WO2016106766A1 - 一种化学机械抛光液及其应用 - Google Patents

一种化学机械抛光液及其应用 Download PDF

Info

Publication number
WO2016106766A1
WO2016106766A1 PCT/CN2015/000899 CN2015000899W WO2016106766A1 WO 2016106766 A1 WO2016106766 A1 WO 2016106766A1 CN 2015000899 W CN2015000899 W CN 2015000899W WO 2016106766 A1 WO2016106766 A1 WO 2016106766A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
chemical mechanical
mechanical polishing
liquid according
acid
Prior art date
Application number
PCT/CN2015/000899
Other languages
English (en)
French (fr)
Inventor
高嫄
荆建芬
张建
蔡鑫元
邱腾飞
王雨春
Original Assignee
高嫄
荆建芬
张建
蔡鑫元
邱腾飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高嫄, 荆建芬, 张建, 蔡鑫元, 邱腾飞 filed Critical 高嫄
Publication of WO2016106766A1 publication Critical patent/WO2016106766A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention relates to a chemical mechanical polishing liquid and an application thereof, in particular to a chemical mechanical polishing liquid for improving the polishing rate of silicon dioxide and an application thereof.
  • CMP chemical mechanical polishing
  • CMP Chemical mechanical polishing
  • It usually consists of a polishing table with a polishing pad and a polishing head for carrying the chip.
  • the polishing head holds the chip and then presses the front side of the chip against the polishing pad.
  • the polishing head moves linearly on the polishing pad or in the same direction of motion as the polishing table.
  • the slurry containing the abrasive particles is dropped onto the polishing pad and laid flat on the polishing pad by centrifugation.
  • the surface of the chip achieves global planarization under both mechanical and chemical effects.
  • the chemical mechanical polishing liquid used is mainly classified into an acidic and an alkaline slurry.
  • the stability of the alkaline slurry is relatively good, but there is no suitable oxidizing agent, and the problem of surface cloud point and slight scratching is easily caused during the polishing process.
  • Acidic pastes have shown certain advantages in this regard. It can achieve a higher polishing rate with lower abrasive particles.
  • the size of the abrasive particles in the acid slurry gradually grows under the action of the chemical components in the slurry as the storage time increases. When the particle size is larger than 120 nm, sedimentation stratification and the like may occur, which seriously affects the polishing quality and causes product failure. So control the growth of abrasive particles and extend the service life. It is a problem that the acid slurry is eager to solve.
  • abrasive particles used in chemical mechanical polishing fluids typically employ silica, including colloidal silica and fumed silica. They are solids themselves, but they are uniformly dispersed in aqueous solution, do not settle, and can even maintain long-term stability of 1 to 3 years.
  • the stability of the abrasive particles in the aqueous phase can be explained by the electric double layer theory - since each particle surface carries the same charge, they repel each other and do not agglomerate.
  • the Stern model when the colloidal ions move, a Zeta potential is generated on the shear plane.
  • Zeta potential is an important indicator of colloidal stability because the stability of the colloid is closely related to the electrostatic repulsion between the particles.
  • the decrease in Zeta potential reduces the electrostatic repulsion, resulting in an attractive van der Waals attraction between the particles, causing colloid accumulation and settling.
  • the level of ionic strength is an important factor affecting the Zeta potential.
  • the stability of the colloid is affected by many other factors in addition to the zeta potential. For example, due to the influence of temperature, at higher temperatures, the irregular thermal motion of the particles is intensified, and the probability of collision with each other increases, which accelerates aggregation; for example, it is more stable than neutral in strong alkaline and strong acidic conditions due to pH. Among them, the alkaline is the most stable, and the pH range of 4-7 is the most unstable; for example, some surfactants can act as a dispersing agent to improve the stability, while some surfactants reduce the nanometer by the surfactant type. The surface charge of the particles reduces electrostatic repulsion and accelerates sedimentation.
  • anionic surfactants contribute to the stability of the nanoparticles, while cationic surfactants tend to reduce stability; for example, depending on the molecular weight of the additives, too long long chains of polymers sometimes entangle Nanoparticles increase the viscosity of the dispersion and accelerate particle agglomeration. Therefore, the stability of silica sol is affected by many factors.
  • a polishing liquid containing a silane coupling agent and a polishing method are disclosed in U.S. Patent No. 6, 142, 706 and U.S. Patent No. 09,609, 882.
  • the silane coupling agent serves to change the polishing speed of various materials and to improve the surface roughness.
  • These two patents have not found that at high ionic strength (>0.1 mol/Kg), the silane coupling agent can act to counteract high ionic strength and stabilize the nanoparticles. Since it is usually contained in a very high ionic strength (for example, containing more than >0.2 mol/Kg of potassium ion), the electric double layer of the silica sol particles is greatly compressed, the electrostatic repulsion force is reduced, and gelation and precipitation are rapidly formed.
  • the technical problem to be solved by the present invention is how to increase the polishing rate of silica and maintain the stability and dispersion of the abrasive particles in the chemical mechanical polishing liquid at high ionic strength.
  • the present invention discloses a method in which a silicon-containing organic compound is used, and there is a significant synergistic effect between the silicon-containing compound and other complexing agents, which greatly increases the polishing rate of the silica.
  • a silicon-containing organic compound is used, and there is a significant synergistic effect between the silicon-containing compound and other complexing agents, which greatly increases the polishing rate of the silica.
  • a chemical mechanical polishing liquid comprising a silicon-containing compound, an electrolyte ion having an ionic strength of greater than or equal to 0.1 mol/Kg, a complexing agent, silica abrasive particles, and water
  • the silicon-containing organic compound can be represented by the following formula:
  • R is a non-hydrolyzable substituent, usually an alkyl group, having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, of which 2 to 10 carbon atoms are most preferred; The carbon atoms can continue to be replaced by other atoms such as oxygen, nitrogen, sulfur, phosphine, halogen, silicon, and the like.
  • D is an organic functional group attached to R, and may be an amino group, a ureido group, a thiol group, an epoxy group, an acryl group or the like.
  • A, B are the same or different hydrolyzable substituents or hydroxyl groups; C may be a hydrolyzable group or a hydroxyl group, or may be a non-hydrolyzable alkyl substituent; A, B and C are usually a chlorine group, a methoxy group The group, ethoxy group, methoxyethoxy group, acetoxy group, hydroxyl group, etc., when these groups are hydrolyzed, form silanol (Si(OH)3), and combine with inorganic substances to form a siloxane.
  • D is a vinyl group, an amino group, an epoxy group, an acryloyloxy group, a fluorenyl group or a ureido group. These reactions The group can be combined with an organic substance to react.
  • a representative silicon-containing organic compound is a silane coupling agent such as the following structure:
  • the silicon-containing organic compound can be added to the polishing liquid through various ways. 1: The abrasive particles are bonded to the silicon-containing compound before the preparation of the polishing liquid (commonly known as particle surface modification, surface treatment), and then the surface is modified. The post abrasive particles are added to the polishing liquid. 2: The silicon-containing organic compound is mixed with the abrasive particles and other components at the time of producing the polishing liquid. 3: the silicon-containing organic compound may be completely hydrolyzed or partially hydrolyzed to form a Si-OH group, and then added to the polishing liquid, in which the Si-OH group and the particle surface Si-OH are completely bonded or Partial bonding. Therefore, the silicon-containing organic compound used in the present invention may have various forms such as free, bonded, partially hydrolyzed, and completely hydrolyzed during polishing.
  • the complexing agent used in the present invention is preferably a polycarboxylic acid and/or a hydroxycarboxylic acid and/or an amino acid, preferably benzoic acid, acetic acid, citric acid, maleic acid, oxalic acid, malonic acid, succinic acid. , adipic acid, propionic acid, tartaric acid, malic acid, oxalic acid, salicylic acid and glycine, histidine, tyrosine, lysine, arginine, glutamic acid, proline, aspartic acid
  • One or more of the complexing agents are preferably present in an amount of from 0.01 to 1.5% by mass, more preferably from 0.05 to 0.5% by mass.
  • the polishing composition is capable of operating at an acidic pH or an alkaline pH.
  • the polishing composition has a pH between 1 and 7. Within this range, the pH is preferably greater than or equal to 2 and less than or equal to 6. The most preferred pH for the polishing composition is 4-6.
  • the polishing composition may also comprise an inorganic or organic pH adjusting agent to reduce the pH of the polishing composition to an acidic pH or to increase the pH to an alkaline pH.
  • Suitable inorganic pH reducing agents include, for example, nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, or at least one of the above inorganic pH reducing agents The combination.
  • Suitable pH enhancers include one of the following: a metal hydroxide, ammonium hydroxide or a nitrogen-containing organic base, or a combination of the above-described pH increasing agents.
  • the concentration of the silicon-containing organic compound in the polishing liquid is 0.001% to 1% by mass, preferably 0.01% to 0.5% by mass.
  • the concentration of the silica abrasive particles is 2% to 10% by mass.
  • the particle diameter is 20 to 200 nm, preferably 20 to 120 nm.
  • electrolyte ions having an ionic strength of 0.1 mol/Kg or more are metal ions and non-metal ions.
  • the electrolyte ions are potassium ions.
  • the present invention achieves the problems of dispersion stability and pH stability of a chemical mechanical polishing liquid at a high ionic strength by a silane coupling agent.
  • polishing speed of the silica is further greatly improved by the synergistic action of the silane coupling agent and the complexing agent;
  • a highly concentrated chemical mechanical polishing liquid can be prepared by this method.
  • the polishing liquid was prepared in accordance with the ingredients of the respective examples in Table 1 and the comparative examples, and the ratio thereof, and the mixture was uniformly mixed, and the mass percentage was made up to 100% with water. Adjust to the desired pH with KOH, HNO 3 or a pH adjuster.
  • the polishing conditions were as follows: the polishing machine was a Mirra machine, a Fujibo polishing pad, a 200 mm Wafer, a down pressure of 1.5 psi, and a polishing droplet acceleration of 150 ml/min.
  • Comparative Example 1 showed that at a very high ionic strength, the removal rate of silica was only 250 A/min, and the polishing solution was unstable, and the pH was raised from 4.0 to 6.6 in 30 days, and the layered sedimentation was rapid.
  • Comparison of Comparative Example 3 and Comparative Example 1 showed that at a very high ionic strength, the addition of a silane coupling agent increased the removal rate of silica by 420 A/min, and the polishing liquid was stable and the average particle size of the abrasive particles ( The particle mean size) did not increase, but the pH of the polishing solution increased from 4.0 to 6.8.
  • Comparative Example 2 showed that the addition of histidine did not increase the polishing rate of silica, and at the same time, the polishing liquid was unstable and rapidly destratified, but the pH of the polishing liquid was stable, and only increased by 0.1 in 30 days.
  • the comparison between Example 1 and Comparative Example 2 showed that the addition of silane coupling agent in the presence of histidine increased the removal rate of silica by 642 A/min compared with no histidine and no silane coupling agent. This increase is greater than the sum of the contributions of both the silane coupling agent (420 A/min) and histidine (17 A/min), indicating that there is a synergy between the silane coupling agent and histidine and other complexing agents.
  • Comparative Example 4 shows that in an alkaline environment, the silica removal rate (283 A/min) of the polishing solution of the low concentration abrasive particles is far from the action of the silicon-containing organic matter under the high ionic strength.
  • the removal rate of silica (670 A/min) of the polishing liquid below the low concentration of abrasive particles in an acidic environment.
  • the silica removal rate (670 A/min) was also higher than the silica removal rate (550 A/min) of the high concentration abrasive particle concentration in Comparative Example 5.
  • Examples 1 to 14 there are silane coupling agents and complexing agents, the polishing liquid is relatively stable, the pH value is relatively stable, and the removal rate of silica is remarkably improved.
  • the silane coupling agent has "the effect of resisting high ionic strength", the polishing liquid is very stable, and at the same time, the complexing agent has a function of stabilizing the pH of the polishing liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本发明公开一种方法,采用含硅的有机化合物,该含硅化合物和其他络合剂之间存在显著的协同作用,大幅提高二氧化硅的抛光速度。同时,在高电解质离子强度时,能够稳定研磨颗粒,提高抛光液pH的稳定性,即维持研磨颗粒的设定pH不发生变化。

Description

一种化学机械抛光液及其应用 技术领域
本发明涉及一种化学机械抛光液及其应用,尤其涉及一种用于提高二氧化硅抛光速率的化学机械抛光液及其应用。
背景技术
随着半导体技术的不断发展,以及大规模集成电路互连层的不断增加,导电层和绝缘介质层的平坦化技术变得尤为关键。二十世纪80年代,由IBM公司首创的化学机械抛光(CMP)技术被认为是目前全局平坦化的最有效的方法。
化学机械抛光(CMP)由化学作用、机械作用以及这两种作用结合而成。它通常由一个带有抛光垫的研磨台,及一个用于承载芯片的研磨头组成。其中研磨头固定住芯片,然后将芯片的正面压在抛光垫上。当进行化学机械抛光时,研磨头在抛光垫上线性移动或是沿着与研磨台一样的运动方向旋转。与此同时,含有研磨颗粒的浆液被滴到抛光垫上,并因离心作用平铺在抛光垫上。芯片表面在机械和化学的双重作用下实现全局平坦化。
在半导体工业中的化学机械抛光(CMP)领域,使用的化学机械抛光液主要分酸性和碱性浆料两种。其中,碱性浆料的稳定性比较好,但存在没有合适的氧化剂,以及在抛光过程中易造成表面浊点和轻微划伤的问题。酸性浆料在这方面表现出了一定的优势。其可以在研磨颗粒较低的情形下达到较高的抛光速率。但是酸性浆料中磨料颗粒的尺寸会随着存储时间的延长,在浆料中化学组分的作用下逐渐长大。当粒径大于120纳米以后,会出现沉降分层等现象,严重影响抛光质量,造成产品失效。所以控制磨料粒子的长大,延长使用寿命 是酸性浆料急于解决的问题。
目前,化学机械抛光液(CMP)所用的研磨颗粒通常采用二氧化硅,包括硅溶胶(colloidal silica)和气相二氧化硅(fumed silica)。它们本身是固体,但是在水溶液中可以均匀分散,不沉降,甚至可以保持1至3年的长期稳定性。
研磨颗粒在水相中的稳定性(不沉降)可以用双电层理论解释-由于每一个颗粒表面带有相同的电荷,它们相互排斥,不会产生凝聚。按照Stern模型,胶体离子在运动时,在切动面上会产生Zeta电势。Zeta电势是胶体稳定性的一个重要指标,因为胶体的稳定是与粒子间的静电排斥力密切相关的。Zeta电势的降低会使静电排斥力减小,致使粒子间的van der Waals吸引力占优,从而引起胶体的聚集和沉降。离子强度的高低是影响Zeta电势的重要因素。
胶体的稳定性除了受zeta电势的影响,还受其他许多因素的影响。例如,受温度的影响,在较高温度下,颗粒无规则热运动加剧,相互碰撞的几率增加,会加速凝聚;例如,受pH值影响,在强碱性、强酸性条件下比中性稳定,其中碱性最稳定,pH值4-7区间最不稳定;例如,受表面活性剂种类的影响,有些表面活性可以起到分散剂的作用,提高稳定性,而有些表面活性剂会降低纳米颗粒表面电荷,减小静电排斥,加速沉降。在表面活性剂中,通常阴离子型表面活性剂有利于纳米颗粒的稳定性,而阳离子型表面活性剂容易降低稳定性;再例如,和添加剂的分子量有关,太长的聚合物长链有时会缠绕纳米颗粒,增加分散液的粘度,加速颗粒凝聚。因此,硅溶胶的稳定性受多方面因素的影响。
美国专利60142706和美国专利09609882公开了含有硅烷偶联剂的抛光液和抛光方法。其中硅烷偶联剂起到改变多种材料的抛光速度以及改善表面粗糙度的作用。这两篇专利并没有发现:在高离子强度(>0.1mol/Kg)时,硅烷偶联剂可以起到对抗高离子强度的作用、稳定纳米颗粒。因为通常在含有非常高的离子强度时(例如含有大于>0.2mol/Kg钾离子),硅溶胶颗粒的双电层会被大幅压缩,静电排斥力减小,迅速形成凝胶、沉淀。并且美国专利 60142706和美国专利09609882并没有发现硅烷偶联剂可以提高二氧化硅的抛光速度,更没有发现:硅烷偶联剂和其他络合剂之间有显著的协同作用,对二氧化硅的抛光速度存在1+1>2的效果。
发明内容
本发明所要解决的技术问题是如何提高二氧化硅的研磨速率,并且保持在高离子强度下,化学机械抛光液中研磨颗粒的稳定性和分散度。
本发明公开一种方法,采用含硅的有机化合物,该含硅化合物和其他络合剂之间存在显著的协同作用,大幅提高二氧化硅的抛光速度。同时,在高电解质离子强度时,能够稳定研磨颗粒,提高抛光液pH的稳定性,即维持研磨颗粒的设定pH不发生变化。
一种化学机械抛光液,其包括含硅化合物、大于或等于0.1mol/Kg的离子强度的电解质离子、络合剂、二氧化硅研磨颗粒以及水
该含硅的有机化合物可以用下述通式表示:
通式:
Figure PCTCN2015000899-appb-000001
此处,R为不能水解的取代基,通常为烷基,含有1-50个碳原子,以1-20个碳原子为佳,其中2-10个碳原子最佳;该长碳链上的碳原子还可以继续被氧、氮、硫、膦、卤素、硅等其他原子继续取代。D是连接在R上的有机官能团,可以是氨基、脲基、巯基、环氧基、丙烯酸基等。A,B为相同的或不同的可水解的取代基或羟基;C可以是可水解基团或羟基,也可以是不可水解的烷基取代基;A,B和C通常是氯基、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基、羟基等,这些基团水解时即生成硅醇(Si(OH)3),而与无机物质结合,形成硅氧烷。D是乙烯基、氨基、环氧基、丙烯酰氧基、巯基或脲基。这些反应 基可与有机物质反应而结合。
代表性的含硅的有机化合物是硅烷偶联剂,例如以下结构:
3-氨基丙基三乙氧基硅烷(商品名KH-550)
Figure PCTCN2015000899-appb-000002
Y-(2,3-环氧丙氧基)丙基三甲氧基硅烷(商品名KH-560)
Figure PCTCN2015000899-appb-000003
Y-(甲基丙烯酰氧)丙基三甲氧基硅烷(商品名KH-570)
Figure PCTCN2015000899-appb-000004
Y-巯丙基三乙氧基硅烷(商品名KH-580)
Figure PCTCN2015000899-appb-000005
Y-巯丙基三甲氧基硅烷(商品名KH-590)
Figure PCTCN2015000899-appb-000006
N-(β-氨乙基)-Y-氨丙基甲基二甲氧基硅烷(商品名KH-602)
Figure PCTCN2015000899-appb-000007
Y-氨乙基氨丙基三甲氧基硅烷(商品名KH-792)
Figure PCTCN2015000899-appb-000008
该含硅的有机化合物可以经过多种途径加到抛光液中,1:研磨颗粒在制备抛光液之前先和含硅化合物键合(俗称的particle表面改性、表面处理),然后将表面改性后的研磨颗粒加入到抛光液中。2:该含硅的有机化合物在生产抛光液时和研磨颗粒以及其他组分同时混合。3:该含硅的有机化合物可以先完全水解、或部分水解,生成Si-OH基团,然后再加入抛光液中,在抛光液中Si-OH基团和particle表面Si-OH完全键合或部分键合。因此本发明采用的含硅的有机化合物在抛光时可能存在游离、键合、部分水解、完全水解等多种形态。
本发明所用的络合剂较佳的为多元羧酸和/或羟基羧酸和/或氨基酸,优选为苯甲酸、乙酸、柠檬酸、马来酸、乙二酸、丙二酸、丁二酸、己二酸、丙酸、酒石酸、苹果酸、草酸、水杨酸和甘氨酸、组氨酸、酪氨酸、赖氨酸、精氨酸、谷氨酸、脯氨酸、天冬氨酸中的一种或多种;所述的络合剂的含量较佳的为质量百分比0.01~1.5%,更佳的为0.05~0.5%。
所述抛光组合物能在酸性pH值或碱性pH值下工作。优选的是,抛光组合物的pH值在1-7。在此范围内,其pH值宜大于或等于2,且低于或等于6。抛光组合物的最优选pH值为4-6。
所属抛光组合物还可包含无机或有机的pH值调节剂,以将抛光组合物的pH值降至酸性pH值,或者将pH值增至碱性pH值。合适的无机pH值减小剂包括例如硝酸、硫酸、盐酸、磷酸、或包含至少一种上述无机pH值减小剂 的组合。合适的pH值增高剂包括以下的一种:金属氢氧化物、氢氧化铵或含氮有机碱、或上述pH值增大剂的组合。
该抛光液中,含硅的有机化合物的浓度为质量百分比0.001%~1%,优选为0.01%~0.5%。
该抛光液中,二氧化硅研磨颗粒的浓度为质量百分比2%~10%。粒径为20~200nm,优选为20~120nm。
该抛光液中,大于或等于0.1mol/Kg的离子强度的电解质离子是金属离子和非金属离子。优选地,电解质离子是钾离子。
该抛光液中,水为余量。
本发明的积极进步效果在于:
1:本发明通过在硅烷偶联剂实现了在高离子强度下的化学机械抛光液的分散稳定性及pH稳定性问题。
2:通过硅烷偶联剂和络合剂的协同作用,进一步大幅提高了二氧化硅的抛光速度;
3:通过这种方法可以制备高度浓缩的化学机械抛光液。
4:通过高度浓缩可以大幅降低产品原材料、包装、运输、仓储、管理、人力等成本;
5:提供了一种酸性条件下稳定的抛光液配方,其可以在研磨颗粒固含量较低的情形下(2%~10%),达到碱性抛光液研磨颗粒含量30%-50%间才能达到的研磨速率。
具体实施方式
下面通过具体实施例进一步阐述本发明的优点,但本发明的保护范围不仅仅局限于下述实施例。
按照表1中各实施例以及对比实施例的成分及其比例配制抛光液,混合均 匀,用水补足质量百分比至100%。用KOH、HNO3或pH调节剂调节到所需要的pH值。其中抛光条件为:抛光机台为Mirra机台,Fujibo抛光垫,200mm Wafer,下压力1.5psi,抛光液滴加速度150ml/分钟。
表1本发明具体实施例和对比例配方
Figure PCTCN2015000899-appb-000009
Figure PCTCN2015000899-appb-000010
对比例1表明:在很高的离子强度下,二氧化硅的去除速率只有250A/min,并且抛光液不稳定,pH值在30天内从4.0升高到6.6,迅速分层沉降。对比例3和对比例1相对照表明:在很高的离子强度下,加入硅烷偶联剂,二氧化硅的去除速率增加了420A/min,并且,抛光液很稳定,研磨颗粒平均粒径(particle mean size)不增加,但抛光液的pH值从4.0升高到6.8。对比例2表明:加入组氨酸,虽然不能使二氧化硅的抛光速度增加,而且同时抛光液不稳定,迅速分层沉降,但抛光液的pH值很稳定,30天只增长了0.1。实施例1和对比例2相对照表明:在组氨酸存在下,加入硅烷偶联剂,二氧化硅的去除速率比不加组氨酸以及不加硅烷偶联剂,增加了642A/min,这个增加量大于硅烷偶联剂(420A/min)和组氨酸(17A/min)两者贡献之和,表明:硅烷偶联剂和组氨酸以及其他络合剂之间存在协同作用,可以大幅提高二氧化硅的抛光速度。对比例1~2都没加硅烷偶联剂,抛光液不稳定。对比例4表明,在碱性环境中,尽管在很高的离子强度下,在含硅有机物的作用下,低浓度研磨颗粒的抛光液的二氧化硅的去除速率(283A/min)也远远低于酸性环境中低浓度研磨颗粒的抛光液的二氧化硅的去除速率(670A/min)。同时,该二氧化硅去除速率(670A/min)也高于对比例5中高浓度研磨颗粒浓度的二氧化硅去除速率(550A/min)。实施例1~14,有硅烷偶联剂和络合剂,抛光液比较稳定,pH值也比较稳定,并且二氧化硅的去除速度显著提升。实施例1~14,都表明,硅烷偶联剂具有“抗高离子强度的作用”,抛光液非常稳定,同时,络合剂具有稳定抛光液pH值的作用。
应当理解的是,本发明所述%均指的是质量百分含量。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精 神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (18)

  1. 一种化学机械抛光液,其包括含硅化合物、大于或等于0.1mol/Kg的离子强度的电解质离子、络合剂、二氧化硅研磨颗粒以及水。
  2. 如权利要求1所述的化学机械抛光液,所述含硅的有机化合物具有如下分子结构:
    Figure PCTCN2015000899-appb-100001
    其中,R为不能水解的取代基;D是连接在R上的有机官能团;A,B为相同的或不同的可水解的取代基或羟基;C是可水解基团或羟基,或不可水解的烷基取代基;D为氨基、巯基、环氧基、丙烯酸基、乙烯基、丙烯酰氧基或脲基。
  3. 如权利要求2所述的化学机械抛光液,其特征在于,所述含硅的有机化合物中R为烷基,且所述烷基碳链上的碳原子被氧、氮、硫、膦、卤素、硅等其他原子继续取代;A,B和C分别为氯基、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基或羟基。
  4. 如权利要求1所述的化学机械抛光液,其特征在于,所述含硅的有机化合物为硅烷偶联剂。
  5. 如权利要求4所述的化学机械抛光液,其特征在于,所述含硅的有机化合物为3-氨基丙基三乙氧基硅烷(商品名KH-550),γ-(2,3-环氧丙氧基) 丙基三甲氧基硅烷(商品名KH-560),γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(商品名KH-570),γ-巯丙基三乙氧基硅烷(商品名KH-580),γ-巯丙基三甲氧基硅烷(商品名KH-590),N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷(商品名KH-602),γ-氨乙基氨丙基三甲氧基硅烷(商品名KH-792)中的一种或多种。
  6. 如权利要求1所述的化学机械抛光液,其中,所述含硅的有机化合物的浓度为质量百分比0.001%~1%。
  7. 如权利要求6所述的化学机械抛光液,其中,所述含硅的有机化合物的浓度为质量百分比0.01%~0.5%。
  8. 如权利要求1所述的化学机械抛光液,其中,所述二氧化硅研磨颗粒的浓度为质量百分比2%~10%。
  9. 如权利要求1所述的化学机械抛光液,其中,所述二氧化硅研磨颗粒的粒径为20~200nm。
  10. 如权利要求9所述的化学机械抛光液,其中,所述二氧化硅研磨颗粒的粒径为20~120nm。
  11. 如权利要求1所述的化学机械抛光液,其中,所述络合剂选自多元羧酸、羟基羧酸和/或氨基酸。
  12. 如权利要求11所述的化学机械抛光液,其中,所述络合剂选自苯甲酸、乙酸、柠檬酸、马来酸、乙二酸、丙二酸、丁二酸、己二酸、丙酸、酒石酸、苹果酸、草酸、水杨酸和甘氨酸、组氨酸、酪氨酸、赖氨酸、精氨酸、谷氨 酸、脯氨酸、天冬氨酸中的一种或多种。
  13. 如权利要求1所述的化学机械抛光液,其中,所述络合剂的含量为质量百分比0.01~1.5%。
  14. 如权利要求13所述的化学机械抛光液,其中,所述络合剂的含量为质量百分比0.05~0.5%。
  15. 如权利要求1所述的化学机械抛光液,其中,所述电解质离子是金属离子和/或非金属离子。
  16. 如权利要求15所述的化学机械抛光液,其中,所述电解质离子是钾离子。
  17. 如权利要求1所述的化学机械抛光液,其中,所述化学机械抛光液的pH范围是1-7。
  18. 如权利要求1所述的化学机械抛光液,其中,所述化学机械抛光液还包括pH调节剂。
PCT/CN2015/000899 2014-12-29 2015-12-14 一种化学机械抛光液及其应用 WO2016106766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410856726.5A CN105802511A (zh) 2014-12-29 2014-12-29 一种化学机械抛光液及其应用
CN201410856726.5 2014-12-29

Publications (1)

Publication Number Publication Date
WO2016106766A1 true WO2016106766A1 (zh) 2016-07-07

Family

ID=56284029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000899 WO2016106766A1 (zh) 2014-12-29 2015-12-14 一种化学机械抛光液及其应用

Country Status (3)

Country Link
CN (1) CN105802511A (zh)
TW (1) TW201623558A (zh)
WO (1) WO2016106766A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178003A1 (en) * 2022-03-14 2023-09-21 Versum Materials Us, Llc Stable chemical mechanical planarization polishing compositions and methods for high rate silicon oxide removal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110757803A (zh) * 2019-10-10 2020-02-07 四川建筑职业技术学院 一种3d打印模型抛光液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1994107A2 (en) * 2006-03-13 2008-11-26 Cabot Microelectronics Corporation Composition and method to polish silicon nitride
TW201018644A (en) * 2008-11-07 2010-05-16 Jgc Catalysts & Chemicals Ltd Non-orbicular silica sol, preparation method thereof and polishing composition using the same
CN102093820A (zh) * 2011-01-06 2011-06-15 清华大学 一种高稳定性的硅晶片化学机械抛光组合物
CN102159662A (zh) * 2008-09-19 2011-08-17 卡伯特微电子公司 用于低k电介质的阻挡物浆料
CN102210013A (zh) * 2008-11-10 2011-10-05 旭硝子株式会社 研磨用组合物和半导体集成电路装置的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646348B1 (en) * 2000-07-05 2003-11-11 Cabot Microelectronics Corporation Silane containing polishing composition for CMP
CN101338082A (zh) * 2007-07-06 2009-01-07 安集微电子(上海)有限公司 改性二氧化硅溶胶及其制备方法和应用
JP5178121B2 (ja) * 2007-09-28 2013-04-10 富士フイルム株式会社 研磨液及び研磨方法
CN102516876B (zh) * 2011-11-22 2014-06-04 清华大学 一种用于硅晶片抛光的抛光组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1994107A2 (en) * 2006-03-13 2008-11-26 Cabot Microelectronics Corporation Composition and method to polish silicon nitride
CN102159662A (zh) * 2008-09-19 2011-08-17 卡伯特微电子公司 用于低k电介质的阻挡物浆料
TW201018644A (en) * 2008-11-07 2010-05-16 Jgc Catalysts & Chemicals Ltd Non-orbicular silica sol, preparation method thereof and polishing composition using the same
CN102210013A (zh) * 2008-11-10 2011-10-05 旭硝子株式会社 研磨用组合物和半导体集成电路装置的制造方法
CN102093820A (zh) * 2011-01-06 2011-06-15 清华大学 一种高稳定性的硅晶片化学机械抛光组合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178003A1 (en) * 2022-03-14 2023-09-21 Versum Materials Us, Llc Stable chemical mechanical planarization polishing compositions and methods for high rate silicon oxide removal

Also Published As

Publication number Publication date
CN105802511A (zh) 2016-07-27
TW201623558A (zh) 2016-07-01

Similar Documents

Publication Publication Date Title
KR102073260B1 (ko) 연마용 조성물 및 그것을 사용한 연마 방법 및 기판의 제조 방법
JP4963825B2 (ja) 研磨用シリカゾルおよびそれを含有してなる研磨用組成物
JP3721497B2 (ja) 研磨用組成物の製造方法
TWI534220B (zh) 研磨用組成物
US9765239B2 (en) Use of a chemical-mechanical polishing (CMP) composition for polishing a substrate or layer containing at least one III-V material
WO2012165376A1 (ja) 研磨剤および研磨方法
US9828527B2 (en) Chemical-mechanical polishing compositions comprising N,N,N′,N′-tetrakis-(2-hydroxypropyl)-ethylenediamine or methanesulfonic acid
WO2010037265A1 (zh) 一种化学机械抛光液
CN108250974A (zh) 一种化学机械抛光液
CN105802506B (zh) 一种化学机械抛光液
WO2016107409A1 (zh) 一种化学机械抛光液及其应用
WO2016106766A1 (zh) 一种化学机械抛光液及其应用
CN104371550A (zh) 一种用于抛光硅材料的化学机械抛光液
CN104371549A (zh) 一种用于抛光低介电材料的化学机械抛光液
KR102634300B1 (ko) 연마용 슬러리 조성물 및 고단차 반도체 박막의 연마 방법
JP3754986B2 (ja) 研磨剤用組成物およびその調製方法
KR20160142995A (ko) 반도체 연마용 슬러리 조성물
JP4740622B2 (ja) 化学的機械的研磨スラリー
CN104745087B (zh) 一种化学机械抛光液以及抛光方法
CN104745083B (zh) 一种化学机械抛光液以及抛光方法
KR102544609B1 (ko) 텅스텐 막 연마 슬러리 조성물
WO2011006348A1 (zh) 一种化学机械抛光液
TW202330826A (zh) 半導體製程用組合物、其製造方法和使用其的半導體裝置製造方法
CN114686110A (zh) 一种化学机械抛光液
CN114539813A (zh) 非球形的二氧化硅颗粒及其制备方法和抛光液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874459

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15874459

Country of ref document: EP

Kind code of ref document: A1