ一に用いるシリ力粉末は、 レーザー回折粒度分布による平 均粒子径(DL)と TEM撮影による平均粒子径(DT)の比(DL/DT)が 1.3以下のも のである。 T EM撮影は一次粒子径の測定に適しており、 T EM撮影による平均粒 子径 (DT) は一次粒子の粒子径を表す。 一方、 レーザー回折粒度分布による測定 は二次凝集体を含む粒子径の測定に適しており、 レーザー回折粒度分布による平均 粒子径 (DL) は二次凝集体を含む粒子径を表す。 従って、 この比 (DL/DT) は粒 子の凝集の割合を示している。 具体的には、 上記平均粒子径の比 (DL/DT) が 1. 3を上回るシリカ粒子は二次凝集体が多く、 高濃度かつ低粘性のシリカスラリ一を 得るのが難しい。
このように本発明のシリ力粉末は二次凝集体が少ないものであり、 さらに二次凝 集体についても、 その平均粒子径が概ね 1.0 μπι以下のものが好ましく、 かっこの 二次凝集粒子は粒子径 1.0 m以下の範囲にその 95 %以上が一山に分布してい るものが好ましい。 シリカ粒子の一山の分布ピークが 95%より少なく、 またはこ の 95 %以上の分布ピーク内にある凝集粒子の平均粒子径が 1.0 mより大きい と、 スラリーが不安定であり、 粘度の経時変化が大きくなる。
また、 本発明のスラリーに用いるシリカ粉末は、 ナトリウムおよびカリウムの不 純物濃度が何れも 1. Oppm以下のものが好ましい。 ナトリゥムおよぴカリゥムの不 純物濃度が何れも 1. Oppmより高いシリカ粉末を分散させたスラリーは、 これをゥ ェハーなどの研磨に用いると、 シリカ粉末に含まれているナトリウムやカリウムな どの不純物ィオンが研磨中にウェハーの表層に取り込まれて汚染を生じ、 研磨面に スクラッチゃヘイズを生じることが多レ、。
金属汚染を防止するには、 ナトリゥムおよび力リゥム以外の不純物についても、 その不純物濃度はできるだけ少ないものが好ましい。 具体的には、 例えば、 アルミ ニゥム量が 1. Oppm以下であって、 硫黄、 ニッケル、 クロム、 鉄の各含有量が何れ も 0.5ppm以下のものが好ましく、 硫黄、 ニッケル、 クロムの各含有量が何れも 0. lppm以下であるのがより好ましい。
不純物濃度が少なく、 力つ粒子径が上記範囲のシリカ粉末は、 例えば火炎加水分 解法などの乾式法で製造したフュームドシリカなどである。 湿式法によつて製造し たシリ力粉末は金属不純物が上記濃度水準以下のものを得るのが難い。 乾式法で製 造したシリカ粉末としては、 例えば特開 2002-3213号公報に記載されてい る方法によつて製造したものを用いるとよい。 本製造方法はガス状の珪素化合物を 火炎に導いて加水分解することによって非晶質シリカ微粒子を製造する方法であり、 火炎温度をシリカの融点以上とし、 この火炎中のシリカ濃度を 0. 25kg/Nm3以上 に保って生成したシリカ粒子をシリカの融点以上の高温下に短時間滞留させ、 平均 粒径 (メジァン径) 0.08〜0. 80 μπιおよぴ比表面積 5〜 30 m2/gの非晶質シ リ力粒子を得る製造方法である。
上記製造方法において、 原料の珪素化合物は四塩化珪素、 トリクロロシラン、 ジ クロロシラン、 メチルトリクロロシラン等のガス状で酸水素炎中に導入され、 高温 下で加水分解反応を生じるものが用いられる。 これらの四塩化珪素等のガス状珪素 化合物は蒸留精製によつて原料中の不純物を容易に除去できるので高純度のシリ力 粒子を製造するのに適している。
平均粒子径比 (DL/DT) および平均一次粒子径が上記範囲内のシリカ粉末を用 いることによって、 シリカ濃度 5 0 %以上の高濃度スラリーでありながら、 粘度 1 0 0 0 niPa' s以下、 かつ粘性の経時変化が少な!/、低粘性シリカスラリ一を得ること ができる。 具体的には、 例えば、 シリカ濃度 7 0 %以上であって初期粘度 8 0 O m Pa' s以下、 スラリー調製時の粘度 Aと 1月経過時の粘度 Bの比 (B /A、 以下、 経 時粘度比と云う) が 1 . 5以下の低粘性シリカスラリ一を得ることができる。 経時 粘度比 (BZA) 力 1 . 5より高いものは経時的な粘度変ィ匕が大きく、 スラリーが 不安定である。
スラリーのシリカ濃度は 8 0 %以下が好ましい。 シリカ濃度が 8 0 %より高いと 粘度が高くなり過ぎてゲル化や沈降を生じやすくなる。 また、 日常の温度変化や運 搬 '保存条件等の相違によって容易にゲルィ匕ゃ沈澱を生じるなど、 スラリーの経時 安定性が低下する。 さらにスラリーの粘度が 1 0 0 O mPa' sより高いと取り扱い性 に問題が生じる。 なお、 シリカ粉末を分散する溶媒は蒸留水などの極性溶媒が望ま しい。 溶媒の粘度は 1 O mPa' s以下が適当である。
本発明のシリカスラリーは、 上記不純物濃度の範囲内であり、 かつ上記平均粒子 径の比(DL/DT)およぴ平均一次粒子径の範囲内であれば、 粒子径が異なる 2種類 以上のシリカ粉末を用いることができる。 さらに、 シリカ粉末と共に他の金属酸化 物粉末、 例えばアルミナ粒子、 複合酸化物粒子、 ドープドマテリアルなどを含むこ とができる。 この金属酸化物粉末の量は本発明のシリカスラリーの上記特徴を損な わなレ、範囲であることが必要である。 これらの金属酸化物粉末を含むことによって 目的に応じた研磨が可能になる。 〔発明の効果〕
本発明のシリカスラリ一は、 平均粒子径の比(DL/DT)および平均一次粒子径を 一定の範囲内に調整したシリカ粉末を用いることによって、 シリカ濃度 5 Owt%以 上および粘度 1 0 0 O mPa' s以下の高濃度 ·低粘性のシリカスラリーとしたもので あり、 好ましくは、 シリ力濃度 7 0 wt%以上〜 8 0 wt%以下、 スラリ一調製時の粘 度 8 0 O mPa' s以下、 経時粘度比(B /A) 1 . 5以下の高濃度 ·低粘性のシリカスラ リーとしたものであり、 シリカ濃度が高いにもかかわらずスラリー粘度が低く、 か つ粘度の経時変化も小さいスラリーである。 さらに好ましくは、 ナトリウムおよび カリウムの不純物濃度が何れも 1 . O ppm以下であって、 アルミニウム量 1 . O ppm以 下、 硫黄、 ニッケル、 クロムおよび鉄の各含有量が何れも 0 . 5 ppm以下の不純物が 少ないシリカ粉末を用いたものである。 従って、 本発明の高濃度シリカスラリーは 研磨剤に適しており、 化学的研磨(CMP)などにおいて、 研磨速度が比較的速く、 しかも研磨精度にも優れる。 発明を実施するための最良の形態 ' 本発明を実施例おょぴ比較例によって以下に具体的に示す。 なお、 各例において 粘度は HAAK E社の RheoStress計を用いて測定し、 粒子径は H O R I B A社のレ 一ザ一散乱式粒度分布計を用いて測定した。 粘度は 100/sのせん断速度における値 であり、 経時変化粘度はスラリ一調製時から 1ヶ月経過後の粘度である。
〔実施例 1〕
表 1に示す不純物濃度のフュームドシリカ (商品名 VP- 0X30、 比表面積 30ra2/g、日 本ァエロジル社製品) を用い、 このフュームドシリカを蒸留水に添加し、 攪拌分散 させてスラリー化し、 p H 8 . 9に調整してシリカ濃度 7 5 %のスラリーを調製し た。 このスラリーの粘度と経時粘度比を測定した。 この結果をスラリー化条件と共 に表 1に示した。 〔実施例 2〕
表 1に示す不純物濃度のフュームドシリカ (商品名 VP- 0X10、 比表面積 10m2/g、 日本ァエロジル社製品) を用い、 このフュームドシリカを蒸留水に添加し、 攪拌分 散させてスラリー化し、 pH9.2に調整してシリカ濃度 80%のスラリーを調製 した。 このスラリーの粘度と経時粘度比を測定した。 この結果をスラリー化条件と 共に表 1に示した。 .
〔試験例〕
表 1に示す不純物濃度のフュームドシリカ (商品名 VP- 0X30、 比表面積 30m2/g、曰 本ァエロジル社製品) を用い、 このフュームドシリカを蒸留水に添加し、 攪拌分散 させてスラリー化し、 pH 8. 9に調整し、 シリカ濃度 85%のスラリーを調製し た。 このスラリーの粘度と経時粘度比を測定した。 この結果をスラリー化条件と共 に表 1に示した。
〔比較例〕
蒸留水に市販のコロイダルシリカを添加し、 攪拌分散させてスラリー化し、 pH 9.2に調整し、 シリカ濃度 70%のスラリーを調製した。 このスラリーの粘度と 経時粘度比を測定した。 この結果をスラリー化条件と共に表 1に示した (比較例 1)。
コロイダルシリ力に代えて湿式法によつて製造したシリ力粉末を用いた以外は同 様にしてシリ力濃度 70 %のスラリ一を調製した。 このスラリ一の粘度と経時粘度 比とを測定した。 この結果をスラリー化条件と共に表 1に示した (比較例 2)。 平均粒子径の比 (DL/DT) 5.5、 平均一次粒子径 0.012 μηιのフュームドシ リカを用いた他は実施例 1と同様にしてシリカスラリーを調製した。 このスラリー の濃度、 粘度、 および経時粘度比を測定した。 この結果をスラリー化条件と共に表
1に示した (比較例 3)。
〔結果〕 表 1に示すように、 本発明に係る実施例 1、 2のシリカスラリーはシリカ濃度が 何れも 75 %以上でありながら、 スラリ一調製時の初期粘度は各々 70 OmPa' s、 80 OmPa'sであり、 何れもスラリーの粘性が低い。 さらに 1月経過時のスラリー 粘度は各々 73 OraPa-s, 85 OraPa'sであり、 従って経時粘度変化が小さく安定で ある。 一方、 比較例 1は平均一次粒子径が小さすぎ、 また不純物濃度も高い。 また、 比較例 2は平均粒子径比 (DL/DT) がやや大きいうえに不純物濃度が格段に高い。 従って、 比較例 1および 2は研磨剤に適さない。 さらに、 比較例 3は本発明の範囲 よりも平均粒子径比 (DL/DT) がかなり大きく、 平均一次粒子径が小さいのでシ リカ濃度が 10%と低いにもかかわらず、 スラリー粘度が 300 OmPa's以上と格 段 ίし r¾い。 表 1
Figure imgf000009_0001
(注) DLはレーサー回折粒度分布による平均粒子径、 DTは TEM撮影による平均粒子径
DL/DTは平均粒子径の比、 粘度の単位は 〔mPa's〕 ·
(*)は本発明の好ましい範囲を外れるもの 産業上の利用可能性
本発明のシリカ分散スラリーは、 不純物の少ないシリカ粉末を用い、 高濃度であ りながら粘性が低く、 しかも粘度の経時変化が少ないスラリーである。 従って、 本 発明のシリ力分散スラリ一はシリコンウェハー等の研磨組成物として好適であり、 CMPに用いた際に、 研磨速度と研磨精度の両方の性能に優れた効果を得ることが できる。

Claims

1. レーザー回折粒度分布による平均粒子径(DL)と TEM撮影による平均粒子 径(DT)の比(DL/DざT青)が 1. 3以下であって、 平均一次粒子径が 0.08 !〜 0.8 Aimのシリカ粉末を溶媒に分散したシリカ濃度 5 Owt%以上、 および粘度 1000 の
mPa's以下であることを特徴とする高濃度シリカスラリー。
2. シリカ濃度 70 wt%以上〜 80 wt%以下であり、 スラリ一調製時の粘度 80 囲
0 mPa's以下である請求の範囲第 1項に記載する高濃度シリカスラリ一。
3. スラリー調製時の粘度(A)と 1月経過時の粘度(B)の比(B/A)が 1. 5以下 である請求の範囲第 1項または第 2項に記載する高濃度シリカスラリー。
4. ナトリウムおよびカリウムの不純物濃度が何れも 1.0Ppm以下、 アルミユウ ム量 1. Oppm以下、 硫黄、 ニッケル、 クロムおよび鉄の各含有量が何れも 0. 5ppm 以下であるシリカ粉末を用いた請求の範囲第 1項から第 3項の何れかに記載する高 濃度シリカスラリー。
5. 請求項の範囲第 1項から第 4項の何れ力記載する高濃度シリカスラリ一を用 いた研磨組成物。
PCT/JP2003/014879 2002-11-22 2003-11-21 高濃度シリカスラリー WO2004048265A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004554999A JPWO2004048265A1 (ja) 2002-11-22 2003-11-21 高濃度シリカスラリー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-339402 2002-11-22
JP2002339402 2002-11-22

Publications (1)

Publication Number Publication Date
WO2004048265A1 true WO2004048265A1 (ja) 2004-06-10

Family

ID=32212141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014879 WO2004048265A1 (ja) 2002-11-22 2003-11-21 高濃度シリカスラリー

Country Status (8)

Country Link
US (1) US7192461B2 (ja)
EP (1) EP1422277B1 (ja)
JP (1) JPWO2004048265A1 (ja)
KR (1) KR100688300B1 (ja)
CN (1) CN1328163C (ja)
DE (1) DE60311053T2 (ja)
TW (1) TW200420517A (ja)
WO (1) WO2004048265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144536A (ja) * 2005-11-25 2007-06-14 Kao Corp 基板の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263241C (en) * 1996-09-30 2004-11-16 Masato Yoshida Cerium oxide abrasive and method of abrading substrates
JPH11181403A (ja) 1997-12-18 1999-07-06 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
DE102006046619A1 (de) * 2006-09-29 2008-04-03 Heraeus Quarzglas Gmbh & Co. Kg Streichfähiger SiO2-Schlicker für die Herstellung von Quarzglas, Verfahren zur Herstellung von Quarzglas unter Einsatz des Schlickers
US20110177623A1 (en) * 2010-01-15 2011-07-21 Confluense Llc Active Tribology Management of CMP Polishing Material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152134A (ja) * 1999-11-22 2001-06-05 Speedfam Co Ltd 酸化物単結晶ウェーハ用研磨用組成物及び酸化物単結晶ウェーハの研磨方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673104A (en) * 1969-04-28 1972-06-27 Nalco Chemical Co Method of preparing silica sols containing large particle size silica
US4588421A (en) * 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
JPS6230333A (ja) 1985-05-20 1987-02-09 ナルコ ケミカル カンパニ− シリコンウエ−ハの研磨方法及び組成物
US5030286A (en) * 1988-09-22 1991-07-09 Ppg Industries, Inc. High solids aqueous silica slurry
JPH05154760A (ja) 1991-12-02 1993-06-22 Fujimi Inkooporeetetsudo:Kk シリコンウエーハの研磨用組成物及び研磨方法
KR19990023544A (ko) * 1997-08-19 1999-03-25 마쯔모또 에이찌 무기 입자의 수성 분산체와 그의 제조 방법
JPH11349925A (ja) * 1998-06-05 1999-12-21 Fujimi Inc エッジポリッシング用組成物
JP4500380B2 (ja) 1999-08-11 2010-07-14 株式会社トクヤマ ヒュームドシリカスラリーの製造方法
DE19943103A1 (de) * 1999-09-09 2001-03-15 Wacker Chemie Gmbh Hochgefüllte SiO2-Dispersion, Verfahren zu ihrer Herstellung und Verwendung
WO2001032799A1 (en) * 1999-11-04 2001-05-10 Nanogram Corporation Particle dispersions
JP4156175B2 (ja) 2000-05-31 2008-09-24 山口精研工業株式会社 タンタル酸リチウム/ニオブ酸リチウム単結晶材料用精密研磨組成物
JP4789080B2 (ja) * 2000-06-20 2011-10-05 日本アエロジル株式会社 非晶質微細シリカ粒子の製造方法
US6740589B2 (en) * 2000-11-30 2004-05-25 Showa Denko Kabushiki Kaisha Composition for polishing semiconductor wafer, semiconductor circuit wafer, and method for producing the same
DE10065027A1 (de) * 2000-12-23 2002-07-04 Degussa Wäßrige Dispersion, Verfahren zu deren Herstellung und Verwendung
US6857824B2 (en) * 2001-10-18 2005-02-22 Akzo Nobel N.V. Sealing composition and its use
JP3965497B2 (ja) * 2001-12-28 2007-08-29 日本アエロジル株式会社 低増粘性フュームドシリカおよびそのスラリー
US7544726B2 (en) * 2002-10-14 2009-06-09 Akzo Nobel N.V. Colloidal silica composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152134A (ja) * 1999-11-22 2001-06-05 Speedfam Co Ltd 酸化物単結晶ウェーハ用研磨用組成物及び酸化物単結晶ウェーハの研磨方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144536A (ja) * 2005-11-25 2007-06-14 Kao Corp 基板の製造方法
JP4640981B2 (ja) * 2005-11-25 2011-03-02 花王株式会社 基板の製造方法

Also Published As

Publication number Publication date
JPWO2004048265A1 (ja) 2006-03-23
CN1328163C (zh) 2007-07-25
EP1422277A1 (en) 2004-05-26
DE60311053T2 (de) 2007-11-08
KR100688300B1 (ko) 2007-03-02
DE60311053D1 (de) 2007-02-22
CN1711216A (zh) 2005-12-21
US20040129176A1 (en) 2004-07-08
KR20050086527A (ko) 2005-08-30
EP1422277B1 (en) 2007-01-10
US7192461B2 (en) 2007-03-20
TW200420517A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
JP3721497B2 (ja) 研磨用組成物の製造方法
JP3828011B2 (ja) シリカ水性分散液、その製造方法およびその使用
JP6803823B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
US5116535A (en) Aqueous colloidal dispersion of fumed silica without a stabilizer
JP5495508B2 (ja) 研磨用粒子分散液およびその製造方法
JPH09132770A (ja) 研磨材、その製造方法及び研磨方法
JPH10298537A (ja) 研磨材、その製造方法、及び半導体装置の製造方法
JP2002332476A (ja) ケイ素−アルミニウム−混合酸化物粉末を含有する水性分散液、その製造方法並びにその使用
JP4105838B2 (ja) 研磨剤及び研磨方法
JP2011104694A (ja) 無機酸化物微粒子分散液、研磨用粒子分散液及び研磨用組成物
WO2012036087A1 (ja) 研磨剤および研磨方法
JP2004203638A (ja) 落花生様双子型コロイダルシリカ粒子およびその製造方法
WO2004048265A1 (ja) 高濃度シリカスラリー
JP2015086102A (ja) シリカ粒子の製造方法および該シリカ粒子を含む研磨剤
JP2012116734A (ja) 結晶性シリカゾルおよびその製造方法
JP2019089670A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP5574702B2 (ja) 有機粒子とシリカ粒子の凝集体からなる研磨用粒子分散液およびその製造方法
TW201623557A (zh) 一種化學機械拋光液及其應用
JP3754986B2 (ja) 研磨剤用組成物およびその調製方法
US20030113251A1 (en) Method for preparing shape-changed nanosize colloidal silica
JP4291665B2 (ja) 珪酸質材料用研磨剤組成物およびそれを用いた研磨方法
JP7117225B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP5421006B2 (ja) 粒子連結型シリカゾルおよびその製造方法
JP2013177617A (ja) 研磨用シリカゾルおよび研磨用組成物
JP2003342554A (ja) 研磨組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG

WWE Wipo information: entry into national phase

Ref document number: 1020057008415

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A34414

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004554999

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057008415

Country of ref document: KR