WO2004047500A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2004047500A1
WO2004047500A1 PCT/JP2003/014426 JP0314426W WO2004047500A1 WO 2004047500 A1 WO2004047500 A1 WO 2004047500A1 JP 0314426 W JP0314426 W JP 0314426W WO 2004047500 A1 WO2004047500 A1 WO 2004047500A1
Authority
WO
WIPO (PCT)
Prior art keywords
dopant
emitting layer
light emitting
organic
organic electroluminescent
Prior art date
Application number
PCT/JP2003/014426
Other languages
English (en)
French (fr)
Inventor
Masakazu Funahashi
Kenichi Fukuoka
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US10/535,311 priority Critical patent/US20060055305A1/en
Priority to EP03774011A priority patent/EP1578175B1/en
Priority to AT03774011T priority patent/ATE509504T1/de
Publication of WO2004047500A1 publication Critical patent/WO2004047500A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/18Light sources with substantially two-dimensional radiating surfaces characterised by the nature or concentration of the activator
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Definitions

  • the present invention relates to an organic electroluminescence device. Background art
  • organic electroluminescent devices using organic substances (hereinafter referred to as organic EL devices) are expected to be used as solid-state light-emitting, inexpensive, large-area, full-color display devices, and many developments are underway.
  • the organic EL element includes a light emitting layer and a pair of counter electrodes.
  • FIG. 3 is a cross-sectional view of a general organic EL device.
  • the organic EL element 10 has a light emitting layer 14 sandwiched between a pair of electrodes including an anode 12 and a cathode 13.
  • the light emitting layer 14 is usually a laminate of a plurality of layers.
  • the electrons and holes recombine in the light emitting layer 14 to generate an excited state, and emit energy as light when the excited state returns to the ground state.
  • FIG. 4 shows an energy diagram of the organic EL device of FIG.
  • a valence level EVO (HOMO) and a conduction level ECO (LUMO), which are energy levels of the light emitting layer 14, are shown. Holes enter from the anode 12 side, electrons enter from the cathode 13 side, and these holes and electrons combine in the light emitting layer 14 to emit light.
  • EVO valence level
  • ECO conduction level
  • organic EL element displays have been put into practical use, and higher luminance, higher efficiency and longer life are required.
  • FIG. 5 shows an energy diagram of the organic EL device to which the dopant is added.
  • EC0 is the conduction level of the host
  • EV0 is the valence electron level of the host.
  • Bell EC 1 indicates the conduction level of the dopant
  • EV 1 indicates the valence level of the dopant.
  • Eg 0 represents the energy gap of the host (£ (the difference between 0 and £ ⁇ 0))
  • E g 1 represents the energy gap of the dopant (the difference between EC 1 and EV 1).
  • the dopant efficiently receives the energy of the excited host and increases the luminous efficiency.
  • the energy gap Eg 1 of the dopant must be smaller than the energy gap E g 0 of the host.
  • OLED displays has been improved to about 6 to 7 cd / A, but the addition of various dopants is being studied in order to achieve higher efficiency and longer life.
  • a technique of adding arylamine-containing distyrarylylene to a light-emitting layer has been disclosed (for example, see WO94Z6157). With this technology, a long-life blue light-emitting device can be realized, and an efficiency exceeding 8 cdZA has been obtained.
  • a technique in which a hole transporting material, which is a diamine-based material, and a material having an electron transporting function are mixed, and a fluorescent substance such as rubrene is added to the mixed layer (for example, see JP-A-8-048656).
  • a fluorescent substance such as rubrene
  • the technique of adding a dopant to the light emitting layer is extremely important for improving the luminous efficiency of the organic EL device and improving the luminous life, and various improvements have been made.
  • a dopant for carrier transport or excitation energy transfer is used in the light-emitting layer.
  • the organic metal complex A 1 Q emits a host material, and a fluorescent dye such as DCM1, DCM2, or Nile Red emits light.
  • a light-emitting layer using an organic dopant, DPA, OXD8, or the like as a carrier transporting dopant, or rubrene or the like as an excitation energy transfer dopant is disclosed (for example, JP-A-2000-164362 (Examples 7 to 16)). See.)
  • a single luminescent dopant can capture both hole and electron charges, so that the emission wavelength is not long. There was a condition.
  • the energy gap between the valence level of the hole transport material and the conduction level of the electron transport material is about 2 .5 eV or less, and there was a problem that the light emission became longer wavelength than yellow-green.
  • the dopants associate with each other to cause concentration quenching, resulting in a problem that the efficiency of the organic EL device is reduced.
  • the carrier transport dopant added to the light emitting layer other than the light emitting dopant did not transfer energy from the host material, and was only effective in reducing the driving voltage of the organic EL device.
  • an organic electorescence layer containing a first dopant capable of accepting electron-hole binding energy and a second dopant capable of capturing holes in a small phos material for example, see Japanese Patent Application Laid-Open Publication No. H11-163873.
  • Japanese Patent Application Laid-Open No. 2000-38038 Similar to the above-described example, although the luminous efficiency and luminous life of the embodiment are improved as compared with the example using one kind of dopant, in the case of a configuration in which both kinds of dopants can emit light, However, since all dopants have the property of trapping electrons, the use of a carrier transporting dopant improves it, but the driving voltage is essentially high.
  • an organic EL device in which a host material in a light emitting layer contains a first dopant composed of a diamine derivative and a second dopant composed of rubrene (see, for example, Japanese Patent Application Laid-Open No. H11-163873). 2 0 0 2 — See 1 1 7 9 8 0 gazette. .
  • the diamine derivative which is the first dopant, has a shorter fluorescence peak wavelength than the host material, that is, a material having a larger energy gap, and the driving voltage is improved by improving the carrier mobility. Although lowering of voltage was observed, it was less effective in improving the light emission lifetime.
  • FIG. 6 shows two types of dopants disclosed in Japanese Patent Application Laid-Open No. 2002-117980. 2 shows an energy diagram of an organic EL device to which is added.
  • EC2 indicates the conduction level of the second dopant
  • EV2 indicates the valence level of the second dopant
  • Eg2 indicates the energy gap (difference between EC2 and EV2) of the second dopant.
  • this dopant does not emit light.
  • the energy gap of the dopant must be smaller than the energy gap of the host, such as the energy gap Eg1, and the conduction level of the dopant must be higher than the conduction level of the host.
  • an object of the present invention is to provide an organic electroluminescent device having high luminance, high efficiency, and long life. Disclosure of the invention
  • the present inventors have conducted various studies on dopants and found that light can be emitted even when the conduction level of the dopant is lower than the conduction level of the host.
  • the inventors have found that the lifetime of the organic EL element is improved when the energy gap of the organic EL device satisfies a specific relationship, and completed the present invention.
  • the following organic EL device is provided.
  • An organic electroluminescent device having a light emitting layer provided between a pair of electrodes,
  • the organic electroluminescent device wherein the light emitting layer contains a light emitting layer material, a first dopant and a second dopant satisfying the following relationship.
  • EV0, EV1, and EV2 are the light emitting layer materials, the first dopant, the valence level of the second dopant, and EC0 and EC2 are the light emitting layer materials, the conductive level of the second dopant, respectively.
  • Eg0, Egl, and Eg2 are the energy gaps of the light emitting layer material, the first dopant, and the second dopant, respectively.
  • An organic electroluminescent device having a light emitting layer provided between a pair of electrodes,
  • An organic electroluminescence device wherein the light emitting layer contains a light emitting layer material, a first dopant and a second dopant satisfying the following relationship.
  • the energy difference between the valence level EV0 of the light emitting layer material and the valence level EV1 of the first dopant is 0.4 eV or less, and Z or the conduction level EC of the light emitting layer material.
  • the organic electroluminescent device according to any one of [1] to [5], wherein an energy difference between 0 and the second dopant conduction level EC2 is 0.4 eV or less.
  • the light-emitting layer material has a glass transition temperature of 100 ° C. or higher.
  • the organic electroluminescent device according to any one of [1] to [7].
  • a hole injection layer is provided between the anode and the light emitting layer, and the compound constituting the hole injection layer has a phenylenediamine structure.
  • FIG. 1 is an energy diagram of a light emitting layer of the organic EL device according to the first embodiment of the present invention.
  • FIG. 2 is an energy diagram of the light emitting layer of the organic EL device according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a general organic EL device.
  • Figure 4 is an energy diagram of the organic EL device.
  • FIG. 5 is an energy diagram of the organic EL device to which the dopant is added.
  • Fig. 6 is an energy diagram of an organic EL device to which two kinds of dopants are added.
  • a light emitting layer is provided between a pair of electrodes, and the light emitting layer comprises a light emitting layer material, a first dopant and a second dopant satisfying the following relationship. Including.
  • EV0, EV1, and EV2 are the luminescent layer materials, the valence levels of the first dopant and the second dopant, respectively, EC0 and EC2 are the luminescent layer materials, the conduction level of the second dopant, Eg0, Egl, and Eg2 are the energy gaps of the light emitting layer material, the first dopant, and the second dopant, respectively.
  • FIG. 1 is an energy diagram of the organic EL device.
  • the energy diagram includes, based on a vacuum level (not shown), a valence level EV0 and a conduction level EC0 of the light emitting layer material, a valence level EV1 and a conduction level EC1, of the first dopant, The valence level EV 2 and conduction level EC 2 of the second dopant are shown. Further, the energy gap Eg 0 of the light emitting layer material, the energy gap Eg 1 of the first dopant, and the energy gap Eg 2 of the second dopant are shown. The energy gap is the energy difference between the valence and conduction levels of each material.
  • the valence level is a value measured using a photoelectron spectrometer (AC-1, manufactured by Riken Keiki Co., Ltd.) in the atmosphere.
  • the energy gap is a value measured from the absorption edge of the absorption spectrum in benzene.
  • the conduction level is a value calculated from the measured value of the valence electron level and the energy-gap.
  • the valence level EV0 of the light emitting layer material is higher than the valence level EV1 of the first dopant and the valence level EV2 of the second dopant. That is, the relations EV0> EV1 and EV0> EV2 are satisfied.
  • the first and second dopants trap holes injected into the host material and emit light easily.
  • the energy of EV0 and EV1 The difference 5 at one level is less than 0.4 eV.
  • the conduction level E C0 of the light emitting layer material is equal to or higher than the conduction level E C2 of the second dopant. That is, the relationship of EC 0 ⁇ EC 2 is satisfied. This is to prevent the second dopant from capturing the electrons injected into the light emitting layer material. In this way, the function of capturing holes is enhanced, and as a result, light emission with low voltage and long life can be achieved.
  • the difference 6 between the energy levels of EC 0 and EC 2 is preferably less than 0.4 eV.
  • the energy gap E g0 of the light emitting layer material is larger than the energy gap Eg 1 of the first dopant and the energy gap Eg 2 of the second dopant. That is, the relationship of Eg O> Egl, Eg2 is satisfied.
  • the light-emitting layer material is degraded by repeated excitation and deactivation, but in the present invention, both the first and second dopants can receive energy transfer from the excited state of the light-emitting layer material.
  • the deterioration of the light emitting layer material can be suppressed as compared with the case where only one of the dopants can receive energy transfer from the excited state of the light emitting layer material. Therefore, it is possible to improve the luminous efficiency or extend the life of the device.
  • a light emitting layer is provided between a pair of electrodes, and the light emitting layer is made of a light emitting layer material and a first dopant and a second dopant that satisfy the following relationship.
  • EV0, EV1, EV2 are the luminescent layer materials, the first dopant, the valence level of the second dopant, respectively, EC0, EC1, EC2 are the luminescent layer materials, the first dopant, The conductivity level of the second dopant.
  • FIG. 2 is an energy diagram of the organic EL device.
  • the conduction level EC 0 of the light emitting layer material is equal to or higher than the conduction level EC 1 of the first dopant and the conduction level EC 2 of the second dopant. That is, the relationship of EC0 ⁇ EC1, EC2 is satisfied. This is to prevent each dopant from capturing electrons. Devices with such a configuration Thus, it can be driven at a low voltage.
  • the valence level EV0 of the light emitting layer material is higher than the valence level EV1 of the first dopant and the valence level EV2 of the second dopant. That is, EV0> EV1 Satisfy the relationship EV0> EV2.
  • the difference 5 between the energy levels of EV0 and EV1 is preferably smaller than 0.4 eV
  • the difference 6 between the energy levels of EC0 and EC2 is preferably smaller than 0.4 eV.
  • the energy gap E g0 of the light emitting layer material is preferably larger than the energy gap Eg1 of the first dopant or the energy gap Eg2 of the second dopant.
  • the energy gap E g0 of the material of the light emitting layer is larger than both the energy gap Eg 1 of the first dopant and the energy gap Eg 2 of the second dopant. Thereby, both the first dopant and the second dopant emit light.
  • the light emitting layer material, the first dopant and the second dopant are selected so as to satisfy the above relation, the light emitting layer conventionally used in the organic EL device is used.
  • Materials (host materials) and dopants can be used.
  • Examples of the light-emitting layer material include phenylanthracene, naphthylanthracene, diphenylanthracene derivative, aromatic amamine derivative, metal complex, polyphenyl derivative, sorbazole derivative, and styrylarylene derivative.
  • Hue It is preferably selected from dianthracene, naphthylanthracene, diphenylanthracene derivative, aromatic amine derivative and metal complex. Is particularly preferred.
  • the glass transition temperature of the light emitting layer material is preferably 100 ° C. or more in order to maintain the thermal stability of the organic EL element.
  • the temperature is preferably 120 ° C. or higher. Examples of specific compounds of the light emitting layer material are shown below.
  • the light emitting layer material contains a hole transporting compound and a Z or electron transporting compound.
  • the hole transporting compound is a compound having a property of transporting holes when an electric field is applied, and examples thereof include a polyphenyl derivative, an aromatic amine, and a styryl arylene derivative.
  • the electron-transporting compound is a compound having a property of transporting electrons when an electric field is applied, and examples thereof include a metal complex such as an 8-hydroxyquinolinol aluminum complex.
  • the light emitting layer material is preferably composed of a first light emitting layer material having an electron transfer property and a second light emitting layer material having a hole transfer property. In this way, two different compounds can perform the role of hole transport and the role of electron transport, and can stably transport holes and electrons to the recombination region.
  • Examples of the first dopant and the second dopant include arylamine derivatives, styrylamine derivatives, condensed aromatic ring compounds, arylamine substituted condensed aromatic ring compounds, and the like.
  • it is selected from arylamine derivatives, styrylamine derivatives, condensed aromatic ring compounds and arylamine-substituted condensed aromatic ring compounds.
  • the first dopant has a hole injection assisting property and the second dopant has an electron injection assisting property.
  • the hole injection assisting property refers to having a property of improving the hole injection property to the host material, and examples thereof include a styrylamine derivative and an aromatic amine derivative.
  • the electron-injection assisting property is a property of improving the electron-injecting property to the host material, and examples thereof include condensed polycyclic aromatic compounds such as rubrene and perylene.
  • the first dopant and the second dopant at least one of them is preferably from 100 to 150, particularly preferably from 500 to L0000. It is particularly preferred that the molecular weights are all between 100 and 150. If it is smaller than 100, a stable thin film may not be formed. If it is larger than 150, the vapor deposition temperature may be too high to cause thermal decomposition.
  • an organic light-emitting material obtained by mixing the above-mentioned light-emitting layer material, the first dopant, and the second dopant is formed into a thin film by a method such as vacuum deposition, sputtering, spin coating, or casting. Can be formed. It is preferable to form the film by a vacuum evaporation method from the viewpoint that a uniform film is easily obtained and a pinhole is hardly generated.
  • the light emitting layer material, the first dopant and the second dopant are preferably uniformly mixed.
  • the amounts of the first dopant and the second dopant added to the entire light emitting layer are each preferably 20% by weight or less, and particularly preferably 1 to 10% by weight. If the content exceeds 20% by weight, the concentration of the dopant may be too high and the luminous efficiency may decrease.
  • a compound other than the light-emitting layer material, the first dopant, and the second dopant may be added to the light-emitting layer.
  • a third dopant may be added.
  • the light emitting layer preferably transports at least one of electrons and holes, preferably both.
  • the light emitting layer material a mixed material of the first light emitting layer material having an electron transport property and the second light emitting layer material having a hole transport property.
  • the light-emitting layer is provided between the pair of electrodes.
  • the specific configuration includes, for example, the following configuration.
  • the organic EL device of the present invention it is possible to use a material usually used for an organic EL device, in addition to the light emitting layer described above.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the light-transmitting substrate is a substrate for supporting the organic EL element, and is preferably a smooth substrate having a light transmittance of 50% or more in a visible region of 400 to 700 nm.
  • Specific examples include a glass plate and a polymer plate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acryl, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • anode those using a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) as an electrode material are preferably used.
  • metals such as Au, Cu l, IT_ ⁇ , I ZO, include conductive material such Sn_ ⁇ 2, Z N_ ⁇ is.
  • the anode can be manufactured by forming a thin film from these electrode substances by a method such as an evaporation method or a sputtering method.
  • the light transmittance of the anode be greater than 10%.
  • the sheet resistance of the anode is preferably several hundreds ⁇ / port or less.
  • the thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 nm, preferably 10 to 200 nm.
  • the hole injection / transport layer is a layer that assists the injection of holes into the light-emitting layer and transports holes to the light-emitting region.
  • the hole mobility is high, and the ionization energy is low, usually 5.5 eV or less.
  • a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • the hole mobility is, for example, 10 4 to 10 6 when an electric field is applied in the VZ cm, it is preferably at least 10- 4 cm 2 / V ⁇ sec or more.
  • the material for forming the hole injecting / transporting layer may be any material having the above properties, such as a material conventionally used as a charge transporting material for holes in a photoconductive material, and a hole injecting material for an EL element. Any of the known materials used for the transport layer can be selected and used.
  • the material for the hole injection / transport layer examples include those described above.
  • the porphyrin compound such as JP-A-63-29556965
  • aromatic tertiary amine compounds and styryl Amine compounds U.S. Pat. No. 4,127,412, JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, JP-A-54-64299, JP-A-55-79450
  • No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695) especially tertiary aromatics It is preferable to use an amine compound.
  • NPD 4,4'-bis (N- (1-naphthyl) -N-phenylamino) Biphenyl
  • MTDATA refenylamine
  • inorganic compounds such as aromatic dimethylidin compounds, p-type Si, and p-type SiC can also be used as a material for the hole injection / transport layer.
  • the hole injection / transport layer can be formed by forming a thin film of the above-mentioned compound by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm to 5 m.
  • the hole injection / transport layer may be composed of one or more of the above-mentioned materials, or a hole injection / transport layer made of a compound different from the hole injection / transport layer. May be laminated. .
  • a hole injection layer is provided between the anode and the light emitting layer, and that the compound forming the hole injection layer has a phenylenediamine structure.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 ⁇ 10 S / cm or more.
  • Examples of the material for such an organic semiconductor layer include thiophene-containing oligomers, conductive oligomers such as arylamine-oligomers disclosed in Japanese Patent Application Laid-Open No. 8-19391, and arylamine-dendrimers. And the like can be used.
  • the electron injection layer is a layer that assists injection of electrons into the light emitting layer, and has a high electron mobility.
  • the adhesion improving layer is a layer made of a material having particularly good adhesion to the cathode in the electron injection layer.
  • a metal complex of 8-hydroxyquinoline or a derivative thereof is preferable.
  • metal complex of 8-hydroxyquinoline or a derivative thereof include a metal chelate oxoxide compound containing a chelate of oxine (generally, 8-quinolinol or 8-hydroxyquinoline).
  • Alq can be used as the electron injection layer.
  • examples of the oxadiazole derivative include electron transfer compounds represented by the following general formulas [1] to [3].
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 4 , Ar 7 , and Ar 8 each represent a substituted or unsubstituted arylene group, which may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a piphenylene group, an anthranylene group, a peryleneylene group, a pyryleneylene group, and the like.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • the electron transfer compound is preferably a thin film-forming compound.
  • an electron injection layer made of an oxide or a halide of an alkali metal or an alkaline earth metal may be provided.
  • Specific examples include lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, and the like.
  • an alkali metal or an alkaline earth metal can be added to the organic compound layer to form an electron injection region.
  • the addition amount of these is preferably 0.1 to 10 mol%.
  • a metal, an alloy, an electrically conductive compound having a low work function (4 eV or less), and a mixture thereof as an electrode material are used.
  • an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium-silver alloy, aluminum / aluminum oxide, aluminum'lithium alloy, indium, rare earth metal and the like.
  • This cathode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. -If the light emitted from the light-emitting layer is taken out from the cathode, the transmittance for the light emitted from the cathode Is preferably larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ square or less, and the film thickness is usually from 10 nm to; Lzm, preferably from 50 to 200 nm.
  • organic EL applies an electric field to an ultrathin film, pixel defects due to leaks and short circuits are likely to occur. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Materials used for the insulating layer include, for example, aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, Examples include silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
  • an organic EL device can be manufactured by forming an anode, a light emitting layer, a hole injection layer as needed, and an electron injection layer as needed, and further forming a cathode. it can.
  • an organic EL device can be manufactured in the reverse order from the cathode to the anode.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 or less, preferably 10 to 200 nm, to form an anode. Make it.
  • the hole injection layer can be formed by a method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.However, a uniform film is easily obtained and pinholes are not easily generated. From the viewpoint of the above, it is preferable to form by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound to be used (the material of the hole injection layer), the crystal structure and the recombination structure of the target hole injection layer, etc.
  • a light-emitting layer in which a light-emitting layer is provided on the hole injection layer is also formed by thinning the organic light-emitting material using a desired organic light-emitting material by a method such as vacuum evaporation, sputtering, spin coating, or casting.
  • the film by a vacuum evaporation method from the viewpoint that a uniform film is easily obtained and a pinhole is hardly generated.
  • the evaporation conditions vary depending on the compound used, but can be generally selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • the film is formed by a vacuum evaporation method from the viewpoint of obtaining a uniform film.
  • the deposition conditions can be selected from the same condition ranges as for the hole injection layer and the light emitting layer.
  • the cathode is made of metal, and can be formed by vapor deposition or sputtering. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the production from the anode to the cathode be performed consistently by one evacuation.
  • the organic EL device of the present invention has improved luminance, luminous efficiency or lifetime. Therefore, it can be suitably used for a light source such as a flat light-emitting body of a wall-mounted television or a backlight of a display, a display section of a mobile phone or a PDA, a power navigation, a car instrument panel, and lighting.
  • a light source such as a flat light-emitting body of a wall-mounted television or a backlight of a display, a display section of a mobile phone or a PDA, a power navigation, a car instrument panel, and lighting.
  • Valence electron level Measured using an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-1). Specifically, the measurement was performed by irradiating the material with light and measuring the amount of electrons generated by charge separation.
  • CS-1000 spectral radiance meter
  • Table 1 shows the valence level, conduction level and energy gap of these compounds.
  • a 25 mmX 75 mmX 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning for 30 minutes.
  • the washed glass substrate with a transparent electrode line was mounted on a substrate holder of a vacuum evaporation apparatus.
  • 60, ⁇ '-bis ( ⁇ , ⁇ , —diphenyl-41-aminophenol) having a thickness of 60 nm is formed on the surface on the side where the transparent electrode line is formed so as to cover the transparent electrode.
  • a 1,4-diphenyl 4,4 'diamino-1,1, -biphenyl film (hereinafter abbreviated as “TPD232 film”) was formed. This TPD232 film functions as a hole injection layer.
  • a 20 nm-thick N, N, N,, N'-tetra (4-biphenyl) -diaminobiphenylene layer (hereinafter referred to as a “TBDB layer”) is formed on the TPD 232 film.
  • TBDB layer 20 nm-thick N, N, N,, N'-tetra (4-biphenyl) -diaminobiphenylene layer.
  • HI is used as the light emitting layer material
  • D 1 is used as the first dopant
  • D 2 is used as the second dopant
  • D 1: D 2: H 1 (weight ratio) is 1: 1: 40.
  • An A1q film having a thickness of 10 nm was formed on this film. This functions as an electron injection layer.
  • the reducing dopant Li Li source: manufactured by SAES Getter Co., Ltd.
  • A1q Alq: Li film (film thickness: 10 nm) is used as an electron injection layer (cathode).
  • Metal A1 was vapor-deposited on the A1q: Li film to form a metal cathode, thereby producing an organic EL light emitting device.
  • An organic EL device was produced in the same manner as in Example 1, except that H2 was used instead of H1 and D3 was used instead of D1.
  • An organic EL device was produced in the same manner as in Example 1, except that D2 was used instead of D1 and D4 was used instead of D2.
  • An organic EL device was produced in the same manner as in Example 1, except that D2 was not used.
  • An organic EL device was produced in the same manner as in Example 1 except that D1 was not used.
  • An organic EL device was produced in the same manner as in Example 1, except that NPB was used instead of D2.
  • An organic EL device was produced in the same manner as in Example 2 except that D1 was not used.
  • An organic EL device was produced in the same manner as in Example 3, except that D3 was not used.
  • An organic EL device was produced in the same manner as in Example 4, except that D2 was not used.
  • An organic EL device was produced in the same manner as in Example 5, except that D2 was not used.
  • An organic EL device was produced in the same manner as in Example 5, except that D1 was not used.
  • An organic EL device was produced in the same manner as in Example 1, except that D5 was used instead of D1 and D6 was used instead of D2.
  • An organic EL device was produced in the same manner as in Example 1, except that D5 was used instead of D1 and NPB was used instead of D2.
  • the used light emitting layer material, the type of the first dopant and the second dopant, and their respective valence levels, conduction levels, and energy gaps are shown in Table 2.
  • Example 1 and Comparative Examples 1-3, and Example 2 and Comparative Examples 4-5, Example 3 and Comparative Examples 4 and 6, Example 4 and Comparative Examples 1, 7, and Example 5 are compared. From the results of Examples 8 and 9, it was clarified that the device of the present invention had a high luminous efficiency and a remarkably long life. Industrial applicability
  • an organic electroluminescent device having high luminance, high efficiency and long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 一対の電極間に発光層が設けられた有機エレクトロルミネッセンス素子であって、発光層が、発光層材料と、以下の関係を満たす第一のドーパント及び第二のドーパントを含むことを特徴とする有機エレクトロルミネッセンス素子。   (A) EV0>EV1かつEV0>EV2   (B) EC0≧EC2   (C) Eg0>Eg1,Eg2 [式中、EV0、EV1、EV2はそれぞれ発光層材料、第一のドーパント、第二のドーパントの価電子レベル、EC0、EC2はそれぞれ発光層材料、第二のドーパントの伝導レベル、Eg0、Eg1、Eg2はそれぞれ発光層材料、第一のドーパント、第二のドーパントのエネルギーギャップである。]

Description

明 細 書 有機エレクトロルミネッセンス素子 技術分野
本発明は、 有機エレクトロルミネッセンス素子に関する。 背景技術
有機物質を使用した有機エレクト口ルミネッセンス素子 (以下、 有機 EL素子 という) は、 固体発光型の安価な大面積フルカラ一表示素子としての用途が有望 視され、 多くの開発が行われている。
有機 EL素子は、 発光層及び一対の対向電極から構成されている。 図 3は一般 的な有機 EL素子の断面図である。
有機 EL素子 10は、 陽極 12と陰極 13からなる一対の電極の間に発光層 1 4を狭持している。 発光層 14は通常複数の層を積層したものである。 この素子 10は、 両電極 12, 13間に電界が印加されると、 陰極 13側から電子が注入 され、 陽極 12側から正孔が注入される。 そして、 電子と正孔が発光層 14にお いて再結合し、 励起状態を生成し、 励起状態が基底状態に戻る際にエネルギーを 光として放出する。
図 4は、 図 3の有機 EL素子のエネルギーダイアグラムを示す。 図 3において、 発光層 14のエネルギーレベルである価電子レベル EVO (HOMO) と伝導レ ベル ECO (LUMO) が示されている。 陽極 12側から正孔が入り、 陰極 13 側から電子が入り、 これら正孔と電子が発光層 14内で結合して発光する。
最近では、 有機 EL素子ディスプレイの実用化が開始され、 より高輝度化、 高 効率化及び長寿命化が求められている。
上記の要求を満たすために、 発光層に蛍光分子 (ド一パント) を微量添加する 技術が知られている。 蛍光分子としては、 クマリン、 シァニン、 ペリレン、 ビラ ン誘導体が開示されている (例えば、 特開昭 63-264692号公報参照。 ) 。 図 5は、 ドーパントが添加された有機 E L素子のエネルギーダイアグラムを示 す。 この図において、 EC 0はホストの伝導レベル、 EV0はホストの価電子レ ベル、 EC 1はドーパントの伝導レベル、 EV 1はド一パントの価電子レベルを 示す。 また、 Eg 0はホストのエネルギーギャップ (£(:0と£¥0の差) 、 E g 1はドーパントのエネルギ一ギャップ (EC 1とEV1の差) を示す。
ドーパントは、 励起したホストのエネルギーを効率よく受け取り発光効率を高 める。 ただし、 ドーパントが発光するためには、 ド一パントのエネルギーギヤッ プ Eg 1が、 ホストのエネルギーギャップ E g 0より小さい必要がある。
有機 EL素子ディスプレイの高効率化については、 6〜7 c d/A程度が達成 されているが、 さらなる高効率化と長寿命化のために、 様々なドーパントを添加 することが検討されている。
例えば、 ァリールァミン含有ジスチリルァリ一レンを発光層に添加する技術が 開示されている (例えば、 国際公開第 94Z6157号パンフレット参照。 ) 。 この技術により長寿命の青色発光素子が実現でき、 さらに 8 c dZAを超える効 率が得られている。
また、 ジァミン系材料である正孔輸送材料と電子輸送機能を有する材料を混合 し、 この混合層にルブレン等の蛍光性物質を添加した技術が開示されている (例 えば、 特開平 8— 048656号公報参照。 ) 。 この技術により初期輝度数百 n i tで半減寿命、 数千時間程度が可能となっている。
このように、 発光層にドーパントを添加する技術は、 有機 EL素子の発光効率 を改善したり、 発光寿命を改善するために極めて重要であり、 さまざまな改良が 行われている。
しかしながら、 十分な効率と寿命を有する有機 EL素子が開発されたとは言い 難い。
例えば、 発光層にキヤリァ輸送用あるいは励起エネルギー移動用のドーパント を用いることが開示されており、 特に、 有機金属錯体である A 1 Qをホスト材料、 DCM1、 DCM2、 ナイルレッド等の蛍光色素を発光性のドーパント、 DPA や OXD8等をキヤリァ輸送用ドーパント、 ルブレン等を励起エネルギー移動用 ドーパントとして用いた発光層が開示されている (例えば、 特開 2000— 16 4362号公報 (実施例 7〜16) 参照。 ) 。
しかしながら、 この技術においては、 単一の発光性ド一パントで、 正孔及び電 子の両方の電荷を補足できるようにするため、 発光波長が長波長であるという不 具合があった。 即ち、 電極からの電荷の注入効率を良好な状態にするために、 そ れぞれの材料を選定すると、 正孔輸送材料の価電子レベルと電子輸送材料の伝導 レベルのエネルギーギャップは、 約 2 . 5 e V以下となり、 黄緑色より長波長の 発光となってしまう問題があった。
また、 有機 E L素子の寿命を延ばすために電子トラップ性の発光性ド一パント を添加しているが、 その効果を大きくするために添加濃度を大きくすると電子卜 ラップ性の寄与が大きくなり、 有機 E L素子が高電圧化するという問題点があつ た。
さらに、 添加濃度が大きくなるとドーパント同士が会合することにより濃度消 光が起こり、 有機 E L素子が低効率化するという問題点があった。
また、 発光性ド一パント以外に発光層に添加されているキヤリァ輸送用ド一パ ントはホスト材料からのエネルギー移動が起こらないため、 有機 E L素子の駆動 電圧の低減にしか効果がなかった。
また、 他の例として、 ホス小材料に電子正孔結合エネルギ一を受容できる第一 ドーパント、 正孔を捕捉できる第二ドーパントを含む有機エレクト口ルミネッセ ンス層が開示されている (例えば、 特開 2 0 0 2— 3 8 1 4 0号公報参照。 ) 。 しかし、 その実施例は前述の例と同様、 1種類のドーパントを用いた例よりは 発光効率や発光寿命に改善が認められるものの、 2種類のド一パントがともに発 光し得る構成の場合は、 いずれのドーパントも電子を捕捉する性質を持っている ため、 キャリア輸送ドーパントを用いることにより改善はするものの、 本質的に 駆動電圧は高かった。
さらに、 別の例として、 発光層におけるホスト材料に対して、 ジァミン誘導体 からなる第一ドーパントと、 ルブレンからなる第二ドーパントとを含有させた有 機 E L素子が開示されている (例えば、 特開 2 0 0 2— 1 1 7 9 8 0号公報参 照。 ) 。 .
しかし、 この素子構成においても第一ド一パントであるジァミン誘導体はホス ト材料よりも蛍光ピーク波長が短い、 即ち、 エネルギーギャップが大きいものが 用いられており、 キヤリァ移動性の改善による駆動電圧の低電圧化は認められる が、 発光寿命の改善には効果が少なかった。
図 6は、 特開 2 0 0 2 _ 1 1 7 9 8 0号公報が開示する、 二種類のドーパント が添加された有機 E L素子のエネルギーダイアグラムを示す。
この図において、 図 5と同じ記号については説明を省略する。 EC 2は第二の ドーパントの伝導レベル、 EV2は第二のド一パントの価電子レベルを示す。 ま た、 Eg2は第二のドーパントのエネルギーギャップ (EC2と EV2の差) を 示す。
この有機 E L素子では、 一方のドーパントである第二のドーパントのエネルギ —ギャップ Eg 2が、 ホストのエネルギーギャップ Eg 0より大きいため、 この ドーパントは発光しない。
また、 一般に、 ドーパントが発光するためには、 エネルギーギャップ Eg 1の ように、 ドーパントのエネルギーギャップが、 ホストのエネルギーギャップより 小さく、 さらに、 ドーパントの伝導レベルがホストの伝導レベルより高くなけれ ばいけないと考えられていた。 即ち、 第二のド一パントのように EC 2が EC 0 より低いと発光しないと考えられていた。
本発明は上記課題に鑑み、 高輝度、 高効率又は長寿命である有機エレクトロル ミネッセンス素子を提供することを目的とする。 発明の開示
本発明者らは、 ドーパントについて様々な研究を重ね、 ド一パントの伝導レべ ルがホストの伝導レベルより低くても発光し得ることを見出し、 さらに、 この事 実に基づき、 ホストとド一パントのエネルギ一ギヤップが特定の関係を満たして いる場合に、 有機 EL素子の寿命が改善されることを見出し、 本発明を完成させ た。
本発明によれば、 以下の有機 EL素子が提供される。
[1] 一対の電極間に発光層が設けられた有機エレクト口ルミネッセンス素子で あって、
前記発光層が、 発光層材料と、 以下の関係を満たす第一のドーパント及び第二 のド一パントを含むことを特徴とする有機エレクトロルミネッセンス素子。
(A) EV0>EV1かつ EV0>EV2
(B) EC 0≥EC 2
(C) Eg 0>Eg 1, Eg 2 ' [式中、 EV0、 EV1、 EV 2はそれぞれ発光層材料、 第一のド一パント、 第二のドーパントの価電子レベル、 EC0、 E C 2はそれぞれ発光層材料、 第二 のドーパントの伝導レベル、 Eg0、 Eg l、 Eg 2はそれぞれ発光層材料、 第 一のドーパント、 第二のドーパントのエネルギーギャップである。 ]
[2] 一対の電極間に発光層が設けられた有機エレクト口ルミネッセンス素子で あって、
前記発光層が、 発光層材料と、 以下の関係を満たす第一のド一パント及び第二 のドーパントを含むことを特徴とする有機エレクトロルミネッセンス素子。
(A' ) EV0〉EV1かつ EV0〉EV2
(Β' ) EC 0≥EC 1, EC 2
[式中、 EV0、 EV1、 EV 2はそれぞれ発光層材料、 第一のドーパント、 第二のドーパントの価電子レベル、 EC0、 EC 1、 EC 2はそれぞれ発光層材 料、 第一のドーパント、 第二のド一パントの伝導レベルである。 ]
[ 3 ] 前記第一のド一パント及び前記第二のドーパントの両方が発光することを 特徴とする [2] に記載の有機エレクト口ルミネッセンス素子。
[4] 前記第一のドーパント及び/又は前記第二のドーパントの添加量が、 それ ぞれ前記発光層全体の 20重量%以下であることを特徴とする [1] 〜 [3] の いずれかに記載の有機エレクトロルミネッセンス素子。 .
[ 5 ] 前記第一のドーパントが正孔注入補助性を有すること及び Z又は前記第二 のドーパントが電子注入補助性を有することを特徴とする [1] 〜 [4] のいず れかに記載の有機エレクト口ルミネッセンス素子。
[6] 前記発光層材料の価電子レベル EV0と前記第一のドーパントの価電子レ ベル EV 1のエネルギー差が 0. 4 e V以下であること及び Z又は前記発光層材 料の伝導レベル E C 0と前記第二のド一パント伝導レベル E C 2のエネルギー差 が 0. 4 eV以下であることを特徴とする [1] 〜 [5] のいずれかに記載の有 機エレクト口ルミネッセンス素子。
[7] 前記発光層材料、 前記第一のドーパント及び前記第二のドーパントの少な くとも一つの分子量が、 100〜 1500であることを特徴とする [1] 〜 [6] のいずれかに記載の有機エレクト口ルミネッセンス素子。
[8] 前記発光層材料のガラス転移温度が、 100°C以上であることを特徴と する [1] 〜 [7] の,いずれかに記載の有機エレクト口ルミネッセンス素子。
[9] 前記第一のドーパント又は前記第二のドーパントが、 スチリルァミン誘導 体、 縮合芳香族環化合物及びァリールァミン置換縮合芳香族環化合物より選択さ れることを特徴とする [1] 〜 [8] のいずれかに記載の有機エレクトロルミネ ッセンス素子。
[10] 前記発光層材料が、 正孔伝達性を有する化合物及び/又は電子伝達性を 有する化合物を含むことを特徴とする [1] 〜 [9] のいずれかに記載の有機ェ レクト口ルミネッセンス素子。
[11] 前記発光層材料が、 フエ二ルアントラセン、 ナフチルアントラセン、 ジ フエ二ルアントラセン誘導体、 芳香族ァミン誘導体及び金属錯体から選択される ことを特徴とする [1] 〜 [10] のいずれかに記載の有機エレクト口ルミネッ センス素子。
[12] 前記フエ二ルアントラセン、 ナフチルアントラセン又はジフエ二ルアン トラセン誘導体が、 アルケニル基を含有することを特徴とする [11] に記載の 有機エレクト口ルミネッセンス素子。
[13] 前記陽極と前記発光層の間に正孔注入層を含み、 前記正孔注入層を構成 する化合物が、 フエ二レンジァミン構造を含有することを特徴とする [1] 〜
[12] のいずれかに記載の有機エレクトロルミネッセンス素子。 図面の簡単な説明
図 1は、 本発明の第一の態様の有機 E L素子の発光層におけるエネルギーダイ アグラムである。
図 2は、 本発明の第二の態様の有機 EL素子の発光層におけるエネルギーダイ アグラムである。
図 3は、 一般的な有機 EL素子の断面図である。
図 4は、 有機 EL素子のエネルギーダイアグラムである。
図 5は、 ドーパントが添加された有機 EL素子のエネルギーダイアグラムであ る。
図 6は、 二種類のドーパン卜が添加された有機 E L素子のエネルギーダイァグ ラムである。 発明を実施するための最良の形態
本発明の第一の態様の有機 EL素子は、 一対の電極間に発光層が設けられ、 発 光層が、 発光層材料と、 以下の関係を満たす第一のドーパント及び第二のドーパ ントを含む。
(A) EV0>EV 1かつ EV0>EV2
(B) EC 0≥EC 2
(C) Eg 0>Eg 1, Eg 2
[式中、 EV0、 EV1、 E V 2はそれぞれ発光層材料、 第一のドーパント、 第二のドーパントの価電子レベル、 EC0、 E C 2はそれぞれ発光層材料、 第二 のド一パントの伝導レベル、 Eg0、 Eg l、 Eg 2はそれぞれ発光層材料、 第 一のドーパント、 第二のドーパントのエネルギ一ギャップである。 ]
図 1は、 この有機 EL素子のエネルギーダイアグラムである。
エネルギーダイアグラムには、 真空準位 (図示せず) を基準として、 発光層材 料の価電子レベル EV0と伝導レベル EC 0、 第一のド一パントの価電子レベル EV 1と伝導レベル EC 1、 第二のドーパントの価電子レベル EV 2と伝導レべ ル EC 2が示されている。 また、 発光層材料のエネルギーギャップ Eg 0、 第一 のド一パントのエネルギーギャップ Eg 1、 第二のド一パントのエネルギーギヤ ップ Eg 2が示されている。 エネルギーギャップは、 各材料の価電子レベルと伝 導レベルのエネルギー差である。
図中矢印は、 エネルギーレベルの高い方向を示している。
尚、 価電子レベルは、 大気下、 光電子分光装置 (理研計器 (株) 社製: AC— 1) を用いて測定した値である。 エネルギーギャップは、 ベンゼン中の吸収スぺ クトルの吸収端から測定した値である。 伝導レベルは、 価電子レベルとエネルギ 一ギヤップの測定値から算出した値である。
図 1に示すように、 この発光層においては、 発光層材料の価電子レベル EV0 が第一のドーパントの価電子レベル EV 1及び第二のドーパントの価電子レベル EV2より高い。 即ち、 EV0>EV 1かつ EV0>EV2の関係を満たす。 こ のような構成を取ることにより、 第一及び第二ドーパントはホスト材料に注入さ れた正孔を捕捉し、 発光しやすくなる。 好ましくは、 EV0と EV1のエネルギ 一レベルの差 5は、 0. 4 eV以下である。
発光層材料の伝導レベル E C 0は、 第二のドーパントの伝導レベル E C 2以上 である。 即ち、 EC 0≥EC 2の関係を満たす。 これは第二ドーパントが発光 層材料に注入された電子を捕捉しないようにするためである。 このようにすると、 正孔を捕捉する機能は強化され、 この結果として低電圧かつ長寿命な発光が可能 となる。
EC 0と EC 2のエネルギーレベルの差 6は、 0. 4 eV以下であることが好 ましい。
発光層材料のエネルギーギヤップ E g 0が、 第一のドーパントのエネルギーギ ヤップ Eg 1及び第二のドーパントのエネルギーギャップ Eg 2よりも大きい。 即ち、 Eg O>Eg l, Eg 2の関係を満たす。
発光層材料は、 励起と失活を繰り返すことにより劣化していくが、 本発明では 第一、 第二ド一パントともに発光層材料の励起状態からエネルギー移動を受ける ことができるために、 どちらか片方のドーパントのみしか発光層材料の励起状態 からエネルギー移動を受けられない場合よりも、 発光層材料の劣化を抑制するこ とができる。 従って、 素子の発光効率の向上又は長寿命化が達成できる。
本発明の第二の態様の有機 EL素子は、 一対の電極間に発光層が設けられ、 発 光層が、 発光層材料と、 以下の関係を満たす第一のド一パント及び第二のドーパ ントを含む。
(A, ) EV0>EV1かつ EV0>EV2
(Β' ) EC 0≥EC 1,' EC 2
[式中、 EV0、 EV1、 EV2はそれぞれ発光層材料、 第一のドーパント、 第二のドーパントの価電子レベル、 EC0、 EC 1、 EC 2はそれぞれ発光層材 料、 第一のド一パント、 第二のドーパントの伝導レベルである。 ]
図 2は、 この有機 EL素子のエネルギーダイアグラムである。
尚、 図 2に示す記号は、 図 1に示す記号と同じ意味を有する。
図 2に示すように、 この発光層においては、 発光層材料の伝導レベル EC 0が 第一のドーパントの伝導レベル E C 1及び第二のドーパントの伝導レベル E C 2 以上である。 即ち、 EC0≥EC 1, EC 2の関係を満たす。 これは各ドーパ ントが電子を捕捉しないようにするためである。 このような構成の素子にするこ とにより、 低電圧で駆動することができる。
また、 上述の発光層と同様に、 発光層材料の価電子レベル EV0が第一のドー パントの価電子レベル E V 1及び第二のドーパントの価電子レベル E V 2より高 レ^ 即ち、 EV0>EV1かっEV0>EV2の関係を満たす。 このような構成 を取ることにより、 第一及び第二ドーパントは発光層材料に注入された正孔を捕 捉し、 発光しやすくなる。
ドーパントは、 発光層材料に注入された正孔を十分捕捉できる濃度まで添加す る必要があるが、 上記のような関係を有する 2種のドーパントを添加した場合、 それぞれのドーパント濃度は、 1種のドーパントのみを添加した構成に比べて相 対的に小さい濃度の添加で済むため、 ドーパント同士の会合による濃度消光が抑 制できる。 このため有機 E L素子を長寿命化することが可能である。
これは、 青色発光素子の場合、 特に顕著であり、 エネルギーギャップが大きい 素子構成の場合、 特に好適な構成である。
この発光層においても EV0と EV 1のエネルギーレベルの差 5は、 0. 4e Vより小さく、 また、 EC 0と EC 2のエネルギーレベルの差 6は、 0. 4 eV より小さいことが好ましい。
発光層材料のエネルギーギヤップ E g 0は、 第一のド一パントのエネルギーギ ヤップ Eg 1又は第二のドーパントのエネルギーギャップ Eg 2より大きいこと が好ましい。
さらに、 発光層の材料のエネルギーギヤップ E g 0が第一のド一パントのエネ ルギ一ギャップ Eg 1及び第二のドーパントのエネルギーギャップ Eg 2の両方 より大きいことが好ましい。 これにより、 第一のドーパントと第二のドーパント が共に発光する。
本発明の有機 EL素子において、 発光層材料、 第一のドーパント及び第二のド 一パントは、 上記の関係を満たすように選択されていれば、 従来、 有機 EL素子 に使用されている発光層材料 (ホスト材料) 及びド一パントを使用することがで きる。
発光層材料としては、 例えば、 フエ二ルアントラセン、 ナフチルアントラセン、 ジフエ二ルアントラセン誘導体、 芳香族ァミン誘導体、 金属錯体、 ポリフエニル 誘導体、 力ルバゾール誘導体、 スチリルァリ一レン誘導体等が挙げられる。 フエ 二ルアントラセン、 ナフチルアントラセン、 ジフエ二ルアントラセン誘導体、 芳 香族アミン誘導体及び金属錯体から選択されていることが好ましく、 フエニルァ ントラセン、 ナフチルアントラセン又はジフエ二ルアン卜ラセン誘導体がァルケ 二ル基を含有していることが特に好ましい。
また、 発光層材料のガラス転移温度は、 1 0 0 °C以上であることが、 有機 E L素子の熱安定性を維持するため好ましい。 特に、 1 2 0 °C以上が好ましい。 発光層材料の具体的な化合物の例を以下に示す。
Figure imgf000013_0001
II
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV
Figure imgf000014_0001
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV
Figure imgf000015_0001
ετ
Zm0/£00Zd£/∑Jd 00 請 ΟΟΖ OAV
Figure imgf000016_0001
fl
Zm0/£00Zd£/∑Jd 00 請 OOZ OA
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
SI
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV 発光層材料が、 正孔伝達性の化合物及び Z又は電子伝達性の化合物を含むこと が好ましい。
正孔伝達性の化合物とは、 電界を印加したときに正孔を輸送する性質を有して いる化合物であり、 例えば、 ポリフエニル誘導体、 芳香族ァミン、 スチリルァリ ーレン誘導体等が挙げられる。
電子伝達性の化合物とは、 電界を印加したときに電子を輸送する性質を有して いる化合物であり、 例えば、 8—ヒドロキシキノリノールアルミニウム錯体等の 金属錯体が挙げられる。
発光層材料は、 電子伝達性の第一発光層材料と正孔伝達性の第二発光層材料よ りなることが好ましい。 このようにすると、 正孔輸送の役割と電子輸送の役割を それぞれ異なる 2つの化合物に行わせることができ、 正孔及び電子を安定的に再 結合域まで輸送することができる。
第一のドーパント及び第二のド一パントとしては、 例えば、 ァリ一ルァミン誘 導体、 スチリルァミン誘導体、 縮合芳香族環化合物、 ァリールァミン置換縮合芳 香族環化合物等が挙げられる。 好ましくは、 ァリールァミン誘導体、 スチリルァ ミン誘導体、 縮合芳香族環化合物及びァリールアミン置換縮合芳香族環化合物よ り選択される。
ドーパントの具体的な化合物の例を以下に示す。 .
Figure imgf000019_0001
Figure imgf000019_0002
LI
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV
Figure imgf000020_0001
81 ひ O/£OOZdf/ェ: 00 請 OOZ OAV
Figure imgf000021_0001
Figure imgf000021_0002
61Z l0/£00Zdr/lDd
Figure imgf000022_0001
Figure imgf000022_0002
第一のドーパントが正孔注入補助性を保有し、 第二のドーパントが電子注入補 助性を保有することが好ましい。
正孔注入補助性とは、 ホスト材料に対する正孔の注入性を向上させる性質を有 していることであり、 例えば、 スチリルァミン誘導体、 芳香族ァミン誘導体等が 挙げられる。
電子注入補助性とは、 ホスト材料に対する電子の注入性を向上させる性質を有 していることであり、 例えば、 ルブレンやペリレンのような縮合多環芳香族化合 物等が挙げられる。
発光層材料、 第一のドーパント及び第二のドーパントの分子量について、 少な くとも 1つが 1 0 0〜1 5 0 0、 特に、 5 0 0〜: L 0 0 0であることが好ましく、 これらの分子量がすべて 1 0 0〜1 5 0 0であることが特に好ましい。 1 0 0よ り小さい場合、 安定な薄膜が形成できないおそれがあり、 また、 1 5 0 0より大 きい場合、 蒸着温度が高すぎて熱分解を起こすおそれがある。 発光層の形成方法としては、 上記の発光層材料、 第一のドーパント及び第二の ドーパントを混合した有機発光材料を、 例えば、 真空蒸着法、 スパッタリング、 スピンコート法、 キャスト法等の方法により薄膜化することにより形成できる。 均質な膜が得られやすく、 かつピンホールが発生しにくい等の点から真空蒸着法 により形成することが好ましい。
薄膜化するときに、 発光層材料、 第一のド一パント及び第二のドーパントは均 一に混合されていることが好ましい。
発光層全体に対する、 第一のド一パント及び第二のドーパントの添加量は、 そ れぞれ 2 0重量%以下であることが好ましく、 1〜1 0重量%であることが特に 好ましい。 2 0重量%を超える場合、 ドーパントの濃度が高すぎ発光効率が下が るおそれがある。
発光層には、 発光層材料、 第一のドーパント及び第二のド一パント以外の化合 物を添加してもよい。 例えば、 第三のドーパントを添加してもよい。
発光層は電子と正孔の少なくとも一方、 好ましくは両方の輸送を行うことが好 ましい。 具体的には、 前述のとおり、 発光層材料に、 電子伝達性の第一発光層材 料と正孔伝達性の第二発光層材料の混合材料を使用することが好ましい。
上述したように、 本発明の有機 E L素子は、 一対の電極間に発光層が設けられ ているが、 具体的な構成として、 例えば、 以下の構成が挙げられる。
(i) 陽極 Z発光層/陰極
(ii) 陽極 Z正孔注入層/発光層/陰極
(iii) 陽極 Z発光層/電子注入層/陰極
(iv) 陽極 Z正孔注入層/発光層 Z電子注入層 Z陰極
(v) 陽極 Z有機半導体層/発光層/陰極
(vi) 陽極ノ有機半導体層/電子障壁層/発光層ノ陰極
(vii) 陽極 Z有機半導体層/発光層/付着改善層 Z陰極
(viii) 陽極 Z正孔注入層/正孔輸送層/発光層ノ電子注入層/陰極
(ix) 陽極 Z絶縁層/発光層/絶縁層 Z陰極
(X) 陽極 Z無機半導体層/絶縁層/発光層ノ絶縁層ノ陰極
(xi) 陽極 Z有機半導体層 Z絶縁層/発光層/絶縁層 Z陰極
(xii) 陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層/発光層 Z絶縁層ノ陰極 (xiii) 陽極/絶縁層/正孔注入層 Z正孔輸送層/発光層 電子注入層, これらの構成中で、 通常 (viii) の構成が好ましく用いられる。
本発明の有機 EL素子を作製するには、 上述した発光層の他は、 通常、 有機 E L素子に用いられる材料を用いることが可能である。
以下、 材料の具体例について説明する。
本発明の有機 E L素子は透光性の基板上に作製する。 この透光性基板は有機 E L素子を支持する基板であり、 400〜 700 nmの可視領域における光の透過 率が 50%以上で、 平滑な基板が好ましい。
具体的には、 ガラス板、 ポリマ一板等が挙げられる。 ガラス板としては、 特に ソーダ石灰ガラス、 バリウム ·ストロンチウム含有ガラス、 鉛ガラス、 アルミノ ケィ酸ガラス、 ホウケィ酸ガラス、 バリウムホウケィ酸ガラス、 石英等が挙げら れる。 また、 ポリマー板としては、 ボリカーボネート、 アクリル、 ポリエチレン テレフ夕レート、 ポリエーテルサルフアイド、 ポリサルフォン等を挙げることが できる。
陽極としては、 仕事関数の大きい (4 eV以上) 金属、 合金、 電気伝導性化合 物又はこれらの混合物を電極物質とするものが好ましく用いられる。 このような 電極物質の具体例としては、 Au等の金属、 Cu l、 I T〇、 I ZO、 Sn〇2、 Z n〇等の導電性材料が挙げられる。
陽極は、 これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成 させることにより作製することができる。
このように、 発光層からの発光を陽極から取り出す場合、 陽極の発光に対する 透過率が、 10%より大きいことが好ましい。
また、 陽極のシ一ト抵抗は、 数百 Ω /口以下が好ましい。 陽極の膜厚は材料 にもよるが、 通常 10 nm〜l m、 好ましくは 10〜 200 nmの範囲で選 択される。
正孔注入、 輸送層は発光層への正孔注入を助け、 正孔を発光領域まで輸送する 層であって、 正孔移動度が大きく、 イオン化エネルギーが通常 5. 5 eV以下と 小さい。 このような正孔注入、 輸送層としては、 より低い電界強度で正孔を発光 層に輸送する材料が好ましく、 さらに、 正孔の移動度が、 例えば、 104〜10 6 VZ cmの電界印加時に、 少なくとも 10— 4cm2/V ·秒以上であることが 好ましい。
正孔注入、 輸送層を形成する材料としては、 上記の性質を有するものであれば よく、 従来、 光導伝材料において正孔の電荷輸送材料として慣用されているもの や、 EL素子の正孔注入、 輸送層に使用される公知のものの中から任意のものを 選択して用いることができる。
具体例として、 例えば、 トリァゾ一ル誘導体 (米国特許 3, 112, 197号 明細書等参照) 、 ォキサジァゾ一ル誘導体 (米国特許 3, 189, 447号明細 書等参照) 、 イミダゾール誘導体 (特公昭 37 - 16096号公報等参照) 、 ポ リアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、 同第 3, 8 20, 989号明細書、 同第 3, 542, 544号明細書、 特公昭 45— 555 号公報、 同 51— 10983号公報、 特開昭 51 - 93224号公報、 同 55_ 17105号公報、 同 56— 4148号公報、 同 55— 108667号公報、 同 55 - 156953号公報、 同 56— 36656号公報等参照) 、 ビラゾリン誘 導体及びピラゾロン誘導体 (米国特許第 3, 180, 729号明細書、 同第 4,
278, 746号明細書、 特開昭 55— 88064号公報、 同 55— 88065 号公報、 同 49一 105537号公報、 同 55— 51086号公報、 同 56— 8 0051号公報、 同 56 _ 88141号公報、 同 57— 45545号公報、 同 5 4- 112637号公報、 同 55— 74546号公報等参照) 、 フエ二レンジァ ミン誘導体 (米国特許第 3, 615, 404号明細書、 特公昭 51- 10105 号公報、 同 46— 3712号公報、 同 47— 25336号公報、 特開昭 54—5
3435号公報、 同 54— 110536号公報、 同 54— 119925号公報等 参照) 、 ァリ一ルァミン誘導体 (米国特許第 3, 567, 450号明細書、 同第 3, 180, 703号明細書、 同第 3, 240, 597号明細書、 同第 3 , 65 8, 520号明細書、 同第 4, 232, 103号明細書、 同第 4, 175, 96 1号明細書、 同第 4, 012, 376号明細書、 特公昭 49一 35702号公報、 同 39— 27577号公報、 特開昭 55— 144250号公報、 同 56— 119 132号公報、 同 56— 22437号公報、 西独特許第 1 , 110, 518号明 細書等参照) 、 ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照) 、 ォキサゾ一ル誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの) 、 スチリルアントラセン誘導体 (特開昭 56-46234号公報 等参照) 、 フルォレノン誘導体 (特開昭 54— 110837号公報等参照) 、 ヒ ドラゾン誘導体 (米国特許第 3, 717, 462号明細書、 特開昭 54— 591
43号公報、 同 55— 52063号公報、 同 55— 52064号公報、 同 55— 46760号公報、 同 55— 85495号公報、 同 57— 11350号公報、 同
57 - 148749号公報、 特開平 2— 311591号公報等参照) 、 スチルベ ン誘導体 (特開昭 61 - 210363号公報、 同第 61 -228451号公報、 同 61— 14642号公報、 同 61— 72255号公報、 同 62— 47646号 公報、 同 62— 36674号公報、 同 62— 10652号公報、 同 62— 302 55号公報、 同 60— 93455号公報、 同 60— 94462号公報、 同 60— 174749号公報、 同 60— 175052号公報等参照) 、 シラザン誘導体 (米国特許第 4, 950, 950号明細書) 、 ポリシラン系 (特開平 2— 204 996号公報) 、 ァニリン系共重合体 (特開平 2— 282263号公報) 、 特開 平 1— 211399号公報に開示されている導電性高分子オリゴマー (特にチォ フェンオリゴマー) 等を挙げることができる。
正孔注入、 輸送層の材料としては、 上記のものを使用することができるが、 ポ ルフィリン化合物 (特開昭 63 - 2956965号公報等に開示のもの) 、 芳香 族第三級ァミン化合物及びスチリルアミン化合物 (米国特許第 4, 127, 41 2号明細書、 特開昭 53_ 27033号公報、 同 54— 58445号公報、 同 5 4—149634号公報、 同 54— 64299号公報、 同 55— 79450号公 報、 同 55— 144250号公報、 同 56— 119132号公報、 同 61— 29 5558号公報、 同 61— 98353号公報、 同 63— 295695号公報等参 照) 、 特に芳香族第三級ァミン化合物を用いることが好ましい。
また、 米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環 を分子内に有する、 例えば 4, 4' 一ビス (N— (1—ナフチル) — N—フエ ニルァミノ) ビフエ二ル (以下 NPDと略記する) 、 また特開平 4— 30868 8号公報に記載されているトリフエニルァミンュニットが 3つスターバースト型 に連結された 4, 4' , 4" ートリス (N— (3—メチルフエニル) 一 N—フ ェニルァミノ) 1、リフエニルァミン (以下 M T D A T Aと略記する ) 等を挙げる ことができる。 また、 芳香族ジメチリディン系化合物、 p型 S i、 P型 S i C等の無機化合物 も正孔注入、 輸送層の材料として使用することができる。
正孔注入、 輸送層は上述した化合物を、 例えば、 真空蒸着法、 スピンコート法、 キャスト法、 L B法等の公知の方法により薄膜ィヒすることにより形成することが できる。 正孔注入 ·輸送層としての膜厚は特に制限はないが、 通常は 5 nm〜 5 mである。 この正孔注入、 輸送層は、 上述した材料の一種又は二種以上から なる一層で構成されてもよいし、 又は、 正孔注入 ·輸送層とは別種の化合物から なる正孔注入 ·輸送層を積層したものであってもよい。.
本発明においては、 陽極と発光層の間に正孔注入層を含み、 正孔注入層を構成 する化合物が、 フエ二レンジァミン構造を含有することが好ましい。
有機半導体層は、 発光層への正孔注入又は電子注入を助ける層であって、 1 0 - 1 0 S / c m以上の導電率を有するものが好ましい。 このような有機半導体層の 材料としては、 含チォフェンオリゴマーゃ特開平 8— 1 9 3 1 9 1号公報に開示 してある含ァリ一ルァミンォリゴマ一等の導電性ォリゴマ一、 含ァリールァミン デンドリマ一等の導電性デンドリマー等を用いることができる。
電子注入層は発光層への電子の注入を助ける層であって、 電子移動度が大きい。 また、 付着改善層は、 電子注入層の中で特に陰極との付着が良い材料からなる層 である。 電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はそ の誘導体の金属錯体が好適である。
上記 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、 ォ キシン (一般に 8 _キノリノール又は 8—ヒドロキシキノリン) のキレ一卜を含 む金属キレートォキシノィド化合物が挙げられる。
例えば、 A l qを電子注入層として用いることができる。
一方ォキサジァゾール誘導体としては、 以下の一般式 [ 1 ] 〜 [ 3 ] で表され る電子伝達化合物が挙げられる。 N— N
Ar1 -Ar [1]
O
[2]
[3]
Figure imgf000028_0001
(式中、 Ar 1, A r 2, Ar3, Ar5, Ar6, A r 9はそれぞれ置換又は無置 換のァリール基を示し、 それぞれ互いに同一であっても異なっていてもよい。 ま た、 Ar4, Ar7, A r 8は置換又は無置換のァリーレン基を示し、 それぞれ同 一であっても異なっていてもよい)
ここで、 ァリール基としてはフエニル基、 ビフエ二ル基、 アントラニル基、 ぺ リレニル基、 ピレニル基が挙げられる。 また、 ァリーレン基としてはフエ二レン 基、 ナフチレン基、 ピフエ二レン基、 アントラニレン基、 ペリレニレン基、 ピレ 二レン基等が挙げられる。 また置換基としては炭素数 1〜10のアルキル基、 炭 素数 1〜10のアルコキシ基又はシァノ基等が挙げられる。 この電子伝達化合物 は薄膜形成性のものが好ましい。
上記電子伝達性化合物の具体例としては、 下記のものを挙げることができる。
Figure imgf000029_0001
また、 アルカリ金属やアルカリ土類金属等の酸化物、 ハロゲン化物からなる電 子注入層を設けても良い。 具体的には弗化リチウム、 酸化リチウム、 弗化セシゥ ム、 酸化セシウム、 酸化マグネシウム、 弗化マグネシウム、 酸化カルシウム、 弗 化カルシゥム等が挙げられる。
さらには、 有機化合物層にアルカリ金属やアルカリ土類金属を少量添加し、 電 子注入域とすることも可能である。 これらの添加量としては 0 . l〜1 0 m o 1 %が好適である。
陰極としては、 仕事関数の小さい (4 e V以下) 金属、 合金、 電気伝導性化合 物及びこれらの混合物を電極物質とするものが用いられる。 このような電極物質 の具体例としては、 ナトリウム、 ナトリウム一カリウム合金、 マグネシウム、 リ チウム、 マグネシウム ·銀合金、 アルミニウム/酸化アルミニウム、 アルミニゥ ム ' リチウム合金、 インジウム、 希土類金属等が挙げられる。
この陰極は、 これらの電極物質を蒸着やスパッタリング等の方法により薄膜を 形成させることにより作製することができる。 - ここで発光層からの発光を陰極から取り出す場合、 陰極の発光に対する透過率 は 1 0 %より大きくすることが好ましい。
また陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましく、 膜厚は通常 1 0 nm〜; L z m、 好ましくは 5 0〜 2 0 0 nmである。
有機 E Lは超薄膜に電界を印可するために、 リークやショートによる画素欠陥 が生じやすい。 これを防止するために、 一対の電極間に絶縁性の薄膜層を挿入す ることが好ましい。
絶縁層に用いられる材料としては、 例えば、 酸化アルミニウム、 弗化リチウム、 酸化リチウム、 弗化セシウム、 酸化セシウム、 酸化マグネシウム、 弗化マグネシ ゥム、 酸化カルシウム、 弗化カルシウム、 窒化アルミニウム、 酸化チタン、 酸化 珪素、 酸化ゲルマニウム、 窒化珪素、 窒化ホウ素、 酸化モリブデン、 酸化ルテニ ゥム、 酸化バナジウム等が挙げられる。
これらの混合物や積層物を用いてもよい。
以上、 例示した材料及び方法により、 陽極、 発光層、 必要に応じて正孔注入層、 及び必要に応じて電子注入層を形成し、 さらに陰極を形成することにより有機 E L素子を作製することができる。 また陰極から陽極へ、 前記と逆の順序で有機 E L素子を作製することもできる。
以下、 透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次設 けられた構成の有機 E L素子の作製例を記載する。
まず、 適当な透光性基板上に陽極材料からなる薄膜を 1 以下、 好ましく は 1 0〜2 0 0 nmの範囲の膜厚になるように蒸着やスパッタリング等の方法に より形成して陽極を作製する。
次に、 この陽極上に正孔注入層を設ける。 正孔注入層の形成は、 前述したよう に真空蒸着法、 スピンコート法、 キャスト法、 L B法等の方法により行うことが できるが、 均質な膜が得られやすく、 かつピンホールが発生しにくい等の点から 真空蒸着法により形成することが好ましい。 真空蒸着法により正孔注入層を形成 する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料) 、 目的とする正 孔注入層の結晶構造や再結合構造等により異なるが、 一般に蒸着源温度 5 0〜4 5 0 °C, 真空度 1 0— 7〜1 0— 3 t o r r、 蒸着速度 0 , 0 1〜5 0 n mZ秒、 基板温度一 5 0〜3 0 0 t、 膜厚 5 n m〜5 の範囲で適宜選択することが 好ましい。 次に、 正孔注入層上に発光層を設ける発光層の形成も、 所望の有機発光材料を 用いて真空蒸着法、 スパッタリング、 スピンコート法、 キャスト法等の方法によ り有機発光材料を薄膜化することにより形成できるが、 均質な膜が得られやすく、 かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ま しい。 真空蒸着法により発光層を形成する場合、 その蒸着条件は使用する化合物 により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択するこ とができる。
次に、 この発光層上に電子注入層を設ける。 正孔注入層、 発光層と同様、 均質 な膜を得る必要から真空蒸着法により形成することが好ましい。 蒸着条件は正孔 注入層、 発光層と同様の条件範囲から選択することができる。
最後に陰極を積層して有機 E L素子を得ることができる。
陰極は金属から構成されるもので、 蒸着法、 スパッタリングを用いることがで きる。 しかし、 下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好 ましい。
これまで記載してきた有機 E L素子の作製は、 一回の真空引きで一貫して陽極 から陰極まで作製することが好ましい。
尚、 有機 E L素子に直流電圧を印加する場合、 陽極を十、 陰極を一の極性にし て、 5〜4 0 Vの電圧を印加すると発光が観測できる。 また、 逆の極性で電圧を 印加しても電流は流れず、 発光は全く生じない。 さらに、 交流電圧を印加した場 合には陽極が十、 陰極が一の極性になった時のみ均一な発光が観測される。 印加 する交流の波形は任意でよい。
本発明の有機 E L素子は、 輝度、 発光効率又は寿命が向上する。 従って、 壁掛 テレビの平面発光体やディスプレイのバックライト等の光源、 携帯電話や P D A の表示部、 力一ナビゲーシヨンや車のインパネ、 照明等に好適に使用できる。
[実施例]
以下、 本発明の実施例を説明するが、 本発明はこれらの実施例によって限定され るものではない。
尚、 各実施例で使用した化合物の性質及び作製した素子は下記の方法で評価し た。 (1) 価電子レベル:大気下光電子分光装置 (理研計器 (株) 社製: AC— 1) を用いて測定した。 具体的には、 材料に光を照射し、 その際に電荷分離によって 生じる電子量を測定することにより測定した。
(2) エネルギーギャップ:ベンゼン中の吸収スぺクトルの吸収端から測定した。 具体的には、 市販の可視'紫外分光光度計を用いて、 吸収スペクトルを測定し、 そのスぺクトルが立ち上がり始める波長から算出した。
(3) 伝導レベル:価電子レベルとエネルギーギャップの測定値から算出した。
(4) 輝度:分光放射輝度計 (CS— 1000、 ミノルタ製) により測定した。
(5) 効率:マルチメ一夕を用いて測定した電流密度値と輝度 (10 On i t) より算出した。
(6) 半減寿命:初期輝度 1000 n i t、 定電流条件下にて封止した素子に対 し、 室温で測定を行った。
また、 以下に示す実施例及び比較例で使用した化合物の化学式を示す。
さらに、 これらの化合物の価電子レベル、 伝導レベル及びエネルギーギャップ を表 1に示す。
Figure imgf000033_0001
gag上
Figure imgf000033_0002
IS
Zm0/£00Zd£/∑Jd OOS 請 00Z OAV
Figure imgf000034_0001
Figure imgf000034_0002
b|V
Figure imgf000034_0003
ひ O細 Zdf/ェ:) d 00 請 OO OAV SH
Figure imgf000035_0001
17Q
Figure imgf000035_0002
Figure imgf000035_0003
εε
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV 9α
Figure imgf000036_0001
9Q
Figure imgf000036_0002
adN
Figure imgf000036_0003
Zm0/£00Zd£/∑Jd 00 請 OOZ OAV 表 1
Figure imgf000037_0001
実施例 1
25mmX 75mmX 1. 1 mm厚の I T O透明電極付きガラス基板 (ジォ マティック社製) を、 イソプロピルアルコール中で超音波洗浄を 5分間行なった 後、 UVオゾン洗浄を 30分間行なった。
洗浄後の透明電極ライン付きガラス基板を、 真空蒸着装置の基板ホルダーに装 着した。 まず、 透明電極ラインが形成されている側の面上に前記透明電極を覆う ようにして膜厚 60 nmの Ν, Ν' 一ビス (Ν, Ν, —ジフエ二ルー 4一アミ ノフエ二ル) 一 Ν, Ν—ジフエ二ルー 4, 4 ' ージアミノー 1, 1, ービフエ ニル膜 (以下 「TPD 232膜」 と略記する。 ) を成膜した。 この TPD232 膜は、 正孔注入層として機能する。
TPD 232膜の成膜に続いて、 この TP D 232膜上に膜厚 20 nmの N, N, N, , N' —テトラ (4ービフエニル) 一ジアミノビフエ二レン層 (以下、 「TBDB層」 ) を成膜した。 この膜は正孔輸送層として機能する。 さらに、 発光層材料として H Iを、 第一のドーパントとして D 1を、 第二のド 一パントとして D 2を、 D 1 : D 2 : H 1 (重量比) が 1 : 1 : 4 0となるよう に蒸着し、 膜厚 4 0 nmに成膜した。 この膜は、 発光層として機能する。
この膜上に膜厚 1 0 nmの A 1 q膜を成膜した。 これは、 電子注入層として機 能する。
この後、 還元性ドーパントである L i (L i源:サエスゲッタ一社製) と A 1 qを二元蒸着させ、 電子注入層 (陰極) として A l q: L i膜 (膜厚 1 0 nm) を形成した。 この A 1 q : L i膜上に金属 A 1を蒸着させ金属陰極を形成し有機 E L発光素子を作製した。
実施例 2
H 1の代わりに H 2を用い、 D 1の代わりに D 3を用いた以外は実施例 1と同 様に有機 E L素子を作製した。
実施例 3
D 2の代わりに D 1を用いた以外は実施例 2と同様に有機 E L素子を作製した。 実施例 4
D 1の代わりに D 2、 D 2の代わりに D 4を用いた以外は実施例 1と同様に有 機 E L素子を作製した。
実施例 5
H 1の代わりに H 3を用いた以外は実施例 1と同様に有機 E L素子を作製した。 比較例 1
D 2を用いなかった以外は実施例 1と同様に有機 E L素子を作製した。
比較例 2
D 1を用いなかった以外は実施例 1と同様に有機 E L素子を作製した。
比較例 3
D 2の代わりに N P Bを用いた以外は実施例 1と同様に有機 E L素子を作製し た。
比較例 4
D 1を用いなかった以外は実施例 2と同様に有機 E L素子を作製した。
比較例 5
D 3を用いなかった以外は実施例 2と同様に有機 E L素子を作製した。 比較例 6
D 3を用いなかった以外は実施例 3と同様に有機 EL素子を作製した。
比較例 7
D 2を用いなかった以外は実施例 4と同様に有機 EL素子を作製した。
比較例 8
D 2を用いなかった以外は実施例 5と同様に有機 EL素子を作製した。
比較例 9
D 1を用いなかった以外は実施例 5と同様に有機 EL素子を作製した。
比較例 10
D 1の代わりに D 5、 D2の代わりに D 6を用いた以外は実施例 1と同様に有 機 EL素子を作製した。
比較例 11
D 1の代わりに D 5、 D2の代わりに N P Bを用いた以外は実施例 1と同様に 有機 EL素子を作製した。
実施例 1〜5及び比較例 1〜11で作製した有機 EL素子において、 使用した 発光層材料、 第一のドーパント並びに第二のド一パントの種類及びそれぞれの価 電子レベル、 伝導レベル並びにエネルギーギャップを表 2に示す。
Figure imgf000040_0001
88
zt't'ioeooidr/i3d oosん請 ooz OAV 発明の形態
®EV0>EV 1, EV0>EV2かっEC0≥EC2かっEg0>Eg Eg 2
② EV0>EV1、 EV0>EV2かつ EC 0≥EC 1, EC 2 評価例
実施例 1〜 5及び比較例 1〜 11で作製した有機 E L素子について、 輝度が 1 0 On i t付近の発光効率及び初期輝度 100 On i tでの半減寿命を測定した c 表 3に結果を示す。 表 3
Figure imgf000041_0001
発明の形態
① EV0>EV1、 EV0>EV2かつ EC0≥EC2かつ E g0>Eg 1, Eg
② EV0>EV1、 EV0>EV2かつ EC 0≥EC 1, EC 2 表 3で、 実施例 1と比較例 1〜3、 及び実施例 2と比較例 4〜 5、 実施例 3と 比較例 4, 6、 実施例 4と比較例 1, 7、 実施例 5と比較例 8〜 9の結果より、 本発明の素子は発光効率が高く、 し力、も著しく長寿命であることが明らかになつ た。 産業上の利用可能性
本発明によれば、 高輝度、 高効率又は長寿命である有機エレクト口ルミネッセ ンス素子を提供することができる。

Claims

請 求 の 範 囲
1. 一対の電極間に発光層が設けられた有機エレクト口ルミネッセンス素子であ つて、
前記発光層が、 発光層材料と、 以下の関係を満たす第一のドーパント及び第二 のドーパントを含むことを特徴とする有機エレクト口ルミネッセンス素子。
(A) EV0>EV 1かつ EV0>EV2
(B) EC 0≥EC 2
(C) Eg 0>Eg 1, Eg 2
[式中、 EV0、 EV1、 EV 2はそれぞれ発光層材料、 第一のドーパント、 第二のドーパントの価電子レベル、 EC0、 E C 2はそれぞれ発光層材料、 第二 のド一パントの伝導レベル、 Eg0、 Eg 1, Eg 2はそれぞれ発光層材料、 第 一のドーパント、 第二のドーパントのエネルギーギャップである。 ]
2. 一対の電極間に発光層が設けられた有機エレクト口ルミネッセンス素子であ つて、
前記発光層が、 発光層材料と、 以下の関係を満たす第一のドーパン卜及び第二 のド一パントを含むことを特徴とする有機エレクト口ルミネッセンス素子。
(A' ) E.V0〉EV 1かつ EV0>EV2
(Β' ) EC 0≥EC 1, EC 2
[式中、 EV0、 EV1、 EV2はそれぞれ発光層材料、 第一のドーパント、 第二のドーパントの価電子レベル、 EC0、 EC 1、 EC 2はそれぞれ発光層材 料、 第一のドーパント、 第二のドーパントの伝導レベルである。 ]
3. 前記第一のドーパント及び前記第二のドーパントの両方が発光することを特 徴とする請求の範囲第 2項に記載の有機エレクト口ルミネッセンス素子。
4. 前記第一のドーパント及び/又は前記第二のド一パントの添加量が、 それぞ れ前記発光層全体の 20重量%以下であることを特徴とする請求の範囲第 1項又 は第 2項に記載の有機エレクトロルミネッセンス素子。
5 . 前記第一のドーパントが正孔注入補助性を有すること及び Z又は前記第二の ド一パントが電子注入補助性を有することを特徴とする請求の範囲第 1項又は第 2項に記載の有機エレクト口ルミネッセンス素子。
6 . 前記発光層材料の価電子レベル E V 0と前記第一のドーパントの価電子レべ ル E V 1のエネルギー差が 0 . 4 e V以下であること及び Z又は前記発光層材料 の伝導レベル E C 0と前記第二のドーパント伝導レベル E C 2のエネルギー差が 0 . 4 e V以下であることを特徴とする請求の範囲第 1項又は第 2項に記載の有 機エレクトロルミネッセンス素子。
7 . 前記発光層材料、 前記第一のドーパント及び前記第二のドーパントの少なく とも一つの分子量が、 1 0 0〜1 5 0 0であることを特徴とする請求の範囲第 1
' 項又は第 2項に記載の有機エレクト口ルミネッセンス素子。
8 . 前記発光層材料のガラス転移温度が、 Γ 0 0 °C以上であることを特徴とす る請求の範囲第 1項又は第 2項に記載の有機エレクトロルミネッセンス素子。
9 . 前記第一のドーパント又は前記第二のドーパントが、 スチリルァミン誘導体、 縮合芳香族環化合物及びァリールァミン置換縮合芳香族環化合物より選択される ことを特徴とする請求の範囲第 1項又は第 2項に記載の有機エレクト口ルミネッ センス素子。
1 0 . 前記発光層材料が、 正孔伝達性を有する化合物及び Z又は電子伝達性を有 する化合物を含むことを特徴とする請求の範囲第 1項又は第 2項に記載の有機ェ レクトロルミネッセンス素子。
1 1 . 前記発光層材料が、 フエ二ルアントラセン、 ナフチルアントラセン、 ジフ ェニルァントラセン誘導体、 芳香族ァミン誘導体及び金属錯体から選択されるこ とを特徴とする請求の範囲第 1項又は第 2項に記載の有機エレクトロルミネッセ ンス素子。
1 2 . 前記フエ二ルアントラセン、 ナフチルアントラセン又はジフエ二ルアント ラセン誘導体が、 アルケニル基を含有することを特徴とする請求の範囲第 1 1項 に記載の有機エレクト口ルミネッセンス素子。
1 3 . 前記陽極と前記発光層の間に正孔注入層を含み、 前記正孔注入層を構成す る化合物が、 フエ二レンジァミン構造を含有することを特徴とする請求の範囲第 1項又は第 2項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2003/014426 2002-11-18 2003-11-13 有機エレクトロルミネッセンス素子 WO2004047500A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/535,311 US20060055305A1 (en) 2002-11-18 2003-11-13 Organic electroluminescence element
EP03774011A EP1578175B1 (en) 2002-11-18 2003-11-13 Organic electroluminescence element
AT03774011T ATE509504T1 (de) 2002-11-18 2003-11-13 Organisches elektrolumineszenzelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002333865A JP4152173B2 (ja) 2002-11-18 2002-11-18 有機エレクトロルミネッセンス素子
JP2002-333865 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004047500A1 true WO2004047500A1 (ja) 2004-06-03

Family

ID=32321710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014426 WO2004047500A1 (ja) 2002-11-18 2003-11-13 有機エレクトロルミネッセンス素子

Country Status (8)

Country Link
US (1) US20060055305A1 (ja)
EP (1) EP1578175B1 (ja)
JP (1) JP4152173B2 (ja)
KR (1) KR101009784B1 (ja)
CN (1) CN100483776C (ja)
AT (1) ATE509504T1 (ja)
TW (1) TW200418343A (ja)
WO (1) WO2004047500A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923930A1 (en) * 2005-09-05 2008-05-21 Idemitsu Kosan Co., Ltd. Blue light emitting organic electroluminescence element
JP2011165398A (ja) * 2010-02-05 2011-08-25 Fujifilm Corp 有機電界発光素子
JP2011176267A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957646A (zh) 2004-05-27 2007-05-02 出光兴产株式会社 白色系有机电致发光元件
EP1655359A1 (de) * 2004-11-06 2006-05-10 Covion Organic Semiconductors GmbH Organische Elektrolumineszenzvorrichtung
KR100669757B1 (ko) * 2004-11-12 2007-01-16 삼성에스디아이 주식회사 유기 전계 발광 소자
JP4653469B2 (ja) 2004-12-01 2011-03-16 出光興産株式会社 有機電界発光素子
US7402346B2 (en) 2004-12-07 2008-07-22 Lg. Philips Lcd Co., Ltd. Organic electroluminescent devices
US7670506B1 (en) * 2004-12-30 2010-03-02 E. I. Du Pont De Nemours And Company Photoactive compositions for liquid deposition
EP2479814B1 (en) 2005-03-28 2015-07-22 Semiconductor Energy Laboratory Co, Ltd. Light emitting device comprising a carbazole-anthracene derivative
KR101243833B1 (ko) * 2005-05-24 2013-03-20 미쯔비시 가가꾸 가부시끼가이샤 유기 전계발광 소자
JP5205584B2 (ja) * 2006-09-06 2013-06-05 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子および表示装置
WO2008101230A1 (en) * 2007-02-16 2008-08-21 Gary Ardell Systems methods, and media for trading securities
WO2008105472A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el材料含有溶液、有機el薄膜形成方法、有機el薄膜を含む有機el素子および有機elディスプレイパネル製造方法
JP4912209B2 (ja) * 2007-04-27 2012-04-11 キヤノン株式会社 有機発光素子
TWI347352B (en) * 2007-05-18 2011-08-21 Chin Hsin Chen Novel blue organic compound and organic electroluminescent device using the same
US8620759B1 (en) 2007-05-23 2013-12-31 Convergex Group, Llc Methods and systems for processing orders
US7840481B2 (en) * 2007-06-07 2010-11-23 Bny Convergex Execution Solutions Llc Aged transactions in a trading system
JP2008258641A (ja) * 2008-05-09 2008-10-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
KR100924145B1 (ko) * 2008-06-10 2009-10-28 삼성모바일디스플레이주식회사 유기전계발광소자 및 이의 제조방법
WO2011030450A1 (ja) 2009-09-11 2011-03-17 富士電機ホールディングス株式会社 有機発光素子
US20110196775A1 (en) * 2010-01-01 2011-08-11 Jeffrey Gavin Systems, Methods, and Media for Controlling the Exposure of Orders to Trading Platforms
JP5211123B2 (ja) * 2010-09-06 2013-06-12 出光興産株式会社 有機電界発光素子
KR102016068B1 (ko) * 2012-11-30 2019-08-29 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102244081B1 (ko) 2014-08-13 2021-04-26 삼성디스플레이 주식회사 유기 발광 소자
KR102399570B1 (ko) 2015-11-26 2022-05-19 삼성디스플레이 주식회사 유기 발광 소자
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
KR20170101128A (ko) 2016-02-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102642199B1 (ko) 2016-04-07 2024-03-05 삼성디스플레이 주식회사 유기 발광 소자
KR20170127101A (ko) 2016-05-10 2017-11-21 삼성디스플레이 주식회사 유기 발광 소자

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
WO1994006157A1 (en) 1992-08-28 1994-03-17 Idemitsu Kosan Co., Ltd. Charge injection assistant and organic electroluminescence device containing the same
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2000106277A (ja) * 1998-09-28 2000-04-11 Asahi Glass Co Ltd 有機エレクトロルミネセンス素子
JP2000164362A (ja) * 1998-05-19 2000-06-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2002038140A (ja) * 2000-06-08 2002-02-06 Eastman Kodak Co 有機ルミネセンス層及びエレクトロルミネセンス装置
JP2002507825A (ja) * 1998-03-13 2002-03-12 ケンブリッジ ディスプレイ テクノロジー リミテッド エレクトロルミネッセンス素子
WO2002074015A2 (en) * 2001-03-14 2002-09-19 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
WO2002102118A1 (fr) * 2001-06-06 2002-12-19 Idemitsu Kosan Co., Ltd. Dispositif a electroluminescence organique
WO2002104080A1 (fr) * 2001-06-15 2002-12-27 Canon Kabushiki Kaisha Dispositif a electroluminescence organique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
EP0857007B1 (en) * 1996-08-19 2004-07-21 TDK Corporation Organic electroluminescent device
JP3228502B2 (ja) * 1996-10-08 2001-11-12 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3949214B2 (ja) * 1997-03-18 2007-07-25 出光興産株式会社 有機エレクトロルミネッセンス素子
US6312836B1 (en) * 1998-04-10 2001-11-06 The Trustees Of Princeton University Color-tunable organic light emitting devices
KR100835021B1 (ko) * 1998-12-28 2008-06-03 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
JP4255610B2 (ja) * 1999-12-28 2009-04-15 出光興産株式会社 白色系有機エレクトロルミネッセンス素子
JP2002164178A (ja) * 2000-11-27 2002-06-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP3643797B2 (ja) * 2001-08-06 2005-04-27 三洋電機株式会社 有機エレクトロルミネッセンス素子
US6967062B2 (en) * 2003-03-19 2005-11-22 Eastman Kodak Company White light-emitting OLED device having a blue light-emitting layer doped with an electron-transporting or a hole-transporting material or both

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
WO1994006157A1 (en) 1992-08-28 1994-03-17 Idemitsu Kosan Co., Ltd. Charge injection assistant and organic electroluminescence device containing the same
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2002507825A (ja) * 1998-03-13 2002-03-12 ケンブリッジ ディスプレイ テクノロジー リミテッド エレクトロルミネッセンス素子
JP2000164362A (ja) * 1998-05-19 2000-06-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2000106277A (ja) * 1998-09-28 2000-04-11 Asahi Glass Co Ltd 有機エレクトロルミネセンス素子
JP2002038140A (ja) * 2000-06-08 2002-02-06 Eastman Kodak Co 有機ルミネセンス層及びエレクトロルミネセンス装置
WO2002074015A2 (en) * 2001-03-14 2002-09-19 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
WO2002102118A1 (fr) * 2001-06-06 2002-12-19 Idemitsu Kosan Co., Ltd. Dispositif a electroluminescence organique
WO2002104080A1 (fr) * 2001-06-15 2002-12-27 Canon Kabushiki Kaisha Dispositif a electroluminescence organique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923930A1 (en) * 2005-09-05 2008-05-21 Idemitsu Kosan Co., Ltd. Blue light emitting organic electroluminescence element
EP1923930A4 (en) * 2005-09-05 2012-03-21 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT ELEMENT BLUE LIGHT EMITTER
JP2011176267A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子
KR101757294B1 (ko) 2010-01-28 2017-07-12 유디씨 아일랜드 리미티드 유기 전계 발광 소자
JP2011165398A (ja) * 2010-02-05 2011-08-25 Fujifilm Corp 有機電界発光素子

Also Published As

Publication number Publication date
JP4152173B2 (ja) 2008-09-17
EP1578175A1 (en) 2005-09-21
ATE509504T1 (de) 2011-05-15
JP2004171828A (ja) 2004-06-17
KR20050085046A (ko) 2005-08-29
US20060055305A1 (en) 2006-03-16
EP1578175A4 (en) 2008-11-26
CN1714605A (zh) 2005-12-28
KR101009784B1 (ko) 2011-01-19
EP1578175B1 (en) 2011-05-11
CN100483776C (zh) 2009-04-29
TW200418343A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4152173B2 (ja) 有機エレクトロルミネッセンス素子
JP5280687B2 (ja) 有機エレクトロルミネッセンス素子
US20080093986A1 (en) Ink For Forming Organic El Coating Film And Method For Production Thereof
JP5255296B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
US20080193796A1 (en) Organic electroluminescent device
US20080100206A1 (en) Organic Electroluminescent Device
JP2007109988A (ja) 有機エレクトロルミネッセンス素子
WO2007132678A1 (ja) 有機エレクトロルミネッセンス素子
WO2006070716A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2003272857A (ja) 白色系有機エレクトロルミネッセンス素子
JP2008085363A (ja) 白色系有機エレクトロルミネッセンス素子
EP1956665A1 (en) Organic electroluminescent device
JP4802645B2 (ja) 有機エレクトロルミネッセンス素子用材料
JP2008258641A (ja) 有機エレクトロルミネッセンス素子
EP1653783A1 (en) White organic electroluminescence element
JP3983405B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2007059750A (ja) 有機エレクトロルミネッセンス素子用材料
JP2007063496A (ja) 有機エレクトロルミネッセンス素子用材料
JP2007281501A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2007063495A (ja) 有機エレクトロルミネッセンス素子用材料
JP2008037981A (ja) 有機電界素子材料とその製法および用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003774011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006055305

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535311

Country of ref document: US

Ref document number: 20038A35563

Country of ref document: CN

Ref document number: 1020057008947

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057008947

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003774011

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535311

Country of ref document: US