WO2004046814A1 - ハロゲン化銀カラー写真感光材料 - Google Patents

ハロゲン化銀カラー写真感光材料 Download PDF

Info

Publication number
WO2004046814A1
WO2004046814A1 PCT/JP2002/012111 JP0212111W WO2004046814A1 WO 2004046814 A1 WO2004046814 A1 WO 2004046814A1 JP 0212111 W JP0212111 W JP 0212111W WO 2004046814 A1 WO2004046814 A1 WO 2004046814A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silver halide
silver
general formula
emulsion
Prior art date
Application number
PCT/JP2002/012111
Other languages
English (en)
French (fr)
Inventor
Hiroshi Takada
Original Assignee
Konica Minolta Photo Imaging, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging, Inc. filed Critical Konica Minolta Photo Imaging, Inc.
Priority to PCT/JP2002/012111 priority Critical patent/WO2004046814A1/ja
Priority to CNA028299108A priority patent/CN1695085A/zh
Publication of WO2004046814A1 publication Critical patent/WO2004046814A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3022Materials with specific emulsion characteristics, e.g. thickness of the layers, silver content, shape of AgX grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • G03C1/346Organic derivatives of bivalent sulfur, selenium or tellurium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C2001/0055Aspect ratio of tabular grains in general; High aspect ratio; Intermediate aspect ratio; Low aspect ratio
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C2001/0056Disclocations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03558Iodide content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/0357Monodisperse emulsion

Definitions

  • the present invention relates to a silver halide color photographic light-sensitive material, and more particularly, to a silver halide color photographic light-sensitive material having high sensitivity and excellent storage stability, latent image stability and processing stability.
  • sensitization techniques relate to methods for producing silver halide emulsions, chemical sensitivity of silver halide emulsions, spectral sensitivity of silver halide emulsions, halogens.
  • Various methods are known, such as a method for designing a silver halide color photographic light-sensitive material and a method for developing a silver halide color light-sensitive material.
  • the most preferable and essential method is halogenation. It is possible to reduce the inefficiency of the silver crystal during the photosensitive process and improve the quantum efficiency.
  • halogenation it is possible to reduce the inefficiency of the silver crystal during the photosensitive process and improve the quantum efficiency.
  • silver halide grains contained in a silver halide emulsion have various shapes. For example, cubic, octahedral, and tetradecahedral normal silver halide grains, tabular silver halide grains having one or more twin twin planes, and non-parallel twin grains There are tetrapod-like and rod-like silver halide particles having a surface. Above all, tabular silver halide grains (hereinafter also referred to simply as tabular grains)
  • No. 10 is a photographic characteristic, in which the color sensitizing sensitivity is relatively higher than the intrinsic sensitivity, and the sharpness (sharpness) of the silver halide photographic light-sensitive material can be improved from the grain form. It has various advantages such as low light scattering and high resolution images.
  • tabular grains having a high aspect ratio In order to more effectively bring out the above advantages of tabular grains, it is effective to use tabular grains having a high aspect ratio. As is known in the art, the higher the silver iodide content, the more difficult it is to prepare tabular grains having a high aspect ratio. Most of the conventional tabular grains were silver bromide or silver iodobromide having a low silver iodide content. However, silver halide grains having a low silver iodide content have development activity, and in addition, tabular grains having a high aspect ratio have the same silver coverage, because development is further promoted by their shape factors.
  • the particles are liable to be affected by granular deterioration and natural radiation, and it is difficult to obtain the advantages of the tabular grains as the tabular grains have a higher aspect ratio.
  • the particle size tends to vary widely, making it difficult to optimize chemical sensitivity, spectral sensitivity, and consequently, softening of gradation and color density. Problems such as causing a decline were also pointed out.
  • JP-A-6-23049 discloses an aspect ratio of 8 to 100, in which the silver iodide content in the fringe region is 1.5 to 50 times the silver iodide content in the central region.
  • the suitability for chemical sensitization is lost, resulting in a decrease in sensitivity and softening.
  • Japanese Patent Application Laid-Open No. 6-235988 discloses an aspect having a multi-structured grain comprising at least an inner shell, an intermediate shell and an outermost shell, wherein the intermediate shell has a region having a high silver iodide content. Tabular grains having a ratio of 3 to 100 are disclosed.
  • JP-A-2-8337 discloses a caprily preventing agent for tabular grains and a low-light-failure-improving agent
  • JP-A-4-16838 discloses an inhibitor. Power to selenium sensitization Pre-preventive agents are disclosed. Also, JP-A-6-19024, JP-A-6-19026 and JP-A-19037 show that a reaction-inactive lucogen compound is effective in preventing force fray. Is disclosed.
  • capri there are two problems with capri: the final capri (absolute capri) of the silver halide emulsion itself introduced into the silver halide color photographic light-sensitive material and the progress of capri during the process of optimal chemical ripening. is there. From the viewpoint of production stability, it is preferable that the progression of capri is slow, and from the viewpoint of photographic performance, a silver halide emulsion having a low absolute value of capri is considered to be ideal, but it has not reached a level satisfying both.
  • the film area to be processed is usually In accordance with the requirements, a certain amount of each developing replenisher is replenished, and the processing solution is controlled so as to always have a constant processing characteristic or composition. There is also a method of constantly monitoring the development activity of the processing solution and making corrections as necessary.
  • silver halide photosensitive materials having high sensitivity and excellent capri stability have been proposed using silver halide emulsions chemically sensitized with an inhibitor having a specific structure (for example, , Patent Document 1.). Further, by using the grain-to-grain distance control method, grains are grown in a direction perpendicular to the main plane of the grains of the base emulsion grains to form tabular silver halide grains containing tabular silver halide grains having a specific halogen composition distribution.
  • a silver gemide emulsion has been proposed (for example, see Patent Document 2).
  • a silver halide color photographic material having at least one red-sensitive layer, green-sensitive layer, blue-sensitive layer and non-light-sensitive layer on a support, at least one of the photosensitive layers
  • the layer contains a monodispersed silver halide emulsion having an average silver iodide content of 2.0 to 4.0 O mol%, an average aspect ratio of 8.0 or more, and having dislocation lines.
  • a silver halide color photographic material, wherein at least one photosensitive layer containing a silver halide emulsion contains 0.60 mg / m 2 or more of an inhibitor.
  • Het represents a 5- to 6-membered nitrogen-containing heterocyclic ring having no mercapto group or a blocked mercapto group as a substituent
  • J represents a (ml + 1) -valent linking group
  • Q represents a water-soluble group.
  • ⁇ 1 represents an integer of 0 to 5
  • ml represents an integer of 1 or more.
  • the compound represented by the general formula (I) is a compound represented by the following general formula (II) or (III): One photographic light-sensitive material. -General formula ( ⁇ )-General formula (m)
  • W represents an oxygen atom, a sulfur atom, a nitrogen atom or C (R 4 i)
  • X represents a nitrogen atom or a C (R4i).
  • Z represents an atomic group necessary for forming a 5- or 6-membered nitrogen-containing aromatic heterocyclic ring having no mercapto group or blocked mercapto group as a substituent.
  • R 41 represents a substituent other than a mercapto group or a blocked mercapto group, or a hydrogen atom.
  • J, Q, nl, and m 1 have the same meanings as those in formula (I).
  • P,, R, T is a nitrogen atom or C a (R 41) and table has the same meaning as R 41 of R 41 Ha general formula [II].
  • J, Q, n1, and ml have the same meanings as in the case of the general formula [I]. ]
  • R 3 and R 4 are each Picture 12111
  • n 2 represents 0 or 1.
  • 11 3 Oyobi 13 ⁇ 4 4 is - 30 3 11 ⁇ - having COO H and one OH and at least one group selected from their salts directly or indirectly. ]
  • the silver halide color photographic light-sensitive material of the present invention is a silver halide color photographic light-sensitive material having at least one red light-sensitive layer, green light-sensitive layer, blue light-sensitive layer and non-light-sensitive layer on a support.
  • the monodisperse layer having an average silver iodide content of 2.0 to 4. Omol%, an average aspect ratio of 8.0 or more, and having dislocation lines
  • at least one photosensitive layer containing the silver halide emulsion contains 0.60 mg / m 3 or more of an inhibitor.
  • a monodispersed silver halide emulsion according to the present invention having an average silver iodide content of 2.0 to 4.0 m 0 1%, an average aspect ratio of 8.0 or more, and having dislocation lines. explain.
  • the silver halide emulsion according to the present invention is tabular silver halide grains having an average aspect ratio of 8.0 or more (hereinafter, also simply referred to as tabular grains). Crystallographically classified as twins. Twins are crystals that have one or more twin planes in one grain. The classification of the twin morphology in silver halide grains is based on Klein and Moisa's Kopakubun! P hotographishe K orrespondenz ” Volume 99, page 99, and volume 100, page 57.
  • the tabular silver halide grains according to the present invention preferably have two or more twin planes parallel to each other in the grains. These twin planes are almost parallel to the plane having the largest area among the planes forming the surface of the tabular grains (called the main plane).
  • a particularly preferred embodiment according to the present invention is a case where it has two twin planes parallel to the main plane.
  • the number of silver halide particles having two twin planes parallel to the main plane is preferably at least 70%, more preferably at least 80%, particularly preferably at least 90%. preferable.
  • the tabular silver halide grains according to the present invention are silver halide grains having an aspect ratio determined by the following method of 8 or more, and preferably have an average aspect ratio of 8 to 10. 500, and more preferably 10 to 500.
  • the aspect ratio of silver halide grains can be obtained by the following formula by determining the grain size and the grain thickness of each silver halide grain by the following method.
  • Aspect ratio particle size / particle thickness
  • the tabular silver halide grains according to the present invention are preferably tabular silver halide grains having two (11 1) main planes having two twin planes parallel to the main plane.
  • the average grain size of the tabular silver halide grains is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m, and 1.0 to 20 ⁇ m. Is most preferred.
  • the average particle size is an arithmetic average of the particle size ri.
  • the three digits and the smallest digit shall be rounded off, and the number of particles to be measured shall be 1.0 or more indiscriminately.
  • the particle size ri as used herein is the diameter of a projected image viewed from a direction perpendicular to the main plane of the tabular silver halide grains converted to a circular image of the same area (projected area circle converted particle size). ).
  • the particle size i is obtained by photographing and printing a silver halide particle with an electron microscope at a magnification of 10,000 to 70,000, printing, and measuring the diameter of the particle on the print or the area at the time of projection. Can be.
  • the average thickness of the tabular silver halide grains is preferably 0.25 or less, and is preferably 0.05 to 0,20 m. Is more preferable, and particularly preferably 0.05 to 0.10 m.
  • the projected area and thickness of each grain for calculating the above-described silver halide grain diameter ratio can be determined by the following method.
  • a sample was prepared by coating a latex ball with a known particle size as an internal standard on a support, and silver halide particles so that the main plane was oriented parallel to the substrate. The particles were formed by carbon vapor deposition from a certain angle.
  • a replica sample is prepared by the normal replica method. An electron micrograph of the sample is taken, and the projected area and thickness of each particle are determined using an image processing device or the like. In this case, the projected area of the particle can be calculated from the projected area of the internal standard, and the thickness of the particle can be calculated from the internal standard and the length of the shadow of the particle.
  • the tabular silver halide grains according to the present invention are characterized by being monodisperse.
  • the grain size distribution coefficient of variation of grain size
  • the grain size distribution is preferably less than 30%. And more preferably less than 15%.
  • Particle size distribution (%) (Standard deviation of particle size Z average particle size) X 100 W
  • the average particle size and standard deviation shall be determined from the particle size ri defined above.
  • One of the characteristics of the silver halide emulsion according to the present invention is that the average silver iodide content of silver halide grains is 2.0 to 4.0 mol%.
  • the silver iodide content of the silver halide grains can be determined by the EPMA method (ElectronProbeMicroAna1yzer method). Specifically, a sample in which silver halide grains are well dispersed so that they do not come into contact with each other is prepared, and irradiated with an electron beam while cooling to below -100 ° C with liquid nitrogen, and emitted from individual silver halide grains. By determining the X-ray intensity of the characteristics of silver and iodine to be obtained, the silver iodide content of each silver halide grain can be determined. In the present invention, the average silver iodide content of the silver halide grains obtained by the above method for 100 or more silver halide grains is defined as the average silver iodide content.
  • the tabular silver halide silver halide grains according to the present invention has a dislocation line, and the form of the dislocation line can be appropriately selected.
  • a dislocation line that exists linearly with respect to a specific direction of the crystal orientation of the grain or a dislocation line that is bent can be selected.
  • it is present over the entire grain or only in a specific part of the grain for example, in a form in which dislocation lines exist only in the fringe portion (outer periphery) of the grain, or in a major plane. Then, it is possible to select from a form in which dislocation lines exist or a form in which dislocation lines exist intensively near the vertex.
  • dislocation lines are preferably present at least in the fringe portions of the grains, and preferably have 10 or more dislocation lines in the fringe portion, and more preferably 20 or more. Is more preferable.
  • Dislocation lines of silver halide grains are, for example, JF Hami 1 ton, Eng. 11 (1967) 57, T. Shioz aw a, J. Soc. Phot. S ci. Japan 35 (1972) 213 It can be observed by a direct method using a transmission electron microscope at a low temperature. That is, the silver halide grains taken out from the silver halide emulsion with care not to apply enough pressure to generate dislocations on the grains are placed on a mesh for an electron microscope and damaged by an electron beam (such as printout). Observe by the transmission method with the sample cooled in order to prevent the above.
  • the thicker the particles, the more difficult it is for the electron beam to penetrate so that a clearer observation can be obtained by using a high acceleration voltage electron microscope.
  • the number and location of dislocation lines in each particle can be known from the particle photographs obtained by such a method.
  • 50% of the grains preferably have 10 or more dislocation lines in the fringe portion, and more preferably 70% or more, in the number ratio of grains.
  • the number ratio of tabular silver halide grains having fringe dislocation lines is preferably 50 to 100% by number, more preferably 60 to 100% by number, and further preferably 70 to 100% by number. preferable.
  • the tabular silver halide grains having dislocation lines in the fringe portion in the present invention means that there are at least 10 dislocation lines per grain near the outer periphery, near the ridgeline, or near the vertex of the tabular grains. is there.
  • the fringe part is a line segment that connects the center of the main plane of the tabular grain (the center of gravity when the main plane is regarded as a two-dimensional figure) and the vertex, observing the tabular grain perpendicular to the main plane.
  • the length of L is L, the area outside the figure connecting the points whose distance from the center is 0.5 ° L for each vertex is indicated.
  • an aqueous solution containing iodide ions such as potassium iodide and a water-soluble silver salt solution are double-judged.
  • a method of adding silver iodide fine particles, a method of adding only a solution containing iodide ions, and a method of releasing iodide ions as described in JP-A-6-11781 Dislocations that are the origin of dislocation lines can be formed at desired positions using a known method such as a method using an agent.
  • a method of adding an aqueous solution containing iodide ions and a water-soluble silver salt solution in double jet a method of adding silver iodide fine particles, and a method of using an iodide ion releasing agent are preferable.
  • the iodide ion releasing agent referred to in the present invention is a compound represented by the following general formula (1) that releases iodine ion by reaction with a base or a nucleophile.
  • R represents a monovalent organic group.
  • R represents, for example, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, a heterocyclic group, an acyl group, a carbamoyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkylsulfonyl group. It is preferable that they are a group, an alkylsulfonyl group, and a sulfamoyl group.
  • R is preferably an organic group having 30 or less carbon atoms, more preferably 20 or less, and even more preferably 10 or less.
  • R preferably has a substituent, and the substituent may be further substituted with another substituent.
  • Preferred cycling groups include halide, alkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, heterocyclic group, acryl group, acryloxy group, carbamoyl group, alkyloxycarbonyl group, and aryloxy group.
  • iodide ion releasing agent represented by the general formula (1) are chlorides, chlorides, chlorides, chlorides, and derivatives thereof. More preferred are alcohols and derivatives thereof, and more preferred are amides substituted with a heterocyclic group, the most preferred example being (oxyacetamide) benzenesulfonate.
  • examples of the nucleophile include hydroxide ion, sulfite ion, thiosulfate ion, sulfinate, and carboxylic acid. Salts, ammonia, amines, alcohols, ureas, thioureas, phenols, hydrazines, sulfides, hydroxamic acids, etc. can be used, and hydroxide ions, sulfonite, Thiosulfate, sulfinate, carboxylate, ammonia and amines are preferred, and hydroxide and sulfite are more preferred.
  • the reaction temperature is preferably from 80 ° C. to 30 ° C., and more preferably from 7 (TC to 40 ° C.
  • the pAg immediately before the introduction of the dislocation line is from 7.0 to 10.0.
  • the content of iodine ion releasing agent is preferably from 1 to 5 m with respect to the total amount of silver halide after completion of grain growth.
  • the pH during iodine ion release reaction is preferably in the range of 7.0 to 11.0, and is preferably in the range of 8.0 to 10.0.
  • a nucleophile other than a hydroxide ion is used. In this case, the amount of the nucleophile is preferably from 0.25 to 2.0 times the amount of the iodide ion releasing agent, more preferably from 0.5 to 1.5 times, It is preferably 0.8 times or more and 1.2 times or less.
  • the temperature at which the fine grain emulsion containing silver iodide is added is preferably from 80 ° C to 30 ° C, more preferably from 0 ° C to 40 ° C.
  • the amount of the fine grain emulsion containing silver iodide to be added is preferably from 1 to 5% by mol, based on the total amount of silver halide after the completion of grain growth.
  • the silver halide emulsion according to the present invention contains at least one of a polyvalent metal atom, a polyvalent metal atom ion, a polyvalent metal atom complex or a polyvalent metal atom complex ion inside or on the surface of silver halide grains. Is preferred.
  • polyvalent metal atom, polyvalent metal atom ion, polyvalent metal atom complex or polyvalent metal atom complex ion examples include Fe, Co ⁇ Ni, Ru, Rh, Pd, Re, Os, Ir, Pt, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Cu, Zn, Ga, Ge, As, Se, Sr , Y, Mo, Zr, Nb, Cd, In, Sn, Sb, Ba, La, W, Au, Hg, Tl, Pb, Bi, Ce and U Metal atoms, ions, their complexes and their containing salts (including complex salts) from the 3rd to 7th period (most commonly the 4th to 6th period) of the Periodic Table of Elements, etc., and the compounds containing them At least one member selected from the group consisting of a single salt and a metal complex can be used.
  • Ligands for constituting the complex CN-, CO, N0 2 - , l, 10- Fuwenan Toro Li down, 2, 2 'single Bibirijin, S 0 3 -, Echirenjiami down, NH 3, pyridinium down, H 2 0, NC S- NC 0- 0 3 S 0, OH- ⁇ N 3 -, S 2 -, F _ C 1 -, B r-, I- , etc. can be used.
  • BH Carrol 1 "Iridium Sensitization, AL iterature Review", P hotographic Science and Engineering, Vol. 24, No. b, Oct. 1980, 1Z December, pp. 265-267
  • U.S. Patent No. 1 95 1, 933, No. 2, 628, 167, No. 3, 687, 676, No. 3, 761, 267, No. 3, 890, 154, No. Nos. 3,901,711, 3,901,713, 4,173,483, 4,269,927, 4,413,055, Nos. 4, 477, 561, 4, 581, 15 327, 4, 643, 965, 4, 806, 462, 4, 828, 962, 4 No. 4, 835, ⁇ No. 93, No. 4, 902, 611, No. 4, 981, 780, No. 4, 997, 751, No. 5, 057, 402, No. No. 5, 134, 060, No. 5, 153, 110 No. 5, 5-1
  • M is filled full opening Nta orbital polyvalent metal Ion, preferably F e 2+, R u 2+, 0 s 2+, C o 3+ R h 3 I r 3+, P d 4+ or P be t 4+;
  • L 6 represents an 6 coordination complex ligands which can be selected independent, provided that at least four ligands are ⁇ anion ligand, at least one ligand (favored properly is (At least 3 and optimally at least 4) are more electronegative than any halide ligand; and n represents 2-, 3- or 4-.
  • Te is, I n C l 3, K 4 F e (CN) e, K 3 F e (CN) e, K 4 R u (CN) 6, P b (NOa) 2 and hydrates thereof No.
  • At least one selected from the group consisting of a polyvalent metal atom, an ion thereof, and a complex thereof is used, but Ir, Ru, Os, Fe, Rh, Co, In , G a, G e, P d, P t, etc., and their ions and their complexes are particularly preferably used.
  • the concentration of at least one selected from the group consisting of the polyvalent metal atom, its ion, its complex, and its ion used in the present invention is generally from 1 ⁇ 10 to 7 to 1 ⁇ 1 CI- 2 mols are suitable, more preferably from 1 X 10- 6 ⁇ 1 X 1 0 _3 mol, 2 X 10 one 6 ⁇ 1 X 10- 4 mol per mol of silver is particularly preferable.
  • the silver halide emulsion according to the present invention is preferably silver bromide, silver iodobromide, or silver iodobromochloride, and particularly preferably silver iodobromide or silver iodobromochloride.
  • the silver chloride content is preferably from 0 to 50 mol%, more preferably from 0 to 30 mol%, even more preferably from 0 to 1 mol%.
  • Gelatin and hydrophilic colloid are mentioned as a dispersion medium which can be preferably used in the silver halide emulsion according to the present invention.
  • the gelatin include a gelatin, an acid-treated gelatin, an oxidized gelatin having a molecular weight of about 100,000, a Bull. S0c. S ci. P hot o. Japan. No. 1 6.
  • Enzyme-treated gelatin as described in P30 (1966) can be preferably used.
  • hydrophilic colloids include gelatin derivatives, graft polymers of gelatin and other macromolecules, proteins such as albumin and casein; hydroxyxethyl cellulose, carboxymethyl cellulose, and cellulose sulfate.
  • Derivatives such as cellulose derivatives such as steles, sodium alginate, and starch derivatives; polyvinyl alcohol, polyvinyl alcohol partial acetal, poly (N-vinylpyrrolidone), polyacrylic acid, polymethacrylic acid, polyacrylamide, and polyvinyladiene.
  • cellulose derivatives such as steles, sodium alginate, and starch derivatives
  • polyvinyl alcohol polyvinyl alcohol partial acetal, poly (N-vinylpyrrolidone), polyacrylic acid, polymethacrylic acid, polyacrylamide, and polyvinyladiene.
  • poly (N-vinylpyrrolidone) polyacrylic acid
  • polymethacrylic acid polymethacrylic acid
  • polyacrylamide polyacrylamide
  • polyvinyladiene Various kinds of synthetic hydrophilic high molecular substances such as a single or copolymer such as midazole and polyvinyl virazole can be used.
  • the desalting step is to wash the silver halide emulsion with water to remove soluble salts.
  • the desalting step it is possible to refer to Research Disc One Jar (hereinafter abbreviated as RD) No. 17643, Item II, and to use inorganic salts, anionic surfactants or anionic polymers. (For example, polystyrene sulfonic acid) by a flocculation method.
  • the desalting step is preferably performed at a time point of less than 1% by volume, more preferably at a time point of less than 5% by volume, based on the volume after the growth of the silver halide grains.
  • the silver halide emulsion according to the present invention may be subjected to reduction sensitization.
  • the reduction sensation is achieved by adding a reducing agent to an aqueous solution of protective colloid in which silver halide grains are grown, or reducing the aqueous solution of protective colloid in which silver halide grains are grown with a low pA of 7.0 or less. It can be applied by ripening or growing the silver halide grains under g conditions or under high pH conditions of pH 7.0 or higher. These methods may be appropriately combined.
  • Various methods well known in the art can be used for forming silver halide grains in the production of the silver halide emulsion of the present invention. That is, single-jet, double-jet, triple-jet, or Any combination of silver halide fine particle supply methods and the like can be used. Further, a method of controlling pH and pAg in a liquid phase in which silver halide is formed in accordance with the growth rate of silver halide can also be used. The formation of silver halide grains is preferably performed under conditions close to the critical growth rate.
  • a seed emulsion can also be used.
  • the silver halide grains in the seed emulsion may have a regular crystal structure such as cubic, octahedral, or tetradecahedral, or may have a spherical or plate-like shape. It may have an irregular crystal form. In these particles, any ratio can be used for the (100) plane and the (111) plane.
  • the silver halide grains in the seed emulsion used may be a composite of these crystal forms, and grains of various crystal forms may be mixed. The silver halide grains are preferred, and the twin silver halide grains having two opposing parallel twin planes are particularly preferred.
  • a silver halide solvent known in the art can be used. It is better to avoid it except ripening after formation.
  • any of the acidic method, the neutral method and the ammonia method can be used, but the acidic method or the neutral method is preferred.
  • a halide ion and a silver ion may be mixed simultaneously, or one of them may be mixed in the presence of the other.
  • halide ions and silver ions can be added sequentially or simultaneously while controlling pAg and pH in a mixing vessel. Using a conversion method in any step of silver halide formation, The halogen composition of silver halide grains may be changed.
  • the silver halide fine particles when silver halide fine particles are used, the silver halide fine particles may be prepared in advance before preparing the silver halide particles according to the present invention, or may be prepared in parallel with the preparation of the silver halide particles. May be prepared. When the latter is prepared in parallel, as described in JP-A-1-183417, JP-A-2-44335, etc., silver halide fine particles are reacted to form silver halide grains according to the present invention. It can be manufactured by using a mixer provided separately outside the container.However, a preparation container is provided separately from the mixer, and the silver halide fine particles once prepared by the mixer are mixed with the silver halide used here. It is preferable that the particles are arbitrarily prepared so as to be suitable for the growth environment in the reaction vessel in which the particles are prepared and then supplied to the reaction vessel.
  • the silver halide emulsion according to the present invention it is preferable to carry out a concentration operation of the silver halide emulsion by an ultrafiltration method in at least a part of the growing step.
  • a concentration operation of the silver halide emulsion by an ultrafiltration method in at least a part of the growing step.
  • a dilution environment is preferable. Therefore, the ultrafiltration method is preferably applied to improve productivity.
  • a silver halide emulsion production facility disclosed in JP-A-10-339923 can be preferably used.
  • the silver halide emulsion having the above specific structure according to the present invention can be subjected to chemical sensitization according to a known method.
  • the chemical sensitizer that can be used in the present invention is not particularly limited, and known chalcogen sensitizers, gold sensitizers, and the like can be used.
  • an unstable selenium compound which can react with silver nitrate in an aqueous solution to form a silver selenide precipitate is preferably used.
  • selenium sensitizers include colloid selenium metal, isoselenone analogs (arylisoselenocyanate, etc.), and selenoureas (N, N-dimethylselenourea, N, N, N'-triethylselenourea) , N, N, N '— trimethyl-N'-heptafluor selenourea, N, N, ⁇ ' — trimethyl-IST-heptafluoropropylcarbonylselenourea, N, N, ⁇ ' Limethyl-4-4-dinitrocarbenylselenourea, etc., selenoketones (selenoaceton, selenoacetophenone, etc.), selenoamides (selenoacetamide,, ⁇ -dimethylselenobenzamide, etc.), selenocarboxylic acids And selenoesters (2-selenopropionic acid, methyl-3-s
  • a sulfur sensitizer such as 1,3-diphenylthiourea, triethylthiourea, 1-ethyl-3- (2-thiazolyl) thiourea, rhodanine derivatives, dithicarbamic acids 5, polysulfide organic compounds, Preferred are thiosulfate and sulfur alone.
  • thiourea derivatives such as 1,3-diphenylthiourea, triethylthiourea, 1-ethyl-3- (2-thiazolyl) thiourea, rhodanine derivatives, dithicarbamic acids 5, polysulfide organic compounds
  • Preferred are thiosulfate and sulfur alone.
  • As the simple substance of sulfur ⁇ -sulfur belonging to the orthorhombic system is preferable.
  • a noble metal salt such as gold, platinum, palladium, and iridium described in RD Magazine No. 307105, and particularly to use a gold sensitizer in combination.
  • Useful gold sensitizers include chloroauric acid, gold thiosulfate, gold thiocyanate and the like, as well as U.S. Pat. Nos. 2,597,856 and 5,
  • the silver halide emulsion having the above-mentioned specific structure according to the present invention can be subjected to spectral sensitization according to a known method.
  • spectral sensitizing dye that can be used in the present invention.
  • examples thereof include a cyanine dye, a merocyanine dye, a complex cyanine dye, Complex merocyanine dyes, holo-larcyanine dyes, hemicyanine dyes, styryl dyes and hemioxonol dyes are included.
  • Particularly useful dyes are those belonging to the cyanine dyes, merocyanine dyes and complex merocyanine dyes. These dyes can be applied to any of commonly used nuclei.
  • Nuclei with fused formula rings i.e., indolenine nucleus, benzwearnine nucleus, indole nucleus, benzoxazole nucleus, naphthoxazole nucleus, benzothiazole nucleus, naphthothiazole nucleus, benzoselenazole nucleus, benzyi Midazole nuclei and quinoline nuclei can be applied. These nuclei may be substituted on carbon atoms.
  • nuclei having a ketomethine structure include pyrazoline-1-one nucleus, thiohydantoin nucleus, 2-thioxazolidin-1,4-dione nucleus, and thiazoline one 2,4- A 5- to 6-membered heterocyclic nucleus such as a dione nucleus, a rhodanine nucleus, and a thiobarbituric acid nucleus can be applied.
  • a silver halide emulsion comprising a specific configuration according to the present invention are spectrally sensitized by per mol of silver 1. 7 X 10- 4 mol or more ⁇ dye It is preferred, more preferably l. A 7xicr 4 ⁇ i. Oxio- 3 moles, still more preferably 1. 7 X 10- 4 ⁇ 5. 0 X 10- 4 mol.
  • At least one light-sensitive layer containing the tabular silver halide emulsion according to the present invention having the specific constitution described above contains 0.60 mg of an inhibitor.
  • One feature is that it contains Zm 2 or more, preferably 0.60 to 3.00 mg / m 2 , more preferably 0.60 to 2.00 mg / m 2 .
  • the inhibitor referred to in the present invention is also called a capri inhibitor, an anti-capri agent or a stabilizer, and there are no particular restrictions on the inhibitors that can be used.
  • tetrazindenes azoles, such as benzothiazolym salts , Dinitroindazoles, dibenzomidimidazoles, dibenzobenzimidazoles, promobenzi midazols, mercap 1, thiazoles, mercaptobenzodimidazoles, aminotriazols, Benzotriazoles, nitrobenzotriazoles, mercaptotetrazoles (especially 1-vinyl-5-mercaptote tolazole), etc., and mercaptopyrimidines, mercapto triazines, such as oxazolitione Thioketo compounds, furthermore benzenethiosulfinic acid, benzene Examples thereof include zensulfinic acid, benzenesulfonic acid amide, hydroquino
  • At least one inhibitor is preferably a compound represented by the general formula (I), more preferably Compound represented by general formula [II] or general formula [III] Things.
  • the blocked mercapto group is a group which can be cleaved into a mercapto group by the cleavage of the block group during the development processing, and the blocking group thereof.
  • Specific examples include an acyl group, a sulfonyl group, and a cyanoethyl group.
  • Specific examples of the nitrogen-containing heterocycle represented by He in the general formula [I] include pyrrolidine, piperidine, morpholine, thiomorpholine, pyrrole, pyridine, pyrimidine, pyrazine, triazine, imidazole.
  • heterocyclic ring such as pyrazole, oxazole, oxazole, thiazole, isoxazole, isothiazole, triazole, tetrazole, thiadiazol, oxaziazole, and condensed rings with these benzene rings.
  • the linking group represented by J in the general formulas [I], [ ⁇ ] and [III] is specifically an alkylene arylene, a heteroarylene, an S 0 2 —, an SO 2 —, an 1 0 — , One S—, —N (R 23 ) monovalent group composed of one or a combination thereof.
  • R 23 represents an alkyl group, an aryl group, or a hydrogen atom.
  • J is preferably arylene, most preferably phenylene.
  • n 1 is preferably 0 or 1.
  • the water-soluble group represented by Q in the general formula (I), (II) or (III) represents a group capable of being anionized in a developing solution, and specifically includes a sulfonamide group, a sulfamoyl group, Phenolic hydroxyl groups, carboxyl groups, sulfo groups, and salts thereof. Preferred are a carboxyl group and a sulfo group.
  • ⁇ 11 is preferably 1 or 2.
  • examples of the 5- to 6-membered nitrogen-containing aromatic heterocyclic ring composed of Z include pyridine, pyrimidine, pyrazine, triazine, imidazo-one.
  • the compound represented by the general formula [I], [II] or [III] may have a substituent at a substitution position of a hetero ring other than- (J) nl- (Q) ral. Specific examples include the substituents described above.
  • the compound represented by the general formula [I], [II] or [III] of the present invention includes, for example, known compounds such as journals, phafstatsche and chemi [ 2 ],! 2, 286. It can be easily synthesized by the method described in the literature.
  • At least one of the above-mentioned inhibitors is a compound represented by the general formula (1).
  • X represents N or CR '
  • R' represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • R 3 and P each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • n 2 represents 0 or 1.
  • R 3 and R 4 have one S 0 3 H, one also less groups selected from a CO OH and primary OH and salts thereof directly or indirectly.
  • the alkyl group represented by R a and R 4 example, methyl, cyclohexyl Echiru, propyl, i- propyl, butyl, t-butyl, pentyl, consequent opening pentyl,
  • cyclo Examples include hexyl, octyl, dodecinole, and other groups.
  • These alkyl groups further include a halogen atom (for example, chlorine, bromine, fluorine, etc.) and an alkoxy group (for example, methoxy, ethoxy, 1,1-dimethyl).
  • Groups such as ethoxy, hexyl, dodecylquine, etc., phenyloxy groups (eg, phenyloxy, naphthyloxy, etc.), aryl groups (eg, phenyl, naphthyl, etc.), and alkoxycarbonyl groups (eg, phenyl, naphthyl, etc.)
  • each group such as methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, 2-ethylhexylcarbonyl, etc., and aryloxycarbonyl group (eg, each group such as phenoxycarbonyl, naphthyloxycarbonyl, etc.)
  • An alkenyl group for example, each group such as vinyl and aryl
  • a heterocyclic group for example, 2-pyridyl, 3-pyridyl, 4-pyridyl, morpholyl, piperidyl, piperazyl, selenazoly
  • Examples of the alkenyl group represented by R 3 and R 4 include a vinyl group and an aryl group.
  • Examples of the alkynyl group include a propargyl group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the heterocyclic group includes, for example, a pyridyl group (for example, 2-pyridyl, 3-pyridyl, 4-pyridyl, etc.), a thiazolyl group, an oxazolyl group, and an imidazolyl group.
  • alkenyl group, alkynyl group, aryl group and heterocyclic group can all be substituted by the same groups as the alkyl groups represented by R 3 and R 4 and the groups shown as the substituents of the alkyl group. .
  • HOO0-H0 H0- 2 H0
  • the silver halide color photographic light-sensitive material of the present invention preferably has a specific photographic sensitivity of 200 or more, more preferably 200 to 3200, still more preferably 200 to 1600, and particularly preferably 200 to 800. It is.
  • the specific photographic sensitivity of the silver halide color photographic light-sensitive material referred to in the present invention is a test in accordance with JISK 7614-1981 established according to the ISO sensitivity measurement method. It shall be determined according to the test method.
  • Test conditions The test shall be conducted in a room with a temperature of 20 ⁇ 5 ° (:, relative humidity of 60 ⁇ 10%.
  • the photosensitive material to be tested shall be left in this state for at least 1 hour before use.
  • Wavelength nm relative spectral energy '* Wavelength nm relative spectral energy' 360 2 3 70 8
  • the concentration is represented by L 0 glt) (0 OZ0).
  • is the illuminating light flux for density measurement
  • ⁇ 0 is the transmitted light flux of the measured part.
  • the geometric conditions for density measurement are based on the fact that the illumination light flux is a parallel light flux in the normal direction, and that the total light flux transmitted as a transmitted light flux and diffused into a half space is used as a reference. Perform correction using standard density strips.
  • the emulsion film surface shall face the light receiving device side. Density measurement was performed with blue, green, and red status M densities.
  • the spectral characteristics of the light source, optical system, optical filter, and light receiving device used in the thermometer were described in JP-A-6-67350. Paragraph number [0036] Make the value described.
  • the specific photographic sensitivity is determined in the following procedure. For each of the minimum densities of blue, green, and red, the exposure amount corresponding to 0.25 to 15 higher densities is expressed in lux'seconds as HB, HO, and HR. The larger one of HB and HR (lower sensitivity) is designated as HS.
  • the specific photographic sensitivity S is calculated according to the following equation.
  • RD ResealcDiSc1osure
  • UV absorber 1003VIII—I UV absorber 1003VIII—I
  • Couplers can be used in the photosensitive layer according to the present invention, and specific examples thereof are described in the above RD. The relevant sections are described below.
  • Each of the above additives can be added by a dispersion method described in RD 308 119 XIV.
  • the silver halide color photographic light-sensitive material of the present invention may be provided with an auxiliary layer such as a single filter or an intermediate layer described in the aforementioned RD308 1 19VII-K.
  • the silver halide color photographic light-sensitive material of the present invention may have various layer constitutions such as a forward layer, an inverse layer, and a unity constitution described in the above-mentioned RD 308 119 VII-K.
  • X-01 solution 1.25 mol / L aqueous potassium bromide solution 205.7 m1
  • G-01 solution Alkali-treated inert gelatin (average molecular weight 100,000) 12.5 g and the following interface 10% by weight of activator A in methanol containing 8.8 ml 292 1 ml aqueous solution
  • Surfactant A HO (CH 2 CH 2 0) m [CH (CHs) CH 2 0] 2.
  • the emulsion obtained as described above was a tabular emulsion having a cubic equivalent average particle size of 0.27, an average aspect ratio of 12.0, and a variation coefficient of particle size of 14.2%. This is designated as tabular seed emulsion 1.
  • Tabular seed emulsion 1 was continuously grown according to the following procedure to prepare a tabular silver halide emulsion Em-1.
  • X-11 solution Aqueous solution containing 3.45 mol / L of potassium bromide and 0.05 mol of ZL of potassium iodide 2059 ml
  • I-11 solution Aqueous solution containing 57.7 g of sodium p-dodecamide sodium benzene
  • Z-11 solution Aqueous solution containing 20.0 g of sodium sulfite
  • X-12 solution aqueous solution containing 3.36 mol ZL of lithium bromide and 0.14 mol ZL of potassium iodide 726 ml
  • the following outer liquid phase was formed by adding the following liquid S-13 and liquid X-13 while accelerating the flow rates (the ratio of the flow rates at the start and end was about 1.4 times).
  • a tabular silver halide emulsion was prepared in the same manner except that the following liquid X-12 'was used in place of the liquid X-12 used for forming the B phase.
  • a silver halide emulsion Em-2 was prepared.
  • Em-2 a tabular silver halide emulsion
  • the average particle size in terms of cubic was 1.0
  • the average aspect ratio was 12.9
  • the variation coefficient of the particle size was 15%
  • the Tabular grains having an average silver iodide content of 4.2 mol% were obtained. It was also confirmed that Em-2, a tabular silver halide emulsion, had 77% of the total projected area of tabular grains having at least five dislocation lines on each side.
  • a tabular silver halide emulsion Em_3 was prepared in the same manner as in the preparation of the tabular silver halide emulsion Em-1, except that the liquids I-111 and Z-111 used for the formation of the B phase were omitted. did.
  • Em-3 a tabular silver halide emulsion
  • the average particle size in terms of cubes was 1.0 m
  • the average aspect ratio was 12.3
  • the variation coefficient of the particle size was 15%
  • the grains were tabular grains having an average silver iodide content of 3.4 mol%.
  • No tabular grains having dislocation lines were present in Em-3, which is a tabular silver halide emulsion.
  • Green-sensitive emulsion number inhibitor addition amount (mg / m 2) Total ⁇ dye
  • Samples 101 which are silver halide color photographic light-sensitive materials, were prepared by sequentially forming layers having the following compositions from the support side.
  • the amount of each material added below are expressed in grams per 1 m 2.
  • Silver halide and colloidal silver were converted to the amount of silver, and sensitizing dyes (indicated by SD) were expressed in moles per mole of silver.
  • Silver iodobromide emulsion b 0.11 Silver iodobromide emulsion d 0.17 Silver iodobromide emulsion e 0.17
  • Two kinds of polyvinylpyrrolidone (AF-1, AF1-2), calcium chloride, inhibitor AF-3, AF-4, AF-5, weight average molecular weight: 10,000 and weight average molecular weight: 100,000 , AF— 6, A F-7, hardeners H-1, H-2 and preservative Ase-1 were added as appropriate.
  • each silver iodobromide emulsion other than the green light-sensitive emulsion G-1 used in the preparation of Sample 1: 1 are shown in the table below.
  • the average grain size is the diameter (average value) of a circle equivalent to the same projected area for silver iodobromide emulsions c, d, e, g, and h. Is represented by the length of one side of the cube (average value).
  • Silver iodobromide emulsion c 0.6 1 3 1 5.43 Silver iodobromide emulsion d 0.98 3 7 6.10 Silver iodobromide emulsion e 0.95 8 0 3.07 Silver iodobromide emulsion g 1 50 3 6.60 Silver iodobromide emulsion h 1.23 7 9 2.85 Silver iodobromide emulsion i 0.043 9 Green-sensitive emulsion G—1, each emulsion except silver iodobromide emulsion i After the addition of each of the sensitizing dyes described above, sodium thiosulfate, chloroauric acid, thiocyanate power rim, and the like were added, and chemical sensitization was performed so that the relationship between the power sensitivity and the sensitivity was optimized.
  • magenta density characteristic curve of the photographic D-L 0 g E characteristic curve prepared above the reciprocal of the exposure required to obtain a density of +0.10 from the minimum density was defined as sensitivity, and the sample was prepared as follows. The relative sensitivity was determined by setting the sensitivity to 100.
  • each sensitivity was measured according to the above method, and the sensitivity of reference sample 2 of each sample was set to 100, and the difference in sensitivity of forcedly degraded sample 2 to this ⁇ S ⁇ sensitivity of reference sample 2 (100) —Sensitivity of forced degradation sample 2 ⁇ was determined.
  • the standard development time was used as the processing time for the color development step in the standard development process described above, and each development process was performed by changing the standard development time by ⁇ 30 seconds.
  • Magenta density of 1.0 Density point of 1.0 At the corresponding exposure point, the same density DG (+30 seconds) of the sample processed with a development time of +30 seconds and the same density of the sample processed with a development time of 130 seconds Concentration D. (- 3 ⁇ seconds) and was measured and determined its density difference (AD G). It represents the better the development stability against development time variation as AD G is small.
  • the green sensitivity S G obtained by processing each sample using the developing solution at the start of the processing in the above-described reference development processing. After performing a 1Z2 round running process, measure the green sensitivity S 1/2 obtained by processing each sample, and determine the sensitivity according to the following formula. The volatility was determined. SG indicates that the closer the value is to 1.0, the better. G TM G 1/2 / O GO
  • the above continuous processing was performed using a film obtained by randomly photographing a landscape photograph of a color negative film, Sentimulia 100 and Sentimulia 400, manufactured by Konica Corporation.
  • the 1Z2 round in the present invention means the point in time when the integrated amount of the color developing solution replenishment reaches 1 to 2 of the processing tank volume of the color developing solution.
  • the green sensitivity was expressed as the reciprocal of the exposure required to obtain a minimum density of +0.3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

ハ口ゲン化銀力ラ一写真感光材料 技術分野
本発明は、 ハロゲン化銀カラー写真感光材料に関し、 詳しくは、 高感度で、 かつ保存安定性、 潜像安定性及び処理安定性に優れたハロゲン化銀カラ一写真 感光材料に関する。 背景技術
ハロゲン化銀カラ一写真感光材料は、 極めて完成度の高い成熟製品と言われ ている一方、 要求される性能は、 高感度、 高画質に加えて、 保存条件による性 能変動が少ない等多岐にわたり、 更に今後は現像処理時間を短縮した迅速処理 適性を加味する必要があり、 その要求レベルは近年益々高まつてきている。 特に、 高感度化という点では、 昨今のデジタルカメラの技術進歩により、 ハ 口ゲン化銀力ラ一写真感光材料の優位性を保持するためには、 力ブリを低く抑 えたまま、 かつ保存性と两立する更なる高感度化が必要である。
ハロゲン化銀乳剤の高感度化技術、 すなわち増感技術はハ口ゲン化銀乳剤の 製造方法に関するもの、 ハロゲン化銀乳剤の化学增感に関するもの、 ハロゲン 化銀乳剤の分光增感に関するもの、 ハロゲン化銀カラー写真感光材料の設計方 法によるもの、ハロゲン化銀カラ一感光材料の現像プロセスに関するもの等々、 各種の方法が知られているが、 その中でも最も好ましく且つ本質的な方法は、 ハロゲン化銀結晶の感光過程での非効率を軽減させ、 量子効率を向上させるこ とである。
高感度化、 高画質化を図る手段の一つとして、 ハロゲン化銀乳剤 (以下、 単 に乳剤ともいう) 中のハロゲン化銀粒子 1個当たりの感度 Z粒子サイズ比を向 上させる技術が検討されている。
5 一般に、 ハロゲン化銀乳剤に含まれるハロゲン化銀粒子は、 様々な形状を有 することが知られている。 例えば、 立方体や八面体、 十四面体状の正常晶ハロ ゲン化銀粒子や、 双晶面を 1つまたは平行な双晶面を複数有する平板状ハロゲ ン化銀粒子、 非平行な双晶面を有するテトラポッ ト状ゃ棒状のハロゲン化銀粒 子等がある。 中でも平板状ハロゲン化銀粒子(以下、 単に平板粒子ともいう)
10は、 その写真特性として、 固有感度に対して色増感感度が相対的に高い、 その 粒子形態よりハロゲン化銀写真感光材料の鮮鋭性 (シャープネス) の向上を図 ることができる、 粒子による光散乱が少なく、 解像度の高い画像が得られる等 の種々の利点を有している。
平板粒子に関係する従来技術としては、 例えば、 米国特許第 4, 434, 2
15 26号、 同第 4, 439, 520号、 同第 4, 41 , 310号、 同第 4, 4 33, 048号、 同第 4, 414, 306号、 同第 4, 459, 353号、 特 公平 4— 36374号、 同 5— 16015号、 同 6— 44132号、 特開平 6 — 43605号、 同 6— 43606号、 同 6— 214331号、 同 6— 222 488号、 同 6— 230493号、 同 6— 258745号等に、 その製造方法
20並びに使用技術が開示されている。
平板粒子の上記利点をより効果的に引き出すためには、 高ァスぺク ト比の平 板粒子を用いることが有効である。 当業界で知られているように、 沃化銀含有 率が高くなるほど高ァスぺクト比平板粒子の調製は困難となるため、 上記の様 な従来技術による平板粒子の多くは、 臭化銀もしくは沃化銀含有率の低い沃臭 化銀であった。 しかしながら、 沃化銀含有率の低いハロゲン化銀粒子は、 現像 活性となり、 加えて高ァスぺク ト比平板粒子は、 その形状的要因によって現像 がさらに促進されるために、 同一の塗布銀量においては、 粒状劣化や自然放射 線による影響を招きやすくなり、 ァスぺクト比の高い平板粒子ほど前記平板粒 子の利点を引き出すことが困難であった。 また、 高アスペク ト比粒子になるほ ど、 粒径のばらつきが大きくなる傾向にあるため、 化学增感ゃ分光增感の適正 化が難しくなり、 その結果として、 階調の軟調化や発色濃度低下を引き起こす といった問題点も指摘されていた。
特開平 6— 2 3 0 4 9 1号では、 中心領域の沃化銀含有率に対してフリンジ 領域の沃化銀含有率が 1 . 5〜 5 0倍であるアスペク ト比 8〜1 0 0の平板粒 子が開示されている。 しかし、 この技術では、 沃化銀含有率の高い相をフ リ ン ジ領域に配置させることによって化学増感適性が失われ、 感度低下と軟調化を 招く結果となる。 一方、 特開平 6— 2 3 5 9 8 8号には、 少なくとも内部殻、 中間殻及び最外殻からなる多重構造粒子で、 該中間殻に沃化銀含有率が高い領 域を有するアスペク ト比 3〜1 0 0の平板粒子が開示されている。 しかし、 こ の技術では、 沃化銀含有率が高い領域の外側に配置させた沃化銀含有率の低い 最外殻の粒子分率が大きいために、 高ァスぺクト比平板粒子の現像促進性に起 因する粒状性の劣化等の問題を解決するには至らなかった。
一方、 ハロゲン化銀カラ一写真感光材料のカプリ、 保存性等を改良する方法 として抑制剤を用いる事が知られている。 例えば、 特開平 5— 5 3 2 3 4号、 同 5— 2 7 3 6 0号、 同 5— 1 9 3 9 5号、 同 5— 1 7 5 4 0号等に種々の抑 制剤の組み合わせが開示されているが、 カブリや保存性を改良すると減感して しまう等、 全ての問題を解決するに至っていない。 メルカプト基と水溶性基を 有する抑制剤として、 特開平 2— 8 3 7号には平板粒子のカプリ防止及び低照 度不軌改良剤が開示され、 特開平 4— 1 6 8 3 8号にはセレン増感に対する力 プリ防止剤が開示されている。 また、 特開平 6— 1 9 0 2 4号、 同 6— 1 9 0 2 6号、 同 6— 1 9 0 3 7号には、 反応非活性力ルコゲン化合物が力ブリ防止 に効果がある事が開示されている。
カプリの問題としては、 ハロゲン化銀カラー写真感光材料に導入される、 最 終的なハロゲン化銀乳剤自体のカプリ (カプリ絶対値) と最適に化学熟成され る過程においてのカプリ進行の 2点がある。 製造安定性という点では、 カプリ 進行が緩慢な方が好ましく、 かつ写真性能という点では、 カプリ絶対値が低い ハロゲン化銀乳剤が理想的と考えられるが、 両者を満足するレベルには至って いない。
一方、 大規模処理を行う現像所で用いられている自動現像機や店頭等で用い られる小型現像機、 '所謂ミニラボ等で連続して現像処理を行う場合には、 通常 は、 処理するフィルム面積に応じて、 一定量の各現像補充液を補充して、 処理 液を常に一定の処理特性、 あるいは組成となるように制御されている。 また、 処理液の現像活性度を、 常時モニタ一し、 必要に応じて補正を行う方法もとら れている。 この様に、 現像処理液の品質管理が、 厳密になされていれば問題は ないが、 例えば、 時間当たりのフィルム処理量が少ない場合、 非定常的な現像 処理を行う場合、 乾燥地域等で水分蒸発量が異常に多い場合、 あるいは休日等 を挟んで現像処理が長時間停止した後に現像処理を再開する場合等では、 現像 処理液の活性度が変動しゃすい状況にある。
この様な現象処理環境下において、 ハロゲン化銀カラー写真感光材料に対し 処理安定性を付与される様々な試みがなされており、 例えば、 感光性ハロゲン 化銀粒子の組成や構造により改良する方法、 ハロゲン化銀力ラー写真感光材料 の構成、例えば、層構成、膜厚、硬膜度等により改良する方法、油溶性添加剤、 例えば、 カプラー、 D I Rカプラー等により改良する方法、 あるいは、 現像安 定剤、 現像抑制剤を用いる方法等が知られている。 しかしながら、 これらの現 像処理に対する安定性を向上させるために提案されている方法では、 他の写真 性能の低下を伴う場合が多く、 処理安定性と写真性能とを両立させることが困 難な状況である。
上記課題に対し、 特定の構造を有する抑制剤を用いて化学増感されたハロゲ ン化銀乳剤を用いて、 高感度でカプリ安定性に優れたハロゲン化銀感光材料が 提案されている (例えば、 特許文献 1参照。)。 また、 粒子間距離制御法を用い て、 基盤乳剤粒子の粒子主平面に対して垂直の方向に粒子成長させ、 特定のハ 口ゲン組成分布を有する平板状ハ口ゲン化銀粒子を含むハ口ゲン化銀乳剤が提 案されている (例えば、 特許文献 2参照。)。
しかしながら、 上記いずれの方法も、 ある程度の高感度化は達成されるもの の、 保存安定性、 潜像安定性、 特に、 処理安定性に関しては、 高品質が求めら れている現状においては、 決して充分とは言えず、 更なる品質改良が求められ ている。
(特許文献 1 )
特開 2 0 0 0— 2 3 5 2 4 0号公報 (特許請求の範囲)
(特許文献 2 )
特開 2 0 0 1— 1 4 2 1 6 9号公報 (特許請求の範囲) 発明の開示
本発明の上記目的は、 下記の各々の構成により達成される。
( 1 ) 支持体上に、 少なくとも 1層の赤感光性層、 緑感光性層、 青感光性層 及び非感光性層を有するハロゲン化銀力ラー写真感光材料において、 該感光性 層の少なくとも 1層が、 平均沃化銀含有率が 2. 0〜4. O m o l %で、 平均 アスペク ト比が 8. 0以上で、 かつ転位線を有する単分散のハロゲン化銀乳剤 を含有し、 該ハロゲン化銀乳剤を含む少なくとも 1層の感光性層が、 抑制剤を 0. 60 m g /m 2以上含有することを特徴とするハロゲン化銀カラー写真感光 材料。
( 2 ) 前記抑制剤の少なくとも 1種が、 下記一般式 〔 I〕 で表される化合物 であることを特徴とする ( 1 ) に記載のハロゲン化銀カラ一写真感光材料。 一般式 〔 I 〕
H e t - ( J ) n i - ( Q ) mi
〔式中、 H e tは置換基としてメルカプト基あるいはブロックされたメルカプ ト基を有さない 5〜6員の含窒素へテロ環を表し、 Jは (m l + 1 ) 価の連結 基を表し、 Qは水溶性基を表す。 η 1は 0〜5の整数を表し、 m lは 1以上の 整数を表す。〕
( 3 ) 前記一般式 〔 I〕 で表される化合物が、 下記一般式 〔II〕 または一般 式〔 III〕で表される化合物であることを特徴とする ( 2 ) に記載のハロゲン化 銀カラ一写真感光材料。 -般式 〔Π〕 -般式 〔m〕
Figure imgf000008_0001
〔一般式〔II〕において、 Wは酸素原子、 硫黄原子、 窒素原子または C ( R4i) を表し、 Xは窒素原子または C ( R4i ) を表す。 Zは、 置換基としてメルカプ ト基あるいはブロックされたメルカプト基を有さない 5〜 6員の含窒素芳香族 ヘテロ環を形成するのに必要な原子群を表す。 R41はメルカプト基あるいはブ ロックされたメルカプト基以外の置換基または水素原子を表す。 J、 Q、 n l、 m 1は一般式〔 I〕 の場合と同義である。
一般式〔 III〕において、 P、 、 R、 Tは窒素原子または C ( R41) を表 し、 R41はー般式〔 II〕の R41と同義である。 J、 Q、 n 1、 m lは一般式〔 I〕 の場合と同義である。〕
( 4 ) 前記抑制剤の少なくとも 1種が、 下記一般式( 1 ) で表される化合物 であることを特徴とする ( 1 ) に記載のハロゲン化銀カラ一写真感光材料。 一般式 (1)
Figure imgf000008_0002
〔式中、 Xは Nまたは CR' を表し、 R' は水素原子、 置換もしくは無置換の アルキル基または置換もしくは無置換のァリ一ル基を表す。 R3および R4は各 画 12111
8 々水素原子、 アルキル基、 アルケニル基、 アルキニル基、 ァリール基または複 素環基を表す。 n 2は 0または 1を表す。 113ぉょび1¾4は— 30311ヽ — COO H及び一 OH並びにそれらの塩から選ばれる基の少なくとも 1つを直接または 間接に有する。〕
( 5 ) 前記ハロゲン化銀乳剤が、 銀 1モル当たり 1, 7 X 10— 4モル以上の 増感色素により分光增感されていることを特徵とする ( 1 ) 〜( 4 ) のいずれ か 1項に記載のハ口ゲン化銀力ラー写真感光材料。
( 6 ) 特定写真感度が、 200以上であることを特徴とする ( 1 ) 〜( 5 ) のいずれか 1項に記載のハ口ゲン化銀力ラー写真感光材料。 発明を実施するための最良の形態
本発明のハロゲン化銀カラ一写真感光材料は、 支持体上に、 少なくとも 1層 の赤感光性層、 緑感光性層、 青感光性層及び非感光性層を有するハロゲン化銀 カラー写真感光材料において、 該感光性層の少なくとも 1層が、 平均沃化銀含 有率が 2. 0〜4. Omo l %で、 平均アスペク ト比が 8. 0以上で、 かつ転 位線を有する単分散のハ口ゲン化銀乳剤を含有し、 該ハロゲン化銀乳剤を含む 少なくとも 1層の感光性層が、抑制剤を 0. 60 m g/m3以上含有することが 特徴である。
はじめに、 本発明に係る平均沃化銀含有率が 2, 0〜4. 0m 0 1 %で、 平 均アスペクト比が 8. 0以上で、 かつ転位線を有する単分散のハロゲン化銀乳 剤について説明する。
本発明に係るハロゲン化銀乳剤は、 平均アスペクト比が 8. 0以上の平板状 ハロゲン化銀粒子(以下、 単に平板粒子ともいう) であり、 この平板粒子は結 晶学的には双晶に分類される。 双晶とは、 一つの粒子内に一つ以上の双晶面を 有する結晶であり、 ハロゲン化銀粒子における双晶の形態の分類は、 クライン とモイサ一による幸艮文 ! P h o t o g r a p h i s h e K o r r e s p o n d e n z」 の 99卷 99頁、 同 100卷 57頁に詳しく述べられている。 本発 明に係る平板状ハロゲン化銀粒子は、 粒子内に互いに平行な 2つ以上の双晶面 を有するものが好ましい。 これらの双晶面は、 平板状粒子の表面を形成する平 面の中で最も広い面積を有する面 (主平面という) に対してほぼ平行に存在す る。 本発明における特に好ましい形態は、 主平面に平行な 2つの双晶面を有す る場合である。 本発明において、 主平面に平行な 2つの双晶面を有するハロゲ ン化銀粒子個数は 70%以上であることが好ましく、 80%以上であることが 更に好ましく、 90 %以上であることが特に好ましい。
本癸明に係る平板状ハ口ゲン化銀粒子は、 下記の方法により求めるァスぺク ト比が 8以上であるハロゲン化銀粒子のことであり、 好ましくはアスペク ト比 の平均が 8〜 500であり、 更に好ましくは 10〜 500である。
ハロゲン化銀粒子のァスぺク ト比は、 下記の方法により粒径と粒子厚さを個 々のハロゲン化銀粒子について求め、 次式で得られる。
ァスぺク ト比 =粒径ノ粒子厚さ
本発明に係る平板状ハロゲン化銀粒子は、 主平面に平行な双晶面を 2枚有す る ( 1 1 1 ) 主平面を持つ平板状ハロゲン化銀粒子であることが好ましい。 本発明に係るハロゲン化銀乳剤においては、 平板状ハロゲン化銀粒子の平均 粒径は 0. l〜50〃mが好ましく、 0. 1〜20〃mがより好ましく、 1. 0〜20〃 mが最も好ましい。
本発明において、 平均粒径とは、 粒径 r iの算術平均とする。 ただし、 有効 数字 3桁、 最小桁数字は四捨五入し、 測定粒子個数は無差別に 1, 0 0 0個以 上であることとする。 ここでいう粒径 r i とは、 平板状ハロゲン化銀粒子の主 平面に対し、 垂直な方向から見たときの投影像を同面積の円像に換算したとき の直径 (投影面積円換算粒径) である。 また、 粒径 iは、 ハロゲン化銀粒子 を電子顕微鏡で 1〜7万倍に拡大して撮影、 プリ ントし、 そのプリ ント上の粒 子直径または投影時の面積を実測することにより得ることができる。
本癸明に係るハロゲン化銀乳剤においては、 平板状ハロゲン化銀粒子の厚さ の平均は 0 . 2 5 以下であることが好ましく、 0 . 0 0 5〜0 , 2 0〃 m であることがより好ましく、 0 . 0 0 5〜0 . 1 0 mであることが特に好ま しい。
上記説明したハロゲン化銀粒子の粒径ゃァスぺク ト比を算出するための個々 の粒子の投影面積と厚さは、 以下の方法で求めることができる。 支持体上に内 部標準となる粒径既知のラテックスボールと、 主平面が基板に平行に配向する ようにハロゲン化銀粒子とを塗布した試料を作製し、 ある角度からカーボン蒸 着により粒子にシャドーィングを行った後、 通常のレプリカ法によってレプリ 力試料を作製する。 同試料の電子顕微鏡写真を撮影し、 画像処理装置等を用い て個々の粒子の投影面積と厚さを求める。 この場合、 粒子の投影面積は内部標 準の投影面積から、 粒子の厚さは内部標準と粒子の影の長さから算出すること ができる。
本発明に係る平板状ハロゲン化銀粒子は、 単分散性あることが特徵であり、 下記式によって粒径分布 (粒径の変動係数) を定義した時、 粒径分布が 3 0 % 未満が好ましく、 より好ましくは 1 5 %未満である。
粒径分布 (% ) = (粒径の標準偏差 Z平均粒径) X 1 0 0 W
11 平均粒径及び標準偏差は、 上記で定義した粒径 r iから求めるものとする。 本発明に係るハロゲン化銀乳剤において、 ハ口ゲン化銀粒子の平均沃化銀含 有率が 2. 0〜4. 0モル%であることが特徴の一つである。
上記のハロゲン化銀粒子の沃化銀含有率は、 E PMA法 ( E l e c t r o n P r o b e M i c r o A n a 1 y z e r法)により求めることができる。 具体的には、 ハロゲン化銀粒子を互いに接触しない様によく分散させた試料を 作製し、 液体窒素で— 100°C以下に冷却しながら電子ビームを照射し、 個々 のハロゲン化銀粒子から放射される銀及び沃素の特性 X線強度を求めることに より、個々のハロゲン化銀粒子の沃化銀含有率が決定することができる。なお、 本発明においては、 上記方法により 100個以上のハロゲン化銀粒子について 求めたハ口ゲン化銀粒子の沃化銀含有率を平均したものを平均沃化銀含有率と する。
本発明に係る平板状ハ口ゲン化銀粒子では、 転位線を有することが特徴の一 つであり、 転位線の形態は適宜選択できる。 例えば、 粒子の結晶方位の特定方 向に対して直線的に存在する転位線、或いは曲つた転位線を選ぶことができる。 更には、 粒子全体に亘つて存在する、 あるいは粒子の特定の部分にのみ存在す る、例えば、粒子のフリ ンジ部(外周部)に限定して転位線が存在する形態や、 主平面に限定して転位線が存在する形態あるいは頂点近傍に集中的に転位線が 存在する形態等から選ぶこともできる。 本発明に係る平板状ハ口ゲン化銀粒子 においては、少なくとも粒子のフリンジ部に転位線が存在することが好ましく、 フリンジ部に 10本以上の転位線を有することが好ましく、 20本以上である ことが更に好ましい。
ハロゲン化銀粒子が有する転位線は、 例えば、 J. F. H a m i 1 t o n, P h o t o. S c i . E n g. 1 1 ( 1967 ) 57や、 T. S h i o z aw a , J. S o c. P h o t. S c i . J a p a n 35 ( 1972 ) 213に記 載の低温での透過型電子顕微鏡を用いた直接的な方法により観察できる。即ち、 ハ口ゲン化銀乳剤から粒子に転位が発生するほどの圧力をかけないように注意 して取り出したハロゲン化銀粒子を、 電子顕微鏡用のメッシュに乗せ、 電子線 による損傷 (プリントアウトなど) を防ぐように試料を冷却した状態で透過法 により観察を行う。 この時、 粒子が厚いほど電子線が透過しにく くなるので、 高加速電圧型の電子顕微鏡を用いた方がより鮮明に観察することができる。 こ のような方法によって得られた粒子写真から、 個々の粒子における転位線の数 や位置を知ることができる。
本発明に係る平板状ハロゲン化銀粒子は、 粒子個数比率で 50%がフリンジ 部に転位線を 10本以上有することが好ましく、 70 %以上であることがより 好ましい。 また、 フリ ンジ転位線を有する平板状ハロゲン化銀粒子個数比率が 50〜100個数%であることが好ましく、 60〜100個数%であることが より好ましく、 70〜100個数%であることが更に好ましい。
本発明でいう平板状ハロゲン化銀粒子がフリ ンジ部に転位線を有するとは、 平板粒子の外周部近傍や稜線近傍、 あるいは頂点近傍に転位線が 1粒子あたり 1 0本以上存在することである。 具体的には、 フリンジ部とは平板粒子を主平 面に垂直に観察し、 平板粒子の主平面の中心 (主平面を 2次元図形ととらえた 場合の重心) と頂点とを結んだ線分の長さを: Lとしたとき、 各頂点に関して中 心からの距離が 0. 5◦ Lである点を結んだ図形より外側の領域を指す。
本発明において、 ハロゲン化銀粒子への転位線の導入法としては、 例えば、 沃化カリウムのような沃素イオンを含む水溶液と水溶性銀塩溶液をダブルジュ ッ トで添加する方法、 もしくは沃化銀微粒子を添加する方法、 沃素イオンを含 む溶液のみを添加する方法、 特開平 6— 1 1 7 8 1号に記載されているような 沃化物イオン放出剤を用いる方法等の、 公知の方法を使用して所望の位置で転 位線の起源となる転位を形成することができる。 これらの方法の中では、 沃素 イオンを含む水溶液と水溶性銀塩溶液をダブルジュッ トで添加する方法ゃ沃化 銀微粒子を添加する方法、 沃化物ィォン放出剤を用いる方法が好ましい。
本発明でいう沃素イオン放出剤とは、 下記一般式 ( 1 ) で表される塩基ある いは求核試薬との反応によって、 沃素ィォンを放出する化合物である。
一般式 ( 1 )
R - I
一般式 〔 1 ) において、 Rは 1価の有機基をあらわす。 Rは、 例えば、 アル キル基、 アルケニル基、 アルキニル基、 ァリ一ル基、 ァラルキル基、複素環基、 ァシル基、 力ルバモイル基、 アルキルォキシカルボニル基、 ァリールォキシ力 ルボニル基、 アルキルスルホ二ル基、 了リ一ルスルホニル基、 スルファモイル 基であることが好ましい。 Rは炭素数 3 0以下の有機基であることが好ましく、 2 0以下であることがより好ましく、 1 0以下であることがさらに好ましい。 また、 Rは置換基を有していることが好ましく、 置換基がさらに他の置換基 で置換されていてもよい。 好ましい該匱換基として、 ハラィ ド、 アルキル基、 アルケニル基、 アルキニル基、 ァリール基、 ァラルキル基、 複素環基、 ァシル 基、 ァシルォキシ基、 力ルバモイル基、 アルキルォキシカルボニル基、 ァリ一 ルォキシカルボニル基、 アルキルスルホニル基、 ァリールスルホニル基、 スル ファモイル基、 アルコキシ基、 ァリ一ルォキシ基、 アミノ基、 ァシルァミノ基、 ゥレイ ド基、 ウレタン基、 スルホニルァミノ基、 スルフィニル基、 リ ン酸アミ ド基、 アルキルチオ基、 ァリールチオ基、 シァノ基、 スルホ基、 カルボキシル 基、 ヒドロキシ基、 ニトロ基等が挙げられる。
一般式 ( 1 ) で表される沃素イオン放出剤としては、 ョ一ドアルカン類、 ョ 一ドアルコ一ル、 ョ一ドカルポン酸、 ョ一ドアミ ドぉよびこれらの誘導体が好 ましく、 ョ一ドアミ ド、 ョ一ドアルコールおよびこれらの誘導体がより好まし い、 複素環基で置換されたョードアミ ド類がさらに好ましく、 最も好ましい例 は、 (ョ一ドアセトアミ ド) ベンゼンスルフォン酸塩である。
本発明において、 沃素イオン放出剤と求核試薬を反応させて、 沃素イオンを 放出させる場合、 求核試薬として、 例えば、 水酸化物イオン、 亜硫酸イオン、 チォ硫酸イオン、 スルフィ ン酸塩、 カルボン酸塩、 アンモニア、 アミ ン類、 ァ ルコール類、 尿素類、 チォ尿素類、 フヱノール類、 ヒ ドラジン類、 スルフィ ド 類、 ヒ ドロキサム酸類などを用いることができ、 水酸化物イオン、 亜硫酸ィォ ン、 チォ硫酸イオン、 スルフィ ン酸塩、 カルボン酸塩、 アンモニア、 アミ ン類 が好ましく、 水酸化物イオン、 亜硫酸イオンがより好ましい。
本発明のハロゲン化銀乳剤に沃素ィォン放出剤によつて転位線を導入する場 合の好ましい反応条件の一例を以下に示す。
反応温度は 8 0 °C〜3 0 °Cであることが好ましく、 7 (TC〜4 0 °Cであるこ とがより好ましい。 転位線導入直前の p A gは 7 . 0以上 1 0 . 0以下である ことが好ましく、 7 · 5以上 9 , 5以下であることがより好ましい。 添加する 沃素イオン放出剤の量は、 粒子成長終了後の総ハロゲン化銀量に対して、 1〜 5 m 0 1 %であることが好ましい。また、沃素イオン放出反応時の p Hは、 7 . 0以上 1 1 . 0以下の条件であること好ましく、 8 . 0以上 1 0 . 0以下であ ることがより好ましい。 また、 求核剤として水酸化物イオン以外のものを用い る場合、 求核剤の量は、 沃素イオン放出剤の量の 0. 25倍以上 2. 0倍以下 であることが好ましく、 0. 5倍以上 1. 5倍以下であることがより好ましく、 0. 8倍以上 1. 2倍以下であることが好ましい。
本発明のハ口ゲン化銀乳剤に、 沃化銀を含む微粒子乳剤によつて転位線を導 入する場合の好ましい反応条件の一例を以下に示す。
沃化銀を含む微粒子乳剤添加する際の温度は、 80°C〜30°Cであることが 好ましく、 マ 0°C〜40°Cであることがより好ましい。 添加する沃化銀を含む 微粒子乳剤の量は、 沃化銀量にして、 粒子成長終了後の総ハロゲン化銀量に対 して、 1〜5 m 0 1 %であることが好ましい。
本発明に係るハロゲン化銀乳剤は、 ハロゲン化銀粒子の内部又は表面に、 多 価金属原子、 多価金属原子イオン、 多価金属原子錯体または多価金属原子錯体 イオンの少なく とも 1種を含有することが好ましい。
前記の多価金属原子、 多価金属原子イオン、 多価金属原子錯体または多価金 属原子錯体ィオンとしては、 F e、 C oヽ N i、 R u、 R h、 P d、 R e、 O s、 I r、 P t、 Mg、 A l、 C a、 S c、 T i、 V、 C r、 Mn、 C u、 Z n、 G a、 G e、 A s、 S e、 S r、 Y、 Mo、 Z r、 N b、 C d、 I n、 S n、 S b、 B a、 L a、 W、 A u、 H g、 T l、 P b、 B i、 C e及び U等の 元素の周期表の第 3〜 7周期(最も一般的には第 4〜6周期)からの金属原子、 イオン、 その錯体及びこれらを含む塩(錯塩を含む)、 その他これらを含む化合 物等から選ばれる少なくとも 1種を用いることができるが、 単塩又は金属錯体 から選択することが好ましい。
金属錯体から選択する場合、 6配位錯体、 5配位錯体、 4配位錯体、 2配位 錯体が好ましく、 八面体 6配位錯体、 平面 4配位錯体がより好ましい。 錯体を構成する配位子としては、 CN-、 CO、 N02—、 l, 10—フヱナン トロ リ ン、 2 , 2' 一ビビリジン、 S 03—、 エチレンジァミ ン、 N H 3、 ピリ ジ ン、 H20、 NC S— NC 0— 03 S 0 、 OH—ヽ N3—、 S 2—、 F _ C 1 -、 B r―、 I—等を用いることができる。
5 本発明に用いられるハロゲン化銀乳剤に多価金属を含有させるには、 以下の 公知の技術が適用できる。
例えば、 B. H. C a r r o l 1, 「 I r i d i u m S e n s i t i z a t i o n, A L i t e r a t u r e R e v i e w」, P h o t o g r a p h i c S c i e n c e a n d E n g i n e e r i n g, 第 24卷, 第 b号, 10 1 980年 1 1Z12月, 第 265〜 267頁、 米国特許第 1, 95 1, 93 3号、 同第 2, 628, 1 67号、 同第 3, 687, 676号、 同第 3, 76 1, 267号、 同第 3, 890, 1 54号、 同第 3, 90 1, 7 1 1号、 同第 3, 90 1, 7 13号、 同第 4, 173, 483号、 同第 4, 269, 927 号、 同第 4, 413, 055号、 同第 4, 477, 56 1号、 同第 4·, 58 1, 15 327号、 同第 4, 643, 965号、 同第 4, 806, 462号、 同第 4, 828, 962号、 同第 4, 835, ◦ 93号、 同第 4, 902, 6 1 1号、 同第 4, 98 1, 780号、 同第 4, 997, 75 1号、 同第 5, 057, 4 02号、 同第 5, 134, 060号、 同第 5, 153, 1 10号、 同第 5, 1
64, 292号、 同第 5, 1 66, 044号、 同第 5, 204, 234号、 同 20第 5, 166, 045号、 同第 5, 229, 263号、 同第 5 , 252, 45
1号、 同第 5, 252, 530号、 E P 0第 0244184号、 同第 0488
737号、 同第 048860 1号、 同第 0368304号、 同第 040593 8号、 同第 0509674号、 同第 0563946号、 特願平 2— 24958 8号、 WO第 93ノ0 2 39 0号等に記載の技術が適用できる。 更に、 米国特 許第 4, 847, 1 9 1号、 同 4, 9 3 3, 27 2号、 同 4, 9 8 1 , 78 1 号、 同 5, 0 37, 73 2号、 同 937, 1 80号、 同 4, 945, 0 35号、 同 5, 1 1 2, 73 2号、 E P 0第 050 9 674号、 同第 05 1 3 73 8号、 WO第 9 1ノ1 0 1 6 6号、同第 9 2/1 68 7 6号、 ドィッ国特許第 298, 3 20号、 米国特許第 5, 3 6 0, 7 1 2号、 同第 5, 0 24, 93 1号等に 記載の技術を適用することが出来る。
また、 R e s e a r c h D i s c l o s u r e (以降、 R Dと略す)第 3 6 7巻, 1 994年 1 1月, アイテム 3 673 6には、 浅い電子トラップドー パントを選定する基準のわかりやすい説明がある。 本発明においては、 多価金 属原子、 そのイオン及びその錯体、 そのイオンからなる群から選ばれる少なく . とも 1種の中で、 下記に示すような 6配位錯体ィオンを使用することが好まし い o
〔ML6n
式中、 Mは充満フ口ンティァ軌道多価金属ィオン、 好ましくは F e 2+、 R u 2+、 0 s 2+、 C o 3+ R h3 I r 3+、 P d 4+もしくは P t 4+であり ; L6は独 立して選択することができる 6配位錯体リガンドを表すが、 但し、 リガンドの 少なくとも 4個はァニオンリガンドであり、 リガンドの少なくとも 1個 (好ま しくは少なくとも 3個及び最適には少なくとも 4個) は何れのハロゲン化物リ ガンドよりも電気的陰性が高く ;そして nは 2—、 3—又は 4一を表す。
本発明において、 I r化合物を用いる場合、好ましい化合物例として、 K2 I r C 1 6、 Κ3 I r C 1 6、 K2 I r B r 6等がある。
本発明において、 好ましく用いられるその他の多価金属化合物の具体例とし ては、 I n C l 3、 K4F e ( CN) e、 K3F e ( CN) e、 K4R u ( CN) 6、 P b (NOa) 2及びこれらの水和物等が挙げられる。
本発明においては、 多価金属原子、 そのイオン及びその錯体からなる群から 選ばれる少なく とも 1種が用いられるが、 I r、 R u、 O s、 F e、 R h、 C o、 I n、 G a、 G e、 P d又は P t等の各原子、 そのィォン及びその錯体が 特に好ましく用いられる。
本発明で用いられる多価金属原子、 そのイオン及びその錯体、 そのイオンか らなる群から選ばれる少なくとも 1種の濃度としては、 一般的にハロゲン化銀 1モルあたり 1 X 10— 7〜1 X 1 CI—2モルの範囲が適当であり、 より好ましく は 1 X 10— 6〜 1 X 1 0_3モルの範囲であり、 2 X 10一6〜 1 X 10— 4モルの 範囲が特に好ましい。
本発明に係るハロゲン化銀乳剤は、 臭化銀、 沃臭化銀、 沃臭塩化銀であるこ とが好ましく、 沃臭化銀、 沃臭塩化銀であることが特に好ましい。 塩化銀含有 率は 0〜50モル%であることが好ましく、 0〜30モル%であることがより 好ましく、 0〜1◦モル%であることが更に好ましい。
本発明に係るハロゲン化銀乳剤に好ましく用いることができる分散媒とし て、 ゼラチンと親水性コロイ ドが挙げられる。 ゼラチンとしては、 通常分子量 1 0万程度のアル力リ処理ゼラチンや酸処理ゼラチン、 或いは酸化処理したゼ ラチンや、 Bu l l . S 0 c. S c i . P h o t o. J a p a n. No. 1 6. P 30 ( 1966 ) に記載されたような酵素処理ゼラチンを好ましく用いるこ とができる。 親水性コロイ ドとしては、 例えば、 ゼラチン誘導体、 ゼラチンと 他の高分子とのグラフ トポリマー、 アルブミ ン、 カゼイ ンのような蛋白質; ヒ ドロキシェチルセルロース、 カルボキシメチルセルロース、 セルロース硫酸ェ ステル類の如きセルロース誘導体、 アルギン酸ソ一ダ、 澱粉誘導体のような誘 導体; ポリビニルアルコール、 ポリ ビニルアルコール部分ァセタール、 ポリ一 N—ビニルピロリ ドン、 ポリアクリル酸、 ポリメタクリル酸、 ポリアクリルァ ミ ド、 ポリビニルイ ミダゾール、 ポリ ビニルビラゾールのような単一あるいは 共重合体の如き多種の合成親水性高分子物質を用いることができる。
本癸明に係るハロゲン化銀乳剤の製造において、 粒子形成の途中で 1回以上 の脱塩工程を設けることが好ましい。 ここでいう脱塩工程とは、 ハロゲン化銀 乳剤を水洗し、 可溶性塩類を除去することである。 該脱塩工程については、 リ サーチ 'ディスク口一ジャー (以下、 R Dと略す) 1 7 6 4 3号 I I項を参考に することができ、 無機塩類、 ァニオン性界面活性剤あるいはァニオン性ポリマ ― (たとえばポリスチレンスルホン酸) を用いたフロキユレーシヨン法により 好ましく実施することができる。 脱塩工程は、 ハロゲン化銀粒子の成長後の体 積に対して、 1◦体積%未満の時点で行うことが好ましく、 5体積%未満の時 点で行うことがより好ましい。
本発明に係るハロゲン化銀乳剤は、還元増感されていてもよい。還元增感は、 ハロゲン化銀粒子成長が行われる保護コロイ ド水溶液中に還元剤を添加する カ あるいはハロゲン化銀粒子成長が行われる保護コロイ ド水溶液を p A g 7 . 0以下の低 p A g条件下で、 または p H 7 . 0以上の高 p H条件とし、 ハロゲ ン化銀粒子を熟成または粒子成長を行うことによって施すことができる。 これ らの方法は、 適宜組み合わせもよい。
本発明のハロゲン化銀乳剤の製造におけるハロゲン化銀粒子の形成には、 当 該分野でよく知られている種々の方法を用いることができる。 即ち、 シングル - ジヱッ ト法、 ダブル · ジヱッ ト法、 ト リプル · ジヱッ ト法あるいは/ヽロゲン 化銀微粒子供給法等を任意に組み合わせて使用することができる。 また、 ハロ ゲン化銀が生成される液相中の p H、 p A gをハロゲン化銀の成長速度に合わ せてコントロールする方法も併せて使用することができる。 ハロゲン化銀粒子 の形成は、 臨界成長速度に近い条件で行うのがよい。
本発明のハロゲン化銀乳剤の製造には、 種乳剤を用いることもできる。 種乳 剤を用いる場合には、 該種乳剤中のハロゲン化銀粒子は、 立方体、 八面体、 十 四面体のような規則的な結晶構造を持つものでもよいし、 球状や板状のような 変則的な結晶形を持つものでもよい。 これらの粒子において( 1 0 0 )面と( 1 1 1 ) 面の比率は任意のものが使用できる。 また、 これらの結晶形の複合であ つてもよく、 様々な結晶形の粒子の混合されていてもよいが用いられる種乳剤 中のハ口ゲン化銀粒子は双晶面を有する双晶ハ口ゲン化銀粒子であることが好 ましく、 二つの対向する平行な双晶面を有する双晶ハロゲン化銀粒子であるこ とが特に好ましい。
本発明のハロゲン化銀乳剤の製造には、 当業界で公知となっているハロゲン 化銀溶剤を使用することができるが、 できれば、 基盤平板粒子の形成時にはハ ロゲン化銀溶剤の使用は、 核形成後の熟成を除いて避けたほうがよい。
本発明のハロゲン化銀乳剤の製造には、 酸性法、 中性法、 アンモニア法のい ずれの方法をも用いることができるが、 酸性法あるいは中性法が好ましい。 本発明のハロゲン化銀乳剤の製造においては、 ハラィ ドイオンと銀イオンと を同時に混合しても、 いずれか一方が存在する中に他方を混合してもよい。 ま た、 ハロゲン化銀結晶の臨界成長速度を考慮し、 ハラィ ドイオンと銀イオンと を混合釜内の p A g、 p Hをコントロールして逐次又は同時に添加することも できる。 ハロゲン化銀形成の任意の工程でコンバージョン法を用いて、 ハロゲ ン化銀粒子のハロゲン組成を変化させてもよい。
本発明においては、 ハロゲン化銀微粒子を用いる場合、 該ハロゲン化銀微粒 子は、 本発明に係るハロゲン化銀粒子の調製に先立ち予め調製してもよいし、 該ハロゲン化銀粒子の調製と並行して調製してもよい。 後者の並行して調製す る場合には、 特開平 1— 183417号、 同 2— 44335号等に示されるよ うにハロゲン化銀微粒子を本発明に係るハロゲン化銀粒子の形成が行われる反 応容器外に別に設けられた混合器を用いることにより製造することができる が、 該混合器とは別に調製容器を設け、 混合器でいったん調製されたハロゲン 化銀微粒子を、 ここで関わるハロゲン化銀粒子の調製が行われる反応容器内の 成長環境に適するように任意に調製してから該反応容器に供給することが好ま しい。
本発明に係るハロゲン化銀乳剤の製造において、 成長工程の少なくとも一部 において、 限外濾過法によるハロゲン化銀乳剤の濃縮操作を行うことが好まし い。 本発明のハロゲン化銀乳剤ようなァスぺク ト比が高い平板乳剤を製造する 場合には、 希釈環境が好ましいため、 生産性を向上するために限外濾過法の適 用は好ましい。 限外濾過法を用いたハロゲン化銀乳剤の濃縮操作を行う場合に は、 特開平 1 0— 339923号公報に開示されているハロゲン化銀乳剤の製 造設備を好ましく用いることができる。
本発明のハロゲン化銀乳剤の製造においては、 上記以外の条件については、 特開昭 61— 6643号、 同 6 1— 14630号、 同 6 1— 1 12142号、 同 62— 157024号、 同 62— 18556号、 同 63— 92942号、 同 63— 1516 18号、 同 63— 163451号、 同 63— 220238号、 同 63— 3 1 1 244号、 RD 38957の I項及び III項、 RD40 145の XV項等を参考にして適切な条件を選択することができる。
本発明に係る上記特定の構成からなるハロゲン化銀乳剤は、 公知の方法に従 つて化学増感を施すことができる。
本発明で用いることのできる化学增感剤としては、 特に制限はないが、 公知 のカルコゲン増感剤、 金増感剤等を用いることとができる。
本発明で用いるセレン增感剤としては、 特に水溶液中で硝酸銀と反応して銀 セレニドの沈殿を形成しうる不安定セレン化合物が好ましく用いられる。 例え ば、 米国特許 1, 574, 944号、 同 1, 602, 592号、 同 1, 623, 499号、 特開昭 60— 150046号、 特開平 4— 25832号、 同 4— 1 09240号、 同 4一 147250号等に記載されている。
有用なセレン増感剤としては、 コロイ ドセレン金属、 イソセレノンアナ一ト 類(ァリルイソセレノシアナ一 ト等)、 セレノ尿素類(N, N—ジメチルセレノ 尿素、 N, N, N' — ト リェチルセレノ尿素、 N, N, N' — ト リメチル一N ' 一へプタフルォ口セレノ尿素、 N, N, Ν' — ト リメチル一 IST —ヘプタフ ルォロプロピルカルボ二ルセレノ尿素、 N, N, Ν' ー ト.リメチルー - 4 —二 トロフヱニルカルボ二ルセレノ尿素等)、 セレノケトン類 (セレノァセ ト ン、 セレノアセ トフエノ ン等)、 セレノアミ ド(セレノアセ トアミ ド、 , Ν- ジメチルセレノベンズアミ ド等)、 セレノ力ルボン酸類及びセレノエステル類 ( 2—セレノプロピオン酸、 メチルー 3ーセレノブチレート等)、 セレノホスフ ェ―ト類( ト リ ー ρ— ト リセレノフォスフヱ一ト等)、 セレニド類 (ジメチルセ レニド、 ト リフヱニルホスフィ ンセレニド、 ペンタフルオロフヱ二ルージフヱ ニルホスフィ ンセレニド、 ト リフ リルホスフ ィ ンセレニド、 ト リ ピリ ジルホス フィ ンセレニド等)が挙げられる。特に好ましいセレン增感剤は、 セレノ尿素、 セレノアミ ド類、 セレニド類である。
本発明においては硫黄増感剤を用いることも好ましい。 具体的には、 1, 3 —ジフヱ二ルチオ尿素、 トリェチルチオ尿素、 1ーェチルー 3— ( 2—チアゾ リル) チォ尿素などのチォ尿素誘導体、 ローダニン誘導体、 ジチカルバミ ン酸 5類、 ポリスルフィ ド有機化合物、 チォ硫酸塩、 硫黄単体などが好ましい。 尚、 硫黄単体としては、 斜方晶系に属する α—硫黄が好ましい。 その他、 米国特許 1, 574, 944号、 同 2, 410, 689号、 同 2, 278, 947号、 同 2, 728, 668号、 同 3, 501, 313号、 同 3, 656, 955号、 西独出願公開 (OL S ) l, 422, 869号、 特開昭 56— 24937号、
10同 55— 45016号等に記載されている硫黄增感剤を用いる事が出来る。
本発明においては、 更に RD誌 307 105号などに記載される金、 白金、 パラジウム、 イ リジウムなどの貴金属塩を用いることが好ましく、 中でも、 特 に金増感剤を併用することが好ましい。 有用な金增感剤としては、 塩化金酸、 チォ硫酸金、チォシアン酸金等の他に、米国特許 2, 597, 856号、 同 5,
15 049, 485号、 特公昭 44一 15748号、 特開平 1— 147537号、 同 4— 70650号等に開示されている有機金化合物などが挙げられる。 又、 金錯塩を用いた増感法を行う場合には、 補助剤として、 チォ硫酸塩、 チオシァ ン酸塩、 チォエーテル等の金のリガンドを併用することが好ましく、 特にチォ シアン酸塩を用いるのが好ましい。
20 また、 本発明に係る上記特定の構成からなるハロゲン化銀乳剤は、 公知の方 法に従つて分光増感を施すことができる。
本発明で用いることのできる分光增感色素としては、 公知の化合物を用いる ことができ、 例えば、 シァニン色素、 メロシアニン色素、 複合シァニン色素、 複合メロシアニン色素、 ホロボ一ラーシァニン色素、 へミシァニン色素、 スチ リル色素及びへミオキソノール色素が包含される。 特に有用な色素はシァニン 色素、 メロシアニン色素及び複合メロシアニン色素に属する色素である。 これ らの色素類は通常利用されている核のいずれをも適用できる。 即ち、 ピロリン 核、 ォキサゾリン核、 チアゾリ ン核、 ピロール核、 ォキサゾ一ル核、 チアゾー ル核、 セレナゾ一ル核、 ィ ミダゾ一ル核、テトラゾ一ル核、 ピリジン核などで、 これらの核に脂肪式炭化水素環が融合した核、 即ちインドレニン核、 ベンズィ ンドレニン核、ィ ンドール核、ベンズォキサゾール核、ナフ トォキサゾ一ル核、 ベンゾチアゾール核、 ナフ トチアゾ一ル核、 ベンゾセレナゾール核、 ベンズィ ミダゾ一ル核、 キノ リ ン核などが適用できる。 これらの核は炭素原子上に置換 されてもよい。
メロシア二ン色素又は複合メロシア二ン色素にはケトメチン構造を有する核 として、 ピラゾリン一 5—ォン核、 チォヒダントイン核、 2—チォォキサゾリ ジン一 2, 4—ジオン核、 チアゾリ ン一 2, 4—ジオン核、 ローダニン核、 チ ォバルビッ一ル酸核などの 5〜 6員異節環核を適用することができる。
これらの特許は、 例えば、 ドイツ特許第 929, 080号、 米国特許第 2, 231, 658号、 同第 2, 493, 748号、 同第 2, 503, 776号、 同第 2, 519, 001号、 同第 2, 912, 329号、 同第 3, 655, 3 94号、 同第 3, 656, 959号、 同第 3, 672, 897号、 同第 3, 6 49, 217号、 英国特許第 1, 242, 588号、 特公昭 44— 14030 号に記載されている。
本発明においては、 本発明に係る特定の構成からなるハロゲン化銀乳剤が、 銀 1モルあたり 1. 7 X 10— 4モル以上の增感色素により分光増感されている ことが好ましく、 より好ましくは l. 7xicr4〜i. oxio— 3モルであり、 更に好ましくは 1. 7 X 10— 4〜 5. 0 X 10— 4モルである。
次いで、 本発明に係る抑制剤について説明する。
本発明のハロゲン化銀カラー写真感光材料においては、 上記説明した特定の 構成からなる本発明に係る平板状ハロゲン化銀乳剤を含む少なくとも 1層の感 光性層が、抑制剤を 0. 60 m g Zm 2以上含有することが一つの特徴であり、 好ましくは 0. 60〜3. 00 m g/m2、 より好ましくは 0. 60〜2. 00 m g / m2である。
本発明でいう抑制剤とは、 カプリ抑制剤、 カプリ防止剤あるいは安定剤とも 呼ばれ、 用いることのできる抑制剤としては、 特に制限はなく、 例えば、 テト ラザィンデン類、 ァゾール類、 例えばべンゾチアゾリゥム塩、 二トロインダゾ ール類、 二ト口べンズィミダゾール類、 クロ口べンズィ ミダゾ一ル類、 プロモ ベンズィ ミダゾ一ル類、 メルカプ 1、チアゾール類、 メルカブトべンズィ ミダゾ ール類、 アミノ トリアゾ一ル類、 ベンゾトリァゾ一ル類、 ニトロべンゾト リア ゾール類、 メルカプトテトラゾ一ル類(特に 1—フヱ二ルー 5—メルカプトテ トラゾ一ル) など、 またメルカプトピリ ミジン類、 メルカプト トリアジン類、 例えばォキサゾリチオンのようなチオケト化合物、 更にはベンゼンチォスルフ ィ ン酸、 ベンゼンスルフ ィ ン酸、 ベンゼンスルフォン酸アミ ド、 ハイ ドロキノ ン誘導体、 ァミノフユノール誘導体、 没食子酸誘導体、 ァスコルビン酸誘導体 を挙げることができる。
本発明のハロゲン化銀カラー写真感光材料においては、 上記抑制剤の中で、 少なくとも 1種の抑制剤が前記一般式 〔 I〕 で表される化合物であることが好 ましく、 更に好ましくは前記一般式〔 II〕 または一般式〔III〕で表される化合 物である。
前記一般式〔 I 〕、 〔II〕 または 〔 III〕 で表される化合物において、 プロック されたメルカプト基とは、 現像処理時にプロック基が解裂してメルカプト基に なりうる基で、 そのブロック基の具体例としては、 ァシル基、 スルホニル基、 シァノエチル基等が挙げられる。 一般式 〔 I〕 における H e tで表される含窒 素へテロ環の具体例としては、 ピロリジン、 ピぺリジン、 モルホリン、 チォモ ルホリン、 ピロール、 ピリジン、 ピリ ミジン、 ピラジン、 ト リアジン、 イ ミダ ゾール、 ピラゾール、 ォキサゾール、 チアゾ一ル、 イソキサゾ一ル、 イソチア ゾール、 トリァゾ一ル、 テトラゾ一ル、 チアジアゾ一ル、 ォキサジァゾールな どのへテ口環及びこれらのベンゼン環との縮合環類が挙げられる。
一般式〔 I〕、 〔Π〕 または〔III〕 における Jで表される連結基は具体的には アルキレンヽ ァリ一レン、 ヘテロァリ一レン、 一 S 02—、 一 S O—、 一 0—、 一 S—、 -N ( R23) 一を単独、 又は組み合わせて構成される 1価の基が挙げ られる。 伹し、 R23はアルキル基、 ァリール基、 水素原子を表す。 Jは好まし くはァリーレンであり、 最も好ましくはフエ二レンである。 n 1は 0又は 1が 好ましい。
一般式〔 I 〕、 〔 II〕 または 〔III〕 における Qで表される水溶性基とは、 現像 液中でァニオン化が可能な基を表し具体的にはスルホンアミ ド基、 スルファモ ィル基、 フヱノール性水酸基、 カルボキシル基、 スルホ基、 及びそれらの塩が 挙げられる。 好ましくはカルボキシル基、 スルホ基である。 ^11は1又は2が 好ましい。
一般式 〔II〕 において、 Zで構成される 5〜6員の含窒素芳香族へテロ環と しては、 例えば、 ピリジン、 ピリ ミジン、 ピラジン、 ト リアジン、 ィ ミダゾ一 W
27 ル、 ピラゾール、 ォキサゾ一ル、 チアゾール、 イソキサゾ一ル、 イソチアゾー ル、 ト リァゾ一ル、 テトラゾール、 チアジアゾール、 ォキサジァゾ一ルの各環 及びこれらのベンゼン環との縮合環類が挙げられる。好ましくはトリァゾ一ル、 テトラゾールである。
5 一般式 〔I I〕 において R 4 1で表される置換基としては、 具体的にはハロゲン 原子(例えば、 塩素原子、 臭素原子等)、 アルキル基(例えば、 メチル基、 ェチ ル基、 イソプロピル基、 ヒドロキシェチル基、 メ トキメチル基、 トリフルォロ メチル基、 t _ブチル基等)、 シクロアルキル基(例えば、 シクロペンチル基、 シクロへキシル基等)、 ァラルキル基(例えば、 ベンジル基、 2—フヱネチル基0等)、 ァリール基(例えば、 フヱニル基、 ナフチル基、 p —トリル基、 p—クロ ロフヱニル基等)、 アルコキシ基(例えば、 メ トキシ基、 エトキン基、 イソプロ ポキシ基、 n—ブトキシ基等)、 ァリールォキシ基(例えば、 フヱノキシ基等)、 シァノ基、 ァシルァミノ基 (例えば、 ァセチルァミノ基、 プロピオニルァミノ 基等)、 アルキルチオ基(例えば、 メチルチオ基、 ェチルチオ基、 n —プチルチδォ基等)、 ァリ一ルチオ基(例えば、 フエ二ルチオ基等)、 スルホニルァミノ基 (例えば、 メタンスルホニルァミノ基、 ベンゼンスルホニルァミノ基等)、 ゥレ ィ ド基 (例えば、 3 —メチルゥレイ ド、 3, 3 —ジメチルゥレイ ド基、 1 , 3 ージメチルゥレイ ド基等)、 スルファモイルアミ ド基(例えば、 ジメチルスルフ ァモイルァミノ基等)、 力ルバモイル基(例えば、 メチルカルバモイル基、 ェチ0ルカルバモイル基、 ジメチルカルバモイル基等)、 スルファモイル基(例えば、 ェチルスルファモイル基、 ジメチルスルファモイル基等)、アルコキシカルボ二 ル基(例えば、 メ トキシカルボニル基、 エトキシカルボニル基等)、 ァリ一ルォ キシカルボニル基(例えば、 フヱノキシカルボニル基等)、 スルホニル基(例え ば、 メタンスルホニル基、 ブタンスルホニル基、 フヱニルスルホニル基等)、 ァ シル基(例えば、ァセチル基、プロパノィル基、プチロイル基等)、アミノ基(例 えば、メチルアミノ基、ェチルァミノ基、ジメチルアミノ基等)、 ヒドロキシ基、 二ト口基、 二トロソ基、 ァミンォキシド基(例えば、 ピリジン一ォキシド基)、 ィ ミ ド基(例えば、 フタルイ ミ ド基等)、 ジスルフィ ド基(例えば、 ベンゼンジ スルフィ ド基、 ベンゾチァゾリルー 2—ジスルフィ ド基等)、 力ルボキシル基、 スルホ基、 ヘテロ環基 (例えば、 ピリジル基、 ベンズイ ミダゾリル基、 ベンズ チァゾリル基、 ベンズォキサゾリル基等 ) が挙げられる。
一般式〔 III〕 において P、 Q' 、 R、 Tはそのうち 3つが N原子であること が好ましく、 特に好ましくは P、 ' 、 Rが窒素原子の場合である。
一般式 〔 I 〕、 〔II〕 または 〔III〕 で表される化合物の— ( J ) nl— ( Q ) ral以外のへテロ環の置換位置には置換基を有していても良く、 その具体例は上 述の置換基を挙げることができる。
以下、 本発明の一般式〔 I 〕、 〔II〕 または 〔III〕 で表される化合物の具体例 を挙げるが本発明はこれらに限定されるものではない。
[一 1
Figure imgf000029_0001
1-4
HO
Figure imgf000030_0001
I一 1
Figure imgf000030_0002
[一 13
H3C
Figure imgf000030_0003
Figure imgf000031_0001
22
Figure imgf000031_0002
Figure imgf000031_0003
本発明の一般式〔 I 〕、 〔II〕 または 〔 III〕 で表される化合物は、 例えば、 ジ ヤーナル . ファ .フフステイツシェ . ケミー [2], ! 2 , 286等の公知の 文献に記載の方法で容易に合成することができる。
以下に、 例示化合物 I一 1の合成例を示す。
く合成例〉
例示化合物 I一 1の合成法
1一 ( 4—カルボキシフエ二ル) 一テトラゾ一ル 4, 5 gをメタノール 20 m 1に加え、 濃アンモニア水 5 m 1を加えて完溶させた。 次に、 35 %過酸化 水素水 2m 1 を加え室温で 12時間撹拌した。 1モル/ Lの塩酸を加えて酸性 とした後に析出した結晶を炉別し、 メタノールより再結晶して例示化合物 I一 1を 3, 7 g (収率 96%) で得た。
また、 本発明のハロゲン化銀カラ一写真感光材料においては、 上記抑制剤の 中で、 少なく とも 1種の抑制剤が前記一般式 ( 1 ) で表される化合物であるこ とが好ましい。
前記一般式 ( 1 ) において、 Xは Nまたは CR' を表し、 R' は水素原子、 置換もしくは無置換のアルキル基または置換もしくは無置換のァリ一ル基を表 す。 R3および P は各々水素原子、 アルキル基、 アルケニル基、 アルキニル基、 ァリール基または複素環基を表す。 n 2は 0または 1を表す。 R 3および R 4は 一 S 03H、一 CO OH及び一 OH並びにそれらの塩から選ばれる基の少なく と も 1つを直接または間接に有する。
一般式 ( 1 ) において、 Raおよび R4で表されるアルキル基としては、 例え ば、 メチル、 ェチル、 プロピル、 i—プロピル、 ブチル、 tーブチル、 ペンチ ル、 シク口ペンチル、 へキシル、 シクロへキシル、 ォクチル、 ドデシノレ等の各 基が挙げられる。 これらのアルキル基は、 更にハロゲン原子 (例えば、 塩素、 臭素、 弗素等)、 アルコキシ基(例えば、 メ トキシ、 エトキシ、 1, 1 _ジメチ ルェトキシ、へキシル才キシ、 ドデシルォキン等の各基)、了リ—ルォキシ基(例 えば、フヱノキシ、ナフチルォキシ等の各基)、ァリール基(例えば、 フヱニル、 ナフチル等の各基)、 アルコキシカルボニル基(例えば、 メ トキシカルボニル、 ェトキシカルボニル、 ブトキシカルボニル、 2—ェチルへキシルカルボニル等 の各基)、 ァリールォキシカルボ二ル基(例えば、 フエノキシカルボニル、 ナフ チルォキシカルボニル等の各基)、 アルケニル基(例えば、 ビニル、 ァリル等の 各基)、 複素環基(例えば、 2—ピリジル、 3—ピリジル、 4—ピリジル、 モル ホリル、 ピペリジル、 ピペラジル、 セレナゾリル、 スルホラニル、 ピペリジニ ル、 テトラゾリル、 チアゾリル、 ォキサゾリル、 ィ ミダゾリル、 チェニル、 ピ 口リル、 ピラジニル、 ピリ ミジニル、 ピリダジニル、 ピリミジル、 ピラゾリル、 フリル等の各基)、 アルキニル基(例えば、 プロパルギルの各基)、 アミノ基(例 えば、 ァミノ、 N , N—ジメチルァミノ、 ァニリノ等の各基)、 ヒ ドロキシ基、 シァノ基、 スルホ基、 カルボキシ基、 スルホンアミ ド基 (例えば、 メチルスル ホニルァミノ、 ェチルスルホニルァミノ、 ブチルスルホニルァミノ、 ォクチル スルホニルァミノヽ フヱニルスルホニルァミノ等の各基) 等によって置換され てもよい。
R 3および R 4で表されるアルケニル基としては、 例えば、 ビニル基、 ァリル 基等が挙げられ、 アルキニル基としては、 例えばプロパルギル基が挙げられ、 またァリール基としては、 例えば、 フヱニル基、 ナフチル基等が挙げられ、 さ らに、 複素環基としては、 例えば、 ピリジル基 (例えば、 2—ピリジル、 3― ピリジル、 4一ピリジル等の各基)、 チアゾリル基、 ォキサゾリル基、 ィ ミダゾ リル基、 フリル基、 チヱニル基、 ピロリル基、 ビラジニル基、 ピリ ミジニル基、 ピリダジニル基、 セレナゾリル基、 スルホラ二ル基、 ピペリジニル基、 ピラゾ リル基、 テトラゾリル基等が挙げられる。
上記アルケニル基、 アルキニル基、 ァリール基及び複素環基は、 いずれも R 3および R 4で表されるアルキル基 ¾びアルキル基の置換基として示した基と同 様な基によって置換することができる。
以下に、 一般式 ( 1 ) で表される化合物の具体例を示すが、 本発明はこれら に限定されない。
1 -1
HS- <
CHゥ COOH
1 -2
Figure imgf000034_0001
1 -3
Figure imgf000034_0002
oz
Figure imgf000035_0001
-I
9T
Figure imgf000035_0002
9-1-
OT
Figure imgf000035_0003
Figure imgf000035_0004
nmo麵 zdf/ェ:) d 89請 00Z OAV H
N-N
zHOOOOH
N N 02
Figure imgf000036_0001
ZY-i
Figure imgf000036_0002
一 l<
Figure imgf000036_0003
(H—レ
Figure imgf000036_0004
6—
Figure imgf000036_0005
8-1-
9S nmo麵 zdf/ェ:) d 89請 00Z OAV
Figure imgf000037_0001
HOO H0、
HOOO^ N
SH
N
8レー
ST
H£OSzH0zH0
N-N
-IM
HOO0-H0=H0-2H0
N-N
SH
-N OT
9 -1-
Figure imgf000037_0002
Figure imgf000037_0003
98 nmo麵 zdf/ェ:) d 89請 00Z OAV -20
Figure imgf000038_0001
-22
Figure imgf000038_0002
Figure imgf000038_0003
本発明のハロゲン化銀カラー写真感光材料は、 特定写真感度が 200以上で あることが好ましく、 200〜 3200であることがより好ましく、 200〜 1600であることが更に好ましく、 特に好ましくは 200〜800である。 本発明でいうハロゲン化銀カラ一写真感光材料の特定写真感度とは、 I S O 感度測定方法に準じて制定された J I S K 76 14- 1981に則つた試 験方法に従い決定するものとする。
( 1 ) 試験条件;試験は温度 20±5° (:、 相対湿度 60± 10%の室内で行 い、 試験する感光材料はこの状態に 1時間以上放置した後使用する。
( 2 )露光;露光面における基準光の相対分光エネルギー分布は下記に示さ れるようなものとする。
波長 n m 相対分光エネルギ' * ) 波長 n m 相対分光エネルギ' 360 2 3 70 8
380 14 39 0 23
400 45 1 0 5 7
420 63 43 0 6 2
440 8 1 450 9 3
460 97 47 0 9 8
480 1 0 1 49 0 97
500 1 00 540 1 0 2
550 1 03 5 6 0 1 00
570 97 58 0 9 8
590 90 60 0 9 3
6 1 0 94 6 20 9 2
6 30 88 640 8 9
650 86 66 0 8 6
670 89 680 8 5
69 0 75 70 0 77
注( 1 * ) 5 60 n mの値を 1 00に基準化して定めた値である 露光面における照度変化は光学くさびを用いて行ない、 用いる光学くさびは どの部分でも分光透過濃度の変動が 36 0〜70 0 II mの波長域で 40 0 n m 未満の領域は 1 0 %以内、 40 0 n m以上の領域は 5%以内のものを用いる。 露光時間は 1 /1 00秒とす ¾。 ( 3 )現像処理
露光から現像処理までの間は、 試験する感光材料を温度 20±5°C、 相対湿 度 60± 10 %の状態に保つ
現像処理は露光後 30分以上 6時間以内に完了させる
5 現像処理 B r i t i s h J o u r n a l o f P h o t o g r a p h y A n n u a 1 1988, P. 196— 198記載のイーストマンコダック 社製 C— 41処理を行なう。
( ) 濃度測定
濃度は L 0 g lt) ( 0 OZ0 ) で表す。 ø◦は濃度測定のための照明光束、 φ 0 は被測定部の透過光束である。 濃度測定の幾何条件は照明光束が法線方向の平 行光束であり、 透過光束として透過して半空間に拡散された全光束を用いるこ とを基準とし、 これ以外の測定方法を用いる場合には標準濃度片による補正を 行なう。 また、 測定の際、 乳剤膜面は受光装置側に対面させるものとする。 濃 度測定は青、 緑、 赤のステータス M濃度とし、 その分光特性は温度計に使用す 15 る光源、 光学系、 光学フィルター、 受光装置の総合的な特性としては、 特開平 6 -67350公報段落番号 [0036]記載した値になるようにする。
( 5 )特定写真感度の決定
( 1 )〜( 4 ) に示した条件で処理、 濃度測定された結果を用いて、 以下の 手順で特定写真感度を決定する。 青、 緑、 赤の各々の最小濃度に対して、 0. 20 1 5高い濃度に対応する露光量をルックス '秒で表してそれぞれ HB、 HO、 HRとする。 HB、 HRのうち値の大きい方(感度の低い方) を H Sとする。 特定写真感度 Sを下式に従い計算する。
S = ( 2/HG XH S ) ゾ 2 次いで、 本発明のハロゲン化銀カラ一写真感光材料の感光性層のその他の構 成要素について、 以下説明する。
本発明に係るハロゲン化銀乳剤の調製については、 R e s e a r c h D i s c 1 o s u r e (以降、 RDと略す) N o. 3081 19に記載されている 各項目に記載されているものを用いることができる。
以下に記載箇所を示す。
〔項目〕 [RD 3081 19の頁〕
沃度組成 993 I一 A項
製造方法 993 I一 A項 及び 994 E項 晶癖 正常晶 993 I _ A項
晶癖 双晶 993 I一 A項
ェ 993 I一 A項
ハロゲン組成一様 993 I一 B項
ハロゲン組成一様でない 993 I—B項
ノヽロゲンコンパージ 3ン 994 I一 c項
ハロゲン置換 994 I一 c項
994 I一 D項
単分散 995 I一 F項
'溶媒添加 995 I— F項
潜像形成位置 表面 995 I— G項
潜像形成位置 内部 995 I _G項
適用ハロゲン化銀写真感光材料ネガ 995 I— H項
ポジ (内部力ブリ粒子含) 995 I一 H項 乳剤を混合している 995 I— J項
脱塩 995 II— A項
本発明においては、 ハロゲン化銀乳剤に関して、 物理熟成、 化学熟成及び分 光増感を行ったものを使用する。 この様な工程で使用される添加剤は、 RDN 0. 17643、 N o. 187 1 6及び N o . 308 1 19に記載されている。 以下に記載箇所を示す。
〔項目〕 [: RD 308 1 1 9の頁〕 [; RD 17643〕〔RD 187 16〕 化学増感剤 996 ΙΠ— A項 23 648 分光増感剤 996 IV— A— A、
B、 C、 D、 23〜24 648〜649
H、 I、 J項
強色増感剤 996 IV— A - E、 J項
23〜24 648〜649 力ブリ防止剤 998 VI 24〜25 649 安定剤 998 VI 24〜25 649 本発明のハロゲン化銀カラ一写真感光材料に使用できる公知の写真用添加剤 も、 上記 RDに記載されている。 以下に関連のある記載箇所を示す。
〔項目〕 〔RD 308 1 19の頁〕!; RD 17643〕〔RD 18716〕 色濁り防止剤 1002VII— I項 25 650 色素画像安定剤 1001VII— J項 25
増白剤 998 V 24 .
紫外線吸収剤 1003VIII— I項、
XIII— C項 25〜26 光吸収剤 1 003 VI II 25〜26 光散乱剤 1 003VIII
フィルター染料 1003VIII 25〜26
バインダー 1003 IX 26 65 1 スタチック防止剤 1 006X1 II 27 650 硬膜剤 1 004X 26 65 1 可塑剤 1 006X11 27 650 潤滑剤 1 006 XII 27 650 活性剤 ·塗布助剤 1005X1 26〜27 650 マッ ト剤 1007XVI
現像剤(ハロゲン化銀カラー写真感光材料に含有)
100 1 XXB項
本発明に係る感光性層には、 種々のカプラーを使用することが出来、 その具 体例は、 上記 RDに記載されている。 以下に関連のある記載箇所を示す。
〔項目〕 〔RD308 1 19の頁〕 〔RD 17643〕 イェローカプラー 100 1VII— D項 VIIC〜G項 マゼンタカプラー 1001 VII— D項 VIIC〜G項 シァンカブラー 100 1 VII— D項 VIIC〜G項 カフ一ドカフラー 1002 VII— G項 VIIG項
D I Rカプラー 1001 VII— F項 VIIF項
BARカプラー 1002VII— F項
その他の有用残基放出 100 1 VII— F項
カプラー アルカリ可溶カプラー 100 1VII— E項
上記各添加剤は、 RD 308 1 19 XIVに記載されている分散法などにより、 添加することが出来る。
本発明のハロゲン化銀カラー写真感光材料には、前述 RD308 1 19VII- K項に記載されているフィルタ一層や中間層等の補助層を設けることも出来 る 0
本発明のハロゲン化銀カラ一写真感光材料は、前述 RD 308 1 19 VII— K 項に記載されている順層、 逆層、 ュニッ ト構成等の様々な層構成をとることが
I_J来る o
本発明のハロゲン化銀カラー写真感光材料を現像処理するには、 例えば!:. H. ジヱ一ムズ著、 セォリイ ォブ ザ ホトグラフィック プロセス第 4版 ( T e T h e o r o f T h e P h o t o g r a p h i c P r o c e s s F o r t h E d i t i o n ) 第 29 1〜 334頁及びジャーナル ォブ ザ アメ リカン ケミカル ソサェティ ( J o u r n a l o f t h e Am e r i c a n C h e m i c a l S o c i e t y ) 第 73巻、 N o . 3、 100頁 ( 1951 ) に記載されている公知の現像剤を使用すること ができる。 また、 前述の RD 17643の 28〜 29頁、 RD 187 1 6の 6 1 5頁及び RD 308 1 19 XIXに記載された通常の方法によって、現像処理す ることができる。
以下、 実施例により本発明を更に具体的に説明するが、 本発明の実施態様は これらに限定されるものではない。
実施例 1
《ハロゲン化銀乳剤の調製》 〔平板状ハ口ゲン化銀乳剤 E m— 1の調製〕
(平板状種乳剤 1の調製)
以下の手順で、 平板状である種乳剤 1を調製した。
[核生成工程]
反応容器内で、 低分子量ゼラチン (平均分子量 1. 5万) 162. 8 gと臭 化カリウム 23. 6 gを含む 28. 3 Lの水溶液を 15でに保ち、 特開昭 62 - 160 128号公報記載の混合撹拌装置を用いて高速に撹拌しながら、 0. 5モル/ Lの硫酸を用いて、 11を 1. 90に調整した。 その後、 ダブルジヱ ッ ト法を用いて下記 S— 0 1液と下記 X— 0 1液を、 一定の流量で 1分間かけ て添加し、 核形成を行ったのち、 下記 G— 0 1液を加えた。
S— 0 1液: 1. 25モル/ Lの硝酸銀水溶液 205. 7 m l
X— 0 1液: 1. 25モル/ Lの臭化カ リウム水溶液 205. 7 m 1 G— 01液:アルカ リ処理不活性ゼラチン (平均分子量 1 0万) 1 20. 5 gと、 下記界面活性剤 Aの 10質量%メタノール溶液 8. 8m lを含む 292 1 m 1の水溶液
界面活性剤 A : HO ( CH2CH20 ) m [CH ( CHs ) CH20] 2
Figure imgf000046_0001
[熟成工程]
核生成工程終了後に、 45分間を要して 6 (TCに昇温し p A gを 9. 2に調 整した。 続いて 0. 136モルのアンモニアを含む水溶液と水酸化力リゥム水 溶液を加えて p Hを 9. 3に調整して 6分間保持した後、 1モル/ Lの硝酸を 用いて p Hを 6. 1に調整した。
[成長工程] 熟成工程終了後、 p A gを 9. 2に保ちつつ、 ダブルジヱッ ト法を用いて、 下記 S— 02液と下記 X— 02液とを、 流量を加速しながら (開始時と終了時 の添加流量の比が約 5倍) 20分間で添加した。
S— 02液: 1. 25モル/ Lの硝酸銀水溶液 2620 m l
X— 02液: 1. 25モル/ Lの臭化力リウム 2620 m l
上記各溶液を添加終了後、 常法に従い脱塩、 水洗処理を施し、 追加のゼラチ ンを加えてよく分散した。 以上のようにして得られた乳剤は、 立方体換算平均 粒径 0. 27 、 平均アスペク ト比 1 2. 0、 粒径の変動係数 14. 2%の 平板状乳剤であった。 これを平板状種乳剤 1とする。
( Em_ lの調製)
平板状種乳剤 1を以下の手順で引き続き成長を行い、 平板状ハロゲン化銀乳 剤である Em— 1を調製した。
[ A相の形成]
0. 21モル相当の平板状種乳剤 1と前記界面活性剤 Aの 10質量%メタノ—ル溶液 1. 0 m 1を含む 1 %ゼラチン水溶液 15 Lを、 温度 60で、 p A g 8. 9に保ちつつ、 ダブルジヱッ ト法を用いて下記 S— 1 1液と下記 X— 1 1 液を流量を加速しながら (開始時と終了時の添加流量の比が約 1 0倍) 添加し て A相を形成した。 A相形成後の平均アスペク ト比は、 18. 4であった。
S— 1 1液: 3. 5モル ZLの硝酸銀水溶液 2059 m l
X— 1 1液: 3. 45モル/ Lの臭化力リウムと 0. 05モル ZLの沃化カ リゥムを含む水溶液 2059m l
[B相の形成]
A相形成後に、 下記 I一 1 1液と下記 Z— 1 1液を添加し、 水酸化力リゥム 水溶液で p Hを 9. 7に調整し 6分間保持した後に、 酢酸水溶液で p Hを 5. 0、 臭化力リゥム水溶液で p A gを 9. 8に調整した。 引き続いて、 下記 S— 1 2液と下記 X— 1 2液を添加流量を加速しながら (開始時と終了時の添加流 量の比が約 2. 2倍) 添加して B相を形成した。
I— 1 1液: p—ョ一ドアセ トアミ ドべンゼンスルホン酸ナト リ ウム 57. 7 gを含む水溶液
Z— 1 1液:亜硫酸ナト リウム 20. 0 gを含む水溶液
S— 1 2液: 3. 5モル/ Lの硝酸銀水溶液 726m 1
X— 1 2液: 3. 36モル ZLの臭化力 リウムと 0. 14モル ZLの沃化カ リゥムを含む水溶液 726m l
[最外相の形成]
B相形成に続いて、 下記 S— 13液と下記 X— 13液を流量を加速しながら (開始時と終了時の添加流量の比が約 1. 4倍) 添加して最外相を形成した。
S— 13液: 1. 25モル ZLの硝酸銀水溶液 509m l
X— 13液: 1. 25モル/ Lの臭化カ リウム水溶液 509 m 1
最外相形成終了後に、 特開平 5— 72658号に記載の方法に従い、 脱塩及 び水洗処理を施し、 ゼラチンを加えて良く分散し、 4 CTCにて pHを 5. 8、 p A gを 8. 1に調整して、 平板状ハロゲン化銀乳剤 Em— 1を得た。
平板状ハロゲン化銀乳剤である Em— 1を解析した結果、 立方体換算の平均 粒径が 1. 0 m、 平均アスペク ト比が 13. 3、 粒径の変動係数 14 %、 粒 子の平均沃化銀含有率が 3. 4モル%の平板状粒子であった。 また、 平板状ハ 口ゲン化銀乳剤である E m— 1には、 各辺にそれぞれ 5本以上の転位糸泉を有す る平板状粒子が全投影面積の 82%存在していることを確認した。 〔平板状ハ口ゲン化銀乳剤 E m— 2の調製〕
上記平板状ハ口ゲン化銀乳剤 E m— 1の調製において、 B相形成に用いた X 一 1 2液に代えて、 下記 X— 1 2' 液を用いた以外は同様にして、 平板状ハロ ゲン化銀乳剤 E m— 2を調製した。
X— 1 2' 液: 3. 25モル ZLの臭化カリウムと 0. 25モルノ Lの沃化 力リウムを含む水溶液 726 m l
平板状ハ口ゲン化銀乳剤である Em— 2を解析した結果、 立方体換算の平均 粒径が 1. 0 、 平均アスペクト比が 1 2. 9、 粒径の変動係数 1 5 %、 粒 子の平均沃化銀含有率が 4. 2モル%の平板状粒子であった。 また、 平板状ハ ロゲン化銀乳剤である Em— 2には、 各辺にそれぞれ 5本以上の転位線を有す る平板状粒子が全投影面積の 77 %存在していることを確認した。
〔平板状ハ口ゲン化銀乳剤 E m— 3の調製〕
上記平板状ハロゲン化銀乳剤 Em— 1の調製において、 B相形成に用いた I 一 1 1液と Z— 1 1液を除いた以外は同様にして、 平板状ハロゲン化銀乳剤 E m_3を調製した。
平板状ハ口ゲン化銀乳剤である E m— 3を解析した結果、 立方体換算の平均 粒径が 1. 0 m、 平均アスペク ト比が 1 2. 3、 粒径の変動係数 1 5 %、 粒 子の平均沃化銀含有率が 3. 4モル%の平板状粒子であった。 また、 平板状ハ 口ゲン化銀乳剤である E m— 3には、 転位線を有する平板状粒子が存在してい なかつた。
〔平板状ハ口ゲン化銀乳剤 E m— 4の調製〕
上記平板状ハロゲン化銀乳剤 Em— 1の調製において、 平均ァスぺクト比が 6. 8となるように、 A相、 B相及び最外層形成時の p A gを適宜調整した以 外は同様にして、 平板状ハ口ゲン化銀乳剤 E m— 4を調製した。
平板状ハ口ゲン化銀乳剤である Em— 4を解析した結果、 立方体換算の平均 粒径が 1. 0 、 平均アスペク ト比が 6. 8、 粒径の変動係数 1 8 %、 粒子 の平均沃化銀含有率が 3. 4モル%の平板状粒子であった。 また、 平板状ハロ ゲン化銀乳剤である E m— 4には、 各辺にそれぞれ 5本以上の転位線を有する 平板状粒子が全投影面積の 7 6 %存在していることを確認した。
《ハロゲン化銀乳剤の化学増感処理》
以上のように調製した各ハ口ゲン化銀乳剤を用いて、 下記の方法に従つて化 学増感及び分光増感を施して、 増感処理済みの緑感光性乳剤を調製した。 (緑感光性乳剤 G - 1の調製)
平板状ハロゲン化銀乳剤 E m_ 1の一部を 5 5でに加熱溶解し、 ハロゲン化 銀 1モル当たり増感色素 S D— 4を 1. 3 X 1 0— 4モル、 S D— 5を 4. 6 X 1 0_5モル、 S D— 6を 7. 8 X 1 0— 6モル添加し、 5 5°Cに保ったまま 20 分後、 化学増感剤として、 チォ硫酸ナトリウム五水塩 1. 1 X 1 0— 5モル、 塩 化金酸 3. 2 X 1 0— 5モルとチォシアン酸カ リウム 3. 5 X 1 0— 4モルの混合 液を、 2分間隔で添加して 1/ 1 00秒感度が最適となるように熟成した。 熟 成終了時に安定剤 S T— 1と、 後述する表に記載の添加量となるように抑制剤 を添加して降温し、 冷却固化させて緑感光性乳剤 G— 1を得た。 なお、 上記調 製に用いた S D— 4、 S D— 5、 S D— 6及び S T— 1の詳細については、 後 述する。
(緑感光性乳剤 G - 2〜G— 1 3の調製)
上記録感光性乳剤 G— 1の調製において、 後述の表に記載のように、 ハロゲ ン化銀乳剤の種類、 抑制剤の種類と添加量、 及び增感色素の総添加量を変更し た以外は同様にして、 緑感光性乳剤 G— 1〜G— 13を調製した c
以上により調製した各ハロゲン化銀乳剤の特徴を、 以下に示す c
〔ハロゲン化銀乳剤〕
ハロゲン化銀 平均沃化銀 アスペク ト比 転位線
乳剤の番号 含有率 有無
( m o 1 % )
E m— 1 3. 4 13. 3 有 本発明 E m- 2 4. 2 1 2. 9 有 比較例 E m- 3 3. 4 12. 3 無 比較例 E m— 4 3. 4 6. 8 有 比較例 次いで、 上記調製した各緑感光性乳剤の特徴を、 以下に示す (
緑感光性 乳剤番号 抑制剤添加量( m g /m 2 ) 総增感色素
乳剤番号 抑制剤 抑制剤
I一 6 1 -4 G— 1 E m- 1 0. 45 1. 84 X 10— 4 比較例 G— 2 E m— 1 0. 80 1. 84 X 10-4 本発明 G- 3 E m- 1 0. 80 1. 84 X 10~4 本発明 G - 4 E m- 1 0. 40 0. 40 1 84 X 10— 4 本発明 G— 5 E m— 1 0. 40 0. 40 1 50 X 10— 4 本発明 G - 6 E m— 1 0. 60 0 60 1 84 X 10— 4 本発明 G- 7 E m- 1 1. 00 1 00 1 84 X 10— 4 本発明 G - 8 E m- 2 0 45 1 84 X 10- 4 比較例 G— 9 E m— 3 0 45 1 84 X 10— 4 比較例 G— 10 E m- 4 0 45 1 84 X 10-4 比較例 G - 1 1 E m- 2 0. 40 0 40 1. 84 X 10— 4 比較例 G— 12 E m- 3 0. 40 0 40 1. 84 X 10-4 比較例 G— 13 E m- 4 0. 40 0. 40 1. 84 X 10- 4 比較例 なお、 各抑制剤の添加量は、 該抑制剤を含む緑感光性乳剤を、 後述の高感度 緑感光性層 (第 9層) に用いた際の l m2あたりの量で表示した。
《ハロゲン化銀カラー写真感光材料の作製》
〔試料 10 1の作製〕
下引き層を施した厚さ 1 25〃mのトリァセチルセルロースフィルム支持体 上に、 下記に示すような組成の各層を順次支持体側から形成してハロゲン化銀 カラー写真感光材料である試料 10 1を作製した。
下記の各素材の添加量は 1 m2当たりのグラム数で表す。伹し、ハロゲン化銀 とコロイ ド銀は銀の量に換算し、 増感色素( S Dで示す) は銀 1モル当たりの モル数で示した。
(第 1層:ハレ一ショ ン防止層) ( g/m2) 黒色コロイ ド銀 0. 13
U V - 1 0 30
CM- 1 0 1 1 0 I L - 1 0 23 ゼラチン 20 (第 2層:中間層)
0 I L - 3 0. 267 ゼラチン 0. 89 (第 3層:低感度赤感光性層)
沃臭化銀乳剤 a 0. 3 1 沃臭化銀乳剤 c 0. 22
S D— 1 1. 28 X 10
S D- 2 1. 78 X 10 S D— 3 8. 40 X 10 C一 1 0. 32 C C一 1 0. 056 D— 1 0. 0 1 A S - 2 0. 002
O I L - 2 0. 320 ゼラチン 1. 06 (第 4層:中感度赤感光性層)
沃臭化銀乳剤 b 0. 08 沃臭化銀乳剤 d 0. 40
S D— 1 2. 56 X 10
S D— 2 3. 50 X 10
S D— 3 1. 72 X 10 C- 1 0. 2 19
CC- 1 0. 044
D— 1 0. 024
D— 3 0. 002
A S - 2 0. 002 0 I L - 2 0. 001 ゼラチン 0. 84 (第 5層:高感度赤感光性層)
沃臭化銀乳剤 g 0. 48
S D— 1 7. 1 1 X 10
S D— 2 9. 78 X 10 S D— 3 4. 72 X 10 C- 1 0. 046 C一 2 0. 041 C C- 1 0. 0 19
D- 3 0. 003
A S - 2 0. 00 1
O I L - 2 0. 088 ゼラチン 0. 84
(第 6層:中間層)
A S— 1 0. 20
0 I L - 1 0. 25 ゼラチン 0. 9 1 (第 7層:低感度緑感光性層)
沃臭化銀乳剤 b 0. 23 沃臭化銀乳剤 c 0 0
S D— 4 1. 17 X 10
S D— 5 1. 28 X 10 S D— 6 1. 6 1 X 10一 5
M— 1 0. 275
CM— 1 0. 085
D- 2 0. 004
A S— 2 0. 001 X— 2 0. 069
A S— 3 0. 033
O I L - 1 0. 10 ゼラチン 1. 14 (第 8層:中感度緑感光性層)
沃臭化銀乳剤 c 0. 09 沃臭化銀乳剤 d 0. 33
S D - 4 ―
3. 83 X 10 S D— 5 4. 00 X 10
S D- 6 5. 00 X 10 ― 5
M- 1 0. 10 1
CM— 1 0. 039
D— 2 0. 001 D— 3 0. 0 1
A S— 2 0. 001
X- 2 0. 0 1
A S— 3 0. 007
0 I L - 1 0. 280 ゼラチン 1. 06
(第 9層:高感度録感光性層)
緑感光性乳剤 G - 1 0. 50
S D- 4 1. 30 X 10一4
S D- 5 4. 60 X 10— 5 S D - 6 7. 80 X 10—6
M— 1 0. 058
CM- 1 0. 029
A S— 2 0. 00 1 X- 2 0. 0 1 5 A S - 3 0. 007 O I L - 1 0. 1 1 ゼラチン 1 1 (第 1 0層:イエロ一フィルタ一層)
黄色コロイ ド銀 0. 0 6 A S— 1 0. 07 0 I L - 1 0. 0 9 ゼラチン 0. 9 0 (第 1 1層:低感度青感光性層 )
沃臭化銀乳剤 b 0. 1 1 沃臭化銀乳剤 d 0. 1 7 沃臭化銀乳剤 e 0. 1 7
S D- 7 2 · 78 X 1 0 S D— 8 7. 1 7 X 1 0
Y— 1 0. 9 25
A S - 2 0. 003
O I L - 1 0. 3 7 1 ゼラチン 1. 9 1 (第 1 2層:高感度青感光性層 )
沃臭化銀乳剤 e 0. 0 3 沃臭化銀乳剤 h 0. 2 5
S D- 7 2. 78 X 10 S D— 8 83 X 10
Y— 1 0. 078
A S - 2 0. 00 1
D- 4 0. 038 O I L - 1 0. 0 7 ゼラチン 0. 6 1 (第 1 3層:第 1保護層)
沃臭化銀乳剤 i 0. 22
U V - 1 0. 10 U V- 2 0. 06
X- 1 0. 04
A F— 6 0. 003 ゼラチン 0. 70 (第 14層:第 2保護層)
PM- 1 0. 10
PM- 2 0. 0 18
WAX- 1 0. 0 2
S U— 1 0. 003 ゼラチン 0. 55 尚、上記の組成物の他に、塗布助剤 S U— 2、 S U— 3、分散助剤 S XJ— 4、 粘度調整剤 V - 1、 安定剤 S T— 1、 重量平均分子量: 10, 000及び重量 平均分子量: 100, 000の 2種のポリビニルピロリ ドン ( AF— 1、 A F 一 2 )、 塩化カルシウム、 抑制剤 AF— 3ヽ AF— 4、 AF— 5、 AF— 6、 A F— 7、 硬膜剤 H— 1、 H— 2及び防腐剤 A s e— 1を適宜添加した。
上記試料 1◦ 1の作製に用いた緑感光性乳剤 G— 1以外の各沃臭化銀乳剤の 特徴を下表に表示する。 なお、 平均粒径は沃臭化銀乳剤 c、 d、 e、 g、 hに ついては、投影面積が同じである円相当の直径(平均値)で、沃臭化銀乳剤 a、 b、 iについては、 立方体の一辺長 (平均値) で表した。 沃臭化銀乳剤 平均粒径 平均沃度含有量 平均ァスぺクト比
( m ) (モル%) (平均粒径/厚さ) 沃臭化銀乳剤 a 0. 27 2 0
沃臭化銀乳剤 b 0. 28 2 0
沃臭化銀乳剤 c 0. 6 1 3 1 5. 43 沃臭化銀乳剤 d 0. 89 3 7 6. 10 沃臭化銀乳剤 e 0. 95 8 0 3. 07 沃臭化銀乳剤 g 1. 50 3 6. 60 沃臭化銀乳剤 h 1. 23 7 9 2. 85 沃臭化銀乳剤 i 0. 043 9 緑感光性乳剤 G— 1、 沃臭化銀乳剤 iを除く各乳剤は、 上記に記載した各増 感色素を添加した後、 チォ硫酸ナト リウム、 塩化金酸、 チォシアン酸力リゥム 等を添加し、 力ブリ一感度の関係が最適になるように化学増感を施した。 なお、 特定写真感度を前述の国際規格である I S O感度に準じ制定された日 本工業規格 J I S K76 1 - 198 1に規定された方法に従って測定した 結果、 2 0 0であった。 以下に、 上記試料 1 0 1の作製に用いた化合物の詳細を示す (
Figure imgf000060_0001
Figure imgf000060_0002
Figure imgf000061_0001
D-1 D-2
Figure imgf000062_0001
D-4
Figure imgf000062_0002
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000063_0003
Figure imgf000064_0001
AS— 1
Figure imgf000064_0002
S— 2
Figure imgf000064_0003
S— 3
Figure imgf000064_0004
C12H25
Figure imgf000064_0005
OIL— 2 OIL— 3
流動パラフィン
H9C4OOC(CH2)8COOC4H9
Figure imgf000065_0001
n:重合度
Figure imgf000065_0002
Ase一 1 (下記 3成分の混合物) 、
Cに S CH3 S CH3
Figure imgf000065_0003
(成分 A) (成分 B) (成分 C) 成分 A:成分 B:成分 C=50:46:4(モル比)
H-1
CH2=CHS02— CH2CONHC2H4NHCOCH2—S02CH=CH2
H— 2
ONa
N人 N
CI ' N CI x— 2
H29C14OOCH4C2— ^ ^N— C2H4COOC14H23
Figure imgf000066_0001
ί——丫 IM
HO ー丄 S
99 nmo麵 zdf/ェ:) d 89請 00Z OAV SU-1 NaQ3S COOCH2(CF2CF2)3H
、COOCH2(CF2CF2)3H
CH2CO
SU-3
†HCOOCH
SQ3Na
Figure imgf000067_0001
WAX— 1
CH3 †H3 CH3
CH3— Si— O- -Si— O- Si— CH3
I
CH3 I
CH3
Mw=3,000
Figure imgf000067_0002
x:y:z=3:3:4
n:重合度
Figure imgf000067_0003
〔試料 1 0 2〜1 1 3の作製〕 上記試料 1 0 1の作製において、 第 9層の高感度緑感光性層で用いた緑感光 性乳剤 G— 1に代えて、 前記調製した緑感光性乳剤 G— 2〜G— 1 3を用いた 以外は同様にして、 試料 102〜1 13を作製した。
〔各試料の露光、 現像及び特性評価〕
(露光及び現像)
以上のようにして作製した各試料を、 ; T I S K 76 14— 198 1に準 じて、 ゥヱッジを介して露光を行った後、 特開平 10— 1 23652号公報の 段落番号〔 0220〕 〜同 〔 0227〕 に記載の現像処理方法に従つてカラー 発色現像処理を行った。
(特性評価)
上記方法でカラ—発色現像処理を行った各試料について、 透過型濃度計であ る X— r i t e社製濃度計によりイエロ一、 マゼンタ、 シアンの各透過 S t a t u sM濃度の測定を行い、 各写真用 D— L 0 g E特性曲線を作成した。 く緑感光性層感度の測定〉
上記作成した写真用 D— L 0 g E特性曲線のマゼンタ濃度特性曲線におい て、 最小濃度から + 0. 10の濃度を得るのに要する露光量の逆数を感度と定 義し、 試料 1 0 1の感度を 100とする相対感度を求めた。
く保存性の評価〉
上記作製した各試料を 2部準備し、 1部は 23で、 50%RHの環境下で 7 日間保存してこれを基準試料 1とし、 他の 1部は 40° (:、 80%RHの環境下 で同じく 1週間の強制劣化処理を行い、 これを強制劣化試料 1とした。
上記各処理を行った試料を、 前述の方法と同様にして露光及び現像処理を行 い、 それぞれの最小マゼンタ濃度(Dm i n ) の差 ADin i n (強制劣化試料 1の Dm i n—基準試料 1の Dm i n ) を求め、 これを保存性の尺度とした。 く潜像安定性の評価〉 上記作製した各試料を 2部準備し、 1部は上記露光を施した後、 直ちに現像 処理を行いこれを基準試料 2とした。 他の一部は、 上記露光を行った後、 40 で、 50%RHの環境下で 1週間強制劣化を施した後現像処理を行い、 これを 強制劣化試料 2とした。
各現像済み試料について、 上記の方法に従って各感度を測定し、 各々の試料 の基準試料 2の感度を 100とし、 これに対する強制劣化試料 2の感度の差 Δ S {基準試料 2の感度 ( 100 ) —強制劣化試料 2の感度 } を求めた。 A S値 が小さいほど、 潜像安定性に優れていることを表す。
く現像処理安定性 1の評価〉
各試料にステップゥュッジ露光を施した後、 前述の基準現像処理における発 色現像工程の処理時間として、 基準現像時間と、 基準現像時間に対し ±30秒 変化させた各現像処理を行い、 基準現像時間でのマゼンタ濃度 1. 0の濃度点 対応する露光点で、現像時間が +30秒で処理した試料の同濃度 DG( + 30秒) と、 現像時間が一 30秒で処理した試料の同濃度 D。(— 3◦秒) とを測定し、 その濃度差( ADG) を求めた。 ADGが小さいほど現像時間変化に対する現像 処理安定性に優れていることを表す。
く現像処理安定性 2の評価〉
各試料にステップゥュッジ露光を施した後、 自動現像処理機を用いて、 処理 面積に従って補充液を規定量補充しながら連続処理(ランニング処理)を行い、 現像処理安定性の評価を行った。
前述の基準現像処理において、 処理開始時の現像液を用いて各試料を処理し て得られた緑感光性感度 SG。と、 1Z2ラウンドのランニング処理を行つた後 に各試料を処理して得られた緑感光性感度 S 1/2を測定し、 下式に従って感度 変動率 を求めた。 SGは、 値が 1. 0に近いほど優れていることを表す。 G™ G 1/2/ O GO
なお、 上記連続処理は、 コニカ社製のカラーネガティブフ ィルムであるセン チユリア 100及びセンチユリア 400をランダムに風景写真を撮影したフィ ルムを用いて行った。 なお、 本発明でいう 1Z2ラウンドとは、 発色現像液補 充量の積算量が、該発色現像液の処理槽容積の 1ノ 2に達した時点を意味する。 また、 緑感光性感度は、 最小濃度 +0. 3の濃度を得るに要する露光量の逆数 として表示した。
以上により得られた各評価結果を、 下表に示す。
試料 〔評価結果〕
番号 相対感度 保存性 潜像安定性 現像処理安定性 備考
1 : Δ DG 2 : S G
5 1 0 1 1 0 0 + 0. 1 3 - 2 8 0. 0 8 0. 9 4 比較例
1 0 2 1 1 2 + 0. 0 7 一 1 4 0. 04 0. 9 8 本発明
1 0 3 1 1 8 + 0. 0 6 一 1 3 0. 04 1, 0 1 本発明
1 04 1 2 6 + 0. 0 3 一 0 9 0. 0 2 1. 0 0 本発明
1 0 5 1 1 6 + 0. 0 5 - 1 3 0. 0 3 0. 9 9 本発明
10 1 0 6 1 2 8 + 0. 0 3 - 0 9 0. 0 2 1. 0 0 本発明
1 0 7 1 2 9 + 0. 0 2 — 1 0 0. 0 2 1. 0 1 本発明
1 0 8 8 4 + 0. 1 6 - 3 5 0. 1 0 0. 9 3 比較例
1 0 9 8 4 + 0. 1 5 一 3 5 0. 1 1 0. 94 比較例
1 1 0 8 2 + 0. 1 8 - 3 8 0. 1 2 0. 9 1 比較例
15 1 1 1 8 7 + 0. 1 3 一 3 1 0. 0 8 0. 9 5 比較例
1 1 2 8 6 + 0. 1 3 一 3 0 0. 0 9 0. 94 比較例
1 1 3 84 + 0. 1 一 3 2 0. 1 0 0. 9 3 比較例 産業上の利用の可能性
20 以上のように、 本発明の構成により、 高感度で、 かつ保存安定性、 潜像安定 性及び処理安定性に優れたハロゲン化銀カラ一写真感光材料を提供することが できた。

Claims

請求の範囲
1. 支持体上に、 少なくとも 1層の赤感光性層、 緑感光性層、 青感光性層及 び非感光性層を有するハロゲン化銀カラー写真感光材料において、 該感光性層 の少なく とも 1層が、 平均沃化銀含有率が 2. 0〜4. 0 m 0 1 %で、 平均ァ スぺク ト比が 8. 0以上で、 かつ転位線を有する単分散のハロゲン化銀乳剤を 含有し、該ハロゲン化銀乳剤を含む少なくとも 1層の感光性層が、抑制剤を 0. 6 Om g 2以上含有することを特徴とするハロゲン化銀カラ一写真感光材 料。
2. 前記抑制剤の少なくとも 1種が、 下記一般式 〔 I〕 で表される化合物で あることを特徴とする請求の範囲第 1項に記載のハ口ゲン化銀力ラ一写真感光 材料。
一般式 〔 I 〕
H e t - ( j ) m- ( Q ) rai
〔式中、 H e tは置換基としてメルカプト基あるいはブロックされたメルカプ ト基を有さない 5〜6員の含窒素へテロ環を表し、 Jは ( m 1 + 1 ) 価の連結 基を表し、 Qは水溶性基を表す。 n 1は 0〜5の整数を表し、 m lは 1以上の 整数を表す。〕
3. 前記一般式 〔 I 〕 で表される化合物が、 下記一般式 〔 II〕 または一般式 〔 ΙΠ〕で表される化合物であることを特徴とする請求の範囲第 2項に記載のハ 口ゲン化銀力ラー写真感光材料。 -般式 〔Πx N〕= -般式 〔ΙΠ〕
S
Figure imgf000073_0001
〔一般式〔II〕において、 Wは酸素原子、 硫黄原子、 窒素原子または C ( R4i) を表し、 Xは窒素原子または C ( R4i ) を表す。 Zは、 置換基としてメルカプ ト基あるいはブロックされたメルカプト基を有さない 5〜 6員の含窒素芳香族 へテ口環を形成するのに必要な原子群を表す。 R 4 iはメルカプト基あるいはブ ロックされたメルカプト基以外の置換基または水素原子を表す。 J、 Q、 n l、 m 1は一般式 〔 I〕 の場合と同義である。
一般式〔III〕 において、 P、 Q' 、 R、 Tは窒素原子または C ( R41) を表 し、 R41は一般式〔 II〕の R41と同義である。 了、 Q、 n 1、 m 1は一般式!: I 〕 の場合と同義である。〕
4. 前記抑制剤の少なくとも 1種が、 下記一般式 ( 1 ) で表される化合物で あることを特徴とする請求の範囲第 1項に記載のハロゲン化銀力ラ一写真感光 材料。 一般式 (1) n2 R3
R4
〔式中、 Xは Nまたは CR' を表し、 は水素原子、 置換もしくは無置換の アルキル基または置換もしくは無置換のァリ一ル基を表す。 R3および R4は各 々水素原子、 アルキル基、 アルケニル基、'アルキニル基、 ァリール基または複 素環基を表す。 n 2は 0または 1を表す。 R3および R4は— S 03H、 -COO H及び一 OH並びにそれらの塩から選ばれる基の少なくとも 1つを直接または 間接に有する。〕
5. 前記ハロゲン化銀乳剤が、 銀 1モル当たり 1. 7 X 10— 4モル以上の増 感色素により分光増感されていることを特徴とする請求の範囲第 1項から第 4 項のいずれか 1項に記載のハロゲン化銀カラー写真感光材料。
6. 特定写真感度が、 200以上であることを特徴とする請求の範囲第 1項 から第 5項のいずれか 1項に記載のハロゲン化銀カラー写真感光材料。
PCT/JP2002/012111 2002-11-20 2002-11-20 ハロゲン化銀カラー写真感光材料 WO2004046814A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/012111 WO2004046814A1 (ja) 2002-11-20 2002-11-20 ハロゲン化銀カラー写真感光材料
CNA028299108A CN1695085A (zh) 2002-11-20 2002-11-20 卤化银彩色照相感光材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/012111 WO2004046814A1 (ja) 2002-11-20 2002-11-20 ハロゲン化銀カラー写真感光材料

Publications (1)

Publication Number Publication Date
WO2004046814A1 true WO2004046814A1 (ja) 2004-06-03

Family

ID=32321503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012111 WO2004046814A1 (ja) 2002-11-20 2002-11-20 ハロゲン化銀カラー写真感光材料

Country Status (2)

Country Link
CN (1) CN1695085A (ja)
WO (1) WO2004046814A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107670A (ja) * 1991-10-18 1993-04-30 Fuji Photo Film Co Ltd ハロゲン化銀感光材料
JPH08146549A (ja) * 1994-11-15 1996-06-07 Konica Corp ハロゲン化銀写真乳剤及び感光材料
JPH1039446A (ja) * 1996-07-26 1998-02-13 Konica Corp ハロゲン化銀写真感光材料及びその処理方法
JPH10268461A (ja) * 1996-09-10 1998-10-09 Konica Corp ハロゲン化銀写真乳剤
JPH10301226A (ja) * 1997-04-22 1998-11-13 Konica Corp ハロゲン化銀写真感光材料及びその製造方法
JPH1184562A (ja) * 1997-09-12 1999-03-26 Konica Corp ハロゲン化銀写真感光材料
JPH11143005A (ja) * 1997-11-10 1999-05-28 Konica Corp ハロゲン化銀写真感光材料、その処理方法及び画像形成方法
JP2000305209A (ja) * 1999-04-19 2000-11-02 Konica Corp ハロゲン化銀写真感光材料及びその処理方法
JP2000321698A (ja) * 1999-03-08 2000-11-24 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、その製造方法、及びそれを含有するハロゲン化銀写真感光材料
JP2000321702A (ja) * 1999-03-08 2000-11-24 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、その製造方法、及びそれを含有するハロゲン化銀写真感光材料
JP2000347332A (ja) * 1999-06-02 2000-12-15 Konica Corp ハロゲン化銀写真感光材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107670A (ja) * 1991-10-18 1993-04-30 Fuji Photo Film Co Ltd ハロゲン化銀感光材料
JPH08146549A (ja) * 1994-11-15 1996-06-07 Konica Corp ハロゲン化銀写真乳剤及び感光材料
JPH1039446A (ja) * 1996-07-26 1998-02-13 Konica Corp ハロゲン化銀写真感光材料及びその処理方法
JPH10268461A (ja) * 1996-09-10 1998-10-09 Konica Corp ハロゲン化銀写真乳剤
JPH10301226A (ja) * 1997-04-22 1998-11-13 Konica Corp ハロゲン化銀写真感光材料及びその製造方法
JPH1184562A (ja) * 1997-09-12 1999-03-26 Konica Corp ハロゲン化銀写真感光材料
JPH11143005A (ja) * 1997-11-10 1999-05-28 Konica Corp ハロゲン化銀写真感光材料、その処理方法及び画像形成方法
JP2000321698A (ja) * 1999-03-08 2000-11-24 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、その製造方法、及びそれを含有するハロゲン化銀写真感光材料
JP2000321702A (ja) * 1999-03-08 2000-11-24 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、その製造方法、及びそれを含有するハロゲン化銀写真感光材料
JP2000305209A (ja) * 1999-04-19 2000-11-02 Konica Corp ハロゲン化銀写真感光材料及びその処理方法
JP2000347332A (ja) * 1999-06-02 2000-12-15 Konica Corp ハロゲン化銀写真感光材料

Also Published As

Publication number Publication date
CN1695085A (zh) 2005-11-09

Similar Documents

Publication Publication Date Title
WO2004046814A1 (ja) ハロゲン化銀カラー写真感光材料
US6593071B2 (en) Silver halide photographic emulsion and silver halide photographic light sensitive material
JPH11352619A (ja) ハロゲン化銀写真乳剤及びその製造方法並びに写真感光材料
US20030068593A1 (en) Silver halide emulsion and method of preparing the same
JP4221860B2 (ja) ハロゲン化銀乳剤及びハロゲン化銀写真感光材料
WO2004077149A1 (ja) ハロゲン化銀カラー写真感光材料
JP2002072396A (ja) ハロゲン化銀カラー写真感光材料
JP2778861B2 (ja) ハロゲン化銀写真用乳剤及び写真感光材料
JP2000235240A (ja) ハロゲン化銀乳剤及びハロゲン化銀感光材料
JPH10307355A (ja) ハロゲン化銀写真乳剤
JPH0772579A (ja) ハロゲン化銀写真乳剤
JP2002082417A (ja) ハロゲン化銀カラー写真感光材料
WO2004077147A1 (ja) ハロゲン化銀カラー写真感光材料
WO2004046813A1 (ja) ハロゲン化銀カラー写真感光材料
JPH0511381A (ja) ハロゲン化銀写真乳剤およびこれを用いた感光材料
JPH07248564A (ja) ハロゲン化銀写真乳剤及びハロゲン化銀写真感光材料
JP2001194740A (ja) ハロゲン化銀カラー写真感光材料
JP2001330930A (ja) ハロゲン化銀カラー写真感光材料
JP2001083645A (ja) ハロゲン化銀写真感光材料
JPH10268461A (ja) ハロゲン化銀写真乳剤
WO2004046815A1 (ja) ハロゲン化銀カラー写真感光材料
JP2001318443A (ja) ハロゲン化銀写真乳剤及びハロゲン化銀写真感光材料
JP2001117194A (ja) ハロゲン化銀カラー写真感光材料
JP2004334200A (ja) ハロゲン化ガリウム錯体、ガリウム錯体組成物をハロゲン化銀乳剤粒子にドープする方法、ガリウムドープされたハロゲン化銀乳剤およびそれを含む写真要素
JPH07140582A (ja) ハロゲン化銀写真乳剤及びハロゲン化銀写真感光材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN JP KR MX PH PL RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028299108

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP