WO2004038195A1 - 空気掃気型の2サイクルエンジン - Google Patents

空気掃気型の2サイクルエンジン Download PDF

Info

Publication number
WO2004038195A1
WO2004038195A1 PCT/JP2003/012682 JP0312682W WO2004038195A1 WO 2004038195 A1 WO2004038195 A1 WO 2004038195A1 JP 0312682 W JP0312682 W JP 0312682W WO 2004038195 A1 WO2004038195 A1 WO 2004038195A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
passage
scavenging
combustion chamber
chamber
Prior art date
Application number
PCT/JP2003/012682
Other languages
English (en)
French (fr)
Inventor
Tsuneyoshi Yuasa
Yoshiro Yamane
Masanori Kobayashi
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to EP03748689A priority Critical patent/EP1550799B1/en
Priority to AU2003268746A priority patent/AU2003268746A1/en
Priority to JP2005501566A priority patent/JP4373395B2/ja
Priority to DE60313009T priority patent/DE60313009T2/de
Priority to US10/530,153 priority patent/US7536982B2/en
Publication of WO2004038195A1 publication Critical patent/WO2004038195A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • F02B25/22Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18 by forming air cushion between charge and combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M3/00Lubrication specially adapted for engines with crankcase compression of fuel-air mixture or for other engines in which lubricant is contained in fuel, combustion air, or fuel-air mixture
    • F01M3/02Lubrication specially adapted for engines with crankcase compression of fuel-air mixture or for other engines in which lubricant is contained in fuel, combustion air, or fuel-air mixture with variable proportion of lubricant to fuel, lubricant to air, or lubricant to fuel-air-mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/1019Two-stroke engines; Reverse-flow scavenged or cross scavenged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10275Means to avoid a change in direction of incoming fluid, e.g. all intake ducts diverging from plenum chamber at acute angles; Check valves; Flame arrestors for backfire prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the present invention relates to an air scavenging type two-cycle engine mainly used as a drive source of a small rotating machine such as a brush cutter.
  • an object of the present invention is to provide a two-stroke engine capable of sufficiently lubricating a bearing with a simple structure by providing a path through which a mixture passes through the bearing.
  • the engine according to the first configuration of the present invention includes a first scavenging passage that connects the combustion chamber and the crank chamber through a bearing of a crankshaft, and directly connects the combustion chamber and the crank chamber.
  • the air-fuel mixture from the air-fuel mixture passage is introduced into the first scavenging passage through the suction chamber, and the air from the air passage is introduced into the crank chamber.
  • the air in the crank chamber is combusted through the second scavenging passage. It is set to start being introduced into the firing chamber.
  • the engine according to the second configuration of the present invention includes: a first scavenging passage that directly connects the combustion chamber to the crank chamber; a second scavenging passage that connects the combustion chamber to the crank chamber via a crankshaft bearing; A suction passage formed on the side surface of the intake air passage, an air passage for sucking air into the suction chamber, and a mixture passage for introducing the mixture into the crank chamber.
  • air from the air passage is drawn into the suction chamber.
  • the mixture from the mixture passage is introduced into the crank chamber, and in the scavenging stroke, the mixture in the crank chamber passes through the first scavenging passage to the combustion chamber.
  • the air in the second scavenging passage is set to be introduced into the combustion chamber before the introduction is started.
  • the paths of the air-fuel mixture and the air are reversed with respect to the engine of the first configuration.
  • the air-fuel mixture is directly introduced into the crank chamber from the air-fuel mixture passage during the intake stroke, and air is introduced from the air passage into the second scavenging passage.
  • the air-fuel mixture passes through the bearing of the crankshaft. Is fully lubricated.
  • air introduced into the second scavenging passage during the P and scavenging strokes is introduced into the combustion chamber before the air-fuel mixture is introduced into the combustion chamber from the first scavenging passage. Therefore, blow-by of the air-fuel mixture is suppressed by the air previously introduced into the combustion chamber.
  • the engine according to the third configuration of the present invention makes the combustion chamber and the crank chamber directly communicate with each other.
  • air from the air passage is introduced into the second scavenging passage via a lead valve, and from the mixture passage.
  • the mixture in the second scavenging passage is introduced into the combustion chamber before the mixture in the crank chamber starts to be introduced into the combustion chamber via the first scavenging passage in the scavenging stroke. It is set to begin to be introduced.
  • This engine is characterized in that a reed valve is provided in an air passage instead of the suction chamber on the side surface of the piston, in the engine of the second configuration, and the other basic configuration is the same.
  • a reed valve is provided in an air passage instead of the suction chamber on the side surface of the piston, in the engine of the second configuration, and the other basic configuration is the same.
  • the air-fuel mixture passes through the crankshaft bearing.
  • the structure is fully lubricated.
  • the air introduced into the second scavenging passage during the intake stroke is introduced into the combustion chamber before the air-fuel mixture is introduced into the combustion chamber from the first scavenging passage. Blow-through of the air-fuel mixture is suppressed by the air previously introduced into the combustion chamber.
  • the reed valve In the P and P strokes, the reed valve is opened and air from the air passage is introduced into the second scavenging passage.
  • air In the engine of the second configuration, when the cylinder closes the suction chamber of the piston during the intake stroke, air cannot be introduced into the second scavenging passage, whereas in the engine of the third configuration, Since air is always introduced while the reed valve is open during the intake stroke in which the pressure in the crank chamber becomes negative, a sufficient amount of air is secured in the second scavenging passage.
  • the engine according to one embodiment of the present invention further includes a third scavenging passage that directly connects a combustion chamber and a crank chamber to the engine of the first configuration, wherein the third scavenging passage is more than the second scavenging passage.
  • the air in the crank chamber is located closer to the exhaust port, and the air in the first scavenging passage is introduced into the second scavenging passage before the air-fuel mixture is introduced into the combustion chamber.
  • Through the third scavenging passage so as to start being introduced into the combustion chamber through the third scavenging passage at the same time as or after the time when the mixture introduction is started.
  • Other basic configurations are the same.
  • the air-fuel mixture is blown.
  • the lubrication of the crankshaft bearing can be performed with a simple structure while preventing slipping.
  • air in the crank chamber starts to be introduced into the combustion chamber from the second scavenging passage before the air-fuel mixture introduction start time in which the mixture in the first scavenging passage is introduced into the combustion chamber, and Simultaneously with or after the time at which the mixture is introduced, the gas is introduced from the third scavenging passage to a position near the exhaust port of the combustion chamber.
  • the piston in the first configuration, is provided with a lubricating passage for supplying the air-fuel mixture in the suction chamber to a small end bearing between the piston pin and the connecting rod.
  • the small-end bearing is lubricated using the air-fuel mixture introduced into the suction chamber.
  • An engine according to another embodiment of the present invention is characterized in that the engine of the second configuration further includes an air regulating valve that closes the air passage when the pressure in the air passage falls below a predetermined value.
  • the crankshaft bearing can be lubricated with a simple structure while suppressing the mixture from flowing through.
  • the air passage is closed by the air regulating valve, and the introduction of air into the crank chamber is stopped. Therefore, the mixture can be prevented from being diluted by air during idling, and the engine rotation can be stabilized.
  • the opening of the first scavenging passage to the crank chamber is set so as to be closed by the piston before the bottom dead center. According to this, when the piston approaches the bottom dead center, the first scavenging passage is closed, so that the mixture in the crank chamber is prevented from being introduced into the combustion chamber at the end of the scavenging stroke. For this reason, the blow-by of the air-fuel mixture is more favorably suppressed.
  • the opening of the second scavenging passage to the crank chamber is closed by a piston before a bottom dead center.
  • the internal pressure of the crankcase increases as the piston approaches the bottom dead center,
  • the air blowing output from the third scavenging passage opened near the exhaust port is increased. For this reason, the blow-by of the air-fuel mixture is more favorably suppressed.
  • the second scavenging passage is located closer to the exhaust port than the first scavenging passage in the circumferential direction of the combustion chamber. According to this configuration, since the air from the second scavenging passage is supplied to the vicinity of the exhaust port in the combustion chamber, the blow-by of the air-fuel mixture from the exhaust port is favorably suppressed.
  • An engine having a fourth configuration includes: a first scavenging passage for directly communicating the combustion chamber with the crank chamber; a second scavenging passage for communicating the combustion chamber with the crank chamber via a crankshaft bearing; A mixture passage for introducing air into the first scavenging passage; an air passage for introducing air into the second scavenging passage; a first lead valve provided in the mixture passage; and a second passage provided in the air passage.
  • a reed valve wherein in the intake stroke, air-fuel mixture from the air-fuel mixture passage is introduced into the first scavenging passage, and air from the air passage is introduced into the second scavenging passage;
  • it is set so that the air in the second scavenging passage starts to be introduced into the combustion chamber before the air-fuel mixture in the first scavenging passage starts to be introduced into the combustion chamber.
  • This engine is characterized in that a first lead valve is provided in a mixture passage and a second reed valve is provided in an air passage with respect to the engine of the third configuration, and other basic configurations are the same.
  • the air-fuel mixture from the air-fuel mixture passage is once introduced into the first scavenging passage via the first reed valve, and the air from the air passage is introduced through the second reed valve. And is once introduced into the second scavenging passage.
  • the rich mixture from entering the combustion chamber at the end of the scavenging process and blowing through the exhaust port.
  • a part of the air-fuel mixture introduced into the first scavenging passage enters the crank chamber and lubricates the bearing of the crankshaft when entering the second scavenging passage in the scavenging stroke.
  • the air-fuel mixture enters the combustion chamber from the rich one in the first scavenging passage, and then the air-fuel mixture in the lean crank chamber enters the combustion chamber through the first scavenging passage. Blow-through of the rich mixture is prevented, and the filling efficiency is improved.
  • An engine having a fifth configuration includes: a needle bearing that supports a crankshaft in a crankcase; first and second scavenging passages that communicate a combustion chamber with a crankcase; A mixture passage for introducing into the chamber or the first scavenging passage; an air passage for introducing air into the second scavenging passage or the crank chamber in an intake step; the first or second scavenging passage and the nickel bearing; In the scavenging step, before the air-fuel mixture in the first scavenging passage starts to be introduced into the combustion chamber, the air in the second scavenging passage starts to be introduced into the combustion chamber, An opening to the crank chamber at a lower end of at least the second scavenging passage of the first and second scavenging passages is arranged near a radially outer side of the needle bearing.
  • the air-fuel mixture in the crank chamber enters the needle bearing from the first or second scavenging passage through the communication hole, and lubricates it.
  • the second scavenging passage should be extended linearly downward by the smaller outer diameter.
  • a sufficient volume of air can be secured by increasing the volume.
  • a sufficient amount of air is ejected from the second scavenging passage into the combustion chamber during the scavenging step.
  • the second scavenging passage can be formed linearly while setting it to be long, an increase in passage resistance can be suppressed.
  • FIG. 1 is a front sectional view showing an engine according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged side sectional view showing a cylinder and a crankcase of the engine, showing a first scavenging passage portion.
  • FIG. 3 is an enlarged side sectional view showing a cylinder and a crankcase of the engine, showing a portion of a first scavenging passage.
  • FIG. 4 is an enlarged side sectional view showing a cylinder and a crankcase of the engine, showing a portion of a second scavenging passage.
  • FIG. 5 is an enlarged front sectional view showing a cylinder and a crankcase of the engine.
  • Figure 6 shows the height of the exhaust port and the first and second scavenging passages in the cylinder of the engine. It is front sectional drawing which shows a positional relationship.
  • FIG. 7 is a side view showing an appearance of a cylinder portion of the engine.
  • FIG. 8 is a sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a sectional view taken along the line IX-IX of FIG.
  • FIG. 10 is a side cross-sectional view showing a cylinder and a crankcase of a two-cycle engine according to a second embodiment of the present invention, showing a portion of a second scavenging passage.
  • FIG. 11 is a side sectional view showing a portion of a second scavenging passage of the engine.
  • FIG. 12 is a side sectional view showing a portion of a first scavenging passage of the engine.
  • FIG. 13 is a front sectional view of a cylinder and a crankcase of the engine.
  • FIG. 14 is a side view showing the appearance of the cylinder of the engine.
  • Fig. 15 is a front view of the piston of the engine.
  • FIG. 16 is a sectional view taken along the line XVI-XVI in FIG.
  • FIG. 17 is a sectional view taken along the line XVII—XVII in FIG.
  • FIG. 18 is a front sectional view showing a cylinder and a biston portion of a two-cycle engine according to the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of FIG. 18 taken along the line XIX-XIX.
  • FIG. 2OA is a front cross-sectional view showing a two-cycle engine according to a fourth embodiment of the present invention
  • FIG. 20B is a front view showing the air regulating valve.
  • FIG. 21 is a front sectional view of a cylinder and a crankcase of a two-stroke engine according to a fifth embodiment of the present invention.
  • FIG. 22 is a sectional view taken along the line XXII—XXII of FIG.
  • FIG. 23 is a sectional view taken along the line XXIII-XXIII in FIG.
  • FIG. 24 is a front sectional view of a cylinder and a crankcase of a two-stroke engine according to a sixth embodiment of the present invention.
  • FIG. 25 is a front view of the cylinder of the engine.
  • FIG. 26 is a sectional view taken along the line XXVI—XXVI of FIG.
  • FIG. 27 is a side cross-sectional view showing the cylinder and the crankcase, showing a portion of the first scavenging passage.
  • Fig. 28 is a front view showing the cylinder and the crankcase, showing the second scavenging passage. The part is shown.
  • FIG. 29 relates to a seventh embodiment of the present invention.
  • FIG. 30 is a side sectional view showing a cylinder and a crankcase of the engine.
  • FIG. 31 is a front sectional view showing a cylinder and a crankcase of a two-cycle engine according to an eighth embodiment of the present invention.
  • FIG. 32 is a side sectional view showing a cylinder and a crankcase of the engine.
  • FIG. 33 is a timing chart of the engine.
  • FIG. 34 is a front sectional view showing a cylinder and a crankcase of a two-stroke engine according to a ninth embodiment of the present invention.
  • the best mode for carrying out the c invention is a side sectional view showing the cylinder and the crankcase of the engine
  • FIG. 1 is a front cross-sectional view of a two-stroke engine according to a first embodiment of the present invention, with a cutaway view.
  • a cylinder 1 having a combustion chamber 1 a formed therein is connected to an upper part of a crankcase 2.
  • One side (right side) of the cylinder 1 is connected to the air cleaner 3 and the air cleaner 4 that constitute the intake system, and the other side (left side) is connected to the muffler 5 that constitutes the scavenging system.
  • a fuel tank 6 is attached to a lower portion of the crankcase 2.
  • the cylinder 1 is provided with a piston 7 that reciprocates in an axial direction (in this example, a vertical direction).
  • a crankshaft 8 is supported inside the crankcase 2 via a bearing 81.
  • a hollow crank pin 82 is provided at a position displaced from the axis of the crank shaft 8, and a connecting rod 8 is provided between the pin 82 and the hollow piston pin 71 provided on the piston 7.
  • reference numeral 84 denotes a crank web provided on the crankshaft 8.
  • P is a spark plug provided at the top of cylinder 1.
  • An adapter 9 is provided between the cylinder 1 and the carburetor 3 shown in FIG. 1, and inside the cylinder 1, the carburetor 3 and the adapter 9, the piston 7 reaches near the top dead center during the intake stroke. At the time, suction described later provided on the peripheral wall surface of the piston 7 A mixture passage 10 for introducing the mixture M into the chamber 72 is formed.
  • the air-fuel mixture M introduced into the suction chamber 72 is introduced into a crank chamber 2a below the cylinder 1 in the crankcase 2 via a first scavenging passage 13 described later.
  • an air passage 11 is formed in parallel with the lower portion of the mixture passage 10, and air A from the air passage 11 opens to the inner peripheral surface of the cylinder 1 during the intake stroke. It is introduced directly into the crankcase 2a from the air port 11a.
  • the carburetor 3 adjusts the passage area of both the mixture passage 10 and the air passage 11 with a single rotary valve.
  • an exhaust passage 12 having an exhaust port 12a opened on the inner peripheral surface thereof. Exhaust from the exhaust passage 12 is discharged to the outside via the muffler 5. Is done.
  • FIGS. 2 and 3 show a portion of the first scavenging passage 13, and FIG. 4 shows a portion of the second scavenging passage 14. ing. Each figure shows the movement of the mixture M and air A depending on the position of the piston, the details of which will be described later.
  • a first scavenging passage 13 for introducing a mixture M from the mixture passage 10 is formed inside the cylinder 1 and the crankcase 2.
  • the first scavenging passage 13 connects the combustion chamber 1 a of the cylinder 1 with the crank chamber 2 a via a bearing 81 of the crankshaft 8.
  • the first scavenging passage 13 is provided with a first scavenging port 13 a that opens on the inner peripheral surface of the cylinder 1, and an intermediate height of the crankcase 2 from the port 13 a beyond the lower end of the cylinder 1. And a vertical communication path 13b reaching the outer surface of the bearing 81.
  • the air-fuel mixture M introduced into the suction chamber 72 from the air-fuel mixture passage 10 in FIG. 1 is introduced into the communication passage 13 b from the first scavenging port 13 a in FIG. Is passed through the gap between the inner and outer rings of the pole bearing provided as the bearing 81 of the crankshaft 8, and is introduced into the crank chamber 2a through the gap between the bearing 81 and the crank web 84.
  • Lubricate bearings 81 with the fuel contained in M are also, during the scavenging stroke, a small amount of the air-fuel mixture M that has entered the crank chamber 2a passes through the gap between the bearings 81 and is introduced into the first scavenging passage 13. Perform 1 lubrication. As shown in FIG. 3, the air-fuel mixture M is supplied from the first scavenging passage 13 into the fuel chamber 1 a above the piston 7. Further, in this embodiment, an oil supply passage 85 that connects the crank chamber 2a and the first scavenging passage 13 through the inside of the crankshaft 8 shown in FIG. 2 is formed. The oil supply passage 85 extends in the axial direction and opens in the crank chamber 2a.
  • the first passage 85a communicates with the first passage 85a and the first scavenging passage 13 in the radial direction. And an extended second passage 85b.
  • the crankshaft 8 near the crankpin 82 extends in the axial direction, and a large-end bearing (needle bearing) 89 between the large end of the connecting rod 83 and the crankpin 82;
  • a plurality of communication holes 88 communicating with 81 are formed spaced apart in the circumferential direction.
  • the large-end bearing 89 is also lubricated by the air-fuel mixture M passing through the first scavenging passage 13.
  • the mixture M supplied from the first scavenging passage 13 through the oil supply passage 85 also lubricates the driving surface between the large end and the crankshaft 8.
  • a lubricating passage 73 is formed to supply a part of the air-fuel mixture M in the suction chamber 7 of the biston 7 to the small end bearing 90.
  • the lubrication passage 73 is provided with an axial lubrication groove 73 a provided at a position in contact with the outer periphery of the piston pin 71 of the piston 7, and a lubrication hole 73 for communicating the Pj entry chamber 72 with the lubrication groove 73 a. 3b.
  • the small end bearing 90 can be lubricated by a part of the air-fuel mixture M introduced into the suction chamber 72 during the P and P strokes.
  • a second scavenging passage 14 for air is formed in the cylinder 1 and the crankcase 2 to directly communicate the combustion chamber la with the crankcase 2a.
  • the second scavenging passage 14 has a second scavenging port 14 a opened on the inner peripheral surface of the cylinder 1, and a second scavenging port 14 a extending from the port 14 a through a lower end of the cylinder 1 to an upper part of the crankcase 2.
  • a vertical communication path 14b that opens on the peripheral surface.
  • the air A introduced into the crank chamber 2a from the air port 11a is ejected into the combustion chamber 1a from the scavenging port 14a through the communication passage 14b in the scavenging stroke.
  • FIG. 5 is an enlarged front sectional view showing the cylinder 1 and the crankcase 2.
  • the first and second scavenging passages 13 and 14 are formed as a pair extending substantially parallel to the vertical direction, and a second scavenging port provided at the upper end of the second scavenging passage 14 is provided.
  • the upper end of the gate 14a is set at a position lower than the upper end of the exhaust port 12a.
  • the first scavenging port 13 a provided at the upper end of the first scavenging passage 13 is The upper end position is set at a position lower than the upper end of the second scavenging port 14a.
  • FIG. 6 is a drawing showing a height positional relationship between the exhaust port 12a and the first and second scavenging ports 13a, 14a.
  • the second scavenging port 14a, and the first scavenging port 13a are HI, H2, and H3, respectively, HI, H2 , H 3 in this order.
  • air A is ejected from the second scavenging port 14a prior to the mixture M from the first scavenging port 13a during the scavenging stroke.
  • FIG. 7 is a side view showing the appearance of the cylinder 1.
  • a substantially mountain-shaped notch 10a which constitutes a part of the mixture passage 10 described above.
  • Two air-fuel mixture introduction ports 10b, 10b are provided which open to a suction chamber 7 2 (FIG. 2) formed on the peripheral wall when 7 approaches the top dead center.
  • a notch 1 lb that forms a part of the air passage 11 is formed at a lower position of the notch 10 a, and the air port that opens to the inner peripheral surface of the cylinder 1 is formed inside the notch 1 lb.
  • 11a (Fig. 6) is formed.
  • FIG. 8 is a sectional view taken along the line VIII-VIII of FIG. 5, and FIG. 9 is a sectional view taken along the line IX-IX of FIG.
  • a pair of suction chambers 72 are formed in the piston 7 such that a part of a peripheral wall thereof is recessed inward, and a pair of suction chambers 72 are opposed to each other.
  • the piston 7 reaches the vicinity of the top dead center in the intake stroke and each port 10 b of the notch 10 a of the mixture passage 10 faces the suction chamber 72, the mixture is M is introduced from each port 10 b into the suction chamber 72, and from this suction chamber 72, the first scavenging port 13 a of the first scavenging passage 13 in FIG.
  • a pair of suction chambers 72 provided on the peripheral wall of the piston 7 form a mixture passage formed in the cylinder 1. It communicates with 10 each air-fuel mixture inlet port 10b. Also, this intake line
  • the pressure inside the crank chamber 2a becomes negative due to the upward movement of the piston 7, so that the air-fuel mixture M guided from each of the ports 10b to the suction chamber 72 becomes the first scavenging port 13a. Is introduced into the first scavenging passage 13, and a part thereof is introduced into the crank chamber 2 a through the communication passage 13 b and the bearing 81 of the crankshaft 8.
  • the fuel contained in the air-fuel mixture M passing through the bearing 81 can sufficiently lubricate the bearing 81 with a simple configuration.
  • PJ During the air stroke, as shown in Fig. 2, the air passage Air A from 11 is introduced into the air chamber 11a, which opens into the inner peripheral surface of the cylinder 1, and into the crank chamber 2a.
  • Air-fuel mixture M and air A are ejected from scavenging ports 13a and 14a into combustion chamber 1a.
  • the upper end positions H1, H2, and H3 of the exhaust port 12a, the second scavenging port 14a, and the first scavenging port 13a are sequentially reduced.
  • air A is first blown out from the second scavenging port 14a during the scavenging stroke, and thereafter, the air-fuel mixture M is delayed and the first scavenging port It is ejected from 13a.
  • the air A is ejected to a position closer to the exhaust port 12a than the air-fuel mixture M. For this reason, blow-by of the air-fuel mixture M is suppressed by the air A previously introduced into the combustion chamber 1a.
  • the bearing 81 is lubricated when the mixture M slightly entering the crank chamber 2a shown in FIG. 2 returns to the first scavenging passage 13 through the bearing 81.
  • FIGS. 10 to 12 are enlarged cross-sectional views of the cylinder and crankcase of the two-stroke engine on the # 1 plane.
  • FIGS. 10 and 11 show the second scavenging passage 22 part.
  • Reference numeral 12 denotes a portion of the first scavenging passage 21. Each figure shows the movement of the mixture M and air A depending on the position of the piston, the details of which will be described later.
  • a first scavenging passage 21 for directly communicating the combustion chamber 1 a with the crank chamber 2 a is provided inside the cylinder 1 and the crankcase 2.
  • a second scavenging passage 22 is provided for communicating the combustion chamber 1 a with the crank chamber 2 a via the bearing 81 of the crankshaft 8.
  • the first and second scavenging ports 21a and 22a provided in the first and second scavenging passages 21 and 22 have the same structure as the engine described above.
  • the upper end of the second scavenging port 22a is set higher than the upper end of the first scavenging port 21a, and lower than the exhaust port 12a.
  • the first scavenging passage 21 shown in Fig. 12 has a first scavenging port 2 la that opens on the inner peripheral surface of the cylinder 1 and an upper part of the crankcase 2 that extends from the port 21a through the lower end of the cylinder 1. And an inflow port 21c that opens to the upper inner peripheral surface.
  • the air-fuel mixture M introduced into the crank chamber 2a is ejected into the combustion chamber 1a from the scavenging port 21a via the communication passage 21b during the scavenging stroke.
  • the air-fuel mixture M communicates with the air-fuel mixture passage 10 in FIG. 1 and opens from the air-fuel mixture port 20 in FIG. 13 opening into the inner peripheral surface of the cylinder 1 as shown by the arrow in the crank chamber. Introduced directly into 2a.
  • the second scavenging passage 22 has a second scavenging port 22 a that opens on the inner peripheral surface of the cylinder 1, and a second scavenging port 22 a that extends from the port 22 a to a lower end of the cylinder 1. And a communication passage 22 b extending upward and downward reaching the outer surface of the bearing 81 at an intermediate height of the crankcase 2.
  • the scavenging port 22 a through the communication passage 22 b is supplied to the air A introduced from the air passage 11 (FIG. 13) into the second scavenging passage 22. From the combustion chamber 1a.
  • FIG. 14 is a side view showing the appearance of the cylinder portion.
  • a substantially mountain-shaped notch 1 lb constituting a part of the air passage 11 is provided on the outer side of the cylinder 1.
  • Two air introduction ports 11c and 11c are provided.
  • a mixture port 20 communicating with the mixture passage 10 and opening to the inner peripheral surface of the cylinder 1 is formed at a lower position of the notch 11 b.
  • FIG. 15 is a front view showing the piston 7.
  • a roughly L-shaped suction chamber 72A composed of a rectangular recess 72a and a long and narrow groove 72b extending in the circumferential direction of the piston 7 is formed below the peripheral wall of the piston 7. Have been.
  • FIG. 16 is a sectional view taken along the line XVI-XVI of FIG. 13, and FIG. 17 is a sectional view taken along the line XVII-XVII of FIG.
  • Fig. 16 when the piston 7 reaches the vicinity of the top dead center, a part of the groove 72b of the suction chamber 72A is opposed to each of the ports 11c of the cutout 11b. Then, the air A introduced into the notch portion 11 b is discharged from each port 11 c through the depression 72 a of the suction chamber 72 as shown by an arrow, and It is led to the scavenging port 22 a, from which it is introduced into the second scavenging passage 22.
  • the air-fuel mixture M flows from the air-fuel mixture port 20 opening to the inner peripheral surface of the cylinder 1 to the crank chamber. 2 Introduced directly into a.
  • the introduced air-fuel mixture M lubricates the bearings 81 and the crank pins 82 of the crankshaft 8 with a simple configuration similarly to the first embodiment described above.
  • air A is ejected from the second scavenging port 22a, and thereafter, the air-fuel mixture M is ejected with a delay from the first scavenging port 21a, and the air A introduced first into the combustion chamber 1a.
  • blow-by of the air-fuel mixture M from the exhaust port 12a is suppressed.
  • air A is ejected from the second scavenging passage 22 shown in FIG. 11 into the combustion chamber 1a
  • a part of the air-fuel mixture M in the crank chamber 2a flows between the inner and outer rings of the bearing 81. And enters the second scavenging passage 22.
  • the bearing 81 is lubricated by the fuel contained in the mixture M.
  • a two-stroke engine according to a third embodiment of the present invention will be described.
  • This engine is characterized in that, in the second embodiment described above, a reed valve for closing the air passage when the pressure in the air passage falls below a predetermined value is provided instead of the suction chamber 72A on the side surface of the piston.
  • the other basic configuration is the same as that of the second embodiment.
  • FIG. 18 is a front sectional view showing a cylinder and a piston of the engine according to the third embodiment
  • FIG. 19 is a sectional view taken along line XIX-XIX in FIG.
  • the piston 7 is not provided with a suction chamber.
  • two air introduction ports 1 Id and 11 d are provided on both sides of the air notch 1 1b (Fig. 18) in the cylinder 1 and the outside of the second scavenging passage 22
  • Two air discharge ports 11 e and 11 e are provided on the wall, respectively, and adjacent air introduction and discharge ports 11 d and 11 e are connected to each other by a connection pipe 30.
  • An adapter 31 having an air passage 11 communicating with the carburetor 3 is attached to an outer portion of the notch 11, and an inside of the adapter 31 is connected to the notch 11 b.
  • a lead valve 32 that closes the air passage 11 when the pressure in the air passage 11 falls below a predetermined value is attached.
  • the reed valve 32 of FIG. 18 is opened and the air passage 1 Air A from 1 is introduced into the crank chamber 2a (FIG. 10) through the notch 11b, the connecting pipe 30 (FIG. 19), and the second scavenging passage 22. Therefore, in the engine of the second embodiment, the suction chamber 72 A of the piston 7 in FIG. When the air is separated from the air port 22 a, no air is introduced into the second scavenging passage 22, whereas in the engine of the third embodiment, the negative pressure of the crank chamber 2 a is reduced in the P and air strokes.
  • a two-stroke engine according to a fourth embodiment of the present invention will be described.
  • This engine is characterized in that, in the second embodiment described above, an air regulating valve for closing the air passage when the pressure in the air passage falls below a predetermined value is further provided. Same as the form.
  • FIG. 2OA is a partially cutaway front view of the engine according to the fourth embodiment.
  • an adapter 40 having a mixture passage 10 communicating with the carburetor 3 is attached to the outside of the cylinder 1, and an upper part of the mixture passage 10 of the adapter 40 is provided inside the cylinder 40.
  • An air introduction passage 41 whose end communicates with a notch 11 b forming an air passage 11 provided in the cylinder 1 and whose outside end is open to the atmosphere via an air filter 45 is formed.
  • An air regulating valve 44 is provided inside the air introduction passage 41.
  • the air regulating valve 44 includes a petal-shaped valve body 42 and a coiled spring 43, and when the pressure in the air passage 11 receiving the negative pressure of the crank chamber 1a exceeds a predetermined value. Then, the valve body 42 is pressed against the stopper 47 by the spring force of the spring 43, and as shown in FIG. 20B, the outer peripheral portion of the valve body 42 is opened and the valve is opened. The air A from the air filter 45 is introduced into the air introduction passage 41, the air passage 11, the suction chamber 72 A, and the second scavenging passage 22.
  • the amount of air-fuel mixture in the crankcase 2a decreases, so it is desirable to introduce a large amount of air into the combustion chamber 1a in this state.
  • the air passage 11 is closed by the air regulating valve 44. Then, the introduction of the air A into the second scavenging passage 22 is stopped. For this reason, dilution of the air-fuel mixture in the combustion chamber 1a at the time of high boost such as idling is prevented, and engine rotation can be stabilized.
  • a two-stroke engine according to a fifth embodiment of the present invention will be described.
  • This engine is characterized in that, compared to the engine of the first embodiment, two second and third scavenging passages having different ejection positions are provided between the combustion chamber and the crank chamber. This is the same as in the first embodiment.
  • FIG. 21 is an enlarged front sectional view of the cylinder and crankcase
  • Fig. 22 is a sectional view taken along line XXII-XXII of Fig. 21
  • Fig. 23 is a sectional view taken along line XXIII-XXIII of Fig. 21.
  • FIG. 21 the first scavenging passage 13 that connects the combustion chamber la and the crank chamber 2 a to the cylinder 1 via the bearing 81 of the crankshaft 8, the combustion chamber 1 a and the crank
  • Two second and third scavenging passages 14, 15 for directly communicating with the chamber 2a are formed.
  • first to third scavenging passages 13 to: L5 extend almost in parallel in the vertical direction, and each pair is formed as shown in FIGS.
  • the second scavenging port 14 a provided at the upper end of the second scavenging passage 14 shown in FIG. 21 has its upper end set at a position lower than the upper end of the exhaust port 12 a of the exhaust passage 12.
  • the first scavenging port 13a provided at the upper end of the first scavenging passage 13 has its upper end set at a position lower than the upper end of the second scavenging port 14a.
  • the third scavenging port 15a provided at the upper end of the third scavenging passage 15 has an upper end position lower than the upper end of the second scavenging port 14a, and the first scavenging boat 13a Is set at the same height as or slightly lower than the upper end of the.
  • the mixture M from the mixture passage 10 is introduced into the first scavenging passage 13 from the suction chamber 72 formed in the piston 7 via the first scavenging port 13a.
  • the first to third scavenging ports 13 a to 15 a of the first to third scavenging passages 13 to 15 are connected to the exhaust passage 12 from the side of the mixture passage 10.
  • the third scavenging port 15a of the third scavenging passage 15 is formed in order to the exhaust port 12a side of the exhaust port 12a. It is open near.
  • the third scavenging port 15a is opened near the exhaust port 12a so as to blow out the air A in a direction perpendicular to the center line of the passage of the exhaust port 12a.
  • the second scavenging ports 13a and 14a are opened so as to blow out the air-fuel mixture M and the air A into the combustion chamber 1a on the opposite side of the exhaust port 12a.
  • the mixture M in the crank chamber 2a is The air A starts to be ejected from the second scavenging port 14 a of the second scavenging passage 14 into the combustion chamber 1 a and at the same time as or after the time when the air-fuel mixture M starts to be ejected, the third air Since air A starts to be ejected from the third scavenging port 15a of the scavenging passage 15 into the combustion chamber 1a, the air-fuel mixture is generated by the air A from the second and third scavenging ports 14a and 15a. The blow-through of M is effectively prevented.
  • the third scavenging port 15a of the third scavenging passage 15 is opened near the exhaust port 12a, and the air A from the third scavenging port 15a is connected to the exhaust port 12a. Is blown out in the direction perpendicular to this direction to block the flow of the air-fuel mixture M to the outlet 1a, so that blow-through is more effectively prevented.
  • an air port 14 b of the second scavenging passage 14 and an air inflow port 15 b of the third scavenging passage 15 are formed on the lower side of the cylinder 1. You. The air inflow port 14b of the second scavenging passage 14 is closed by the piston 7 when the piston 7 approaches the bottom dead center.
  • a notch groove 7b is formed to open the air inlet port 15b of the third scavenging passage 15 when the piston 7 approaches the bottom dead center.
  • the air inflow port 14b that is, the second scavenging passage 14 is closed.
  • the third scavenging passage 15 is not closed, and the inside of the crank chamber 2a and the inside of the combustion chamber 1a are kept in communication.
  • the internal pressure of the crank chamber 2a increases as the piston 7 approaches the bottom dead center, so that the piston 7 closes the second scavenging passage 14 near the bottom dead center, so that the exhaust port 12a
  • the jet output of air from the third scavenging port 15a of the third scavenging passage 15 opened to the outside is increased.
  • a two-stroke engine according to a sixth embodiment of the present invention will be described.
  • This engine is characterized in that, in the engine of the third embodiment, a first reed valve is provided in a mixture passage and a second reed valve is provided in an air passage, and other basic configurations are the same as those of the third embodiment. is there.
  • Fig. 24 is a front sectional view showing the cylinder and crankcase of the engine
  • Fig. 25 is a front view of the cylinder.
  • two first and second notches 1 d and le are formed on the outer surface of the cylinder 1
  • the mixture passage 1 and the respective notches 1 d and 1 e are formed outside the first and second notches 1 d and le.
  • An adapter 60 having first and second passages 61 and 62 forming a part of the air passage 11 and the air passage 11 is attached.
  • the vaporizer 3 is mounted on the upstream side (right side) of the adapter 60.
  • first reed valve 6 3 which is opened during the intake stroke, between the first notch 1 d forming the mixture passage 10 and the first passage 61.
  • second lead valve 64 that opens during the P and air strokes.
  • two air-fuel mixture introduction ports a and a force S and a second notch 1 e are formed on both side walls forming the first notch 1 d of the cylinder 1.
  • two air introduction ports b, b are formed to face each other.
  • FIG. 26 is a sectional view taken along the line XXVI-XXVI of FIG.
  • mixture exhaust ports c and c are respectively formed on the outer walls of the first scavenging passages 21 and these ports c and the mixture introduction ports a are respectively connected by the first connecting pipes 65. It is linked.
  • air discharge ports d and d are formed on the outer wall of the second scavenging passage 22, respectively, and each of the ports d and each of the air introduction ports b are connected by a second connection pipe 66.
  • FIGS. 27 and 28 are side sectional views showing the cylinder and the crankcase.
  • FIG. 27 shows a portion of the first scavenging passage 21, and FIG.
  • the first lead valve 63 provided in the mixture passage 10 is opened, and the first passage of the adapter 60 is opened.
  • the air-fuel mixture M from 61 is introduced into the first notch 1d, and from there is introduced into the first scavenging passage 21 via the first connecting pipe 65 in FIG.
  • a part of the air-fuel mixture M introduced into the first scavenging passage 21 enters the crank chamber 2a from the inflow port 21e.
  • the second scavenging passage 22 shown in FIG. 28 communicates with the crank chamber 2a via a gap between the inner and outer rings of the bearing 81.
  • the bearing 81 is lubricated when the air-fuel mixture M in the crank chamber 2a enters the second scavenging passage 22 through the bearing 81. Also, in this intake process, the second reed valve 64 provided in the air passage 11 of FIG. 24 is also opened, and the air A from the second passage 62 of the adapter 60 flows through the second notch 1 e. Then, it is introduced into the second scavenging passage 22 through the second connecting pipe 66 in FIG.
  • the air-fuel mixture M enters the combustion chamber 1a from the richer one in the first scavenging passage 21 and then the air-fuel mixture M in the leaner crankcase 2a is removed from the first scavenging passage 2 1 After passing through the combustion chamber 1a, the blow-by of the rich mixture is prevented from this point, and the charging efficiency is improved.
  • a two-stroke engine according to a seventh embodiment of the present invention will be described.
  • This engine is characterized in that a needle bearing 51 is used as a main bearing for supporting a crankshaft 8 in the third embodiment, and other basic configurations are the same as those of the third embodiment.
  • FIG. 29 is a front sectional view showing an engine cylinder and a crankcase
  • FIG. 30 is a side sectional view showing a cylinder and a crankcase.
  • the crankshaft 8 is supported by a bearing 81 (FIG. 2, etc.) composed of a pole bearing
  • the crankshaft 8 shown in FIG. 51 supports the rotor freely, and the thrust washer 52 bears the thrust load of the crankshaft 8
  • the needle bearing 51 has a smaller outer diameter than the pole bearing, and this is shown in Fig. 29.
  • the first and second scavenging passages 23 and 24 extend linearly and long downward.
  • the first and second scavenging ports 23a and 24a at the upper ends of the pair of first and second scavenging passages 23 and 24 are the same as those of the third embodiment (FIG. 18). Although they are arranged at almost the same position, the inlets (openings) 23 b and 24 b at the lower end are located near the radial outer side of the needle bearing 51, that is, at the position directly above the needle bearing 51. It is formed in an arc shape along the outer circumference. As shown in FIG. 30, the first and second scavenging passages 23 and 24 have small communication holes for guiding air to the needle bearing 51 from locations near the inflow ports 23 b and 24 b. 23c24c is formed.
  • the reed valve 32 provided in the air passage 11 is opened, The air A from the air passage 11 is cut into the notch 11 a, the air introduction port 11 d, the connecting pipe 30 (Fig. 30), the air discharge port 11 e (Fig. 30), and the second scavenging passage 2. 4, the air is introduced from the air inflow port 24 b to a location radially outward of the needle bearing 51 in the crank chamber 2 a, that is, a location near the crankshaft 8.
  • the third embodiment FIG.
  • the air-fuel mixture M passes through the air-fuel mixture passage 10 during the intake process and passes through the inner peripheral surface of the cylinder 1. The mixture is directly introduced into the crank chamber 2a from the mixture port 20 of FIG. The introduced air-fuel mixture M lubricates the crankpin 81 well.
  • a sufficient amount of air A contained in the second scavenging passage 24 starts to be ejected from the second scavenging port 24a into the combustion chamber 1a, and then the needle bearing 5 A low-concentration air-fuel mixture M present in the vicinity of the outside in the radial direction of 1, that is, in the center of the crankcase 2a, flows through the first scavenging passage 23 from the inflow port 23a to the first scavenging port.
  • the blow-by of the air-fuel mixture M is more effectively suppressed.
  • a part of the air-fuel mixture M in the crank chamber 2a is generated by the inflow ports 23b, 24b, the first and second scavenging passages 23, 24, and the communication hole 23c. , 2c to enter the needle bearing 51 and lubricate it.
  • the first and second scavenging passages 23 and 24 can be formed as straight passages while extending downward, so that the passages are curved and extended downward so as to bypass large polling bearings.
  • the manufacture is easy, and since the needle bearing 51 is lighter than the pole bearing, it is possible to reduce the weight of the engine body. it can.
  • FIGS. 31 and 32 a two-cycle engine according to the eighth embodiment shown in FIGS. 31 and 32 will be described.
  • This engine is characterized in that, in the seventh embodiment shown in FIG. 30, a crank web 84 is used as a valve to control the timing of opening and closing of scavenging by air and a mixture by the crank web 84.
  • the basic configuration is the same as that of the seventh embodiment.
  • the difference between the engine of the eighth embodiment and the seventh embodiment is that, as shown in FIG. 32, the lower ends of the first and second scavenging passages 23, 24 are arranged in the seventh embodiment (FIG. 30).
  • the inflow ports 23b and 24b are extended as close as possible to the outer surface 84a of the crank web 84, and the inflow ports 23b , 24 b are formed in an arc shape along the outer circumference of the needle bearing 51, as shown in FIG. 31, and both are formed in a shape longer than that of the seventh embodiment (FIG. 19). did Only the configuration.
  • the inflow port 24 a of the air A has a shape longer than the inflow port 23 a of the air-fuel mixture M.
  • the crank web 84 functions as a valve that opens and closes the inflow ports 23 b and 24 b as it rotates, and the inflow ports 23 b and 24 b correspond to the rotation of the crank web 84. It is formed in an arc shape that can be opened and closed at the required timing.
  • the upper end positions of the first and second scavenging ports 23a and 24a of the first and second scavenging passages 23 and 24 are set at the same height.
  • the needle bearing 51 is introduced into the crank chamber 2a from an inflow port 24 in the vicinity of the radial outside of the needle bearing 51, that is, in the vicinity of the crankshaft 8.
  • the second scavenging is performed while the reed valve 32 (FIG. 31) is opened by receiving the negative pressure in the crank chamber 2a in the suction process. Since the air A is always introduced into the passage 24 and the second scavenging passage 24 is elongated and has a large volume, a sufficient amount of air for preventing blow-through in the second scavenging passage 24 is provided. Secured.
  • the air-fuel mixture port 20 of FIG. 32 is opened, and the inflow port 23b of the first scavenging passage 23 is connected to the crankshaft. Since the opening is formed by the eb 84, the air-fuel mixture M from the air-fuel mixture passage 10 shown in FIG. 31 is opened on the inner peripheral surface of the cylinder 1 as the crank chamber 2a becomes in a negative pressure state. Then, as shown by the arrow, the mixture is directly introduced into the crank chamber 2a from the mixture port 20 in FIG. This introduced air-fuel mixture M lubricates the crankpin 81 well.
  • the air A in the second scavenging passage 24 is compressed by the pressure of the descending piston 7 and the second scavenging port 24 a
  • the compressed air A in the second scavenging passage 24 is spouted into the combustion chamber 1a at high speed, and the inside of the combustion chamber 1a is quickly scavenged.
  • a sufficient amount of air A is stored in the second scavenging passage 24, it is effectively suppressed that the air-fuel mixture M is entrained in the leading air A flow and blows out.
  • the inflow port 23 b of the air-fuel mixture M and the inflow port 24 b of the air A in the crank chamber 2 a are opened and closed by the crank web 84, and the latter 24 b first. Since the openings are made open, the first and second scavenging ports 23a and 24a are set at the same height at their upper end positions so that they open at the same timing when the piston 7 descends. I have to.
  • This scavenging method is more effective than a piston valve method in which the height of the upper end position of the scavenging port for the mixture and the air has a small difference in height.
  • the pressure in the crankcase when the air scavenging port is opened is lower than the pressure in the crankcase when the air-fuel scavenging port is subsequently opened. This is because it is not possible to effectively perform rapid scavenging and suppression of air blow-through of the mixture.
  • the two-stroke engine according to the ninth embodiment shown in FIGS. explain about.
  • This engine is characterized in that the second scavenging passage 24 extends downward longer than in the seventh embodiment (Fig. 29) by splitting the crankcase 2 shown in Fig. 34 into two.
  • the other basic configuration is the same as that of the seventh embodiment.
  • the crankcase 2 is formed by connecting the case upper half 2A and the case lower half 2B having a split structure, and the second scavenging passage 24 is connected to the cylinder 1 and the crank.
  • the passages formed in the two halves 2A and 2B of the case 2 are connected to each other so that the lower end of the second scavenging passage 24 can be turned under the dollar bearing 51.
  • the inflow port 24 b of the second scavenging passage 24 is opened at a position near the radial lower portion of the needle bearing 51, while the inflow port 2 3 at the lower end of the first scavenging passage 23 is formed.
  • b is opened at a position higher than the seventh embodiment (FIG. 29).
  • Other configurations are the same as those of the seventh embodiment.
  • the second scavenging passage 24 shown in FIG. 35 extends to a position in the vicinity of the radially lower portion of the 21st bearing 51, so that the engine speed is increased.
  • a sufficient amount of air for preventing blow-through is secured in the second scavenging passage 24 during the intake process.
  • the air-fuel mixture M is directly introduced from the air-fuel mixture port 20 opening to the inner peripheral surface of the cylinder 1 into the crank chamber 2a as indicated by the arrow in the P-expansion step. This introduced air-fuel mixture M lubricates the crankpin 81 well.
  • the crankshaft 8 of this embodiment is supported by the needle bearing 51 and at least the second scavenging is performed.
  • the main configuration of extending the passages 23 and 24 downward is as described in the first and second embodiments, and the fourth to sixth embodiments, by connecting the first or second scavenging passage to the crank chamber via a bearing. It can also be applied to engines without the structure that allows communication.
  • the main configuration is applied to the first embodiment, in the intake process, the air-fuel mixture is introduced into the second scavenging passage instead of the crank chamber, and air is introduced into the crank chamber.
  • air A The above main configuration can be applied to a general two-stroke engine that performs scavenging only with the air-fuel mixture introduced into the combustion chamber, other than the type that performs initial scavenging.
  • a general two-stroke engine that performs scavenging only with the air-fuel mixture introduced into the combustion chamber, other than the type that performs initial scavenging.
  • a low-concentration air-fuel mixture in the center of the crankcase is first injected into the combustion chamber, and then is driven to the vicinity of the inner wall of the crankcase.
  • a mixture having a high air-fuel ratio can be introduced into the combustion chamber with a delay, so that blow-through of the mixture is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Description

明細書
空気掃気型の 2サイクルエンジン
技術分野
本発明は、 主として、 刈払機のような小形回転機械の駆動源として用いられる 空気掃気型の 2サイクルエンジンに関する。 背景技術
従来のこの種のエンジンとして、 混合気による燃焼室内の掃気に先立って、 空 気による初期掃気を行って、 混合気の排気ポートからの吹抜けを抑制するように したものがある(例えば特開平 2 0 0 1- 1 7 3 4 4 7号公報、特開昭 5 8- 5 4 2 4号公報参照)。
ところが、 この種の空気掃気型の 2サイクルエンジンにおいては、 シリンダの 内部に組付けられたクランク軸の軸受の潤滑をクランク室内に吸入した混合気に よって行うが、 エンジンの小型化を進めると、 クランク室内の混合気が軸受に向 力、つて進入する空隙が小さくなり、 潤滑しにくくなる。 そのため、 給油経路を確 保するには構造が複雑ィ匕する。 発明の開示
そこで、 本発明は、 混合気が軸受を通り抜ける経路を設けることにより、 簡単 な構造で軸受を十分潤滑することができる 2サイクルエンジンを提供することを 目的とする。
上記目的を達成するため、 本発明の第 1構成に係るエンジンは、 燃焼室とクラ ンク室とをクランク軸の軸受を介して連通させる第 1掃気通路と、 燃焼室とクラ ンク室とを直接連通させる第 2掃気通路と、 ピストンの側面に形成された吸入室 と、 混合気を前記吸入室に吸入させる混合気通路と、 空気を前記クランク室に導 入する空気通路とを有し、 吸気行程において、 前記混合気通路からの混合気が前 記吸入室を経て前記第 1掃気通路に導入されるとともに、 前記空気通路からの空 気がクランク室に導入され、 掃気行程において、 前記第 1掃気通路内の混合気が 燃焼室に導入されるよりも前にクランク室内の空気が前記第 2掃気通路を経て燃 焼室に導入され始めるように設定されている。
このエンジンによれば、 吸気行程時に第 1掃気通路からクランク室に混合気が 導入されるとき、 また掃気行程時にクランク室内の混合気が第 1掃気通路から燃 焼室に導入されるとき、 この混合気はクランク軸の軸受を通過する。 つまり、 軸 受を通る混合気の経路が形成されている。 これにより、 混合気に含まれる燃料に よりクランク軸の軸受が簡単な構造で十分に潤滑される。 また、 掃気行程におい ては、 第 1掃気通路内の混合気が燃焼室に導入されるよりも前に、 吸気行程時に クランク室に導入された空気が第 2掃気通路を経て燃焼室に導入される。 つまり 、 燃焼室内に先に空気が導入されて初期掃気が行われ、 この後に混合気による掃 気が行われるので、 混合気の吹き抜けが良好に抑制される。
本発明の第 2構成に係るエンジンは、 燃焼室とクランク室とを直接連通させる 第 1掃気通路と、 燃焼室とクランク室とをクランク軸の軸受を介して連通させる 第 2掃気通路と、 ピストンの側面に形成された吸入室と、 空気を吸入室に吸入さ せる空気通路と、 混合気をクランク室に導入する混合気通路とを有し、 吸気行程 において、 空気通路からの空気が吸入室を経て前記第 2掃気通路に導入されると ともに、 前記混合気通路からの混合気がクランク室に導入され、 掃気行程におい て、 クランク室内の混合気が前記第 1掃気通路を経て燃焼室に導入され始めるよ りも前に前記第 2掃気通路内の空気が燃焼室に導入され始めるように設定されて いる。
このエンジンは、 前記第 1構成のエンジンに対し、 混合気と空気の経路を逆に したものである。 つまり、 吸気行程時に混合気を混合気通路からクランク室内に 直接導入させ、 また、 空気を空気通路から第 2掃気通路に導入させるようにした 点に特徴がある。 このエンジンによれば、 掃気行程において、 クランク室内の混 合気の一部が第 2掃気通路に入るとき、 この混合気はクランク軸の軸受を通過す るので、 クランク軸の軸受が簡単な構造で十分に潤滑される。 また、 掃気行程に おいては、 第 1掃気通路から混合気が燃焼室に導入されるよりも前に、 P及気行程 時に第 2掃気通路内に導入された空気が燃焼室に導入されるので、 燃焼室に先に 導入された空気により混合気の吹き抜けが抑制される。
本発明の第 3構成に係るエンジンは、 燃焼室とクランク室とを直接連通させる 第 1掃気通路と、 燃焼室とクランク室とをクランク軸の軸受を介して連通させる 第 2掃気通路と、 空気を第 2掃気通路に導入する空気通路と、 この空気通路に設 けられたリードバルブと、 混合気をクランク室に導入する混合気通路とを有し、 吸気行程において、 空気通路からの空気がリ一ドバルブを経て前記第 2掃気通路 に導入されるとともに、 前記混合気通路からの混合気がクランク室に導入され、 掃気行程において、 クランク室内の混合気が前記第 1掃気通路を経て燃焼室に導 入され始めるよりも前に前記第 2掃気通路内の空気が燃焼室に導入され始めるよ うに設定されている。
このエンジンは、 前記第 2構成のエンジンに対し、 ピストン側面の吸入室に代 えて、 空気通路にリードバルブを設けた点に特徴があり、 その他の基本構成は同 一である。 このエンジンによれば、 クランク室に導入された混合気の一部が掃気 行程において第 2掃気通路に入るとき、 この混合気がクランク軸の軸受を通過す るので、 クランク軸の軸受が簡単な構造で十分に潤滑される。 また、 掃気行程に おいては、 第 1掃気通路から混合気が燃焼室に導入されるよりも前に、 吸気行程 時に第 2掃気通路内に導入された空気が燃焼室に導入されるので、 燃焼室に先に 導入された空気により混合気の吹き抜けが抑制される。 また、 P及気行程でリード バルブが開放されて空気通路からの空気が第 2掃気通路に導入される。 つまり、 前記第 2構成のエンジンでは、 吸気行程でシリンダがピストンの吸入室を閉鎖す ると、 第 2掃気通路内への空気の導入ができないのに対し、 この第 3構成のェン ジンでは、 クランク室内が負圧となる吸気行程でリードバルブが開放されている 間は常に空気が導入されるので、 第 2掃気通路内に十分な空気量が確保される。 本発明の一実施形態に係るエンジンは、 前記第 1構成のエンジンに対し、 燃焼 室とクランク室とを直接連通させる第 3掃気通路を付加し、 前記第 3掃気通路は 第 2掃気通路よりも排気口寄りに位置し、 掃気行程において、 クランク室内の空 気が、 前記第 1掃気通路内の混合気が燃焼室に導入される混合気導入開始時点よ りも前に、 前記第 2掃気通路を経て燃焼室に導入され始め、 かつ、 前記混合気導 入開始時点と同時またはこの時点よりも後に、 前記第 3掃気通路を経て燃焼室に 導入され始めるように設定したことに特徴があり、 その他の基本構成は同様であ る。 このエンジンによれば、 第 1構成のエンジンの場合と同様に、 混合気の吹き 抜けを抑制しながら、 簡単な構造でクランク軸の軸受の潤滑が行える。 また、 ク ランク室内の空気が、 前記第 1掃気通路内の混合気が燃焼室に導入される混合気 導入開始時点よりも前に、 前記第 2掃気通路から燃焼室に導入され始め、 かつ、 前記混合気導入開始時点と同時またはこの時点よりも後に、 前記第 3掃気通路か ら燃焼室の排気口寄り位置に導入され始めるので、 混合気の吹き抜けがより良好 に防止される。
本発明の好ましい実施形態では、 前記第 1の構成において、 前記ピストンに、 前記吸入室内の混合気をピストンピンとコンロッド間の小端軸受に供給する潤滑 通路が形成されている。 この構成によれば、 前記吸入室に導入された混合気を利 用して小端軸受の潤滑が行われる。
本発明の他の実施形態に係るエンジンは、 前記第 2構成のエンジンに対し、 さ らに空気通路の圧力が所定値以下に低下したときに空気通路を閉じる空気調整弁 を設けたことに特徴があり、 その他の基本構成は同様である。 このエンジンの場 合も、 第 2構成のエンジンと同様に、 混合気の吹き抜けを抑制しながら、 簡単な 構造でクランク軸の軸受の潤滑が行える。 また、 アイドリングなどの高ブースト 時、 つまり前記空気通路の圧力が所定値以下に低下したときには、 空気調整弁に より空気通路が閉じられてクランク室内への空気の導入が停止される。 このため 、 アイドリング時に混合気が空気によって希釈されるのを防止して、 エンジン回 転の安定化が図れる。
本発明の好ましい実施形態では、 前記第 2または第 3の構成において、 前記第 1掃気通路のクランク室への開口が、 下死点の手前でピストンにより閉塞される ように設定されている。 これによれば、 ピストンが下死点付近に至ったとき、 第 1掃気通路が閉塞されるので、 掃気行程の末期にクランク室内の混合気が燃焼室 に導入されるのが阻止される。 このため、 混合気の吹き抜けがより良好に抑制さ れる。
本発明の好ましい実施形態では、 前記第 2および第 3掃気通路を設けた前記一 実施形態において、 前記第 2掃気通路のクランク室への開口が、 下死点の手前で ピストンにより閉塞されるように設定されている。 これによれば、 ピストンが下 死点に近づくにしたがってクランク室の内部圧力は高くなるので、 下死点付近に おいてピストンで第 2掃気通路を閉塞することにより、 排気口寄りに開口される 第 3掃気通路からの空気の吹出力が強くなる。 このため、 混合気の吹き抜けがよ り良好に抑制される。
本発明の好ましい実施形態では、 第 2掃気通路が、 第 1掃気通路よりも燃焼室 の周方向に沿って排気口寄りに位置されている。 この構成によれば、 第 2掃気通 路からの空気が燃焼室内の排気口寄りに供給されるので、 この排気口からの混合 気の吹き抜けが良好に抑制される。
本発明の第 4構成のエンジンは、 燃焼室とクランク室とを直接連通させる第 1 掃気通路と、 燃焼室とクランク室とをクランク軸の軸受を介して連通させる第 2 掃気通路と、 混合気を前記第 1掃気通路に導入する混合気通路と、 空気を前記第 2掃気通路に導入する空気通路と、 前記混合気通路に設けられた第 1リードバル ブと、 前記空気通路に設けられた第 2リードバルブとを有し、 吸気行程において 、 前記混合気通路からの混合気が前記第 1掃気通路に導入されるとともに、 前記 空気通路からの空気が前記第 2掃気通路に導入され、 掃気行程において、 前記第 1掃気通路内の混合気が燃焼室に導入され始めるよりも前に前記第 2掃気通路内 の空気が燃焼室に導入され始めるように設定されている。
このエンジンは、 前記第 3構成のエンジンに対し、 混合気通路に第 1リ一ドバ ルブを、 空気通路に第 2リードバルブを設けたことに特徴があり、 その他の基本 構成は同様である。 このエンジンによれば、 P及気行程において、 混合気通路から の混合気が第 1リードバルブを介して一旦第 1掃気通路に導入され、 かつ、 空気 通路からの空気が第 2リードバルブを介して一旦第 2掃気通路に導入される。 し たがつて、 混合気と空気の主たる必要分のみを第 1および第 2の掃気通路のそれ ぞれに入れておくことができる。 このため、 掃気行程の終わりに過濃混合気が燃 焼室内に入って排気口から吹き抜けるのを防止できる。 また、 第 1掃気通路に導 入された混合気の一部は、 クランク室内に入り、 掃気行程で第 2掃気通路に入る 際に、 クランク軸の軸受の潤滑を行う。 さらに、 混合気は、 第 1掃気通路内の濃 度の濃いものから燃焼室に入り、 その後、 濃度の薄いクランク室内の混合気が第 1掃気通路を経て燃焼室内に入るので、 この点からも濃混合気の吹き抜けが防止 され、 充填効率が向上する。 本発明の第 5構成のエンジンは、 クランク軸をクランクケースに支持するニー ドル軸受と、 燃焼室とクランク室とを連通させる第 1および第 2掃気通路と、 吸 気工程で混合気を前記クランク室または第 1掃気通路に導入する混合気通路と、 吸気工程で空気を前記第 2掃気通路またはクランク室に導入する空気通路と、 前 記第 1または第 2掃気通路と前記二一ドル軸受とを接続する連通孔とを備え、 掃 気工程において、 前記第 1掃気通路内の混合気が燃焼室に導入され始めるよりも 前に前記第 2掃気通路内の空気が燃焼室に導入され始め、 前記第 1および第 2掃 気通路のうち少なくとも第 2掃気通路の下端の前記クランク室への開口が前記二 ―ドル軸受の径方向外方の近傍に配置されている。
この構成によれば、 掃気工程においてクランク室内の混合気が第 1または第 2 掃気通路から連通孔を通ってニードル軸受に入り、 これを潤滑する。 また、 クラ ンク軸の支持用に一般に用いられているポール軸受に比較してニードル軸受の外 径が小さいので、 その外径が小さい分だけ第 2掃気通路を下方に直線的に長く延 ばすことで容積を大きくして十分な空気量を確保することができる。 これにより 、 掃気工程時に、 十分な量の空気が第 2掃気通路から燃焼室内に噴出される。 し かも、 第 2掃気通路を長く設定しながら直線状に形成できるので、 通路抵抗の増 大を抑制できる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態に係るエンジンを示す正面断面図である。 図 2は、 同エンジンのシリンダとクランクケースを拡大して示す側面断面図で あって、 第 1掃気通路部分を示している。
図 3は、 同エンジンのシリンダとクランクケースを拡大して示す側面断面図で あって、 第 1掃気通路の部分を示している。
図 4は、 同エンジンのシリンダとクランクケースを拡大して示す側面断面図で あって、 第 2掃気通路の部分を示している。
図 5は、 同エンジンのシリンダとクランクケースを拡大して示す正面断面図で ある。
図 6は、 同エンジンのシリンダにおける排気口と第 1および第 2掃気通路の高 さ位置関係を示す正面断面図である。
図 7は、 同エンジンのシリンダ部分の外観を示す側面図である。
図 8は、 図 5の VIII— VIII線に沿った断面図である。
図 9は、 図 5の IX— IX線に沿つた断面図である。
図 1 0は、 本発明の第 2実施形態に係る 2サイクルエンジンのシリンダとクラ ンクケースを示す側面断面図であって、 第 2掃気通路の部分を示している。 図 1 1は、 同エンジンの第 2掃気通路の部分を示す側面断面図である。
図 1 2は、 同エンジンの第 1掃気通路の部分を示す側面断面図である。
図 1 3は、 同エンジンのシリンダとクランクケースの正面断面図である。 図 1 4は、 同エンジンのシリンダの外観を示す側面図である。
図 1 5は、 同エンジンのピストンの正面図である。
図 1 6は、 図 1 3の XVI -XVI線に沿つた断面図である。
図 1 7は、 図 1 3の XVII— XVII線に沿つた断面図である。
図 1 8は、 本発明の第 3実施形態に係る 2サイクルエンジンのシリンダとビス トン部分を示す正面断面図である。
図1 9は、 図 1 8の XIX -XIX線に沿った断面図である。
図 2 OAは、 本発明の第 4実施形態に係る 2サイクルエンジンを示す正面断面 図、 図 2 0 Bはその空気調整弁を示す正面図である。
図 2 1は、 本発明の第 5実施形態に係る 2サイクルエンジンのシリンダとクラ ンクケースの正面断面図である。
図 2 2は、 図 2 1の XXII— XXII線に沿つた断面図である。
図 2 3は、 図 2 1の XXIII -XXIII線に沿つた断面図である。
図 2 4は、 本発明の第 6実施形態に係る 2サイクルエンジンのシリンダとクラ ンクケースの正面断面図である。
図 2 5は、 同エンジンのシリンダの正面図である。
図 2 6は、 図 2 4の XXVI— XXVI線に沿つた断面図である。
図 2 7は、 シリンダとクランクケースを示す側面断面図であって、 第 1掃気通 路の部分を示している。
図 2 8は、 シリンダとクランクケースを示す御 1面図であって、 第 2掃気通路の 部分を示している。
図 2 9は、 本発明の第 7実施形態に係,
ンクケースを示す正面断面図である。
図 3 0は、 同エンジンのシリンダとクランクケースを示す側面断面図である 図 3 1は、 本発明の第 8実施形態に係る 2サイクルエンジンのシリンダとク ンクケースを示す正面断面図である。
図 3 2は、 同エンジンのシリンダとクランクケースを示す側面断面図である 図 3 3は、 同エンジンのタイミングチャートである。
図 3 4は、 本発明の第 9実施形態に係る 2サイクルエンジンのシリンダとク ンクケースを示す正面断面図である。
図 3 5は、 同エンジンのシリンダとクランクケースを示す側面断面図である c 発明を実施するための最良の形態
以下、 本発明の好ましい実施形態について図面を参照しながら説明する。 図 1は、 本発明の第 1実施形態に係る 2サイクルエンジンを切欠いた正面断面 図を示す。 同図においては、 内部に燃焼室 1 aを形成したシリンダ 1がクランク ケース 2の上部に連結されている。 シリンダ 1の一側部 (右側) には、 吸気系を 構成する気ィ匕器 3とエアクリーナ 4が接続され、 他側部 (左側) には掃気系を構 成するマフラー 5が接続されており、 クランクケース 2の下部には燃料タンク 6 が取り付けられている。 前記シリンダ 1には、 軸方向 (この例では上下方向) に 往復動するピストン 7が設けられている。 前記クランクケース 2の内部には、 軸 受 8 1を介してクランク軸 8が支持されている。 このクランク軸 8の軸心とは変 位した位置に中空状のクランクピン 8 2が設けられ、 このピン 8 2と前記ピスト ン 7に設けた中空状のビストンピン 7 1との間が、 コンロッド 8 3により連結さ れている。 図中、 8 4はクランク軸 8に設けたクランクウェブである。 また、 P はシリンダ 1の上部に設けた点火プラグである。
図 1に示すシリンダ 1と気化器 3の間にはアダプタ 9が設けられ、 これらシリ ンダ 1と気化器 3およびアダプタ 9の内部には、 吸気行程において前記ピストン 7が上死点付近に至ったときに、 前記ピストン 7の周壁面に設けた後述する吸入 室 7 2に混合気 Mを導入する混合気通路 1 0が形成されている。 この吸入室 7 2 に導入された混合気 Mは、後述の第 1掃気通路 1 3を介してクランクケース 2内 におけるシリンダ 1の下方のクランク室 2 aに導入される。
また、 混合気通路 1 0の下部側には、 これと平行に空気通路 1 1が形成され、 この空気通路 1 1からの空気 Aは、 吸気行程時に、 シリンダ 1の内周面に開口す る空気ポート 1 1 aからクランク室 2 a内に直接導入される。 気化器 3は、 混合 気通路 1 0と空気通路 1 1の両方の通路面積を単一の回転バルブによって調節す る。 さらに、 前記シリンダ 1の周壁には、 その内周面に開口する排気口 1 2 aを 有する排気通路 1 2が形成され、 この排気通路 1 2からの排気は、 前記マフラー 5を経て外部に排出される。
図 2〜図 4はシリンダとクランクケースを拡大して示す側面断面図であつて、 図 2 , 3は第 1掃気通路 1 3の部分を、 図 4は第 2掃気通路 1 4の部分を示して いる。 各図は、 ピストンの位置による混合気 Mと空気 Aの動きを示しており、 そ の詳細については後述する。 図 2に示すように、 シリンダ 1とクランクケース 2 の内部に、 前記混合気通路 1 0 (図 1 ) からの混合気 Mを導入する第 1掃気通路 1 3が形成されている。 この第 1掃気通路 1 3は、 シリンダ 1の燃焼室 1 aとク ランク室 2 aとを、 クランク軸 8の軸受 8 1を介して連通させている。 すなわち 、 第 1掃気通路 1 3は、 前記シリンダ 1の内周面に開口する第 1掃気ポート 1 3 aと、 このポ一ト 1 3 aからシリンダ 1の下端を越えてクランクケース 2の中間 高さにある、 軸受 8 1の外側面に達する上下方向の連通路 1 3 bとを有している 。 吸気行程において、 図 1の混合気通路 1 0から吸入室 7 2に導入された混合気 Mを、 図 2の第 1掃気ポート 1 3 aから連通路 1 3 bに導入し、 この混合気 Mを クランク軸 8の軸受 8 1として設けたポールベアリングの内外輪間の隙間を通過 させて、 軸受 8 1とクランクウェブ 8 4間の隙間からクランク室 2 a内に導入さ せ、 このとき混合気 Mに含まれる燃料により軸受 8 1を潤滑する。 また、 掃気行 程時においても、 クランク室 2 a内に入った若干の混合気 Mを軸受 8 1の隙間を 通過させて第 1掃気通路 1 3内に導入させ、 この混合気 Mによる軸受 8 1の潤滑 を行う。 混合気 Mは、 図 3に示すように、 第 1掃気通路 1 3からピストン 7上方 の燃料室 1 a内に供給される。 また、 この実施形態では、 図 2に示すクランク軸 8の内部を通ってクランク室 2 aと第 1掃気通路 1 3とを連通させる給油通路 8 5が形成されている。 この給 油通路 8 5は、 軸心方向に延びてクランク室 2 aに開口する第 1通路 8 5 aと、 この第 1通路 8 5 aと第 1掃気通路 1 3とを連通させる径方向に延びた第 2通路 8 5 bとからなる。 さらに、 クランクピン 8 2の近傍のクランク軸 8に、 軸心方 向に延びて、 コンロッド 8 3の大端部とクランクピン 8 2間の大端軸受 (ニード ルベアリング) 8 9と、 左右の軸受 8 1とを連通させる複数の連通孔 8 8が周方 向に離間して形成されている。 このようにすれば、 第 1掃気通路 1 3を通る混合 気 Mにより、 大端軸受 8 9の潤滑も行われる。 さらに、 第 1掃気通路 1 3から給 油通路 8 5を通って供給される混合気 Mにより、 大端部とクランク軸 8間の攛動 面も潤滑される。
また、 前記ビストン 7の吸入室 7 内の混合気 Mの一部を小端軸受 9 0に供給 する潤滑通路 7 3を形成している。 この潤滑通路 7 3は、 ピストン 7におけるピ ストンピン 7 1の外周に接する位置に設けた軸心方向の潤滑溝 7 3 aと、 Pj¾入室 7 2を前記潤滑溝 7 3 aに連通させる潤滑孔 7 3 bとからなる。 このようにすれ ば、 P及気行程時に吸入室 7 2に導入された混合気 Mの一部により、 小端軸受 9 0 の潤滑を行える。
図 4に示すように、 シリンダ 1とクランクケース 2に、 燃焼室 l aとクランク 室 2 aとを直接連通させる空気用の第 2掃気通路 1 4が形成されている。 この第 2掃気通路 1 4は、 前記シリンダ 1の内周面に開口する第 2掃気ポート 1 4 aと 、 このポ一ト 1 4 aからシリンダ 1の下端を越えてクランクケース 2の上部の内 周面に開口する上下方向の連通路 1 4 bとを有している。 空気ポート 1 1 aから クランク室 2 a内に導入された空気 Aは、 掃気行程で、 連通路 1 4 bを経て掃気 ポート 1 4 aから燃焼室 1 a内に噴出される。
図 5はシリンダ 1とクランクケース 2部分を拡大して示す正面断面図である。 同図のように、 前記第 1および第 2掃気通路 1 3 , 1 4は、 上下方向にほぼ平行 に延びる一対が形成され、 この第 2掃気通路 1 4の上端に設けられる第 2掃気ポ ート 1 4 aは、 その上端位置が前記排気口 1 2 aの上端よりも低い位置に設定さ れている。 また、 第 1掃気通路 1 3の上端に設けられる第 1掃気ポート 1 3 aは 、 その上端位置が前記第 2掃気ポート 1 4 aの上端よりも低い位置に設定されて いる。
図 6は、 前記排気口 1 2 aと第 1および第 2掃気ポート 1 3 a , 1 4 aの高さ 位置関係を示す図面である。 同図のように、 排気口 1 2 a、 第 2掃気ポート 1 4 a、 第 1掃気ポート 1 3 aのそれぞれの上端位置を H I , H 2 , H 3としたとき 、 上方から H I , H 2, H 3の順に低くなるように設定される。 これにより、 掃 気行程時に第 2掃気ポート 1 4 aから空気 Aが、 第 1掃気ポート 1 3 aからの混 合気 Mに先立って噴出される。
図 7は、 シリンダ 1の外観を示す側面図である。 シリンダ 1の外側部には、 前 記混合気通路 1 0の一部を構成する概略山形の切欠部 1 0 aが形成され、 この切 欠部 1 0 a内の両側で奥内部に、 前記ピストン 7が上死点付近に至ったときに、 その周壁に形成した吸入室 7 2 (図 2 ) に開口する 2つの混合気導入ポート 1 0 b , 1 0 bが設けられている。 また、 前記切欠部 1 0 aの下部位置には、 前記空 気通路 1 1の一部を構成する切欠部 1 l bが形成され、 その奥内部にシリンダ 1 の内周面に開口する前記空気ポート 1 1 a (図 6 ) が形成されている。
図 8は図 5の VIII— VIII線に沿つた断面図、 図 9は図 5の IX— IX線に沿つた 断面図である。 図 8に示すように、 前記ピストン 7には、 その周壁の一部を内方 に凹入させて一対の吸入室 7 2が前後対向状に形成されている。 Ρ及気行程におい て前記ピストン 7が上死点付近に至つて、 前記混合気通路 1 0の切欠部 1 0 aの 各ポ一ト 1 0 bが吸入室 7 2と対向したとき、 混合気 Mを、 各ポ一ト 1 0 bから 吸入室 7 2へと導入し、 この吸入室 7 2から図 2の第 1掃気通路 1 3の第 1掃気 ポート 1 3 aおよび連通路 1 3 bを経てクランク室 2 a内に導入する。 また、 前 記ピストン 7が下降する掃気行程では、 図 9のように、 第 2掃気ポ一ト 1 4 aか ら噴出される空気 Aと、 これより後に第 1掃気ポート 1 3 aから噴出される混合 気 Mとにより燃焼室 1 a内を掃気する。
次に、 以上の構成としたエンジンの作用について説明する。
先ず、 図 2のように、 吸気行程においてシリンダ 1内のピストン 7が上死点付近 に達したとき、 ピストン 7の周壁に設けた一対の吸入室 7 2が、 シリンダ 1に設 けた混合気通路 1 0の各混合気導入ポ一ト 1 0 bと連通する。 また、 この吸気行 程時には、 ピストン 7の上動によりクランク室 2 a内が負圧となるので、 前記各 ポート 1 0 bから吸入室 7 2に導かれた混合気 Mが、 第 1掃気ポ一ト 1 3 aから 第 1掃気通路 1 3内に導入され、 その一部が連通路 1 3 bおよびクランク軸 8の 軸受 8 1を経てクランク室 2 a内に導入される。 これによつて、 軸受 8 1を通過 する混合気 Mに含まれた燃料により、 簡単な構成で軸受 8 1が十分に潤滑される また、 PJ:気行程時には、 図 2のように、 空気通路 1 1からの空気 Aがシリンダ 1の内周面に開口する空気ポート 1 1 a力、ら、 クランク室 2 a内に導入される。 次に、 前記ピストン 7が下降して下死点付近に達する掃気行程時には、 図 3お よび図 4にそれぞれ示すように、 第 1および第 2掃気通路 1 3, 1 4の第 1, 第 2掃気ポート 1 3 a , 1 4 aから混合気 Mと空気 Aが燃焼室 1 a内に噴出される 。 このとき、 図 6に示すように、 排気口 1 2 a、 第 2掃気ポート 1 4 a、 第 1掃 気ポート 1 3 aのそれぞれの上端位置 H 1, H 2 , H 3は順に低くなるように設 定されているので、 掃気行程時には、 図 9の矢印で示すように、 先ず空気 Aが第 2掃気ポート 1 4 aから噴出され、 この後、 混合気 Mが遅れて第 1掃気ポ一ト 1 3 aから噴出される。 また, 空気 Aは混合気 Mよりも排気口 1 2 aに近い位置に 噴出される。 このため、 燃焼室 1 aに先に導入された空気 Aにより混合気 Mの吹 き抜けが抑制される。 この掃気行程時にも、 図 2に示すクランク室 2 aに若干入 つた混合気 Mが軸受 8 1を通って第 1掃気通路 1 3内に戻る際に軸受 8 1が潤滑 される。
次に、 本発明の第 2実施形態に係る 2サイクルエンジンについて説明する。 こ のエンジンは、 上述した第 1実施形態のエンジンに対し、 混合気と空気の経路が 逆になつている。 すなわち、 P及気行程時に混合気 Mを混合気通路からクランク室 内に直接導入させ、 また、 空気 Aを空気通路から第 2掃気通路に導入させるよう にした点が異なるだけで、 その他の基本構成は第 1実施形態と同様である。 図 1 0〜図 1 2は、 2サイクルエンジンのシリンダとクランクケ一スを拡大して示す #1面断面図であつて、 図 1 0, 1 1は第 2掃気通路 2 2の部分を、 図 1 2は第 1 掃気通路 2 1の部分を示している。 各図は、 ピストンの位置による混合気 Mと空 気 Aの移動を示しており、 その詳細については後述する。 このエンジンは、 図 1 2に示すように、 シリンダ 1とクランクケース 2の内部 に、 燃焼室 1 aとクランク室 2 aとを直接連通させる第 1掃気通路 2 1が設けら れ、 また、 図 1 0に示すように、 燃焼室 1 aとクランク室 2 aとをクランク軸 8 の軸受 8 1を介して連通させる第 2掃気通路 2 2が設けられている。 図 1 3に示 すように、 これら第 1 , 第 2掃気通路 2 1 , 2 2に設けられる第 1および第 2掃 気ポート 2 1 a, 2 2 aは、 前述したエンジンの場合と同様に、 第 2掃気ポート 2 2 aの上端が第 1掃気ポ一ト 2 1 aの上端よりも高位に、 排気口 1 2 aよりも 下位に設定されている。
図 1 2に示す第 1掃気通路 2 1は、 シリンダ 1の内周面に開口する第 1掃気ポ ート 2 l aと、 このポート 2 1 aからシリンダ 1の下端を越えてクランクケース 2の上部に達する上下方向の連通路 2 l bと、 前記上部の内周面に開口する流入 ポート 2 1 cとを有している。 クランク室 2 a内に導入されている混合気 Mは、 掃気行程時に連通路 2 1 bを介して掃気ポート 2 1 aから燃焼室 1 a内に噴出さ れる。 混合気 Mは、 吸気行程時に、 図 1の混合気通路 1 0に連通し、 シリンダ 1 の内周面に開口する図 1 3の混合気ポート 2 0から、 矢印で示すように、 クラン ク室 2 aへと直接導入される。
ピストン 7は、 下死点付近にまで下降したときに、 その周壁によって、 図 1 2 の流入ポート 2 1 cを閉塞して第 1掃気通路 2 1を遮断し、 クランク室 2 a内の 混合気 Mが第 1掃気通路 2 1から燃焼室 1 aに入るのを阻止する。 これにより、 掃気行程の末期にクランク室 2 a内の混合気 Mが燃焼室 1 a内に導入されるのが 阻止されるので、 吹き抜けが一層効果的に抑制される。
また、 図 1 0に示すように、 前記第 2掃気通路 2 2は、 前記シリンダ 1の内周 面に開口する第 2掃気ポート 2 2 aと、 このポート 2 2 aからシリンダ 1の下端 を越えてクランクケース 2の中間高さにある、 軸受 8 1の外側面に達する上下方 向の連通路 2 2 bとを有している。 空気通路 1 1 (図 1 3 ) から第 2掃気通路 2 2内に導入されている空気 Aを図 1 1に示すように、 掃気行程において、 連通路 2 2 bを介して掃気ポート 2 2 aから燃焼室 1 a内に噴出する。
図 1 4はシリンダ部分の外観を示す側面図である。 同図のように、 シリンダ 1 の外側部には、 前記空気通路 1 1の一部を構成する概略山形状の切欠部 1 l bが 形成され、 この切欠部 1 1 b内の両側で奥内部に、 前記ピストン 7が上死点付近 に至ったときに、 その周壁に形成した吸入室 7 2 A (図 1 0 ) に開口する 2つの 空気導入ポート 1 1 c, 1 1 cが設けられている。 また、 この切欠部 1 1 bの下 部位置には、 前記混合気通路 1 0に連通し、 シリンダ 1の内周面に開口する混合 気ポ一ト 2 0が形成されている。
図 1 5はピストン 7を示す正面図である。 同図のように、 ピストン 7の周壁下 部側に、 矩形状の窪み 7 2 aと、 これからピストン 7の周囲方向に延びる細長い 溝 7 2 bからなる概略 L形状の吸入室 7 2 Aが形成されている。
図 1 6は図 1 3の XVI— XVI線に沿つた断面図、図 1 7は図 1 3の XVII— XVII 線に沿った断面図である。 図 1 6のように、 前記ピストン 7が上死点付近に至つ たときに、 前記吸入室 7 2 Aの溝 7 2 bの一部を切欠部 1 1 bの各ポート 1 1 c と対向させて、 切欠部 1 1 bに導入された空気 Aを、 矢印で示すように、 各ポ一 卜 1 1 cから吸入室 7 2の窪み 7 2 aを経て第 2掃気通路 2 2の第 2掃気ポート 2 2 aへと導き、 これから第 2掃気通路 2 2の内部へと導入する。 また、 前記ピ ストン 7が下降する掃気行程では、 図 1 7のように、 第 2掃気ポート 2 2 aから 噴出される空気 Aと、 これより後に第 1掃気ポート 2 1 aから噴出される混合気 Mにより燃焼室 1 a内を掃気する。
次に、 以上の構成としたエンジンの作用について説明する。
先ず、 図 1 0に示すように、 吸気行程においてシリンダ 1内のピストン 7が上 死点付近に至ったとき、 混合気 Mがシリンダ 1の内周面に開口する混合気ポート 2 0からクランク室 2 a内へと直接導入される。 この導入された混合気 Mにより 、 前述した第 1実施形態の場合と同様に、 クランク軸 8の軸受 8 1やクランクピ ン 8 2が簡単な構成で良好に潤滑される。
また、 吸気行程では、 ピストン 7の周壁に設けた一対の吸入室 7 2 Aがシリン ダ 1に設けた空気通路 1 1の各空気導入ポー卜 1 1 cと連通する。 これにより、 クランク室 1 aの負圧を受けて、 切欠部 1 1 bに導入された空気 Aが、 第 2掃気 ポート 2 2 aから第 2掃気通路 2 2およびクランク室 2 aの内部へと導入される つづいて、 掃気行程では、 図 1 7に示すように、 第 1および第 2掃気通路 2 1 , 2 2の第 1 , 第 2掃気ポート 2 1 a, 2 から混合気 Mと空気 Aが燃焼室 1 a内に噴出される。 先ず、 第 2掃気ポート 2 2 aから空気 Aが噴出され、 この後 、 第 1掃気ポート 2 1 aから混合気 Mが遅れて噴出されて、 燃焼室 1 aに先に導 入された空気 Aにより、 混合気 Mの排気口 1 2 aからの吹き抜けが抑制される。 ここで、 図 1 1に示す第 2掃気通路 2 2から空気 Aが燃焼室 1 a内に噴出する際 に、 クランク室 2 a内の混合気 Mの一部が軸受 8 1の内外輪の間の隙間を通って 第 2掃気通路 2 2に入る。 その際に、 混合気 Mに含まれた燃料によって、 軸受 8 1が潤滑される。
次に、 本発明の第 3実施形態に係る 2サイクルエンジンについて説明する。 こ のエンジンは、 上述した第 2実施形態において、 ピストン側面の吸入室 7 2 Aに 代えて、 空気通路の圧力が所定値以下に低下したときに空気通路を閉じるリード バルブを設けたことに特徴があり、 その他の基本構成は第 2実施形態と同様であ る。
図 1 8は、 第 3実施形態に係るエンジンのシリンダとピストンを示す正面断面 図、 図 1 9は図 1 8の XIX— XIX線に沿つた断面図である。 図 1 8に示すように 、 ピストン 7には吸入室が設けられていない。 図 1 9に示すように、 シリンダ 1 における空気用の切欠部 1 1 b (図 1 8 ) の両側に 2つの空気導入ポート 1 I d , 1 1 dが、 また第 2掃気通路 2 2の外側壁に 2つの空気排出ポート 1 1 e , 1 1 eが、 それぞれ設けられ、 隣接する空気導入 ·排出ポート 1 1 d, 1 1 e同士 が、 それぞれ連結パイプ 3 0により連結されている。 また、 前記切欠部 1 1 の 外側部には、 気化器 3側に連通する空気通路 1 1を有するアダプタ 3 1が取り付 けられ、 このアダプタ 3 1の内部で前記切欠部 1 1 bとの対向側に、 空気通路 1 1の圧力が所定値以下に低下したときに空気通路 1 1を閉じるリ一ドバルブ 3 2 が取り付けられている。
この第 3実施形態によれば、 吸気行程において図 1 0のシリンダ 1ゃクランク 室 2 aの内部が負圧状態のときに、 図 1 8のリードバルブ 3 2が開放されて、 空 気通路 1 1からの空気 Aが切欠部 1 1 b、連結パイプ 3 0 (図 1 9 )、第 2掃気通 路 2 2を経てクランク室 2 a (図 1 0 ) に導入される。 したがって、 第 2実施形 態のエンジンでは、 図 1 0のピストン 7の吸入室 7 2 Aが第 2掃気通路 2 2の掃 気ポート 2 2 aから離間したときには、 第 2掃気通路 2 2内に空気が導入されな いのに対し、 この第 3実施形態のエンジンでは、 P及気行程においてクランク室 2 aの負圧を受けて図 1 8のリードパルプ 3 2が開放しているときは、 第 2掃気通 路 2 2内に常に空気 Aが導入される。 このため、 第 2掃気通路 2 2内に吹き抜け 防止用の十分な空気量が確保される。 また、 ピストン 7に図 1 0の吸入室 7 2 A が不要なので、 空気導入用の通路構成が簡素化され、 つ、 ピストン 7が軽量化 される。
さらに、 本発明の第 4実施形態に係る 2サイクルエンジンについて説明する。 このエンジンは、 上述した第 2実施形態において、 さらに空気通路の圧力が所定 値以下に低下したときに空気通路を閉じる空気調整弁を設けたことに特徴があり 、 その他の基本構成は第 2実施形態と同様である。
図 2 O Aは、 この第 4実施形態に係るエンジンの一部を切欠いた正面図である 。 同図に示すエンジンでは、 シリンダ 1の外側に、 気化器 3に連通する混合気通 路 1 0を有するアダプタ 4 0が取り付けられ、 このアダプタ 4 0の混合気通路 1 0の上部側に、 内端がシリンダ 1に設けた空気通路 1 1を形成する切欠部 1 1 b に連通し、 外端がエアフィルタ 4 5を介して大気に開放する空気導入路 4 1が形 成されている。 この空気導入路 4 1の内部には、 空気調整弁 4 4が設けられてい る。
前記空気調整弁 4 4は、 花びら形の弁体 4 2とコイル状のばね 4 3からなり、 クランク室 1 aの負圧を受ける前記空気通路 1 1の圧力が所定値を越えていると きには、 ばね 4 3のばね力により弁体 4 2をストッパ 4 7に押しつけて、 図 2 0 Bに示すように、 弁体 4 2の外周部を開放して開弁し、 図 2 O Aのエアフィル夕 4 5からの空気 Aを空気導入路 4 1、 空気通路 1 1、 吸入室 7 2 A、 第 2掃気通 路 2 2へと導入する。 一方、 図 2 O Aの空気通路 1 1の圧力が所定値以下となつ たときには、 弁体 4 2の右側から作用する大気圧により、 ばね 4 3の押圧力に抗 して 体 4 2が弁座 4 8に押し付けられて閉弁し、 前記第 2掃気通路 2 2への空 気 Aの導入を停止させる。
一般的にアイドリングなどの高ブースト時には、 クランク室 2 a内の混合気量 が少なくなるため、 この状態で燃焼室 1 aに多量の空気を導入することは望まし くないのに対し、 この第 4のエンジンによれば、 高プ一スト時つまり前記空気通 路 1 1の圧力が所定値以下に低下したときには、 空気調整弁 4 4により空気通路 1 1が閉じられて、 前記第 2掃気通路 2 2への空気 Aの導入が停止される。 この ため、 アイドリングのような高ブ一スト時における燃焼室 1 a内での混合気の希 釈化が防止されて、 エンジン回転の安定化が図れる。
さらに、 本発明の第 5実施形態に係る 2サイクルエンジンについて説明する。 このエンジンは、 第 1実施形態のエンジンに対し、 燃焼室とクランク室との間に 噴出位置が異なる 2つの第 2, 第 3掃気通路を設けたことに特徴があり、 その他 の基本構成は第 1実施形態と同様である。
図 2 1は、 シリンダとクランクケースを拡大して示す正面断面図、 図 2 2は図 2 1の XXII— XXIIに沿つた断面図、 図 2 3は図 2 1の XXIII -XXIII線に沿つ た断面図である。 図 2 1に示すエンジンでは、 シリンダ 1に、 燃焼室 l aとクラ ンク室 2 aとをクランク軸 8の軸受 8 1を介して連通させる第 1掃気通路 1 3と, 、 燃焼室 1 aとクランク室 2 aとを直接連通させる 2つの第 2および第 3掃気通 路 1 4, 1 5が形成されている。
これら第 1〜第 3掃気通路 1 3〜: L 5は、 上下方向にほぼ平行に延びており、 図 2 2, 2 3に示すように、 各一対が形成されている。 図 2 1に示す第 2掃気通 路 1 4の上端に設けられる第 2掃気ポート 1 4 aは、 その上端が排気通路 1 2の 排気口 1 2 aの上端よりも低い位置に設定され、 また、 第 1掃気通路 1 3の上端 に設けられる第 1掃気ポート 1 3 aは、 その上端位置が前記第 2掃気ポート 1 4 aの上端よりも低い位置に設定されている。 さらに、 第 3掃気通路 1 5の上端に 設けられる第 3掃気ポート 1 5 aは、 その上端位置が前記第 2掃気ポ一ト 1 4 a の上端よりも低くて、 第 1掃気ボート 1 3 aの上端と同等の高さまたはやや低い 位置に設定されている。
図 2 2のように、 混合気通路 1 0からの混合気 Mは、 ピストン 7に形成した吸 入室 7 2から第 1掃気ポート 1 3 aを経て第 1掃気通路 1 3内に導入される。 ま た、 図 2 3のように、 第 1〜第 3掃気通路 1 3〜1 5の第 1〜第 3掃気ポート 1 3 a〜l 5 aは、 混合気通路 1 0側から排気通路 1 2の排気口 1 2 a側にかけて 順に形成され、 前記第 3掃気通路 1 5の第 3掃気ポート 1 5 aは排気口 1 2 aの 近くに開口されている。 さらに、 この第 3掃気ポート 1 5 aは、 排気口 1 2 aの 近くに、 排気口 1 2の通路中心線と直交する方向に空気 Aを噴出するように開口 されており、 また、 第 1, 第 2掃気ポート 1 3 a, 1 4 aは、 排気口 1 2 aとは 反対側の燃焼室 1 a内に向かつて混合気 Mと空気 Aをそれぞれ噴出するように開 口されている。
この第 5のエンジンによれば、 前記第 1掃気通路 1 3内の混合気 Mが、 その第 1掃気ポート 1 3 aから燃焼室 1 aに導入される前に、 前記クランク室 2 a内の 空気 Aが第 2掃気通路 1 4の第 2掃気ポート 1 4 aから燃焼室 1 aに噴出され始 め、 かつ、 前記混合気 Mの噴出開始時点と同時またはこの時点よりも後に、 前記 第 3掃気通路 1 5の第 3掃気ポート 1 5 aから空気 Aが燃焼室 1 aに噴出され始 めるので、 第 2および第 3掃気ポート 1 4 a, 1 5 aからの空気 Aにより、 混合 気 Mの吹き抜けが効果的に防止される。 特に、 前記第 3掃気通路 1 5の第 3掃気 ポート 1 5 aは、 排気口 1 2 aの近くに開口され、 この第 3掃気ポート 1 5 aか らの空気 Aは、 排気口 1 2 aの近くにこれと直交する方向に噴出されて、 混合気 Mの排出口 1 aへの流れを遮断するので、 吹き抜けが一層効果的に防止される。 また、 図 2 1の実施形態では、 シリンダ 1の下部側に、 第 2掃気通路 1 4の空 気ポート 1 4 bと、 第 3掃気通路 1 5の空気流入ポート 1 5 bとが形成されてい る。 前記第 2掃気通路 1 4の空気流入ポ一卜 1 4 bは、 ピストン 7が下死点付近 に至ったときにピストン 7によって閉じられる。 他方、 ピストン 7の下部側には 、 ピストン 7が下死点付近に至ったときに、 第 3掃気通路 1 5の空気流入ポート 1 5 bを開放する切欠き溝 7 bを形成している。
この構成によれば、 ピストン 7が下死点付近に至つたとき、 前記空気流入ポー ト 1 4 b、 つまり第 2掃気通路 1 4が閉じられ、 一方、 前記各切欠き溝 7 bによ り、 第 3掃気通路 1 5は閉じられることなく、 クランク室 2 aと燃焼室 1 aの内 部は連通状態に保持される。 つまり、 ピストン 7が下死点に近づくにしたがって クランク室 2 aの内部圧力は高くなるので、 下死点付近においてピストン 7で第 2掃気通路 1 4を閉塞することにより、 排気口 1 2 a寄りに開口された第 3掃気 通路 1 5の第 3掃気ポート 1 5 aからの空気の噴出力が強くなる。 このため、 燃 焼室 1 a内に入った混合気 Mの量が多くなつたタイミングで、 混合気 Mの排気口 2 aへの流出が阻止されるので、 混合気 Mの吹き抜けがより良好に抑制される また、 図 2 1の実施形態では、 前述した図 2の場合と同様に、 前記ピストン 7 にその吸入室 7 2からピストンピン 7 1に向かって延びる潤滑通路 7 3を形成し 、 吸入室 7 2に導入された混合気 M内の燃料によりピストンピン 7 1の小端軸受 9 0を潤滑するように構成している。
さらに、 本発明の第 6実施形態に係る 2サイクルエンジンについて説明する。 このエンジンは、 第 3実施形態のエンジンにおいて、 混合気通路に第 1リードバ ルブを、 空気通路に第 2リードバルブを設けたことに特徴があり、 その他の基本 構成は第 3実施形態と同様である。
図 2 4はエンジンのシリンダとクランクケースを示す正面断面図、 図 2 5はシ リンダの正面図である。 同図に示すエンジンでは、 シリンダ 1の外側面に 2つの 第 1および第 2切欠き部 1 d, l eが形成され、 その外側に、 前記各切欠き部 1 d , 1 eとともに混合気通路 1 0および空気通路 1 1の一部を形成する第 1, 第 2通路 6 1 , 6 2を有するアダプタ 6 0が取り付けられている。 このアダプタ 6 0の上流側 (右側) には気化器 3が取り付けられる。
このアダプタ 6 0とシリンダ 1との間で、 混合気通路 1 0を形成する第 1切欠 き部 1 dと第 1通路 6 1との間には、 吸気行程時に開放する第 1リードバルブ 6 3が、 また、 空気通路 1 1を形成する第 2切欠き部 l eと第 2通路 6 2との間に は、 P及気行程時に開放する第 2リ一ドバルブ 6 4が設けられている。
また、 図 2 5に示すように、 前記シリンダ 1の第 1切欠き部 1 dを形成する両 側壁には 2つの混合気導入ポート a , a力 S、 第 2切欠き部 1 eを形成する両側壁 には 2つの空気導入ポ一ト b , bがそれぞれ対向状に形成されている。
図 2 6は図 2 4の XXVI— XXVI線に沿った断面図である。 同図のように、両第 1掃気通路 2 1の外側壁にそれぞれ混合気排出ポート c , cが形成され、 これら 各ポート cと前記各混合気導入ポート aがそれぞれ第 1連結パイプ 6 5で連結 されている。 また、 第 2掃気通路 2 2の外側壁にそれぞれ空気排出ポ一ト d, d が形成され、 これら各ポート dと前記各空気導入ポート bがそれぞれ第 2連結パ イブ 6 6で連結されている。 図 2 7および図 2 8はシリンダとクランクケースを示す側面断面図であって、 図 2 7は第 1掃気通路 2 1の部分を、 図 2 8は第 2掃気通路 2 2の部分を示してい る。 図 2 4の混合気通路 1 0力、ら第 1リードバルブ 6 3を介して導かれる混合気 Mは、 図 2 7の第 1連結パイプ 6 5およびシリンダ 1の混合気排出ポート cを経 て第 1掃気通路 2 1に導入される。 また、 図 2 4の空気通路 1 1力、ら第 2リード バルブ 6 4を介して導かれる空気 Aは、 図 2 8の第 2連結パイプ 6 6およびシリ ンダ 1の空気排出ポート dを経て第 2掃気通路 2 2に導入される。
この構成によれば、 図 2 4のクランク室 2 a内が負圧となる吸気行程において 、 混合気通路 1 0に設ける第 1リ一ドバルブ 6 3が開かれて、 アダプタ 6 0の第 1通路 6 1からの混合気 Mが第 1切欠き部 1 dに導入され、 これから、 図 2 7の 第 1連結パイプ 6 5を介して第 1掃気通路 2 1に導入される。 この第 1掃気通路 2 1に導入された混合気 Mの一部は、 流入ポート 2 1 eからクランク室 2 a内に 入る。 図 2 8に示す第 2掃気通路 2 2は、 軸受 8 1の内外輪の隙間を介して、 ク ランク室 2 aに連通している。 したがって、 掃気工程でピストン 7が下降したと き、 クランク室 2 a内の混合気 Mが軸受 8 1を通って第 2掃気通路 2 2に入る際 に、 軸受 8 1を潤滑する。 また、 この吸気工程において、 図 2 4の空気通路 1 1 に設けた第 2リードバルブ 6 4も開かれて、 アダプタ 6 0の第 2通路 6 2からの 空気 Aが第 2切欠き部 1 eに導入され、 これから図 2 8の第 2連結パイプ 6 6を 介して第 2掃気通路 2 2に導入される。
したがって、 図 2 4の混合気 Mと空気 Aの主たる必要分のみを第 1および第 2 掃気通路 2 1, 2 2のそれぞれに入れておくことができる。 このため、 掃気工程 の終わりに過濃混合気が燃焼室 1 a内に入って排気口 1 2 aから吹き抜けるのを 防止できる。 また、 掃気工程では、 先ず、 図 2 8の第 2掃気通路 2 2に導入され た空気 Aが燃焼室 1 aに噴出され、 これに遅れて図 2 7の第 1掃気通路 2 1から 混合気 Mが噴出される。 このとき、 混合気 Mは、 第 1掃気通路 2 1内の濃度の濃 いものから燃焼室 1 aに入り、 その後、 濃度の薄いクランク室 2 a内の混合気 M が第 1掃気通路 2 1を経て燃焼室 1 a内に入るので、 この点からも濃い混合気の 吹き抜けが防止され、 充填効率が向上する。
さらに、 本発明の第 7実施形態に係る 2サイクルエンジンについて説明する。 このエンジンは、 第 3実施形態において、 クランク軸 8を支持する主軸受として 、 ニードル軸受 5 1を用いたことに特徴があり、 その他の基本構成は第 3実施形 態と同様である。
図 2 9はエンジンのシリンダとクランクケースを示す正面断面図、 図 3 0はシ リンダとクランクケースを示す側面断面図である。 第 1ないし第 6実施形態では クランク軸 8をポール軸受からなる軸受 8 1 (図 2等) で支持したのに対し、 こ の第 7実施形態では、 図 3 0に示すクランク軸 8をニードル軸受 5 1で回転自在 に支持し、 さらに、 スラストヮッシャ 5 2でクランク軸 8のスラスト荷重を負担 しており、 このニードル軸受 5 1がポール軸受に比較して外径が小さい分だけ、 図 2 9に示すように、 第 1および第 2掃気通路 2 3 , 2 4が下方に向け直線的に 長く延出されている。
すなわち、 前後各 1対の第 1および第 2掃気通路 2 3 , 2 4の上端の第 1およ び第 2掃気ポート 2 3 a, 2 4 aは、 第 3実施形態 (図 1 8 ) とほぼ同一の位置 に配設されているが、 下端の流入口 (開口) 2 3 b , 2 4 bはニードル軸受 5 1 の径方向外方の近傍位置、 つまり直上位置において、 ニードル軸受 5 1の外周に 沿った円弧形状に形成されている。 また、 第 1および第 2掃気通路 2 3 , 2 4に は、 図 3 0に示すように、 流入ポート 2 3 b , 2 4 bの近傍箇所からニードル軸 受 5 1に空気を導く小さな連通孔 2 3 c 2 4 cが形成されている。
この第 7実施形態の構成によれば、 P及気工程において、 図 2 9のクランク室 2 aが負圧状態のときに、 空気通路 1 1に設けられたリードバルブ 3 2が開放され て、 空気通路 1 1からの空気 Aが、 切欠部 1 1 a、 空気導入ポート 1 1 d、 連結 パイプ 3 0 (図 3 0 )、 空気排出ポート 1 1 e (図 3 0 ) および第 2掃気通路 2 4 を経てクランク室 2 a内におけるニードル軸受 5 1の径方向外方の近傍箇所、 つ まりクランク軸 8の近傍箇所に、 空気流入ポート 2 4 bから導入される。 このと き、 第 3実施形態 (図 1 8 ) と同様に、 吸気工程においてクランク室 2 aの負圧 を受けてリ一ドバルブ 3 2が開放している間は第 2掃気通路 2 4内に常に空気 A が導入され続けるとともに、 第 2掃気通路 2 が長く延びて大きな容積を有して いるので、 第 2掃気通路 2 4内に吹き抜け防止用の十分な空気量が確保される。 一方、 混合気 Mは、 吸気工程時に、 混合気通路 1 0を通り、 シリンダ 1の内周面 に開口する図 3 0の混合気ポート 2 0から、 矢印で示すように、 クランク室 2 a へと直接導入される。 この導入された混合気 Mにより、 クランクピン 8 1が良好 に潤滑される。
つづいて、 掃気工程では、 第 2掃気通路 2 4内に収容されている十分な量の空 気 Aが第 2掃気ポート 2 4 aから燃焼室 1 a内に噴出され始め、 ついで、 ニード ル軸受 5 1の径方向外方の近傍つまりクランク室 2 aの中央部に存在している濃 度の薄い混合気 Mが流入ポート 2 3 aから第 1掃気通路 2 3を通つて第 1掃気ポ ート 2 3 aから燃焼室 1 a内に先に噴出され、 掃気工程の末期に、 クランクゥェ ブ 8 4の回転による遠心力によってクランク室の内壁近傍に追いやられている濃 度の高い混合気 Mが遅れて燃焼室 1 a内に導かれる。 これらにより、 混合気 Mの 吹き抜けが一層効果的に抑制される。 このとき、 クランク室 2 a内の混合気 Mの 一部は、 流入ポー卜 2 3 b, 2 4 b力、ら第 1および第 2掃気通路 2 3 , 2 4およ び連通孔 2 3 c, 2 cを通ってニードル軸受 5 1に入り、 これを潤滑する。 この実施形態では、 第 1および第 2掃気通路 2 3, 2 4を下方に延長しながら も直線状通路に形成できるので、 大きなポ一ル軸受を迂回するよう通路を湾曲さ せて下方へ延長する場合に比べて、 通路抵抗おょぴ出力ロスが低減し、 製作も容 易であり、 さらに、 ニードル軸受 5 1はポール軸受よりも軽量であることから、 ェンジン本体の軽量化を図ることができる。
つぎに、 図 3 1および図 3 2に示す第 8実施形態に係る 2サイクルエンジンに ついて説明する。 このエンジンは、 図 3 0の第 7実施形態において、 クランクウ エブ 8 4をバルブとして利用して、 このクランクウェブ 8 4によって空気および 混合気による掃気の開閉タイミングを制御することに特徴があり、 その他の基本 構成は第 7実施形態と同様である。
この第 8実施形態のエンジンが第 7実施形態と相違するのは、 図 3 2に示すよ うに、 第 1および第 2掃気通路 2 3, 2 4の下端を第 7実施形態 (図 3 0 ) のも のよりもさらに中央寄りに延出させて、 上記流入ポート 2 3 b , 2 4 bをクラン クウエブ 8 4の外側面 8 4 aに可及的に近接させるとともに、 この流入ポート 2 3 b , 2 4 bを、 図 3 1に示すように、 ニードル軸受 5 1の外周に沿った円弧形 状であって、 いずれも第 7実施形態 (図 1 9 ) のものよりも長い形状に形成した 構成のみである。 空気 Aの流入ポート 2 4 aは混合気 Mの流入ポ一ト 2 3 aより も長い形状を有している。 したがって、 このエンジンでは、 クランクウェブ 8 4 が回転に伴って流入ポート 2 3 b, 2 4 bを開閉するバルブとして機能し、 流入 ポート 2 3 b , 2 4 bがクランクウェブ 8 4の回転に対応して所要のタイミング で開閉される円弧形状に形成されている。 また、 第 1および第 2掃気通路 2 3 , 2 4の第 1および第 2掃気ポート 2 3 a , 2 4 aの上端位置は同一高さに設定さ れている。
この第 8実施形態のエンジンの作用について、 図 3 3のタイミングチャートを 参照しながら説明する。 吸気工程において、 クランク角度が 3 6 0 ° ( 0 °) とな つて図 3 1のピストン 7が上死点 (TD C) に達したときには、 図 3 3 ( a), ( c ) に示すように、 図 3 1のリードバルブ 3 2が開放され、 且つ第 2掃気通路 2 4の流入ポート 2 4 bが、部分的にクランクウェブ 8 4により開口されているので 、 シリンダ 1やクランク室 2 aの内部が負圧状態となるのに伴って空気通路 1 1 からの空気 Aが空気導入ポート 1 1 dから、 図 3 2の連結パイプ 3 0、 空気排出 ポート 1 1 eおよび第 2掃気通路 2 を経てニードル軸受 5 1の径方向外方の近 傍箇所、 つまりクランク軸 8の近傍箇所の流入ポート 2 4 から、 クランク室 2 a内に導入される。 このとき、 第 3実施形態 (図 1 8 ) と同様に、 吸気工程でク ランク室 2 a内の負圧を受けてリードバルブ 3 2 (図 3 1 ) が開放している間は 第 2掃気通路 2 4内に常に空気 Aが導入され続けるとともに、 第 2掃気通路 2 4 が長く延びて大きな容積を有しているので、 第 2掃気通路 2 4内に吹き抜け防止 用の十分な空気量が確保される。
また、 上記吸気工程では、 図 3 3 ( a) , ( c ) に示すように、 図 3 2の混合気 ポート 2 0が開放され、 且つ第 1掃気通路 2 3の流入ポート 2 3 bがクランクウ エブ 8 4により開口されているので、 クランク室 2 aが負圧状態となるのに伴つ て、 図 3 1の混合気通路 1 0からの混合気 Mが、 シリンダ 1の内周面に開口する 図 3 2の混合気ポー卜 2 0から、 矢印で示すように、 クランク室 2 aへと直接導 入される。 この導入された混合気 Mにより、 クランクピン 8 1が良好に潤滑され る。
つづいて、 掃気工程では、 図 3 3 ( e ) に示すように、 クランク角がほぼ 1 0 0 °となった時点で図 3 1の排気口 1 2 aが開かれ始め、 このとき、 図 3 3 ( c ) に示すように、 第 2掃気通路 2 4の空気 Aの流入ポート 2 4 aが開かれているが 、 同図 (b ) に示すように、 第 1掃気通路 2 3の混合気 Mの流入ポート 2 3 bが クランクウェブ 8 4で閉じられており、 さらに、 第 1および第 1掃気ポート 2 3 a , 2 4 aはクランク角がぼぼ 1 3 0 °程度になるまで共に閉じられいる。 したが つて、 クランク角が 1 0 0 °〜1 3 0 °の期間は、 第 2掃気通路 2 4内の空気 Aが 下降するピストン 7の圧力を受けて圧縮され、 第 2掃気ポート 2 4 aが開かれた 時点で、 第 2掃気通路 2 4内の圧縮された空気 Aのみが燃焼室 1 a内に高速噴出 されて、 燃焼室 1 a内が迅速に掃気される。 このとき、 第 2掃気通路 2 4内には 十分な量の空気 Aが蓄えられているので、 この先導空気 A流に混合気 Mが巻き込 まれて吹き抜けるのが効果的に抑制される。
つぎに、 ピストン 7が下死点 (B D C) 付近まで下降したときには、 同図 (b ) に示すように、 混合気 Mの流入ポート 2 3 bが開かれ、 下死点 (B D C) を過 ぎた時点で、 同図 (c ) に示すように、 空気 Aの流入ポート 2 4 bが閉じられる 。 したがって、 掃気がほぼ終了した燃焼室 1 a内には、 クランク室 2 a内の混合 気 Mが、 ピストン 7の圧力を受けて、 流入ポート 2 3 b力、ら第 1掃気通路 2 3を 通って第 1掃気ポート 2 3 aから燃焼室 1 a内に高速噴出され、 燃焼室 1 a内へ の混合気 Mの充填効率が向上する。
この実施形態では、 上述のようにクランク室 2 a内の混合気 Mの流入ポート 2 3 bおよび空気 Aの流入ポート 2 4 bをクランクウェブ 8 4で開閉して、 後者 2 4 bを先に開口するようにしていることから、 第 1および第 2掃気ポート 2 3 a , 2 4 aを、 これらの上端位置を同一高さに設定して、 ビストン 7の下降時に同 一タイミングで開口するようにしている。 この掃気方式は、 混合気および空気の 掃気ポートの上端位置の高さに若千の差を設けたピストンバルブ方式よりも効果 的である。 すなわち、 ピストンバルブ方式では、 空気の掃気ポートが開かれると きのクランクケース内の圧力が、 その後に混合気の掃気ポートが開かれるときの クランクケース内の圧力より低いために、 空気による燃焼室内の迅速な掃気と混 合気の吹き抜け抑制が効果的に行えないからである。
さらに、 図 3 4および図 3 5に示す第 9実施形態に係る 2サイクルエンジンに ついて説明する。 このエンジンは、 図 3 4に示すクランクケース 2を二つ割り構 造とすることによって第 2掃気通路 2 4を第 7実施形態 (図 2 9 ) よりもさらに 長く下方に向け延出させたことに特徴があり、 その他の基本構成は第 7実施形態 と同様である。
図 3 4に明示するように、 クランクケース 2を二つ割り構造のケース上半体 2 Aとケース下半体 2 Bとを連結してなり、 第 2掃気通路 2 4を、 シリンダ 1およ びクランクケース 2の両半体 2 A, 2 Bにそれぞれ形成した通路部分を連通して 構成することにより、 第 2掃気通路 2 4の下端部が二一ドル軸受 5 1の下側に回 り込むように形成されて、 第 2掃気通路 2 4の流入ポート 2 4 bがニードル軸受 5 1の径方向の下方近傍位置に開口されており、 一方、 第 1掃気通路 2 3の下端 の流入ポート 2 3 bが第 7実施形態 (図 2 9 ) よりも上方位置に開口されている 。 その他の構成は第 7実施形態と同一である。
この第 9実施形態の構成によれば、 図 3 5に示す第 2掃気通路 2 4が二一ドル 軸受 5 1の径方向の下方近傍位置まで延びているので、 エンジンの回転数を上げ た場合にも、 吸気工程時に第 2掃気通路 2 4内に吹き抜け防止用の十分な空気量 が確保される。 一方、 混合気 Mは、 P及気工程時に、 シリンダ 1の内周面に開口す る混合気ポート 2 0から、 矢印で示すように、 クランク室 2 aへと直接導入され る。 この導入された混合気 Mにより、 クランクピン 8 1が良好に潤滑される。 つづいて、 掃気工程では、 クランクウェブ 8 4によって第 2掃気通路 2 4の流 入ポート 2 4 bが開かれたときに、 クラク室 2 a内の混合気 Mの一部が連通孔 2 4 cから二一ドル軸受 5 1に入って、 これを潤滑する。
なお、 前記第 7〜第 9実施形態では、 第 3実施形態を基本構成とした場合を例 示しているが、 この実施形態のクランク軸 8をニードル軸受 5 1で支持して少く とも第 2掃気通路 2 3 , 2 4を下方へ延長する主要構成は、 前記第 1および第 2 実施形態、 並びに第 4ないし第 6実施形態から、 軸受を介して第 1または第 2掃 気通路をクランク室に連通させる構造を除いたエンジンにもそれぞれ適用するこ とができる。 前記主要構成を第 1実施形態に適用した場合、 吸気工程で、 混合気 がクランク室ではなく第 2掃気通路に導入され、 空気がクランク室に導入される 。 その他に、 本発明には含まれないが、 混合気 Mの掃気に先立って空気 Aによる 初期掃気を行うタイプ以外の、 燃焼室に導いた混合気のみによる掃気を行う一般 的な 2サイクルエンジンにも、 前記主要構成を適用できる。 この一般的な 2サイ クルエンジンに適用する場合には、 クランク室内の中央部の濃度の薄い混合気を 燃焼室内に先に噴出させたのちに、 クランク室の内壁付近に追いやられている濃 度の高い混合気を遅れて燃焼室内に導入させることができるから、 混合気の吹き 抜けが抑制される。

Claims

請求の範囲
1 . 燃焼室とクランク室とをクランク軸の軸受を介して連通させる第 1掃気通路 と、 燃焼室とクランク室とを直接連通させる第 2掃気通路と、 ピストンの側面に形 成された吸入室と、 混合気 Mを前記吸入室に吸入させる混合気通路と、 空気を前記 クランク室に導入する空気通路とを有し、
吸気行程において、 前記混合気通路からの混合気が前記吸入室を経て前記第 1掃 気通路に導入されるとともに、 前記空気通路からの空気がクランク室に導入され、 掃気行程において、 前記第 1掃気通路内の混合気が燃焼室に導入されるよりも前 にクランク室内の空気が前記第 2掃気通路を経て燃焼室に導入され始めるように設 定された 2サイクルェンジン。
2 . 燃焼室とクランク室とを直接連通させる第 1掃気通路と、 燃焼室とクランク 室とをクランク軸の軸受を介して連通させる第 2埽気通路と、 ピストンの側面に形 成された吸入室と、 空気を吸入室に吸入させる空気通路と、 混合気をクランク室に 導入する混合気通路とを有し、
P及 行程において、 空気通路からの空気が吸入室を経て前記第 2掃気通路に導入 されるとともに、 前記混合気通路からの混合気がクランク室に導入され、
掃気行程において、 クランク室内の混合気が前記第 1掃気通路を経て燃焼室に導 入され始めるよりも前に前記第 2掃気通路内の空気が燃焼室に導入され始めるよう に設定された 2サイクルエンジン。
3 . 燃焼室とクランク室とを直接連通させる第 1掃気通路と、 燃焼室とクランク 室とをクランク軸の軸受を介して連通させる第 2掃気通路と、 空気を第 2掃気通路 に導入する空気通路と、 この空気通路に設けられたリードバルブと、 混合気をクラ ンク室に導入する混合気通路とを有し、
吸気行程において、 空気通路からの空気がリードバルブを経て前記第 2掃気通路 に導入されるとともに、 前記混合気通路からの混合気がクランク室に導入され、 掃気行程において、 クランク室内の混合気が前記第 1掃気通路を経て燃焼室に導 入され始めるよりも前に前記第 2掃気通路内の空気が燃焼室に導入され始めるよう に設定された 2サイクルエンジン。
4. 請求項 1において、 さらに、 燃焼室とクランク室とを直接連通させる第 3掃 気通路を備え、
前記第 3掃気通路は第 2掃気通路よりも排気口寄りに位置し、
掃気行程において、 クランク室内の空気が、 前記第 1掃気通路内の混合気が燃焼 室に導入される混合気導入開始時点よりも前に、 前記第 2掃気通路を経て燃焼室に 導入され始め、 かつ、 前記混合気導入開始時点と同時またはこの時点よりも後に、 前記第 3掃気通路を経て燃焼室に導入され始めるように設定された 2サイクルエン ジン。
5 . 請求項 1において、 前記ピストンに、 前記吸入室内の混合気をピストンピン とコンロッド間の小端軸受に供給する潤滑通路が形成されている 2サイクル工ンジ ン。
6 . 請求項 2において、 さらに、 前記空気通路の圧力が所定値以下に低下したと きに空気通路を閉じる空気調整弁を備えた 2サイクルエンジン。
7 . 請求項 2または 3において、 前記第 1掃気通路のクランク室への開口が、 下死 点の手前でビストンにより閉塞されるように設定されている 2サイクルエンジン。
8 . 請求項 4において、 前記第 2掃気通路のクランク室への開口が、 下死点の手 前でピストンにより閉塞されるように設定されている 2サイクルエンジン。
9 . 燃焼室とクランク室とを直接連通させる第 1掃気通路と、 燃焼室とクランク 室とをクランク軸の軸受を介して連通させる第 2掃気通路と、 混合気を前記第 1掃 気通路に導入する混合気通路と、 空気を前記第 2掃気通路に導入する空気通路と、 前記混合気通路に設けられた第 1リードバルブと、 前記空気通路に設けられた第 2 リードバルブとを有し、
吸気行程において、 前記混合気通路からの混合気が前記第 1掃気通路に導入され るとともに、 前記空気通路からの空気が前記第 2掃気通路に導入され、
掃気行程において、 前記第 1掃気通路内の混合気が燃焼室に導入され始めるより も前に前記第 2掃気通路内の空気が燃焼室に導入され始めるように設定された 2サ ィクルエンジン。
1 0 . 請求項 1, 2 , 3または 9において、 第 2掃気通路は、 第 1掃気通路より も燃焼室の周方向に沿って排気口寄りに位置している 2サイクルエンジン。
1 1 . クランク軸をクランクケースに支持するニードル軸受と、 燃焼室とクラン ク室とを連通させる第 1および第 2掃気通路と、 吸気工程で混合気を前記クランク 室または第 1掃気通路に導入する混合気通路と、 P気工程で空気を前記第 2掃気通 路またはクランク室に導入する空気通路と、 前記第 1または第 2掃気通路と前記二 一ドル軸受とを接続する連通孔とを備え、
掃気工程において、 前記第 1掃気通路内の混合気が燃焼室に導入され始めるより も前に前記第 2掃気通路内の空気が燃焼室に導入され始め、
前記第 1および第 2掃気通路のうち少なくとも第 2掃気通路の下端の前記クラン ク室への開口が前記ニードル軸受の径方向外方の近傍に配置されている 2サイクル エンジン。
PCT/JP2003/012682 2002-10-11 2003-10-02 空気掃気型の2サイクルエンジン WO2004038195A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03748689A EP1550799B1 (en) 2002-10-11 2003-10-02 Air scavenging-type two-cycle engine
AU2003268746A AU2003268746A1 (en) 2002-10-11 2003-10-02 Air scavenging-type two-cycle engine
JP2005501566A JP4373395B2 (ja) 2002-10-11 2003-10-02 空気掃気型の2サイクルエンジン
DE60313009T DE60313009T2 (de) 2002-10-11 2003-10-02 Zweitaktmotor mit luftspülung
US10/530,153 US7536982B2 (en) 2002-10-11 2003-10-10 Two-cycle combustion engine of air scavenging type

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002299286 2002-10-11
JP2002-299286 2002-10-11
JP2003-050905 2003-02-27
JP2003050905 2003-02-27

Publications (1)

Publication Number Publication Date
WO2004038195A1 true WO2004038195A1 (ja) 2004-05-06

Family

ID=32179066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012682 WO2004038195A1 (ja) 2002-10-11 2003-10-02 空気掃気型の2サイクルエンジン

Country Status (6)

Country Link
US (1) US7536982B2 (ja)
EP (1) EP1550799B1 (ja)
JP (1) JP4373395B2 (ja)
AU (1) AU2003268746A1 (ja)
DE (1) DE60313009T2 (ja)
WO (1) WO2004038195A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089891B2 (en) * 2003-06-09 2006-08-15 Kawasaki Jukogyo Kabushiki Kaisha Two-cycle combustion engine
US7146942B2 (en) 2004-07-08 2006-12-12 Kawasaki Jukogyo Kabushiki Kaisha Two-cycle combustion engine with air scavenging system having pressure reducing device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677958B2 (ja) 2006-07-05 2011-04-27 日立工機株式会社 層状掃気2サイクルエンジン
RU2466281C1 (ru) * 2008-09-24 2012-11-10 Макита Корпорейшн Двухтактный двигатель с послойной продувкой
DE102009010734A1 (de) 2009-02-26 2010-09-02 Hyon Engineering Gmbh Umweltfreundlicher Motor mit integriertem Verdichter
DE112010005776A5 (de) 2010-07-29 2013-06-20 Hyon Engineering Gmbh Umweltfreundlicher Verbrennungsmotor mit integriertem Verdichter
DE102010045016B4 (de) * 2010-09-10 2020-12-31 Andreas Stihl Ag & Co. Kg Handgeführtes Arbeitsgerät
DE202012101133U1 (de) * 2012-03-29 2013-07-01 Makita Corporation Brennkraftmaschine, insbesondere 2-Takt-Brennkraftmaschine
JP2014047690A (ja) * 2012-08-30 2014-03-17 Hitachi Koki Co Ltd エンジン及びエンジン作業機
JP5922569B2 (ja) * 2012-12-28 2016-05-24 株式会社マキタ 層状掃気2ストロークエンジン
US9938926B2 (en) * 2014-10-07 2018-04-10 Yamabiko Corporation Air leading-type stratified scavenging two-stroke internal-combustion engine
JP6276724B2 (ja) * 2015-03-02 2018-02-07 株式会社丸山製作所 2サイクルエンジン
CN205315134U (zh) * 2016-01-16 2016-06-15 浙江中马园林机器股份有限公司 扫气道外置式低排气缸

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697506U (ja) * 1979-12-26 1981-08-01
JPH02124205U (ja) * 1989-03-24 1990-10-12
JPH03160105A (ja) * 1989-11-15 1991-07-10 Yamaha Motor Co Ltd クランク室予圧縮形2サイクルエンジンの潤滑装置
JPH0861068A (ja) * 1994-08-23 1996-03-05 Daihatsu Motor Co Ltd 二サイクル内燃機関における掃気装置
JPH10212945A (ja) * 1997-01-30 1998-08-11 Yamaha Motor Co Ltd 2サイクルエンジン
JP2001173447A (ja) * 1999-12-15 2001-06-26 Komatsu Zenoah Co ピストンバルブ式層状掃気2サイクルエンジン

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE873459C (de) * 1949-12-23 1953-04-13 App Control Equip Moteurs Schmiervorrichtung fuer Lager von Kolbenbrennkraftmaschinen, insbesondere Zweitaktmaschinen
DE1144056B (de) * 1957-12-05 1963-02-21 Heinkel Ag Ernst Kurbelwellenlager-Schmiervorrichtung fuer Zweitaktmotoren
GB1359300A (en) * 1970-09-19 1974-07-10 Hooper B Two-stroke internal combustion engines
JPS5273211A (en) * 1975-12-16 1977-06-18 Kawasaki Heavy Ind Ltd Two cycle engine
JPS5759628Y2 (ja) * 1977-12-26 1982-12-20
JPS5612008A (en) 1979-07-10 1981-02-05 Osamu Noda Two cycle internal combustion engine
JPS5697506A (en) 1980-01-09 1981-08-06 Asahi Chem Ind Co Ltd Stable electrodialysis of sea water
JPS585420A (ja) * 1981-07-01 1983-01-12 Sanshin Ind Co Ltd 2サイクル内燃機関の潤滑装置
JPS585424A (ja) 1981-07-02 1983-01-12 Nippon Clean Engine Res クランク室圧縮2サイクル内燃機関
JPS60173314A (ja) 1984-02-18 1985-09-06 Nippon Clean Engine Res 2サイクル内燃機関の掃気通路
US4831979A (en) * 1987-04-27 1989-05-23 Outboard Marine Corporation Wrist pin lubrication system for two-cycle engines
JPH02124205A (ja) 1988-10-31 1990-05-11 Suzuki Motor Co Ltd 超音波加工機用工具ホーン
JPH0382864A (ja) 1989-08-28 1991-04-08 Asahi Chem Ind Co Ltd ポリアミドカーペット
JPH0465910A (ja) 1990-07-02 1992-03-02 Seiko Epson Corp 弾性表面波素子の振動漏れ防止構造
JPH05256138A (ja) 1992-03-16 1993-10-05 Mitsubishi Heavy Ind Ltd 2サイクルエンジン
JPH0735126A (ja) 1993-07-26 1995-02-03 Yamaha Motor Co Ltd 2サイクルエンジンの潤滑構造
US5490483A (en) 1994-02-23 1996-02-13 Daihatsu Motor Co., Ltd. Two-cycle internal combustion engine
JPH102207A (ja) 1996-06-14 1998-01-06 Honda Motor Co Ltd 2ストローク内燃機関のオイル潤滑構造
DE69820443T2 (de) 1997-06-11 2004-10-07 Komatsu Zenoa Kk Schichtspülung für zweitaktmotoren
JPH1130153A (ja) 1997-07-10 1999-02-02 Shuichi Kitamura 層状掃気2サイクル機関
JP3035774B2 (ja) * 1997-11-18 2000-04-24 敏二 木下 空気調節2サイクルエンジン
JP3583632B2 (ja) 1998-12-15 2004-11-04 タナカ工業株式会社 2サイクルエンジン
JP3592237B2 (ja) * 1999-04-23 2004-11-24 小松ゼノア株式会社 層状掃気2サイクルエンジン
JP2001193557A (ja) 1999-12-28 2001-07-17 Mitsubishi Heavy Ind Ltd 2サイクルエンジン及びその製造方法
US6257179B1 (en) 1999-04-28 2001-07-10 Mitsubishi Heavy Industries, Ltd. Two-stroke cycle engine
US6367432B1 (en) 1999-05-14 2002-04-09 Kioritz Corporation Two-stroke cycle internal combustion engine
JP2000320338A (ja) 1999-05-14 2000-11-21 Kioritz Corp 2サイクル内燃エンジン
JP3222857B2 (ja) * 1999-06-04 2001-10-29 川崎重工業株式会社 空気掃気型の2サイクルエンジン
US6691650B2 (en) * 1999-12-15 2004-02-17 Komatsu Zenoah Co. Piston valve type layered scavenging 2-cycle engine
US6418891B2 (en) 2000-03-13 2002-07-16 Walbro Japan, Inc. Internal combustion engine
JP3865195B2 (ja) 2000-06-06 2007-01-10 本田技研工業株式会社 2サイクル内燃機関の排気制御装置
JP2002054443A (ja) 2000-08-14 2002-02-20 Kioritz Corp 2サイクル内燃エンジン
JP2002129963A (ja) 2000-10-19 2002-05-09 Kioritz Corp 2サイクル内燃エンジン
JP2002195073A (ja) 2000-12-26 2002-07-10 Suzuki Motor Corp 2サイクルエンジンの電子式燃料噴射制御装置
JP3616339B2 (ja) * 2001-02-01 2005-02-02 株式会社共立 2サイクル内燃エンジン
JP3517221B2 (ja) 2001-03-16 2004-04-12 今在家精工株式会社 エンジンのリード弁装置
US6901892B2 (en) * 2002-08-03 2005-06-07 Nagesh S. Mavinahally Two stroke engine with rotatably modulated gas passage
JP4373135B2 (ja) * 2003-06-09 2009-11-25 川崎重工業株式会社 空気掃気型の2サイクルエンジン
US7089891B2 (en) * 2003-06-09 2006-08-15 Kawasaki Jukogyo Kabushiki Kaisha Two-cycle combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697506U (ja) * 1979-12-26 1981-08-01
JPH02124205U (ja) * 1989-03-24 1990-10-12
JPH03160105A (ja) * 1989-11-15 1991-07-10 Yamaha Motor Co Ltd クランク室予圧縮形2サイクルエンジンの潤滑装置
JPH0861068A (ja) * 1994-08-23 1996-03-05 Daihatsu Motor Co Ltd 二サイクル内燃機関における掃気装置
JPH10212945A (ja) * 1997-01-30 1998-08-11 Yamaha Motor Co Ltd 2サイクルエンジン
JP2001173447A (ja) * 1999-12-15 2001-06-26 Komatsu Zenoah Co ピストンバルブ式層状掃気2サイクルエンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1550799A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089891B2 (en) * 2003-06-09 2006-08-15 Kawasaki Jukogyo Kabushiki Kaisha Two-cycle combustion engine
US7146942B2 (en) 2004-07-08 2006-12-12 Kawasaki Jukogyo Kabushiki Kaisha Two-cycle combustion engine with air scavenging system having pressure reducing device

Also Published As

Publication number Publication date
JPWO2004038195A1 (ja) 2006-02-23
DE60313009T2 (de) 2007-08-16
US7536982B2 (en) 2009-05-26
DE60313009D1 (de) 2007-05-16
JP4373395B2 (ja) 2009-11-25
AU2003268746A1 (en) 2004-05-13
US20050284430A1 (en) 2005-12-29
EP1550799B1 (en) 2007-04-04
EP1550799A4 (en) 2005-12-28
EP1550799A1 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US6513465B2 (en) Two-stroke internal combustion engine
JP4677958B2 (ja) 層状掃気2サイクルエンジン
WO2007102428A1 (ja) 2サイクルエンジン
US7096834B2 (en) Two-cycle combustion engine
WO2004038195A1 (ja) 空気掃気型の2サイクルエンジン
JP5370669B2 (ja) 2サイクルエンジン
US9371751B2 (en) Two stroke combustion engine
JP2011007189A (ja) 気化器および気化器を備えた2サイクルエンジン
US6450135B1 (en) Two-stroke internal combustion engine
JP2007309128A (ja) 層状掃気2サイクルエンジン
JP3703924B2 (ja) 2サイクル内燃エンジン
JP3773507B2 (ja) 2サイクル内燃エンジン
US7089891B2 (en) Two-cycle combustion engine
JP5478272B2 (ja) 2ストローク内燃エンジン及びその掃気方法
EP1571307A1 (en) Engine piston channel for optimum air scavenging
JP4272001B2 (ja) 2サイクルエンジン
JP2001355451A (ja) 層状掃気2行程内燃機関
JPH09242546A (ja) クランク室予圧縮型火花点火式2ストローク内燃機関
WO2023176435A1 (ja) 2サイクルエンジン
JP2979007B2 (ja) 2サイクルエンジンの潤滑装置
JPH07269359A (ja) 2サイクルエンジン
JPH05118225A (ja) 段付ピストンを有する2サイクルエンジン
JP2004257371A (ja) 時間差掃気2サイクルエンジン
JPH06257445A (ja) 2サイクルエンジン
JPH10176514A (ja) エンジンの潤滑構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10530153

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003748689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005501566

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003748689

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003748689

Country of ref document: EP