WO2004024854A1 - ガスクラスレートの製造方法および製造装置 - Google Patents

ガスクラスレートの製造方法および製造装置 Download PDF

Info

Publication number
WO2004024854A1
WO2004024854A1 PCT/JP2002/012496 JP0212496W WO2004024854A1 WO 2004024854 A1 WO2004024854 A1 WO 2004024854A1 JP 0212496 W JP0212496 W JP 0212496W WO 2004024854 A1 WO2004024854 A1 WO 2004024854A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
raw material
clathrate
pressure
flow rate
Prior art date
Application number
PCT/JP2002/012496
Other languages
English (en)
French (fr)
Inventor
Kazuo Kohda
Hiroyuki Ida
Hideyuki Miyamoto
Original Assignee
Jfe Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002267526A external-priority patent/JP4062431B2/ja
Priority claimed from JP2002271225A external-priority patent/JP2004107468A/ja
Priority claimed from JP2002272901A external-priority patent/JP2004107512A/ja
Application filed by Jfe Engineering Corporation filed Critical Jfe Engineering Corporation
Priority to US10/501,299 priority Critical patent/US20050059846A1/en
Priority to AU2002349639A priority patent/AU2002349639B2/en
Publication of WO2004024854A1 publication Critical patent/WO2004024854A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Definitions

  • the present invention relates to a gas clathrate production method and apparatus for producing a gas clathrate by reacting a source gas such as natural gas with a liquid.
  • a source gas such as natural gas
  • the host substance is water in the gas clathrate, it is called gas hydrate.
  • Gas hydrate is an ice-like substance that contains gas molecules such as natural gas and carbon dioxide in a high concentration inside a cage structure composed of 7K molecules. Gas hydrate can store a large amount of gas per unit volume, and natural gas hydrate can be stored and transported at a relatively high temperature under atmospheric pressure compared to liquefied natural gas. Attention has been focused on the application to transportation and storage of garbage.
  • methane hydrate naturally occurring gas hydrates
  • the most important factors governing the gas hydrate generation rate are the diffusion and dissolution rate of gas into water, and the heat removal efficiency that removes the heat of reaction when gas reacts with water. It is.
  • the invention disclosed in the publication includes a pressure vessel 51, a porous plate 55 that partitions the interior of the pressure vessel 51 into a gas space 56 and a gas-liquid contact space 52, and two or more stages in a gas and contact space 52.
  • It has a tank 62, a raw water supply pipe 61 for supplying water at the bottom thereof to the bottom of the contact space 52, and a raw gas supply pipe 57 for supplying natural gas to the gas space 56.
  • a plurality of gas hydrate production units A, B, and D are connected according to the component gas of natural gas, and a gas extraction pipe 70 is connected to the upper space of each storage tank 62, and this is connected to the downstream regeneration gas.
  • the mixer is connected to 6.
  • the rate of generation is governed by the rate of diffusion and dissolution of gas into water and the heat removal efficiency that removes the heat of reaction during gas hydrate generation.
  • a space for installing a porous plate 55 having a certain area or more is required, and a gas-liquid contact space 52 for contacting gas and liquid in the pressure-resistant vessel 51 is also required. Therefore, it is necessary to increase the volume of the pressure-resistant vessel 51, and there is a problem that the equipment becomes large.
  • hydrate may adhere to and grow on the porous plate 55, and in the worst case, the pores may be closed and cooled. Removal of heat of reaction during gas hydrate generation is also an important factor. However, since the capacity of the pressure vessel 51, which is a reaction tank, is large, sufficient cooling cannot be achieved only by cooling the walls of the pressure vessel.
  • gas hydrate when gas hydrate is generated in a pressure vessel, the generated gas hydrate floats on the water surface in the pressure vessel, and a means for extracting the gas hydrate (for example, gas hydrate and water). And a device to control the water surface to that position, etc.), which also complicates the device.
  • gas hydrate for example, gas hydrate and water
  • the present invention provides a mixing and dissolving step in which a raw material liquid and a raw material gas are mixed in the middle of a line to dissolve the raw material gas in the raw material liquid; And producing a gas clathrate by cooling while flowing the gas.
  • the mixing and dissolving step comprises continuously dissolving the raw material gas in the form of fine bubbles.
  • the mixing and dissolving step comprises mixing the raw material liquid and the raw material gas in the middle of the line without using a reaction tank, and dissolving the raw material gas into the raw material liquid.
  • the generating step uses a reaction tank. Instead, it consists of cooling the mixed and dissolved product while flowing it through the reaction pipe to produce gas clathrate. It is preferable that the raw material liquid and the raw material gas are continuously mixed by a line mixer.
  • the mixing and dissolving step preferably comprises mixing the raw material liquid and the raw material gas with a line mixer to dissolve the raw material gas in the raw material liquid.
  • the mixing and dissolving step comprises mixing the raw material liquid and the raw material gas with a line mixer to dissolve the raw material gas into the raw material liquid, and the producing step comprises reacting the raw material liquid in which the raw material gas is dissolved in a pipe-like reaction. More preferably, the method comprises a generation step of cooling the peripheral surface of the pipe while flowing the gas into the pipe to generate a gas clathrate.
  • a line mixer it is desirable to provide a pressure adjusting means between the line mixer and the reaction pipe to adjust the pressure so that the pressure on the line mixer side increases. Further, it is desirable to have a flow rate adjusting step downstream of the line mixer to reduce the flow rate of the fluid flowing through the line.
  • the method for producing a gas clathrate according to the present invention includes a further mixing / dissolving step of dissolving the raw material gas into the raw material liquid after the mixing / dissolving step, before the gas class rate generating step, or during the generating step. You may do so.
  • the production process of producing the gas clathrate by cooling while flowing the gas may be performed separately.
  • the production step is preferably performed under the following conditions: (a) The pressure P at the outlet of the reaction pipe is the clathrate generation maximum P. taller than,
  • the temperature T in the reaction pipe is lower than the maximum clathrate formation temperature T 0 , and
  • the method for producing the gas clathrate includes: sending the generated gas clathrate together with the unreacted raw material gas and the raw material liquid to the separator through the reaction pipe line; It is more desirable to have a separation and dehydration step of separating and dehydrating the slurry of the raw material liquid to produce a high-concentration slurry or solid.
  • the present invention provides a line mixer for mixing a raw material liquid and a raw material gas in the middle of a line and dissolving the raw material gas in the raw material liquid, and cooling while flowing the raw material liquid in which the raw material gas is dissolved to generate a gas clathrate
  • a gas clathrate manufacturing apparatus having a reaction pipe.
  • One or more reaction channels may be used.
  • the gas clath plate manufacturing apparatus has a pressure adjusting means for adjusting a line pressure downstream of the line mixer.
  • the gas clathrate producing apparatus has a flow rate adjusting means for adjusting the flow rate of the fluid flowing through the line downstream of the line mixer.
  • the gas clathrate manufacturing apparatus does not have a tank-shaped pressure-resistant container for mixing and dissolving the raw material gas and the raw material liquid and performing reaction cooling.
  • the apparatus for producing said gas clathrate preferably comprises:
  • the gas flow rate adjusting means the gas pressure adjusting means, the raw material liquid flow rate so that the entire amount of the raw material gas supplied to the line mixer can be clathrated.
  • the adjusting means, the raw material liquid pressure adjusting means, the cooling capacity of the cooling device, the length of the reaction pipe, and the diameter of the reaction pipe are set.
  • the gas clathrate manufacturing apparatus further includes a pressure detector for detecting a pressure at an outlet of the reaction pipe, and when a detected value of the pressure detector exceeds a predetermined value, a gas flow rate is determined. At least one of the adjusting means and the raw material liquid flow rate adjusting means may be adjusted. It is preferable that the gas clathrate manufacturing apparatus further includes a flow rate control unit that changes a flow rate of the raw material liquid flowing through the reaction pipe. When there are a plurality of reaction pipes, the apparatus has flow rate control means for controlling the flow rate of the raw material liquid flowing through the plurality of reaction pipes, and the flow rate control means controls the flow rate of the raw material liquid flowing through the plurality of reaction pipes. Are set differently.
  • the gas clathrate manufacturing apparatus further includes a gas flow rate adjusting unit that changes a flow rate of the raw gas supplied to the line mixer.
  • the plurality of line mixers are used to adjust a flow rate of a raw material gas supplied to each line mixer. It is preferable to have a flow control means.
  • the gas flow rate control means adjusts the flow rate of the raw gas supplied to each of the line mixers so that the flow rates of the raw gas flowing through the plurality of reaction tubes are different.
  • the gas clathrate production apparatus further includes a separator for separating the gas clathrate generated in the reaction pipe, the unreacted gas, and the raw material liquid.
  • the separator is one selected from the group consisting of a decan, a cyclone, a centrifuge, a belt press, a screw concentrator-dewaterer, and a rotary dryer.
  • the apparatus for producing a gas clathrate having a vessel preferably further comprises:
  • control means for adjusting one or both of the gas flow rate of the gas flow rate adjusting means and the raw material liquid flow velocity of the raw material liquid flow velocity adjusting means based on the pressure detected by the pressure detecting means.
  • At least one line mixer may be provided upstream of the reaction pipe, and one or more line mixers may be provided in the middle of the reaction pipe.
  • FIG. 3 is a schematic view showing another gas hydrate production apparatus according to the first embodiment.
  • FIG. 4 is a schematic diagram showing another gas hydrate production apparatus according to the first embodiment.
  • FIG. 5 is an explanatory diagram of a method for producing a gas hydrate according to the first embodiment.
  • FIG. 6 is a schematic diagram showing a conventional apparatus for producing a natural gas hydrate.
  • FIG. 7 is a schematic diagram of a gas clathrate manufacturing apparatus according to the second embodiment.
  • FIG. 8 is an explanatory diagram for explaining a mechanism for hydrating the entire amount in the reaction pipe according to the second embodiment.
  • FIG. 9 is a schematic diagram showing another gas clathrate manufacturing apparatus according to the second embodiment.
  • FIG. 10 is a schematic diagram showing another gas clathrate manufacturing apparatus according to the second embodiment.
  • FIG. 11 is an explanatory diagram of a method for producing a gas clathrate according to the second embodiment.
  • FIG. 12 is a schematic diagram of a gas hydrate manufacturing apparatus according to the third embodiment.
  • FIG. 13 is a schematic diagram showing another gas hydrate production apparatus according to the third embodiment.
  • FIG. 14 is a schematic diagram showing another gas hydrate production apparatus according to the third embodiment.
  • FIG. 15 is an explanatory diagram of a method for producing a gas hydrate according to the third embodiment.
  • FIG. 16 is a schematic diagram of a gas clathrate manufacturing apparatus according to the fourth embodiment.
  • FIG. 17 is an explanatory diagram of a method for producing a gas clathrate according to the fourth embodiment.
  • FIG. 18 is a schematic diagram of a gas hydrate manufacturing apparatus according to the fifth embodiment.
  • FIG. 19 is a schematic diagram showing another gas hydrate producing apparatus according to the fifth embodiment.
  • FIG. 20 is a schematic diagram showing another gas hydrate producing apparatus according to the fifth embodiment.
  • FIG. 21 is an explanatory diagram of a method for producing a gas hydrate according to the fifth embodiment.
  • FIG. 22 is a schematic diagram of a gas hydrate manufacturing apparatus according to the sixth embodiment.
  • FIG. 5 is an explanatory diagram of the outline of the gas hydrate production process of the first embodiment, and shows a case where natural gas is used as a raw material gas. First, an outline of the gas hydrate manufacturing process will be described with reference to FIG.
  • Natural gas is cooled to 1 to 10 ° C., and heavy components are separated as condensate (S 1). On the other hand, water is also 1-10. After cooling to C (S 2), the cooling water reacts with natural gas at 1 to 10 ° C. and 50 atm to produce gas hydrate (S 3). The gaseous hydrate in the form of slurry is separated and dehydrated to form a high-concentration slurry or solid (S4), and the water and unreacted gas separated here are returned to the reaction step (S3) again.
  • This freezing treatment is to stabilize the gas hydrate by freezing the water attached to the surface of the gas hydrate separated and dehydrated in S4 to form an ice shell.
  • a decompression process for reducing the pressure from 50 atm to atmospheric pressure is performed (S6). Thereafter, the frozen gas hydrate is formed into pellets (S7), stored in a storage facility such as a sieve mouth (S8), and unloaded by a loading facility such as a belt conveyor as required. (S 9) Provided for long-distance transport by transport equipment such as transport vessels
  • FIG. 1 is a system diagram showing main components of the first embodiment. First, the components of the first embodiment will be described with reference to FIG.
  • the gas hydrate production system of the first embodiment includes gas boosters 1 and 2 for increasing the pressure of raw gas such as natural gas, raw water pumps 3 and 19 for supplying raw water, and mixing raw water and raw gas.
  • Gas boosters 1 and 2 for increasing the pressure of raw gas such as natural gas
  • raw water pumps 3 and 19 for supplying raw water, and mixing raw water and raw gas.
  • Line mixer 5 to dissolve the raw material gas in the raw water
  • a reaction pipe 7 for cooling the mixture mixed by the mixer 5 to generate a gas hydrate
  • a separator 9 for separating the gas hydrate generated in the reaction pipe 7, unreacted gas, and raw water. ing.
  • pressure detectors 10 were installed at key points, and were installed on the pipe lines by signals from the pressure detectors 10.
  • Each valve 12 is controlled to adjust the pressure and flow rate of the piping line.
  • the line mixer 5 of the first embodiment has a large diameter at the entrance and a small diameter at the exit. It consists of a two-stage tubular body 11 and has a wing body 13 called a guide van in a large-diameter part 11a of the tubular body 11 and a small-diameter part 11b ahead of it.
  • the tube has a plurality of mushroom-shaped bumps 15 extending from the inner peripheral surface of the tube to the center.
  • the reaction pipe 7 is composed of one or a plurality of bent pipes, and the peripheral surface of the pipe is cooled by a chiller 17. As described above, the use of the reaction pipe 7 enables efficient cooling from the surroundings, so that it is not necessary to directly cool the gas / raw water by a cooling coil or the like as in the conventional example.
  • the configuration of the device can be simple and compact.
  • such a reaction pipe 7 can be used because the mixing and dissolution of the raw material gas and the raw water are performed by the line mixer 5 in advance, and the apparatus configuration can be considered mainly for cooling in the reaction pipe 7. Because. That is, in the conventional example, the mixing and dissolving of the raw material gas and the raw water and the reaction cooling were performed in a tank-shaped pressure-resistant vessel, so that Required a space with a certain extent, and cooling could not be performed only from around the reaction tank. Since cooling and cooling are separated, cooling can be considered mainly in the reaction process, and cooling with a simple configuration as in the above example is possible.
  • the separator 9 separates gas hydrate, unreacted gas and raw water.
  • Examples of the separator 9 include Deccan Yuichi, cyclone, centrifugal separator, belt press, screw concentrator and dehydrator.
  • a rotary dryer may be considered.
  • the pressure of the source gas is increased to a predetermined pressure by the gas pressure booster 1.
  • the raw water is also raised to a predetermined pressure by the raw water pump 3.
  • the pressurized raw material gas and raw water are supplied to the line mixer 5, respectively.
  • the raw material gas and the raw water supplied to the line mixer 5 are mixed with a violent force by the mechanism described above. At this time, the raw material gas becomes fine bubbles and is mixed into the raw water, so that dissolution of the raw material gas is promoted.
  • the raw material water in which the raw material gas is dissolved (containing undissolved fine bubbles) is sent to the reaction pipe 7 and cooled by the chiller 17 to generate gas hydrate.
  • the gas hydrate generated here flows through the pipeline together with the unreacted gas and the raw water, and is sent to the separator 9.
  • the reaction between the raw material water and the raw material gas is performed while moving the same in the pipeline. Therefore, in this gas hydrate generation step, everything (the generated gas hydrate) is performed. Rate, unreacted gas, and raw water) are once sent to the separator 9, and there is no need for a mechanism for taking out only the generated gas hydrate as in the conventional example, and the configuration of the apparatus can be simplified.
  • the mixture of gas hydrate, unreacted gas and raw water sent to the separator 9 is separated by the separator 9 into gas hydrate, unreacted gas and raw water.
  • the separated raw water is supplied again to the line mixer 5 by the pump 19, and the unreacted raw gas is raised to a predetermined pressure by the gas booster 2 and supplied to the line mixer 5.
  • the generated gas hydrate is taken out of the separator 9 and sent to a post-processing step (steps after S5 in FIG. 5).
  • the water level in the separator 9 is detected by the level meter 21, and the water level in the separator 9 is controlled so as to be higher than a certain level. This is because the raw water has a sealing effect so that the gas does not flow into the raw water return line. Then, raw water unnecessary for sealing is raised to a predetermined pressure by a raw water pump 19 and supplied to the line mixer 5.
  • the raw material gas pressurized by the gas pressure booster 1 is directly supplied to the separator 9 in order to keep the pressure in the separator 9 at a certain level or more.
  • the raw material gas is dissolved in the raw water in a continuous manner by the line mixer 5 composed of a cylindrical body. Can be.
  • a pipe-shaped reaction pipe 7 can be used instead of the conventional reaction tank, A simple and compact cooling means that cools the peripheral surface becomes possible.
  • a pressure adjusting means 27 including a pressure detector and an adjusting valve 25 may be provided between the line mixer 5 and the reaction pipe 7.
  • the pressure adjusting means 27 By providing the pressure adjusting means 27, the pressure on the line mixer 5 side can be increased, and the dissolution of the raw material gas into the raw water by the line mixer 5 can be further promoted.
  • a stagnation section 29 may be provided downstream of the line mixer 5 as flow rate adjusting means for reducing the flow rate of the fluid flowing through the line. Providing the stagnation section 29 can increase the time required for the raw material gas, which has been made into fine bubbles by the line mixer 5, to be dissolved in the raw water, thereby facilitating the dissolution.
  • a tank having a fixed volume is considered.
  • the temperature and pressure in each step are not particularly specified, but an example is shown in FIG. Things can be mentioned. However, the optimum values of temperature and pressure in each process are selected according to various conditions.
  • the line mixer in this specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • one or a plurality of bent pipes are shown as an example of the reaction pipe 7, but it may be composed of a plurality of branched straight pipes.
  • the method for producing a gas clathrate according to Embodiment 2 is a method for producing a gas clathrate by reacting a raw material liquid and a raw material gas.
  • the total amount of the raw material gas mixed and dissolved in the mixing and dissolving step is clathrated.
  • a mixing / dissolving step of mixing the raw material liquid and the raw material gas in the middle of the line and dissolving the raw material gas in the raw material liquid;
  • a gas clathrate generating step of cooling the mixed and dissolved product while flowing it into the reaction pipe to generate a gas clathrate, wherein in the gas clathrate generating step, the pressure P at the outlet of the reaction pipe is a class Rate generation minimum pressure P.
  • the temperature T in the reaction pipe becomes lower than the maximum clathrate generation temperature T0, and all the heat of generation when the entire amount of the raw material gas mixed and dissolved in the mixing and dissolving step becomes clathrate is changed.
  • the raw material liquid flow rate, the raw material liquid pressure, the raw gas flow rate, the raw gas pressure, the cooling capacity, the length of the reaction pipe, and the diameter of the reaction pipe are set so that they can be deprived.
  • the gas clathrate producing apparatus is an apparatus for producing a gas clathrate by reacting a raw material liquid and a raw material gas, wherein a gas flow rate adjusting means for adjusting a supplied raw gas flow rate; Gas pressure adjusting means for adjusting the gas pressure; raw material flow rate adjusting means for adjusting the flow rate of the raw material liquid to be supplied; raw material liquid pressure adjusting means for adjusting the pressure of the raw material liquid; A line mixer for mixing and dissolving the raw material gas in the raw material liquid, a reaction pipe for cooling while flowing the raw material liquid in which the raw gas is mixed and dissolved, a cooling device for cooling the reaction pipe, and a reaction pipe Pressure adjusting means for adjusting the pressure of the gas, wherein the gas flow rate adjusting means, the gas pressure, so that the total amount of the raw material gas supplied to the line mixer can be clathrated.
  • Settling means before SL material solution flow rate adjusting means, the raw material fluid pressure adjusting means, the cooling capacity of the cooling device
  • a gas flow rate adjusting means for adjusting the flow rate of the raw material gas to be supplied, a gas pressure adjusting means for adjusting the pressure of the raw material gas, a flow rate adjusting means for adjusting the flow rate of the raw material liquid to be supplied, and the pressure of the raw material liquid.
  • a raw material liquid pressure adjusting means to be adjusted; a line mixer for mixing the raw material liquid and the raw material gas in the middle of the line to dissolve the raw material gas in the raw material liquid; and cooling while flowing the raw material liquid in which the raw material gas is mixed and dissolved.
  • the reactor includes a reaction pipe, a cooling device for cooling the reaction pipe, and pressure adjusting means for adjusting the pressure of the reaction pipe.
  • the pressure P at the outlet of the reaction pipe is the minimum pressure P for clathrate formation.
  • the temperature T in the reaction line is the maximum clathrate formation temperature T.
  • the gas flow rate adjusting means, the gas pressure adjusting means, and the raw material liquid flow rate so as to lower the temperature and to remove all the heat generated when the entire amount of the raw material gas supplied to the line mixer is clathrated.
  • the adjusting means, the raw material pressure adjusting means, the cooling capacity of the cooling device, the length of the reaction pipe and the diameter of the reaction pipe are set.
  • a pressure detector for detecting the pressure at the outlet of the reaction pipe is provided, and when the detected value of the pressure detector exceeds a predetermined value, the gas flow adjusting means and the raw material liquid flow adjusting means are shifted. One or both are adjusted.
  • the present invention is characterized in that the line mixer generates fine bubbles of the raw material gas.
  • gas hydrate which is an embodiment of the gas clathrate will be described as an example.
  • FIG. 11 is an explanatory diagram of the outline of the gas hydrate production process of the second embodiment, in which natural gas is used as a raw material gas.
  • the entire amount can be hydrated.
  • the composition of the hydrate and the composition of the hydrate are the same. Hereinafter, this point will be described in detail.
  • FIG. 7 is a system diagram showing main components of the second embodiment. First, the components of the second embodiment will be described with reference to FIG.
  • the gas hydrate production apparatus of the second embodiment increases the pressure of a raw material gas such as natural gas. ⁇ , 'I
  • Pressurizing gas pressurizer 1 (corresponding to the gas pressure adjusting means of the present invention), and pressurizing the feed water, and feed water pumps 3 and 19 (corresponding to the feed water pressure adjusting means of the present invention)
  • a line mixer 5 for mixing the raw water and the raw material gas to dissolve the raw gas in the raw water, and a gas hydrate produced by cooling while flowing the mixture mixed by the line mixer 5 a reaction pipe 7, a reaction pipe
  • the apparatus is provided with a chiller 17 as a cooling device for cooling 7, and a separator 9 for separating gas hydrate generated in the reaction pipe 7 and raw water.
  • a pressure detector 10 is installed in the separator 9.
  • a signal from the pressure detector 10 is used to control a valve 12 a (corresponding to gas flow rate adjusting means) and a valve 12 installed in the piping line.
  • b corresponding to the raw water amount adjusting means
  • the valve 12 c corresponding to the gas pressure adjusting means
  • the pressure P of the separator 9 (corresponding to the pressure at the outlet of the reaction pipe 7) is the minimum pressure P for hydrate formation.
  • the temperature T in the reaction line 7 is higher than the hydrate formation maximum temperature T.
  • Valves 12a, 12b, 12c, gas booster 1, feed water pump 3, 19, cooling capacity of chiller 17 The diameter of the reaction line 7 is set.
  • the “setting of the cooling capacity” in the second embodiment also includes the setting of the temperature of the refrigerant for cooling the reaction pipe 7.
  • the line mixer 5 of the present embodiment has a two-stage having a large diameter at the entrance side and a small diameter at the exit side.
  • the cylindrical body 11 has a wing body 13 called a guide vane in a large-diameter portion 11a of the cylindrical body 11 and a small-diameter portion 1 1b ahead of the inside of the cylinder. It has a plurality of mushroom-shaped impactors 15 extending from the peripheral surface to the center.
  • the raw water supplied to the line mixer 5 by the raw water pump 3 is formed into a swirling flow by the wing 13 and is pushed outward by violent centrifugal force, and the mushroom-like Is even more intensely agitated by the impactor 1 5
  • the raw material gas is entrained therein and broken into ultrafine bubbles, and the raw water and raw material gas are mixed.
  • the contact area between the raw material gas and the raw water increases, and the raw gas is efficiently dissolved in the raw water.
  • the reaction pipe 7 is composed of one or a plurality of bent pipes, and the peripheral surface of the pipe is cooled by a leaf 17.
  • a cooling coil is used as in the conventional example shown in JP-A-2001-1985. This eliminates the necessity of directly cooling the gas and raw water, making the configuration of the device simple and compact.
  • reaction pipe examples include a double-pipe heat exchanger in which a coolant flows around the pipe through which the raw material gas and the raw material liquid flow, and a shell-and-tube heat exchanger (multi-pipe cylinder). Heat exchanger).
  • the above reaction pipe 7 can be used by mixing and dissolving the raw material gas and the raw water with the line mixer 5 in advance, and considering the equipment configuration focusing on cooling in the reaction pipe 7. Because you can. That is, in the example shown in Japanese Patent Application Laid-Open No. 2001-109 & 5, the mixing and dissolving of the raw material gas and the raw water and the reaction cooling were performed in a tank-shaped pressure-resistant vessel. A spacious space was required, and cooling could not be performed only from around the reaction tank.In the second embodiment, the mixing of the raw material gas and the raw water and the dissolution and reaction cooling were separated. Therefore, cooling can be considered mainly in the reaction process, and cooling with a simple configuration as in the above example is possible.
  • the separator 9 mainly separates gas hydrate and raw water.
  • Examples of the separator 9 include a decanter, a cyclone, a centrifugal separator, a belt press, a screw concentrator / dehydrator, and a rotary dryer. Conceivable.
  • the pressurized raw material gas is supplied to the separator 9, and the pressure of the raw material gas causes the pressure of the separator 9 to reach the minimum hydrate generation pressure P. Adjusted to be higher. Set the pressure of separator 9 to P. By adjusting the pressure to be higher, the pressure in the reaction pipe 7 on the upstream side becomes P. Higher pressure.
  • the pressure of the source gas is increased to a predetermined pressure by the gas pressure booster 1.
  • the raw water is pressurized to a predetermined pressure by the raw water pump 3.
  • the pressurized raw material gas and raw water are cooled by a cooler (not shown) and supplied to the line mixer 5, respectively.
  • the raw material gas and the raw water supplied to the line mixer 5 are mixed with violent force by the mechanism described above. At this time, the raw material gas becomes fine bubbles and is mixed into the raw water, so that the dissolution of the raw material gas is promoted.
  • the raw material water in which the raw material gas is dissolved (including undissolved fine bubbles) is sent to the reaction pipe 7 and cooled by the chiller 17 to become fine bubbles and mixed with the raw water. All of the dissolved raw material gas is hydrated.
  • the pressure P at the outlet of the reaction pipe is the minimum pressure P for hydrate formation.
  • the raw material liquid flow rate, raw material liquid pressure, raw gas flow rate, and raw gas pressure so that the temperature becomes lower and all the heat generated when the raw material gas mixed and dissolved by the line mixer 5 is hydrated can be completely removed.
  • the cooling capacity, reaction pipe length and reaction pipe diameter must be set.
  • the flow rate of the raw water is basically irrelevant to the amount of hydrate produced.
  • Hydrate hydration number (composition ratio of water and gas: ratio of water molecules to gas molecules in hydrate) is theoretically 5.75 for methane hydrate (1 mole of gas molecule per mole of gas molecule). (Water molecule 5.75 mol). However, actually, not all cages formed by water molecules contain gas molecules, so the hydration number is larger than 5.75 (1 mole of gas molecules) Water molecule 5.75 mol or more).
  • the amount of hydrate generated is proportional to the flow rate of the raw water. In this case, gas and solid hydrated carcass S will remain at the point of completion of generation.
  • the relationship between the source gas flow rate and the hydrate generation amount is the same as the relationship between the source water flow rate. In other words, if there is sufficient cooling capacity, and if there is more gas than the amount determined by the hydration number of octahydrate, the gas flow rate is irrelevant to the amount of hydrate formed.
  • the amount of gas is smaller than the amount determined from the 7K sum, the amount of hydrate generation is proportional to the gas flow rate. In this case, the hydrate of the raw water and solid will remain when the generation is completed.
  • a pump 19 is provided for returning the unreacted raw water separated by the separator in FIG. 7 to the line mixer, and the raw water is larger than the amount determined from the hydration number. It is assumed that a small amount of gas is supplied to generate hydrate. Next, the relationship between the pressure and temperature of the raw water and the raw gas and the amount of hydrate generated will be described.
  • the higher the pressure and the lower the temperature the easier it is to generate. Therefore, if there is sufficient cooling capacity (heat removal per unit time), the higher the pressure and the lower the temperature in the production range, the faster the production rate. If the cooling capacity is limited, the generation rate is determined by the cooling capacity.
  • the pressures are the same except when considered from a very microscopic point of view.
  • the temperature of the two may be different at the beginning of mixing, but it becomes equal during the flow through the reaction pipe.
  • the calorific value (heat of formation) associated with hydrate formation is as follows per mole of methane. • About 14.5 kcal / mol (at 0 ° C)
  • the amount of hydrate generated is proportional to the amount of cooling (removal of heat). Therefore, if gas diffusion and dissolution in the raw water are sufficient, but the cooling capacity is insufficient, the temperature of the raw water in which the raw material gas is dissolved rises due to hydrate generation, and the hydration corresponding to the pressure at that time The generation stops when the maximum rate generation temperature is reached (the higher the pressure, the higher the temperature). If there is any unreacted raw material gas at that time, it remains as a dissolved gas in the raw water or in the form of bubbles. Conversely, sufficient cooling capacity means that the temperature can be kept within the production range while the entire source gas is hydrated.
  • the cooling capacity is determined by the capacity of the chiller, the specification of the reaction pipe (pipe length, diameter, wall thickness, material, etc.), and the heat transfer capacity determined by the temperature difference between the refrigerant and the fluid in the reaction pipe.
  • the length of the reaction pipe and the diameter of the reaction pipe are set so as to make full use of the cooling capacity of the chiller. Rather, it is related to hydrate formation through the parameter of cooling capacity.
  • the length of the reaction pipe and the diameter of the reaction pipe are set so as to make full use of the cooling capacity of the chiller. Rather, it is related to hydrate formation through the parameter of cooling capacity.
  • reaction pipe length and the cooling capacity The relationship between the reaction pipe length and the cooling capacity is that, when other conditions are the same, the cooling capacity increases as the reaction pipe length increases.
  • the relationship between the reaction pipe diameter and the cooling capacity is a little more complicated. The smaller the pipe diameter, the higher the flow velocity in the pipe and the higher the heat transfer coefficient inside the pipe, but the smaller the pipe surface area. Increase and decrease are determined.
  • the pipe diameter is reduced to increase the heat transfer coefficient on the inner surface of the pipe, and the decrease in surface area is handled by increasing the pipe length or the number of pipes.
  • FIG. 8 is an explanatory diagram for explaining the mechanism of hydration of the entire amount in the reaction pipe 7, and focusing on a certain amount of the raw material gas supplied to the reaction pipe 7, this raw material gas is hydrated. This is a schematic diagram showing the mechanism of conversion over time.
  • the vertical axis represents raw material gas and raw water (hereinafter, "raw water” means both raw water and raw water in which raw gas is dissolved. ), Indicates the amount of gas hydrate, the upper side of the thick line indicates methane, and the lower side indicates propane.
  • the horizontal axis shows the flow of time, and the time to focus on is indicated by 1 to 10 (indicated by circles in the figure; the same applies hereinafter) (the positions of these 1 to ⁇ ⁇ ⁇ ⁇ in the system diagram 7) In order to clarify the relationship, (1) to (4) are shown in the corresponding places in Fig. 8.)
  • the source gas is a mixed gas of two types of gas, methane and propane, and the harm is 17: 6 for methane: propane (see 1).
  • the raw material gas, the return water (the mixed gas dissolved in the raw water to a concentration of ⁇ 1), and make-up water are mixed (see 1).
  • FIG. 8 it is shown that there is no gas dissolution immediately after mixing.
  • the raw material gas is converted into fine bubbles by the line mixer 15 and dissolved in the raw water to reach the equilibrium concentration of the whole raw water (see (3)).
  • the pressure P in the reaction line 7 becomes the minimum pressure P for forming the hydrate.
  • the temperature T in the reaction line 7 is higher than the maximum hydrate formation temperature T. Since it is set lower, gas hydrate generation starts. At this time, methane and propane are dissolved in the raw water, but since propane is easier to hydrate, the gas hydrate containing more propane than the raw gas composition has (Refer to 4: In the figure, the graph showing the amount of gas hydrate has one scale above the thick line and two scales below the thick line.)
  • the amount of heat corresponding to the calorific value is removed by cooling the chiller 17, so that the temperature of the reaction pipe 7 is the maximum hydrate formation temperature T. It is kept at a lower temperature. In order to increase the rate of hydrate of a temperature set above a certain level lower than T 0, and it is better to set certain degree higher than 0 [rho pressure. The temperature reduction is preferably about 2 "C or more. However, if the cooling is performed too much, the raw water solidifies and the flow in the reaction pipe 7 is obstructed. The raw material water is set so as not to fall below the freezing point.
  • the entire amount of the supplied raw material gas is hydrated (see 10) and sent to the separator 9 together with the raw water.
  • the gas hydrate containing a large amount of propane generated in the first half and the gas hydrate containing a large amount of methane generated in the second half are sent to the separator 9.
  • the generated hydrate as a whole has the same composition as the source gas.
  • the generated gas hydrate is taken out of the separator 9 and sent to a post-treatment step (steps after S5 in FIG. 11).
  • the water level in the separator 9 is detected by the level meter 21, and the water level in the separator 9 is controlled so as to be equal to or higher than a certain level by controlling the knob 12 d. Have been. This is because the raw water has a sealing effect so that the gas does not flow into the raw water return line. Then, the raw water unnecessary for sealing is raised to a predetermined pressure by the raw water pump 19 and supplied to the line mixer 5 as described above. As described above, in the present embodiment, the raw material gas is continuously dissolved in the raw water by the line mixer 5, and the total amount of the raw gas supplied using the pipe-shaped reaction pipe ⁇ ⁇ is hydrated. As a result, gas hydrate having the same composition as the composition of the supplied source gas can be generated.
  • the reaction between the raw water and the raw gas is performed while moving through the pipeline, all the components (the generated gas hydrate and the raw material 7K) are once separated by the separator. As a result, the mechanism for extracting only the generated gas hydrate is unnecessary, and the configuration of the device can be simplified. '
  • the entire raw material gas is not hydrated in the reaction pipe 7, the unreacted raw material gas is supplied to the separator 9. In that case, the pressure of the separator 9 increases. Therefore, whether or not the entire amount of the raw material gas has been converted into octahydrate in the reaction pipe 7 can be determined by detecting the pressure increase in the separator 9.
  • the pressure rise in the separator 9 is detected by the pressure detector 10 installed in the separator 9, and when the pressure rise value exceeds a preset value, the raw material gas is It is determined that the entire amount has not been hydrated by flowing into 9 and the supply amount may be reduced by squeezing the valve 12a.
  • the excess raw material gas supplied to the separator 9 is hydrated in the separator 9, whereby the pressure of the separator 9 can be reduced to a predetermined value.
  • a return pipe from the separator 9 to the line mixer 5 is provided, and extra raw material gas is provided. Should be returned. This is the same in FIGS. 9 and 10 described later.
  • a pressure detector 23 and a pressure regulating valve 25 may be provided between the line mixer 5 and the reaction pipe 7.
  • the pressure on the line mixer 5 side can be increased, and the dissolution of the raw material gas into the raw water by the line mixer 15 can be further promoted.
  • a stagnation section 2 as a flow rate adjusting means for reducing the flow velocity of the fluid flowing through the line downstream of the line mixer 5 is used. 9 may be provided. Providing the stagnation section 29 allows time for the raw material gas, which has been made into fine bubbles in the line mixer 5, to be dissolved in the raw water, so that the dissolution can be promoted.
  • the line mixer in this specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • one or a plurality of bent pipes are shown as an example of the reaction pipe 7, but the reaction pipe 7 may be constituted by a plurality of branched straight pipes.
  • the type of the raw water is not specified, but for example, fresh water, seawater, antifreeze, and the like can be considered. It is also conceivable to use a raw material liquid such as a liquid host material / host material solution instead of the raw water. It goes without saying that the name of the substance generated in that case is not gas hydrate but gas clathrate.
  • the method for producing a gas hydrate according to Embodiment 3 is a method for producing a gas hydrate by reacting a raw water and a raw gas, wherein the raw water and the raw gas are mixed in the middle of the line to produce a raw gas.
  • the particle diameter of the gas hydrate generated by changing either one or both of the flow rate of the raw water flowing through the passage and the amount of the raw material gas to be supplied is changed.
  • a mixing and dissolving step of mixing raw water and raw gas in the middle of the line to dissolve raw gas in raw water is included.
  • the diameter of the gas hydrate generated in each reaction pipe by changing either one or both of the flow rate of the raw water flowing through the reactor and the amount of the raw material gas supplied to each reaction pipe It is.
  • the gas hydrate producing apparatus is a device for producing gas hydrate by reacting raw water and raw material gas.
  • a line mixer for dissolving the gas in the raw water, a reaction pipe for cooling the mixed solution, and a flow rate control means for changing the flow rate of the raw water flowing through the reaction pipe are provided.
  • a line mixer for mixing raw water and raw gas in the middle of the line to dissolve raw gas into raw water
  • a plurality of reaction pipes for cooling the melted material
  • a flow rate control means for controlling the flow rate of the raw water flowing through the plurality of reaction pipes.
  • the flow rate of the raw water flowing through the plurality of reaction pipes is provided.
  • the flow rate control means is set so as to be different.
  • gas water hydrate is produced by reacting raw water with raw gas.
  • a line mixer for mixing the raw water and the raw gas in the middle of the line to dissolve the raw gas permanently, a gas flow adjusting means for changing a flow rate of the raw gas supplied to the line mixer, and the line mixer And a reaction pipe for cooling the mixed and dissolved material.
  • a line mixer for mixing raw water and raw gas in the middle of the line to dissolve raw gas into raw water;
  • a plurality of dissolving / mixing devices comprising gas flow rate adjusting means for adjusting the flow rate of the raw material gas supplied to the line mixer are provided, and a plurality of reaction pipes for cooling the melted / dissolved components by the respective dissolving / mixing devices are provided.
  • the gas flow rate control means is set so that the flow rates of the source gases flowing through the plurality of reaction pipes are different.
  • FIG. 15 is an explanatory diagram of an outline of the gas hydrate production process of the embodiment 3-1 and shows a case where natural gas is used as a raw material gas.
  • Embodiment 3-1 of the present invention the particle size of the generated gas hydrate is changed by devising the step (S3) of generating a slurry-like gas hydrate from water and natural gas in the above-described process. It is designed to make a dagger.
  • S3 the step of generating a slurry-like gas hydrate from water and natural gas in the above-described process. It is designed to make a dagger.
  • FIG. 12 is a system diagram showing main components of the embodiment 3-1. First, the components of the embodiment 3-1 will be described based on FIG.
  • the gas hydrate production apparatus includes gas boosters 1 and 2 for increasing the pressure of a raw material gas such as natural gas, a raw water pump 3 or 19 for supplying raw water, and mixing raw water and raw gas.
  • Line mixer 5 that dissolves the raw material gas in the raw water by mixing and cooling, and then mixes and cools the mixture mixed with the line mixer 5 to produce the gas hydrate by flowing it.
  • the gas hydrate generated in the reaction line 7 And a separator 9 for separating water, unreacted gas, and raw material water.
  • a gas flow control valve 4 for adjusting a gas flow rate is provided in a piping line for supplying a raw material gas to the line mixer 5.
  • gas flow control means 4 and line mixer 5 Constitutes the melting and mixing apparatus of the present invention.
  • a piping line leading from the line mixer 5 to the reaction pipe 7 is provided with a flow rate control valve 6 for adjusting the flow rate of the raw material water in which the raw material gas is dissolved (including the gas of fine bubbles).
  • a pressure detector 10 is installed in the separator 9, and a valve 12 a of a piping line for supplying a raw material gas to the separator 9 and a gas of the separator 9 are supplied to the separator 9 by a signal of the pressure detector 10.
  • the pulp 1 2b of the piping line returning to the mixer 5 side is controlled.
  • the line mixer 5 of this embodiment is a two-stage type having a large diameter at the entrance and a small diameter at the exit.
  • the cylindrical body 11 includes a wing body 13 called a guide vane in a large-diameter portion 11a of the cylindrical body 11 and an inner peripheral surface of the cylinder in a small-diameter portion 11b ahead of the wing body 13. And a plurality of mushroom-shaped impactors 15 extending from the center to the center.
  • the raw water supplied to the line mixer 5 by the raw water pump 3 is turned into a swirling flow by the wing 13, and is pushed outward by violent centrifugal force.
  • the raw material gas is further intensely stirred by the colliding body 15, and the raw material gas is entrapped therein and broken into a group of ultra-fine bubbles, and the raw water and raw material gas are mixed.
  • the contact area between the raw material gas and the raw water increases, and the raw gas is efficiently dissolved in the raw water.
  • the reaction pipe 7 is formed of a bent pipe, and the peripheral surface of the pipe is cooled by a chiller 17. In this way, the use of the reaction pipe 7 allows efficient cooling from the surroundings, so that the gas and raw water are directly cooled by a cooling coil, etc. There is no need to perform this, and the configuration of the device can be simplified and made compact.
  • such a reaction pipe 7 can be used because the mixing and dissolution of the raw material gas and the raw water are performed by the line mixer 5 in advance, and the apparatus configuration can be considered mainly for cooling in the reaction pipe 7. Because. That is, in the conventional example, the mixing and dissolution of the raw material gas and the raw material water and the reaction cooling were performed in a tank-shaped pressure-resistant vessel. A space with a certain extent was required, and cooling could not be performed only from the periphery of the reaction tank.On the other hand, in the present embodiment, the mixing and dissolution of the raw material gas and the raw water and the reaction cooling were performed. Since the reaction process is separated, cooling can be considered mainly in the reaction process, and cooling with a simple configuration as in the above example is possible.
  • the separator 9 separates gas hydrate, unreacted gas and raw water.
  • Examples of the separator 9 include Deccan Yuichi, Cyclone, Centrifugal Separator 9, Belt Press, and Screw Concentrator Machine, rotary dryer, etc. are conceivable.
  • the pressure of the source gas is increased to a predetermined pressure by the gas pressure booster 1.
  • the raw water is pressurized to a predetermined pressure by the raw material pump 3.
  • the pressurized raw material gas is controlled by the gas flow control valve 4 to supply a constant amount to the line mixer 5, and is mixed with the raw water similarly supplied to the line mixer 15 by vigorously by the mechanism described above. At this time, the raw material gas becomes fine bubbles and is mixed into the raw water, so that dissolution of the raw material gas is promoted.
  • the raw material water in which the raw material gas is dissolved (including undissolved fine bubbles) is controlled to a constant flow rate by the flow rate control valve 6 and sent to the reaction pipe 7. Cooling produces gas hydrate. Then, the gas wicket generated here flows through the pipeline together with the unreacted gas and the raw water, and is sent to the separator 9. In this way, a certain amount of gas hydrate having a certain particle size is generated.
  • control valves 4 and 6 In order to generate gas hydrates having different particle diameters, the control valves 4 and 6 must be adjusted. Here, the mechanism by which the particle diameters change when the control valves are adjusted will be described. .
  • the raw material gas and the raw water are mixed by the line mixer 5, and the raw gas becomes fine bubbles and is dissolved in the raw water to reach the equilibrium concentration of the whole raw water.
  • the pressure P in the reaction pipe 7 is set higher than the minimum pressure Po for hydrate formation, and the temperature T in each part of the reaction pipe 7 is set lower than the maximum temperature To for hydrate formation.
  • Gas hydrate generation is started.
  • the generation of gas hydrate involves heat generation, but the heat in the reaction line 7 is lower than the maximum hydrate generation temperature T 0 by removing heat corresponding to the heat generation by cooling the chiller 17. Kept at temperature.
  • the cooling capacity of the chiller 17 is set so that the raw water does not fall below the freezing point.
  • the gas flow rate is reduced by adjusting the gas flow control valve 4, even if the raw material gas dissolved in the raw water at the upstream side of the reaction pipe 7 is converted into octahydrate and flows downstream, it is supplied.
  • the amount of raw material gas discharged is small, so the raw material gas The gas hydrate crystals already produced are sent to the separator 9 without any growth. As a result, the particle size of the generated gas hydrate becomes smaller.
  • the gas flow control valve 4 when the gas flow control valve 4 is adjusted to increase the gas flow rate, the raw material gas dissolved in the raw water becomes hydrated on the upstream side of the reaction pipe 7, and the raw material gas further increases as it goes downstream.
  • the gas dissolves in the raw water, and the crystals of gas hydrate that have already been generated grow and are sent to the separator 9. As a result, the particle size of the generated gas hydrate increases.
  • the flow rate control valve 6 is adjusted to increase the flow rate of the fluid flowing through the reaction pipe 7, or the gas flow rate control valve is used. 4 may be adjusted to reduce the gas flow rate, or both.
  • the adjustment of the control valves 4 and 6 may be performed manually at fixed time intervals, or may be automatically controlled by providing a control means for controlling the control valves 4 and 6 at preset time intervals. Good.
  • gas hydrate having different particle diameters is sent to the separator 9 and separated into gas hydrate, unreacted gas, and raw water.
  • the separated raw material water is again supplied to the line mixer 5 by the pump 19, and the unreacted raw material gas is pressurized to a predetermined pressure by the gas booster 2 and supplied to the line mixer 5.
  • the generated gas hydrate is taken out of the separator 9 and sent to a post-treatment step (steps after S5 in FIG. 15).
  • gas hydrates having different particle diameters are mixed, so that the volume filling efficiency and the bulk density at the time of dehydration and molding are increased, so that the transportation cost can be reduced.
  • the gas flow rate control valve 4 and the flow rate control valve 6 are provided, and these control valves 4 and 6 are adjusted at predetermined time intervals. Of different gas hydrates are continuously produced.
  • the reaction between the raw water and the raw gas is performed while being moved in the pipeline, so that in this gas hydrate generation step, all the components (the generated gas hydrate, The reaction gas and raw water) are once sent to the separator 9, and there is no need to provide a mechanism for extracting only the gas hydrate, which has the effect of simplifying the configuration of the apparatus.
  • the raw material gas is dissolved in the raw water continuously by the line mixer 5 composed of a cylindrical body, the space can be efficiently saved.
  • Embodiment 3-2 since both the dissolution of the raw material gas by the line mixer 5 and the generation of the gas hydrate in the reaction pipe 7 are continuously performed, the production efficiency of the gas hydrate can be drastically improved.
  • Embodiment 3-2 since both the dissolution of the raw material gas by the line mixer 5 and the generation of the gas hydrate in the reaction pipe 7 are continuously performed, the production efficiency of the gas hydrate can be drastically improved.
  • FIG. 13 is a system diagram showing the main components of the embodiment 2-2, and the same parts as those in FIG. 12 are denoted by the same reference numerals.
  • reaction pipes 7a and 7b are provided, and flow rate control valves 6a and 6b are provided at the respective inlet sides.
  • the flow rate control valves 6a and 6b are adjusted. Accordingly, the flow velocity of the fluid flowing through each of the reaction pipes 7a and 7b can be changed. As a result, gas hydrates having different particle diameters can be simultaneously generated, and the gas hydrates having different particle diameters are sent to the separator 9.
  • the flow rate control valves 6a and 6b are used as means for changing the flow rate of the fluid flowing through each of the reaction pipes 7a and 7b, but the present invention is not limited to this. Instead, for example, the diameters of the two reaction conduits 7a and 7b may be made different.
  • FIG. 14 is a system diagram showing the main components of the third to third embodiments of the present invention, and the same parts as those in FIGS. 12 and 13 are denoted by the same reference numerals.
  • two line mixers 5a, 5b, two reaction pipes 7a, 7b, two separators 9a, 9b are provided, and line mixers 5a, 5b
  • the gas flow control valves 4a and 4b and the flow rate control valves 6a and 6b are provided at the entrance side of the gas turbine.
  • the flow rate of the fluid flowing through each of the reaction pipes 7a and 7b is reduced.
  • the flow rate can be changed.
  • gas hydrates having different particle sizes can be simultaneously generated, and the gas hydrates having different particle sizes are sent to the separators 9a and 9b.
  • the gas hydrate sent to each of the separators 9a and 9b is mixed at the stage up to the molding step (S7) in FIG.
  • the temperature and pressure in each step are not particularly specified, but an example shown in FIG. 15 can be given. However, the optimum values of temperature and pressure in each process are selected according to various conditions. Further, in the above embodiment, methane gas is used as a main material gas as a source gas. Other examples include petroleum, propane, butane, krypton, xenon, and carbon dioxide.
  • the line mixer in this specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • one or two bent tubes are shown as an example of the reaction pipe 7, but three or more bent tubes may be used. By doing so, gas hydrates having further different particle diameters can be simultaneously generated. Further, a straight pipe may be used instead of the bent pipe.
  • the type of the raw water is not specified, but for example, freshwater, seawater, antifreeze, and the like can be considered. It is also conceivable to use a raw material liquid such as a liquid host substance or a host substance solution instead of the raw water. It goes without saying that the name of the substance generated in this case is not gas hydrate but gas clathrate.
  • the method for producing a gas clathrate according to the fourth embodiment includes a mixing / dissolving step of mixing a raw material liquid and a raw material gas in the middle of a line to dissolve the raw material gas in the raw material liquid; A gas class rate generating step of generating a gas clathrate by cooling while flowing in a reaction pipe; a separation step of separating the generated gas clathrate by a separator connected to the reaction pipe; A pressure detection step of detecting pressure; and / or a feed gas flow rate in the mixing / dissolving step and a raw material liquid flow rate in the gas clathrate generation step based on the pressure detected in the pressure detection step. And a pressure adjusting step of adjusting the pressure of the separator by adjusting the pressure.
  • the gas clathrate manufacturing apparatus includes gas flow rate adjusting means for adjusting the flow rate of the supplied raw material gas, raw material liquid flow rate adjusting means for adjusting the flow rate of the supplied raw material liquid, A line mixer for mixing the raw material gas into the raw material liquid by mixing the raw material gas in the middle of the line, a reaction pipe for cooling while flowing the raw material liquid in which the raw material gas is mixed and dissolved, and a reaction pipe connected to the reaction pipe.
  • the line mixer is characterized by generating fine bubbles of the raw material gas.
  • FIG. 17 is an explanatory diagram of the outline of the gas hydrate production process of the fourth embodiment, in which natural gas is used as a source gas.
  • FIG. 16 is a system diagram showing main components of the fourth embodiment. First, the components of the present embodiment will be described with reference to FIG.
  • the gas hydrate production apparatus includes a gas booster 1 for increasing the pressure of a raw material gas such as natural gas, and a raw material water (in this specification, “raw water J” refers to a raw material water only. Means that the raw material gas is dissolved in the raw water.)
  • the raw water pumps 3, 19, which supply the raw water, and the raw gas mixed with the raw water and the raw gas Mixer 5 that dissolves the water in the raw water, the reaction mixture 7 that cools and mixes the mixture mixed by the line mixer 5 to generate gas hydrate, the gas hydrate generated in the reaction line 7, and the unreacted gas.
  • a separator 9 for separating gas and raw water is provided.
  • a gas flow control valve 12a for adjusting the gas flow rate is provided in a piping line for supplying the raw material gas to the line mixer 5.
  • a flow rate control valve 12b for adjusting the flow rate of the raw water is provided in a piping line from the raw material pumps 3, 19 to the line mixer-5.
  • the separator 9 is provided with a pressure detector 10 for detecting the pressure in the separator 9. Based on the signal of the pressure detector 10, the control means 14 controls the gas flow control valve 12 a, The control valve 1 2b is controlled.
  • the line mixer 5 of the present embodiment includes a two-stage cylindrical body 11 having a large diameter at the entrance side and a small diameter at the exit side, and a large diameter portion of the cylindrical body 11.
  • 11a has a wing body 13 called a guide vane, and a plurality of mushroom impact bodies 15 extending from the inner peripheral surface of the cylinder to the center in a small diameter portion 11b ahead of it. .
  • the raw material gas efficiently dissolves in the raw water.
  • the reaction pipe 7 is formed of a bent pipe, and the peripheral surface of the pipe is cooled by a chiller 17. In this way, the use of the reaction pipe 7 allows efficient cooling from the surroundings, so that the gas and raw water are directly cooled by a cooling coil, etc. There is no need to perform this, and the configuration of the device can be simplified and made compact.
  • such a reaction pipe 7 can be used because the mixing and dissolution of the raw material gas and the raw water are performed by the line mixer 5 in advance, and the apparatus configuration can be considered mainly for cooling in the reaction pipe 7. Because. That is, in the conventional example shown in Patent Document 1, the mixing and dissolving of the raw material gas and the raw water and the reaction cooling were performed in a hydrate-forming vessel in a tank shape, so that the mixing and dissolving had a certain extent. A space was required, and cooling could not be performed only from the periphery of the container. In the present embodiment, however, the mixing of the raw material gas and the raw water and the dissolution and the reaction cooling were separated. Therefore, cooling can be considered mainly, and cooling with a simple configuration as in the above example is possible.
  • the separator 9 separates gas hydrate, unreacted gas, and raw water.
  • Examples of the separator 9 include Deccan Yuichi, cyclone, centrifugal separator, belt press, and screw concentrator.
  • a rotary dryer may be considered.
  • the pressure of the raw material gas is increased to a predetermined pressure by a gas pressure booster 1 and supplied to a line mixer 5 via a gas flow control valve 12a.
  • the raw water is also raised to a predetermined pressure by the raw water pump 3 and supplied to the line mixer 5 via the flow rate control valve 12b.
  • the gas flow control valve 12a and the flow rate control valve 12b are set to their maximum values.
  • the raw material gas and raw water supplied to the line mixer 5 are mixed at an intense speed by the mechanism described above. At this time, the raw material gas becomes fine bubbles and is mixed into the raw water, so that the dissolution of the raw material gas is promoted.
  • the raw material water in which the raw material gas is dissolved (including the undissolved fine bubbles) is sent to the reaction pipe 7, cooled by the chiller 17, and sent to the separator 9.
  • the pressure in the reaction pipe 7 is not at the hydrate generation pressure, so that hydrate is not generated.
  • the undissolved raw material gas is supplied to the separator 9, resulting in separation.
  • the pressure in vessel 9 rises.
  • the pressure in the separator 9 increases, and when the pressure in the reaction line 7 communicating with the separator 9 increases to the hydrate generation pressure, In the reaction line 7, the generation of gas hydrate is started. Then, the gas hydrate generated here flows through the pipeline together with the unreacted gas and the raw water and is sent to the separator 9.
  • the control means 14 controls the gas flow rate control valve 12a, the flow rate of the raw water.
  • One or both of the control valves 12b are controlled, whereby the pressure of the separator 9 and the pressure of the reaction pipe 7 are adjusted.
  • the pressure of the separator 9 is adjusted by adjusting the control valves 12a and 12b.
  • the control valves are adjusted, the pressure of the separator 9 changes. The mechanism will be described.
  • the raw material gas and the raw water are mixed by the line mixer 5, and the raw gas becomes fine bubbles and is dissolved in the raw water to reach the equilibrium concentration of the whole raw water.
  • the rate of hydration in the reaction pipe 7 with respect to the supply gas amount can be increased, The amount of unreacted gas sent to the separator 9 decreases.
  • the supply gas amount is set to a certain amount or less, the entire amount of the raw material gas is hydrated in the reaction pipe 7, and the unreacted gas is not supplied to the separator 9.
  • the amount of unreacted gas supplied to the separator 9 can be adjusted by reducing the gas flow rate by adjusting the gas flow control valve 12a.
  • the unreacted gas in the separator 9 is dissolved and hydrated, and the pressure in the separator 9 tends to decrease.
  • the amount of unreacted gas lined up in line 9 becomes smaller or disappears, the amount of unreacted gas decreases due to hydration in the separator 9 and, as a result, the pressure in the separator 9 decreases. be able to.
  • the gas flow control valve 12a is adjusted to increase the gas flow rate, the ratio of the gas hydrated in the reaction pipe 7 to the supply gas amount can be reduced, and the supply gas amount can be reduced.
  • the amount is more than a certain amount, unreacted gas is supplied to the separator 9 without the whole amount of the raw material gas being hydrated in the reaction pipe 7.
  • the gas flow control valve 12a by adjusting the gas flow control valve 12a to increase the gas flow, the amount of unreacted gas supplied to the separator 9 can be increased, and as a result, the pressure of the separator 9 is increased. be able to.
  • the flow rate of the fluid flowing through the reaction pipe 7 is increased by adjusting the flow rate control valve 12b, the residence time of the raw water in the reaction pipe 7 becomes shorter, so that the dissolution of the source gas and the The amount of rate reduction is reduced, and the amount of unreacted gas sent to the separator 9 is increased. As a result, the pressure of the separator 9 can be increased. Conversely, if the flow rate of the fluid flowing through the reaction pipe 7 is reduced by adjusting the flow rate control valve 12b, the residence time of the raw water in the reaction pipe 7 becomes longer, so that the dissolution of the raw material gas and The amount of hydration increases, and the amount of unreacted gas sent to the separator 9 decreases. As a result, the pressure rise in the separator 9 can be stopped or the pressure can be reduced.
  • the gas flow rate control valve 12a is adjusted to increase the gas flow rate, or the flow rate control valve 12b is adjusted to react. What is necessary is just to increase the flow velocity of the fluid flowing through the pipe 7.
  • the gas flow control valve 12a is adjusted to reduce the gas flow, or the flow rate control valve 12b is adjusted to flow through the reaction line 7. What is necessary is just to reduce the flow velocity of the fluid.
  • the pressure of the separator 9 is adjusted, and the generated gas hydrate is maintained at a pressure in the separator 9 that is stable.
  • the pressure in the reaction pipe 7 is also maintained at the optimal pressure for hydration.
  • gas hydrate, unreacted gas and raw water are separated, and the separated raw water is pumped. It is again supplied to the line mixer 5 by 1 9.
  • the generated gas hydrate is taken out of the separator 9 and sent to a post-treatment step (steps after S5 in FIG. 17). .
  • the water level in the separator 9 is detected by the level meter 21, and the water level in the separator 9 is controlled to be equal to or higher than a certain level. This is because the raw water has a sealing effect so that the gas does not flow into the raw water return line.
  • the raw water unnecessary for sealing is raised to a predetermined pressure by the raw water pump 19 and supplied to and supplied to the line mixer 5.
  • the gas flow control valve 12 a and the flow velocity control valve 12 b are provided, and these control valves 12 a and 12 b are provided in the separator 9. Since the control is performed based on the detected value of the pressure detector 10, the pressure in the separator 9 can be controlled by a simple device, and the device can be simplified. Further, in the present embodiment, the reaction between the raw water and the raw gas is performed while being moved in the pipeline, so that in this gas hydrate generation step, all the components (the generated gas hydrate, The reaction gas and the raw material water) are once sent to the separator 9, which eliminates the need for a mechanism for extracting only the gas hydrate, and has the effect of simplifying the configuration of the apparatus.
  • the raw material gas is dissolved in the raw water continuously by the line mixer 5 composed of a cylindrical body, the space can be efficiently saved.
  • a pipe-shaped reaction pipe 7 is used instead of the large-diameter hydrate generation vessel.
  • the temperature and pressure in each step are not particularly specified, but an example shown in FIG. 17 can be given. However, the optimum values of temperature and pressure in each process are selected according to various conditions.
  • natural gas containing methane gas as a main component as a source gas has been described, but other examples include ethane, propane, butane, krypton, xenon, and carbon dioxide.
  • the line mixer in another example, a so-called bench lily tube type in which the raw material gas is sucked and mixed by narrowing the middle of the cylindrical body to generate a negative pressure
  • a gas-liquid mixer utilizing a swirling flow in a conical or frustoconical container such as a swirling type microbubble generator disclosed in Japanese Patent Application Laid-Open No. 2000-4747.
  • the line mixer in the present specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • bent tube may be composed of a plurality of branched straight tubes.
  • the type of the raw water is not specified, but for example, freshwater, seawater, antifreeze, and the like can be considered. It is also conceivable to use a raw material liquid such as a liquid host substance or a host substance solution instead of the raw water. It goes without saying that the name of the substance generated in this case is not gas hydrate but gas clathrate.
  • the gas clath plate manufacturing method includes a first mixing / dissolving step of mixing a raw material liquid and a raw material gas in the middle of a line and dissolving the raw material gas in the raw material liquid; A gas clathrate generation step of generating a gas clathrate by cooling while flowing in a reaction pipe, and a separation step of separating the generated gas clathrate by a separator connected to the reaction pipe, After the first mixing / dissolving step, one or more second mixing / dissolving steps for dissolving the raw material gas in the raw material liquid before the gas class / rate generation step or during the gas clath rate generation step are provided. Things.
  • the gas clathrate manufacturing apparatus includes a line mixer that mixes the raw material liquid and the raw material gas in the middle of the line and dissolves the raw material gas into the raw material liquid, and a raw material mixed with the raw material gas.
  • one or more line mixers are provided in the middle of the reaction pipe.
  • the line mixer is characterized by generating fine bubbles of the raw material gas.
  • a pressure adjusting means for adjusting the line pressure is provided downstream of the line mixer.
  • a flow rate adjusting means for adjusting the flow rate of the fluid flowing through the line is provided downstream of the line mixer.
  • FIG. 21 is an explanatory diagram of the outline of the gas hydrate production process of the fifth embodiment, in which natural gas is used as a source gas.
  • the gas hydrate manufacturing apparatus includes a gas booster 1 for increasing the pressure of a raw material gas such as natural gas, and a raw material water (in this specification, “raw water J” refers to a raw material water only. This means that the raw material gas is dissolved in the raw water and the raw water is pumped.3)
  • the raw water pumps 3 and 19 that supply the raw water Reaction line 7, which is mixed in the first line mixer 5a and line mixer 5a, which dissolves in raw water, flows while cooling, and generates gas hydrate.
  • Each component is indicated by an arrow in the figure.
  • the gas flow control valves 12 a, 12 b, and 12 control the gas flow in the piping lines that supply the raw gas to the line mixers 5 a, 5 b, and 5 c.
  • a flow rate control valve 14 for adjusting the flow rate of the raw water is provided in a piping line from the raw material pumps 3, 19 to the line mixer 5a.
  • a line for supplying the raw material gas pressurized by the gas pressure booster 1 to the separator 9 is provided with a gas flow regulating valve 12 d for adjusting a supply gas amount, and a surplus raw material in the separator 9 is provided.
  • a line for returning gas to the gas hydrate generation line is provided with a gas flow control valve 12 e and a gas booster 2.
  • the gas flow control valves 12 d and 12 e are controlled based on the signal of the pressure detector 10 that detects the pressure in the separator 9 provided in the separator 9, and the pressure in the separator 9 is controlled. Is adjusted.
  • each of the line mixers 5a, 5b, and 5c of the present embodiment has a two-stage cylindrical body 11 having a large diameter at the entrance side and a small diameter at the exit side.
  • a cylindrical body 1 1 has a wing body 13 called a guide vane in a large diameter portion 1 1 a, and a small diameter portion 1 1 b beyond the wing body 13.
  • the raw water supplied to the line mixer 5 by the raw water pump 3 is turned into a swirling flow by the wing 13 and is pushed outward by violent centrifugal force.
  • the raw material gas is further intensely stirred by the colliding body 15, and the raw material gas is entrained therein and broken into ultrafine bubbles, whereby the raw water and raw gas are mixed.
  • the contact area between the raw material gas and the raw water increases, and the raw gas is efficiently dissolved in the raw water.
  • the reaction pipe 7 is formed of a bent pipe, and the peripheral surface of the pipe is cooled by a chiller 17. As described above, the use of the reaction pipe 7 has made it possible to efficiently cool the surroundings, and thus the gas and raw water are directly cooled by a cooling coil or the like, as is generally done in the past. There is no need to perform this, and the configuration of the device can be simplified and made compact.
  • reaction pipe 7 The reason why such a reaction pipe 7 can be used is that the mixing and dissolution of the raw material gas and the raw water are performed by the line mixers 5a, 5b, and 5c, and the reaction pipe 7 is mainly used for cooling.
  • the device configuration can be considered. That is, in the conventional example shown in Patent Document 1, the mixing and dissolving of the raw material gas and the raw water and the reaction cooling were performed in a hydrate generating tank in a tank shape, so that the mixing and dissolving had a certain space. In this embodiment, the mixing and dissolving of the raw material gas and the raw water and the cooling of the reaction were separated, so that cooling was not possible only from around the vessel. Cooling can be considered mainly, and cooling with a simple configuration as in the above example is possible.
  • the separator 9 separates gas hydrate, unreacted gas, and raw water.
  • Examples of the separator 9 include a decanter, a cyclone, a centrifugal separator, a belt press, a screw concentration dehydrator, A rotary dryer or the like is conceivable.
  • the source gas pressurized to a predetermined pressure by the gas booster 1 is supplied to the line mixer 5a via the gas flow control valve 12a. Also specified by the raw water pump 3 The raw water pressurized to the pressure of the above is supplied to the line mixer 5a via the flow rate control valve 14.
  • the raw material gas and raw water supplied to the line mixer 5a are mixed at a violent rate by the mechanism described above. At this time, the raw material gas becomes fine bubbles and mixes with the raw water, so that the dissolution of the raw material gas is promoted.
  • the separator pressure is maintained at the hydrate generation conditions at 12 d and 12 e, and the pressure of the reaction tube communicating with the separator is higher than that. Rate generation is started.
  • the raw material gas and the raw water are mixed by the line mixer 5a, and the raw material gas becomes fine bubbles.
  • the pressure P in the reaction line 7 is higher than the minimum hydrate formation pressure ⁇ , and the temperature T in each part of the reaction line 7 is lower than the maximum hydrate formation temperature To.
  • gas hydrate generation is started.
  • the generation of gas hydrate involves heat generation, but the heat in the reaction line 7 is lower than the maximum hydrate formation temperature To by removing the heat equivalent to the heat generation by cooling the chiller 17. Kept at temperature.
  • the cooling capacity of the chiller 17 is set so that the raw water does not fall below the freezing point. .
  • the concentration of the dissolved gas decreases, and the raw material gas further dissolves until the concentration reaches a low concentration.
  • the concentration exceeds the concentration the gas hydrate is further generated.
  • the amount of raw material gas dissolved in the raw water needs to be as close as possible to the theoretical hydration number.
  • the second and third line mixers 5 b and 5 c are provided in the middle of the reaction pipe 7, and the raw material gas is supplied as fine bubbles in the middle of the reaction pipe 7. Efficient dissolution of source gas is realized. In other words, even if the raw material gas, which has become fine bubbles in the first line mixer 5a, is completely dissolved or octahydrated in the middle of the reaction pipe 7, or if it is present as bubbles, it will flow through the pipe. Therefore, it is considered that the bubbles coalesce into large bubbles, the contact area with the raw water is reduced, and the dissolving efficiency is deteriorated. Therefore, the raw material gas is supplied again as fine bubbles in the middle of the reaction pipe 7, thereby improving the dissolving efficiency of the raw material gas.
  • the gas hydrate generated as described above flows through the reaction pipe 7, and together with the raw water and the unreacted gas (when the total amount is octahydrated, there is no unreacted gas). Sent to
  • gas hydrate, unreacted gas, and raw water are separated, and the separated raw water is supplied again to the line mixer 5a by the pump 19.
  • the generated gas hydrate is taken out of the separator 9 and sent to a post-treatment step (steps after S5 in FIG. 21).
  • the water level in the separator 9 is detected by the level meter 21, and the water level in the separator 9 is controlled to be equal to or higher than a certain level. This is because the raw water has a sealing effect so that the gas does not flow into the raw water return line. Then, raw water unnecessary for sealing is raised to a predetermined pressure by the raw water pump 19 and supplied to the line mixer 5a. As described above, according to the present embodiment, by providing a plurality of line mixers, the dissolution of the raw material gas in the raw water is promoted, and efficient hydrate generation is realized.
  • the reaction between the raw water and the raw gas is carried out while moving through the pipeline. Therefore, in this gas hydrate generation step, everything (the generated gas hydrate, The reaction gas and the raw material water) are once sent to the separator 9, which eliminates the need for a mechanism for extracting only the gas hydrate, and has the effect of simplifying the configuration of the apparatus.
  • the raw material gas is dissolved in the raw water continuously by the line mixers 5a, 5b and 5c each comprising a cylindrical body, the space can be efficiently saved.
  • the hydrate generation vessel was replaced with a large-diameter hydrate generation vessel.
  • a pipe-shaped reaction pipe 7 can be used, and a simple and compact cooling means for cooling the peripheral surface of the pipe becomes possible.
  • a pressure adjusting means 27 including a pressure detector 23 and an adjusting valve 25 may be provided between the line mixer 5 a and the reaction pipe 7.
  • the pressure adjusting means 27 By providing the pressure adjusting means 27, the pressure on the line mixer 5a side can be increased, and the dissolution of the raw material gas into the raw water by the line mixer 5a can be further promoted.
  • a retention section 2 as a flow rate adjusting means for reducing the flow velocity of the fluid flowing through the line downstream of the line mixer 5 is used. 9 may be provided. Providing the stagnation section 29 allows time for the raw material gas, which has been made into fine bubbles by the line mixer 5a, to be dissolved in the raw water, so that the dissolution can be promoted.
  • a tank having a constant volume can be considered.
  • the temperature and the pressure in each step are not specifically described. Can be mentioned. However, the optimum values of temperature and pressure in each process are selected according to various conditions.
  • the line mixer in this specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • the case where the number of reaction pipes is one is shown.
  • a plurality of reaction pipes may be provided, and the same number of line mixers may be installed in each of the reaction pipes.
  • the number of line mixers installed in each of the plurality of reaction pipes may be different.
  • the reaction pipe may be branched on the way, and a plurality of line mixers may be installed in the reaction pipe before the branch so that no line mixer is installed in each of the reaction pipes after the branch. The same or a different number of line mixers may be installed on the road.
  • a methane gas as a main component is used as a raw material gas.
  • ethane propane, bushing, krypton, xenon, and carbon dioxide.
  • the type of the raw water is not specified, but, for example, fresh water, seawater, antifreeze, and the like can be considered. It is also conceivable to use a raw material liquid such as a liquid host substance or a host substance solution instead of the raw water. It goes without saying that the name of the substance generated in this case is not gas hydrate but gas clathrate.
  • the gas transport method includes a mixing / dissolving step in which raw water and raw gas are mixed in the middle of the line and the raw gas is dissolved in raw water, and the mixed / dissolved product is supplied to the reaction pipe.
  • the method includes a concentration step of concentrating the generated gas hydrate or a separation step of separating the generated gas hydrate and the raw water.
  • the gas transport device is for transporting the raw material gas by reacting the raw water and the raw gas to form a hydrate and transporting the raw gas.
  • a line mixer for dissolving the mixture in the raw water, a reaction pipe for cooling the mixed and dissolved material, and a gas hydrate generated in the reaction pipe which is detachably connected to the reaction pipe. It is provided with a transport tank that is stored and removed after filling the gas hydrate and used for transportation.
  • the apparatus is provided with a concentrator for concentrating the generated gas hydrate or a separator for separating the generated gas hydrate from the raw water.
  • the gas transport method according to the present embodiment hydrates natural gas, which is a raw material gas, and continuously supplies and stores the hydrate in a transport tank for efficient transport.
  • FIG. 22 is a system diagram showing main components of an apparatus for realizing such a method.
  • the apparatus of the present embodiment includes a gas booster 1 for increasing the pressure of a raw material gas such as natural gas, a raw water pump 3 for supplying raw water stored in a raw material tank 2 to a line mixer 5 described later, Line mixer 5, which mixes the raw material gas and dissolves the raw material gas in the raw water Water, which is mixed by the line mixer 5 while being cooled while flowing
  • the reaction pipeline 7, which produces gas hydrate, and the reaction pipeline 7 are cooled
  • the gas hydrate generated in the reaction pipe 7 is installed detachably from the reaction pipe 7 And a transport tank 9 for storage.
  • Each component is connected by a pipe indicated by a solid line with an arrow in the figure, and a pipe line for supplying the raw material gas to the line mixer 5 is based on a pressure detector 6 and a value detected by the pressure detector 6. There is provided a valve 4 that operates.
  • a piping line is provided between the transport tank 9 and the upstream side of the line mixer 5 to return the gas in the transport tank 9 to the line mixer 5 side, and a pressure sensor installed in the transport tank 9 is provided in this piping line.
  • a valve 10 that is controlled based on the signal 8 is provided.
  • a gas booster 12 is installed in this line.
  • a piping line for returning the raw water to the raw material tank 2 is provided between the transport tank 9 and the raw water tank 2, and a raw water pump 19 is installed in the piping line.
  • the line mixer 5 of the present embodiment includes a two-stage cylindrical body 11 having a large diameter at the entrance side and a small diameter at the exit side, and a large diameter portion of the cylindrical body 11.
  • 11 a has a wing body 13 called a guide vane, and a plurality of mushroom-shaped collision bodies 15 extending from the inner peripheral surface of the cylinder to the center in a small diameter portion 11 b ahead of the wing body 13. ing.
  • the raw water supplied to the line mixer 15 by the raw water pump 3 is turned into a swirling flow by the wing 13 and is pushed outward by violent centrifugal force.
  • the raw material gas is further intensely stirred by the colliding body 15, and the raw material gas is entrained therein and broken into a group of ultrafine bubbles, and the raw water and raw material gas are mixed.
  • the contact area between the raw material gas and the raw water increases, and the raw gas is efficiently dissolved in the raw water.
  • the reaction pipe 7 is formed of a bent pipe, and the peripheral surface of the pipe is cooled by a chiller 17. In this way, the use of the reaction pipe 7 enables efficient cooling from the surroundings, so that the gas and raw water are directly cooled by a cooling coil, etc., as is generally done in the past. There is no need to perform this, and the configuration of the device can be simplified and made compact.
  • such a reaction pipe 7 can be used because the raw material gas and the raw water are mixed and dissolved in advance by the line mixer 5, and the reaction pipe 7 is mainly used for cooling.
  • the device configuration can be considered. That is, in the conventional example shown in Patent Document 1, the mixing and dissolving of the raw material gas and the raw water and the reaction cooling were performed in a tank-shaped pressure-resistant vessel, so that the mixing and dissolving had a certain space. However, in the present embodiment, the mixing and dissolution of the raw material gas and the raw water and the cooling of the reaction were separated. Cooling can be considered mainly, and cooling with a simple configuration as in the above example is possible.
  • the transport tank 9 is detachably mounted on the reaction pipe 7, and when a certain amount of hydrate has been collected, the hydrate can be removed and used for transportation by a transport means such as a truck 20 (see FIG. 22).
  • a transport means such as a truck 20 (see FIG. 22).
  • a condenser utilizing the density difference of the fluid is attached, and the gas hydrate is concentrated by passing through the condenser, and the concentrated gas hydrate is led to the transport tank 9. You may do so.
  • equipment for separating gas hydrate and raw water such as decanter, cyclone, centrifuge, belt press, screw concentrator / dehydrator, and rotary dryer was installed, and these equipment separated the raw water.
  • the gas hydrate may be guided to the transport tank 9.
  • the transport tank 9 transports the gas hydrate at a temperature below the equilibrium temperature determined by the pressure.
  • the equilibrium temperature for methane hydrate is as follows. At atmospheric pressure, it is below -80 ° C, at 25 atm is below 0 ° C, and at 80 atm is below 10 ° C.
  • the transport tank 9 needs to have a pressure-resistant and heat-insulating structure so as to withstand the above-mentioned pressure and to be at or below the equilibrium temperature determined by the above-mentioned pressure.
  • a refrigerator may be provided in the transport tank for long-distance transport.
  • the equilibrium temperature of the main hydrate at atmospheric pressure is -80 ° C, but it is known that it can be stored at a higher temperature of 120 ° C to 110 ° C. This is because gas escapes from the main hydrate surface due to dissociation, and ice shells are formed on the surface, and this ice shell acts as a protective container to prevent dissociation of the internal hydrate (see “Self-preservation J Therefore, it may be possible to transport above the equilibrium temperature. You.
  • the pressure of the source gas is increased to a predetermined pressure by the gas pressure booster 1.
  • the raw water is also raised to a predetermined pressure by the raw water pump 3.
  • the pressurized raw material gas is controlled by the gas flow control valve 4 to supply a constant amount to the line mixer 5, and is mixed with the raw water similarly supplied to the line mixer 15 by violent force by the mechanism described above. .
  • the raw material gas becomes fine bubbles and is mixed into the raw water, so that the dissolution of the raw material gas is promoted.
  • the raw material water in which the raw material gas is dissolved (including undissolved fine bubbles) is sent to the reaction pipe 7 and cooled by the chiller 17 to generate gas hydrate.
  • the raw material gas and the raw water are mixed by the line mixer 5, and the raw gas becomes fine bubbles and is dissolved in the raw water to reach the equilibrium concentration of the whole raw water.
  • the pressure P in the reaction line 7 is set higher than the minimum hydrate generation pressure Po, and the temperature T of each part of the reaction line 7 is set lower than the maximum hydrate generation temperature To.
  • Gas hydrate generation is started.
  • the generation of gas hydrate involves heat generation, but the heat in the reaction pipe 7 is lower than the maximum hydrate formation temperature To by removing the heat equivalent to the heat generation by cooling the chiller 17. Is kept.
  • the cooling capacity of the chiller 17 is set so that the raw water does not fall below the freezing point.
  • the gas hydrate generated in this way flows through the pipeline together with the unreacted gas and the raw water, and is sent to the transport tank 9.
  • transport to transport tank 9 After filling, unreacted water is withdrawn from the bottom of the tank by the raw water pump 19. However, regardless of the raw water pump 19, it may be withdrawn from the lower part by gravity.
  • the transport tank filled with gas hydrate and unreacted water as described above is transported to the destination by a trailer or the like. After arriving at the destination, the pressure is reduced to atmospheric pressure, and the source gas contained in the gas hydrate is released.
  • a heater may be built in the transport tank 9 and the heater may be used for heating.
  • a dehumidifier shall be provided in the path of the gas discharge pipe as necessary, so that the moisture contained in the raw material gas is removed by
  • the reaction between the raw material water and the raw material gas is performed while moving the same in the pipeline. Therefore, in the gas hydrate generation step, all of the gas hydrate (the generated gas hydrate) is used. Rate, unreacted gas, and raw water) are sent to the transport tank 9, eliminating the need for a mechanism to extract only the gas hydrate, thus simplifying the configuration of the device.
  • the raw material gas is continuously dissolved in the raw water by the line mixer 5 composed of a cylindrical body, the space can be efficiently saved.
  • a pipe-shaped pipe was used instead of a large-diameter reaction tank as shown in Patent Document 1.
  • the reaction pipe 7 can be used, and a simple and compact cooling means for cooling the peripheral surface of the pipe can be realized.
  • the temperature and the pressure in each step are not particularly specified, but the optimum values of the temperature and the pressure in each step are selected according to various conditions.
  • natural gas containing methane gas as a main component has been described as a source gas, but other examples of the source gas include ethane, pupan, butane, krypton, xenon, and carbon dioxide. Etc.
  • the line mixer a so-called bench lily tube type in which the raw material gas is sucked and mixed by narrowing the middle of the cylindrical body to generate a negative pressure, Alternatively, a gas-liquid mixture using a swirling flow in a conical or frustoconical vessel, such as a swirling type microbubble generator disclosed in Japanese Patent Application Laid-Open No. 2000-4747. Such a thing may be used.
  • the line mixer in the present specification broadly includes a line mixer that can continuously mix gas and liquid on a line.
  • a single bent pipe is shown as an example of the reaction pipe 7, but a plurality of bent pipes may be used, or a straight pipe may be used instead of the bent pipe. No.
  • the type of the raw water is not specified, but, for example, fresh water, seawater, antifreeze, and the like can be considered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

ガスクラスレートの製造方法およ 置 腿分野
本発明は、 例えば天然ガスなどの原料ガスと液とを反応させてガスクラスレート を製造するガスクラスレートの製造方法及び装置に関する。 なお、 ガスクラスレー トの中、 ホスト物質が水の場合にはガスハイドレートと言う。 背景腿
ガスハイドレートは、 7K分子が構成する籠状構造の内部に天然ガス、 二酸化炭 素などの気体分子を高濃度に包蔵する氷状の物質である。 ガスハイドレートは、 単位体積当たり多量の気体を包蔵でき、 しかも、 天然ガスのハイドレートは、 液化 天然ガスに比較して、 大気圧下比較的高温にて貯蔵 ·輸送できることから、 天然ガ ス等の輸送、 貯蔵への応用が注目されている。
このため、 従来は天然に存在するガスハイドレート (いわゆるメタンハイドレー ト) の利用に関する検討が中心であつたが、 近年この性質に着目してこれを工業的 に製造する試みが行われている。
従来行われていたガスハイドレート製造工程を概説すると、 天然ガス等の原料 ガスと水を、 平衡曲線で示されるハイドレート生成範囲に気体と水の温度、 圧力 ' を保持し、 両者を接触、 溶解させることでガスハイドレートを生成する。 生成さ れたいわゆるシヤーべット状のガスハイドレートは、 未反応のガスおよび原料水 から分離脱水され、 さらに凍結、 成型等の各処理が行われ、 貯蔵設備に貯蔵され る。 そして、 必要に応じて貯蔵設備から搬出して輸送される。
ところで、 ガスハイドレートの製造工程において、 ガスハイドレートの生成速 度を規律する最も重要なファクタは、 ガスの水への拡散溶解速度と、 ガスと水が 反応するときの反応熱を奪う抜熱効率である。
ガスの水への溶解速度と、 ガスハイドレート生成時の抜熱効率を高めてガスハ イドレートを効率よく製造する技術として、 例えば図 6に示す特開 2 0 0 1 - 1 0 9 8 5号公報に開示された天然ガスハイドレートの製造装置および製造方法の 発明がある。
同公報の発明は、 耐圧容器 5 1と、 耐圧容器 5 1内をガススペース 5 6と気液 接触スペース 5 2に区画する多孔質板 5 5と、 気,触スペース 5 2内に 2段以 上に配置されたコイル蒸発器 5 3と、 これに冷媒を供給する冷凍機 5 8と、 気液 接触スペース 5 2の出口にバッファ一タンク 5 9を介して連結されたガスハイド レ一トの貯蔵タンク 6 2と、 その底部の水を気,触スペース 5 2内の底部に供 給する原料水供給配管 6 1と、 ガススペース 5 6に天然ガスを供給する原料ガス 供給配管 5 7とを有するガスハイドレート製造ユニット A、 B、 Dを天然ガスの 成分ガスに応じて複数個連結し、 各貯蔵タンク 6 2の上部空間部にガス抜き出し 管 7 0を接続し、 これを後流の再生ガス混合器 6 6に連結したものである。 しかしながら、 上記の従来技術には以下のような問題点がある。
前述のように、 生成速度を規律するのは、 水中へのガスの拡散溶解速度とガス ハイドレ一ト生成時の反応熱を奪う抜熱効率である。
この点、 上記の従来技術においては、 水中へのガス拡散溶解を促進するために 、 多孔質板 5 5によってガスの微細気泡を発生させることにより、 水とガスとの 接触面積を大きくするという方法を採用している。
しかしながら、 このような多孔質板 5 5を介して気泡を導入する方法では、 発 生できる気泡径はさほど小さくなく、 気液界面面積拡大によるガス溶解促進効果 はあまり期待できない。
一方、 一定以上の面積を有する多孔質板 5 5を設置するためのスペースが必要 であり、 また、 耐圧容器 5 1内で気液を接触させるための気液接触スペース 5 2 も一定以上確保することが必要となることから、 耐圧容器 5 1の容積を大きくす る必要があり、 設備が大きくなるという問題がある。
さらに、 多孔質板 5 5にハイドレートが付着、 成長し、 最悪の場合には孔が閉 寒される虞がある。 また、 ガスハイドレート生成時の反応熱の除去も重要なファクタ一であるが、 反応槽である耐圧容器 5 1の容積が大きいことから、 耐圧容器の壁面の冷却だけ では十分な冷却ができない。
このため、 上記の従来例においては、 7やガスを直接冷却するため耐圧容器 5 1の内部に冷媒循環コイル 5 3を設置するという手段を採用しているが、 装置が 大型化、 複雑化するという問題がある。
また、 他の問題点として、 耐圧容器内でガスハイドレートを生成する場合には 、 生成したガスハイドレートが耐圧容器内の水面に浮かぶため、 それを取り出す ための手段 (例えばガスハイドレートと水の混合物排出口、 及び水面をその位置 に制御する装置等) が必要となり、 同じく装置の複雑化の問題がある。
このように、 従来技術においては、 設備が複雑で大がかりになるという問題が あった。 発明の開示
本発明は、 液中へのガス拡散 ·溶解と生成反応熱の除去を効率よく行うことがで き、 かつ装置を単純でコンパクトにできるガスクラスレートの製造方法および装置 を得ることを目的としている。
上記目的を達成するために、 本発明は、 原料液と原料ガスとをライン途中で混合 して原料ガスを原料液に溶解させる混合 ·溶解工程と、 原料ガスが溶解した原料液 を反応管路に流しながら冷却してガスクラスレートを生成させる生成工程とを有す るガスクラスレートの製造方法を提供する。 前記混合 ·溶解工程は、 原料ガスを微細気泡状にして連続的に溶解させることか らなるのが好ましい。
前記混合'溶解工程は、 反応槽を用いることなく、 原料液と原料ガスとをライン 途中で混合して原料ガスを原料液に溶解させることからなり、 前記生成工程は、 反 応槽を用いることなく、 混合 ·溶解されたものを反応管路に流しながら冷却してガ スクラスレートを生成させることからなる。 原料液と原料ガスの混合はラインミキサーによって連続的に行うのが好ましい。 前記混合 ·溶解工程は、 原料液と原料ガスとをラインミキサーによって混合して 原料ガスを原料液に溶解させることからなるのが好ましい。
前記混合 ·溶解工程が、 原料液と原料ガスとをラインミキサーによって混合して 原料ガスを原料液に溶解させることからなり、 前記生成工程が、 原料ガスが溶解し た原料液をパイプ状の反応管路に流しながら管路の周面を冷却してガスクラスレー トを生成させる生成工程からなるのがより好ましい。
ラインミキサーを使用する場合には, ラインミキサーと反応管路との間に、 圧力 調整手段を設けてラインミキサー側の圧力が高くなるように圧力調整する工程を有 するのが望ましい。 また、 ラインミキサーの下流側にラインを流れる流体の流速を 遅くするための流速調整工程を有するのが望ましい。
本発明のガスクラスレートの製造方法は、 前記混合'溶解工程の後、 前記ガスク ラスレート生成工程の前、 または前記生成工程の途中において原料ガスを原料液に 溶解させる更なる混合 ·溶解工程を有するようにしてもよい。 本発明のガスクラスレートの製造方法においては、 原料液と原料ガスとをライン 途中で混合して原料ガスを原料液に溶解させる混合 ·溶解工程と、 原料ガスが溶解 した原料液を反応管路に流しながら冷却してガスクラスレートを生成させる生成ェ 程とが分離して行われるようにしてもよい。 この場合、 前記混合'溶解工程はライ ン途中で原料ガスと原料液をラインミキサーにより混合して原料ガスを原料液に連 続的に溶解させることからなり、 前記生成工程は原料ガスが溶解した原料液を反応 管路に流しながら冷却してガスクラスレートを生成させることからなるのが好まし い。 本発明のガスクラスレートの製造方法においては、 生成工程は、 前記混合'溶解 工程で混合溶解された原料ガス全量をクラスレート化することからなるのが好まし い。
前記生成工程は、 以下の条件で行うのが好ましい: ( a ) 前記反応管路の出口の圧力 Pがクラスレート生成最 力 P。より高い、
(b) 反応管路内の温度 Tがクラスレート生成最高温度 T0より低い, かつ、
( c ) 前記混合 ·溶解工程で混合溶解された原料ガスが全量クラスレ一ト化すると きの生成熱を全て奪えるように、 原料液流量、 原料液圧力、 原料ガス流量、 原料ガ ス圧力、 冷却能力、 反応管路長さ及び反応管路径が設定されている。 前記ガスクラスレートの製造方法は、 好ましくは、 前記生成工程における反応管 路を流れる原料液の流速又は供給する原料ガス量のいずれか一方又は両方を変ィ匕さ せることによって生成されるガスクラスレートの粒径を変化させる工程をさらに有 する。 複数の反応管路の場合には、 前記ガスクラスレートの製造方法は、 生成工程 における前記複数の反応管路のそれぞれを流れる原料液の流速又は各反応管路に供 給される原料ガス量のいずれか一方又は両方を異ならせることで各反応管路で生成 されるガスクラスレートの粒径が異なるようにする工程を有するのが好ましい。 前記ガスクラスレートの製造方法は、 生成したガスクラスレートを、 未反応原料 ガスと原料液と共に、 前記反応管路を通して分離器に送り、 ガスクラスレート、 未 反応原料ガスと原料液とに分離する工程を有するのが望ましい。 さらに、 分離器に よって分離されたガスクラスレート、 未反応原料ガスと原料液のうち、 原料液及び 未反応原料ガスを再びラインミキサーに供給する工程を有するのが望ましい。 分離 器においては、 ガスが原料液戻しラインに流入しないように、 原料液に封水効果を もたせるように、 分離器内の水位を一定レベル以上に制御するのが好ましい。 前記ガスクラスレ一トの製造方法は、 生成したガスクラスレートを未反応原料ガ スと原料液と共に前記反応管路を通して分離器に送る工程と、 分離器によって、 ガ スクラスレート、 未反応原料ガスと原料液のスラリーを分離脱水し、 高濃度スラリ 一または固体を生成させる分離脱水工程とを有するのがより望ましい。
生成されたガスクラスレートを前記反応管路に連結された分離器にて分離する分 離工程を有する場合には、 該分離器の圧力を検出する圧力検出工程と、 該圧力検出 工程で検出された圧力に基づいて、 前記混合'溶解工程における供給ガス流量、 前 記生成工程における原料液流速のいずれか一方又は両方を調整することによって前 記分離器の圧力を調整する圧力調整工程とを有するのが好ましい。 さらに、 本発明は、 原料液と原料ガスとをライン途中において混合して原料ガス を原料液に溶解させるラインミキサーと、 原料ガスが溶解した原料液を流しながら 冷却してガスクラスレートを生成させる反応管路とを有するガスクラスレートの製 造装置を提供する。 反応管路は一つでも複数でも良い。
前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーである のが好ましい。
前記ガスクラスレ一卜の製造装置は、 前記ラインミキサーの下流側にライン圧力 を調整する圧力調整手段を有するのが好ましい。
また、 前記ガスクラスレートの製造装置は、 前記ラインミキサーの下流側にライ ンを流れる流体の流速を調整する流速調整手段を有するのが好ましい。
前記ガスクラスレートの製造装置は、 原料ガスと原料液の混合 ·溶解と反応冷却 を行う槽状の耐圧容器を有していない。 前記ガスクラスレートの製造装置は、 以下を有するのが ましい:
( a) 供給する原料ガス流量を調整するガス流量調整手段と、
(b) 原料ガス圧力を調整するガス圧力調整手段と、
( c ) 供糸合する原料液の流量を調整する原料液流量調整手段と
( d) 原料液の圧力を調整する原料液圧力調整手段と、
( e ) 該反応管路を冷却する冷却装置と、
( f ) 反応管路の圧力を調整する圧力調整手段。
前記 (a) から (f ) の手段を有する場合には、 前記ラインミキサーに供給され た原料ガス全量をクラスレート化できるように、 前記ガス流量調整手段、 前記ガス 圧力調整手段、 前記原料液流量調整手段、 前記原料液圧力調整手段、 前記冷却装置 の冷却能力、 反応管路長さ及び反応管路径が設定されている。
また、 前記 (a) から (f ) の手段を有する場合には、 前記反応管路の出口の圧 力 Pがクラスレート生成最低圧力 P。より高く、 反応管路内の温度 Tがクラスレー ト生成最高温度 T。より低い温度となり、 かつ、 前記ラインミキサーに供給された 原料ガスが全量クラスレ一ト化するときの生成熱を全て奪えるように、 前記ガス流 量調整手段、 前記ガス圧力調整手段、 前記原料液流量調整手段、 前記原料液圧力調 整手段、 前記冷却装置の冷却能力、 反応管路長さ及び反応管路径が設定されている。 前記ガスクラスレートの製造装置は、 さらに、 反応管路の出口の圧力を検出する 圧力検出器を有し、 該圧力検出器の検出値が予め定めた一定値を越えたときに、 ガ ス流量調整手段、 原料液流量調整手段の少なくとも一つが調整されるようにしても よい。 前記ガスクラスレートの製造装置は、 さらに、 前記反応管路を流れる原料液の流 速を変化させる流速制御手段を有するのが好ましい。 反応管路が複数ある場合には、 前記複数の反応管路を流れる原料液の流速を制御する流速制御手段を有し、 前記流 速制御手段は前記複数の反応管路に流れる原料液の流速が異なるように設定されて いる。
前記ガスクラスレートの製造装置は、 さらに、 前記ラインミキサーに供給する原 料ガスの流量を変化させるガス流量調整手段を有するのが好ましい。
前記ラインミキサーが複数のラインミキサーからなり、 前記反応管路が複数の反 応管路からなる場合には、 前記複数のラインミキサ一はそれぞれのラインミキサー に供給する原料ガスの流量を調整するガス流量調整手段を有するのが好ましい。 該 複数の反応管路を流れる原料ガスの流量が異なるように前記ガス流量制御手段によ りそれぞれのラインミキサ一に供,袷される原料ガスの流量が調整される。 前記ガスクラスレートの製造装置は、 さらに、 反応管路で生成されたガスクラス レート、 未反応ガス、 原料液とを分離する分離器を有するのが好ましい。 前記分離 器は、 デカン夕一、 サイクロン、 遠心分離器、 ベルトプレス、 スクリュー濃縮-脱 水機、 回転ドライヤーのグループから選択された一つであるのが好ましい。
反応管路で生成されたガスクラスレート、 未反応ガス、 原料液とを分離する分離 器を有するガスクラスレートの製造装置は、 さらに、 以下を有するのが好ましい:
( a) 供給する原料ガス流量を調整するガス流量調整手段と、
(b) 該分離器の圧力を検出する圧力検出手段と、
( c ) 該圧力検出手段で検出された圧力に基づいて前記ガス流量調整手段のガス流 量、 前記原料液流速調整手段の原料液流速のいずれか一方又は両方を調整する制御 手段。
前記ガスクラスレートの製造装置において、 前記ラインミキサーを、 前記反応管 路の上流側に少なくとも 1台設けると共に、 前記反応管路の途中に単数又は複数の ラインミキサーを設けてもよい。 図面の簡単な説明
図 1は、 実施の形態 1に係わるガスハイドレートの製造装置の概略図である。 図 2は、 ラインミキサーの説明図である。
図 3は、 実施の形態 1に係わる他のガスハイドレートの製造装置を示す概略図で のる。
図 4は、 実施の形態 1に係わる他のガスハイドレートの製造装置を示す概略図で める。
図 5は、.実施の形態 1に係わるガスハイドレートの製造方法の説明図である。 図 6は、 従来技術の天然ガスハイドレートの製造装置を示す概略図である。 図 7は、 実施の形態 2に係わるガスクラスレートの製造装置の概略図である。 図 8は、 実施の形態 2に係わる反応管路における全量ハイドレート化のメカニズ ムを説明するための説明図である。
図 9は、 実施の形態 2に係わる他のガスクラスレートの製造装置を示す概略図で ある。
図 1 0は、 実施の形態 2に係わる他のガスクラスレートの製造装置を示す概略図 である。
図 1 1は、 実施の形態 2に係わるガスクラスレートの製造方法の説明図である。 図 1 2は、 実施の形態 3に係わるガスハイドレートの製造装置の概略図である。 図 1 3は、 実施の形態 3に係わる他のガスハイドレートの製造装置を示す概略図 である。
図 1 4は、 実施の形態 3に係わる他のガスハイドレートの製造装置を示す概略図 である。
図 1 5は、 実施の形態 3に係わるガスハイドレートの製造方法の説明図である。 図 1 6は、 実施の形態 4に係わるガスクラスレートの製造装置の概略図である。 図 1 7は、 実施の形態 4に係わるガスクラスレートの製造方法の説明図である。 図 1 8は、 実施の形態 5に係わるガスハイドレ一トの製造装置の概略図である。 図 1 9は、 実施の形態 5に係わる他のガスハイドレートの製造装置を示す概略図 である。
図 2 0は、 実施の形態 5に係わる他のガスハイドレートの製造装置を示す概略図 である。
図 2 1は、 実施の形態 5に係わるガスハイドレートの製造方法の説明図である。 図 2 2は、 実施の形態 6に係わるガスハイドレー卜の製造装置の概略図である。
発明を実施するための形態
の形態 1
' 図 5は実施の形態 1のガスハイドレート製造工程の概要の説明図であり、 原料ガ スとして天然ガスを用いたものを示している。 まず、 図 5に基づいてガスハイドレ 一ト製造工程の概要を説明する。
天然ガスは、 1〜1 0 °Cに冷却され重質成分がコンデンセートとして分離され る (S 1 ) 。 一方、 水も 1〜1 0。Cに冷却され (S 2 ) 、 この冷却水と天然ガス が 1〜 1 0 °C、 5 0気圧の状態で反応してガスハイドレートが生成される ( S 3 ) 。 生成されたスラリー状のガスハイドレートは分離脱水処理され高濃度スラリ —または固体にされ (S 4) 、 ここで分離された水及び未反応ガスは再び反応ェ 程 (S 3 ) に戻される。
分離脱水処理されたガスハイドレートは— 1 5 °C程度の温度で凍結処理される
(S 5 ) 。 この凍結処理は S 4で分離脱水処理されたガスハイドレートの表面に 付着した水分を凍結させて氷の殻を作ることにより、 ガスハイドレートの安定化 を図るためである。
凍結処理の後、 5 0気圧から大気圧に減圧する減圧処理を行う (S 6 ) 。 その 後、 凍結処理されたガスハイドレ一トをペレット状に成形処理し (S 7 ) 、 サイ 口等の貯蔵設備で貯蔵され (S 8 ) 、 要求に応じてベルトコンベア等の積み出し 設備で積み出し処理され (S 9 ) 、 輸送船等の輸送装置で長距離輸送に供される
(S 1 0 )。
以上がガスハイドレ一ト製造工程の概要であるが、 本実施の形態は上記の工程 の中で水と天然ガスからスラリ一状のガスハイドレートを生成する工程 (S 3 ) において工夫をしたものである。 以下、 この点について詳細に説明する。
図 1は実施の形態 1の主要な構成機器を示した系統図である。 まず、 図 1に基づ いて本実施の形態 1の構成機器について説明する。
実施の形態 1のガスハイドレート製造装置は、 天然ガス等の原料ガスの圧力を 昇圧するガス昇圧機 1、 2、 原料水を供給する原料水ポンプ 3、 1 9、 原料水と 原料ガスを混合して原料ガスを原料水に溶解させるラインミキサー 5、 ラインミ キサー 5でミキシングされたものを冷却してガスハイドレ一トを生成する反応管 路 7、 反応管路 7で生成されたガスハイドレート、 未反応ガス、 原料水とを分離 する分離器 9とを備えている。
そして、 各構成機器は図中矢印を付した実線で示した配管によって連結され、 要所には圧力検出器 1 0が設置され、 この圧力検出器 1 0の信号によって配管ラ インに設置された各バルブ 1 2が制御され、 当該配管ラインの圧力、 流量が調整 されるように構成されている。
上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態 1のラインミキサー 5は、 図 2 (西華産業株式会社 「OHRライン ミキサ一」 力夕ログ第 7頁より引用) に示すように、 入り口側が大径で出口側が 小径になった 2段状の筒状体 1 1からなり、 この筒状体 1 1の大径部 1 1 a中に ガイドべ一ンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b内に筒の内周面 から中央に延びる複数のキノコ状の衝 本 1 5を有している。
このようなラインミキサー 5においては、 原料水ポンプ 3によってラインミキ サー 5に供給された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によ つて外側へ押しやられ それがキノコ状の衝突体 1 5によってさらに強烈に攪拌 され、 その中に原料ガスが巻き込まれて超微細な気泡群に砕かれ、 原料水と原料 ガスとが混合される。 これによつて、 原料ガスと原料水との接触面積が大きくな り原料ガスは原料水に効率よく溶け込む。
反応管路 7は単数または複数の屈曲した管からなり、 この管の周面をチラ一 1 7で冷却するようになっている。 このように、 反応管路 7を用いたことで、 周囲 からの冷却を効率よく行えるようになったので、 従来例のように冷却コイル等に よってガス ·原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコン パクト化できる。
なお、 このような反応管路 7を用いることができるのは、 原料ガスと原料水の 混合 ·溶解を予めラインミキサー 5によって行い、 反応管路 7では冷却を中心に 装置構成を考えることができるからである。 すなわち、 従来例では原料ガスと原 料水の混合 ·溶解と反応冷却を槽状の耐圧容器内で行っていたため、 混合 ·溶解 には一定の広がりをもつた空間が必要となり、 冷却を反応槽の周囲からのみ行う ことはできなかったのに対して、 本実施の形態においては、 原料ガスと原料水の 混合 ·溶解と反応冷却とを分離したので、 反応工程では冷却を中心に考えること ができ、 上記の例のように単純な構成での冷却が可能となるのである。
分離器 9は、 ガスハイドレート、 未反応ガス、 原料水とを分離するものである が、 分離器 9の例としては、 デカン夕一、 サイクロン、 遠心分離器、 ベルトプ レス、 スクリュー濃縮 ·脱水機、 回転ドライヤー等が考えられる。
次に、 以上のように構成された本実施の形態 1の装置によってガスハイドレ一ト を製造する製造工程の説明をする。
原料ガスの圧力をガス昇圧機 1によって所定の圧力に昇圧する。 また、 原料水 も原料水ポンプ 3によって所定の圧力に昇圧する。 これら、 昇圧された原料ガス と原料水をそれぞれラインミキサー 5に供給する。 ラインミキサー 5に供給され た原料ガスと原料水とは、 前述したメカニズムによって猛烈な勢いで混合される 。 このとき、 原料ガスは微細気泡となって原料水の中に混じり込み、 原料ガスの 溶解が促進される。
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) が 反応管路 7に送られ、 チラ一 1 7によって冷却されてガスハイドレートが生成され る。 そして、 ここで生成されたガスハイドレートは未反応ガス、 原料水と共に管路 を流れてゆき分離器 9に送られる。
このように本実施の形態 1では、 原料水と原料ガスの反応を管路で移動させなが ら行うようにしたので、 このガスハイドレート生成工程では、 すべてのもの (生 成されたガスハイドレート、 未反応ガス、 原料水) が一旦分離器 9まで送られる ことになり、 従来例のように生成されたガスハイドレートのみを取り出す仕組み が不要であり、 装置の構成が単純化できる。
分離器 9に送られたガスハイドレート、 未反応ガス、 原料水の混合物は、 分離 器 9によってガスハイドレート、 未反応ガス、 原料水に分離される。 分離された 原料水はポンプ 1 9によって再びラインミキサー 5に供給され、 未反応の原料ガ スはガス昇圧機 2によって所定の圧力に昇圧されてラインミキサー 5に供給され る。
一方、 生成されたガスハイドレートは分離器 9から取り出され、 後処理工程 ( 図 5における S 5以降の工程) に送られる。
なお、 分離器 9においては、 分離器 9内の水位がレベル計 2 1で検知され、 分 離器 9内の水位が一定レベル以上になるように制御されている。 これは、 ガスが 原料水戻しラインに流入しないように、 原料水に封水効果をもたせるためである 。 そして、 封水に不要な原料水は原料水ポンプ 1 9によって所定の圧力に昇圧さ れてラインミキサー 5に供給される。
また、 ガス昇圧機 1によって昇圧された原料ガスを直接分離器 9に供給してい るが、 これは分離器 9内の圧力を一定以上に保っためである。
以上のように、 本実施の形態によれば、 原料ガスの原料水への溶解を、 筒体か らなるラインミキサー 5で連続的に行うようにしたので、 省スペースでかつ効率 的に行うことができる。
また、 原料ガスの原料水への溶解を反応槽とは別のラインミキサー 5によって 行うようにした結果、 従来の反応槽に代えてパイプ状の反応管路 7を用いること ができ、 管路の周面を冷却するという単純かつコンパクトな冷却手段が可能とな る。
しかも、 ラインミキサー 5による原料ガスの溶解、 反応管路 7におけるガスハ ィドレ一トの生成のいずれも連続的に行うようにしているので、 ガスハイドレー トの製造効率を飛躍的に高めることができる。
なお、 上記の実施の形態においては、 ラインミキサー 5と反応管路 7との間に 圧力を調整する手段を何ら設けていなかった。
しかし、 図 3に示すように、 ラインミキサー 5と反応管路 7との間に、 圧力検 出器及び調整バルブ 2 5からなる圧力調整手段 2 7を設けるようにしてもよい。 圧力調整手段 2 7を設けることによってラインミキサー 5側の圧力を高くする ことができ、 ラインミキサー 5による原料ガスの原料水への溶解をより促進でき る。
また、 原料ガスの原料水への溶解をより促進させるために、 図 4に示すように ラインミキサー 5の下流側にラインを流れる流体の流速を遅くするための流速調 整手段としての滞留部 2 9を設けてもよい。 滞留部 2 9を設けることにより、 ラ インミキサー 5で微細気泡となった原料ガスが原料水に溶解するための時間を稼 ぐことができ、 これによつて溶解促進を図ることができる。
なお、 滞留部 2 9の具体例としては、 一定の容積を有するタンクが考えられる なお、 上記の説明においては各工程における温度、 圧力について特に明示しな いが、 一例としては図 5で示したものを挙げることができる。 ただ、 各工程にお ける温度、 圧力は種々の条件によって最適値が選択される。
また、 上記の実施の形態においては、 原料ガスとしてメタンガスを生成分とす る天然ガスについて説明したが、 その他の例として、 ェタン、 プロパン、 ブタン 、 クリプトン、 キセノン、 二酸化炭素等がある。
さらに、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発 生させることにより、 原料ガスを吸引して混合するいわゆるベンチユリ管方式の ものであってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利 用して気液混合するようなもの、 例えば特開 2 0 0 0— 4 4 7号公報に開示され た旋回式微細気泡発生装置のようなものでもよい。 要するに、 本明細書における ラインミキサ一とは、 ライン上にあつて気液を連続的に混合できるものを広く含 む。
また、 上記の実施の形態においては反応管路 7の例として、 単数または複数の 屈曲管を示したが、 分岐した複数本の直管で構成してもよい。
実施の形態 2
実施の形態 2に係るガスクラスレートの製造方法は、 原料液と原料ガスとを反応 させてガスクラスレートを製造する方法において、 原料液と原料ガスとをライン途 中で混合して原料ガスを原料液に溶解させる混合 ·溶解工程と、 混合 ·溶解された ものを反応管路に流しながら冷却してガスクラスレー卜を生成するガスクラスレー ト生成工程とを備え、 該ガスクラスレート生成工程においては、 前記混合 ·溶解ェ 程で混合溶解された原料ガス全量をクラスレート化するようにしたものである。 また、 原料液と原料ガスとを反応させてガスクラスレートを製造する方法におい て、 原料液と原料ガスとをライン途中で混合して原料ガスを原料液に溶解させる混 合 ·溶解工程と、 混合 ·溶解されたものを反応管路に流しながら冷却してガスクラ スレー卜を生成するガスクラスレ一ト生成工程とを備え、 該ガスクラスレート生成 工程において、 前記反応管路の出口の圧力 Pがクラスレート生成最低圧力 P。より 高く、 反応管路内の温度 Tがクラスレート生成最高温度 T 0より低い温度となり、 かつ、 前記混合 ·溶解工程で混合溶解された原料ガスが全量クラスレ一ト化すると きの生成熱を全て奪えるように、 原料液流量、 原料液圧力、 原料ガス流量、 原料ガ ス圧力、 冷却能力、 反応管路長さ及び反応管路径を設定したものである。
また、 実施の形態 2に係るガスクラスレートの製造装置は、 原料液と原料ガスと を反応させてガスクラスレートを製造する装置において、 供給する原料ガス流量を 調整するガス流量調整手段と、 原料ガス圧力を調整するガス圧力調整手段と、 供給 する原料液の流量を調整する原料液流量調整手段と、 原料液の圧力を調整する原料 液圧力調整手段と、 原料液と原料ガスとをライン途中において混合して原料ガスを 原料液に溶解させるラインミキサーと、 原料ガスが混合 ·溶解された原料液を流し ながら冷却する反応管路と、 該反応管路を冷却する冷却装置と、 反応管路の圧力を 調整する圧力調整手段とを備え、 前記ラインミキサーに供給された原料ガス全量を クラスレート化できるように、 前記ガス流量調整手段、 前記ガス圧力調整手段、 前 記原料液流量調整手段、 前記原料液圧力調整手段、 前記冷却装置の冷却能力、 反応 管路長さ及び反応管路径を設定したものである。
また、 原料液と原料ガスとを反応させてガスクラスレートを製造する装置におい て、 供給する原料ガス流量を調整するガス流量調整手段と、 原料ガス圧力を調整す るガス圧力調整手段と、 供給する原料液の流量を調整する原料液流量調整手段と、 原料液の圧力を調整する原料液圧力調整手段と、 原料液と原料ガスとをライン途中 において混合して原料ガスを原料液に溶解させるラインミキサーと、 原料ガスが混 合 ·溶解された原料液を流しながら冷却する反応管路と、 該反応管路を冷却する冷 却装置と、 反応管路の圧力を調 る圧力調整手段とを備え、 前記反応管路の出口 の圧力 Pがクラスレ一ト生成最低圧力 P。より高く、 反応管路内の温度 Tがクラス レート生成最高温度 T。より低い温度となり、 かつ、 前記ラインミキサーに供給さ れた原料ガスが全量クラスレート化するときの生成熱を全て奪えるように、 前記ガ ス流量調整手段、 前記ガス圧力調整手段、 前記原料液流量調整手段、 前記原料液圧 力調整手段、 前記冷却装置の冷却能力、 反応管路長さ及び反応管路径を設定したも のである。
また、 反応管路の出口の圧力を検出する圧力検出器を設け、 該圧力検出器の検出 値が予め定めた一定値を越えたときに、 ガス流量調整手段、 原料液流量調整手段の レずれか一方又は両方を調整するようにしたものである。
また、 ラインミキサーが原料ガスの微細気泡を発生させるものであることを特徴 とするものである。
以下においてはガスクラスレ一トのー態様であるガスハイドレートを例に挙げて 説明する。
図 1 1は実施の形態 2のガスハイドレート製造工程の概要の説明図であり、 原料ガ スとして天然ガスを用いたものを示している。
実施の形態 2は上記の工程の中で水と天然ガスからスラリ一状のガスハイドレー トを生成する工程 (S 3 ) において全量をハイドレート化出来るようにすることに より、 複合ガスからなる原料ガスの組成とハイドレートの組成が同一になるように したものである。 以下、 この点について詳細に説明する。
図 7は実施の形態 2の主要な構成機器を示した系統図である。 まず、 図 7に基づ いて実施の形態 2の構成機器について説明する。
実施の形態 2のガスハイドレート製造装置は、 天然ガス等の原料ガスの圧力を昇 ヽ 、 '一
圧するガス昇圧機 1 (本発明のガス圧力調整手段に相当する) 、 原料水を昇圧供 ,,糸一 ί厶 する原料水ポンプ 3、 1 9 (本発明の原料水圧力調整手段に相当する) 、 原料水と 原料ガスを混合して原料ガスを原料水に溶解させるラインミキサー 5、 ラインミキ サー 5でミキシングされたものを流しながら冷却してガスハイドレートを生成する 反応管路 7、 反応管路 7を冷却する冷却装置としてのチラ一 1 7、 反応管路 7で生 成されたガスハイドレートと原料水を分離する分離器 9とを備えている。
そして、 各構成機器は図中矢印を付した実線で示した配管によって連結されてい る。 また、 分離器 9には圧力検出器 1 0が設置され、 この圧力検出器 1 0の信号に よって配管ラインに設置されたノ^レブ 1 2 a (ガス流量調整手段に相当) 、 バルブ 1 2 b (原料水量調整手段に相当) 、 バルブ 1 2 c (ガス圧力調整手段に相当) が 制御され、 配管ラインの圧力、 流量が調整されるように構成されている。
上記構成において、 分離器 9の圧力 (反応管路 7の出口の圧力に相当する) Pが ハイドレート生成最低圧力 P。より高く、 反応管路 7内の温度 Tがハイドレート生 成最高温度 T。より低い温度となるように、 バルブ 1 2 a、 1 2 b、 1 2 c、 ガス 昇圧機 1、 原料水ポンプ 3, 1 9、 チラ一 1 7の冷却能力、 反応管路 7の長さ及び 反応管路 7の径を設定している。
なお、 同一のチラ一でも、 チラ一の冷却能力 (単位時間の除熱量) は冷媒の温度 により異なり、 冷媒温度が高いほど、 冷却能力は大きい。 したがって、 実施の形態 2における 「冷却能力の設定」 とは、 反応管路 7を冷却する冷媒の温度設定も含む。 上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態のラインミキサー 5は、 図 2 (西華産業株式会社 「〇HRラインミ キサ一」 カタログ第 7頁より引用) に示すように、 入り口側が大径で出口側が小径 になった 2段状の筒状体 1 1からなり、 この筒状体 1 1の大径部 1 1 a中にガイド ベーンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b内に筒の内周面から中央 に延びる複数のキノコ状の衝突体 1 5を有している。
このようなラインミキサー 5においては、 原料水ポンプ 3によってラインミキ サー 5に供給された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によつ て外側へ押しやられ、 それがキノコ状の衝突体 1 5によってさらに強烈に攪拌され その中に原料ガスが巻き込まれて超微細な気泡群に砕かれ、 原料水と原料ガスとが 混合される。 これによつて、 原料ガスと原料水との接触面積が大きくなり原料ガス は原料水に効率よく溶け込む。
反応管路 7は単数または複数の屈曲した管からなり、 この管の周面をチラ一 1 7 で冷却するようになっている。 このように、 反応管路 7を用いたことで、 周囲から の冷却を効率よく行えるようになつたので、 特開 2 0 0 1—1 0 9 8 5に示される 従来例のように冷却コイル等によってガス ·原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコンパクト化できる。
反応管路の具体例としては、 原料ガスと原料液が流れる管路の周囲に冷媒が流れ る通路を形成した二重管熱交換器や、 シェル 'アンド 'チューブ熱交換器 (多管円 筒式熱交換器) などがある。
ところで、 上記のような反応管路 7を用いることができるのは、 原料ガスと原料 水の混合 ·溶解を予めラインミキサー 5によって行い、 反応管路 7では冷却を中心 に装置構成を考えることができるからである。 すなわち、 特開 2 0 0 1— 1 0 9 & 5に示した例では原料ガスと原料水の混合 ·溶解と反応冷却を槽状の耐圧容器内で 行っていたため、 混合 ·溶解には一定の広がりをもった空間が必要となり、 冷却を 反応槽の周囲からのみ行うことはできなかったのに対して、 実施の形態 2において は、 原料ガスと原料水の混合 '溶解と反応冷却とを分離したので、 反応工程では冷 却を中心に考えることができ、 上記の例のように単純な構成での冷却が可能となる のである。
分離器 9は、 主としてガスハイドレートと原料水を分離するものであるが、 分離 器 9の例としては、 デカンター、 サイクロン、 遠心分離器、 ベルトプレス、 スクリ ユー濃縮 ·脱水機、 回転ドライヤー等が考えられる。
分離器 9には昇圧された原料ガスが供給され、 この原料ガス圧力によって分離器 9の圧力がハイドレ一ト生成最低圧力 P。より高くなるように調整されている。 分 離器 9の圧力を P。より高くなるように調整することで、 上流側である反応管路 7 内の圧力は P。よりも高圧になる。
次に、 上記のように構成された実施の形態 2の装置によってガスハイドレ一トを 製造する製造工程の説明をする。
原料ガスの圧力をガス昇圧機 1によって所定の圧力に昇圧する。 また、 原料水も 原料水ポンプ 3によって所定の圧力に昇圧する。 これら、 昇圧された原料ガスと原 料水を図示しないクーラーによって冷却し、 それぞれラインミキサー 5に供給する。 ラインミキサー 5に供給された原料ガスと原料水とは、 前述したメカニズムによつ て猛烈な勢いで混合される。 このとき、 原料ガスは微細気泡となって原料水の中に 混じり込み、 原料ガスの溶解が促進される。
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) が 反応管路 7に送られ、 チラ一 1 7によって冷却され、 微細気泡となって原料水に混 合 ·溶解された原料ガスが全量ガスハイドレ一ト化される。
この全量ガスハイドレ一ト化が実現されるためには、 反応管路の出口の圧力 Pが ハイドレート生成最低圧力 P。より高く、 反応管路内の温度 Tが八ィドレ一ト生成 最高温度 T。より低い温度となり、 かつ、 ラインミキサー 5によって混合溶解され た原料ガスが全量ハイドレ一ト化するときの生成熱を全て奪えるように、 原料液流 量、 原料液圧力、 原料ガス流量、 原料ガス圧力、 冷却能力、 反応管路長さ及び反応 管路径を設定されている必要がある。
つまり、 全量ハイドレート化のためには、 原料液流量、 原料液圧力、 原料ガス流 量、 原料ガス圧力、 冷却能力、 反応管路長さ及び反応管路径という 7つのパラメ一 夕の設定が必要である。 以下、 これら各パラメータとハイドレート生成量との関係 について説明する。
まず、 十分な冷却能力がある場合の原料水流量とハイドレ一ト生成量との関係に ついて説明する。
ハイドレートの水和数 (下記) から定まる水量よりも水が多い場合には、 原料水 の流量は基本的には八ィドレート生成量に無関係である。
ハイドレートの水和数 (水とガスの組成比:ハイドレート中の水分子とガス分子 の比率) は、 メタンハイドレートの場合、 理論的には 5. 7 5 (ガス分子 1モルに 対して水分子 5. 7 5モル) である。 ただ、 実際には水分子で形成する全ての籠に ガス分子が入るとは限らないため、 水和数は 5. 7 5より大きい (ガス分子 1モル に対して水分子 5 . 7 5モル以上) 値である。
水和数から定まる量よりも原料水が少ない場合には、 ハイドレート生成量は原料 水流量に比例する。 この場合は生成が完了した時点でガスと固体のハイドレ一トカ S 残ることになる。
なお、 厳密には、 原料水流章の変ィ匕 (=反応管内の流速が変化) に伴い、 管内面 の熱伝達率が変化 (冷却効率が変化) することによる生成量の変化が考えられる。 原料ガス流量とハイドレート生成量との関係も原料水流量との関係と同様である。 つまり、 十分な冷却能力がある場合、 八イドレートの水和数から定まるガス量より もガスが多い場合には、 ガス流量は八ィドレ一ト生成量に無関係である。
他方、 7K和数から定まる量よりもガスが少ない場合には、 ハイドレート生成量は ガス流量に比例する。 この場合は生成が完了した時点で原料水と固体のハイドレー トが残ることになる。
実施の形態 2においては、 図 7において分離器で分離された未反応の原料水をラ インミキサーに戻すポンプ 1 9が設けられており、 水和数から定まる量よりも原料 水は多く、 原料ガスは少なく供給してハイドレ一トを生成することを想定している。 次に、 原料水、 および原料ガスの圧力と温度とハイドレート生成量の関係につい て説明する。
ハイドレート生成範囲内では、 圧力が高く、 温度が低いほど生成しやすい。 した がって、 十分な冷却能力 (単位時間の除熱熱量) がある場合、 生成範囲内では高圧、 低温であるほど生成速度が速い。 冷却能力に限界がある場合は、 生成速度は冷却能 力で定まる。
原料ガスと原料水を混合、 溶解する場合、 極めてミクロな視点で考える場合を除 き、 両者の圧力は等しい。
また、 混合の初期には両者の温度が異なる場合があるが、 反応管路を流れる間に 等しくなる。
次に、 冷却能力とハイドレ一ト生成量との関係について説明する。
原料ガスがメタンの場合、 ハイドレート生成に伴う発熱量 (生成熱) はメタン 1 モル当たり以下の通りである。 •約 1 4. 5 kcal/mol ( 0 °Cにおいて)
'約 1 7 kcal/mol ( 1 0 °Cにおいて)
原料水中へのガス拡散、 溶解が十分であれば、 ハイドレートの生成量は冷却 (除 熱) 熱量に比例する。 したがって、 原料水中へのガス拡散、 溶解が十分でも、 冷却 能力が不十分な場合は、 ハイドレート生成に伴い、 原料ガスが溶解した原料水の温 度が上昇し、 その時の圧力に対応したハイドレート生成最高温度 (圧力が高いほど 高い) に達した時点で生成が停止する。 そして、 その時点で未反応の原料ガスがあ れば、 それは原料水中での溶存ガス、 あるいは気泡の形でガスのまま残る。.逆に言 えば、 冷却能力が十分ということは、 原料ガスが全量ハイドレート化する間、 温度 を生成範囲内に保つことが可能ということである。
もっとも、 冷却能力が過大な塲合は、 ハイドレート化が進行しつつも反応管路内 の流体温度が低下してゆき、 凍結の惧れがあるので、 冷却能力は大きければよいと いうものでもない。
なお、 冷却能力は、 チラ一の能力と反応管路仕様 (管路長さ、 径、 肉厚、 材質 等) 、 冷媒と反応管路内流体の温度差等から定まる熱伝達能力とで定まる。
最後に、 反応管路長さ及び反応管路径とハイドレ一ト生成量との関係について説 明する。
一般に、 反応管路長さ及び反応管路径はチラ一の冷却能力を十分に活かすように 設定されるので、 反応管路長さ及び反応管路径はこれら単独でハイドレ一ト生成量 と関係すると言うよりも、 冷却能力というパラメ一夕を介してハイドレート生成と 関係する。 以下、 具体的に説明する。
反応管路長さと冷却能力の関係は、 他の条件が同じ場合には、 反応管路長さが長 いほど冷却能力は大きい。 反応管路径と冷却能力の関係はもう少し複雑であり、 管 路径を小さくすれば管内の流速が大きくなり、 管内面熱伝達率は大きくなるが、 管 表面積は減少するため、 両者のパランスで冷却能力の増加、 減少が定まるという関 係にある。
ところで、 一般に、 熱交換器では、 管内面熱伝達率を大きくするために管径を小 さくし、 表面積の減少については、 管長の増加、 または本数の増加で対応し、 コス トも含めた最適な仕様とする。
ハイドレ一ト生成量と 7つのパラメ一夕の関係は以上の通りであるが、 以下では これらのパラメ一夕が適切に設定されていることを前提として、 全量八ィドレート 化のメカニズムを説明する。
図 8は反応管路 7における全量ハイドレート化のメカニズムを説明するための説 明図であり、 反応管路 7に供給されたある一定量の原料ガスに着目して、 この原料 ガスがハイドレ一ト化するメカニズムを時間の経過と共に模式的に示したものであ る。
図 8において、 縦軸は原料ガス、 原料水 (以下において 「原料水」 というときは 原料水のみのものを意味する場合と原料水に原料ガスが溶け込んだ状態のものを意 味する場合の両方がある。 ) 、 ガスハイドレートの量を示し、 太線より上側がメタ ン、 下側がプロパンを示している。 また、 横軸は時間の流れを示しており、 着目す べき時期を①〜⑩ (図中では丸数字で示している。 以下同様) で示している (この ①〜⑩の系統図 7における位置関係を明確にするため、 図 8の相当箇所に①〜⑩を 記載している。 ) 。
なお、 説明の便宜から原料ガスとしては、 メタンとプロパンの 2種類のガスの混 合ガスを想定しており、 その害合をメタン:プロパンが 1 7 : 6としている (①参 照) 。
ラインミキサー 5において、 原料ガスと戻り水 (原料水に混合ガスが溶け込んで ¥1舞濃度になったもの) 及び補給水が混合される (②参照) 。 なお、 図 8において は、 混合直後ではガスの溶解はないものとして示してある。
ラインミキサ一 5によって原料ガスは微細気泡となり、 原料水に溶解して原料水 全体が平衡濃度に到達する (③参照) 。
原料水が平衡濃度に到達すると、 反応管路 7の圧力 Pが八ィドレート生成最低圧 力 P。より高く、 反応管路 7内の温度 Tがハイドレート生成最高温度 T。より低くな るように設定しているので、 ガスハイドレートの生成が開始される。 このとき、 メ タンとプロパンが原料水に溶け込んでいるが、 プロパンの方が八ィドレート化し易 いために、 原料ガス組成に比べてプロパンの含有量がより多いガスハイドレートが 生成される (④参照:図において、 ガスハイドレートの量を示すグラフが太線より も上に 1目盛、 下に 2目盛となっている。 ) 。
ガスハイドレートの生成には発熱を伴うことになるが、 発熱量に相当する熱量を チラ一 1 7の冷却で奪うことで、 反応管路 7の温度はハイドレート生成最高温度 T 。より低い温度に保たれる。 なお、 ハイドレート化の速度を増すためには、 温度を T 0よりある程度以上低く設定し、 圧力を Ρ 0よりもある程度以上高く設定したほう がよい。 温度の下げ幅としては 2 "C程度以上が好ましい。 もっとも、 冷却しすぎる と原料水が凝固して反応管路 7内の流れが阻害されるので、 チラ一 1 7での冷却能 力は、 原料水が凝固点以下にならないように設定されている。
なお、 ガスハイドレートが生成されると、 原料水の量も減少することになるが、 図が複雑化するのを避けるために、 図 8においては④〜⑨までは原料水量が変化し ないように記載している。
ガスハイドレートが生成されると溶解ガス濃度が下がり、 平衡濃度になるまで原 料ガスがさらに溶け込むと共に、 プロパン含有量の多いガスハイドレートがさらに 生成され (©©参照) 、 生成されたガスハイドレートは、 原料水と共に反応管路 7 を流れてゆく。
⑥においてプロパンが全量原料水に溶け込んだので、 その後は、 メタンのみが原 料水に溶け込み、 原料ガス組成に比べてよりメタンが多く含有されたガスハイド レートが生成し始め (⑦参照) 、 同様の反応が継続する (⑧、 ⑨参照) 。
反応管路 7の出口では供給された原料ガスの全量がハイドレート化し (⑩参照) 、 原料水と共に分離器 9に送られる。
分離器 9には反応管路 7における反応開始後、 前半において生成されたプロパン の含有量の多いガスハイドレートと、 後半に生成されたメタンの含有量の多いガス ハイドレートが送られることになるが、 原料ガスの全量が八ィドレート化している ことから、 生成されたハイドレート全体としてみれば原料ガスと同一組成のものと なる。
なお、 ⑩においては、 ④〜⑩の反応による原料水の減少をまとめた形で表現して' いる。 ⑩においては平衡濃度の原料水が残っているが、 これは原料水ポンプ 1 9に よって再びラインミキサー 5に供給される。
一方、 生成されたガスハイドレートは分離器 9から取り出され、 後処理工程 (図 1 1における S 5以降の工程) に送られる。
なお、 分離器 9においては、 分離器 9内の水位がレベル計 2 1で検知され、 ノ ル ブ 1 2 dを制御することで分離器 9内の水位が一定レベル以上になるように制御さ れている。 これは、 ガスが原料水戻しラインに流入しないように、 原料水に封水効 果をもたせるためである。 そして、 封水に不要な原料水は、 上述したように、 原料 水ポンプ 1 9によって所定の圧力に昇圧されてラインミキサー 5に供給される。 以上のように本実施の形態においては、 ラインミキサー 5によって原料ガスを'原 料水へ連続的に溶解させ、 パイプ状の反応管路 Ίを用いて供給された原料ガス全量 をハイドレ一ト化するようにしたので、 供給した原料ガスの組成と同一の組成のガ スハイドレートを生成できる。
また、 本実施の形態においては、 原料水と原料ガスの反応を管路を移動させなが ら行うようにしているので、 すべてのもの (生成されたガスハイドレート、 原料 7K) が一旦分離器 9まで送られることになり、 生成されたガスハイドレートのみを 取り出す仕組みが不要であり、 装置の構成が単純化できる。 '
また、 全量八イドレート化するために、 分離器 9に未反応ガスが送られることが なく、 未反応ガスをラインミキサー 5に戻すための配管やコンプレッサーが不要と なり、 この意味でも装置の構成が単純化できる。
なお、 上記の説明では反応管路 7の出口では供給した原料ガスが全量八ィドレ一 ト化することを前提として説明したが、 種々の条件などで反応管路 7で原料ガスが 全量八ィドレート化しなかった場合には以下のようにすればよい。
反応管路 7で原料ガスが全量ハイドレ一ト化しなかった場合には、 未反応の原料 ガスが分離器 9に供給されることになる。 その場合には、 分離器 9の圧力が上昇す る。 したがって、 反応管路 7で原料ガスが全量八イドレート化したかどうかは、 分 離器 9内の圧力上昇を検知すれば分かる。
そこで、 分離器 9に設置した圧力検出器 1 0によって分離器 9内の圧力上昇を検 知して、 圧力上昇値があらかじめ設定した値を越えた場合には、 原料ガスが分離器 9に流入して全量ハイドレ一ト化ができていないと判断して、 バルブ 1 2 aを絞つ て供給量を少なくするようにすればよい。
なお、 分離器 9に供給された過剰の原料ガスは分離器 9内でハイドレート化し、 それによつて分離器 9の圧力を所定値まで下げることができる。 もっとも、 分離器 9内でのハイドレ一ト化のみによっては分離器 9の圧力を所定値まで下げることが できないときは、 分離器 9からラインミキサー 5に通ずる戻り配管を設けて、 余分 な原料ガスを戻すようにすればよい。 この点は後述の図 9、 図 1 0においても同様 である。
また、 上記の実施の形態においては、 ラインミキサー 5と反応管路 7との間に圧 力を調整する手段を何ら設けていなかった。
しかし、 図 9に示すように、 ラインミキサー 5と反応管路 7との間に、 圧力検出 器 2 3及び圧力調整バルブ 2 5を設けるようにしてもよい。
圧力調整バルブ 2を調整することによりラインミキサー 5側の圧力を高くするこ とができ、 ラインミキサ一 5による原料ガスの原料水への溶解をより促進できる。 また、 原料ガスの原料水への溶解をより促進させるために、 図 1 0に示すように ラインミキサー 5の下流側にラインを流れる流体の流速を遅くするための流速調整 手段としての滞留部 2 9を設けてもよい。 滞留部 2 9を設けることにより、 ライン ミキサー 5で微細気泡となった原料ガスが原料水に溶解するための時間を稼ぐこと ができ、 これによつて溶解促進を図ることができる。
なお、 滞留部 2 9の具体例としては、 一定の容積を有するタンクが考えられる。 また、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発生さ せることにより、 原料ガスを吸引して混合するいわゆるベンチュリ管方式のもので あってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利用して気 液混合するようなもの、 例えば特開 2 0 0 0 - 4 4 7号公報に開示された旋回式微 細気泡発生装置のようなものでもよい。 要するに、 本明細書におけるラインミキ サ一とは、 ライン上にあつて気液を連続的に混合できるものを広く含む。
また、 上記の実施の形態においては反応管路 7の例として、 単数または複数の屈 曲管を示したが、 分岐した複数本の直管で構成してもよい。 また、 上記の実施の形態においては、 原料水の種類を明示しなかったが、 例えば、 淡水、 海水、 不凍液等が考えられる。 また、 原料水に代えて、 液体ホスト物質ゃホ スト物質溶液のような原料液を用いることも考えられる。 その場合に生成される物 質の名称はガスハイドレートではなく、 ガスクラスレートであることは言うまでも ない。
実施の形態 3
実施の形態 3に係るガスハイドレートの製造方法は、 原料水と原料ガスとを反応 させてガスハイドレ一トを製造する方法において、 原料水と原料ガスとをライン途 中で混合して原料ガスを原料水に溶解させる混合 ·溶解工程と、 混合 ·溶解された ものを反応管路に流しながら冷却してガスハイドレ一トを生成するガスハイドレー ト生成工程とを備え、 該ガスハイドレート生成工程における反応管路を流れる原料 水の流速又は供給する原料ガス量のいずれか一方又は両方を変化させることで生成 されるガスハイドレートの粒径を変化させるようにしたものである。
また、 原料水と原料ガスとを反応させてガスハイドレートを製造する方法にお いて、 原料水と原料ガスとをライン途中で混合して原料ガスを原料水に溶解させ る混合 ·溶解工程と、 混合 ·溶解されたものを複数の反応管路に流しながら冷却 してガスハイドレートを生成するガスハイドレート生成工程とを備え、 該ガスハ ィドレ一ト生成工程における前記複数の反応管路のそれぞれを流れる原料水の流 速又は各反応管路に供給される原料ガス量のいずれか一方又は両方を異ならせる ことで各反応管路で生成されるガスハイドレートの粒径が異なるようにしたもの である。
また、 実施の形態 3に係るガスハイドレ一トの製造装置は、 原料水と原料ガスと を反応させてガスハイドレートを製造するものにおいて、 原料水と原料ガスとをラ イン途中において混合して原料ガスを原料水に溶解させるラインミキサーと、 混合 . ·溶解されたものを冷却する反応管路と、 該反応管路を流れる原料水の流速を変 化させる流速制御手段を設けたものである。
また、 原料水と原料ガスとを反応させてガスハイドレ一トを製造するものにお いて、 原料水と原料ガスとをライン途中において混合して原料ガスを原料水に溶 解させるラインミキサーと、 混合 ·溶解されたものを冷却する複数の反応管路と 、 該複数の反応管路を流れる原料水の流速を制御する流速制御手段とを備え、 前 記複数の反応管路に流れる原料水の流速が異なるように前記流速制御手段を設定 したものである。
また、 原料水と原料ガスとを反応させてガスハイドレートを製造するものにお いて、 原料水と原料ガスとをライン途中において混合して原料ガスを原料永に溶 解させるラインミキサーと、 該ラインミキサーに供給する原料ガスの流量を変化 させるガス流量調整手段と、 前記ラインミキサーで混合 ·溶解されたものを冷却 する反応管路とを備えたものである。
また、 原料水と原料ガスとを反応させてガス八ィドレ一トを製造するものにお いて、 原料水と原料ガスをライン途中において混合して原料ガスを原料水に溶 解させるラインミキサーと、 該ラインミキサーに供給する原料ガスの流量を調整 するガス流量調整手段からなる溶解 ·混合装置を複数設け、 それぞれの溶解 ·混 合装置によって混合 ·溶解されたものを冷却する複数の反応管路を備え、 該複数 の反応管路を流れる原料ガスの流量が異なるように前記ガス流量制御手段を設定 したものである。
実施の形態 3 - 1 .
図 1 5は実施の形態 3 - 1のガスハイドレート製造工程の概要の説明図であり、 原料ガスとして天然ガスを用いたものを示している。
本実施の形態 3 - 1は上記の工程の中で水と天然ガスからスラリ一状のガスハイ ドレートを生成する工程 (S 3 ) において工夫して、 生成されるガスハイドレート の粒径を変ィ匕させるようにしたものである。 以下、 この点について詳細に説明する。 図 1 2は実施の形態 3 - 1の主要な構成機器を示した系統図である。 まず、 図 1 2に基づいて実施の形態 3— 1の構成機器について説明する。
本実施の形態のガスハイドレート製造装置は、 天然ガス等の原料ガスの圧力を 昇圧するガス昇圧機 1、 2、 原料水を供給する原料水ポンプ 3、 1 9、 原料水と 原料ガスを混合して原料ガスを原料水に溶解させるラインミキサー 5、 ラインミ キサ一 5でミキシングされたものを冷却しながら流してガスハイドレートを生成 する反応管路 7、 反応管路 7で生成されたガスハイドレート、 未反応ガス、 原料 水とを分離する分離器 9とを備えている。
各構成機器は図中矢印を付した実線で示した配管によって連結されている。 ラ ィンミキサー 5に原料ガスを供給する配管ラインにはガス流量を調整するガス流 量制御弁 4が設けられている。 そして、 ガス流量制御手段 4とラインミキサー 5 で本発明の熔解 ·混合装置を構成している。
ラインミキサー 5から反応管路 7に通ずる配管ラインには原料ガスが溶解した (微細気泡のガスを含む) 原料水の流速を調整する流速制御弁 6が設けられてい る。
また、 分離器 9には圧力検出器 1 0が設置され、 この圧力検出器 1 0の信号に よって分離器 9に原料ガスを供給する配管ラインのバルブ 1 2 a及び分離器 9の ガスをラインミキサー 5側に戻す配管ラインのパルプ 1 2 bが制御される。
上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態のラインミキサー 5は、 図 2 (西華産業株式会社 「OHRライン ミキサー」 カタログ第 7頁より引用) に示すように、 入り口側が大径で出口側が 小径になった 2段状の筒状体 1 1からなり、 この筒状体 1 1の大径部 1 1 a中に ガイドベーンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b内に筒の内周面 から中央に延びる複数のキノコ状の衝突体 1 5を有している。
このようなラインミキサー 5においては、 原料水ポンプ 3によってラインミキ サー 5に供糸合された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によ つて外側へ押しやられ、 それがキノコ状の衝突体 1 5によってさらに強烈に攪拌 され、 その中に原料ガスが巻き込まれて超微細な気泡群に碎かれ、 原料水と原料 ガスとが混合される。 これによつて、 原料ガスと原料水との接触面積が大きくな り原料ガスは原料水に効率よく溶け込む。
反応管路 7は屈曲した管からなり、 この管の周面をチラ一 1 7で冷却するよう になっている。 このように、 反応管路 7を用いたことで、 周囲からの冷却を効率 よく行えるようになったので、 従来一般的に行われていたように冷却コイル等に よってガス '原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコン パクト化できる。
なお、 このような反応管路 7を用いることができるのは、 原料ガスと原料水の 混合 ·溶解を予めラインミキサー 5によって行い、 反応管路 7では冷却を中心に 装置構成を考えることができるからである。 すなわち、 従来例では原料ガスと原料 水の混合■溶解と反応冷却を槽状の耐圧容器内で行っていたため、 混合 ·溶解には 一定の広がりをもった空間が必要となり、 冷却を反応槽の周囲からのみ行うことは できなかったのに対して、 本実施の形態においては、 原料ガスと原料水の混合-溶 解と反応冷却とを分離したので、 反応工程では冷却を中心に考えることができ、 上 記の例のように単純な構成での冷却が可能となるのである。
分離器 9は、 ガスハイドレート、 未反応ガス、 原料水とを分離するものである が、 分離器 9の例としては、 デカン夕一、 サイクロン、 遠心分離器 9、 ベルトプ レス、 スクリユー濃縮'脱水機、 回転ドライヤー等が考えられる。
次に、 以上のように構成された本実施の形態の装置によって粒径の異なるガス ハイドレ一トを製造する方法を説明する。
原料ガスの圧力をガス昇圧機 1によって所定の圧力に昇圧する。 また、 原料水 も原料ポンプ 3によって所定の圧力に昇圧する。 昇圧された原料ガスはガス流量 制御弁 4によって制御されて一定量がラインミキサー 5に供給され、 同じくライ ンミキサ一 5に供給された原料水と共に、 前述したメカニズムによって猛烈な勢 いで混合される。 このとき、 原料ガスは微細気泡となって原料水の中に混じり込 み、 原料ガスの溶解が促進される。
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) は流速制御弁 6で一定流速に制御されて反応管路 7に送られ、 チラ一 1 7によつ て冷却されてガスハイドレートが生成される。 そして、 ここで生成されたガス八 ィドレ一トは未反応ガス、 原料水と共に管路を流れてゆき分離器 9に送られる。 このようにしてある粒径のガスハイドレートが一定量生成される。
次に、 今生成したのとは異なる粒径のガスハイドレートを生成する方法につい て説明する。
異なる粒径のガスハイドレートを生成するには、 各制御弁 4, 6を調整するこ とになるが、 ここで各制御弁を調整したときに粒径が変ィ匕するメカニズムについ て説明する。
その前提として、 反応管路 7におけるハイドレ一ト生成のメカニズムを説明す る。 ラインミキサー 5によって、 原料ガスと原料水が混合され、 原料ガスは微細 気泡となり、 原料水に溶解して原料水全体が平衡濃度に到達する。 原料水が平衡濃度に到達すると、 反応管路 7の圧力 Pが八ィドレート生成最低 圧力 Poより高く、 反応管路 7の各部の温度 Tがハイドレ一ト生成最高温度 Toよ り低くなるように設定しているので、 ガスハイドレートの生成が開始される。 ガ スハイドレートの生成には発熱を伴うことになるが、 発熱量に相当する熱量をチ ラー 1 7の冷却で奪うことで、 反応管路 7の温度はハイドレート生成最高温度 T 0より低い温度に保たれる。 なお、 冷却しすぎると原料水が凝固して反応管路 7 内の流れが阻害されるので、 チラ一 1 7での冷却能力は、 原料水が凝固点以下に ならないように設定されている。
ガスハイドレートが生成されると溶解ガス濃度が下がり、 平衡濃度になるまで 原料ガスがさらに溶け込み、 ¥1街濃度以上になるとさらにガスハイドレートが生 成される。 このとき、 後から生成されるガスハイドレートは先に生成されたもの に結合して粒径の大きいものに成長していく。 生成されたガスハイドレートは反 応管路 7内を流れてゆき、 原料水、 未反応ガス (全量ハイドレート化した場合に は未反応ガスはない) と共に、 分離器 9に送られる。
以上のようなガスハイドレ一ト生成メカニズムにおいて、 流速制御弁 6を調整 して反応管路 7を流れる流体の流速を速くした場合には、 反応管路 7を流れるガ スハイドレートの艇が増し、 反応管路 7の上流側で生成されたガスハイドレ一 トが反応管路 7に滞留する時間が短くなる。 そのため、 上流側で生成されたガス ハイドレートの結晶が成長する時間が短くなり、 その結果、 粒径の小さいガスハ イドレートが分離器 9に送られることになる。
逆に、 流速制御弁 6を調整して反応管路 7を流れる流体の流速を遅くした場合 には、 反応管路 7の上流側で生成されたガスハイドレートが反応管路 7に滞留す る時間が長くなる。 そのため、 上流側で生成されたガスハイドレ一トの結晶が成 長する時間が長くなり、 その結果、 粒径の大きいガスハイドレートが分離器 9に 送られることになる。
また、 ガス流量制御弁 4を調整してガス流量を少なくすると、 反応管路 7の上 流側で原料水に溶け込んだ原料ガスが八ィドレ—ト化して、 下流側に流れたとし ても供給される原料ガスの量が少ないので、 下流側では原料水に溶け込む原料ガ スがなく、 既に生成されたガスハイドレートの結晶が成長することなぐ 分離器 9まで送られることになる。 その結果、 生成されたガスハイドレートの粒径は小 さくなる。
逆に、 ガス流量制御弁 4を調整してガス流量を多くすると、 原料水に溶け込ん だ原料ガスが反応管路 7の上流側でハイドレ一ト化し、 下流側に行くにしたがつ てさらに原料ガスが原料水に溶け込み、 既に生成されたガスハイドレートの結晶が 成長して分離器 9に送られることになる。 その結果、 生成されたガスハイドレート の粒径は大きくなる。
以上の説明から明らかなように、 生成されるガス八ィドレートの粒径を小さく するには、 流速制御弁 6を調整して反応管路 7を流れる流体の流速を速くする、 又はガス流量制御弁 4を調整してガス流量を少なくする、 又はこの両方をすれば よい。
逆に、 生成されるガスハイドレートの粒径を大きくするには、 流速制御弁 6を 調整して反応管路 7を流れる流体の流速を遲くする、 又はガス流量制御弁 4を調 整してガス流量を多くする、 又はこの両方をすればよい。
各制御弁 4 , 6の調整は一定の時間毎に手動で行ってもよいし、 あるいは予め 設定した時間毎に各制御弁 4, 6を制御するような制御手段を設けて自動制御し てもよい。
以上のように各制御弁 4, 6を調整することにより、 分離器 9には粒径の異な るガス八ィドレートが送られ、 ガスハイドレート、 未反応ガス、 原料水に分離さ れる。 分離された原料水はポンプ 1 9によって再びラインミキサー 5に供給され 、 未反応の原料ガスはガス昇圧機 2によって所定の圧力に昇圧されてラインミキ サー 5に供給される。
一方、 生成されたガス八イドレートは分離器 9から取り出され、 後処理工程 ( 図 1 5における S 5以降の工程) に送られる。 このとき、 粒径の異なるガスハイド レートが混合されるこ.とになるので、 脱水、 成型したときの体積充填効率が高ま り嵩密度が高くなるので輸送コストを低減できる。
なお、 分離器 9においては、 分離器 9内の水位がレベル計 2 1で検知され、 分 離器 9内の水位が一定レベル以上になるように制御されている。 これは、 ガスが 原料水戻しラインに流入しないように、 原料水に封水効果をもたせるためである 。 そして、 封水に不要な原料水は原料水ポンプ 1 9によって所定の圧力に昇圧さ れてラインミキサー 5に供給される。
以上説明したように、 本実施の形態によれば、 ガス流量制御弁 4、 流速制御弁 6を設け、 これらの各制御弁 4 , 6を所定の時間毎に調整するようにしたので、 粒径の異なるガスハイドレ一トカ連続的に生成される。
また、 本実施の形態では、 原料水と原料ガスの反応を管路で移動させながら行 うようにしたので、 このガスハイドレート生成工程では、 すべてのもの (生成さ れたガスハイドレート、 未反応ガス、 原料水) が一旦分離器 9まで送られること になり、 ガスハイドレ一トのみを取り出す仕組みが不要であり、 装置の構成が単 純化できるという効果もある。
さらに、 原料ガスの原料水への溶解を、 筒体からなるラインミキサー 5で連続 的に行うようにしたので、 省スペースでかつ効率的に行うことができる。
また、 原料ガスの原料水への溶解を反応槽とは別のラインミキサー 5によって 行うようにした結果、 従来例に示されるような大径の反応槽に代えてパイプ状の反 応管路 7を用いることができ、 管路の周面を冷却するという単純かつコンパクトな 冷却手段が可能となる。
しかも、 ラインミキサー 5による原料ガスの溶解、 反応管路 7におけるガスハ ィドレ一卜の生成のいずれも連続的に行うようにしているので、 ガスハイドレ一 トの製造効率を飛躍的に高めることができる。 実施の形態 3— 2.
図 1 3は実施の形態 3— 2の主要な構成機器を示した系統図であり、 図 1 2と同 一部分には同一の符号を付してある。
本実施の形態においては、 2本の反応管路 7 a、 7 bを設け、 それぞれの入り 口側に流速制御弁 6 a、 6 bをそれぞれ設けたものである。
上記構成の本実施の形態においては、 流速制御弁 6 a、 6 bを調^ Tることに より、 各反応管路 7 a、 7 bを流れる流体の流速を変えることができる。 これに よって、 粒径の異なるガスハイドレートが同時に生成でき、 これら粒径の異なる ガスハイドレ一トが分離器 9に送られることになる。
なお、 上記の例では、 各反応管路 7 a、 7 bを流れる流体の流速を変える手段 として、 流速制御弁 6 a、 6 bを用いた例を示したが、 本発明はこれに限られる ものではなく、 例えば 2本の反応管路 7 a、 7 bの管径を異ならせるようにして もよい。
実施の形態 3— 3.
図 1 4は本発明の実施の形態 3 - 3の主要な構成機器を示した系統図であり、 図 1 2、 図 1 3と同一部分には同一の符号を付してある。
本実施の形態においては、 2個のラインミキサー 5 a、 5 b、 2本の反応管路 7 a、 7 b、 2個の分離器 9 a、 9 bを設け、 ラインミキサー 5 a、 5 bの入り 口側にガス流量調整弁 4 a, 4 b及び流速調整弁 6 a、 6 bをそれぞれ設けたも のである。
上記構成の本実施の形態においては、 ガス流量調整弁 4 a, 4 b及び流速調整 弁 6 a、 6 bを調整することにより、 各反応管路 7 a、 7 bを流れる流体の流速 、 ガス流量を変えることができる。 これによつて、 粒径の異なるガスハイドレー トが同時に生成でき、 これら粒径の異なるガスハイドレートが分離器 9 a, 9 b に送られることになる。
各分離器 9 a、 9 bに送られたガスハイドレートは図 1 5の成型工程 (S 7 ) ま での段階で混合される。
本実施の形態においては、 ガス流量調 4 a , 4 b及び流速調整弁 6 a、 6 bを設け、 ガス流量及び流体 (原料水) の流速の両方を変化できるようにしたの で、 きめの細かい粒径制御が可能である。
なお、 上記実施の形態 3 - 1 - 3 - 3の説明においては各工程における温度、 圧 力について特に明示しないが、 一例としては図 1 5で示したものを挙げることがで きる。 ただ、 各工程における温度、 圧力は種々の条件によって最適値が選択される。 また、 上記の実施の形態においては、 原料ガスとしてメタンガスを主成分とす る天然ガスについて説明したが、 その他の例として、 ェタン、 プロパン、 ブタン 、 クリプトン、 キセノン、 二酸化炭素等がある。
さらに、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発 生させることにより、 原料ガスを吸引して混合するいわゆるベンチユリ管方式の ものであってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利 用して気液混合するような'もの、 例えば特開 2 0 0 0 - 4 4 7号公報に開示され た旋回式微細気泡発生装置のようなものでもよい。 要するに、 本明細書における ラインミキサーとは、 ライン上にあつて気液を連続的に混合できるものを広く含 む。
また、 上記の実施の形態においては反応管路 7の例として、 単数または 2本の 屈曲管を示したが、 3本以上の屈曲管を用いてもよい。 そうすれば、 さらに粒径 が異なるガスハイドレートを同時に生成できる。 また、 屈曲管に代えて直管を用 いてもよい。
また、 上記の実施の形態においては、 原料水の種類を明示しなかったが、 例え ば、 淡水、 海水、 不凍液等が考えられる。 また、 原料水に代えて、 液体ホスト物 質やホスト物質溶液のような原料液を用いることも考えられる。 その場合に生成 される物質の名称はガスハイドレ一トではなく、 ガスクラスレートであることは 言うまでもない。
実施の形態 4
実施の形態 4に係るガスクラスレートを製造する方法は、 原料液と原料ガスとを ライン途中で混合して原料ガスを原料液に溶解させる混合 ·溶解工程と、 混合 ·溶 解されたものを反応管路に流しながら冷却してガスクラスレートを生成するガスク ラスレート生成工程と、 生成されたガスクラスレートを前記反応管路に連結された 分離器にて分離する分離工程と、 該分離器の圧力を検出する圧力検出工程と、 該圧 力検出工程で検出された圧力に基づいて、 前記混合 ·溶解工程における供給ガス流 量、 前記ガスクラスレート生成工程における原料液流速のいずれか一方又は両方を 調整することによつて前記分離器の圧力を調整する圧力調整工程と、 を備えたもの である。
また、 実施の形態 4に係るガスクラスレート製造装置は、 供給する原料ガス流量 を調整するガス流量調整手段と、 供給する原料液の流速を調整する原料液流速調整 手段と、 原料液と原料ガスとをライン途中において混合して原料ガスを原料液に溶 解させるラインミキサーと、 原料ガスが混合 ·溶解された原料液を流しながら冷 却する反応管路と、 該反応管路に連結されて生成されたガスクラスレートを分離 する分離器と、 該分離器の圧力を検出する圧力検出手段と、 該圧力検出手段で検 出された圧力に基づいて前記ガス流量調整手段のガス流量、 前記原料液流速調整 手段の原料液流速のいずれか一方又は両方を調整する制御手段とを備えたもので あ
また、 ラインミキサーは、 原料ガスの微細気泡を発生させるものであることを 特徴とするものである。
以下においては、 ガスクラスレートの一態様であるガスハイドレートを例に挙げ て説明する。
図 1 7は実施の形態 4のガスハイドレート製造工程の概要の説明図であり、 原料 ガスとして天然ガスを用いたものを示している。
本実施の形態は上記の工程の中で水と天然ガスからスラリ一状のガスハイドレ一 トを生成する工程 (S 3 ) 及び分離脱水工程 ( S 4) を工夫することで、 効率的な ハイドレートの製造と設備の簡 匕を実現したものである。 以下、 この点について 詳細に説明する。
図 1 6は実施の形態 4の主要な構成機器を示した系統図である。 まず、 図 1 6に 基づいて本実施の形態の構成機器について説明する。
本実施の形態 4のガスハイドレート製造装置は、 天然ガス等の原料ガスの圧力を 昇圧するガス昇圧機 1、 原料水 (本明細書において 「原料水 J というときは、 原 料水のみのものを意味する場合と原料水に原料ガスが溶け込んだ状態のものを意 味する場合の両方がある。 ) を供給する原料水ポンプ 3、 1 9、 原料水と原料ガ スを混合して原料ガスを原料水に溶解させるラインミキサー 5、 ラインミキサー 5でミキシングされたものを冷却しながら流してガスハイドレートを生成する反 応管路 7、 反応管路 7で生成されたガスハイドレート、 未反応ガス、 原料水とを 分離する分離器 9とを備えている。
各構成機器は図中矢印を付した実線で示した配管によって連結されている。 ラ ィンミキサー 5に原料ガスを供給する配管ラインにはガス流量を調整するガス流 量制御弁 1 2 aが設けられている。 また、 原料ポンプ 3 , 1 9からラインミキサ ― 5に通ずる配管ラインには原料水の流速を調整する流速制御弁 1 2 bが設けら れている。 さらに、 分離器 9には分離器 9内の圧力を検出する圧力検出器 1 0が 設置され、 この圧力検出器 1 0の信号に基づいて制御手段 1 4によってガス流量 制御弁 1 2 a、 流速制御弁 1 2 bが制御される。
上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態のラインミキサー 5は、 図 2に示すように、 入り口側が大径で出口 側が小径になった 2段状の筒状体 1 1からなり、 この筒状体 1 1の大径部 1 1 a中 にガイドベーンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b内に筒の内周面 から中央に延びる複数のキノコ状の衝突体 1 5を有している。
このようなラインミキサー 5においては、 原料水ポンプ 3によってラインミキ サー 5に供給された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によ つて外側へ押しやられ、 それがキノコ状の衝突体 1 5によってさらに強烈に攪拌 され、 その中に原料ガスが巻き込まれて超微細な気泡群に砕かれ、 原料水と原料 ガスとが混合される。 これによつて、 原料ガスと原料水との接触面積が大きくな 2002/012496
38
り原料ガスは原料水に効率よく溶け込む。
反応管路 7は屈曲した管からなり、 この管の周面をチラ一 1 7で冷却するよう になっている。 このように、 反応管路 7を用いたことで、 周囲からの冷却を効率 よく行えるようになったので、 従来一般的に行われていたように冷却コイル等に よってガス '原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコン パクト化できる。
なお、 このような反応管路 7を用いることができるのは、 原料ガスと原料水の 混合 ·溶解を予めラインミキサー 5によって行い、 反応管路 7では冷却を中心に 装置構成を考えることができるからである。 すなわち、 特許文献 1に示される従 来例では原料ガスと原料水の混合 ·溶解と反応冷却を槽状のハイドレート生成容 器内で行っていたため、 混合 ·溶解には一定の広がりをもった空間が必要となり 、 冷却を容器の周囲からのみ行うことはできなかったのに対して、 本実施の形態 においては、 原料ガスと原料水の混合'溶解と反応冷却とを分離したので、 反応 工程では冷却を中心に考えることができ、 上記の例のように単純な構成での冷却 が可能となるのである。
分離器 9は、 ガスハイドレート、 未反応ガス、 原料水とを分離するものである が、 分離器 9の例としては、 デカン夕一、 サイクロン、 遠心分離器、 ベルトプレ ス、 スクリュー濃縮 '脱水機、 回転ドライヤー等が考えられる。
次に、 以上のように構成された本実施の形態の装置によるガスハイドレート製 造方法を説明する。
原料ガスの圧力をガス昇圧機 1によって所定圧力に昇圧し、 ガス流量制御弁 1 2 aを介してラインミキサー 5に供給される。 また、 原料水も原料水ポンプ 3に よって所定の圧力に昇圧され、 流速制御弁 1 2 bを介してラインミキサー 5に供 給される。 なお、 運転開始時においては、 ガス流量制御弁 1 2 a、 流速制御弁 1 2 bはそれぞれ最大値に設定されている。 ラインミキサー 5に供給された原料ガ スと原料水は、 前述したメカニズムによって猛烈な勢いで混合される。 このとき 、 原料ガスは微細気泡となって原料水の中に混じり込み、 原料ガスの溶解が促進 される。 P 漏 002/012496
39
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) は反応管路 7に送られ、 チラ一 1 7によって冷却されて分離器 9に送られる。 運 転開始時においては、 反応管路 7の圧力がハイドレート生成圧力になっていない ので、 ハイドレートは生成されることがなぐ 未溶解の原料ガスが分離器 9に供 給される結果、 分離器 9の圧力が上昇する。 以上のようにして運転開始時から一 定の時間が経過すると、 分離器 9内の圧力が上昇し、 分離器 9に連通する反応管 路 7の圧力が上昇してハイドレート生成圧力になると、 反応管路 7においてガス ハイドレートの生成が開始される。 そして、 ここで生成されたガスハイドレ一ト は未反応ガス、 原料水と共に管路を流れてゆき分離器 9に送られる。
未反応ガスが分離器 9に送られると、 分離器 9内の圧力が上昇するが、 これが 予め設定した値を超えると、 制御手段 1 4によって、 ガス流量制御弁 1 2 a、 原 料水流速制御弁 1 2 bのいずれか一方又は両方が制御され、 これによつて分離器 9の圧力及び反応管路 7の圧力が調整される。
このように、 分離器 9の圧力は各制御弁 1 2 a, 1 2 bを調整することによつ て行われるが、 ここで各制御弁を調整したときに分離器 9の圧力が変化するメカ ニズムについて説明する。
その前提として、 反応管路 7におけるハイドレート生成のメカニズムを説明す る。
ラインミキサー 5によって、 原料ガスと原料水が混合され、 原料ガスは微細気 泡となり、 原料水に溶解して原料水全体が平衡濃度に到達する。
原料水が ffi濃度に到達すると、 反応管路 7の圧力 Pがハイドレート生成最低 圧力 Ροより高く、 反応管路 7の各部の温度 Tがハイドレ一ト生成最高温度 Toよ り低い条件になっていればガスハイドレートの生成が開始される。 ガスハイドレ —卜の生成には発熱を伴うことになるが、 発熱量に相当する熱量をチラ一 1 7の 冷却で奪うことで、 反応管路 7の温度はハイドレ一ト生成最高温度 Toより低い 温度〖こ保たれる。 なお、 冷却しすぎると原料水が凝固して反応管路 7内の流れが 阻害されるので、 チラ一 1 7での冷却能力は、 原料水が凝固点以下にならないよ うに設定されている。 PC霞 00編 496
40
ガスハイドレートが生成されると溶解ガス濃度が下がり、 平衡濃度になるまで 原料ガスがさらに溶け込み、 平衡濃度以上になるとさらにガスハイドレートが生 成される。 このようにして生成されたガスハイドレートは反応管路 7内を流れて ゆき、 原料水、 未反応ガス (全量八イドレート化した場合には未反応ガスはない ) と共に、 分離器 9に送られる。
上記のようなガスハイドレート生成メカニズムにおいて、 ガス流量制御弁 1 2 aを調整してガス流量を少なくすると、 供給ガス量に対する反応管路 7内でハイド レート化する割合を増加させることができ、 分離器 9に送られる未反応ガス量 が減少する。 そして、 供給ガス量をある量以下にすると、 原料ガスは反応管路 7 内で全量がハイドレート化し、 分離器 9に未反応ガスが供給されなくなる。 この ように、 ガス流量制御弁 1 2 aを調整してガス流量を少なくすることで、 分離器 9に供給される未反応ガス量を調整できる。
他方、 分離器 9内もハイドレートが生成される環境にあるので、 分離器 9内の 未反応ガスが溶解 ·ハイドレ—ト化し、 分離器 9内の圧力は低下する傾向にある したがって、 分離器 9に供,袷される未反応ガス量が少なくなり、 あるいは無く なると分離器 9内でのハイドレート化による未反応ガスの減少の方が多くなり、 その結果、 分離器 9の圧力を低下させることができる。
逆に、 ガス流量制御弁 1 2 aを調整してガス流量を多くすると、 供給ガス量に 対する反応管路 7内でハイドレート化するガス割合を減少させることができ、 供 . 給ガス量をある量以上にすると、 原料ガスは反応管路 7内で全量八ィドレートイ匕 することなく、 分離器 9に未反応ガスが供給される。 このように、 ガス流量制御 弁 1 2 aを調整してガス流量を多くすることで、 分離器 9に供給される未反応ガ ス量を多くでき、 その結果、 分離器 9の圧力を上昇させることができる。
また、 流速制御弁 1 2 bを調整して反応管路 7を流れる流体の流速を速くした 場合には、 原料水の反応管路 7内における滞留時間が短くなるので、 原料ガスの 溶解、 ハイドレート化の量が少なくなり、 分離器 9に送られる未反応ガス量が増 えることになる。 その結果、 分離器 9の圧力を上昇させることができる。 逆に、 流速制御弁 1 2 bを調整して反応管路 7を流れる流体の流速を遅くした 場合には、 原料水の反応管路 7内における滞留時間が長くなるので、 原料ガスの 溶解、 ハイドレート化の量が多くなり、 分離器 9に送られる未反応ガス量が少な くなる。 その結果、 分離器 9の圧力上昇を停止し、 又は圧力を低下させることが できる。
以上の説明から明らかなように、 分離器 9の圧力を上昇させるには、 ガス流量 制御弁 1 2 aを調整してガス流量を多くする、 または、 流速制御弁 1 2 bを調整 して反応管路 7を流れる流体の流速を速くすればよい。
逆に、 分離器 9の圧力を低下させるには、 ガス流量制御弁 1 2 aを調整してガ ス流量を少なくする、 または、 流速制御弁 1 2 bを調整して反応管路 7を流れる 流体の流速を遅くすればよい。
以上のように、 各制御弁 1 2 a , 1 2 bを調整することにより、 分離器 9の圧 力が調整され、 分離器 9内は生成されたガスハイドレートが安定する圧力に保持 され、 その結果、 反応管路 7の圧力もハイドレート化に最適な圧力に保持される なお、 分離器 9では、 ガスハイドレート、 未反応ガス、 原料水が分離され、 分 離された原料水はポンプ 1 9によって再びラインミキサー 5に供給される。 - 一方、 生成されたガスハイドレートは分離器 9から取り出され、 後処理工程 ( 図 1 7における S 5以降の工程) .に送られる。 .
また、 分離器 9においては、 分離器 9内の水位がレベル計 2 1で検知され、 分 離器 9内の水位が一定レベル以上になるように制御されている。 これは、 ガスが 原料水戻しラインに流入しないように、 原料水に封水効果をもたせるためである 。 そして、 封水に不要な原料水は原料水ポンプ 1 9によって所定の圧力に昇圧さ れてラインミキサー 5に供,給される。
以上説明したように、 本実施の形態によれば、 ガス流量制御弁 1 2 a、 流速制 御弁 1 2 bを設け、 これらの各制御弁 1 2 a, 1 2 bを分離器 9に設けた圧力検 出器 1 0の検出値に基づいて制御するようにしたので、 分離器 9内の圧力制御を 簡単な装置で実現でき、 装置の簡晰匕ができる。 また、 本実施の形態では、 原料水と原料ガスの反応を管路で移動させながら行 うようにしたので、 このガスハイドレート生成工程では、 すべてのもの (生成さ れたガスハイドレート、 未反応ガス、 原料水) が一旦分離器 9まで送られること になり、 ガスハイドレートのみを取り出す仕組みが不要であり、 装置の構成が単 純化できるという効果もある。
さらに、 原料ガスの原料水への溶解を、 筒体からなるラインミキサー 5で連続 的に行うようにしたので、 省スペースでかつ効率的に行うことができる。
また、 原料ガスの原料水への溶解をハイドレート生成容器とは別のラインミキ サ一 5によって行うようにした結果、 大径のハイドレート生成容器に代えてパイ プ状の反応管路 7を用いることができ、 管路の周面を冷却するという単純かつコ ンパク卜な冷却手段が可能となる。
しかも、 ラインミキサー 5による原料ガスの溶解、 反応管路 7におけるガスハ ィドレートの生成のいずれも連続的に行うようにしているので、 ガスハイドレ一 卜の製造効率を飛躍的に高めることができる。
なお、 上記実施の形態の説明においては各工程における温度、 圧力について特 に明示しないが、 一例としては図 1 7で示したものを挙げることができる。 ただ、 各工程における温度、 圧力は種々の条件によって最適値が選択される。
また、 上記の実施の形態においては、 原料ガスとしてメタンガスを主成分とす る天然ガスについて説明したが その他の例として、 ェタン、 プロパン、 ブタン 、 クリプトン、 キセノン、 二酸化炭素等がある。
さらに、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発 生させることにより、 原料ガスを吸引して混合するいわゆるベンチユリ管方式の ものであってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利 用して気液混合するようなもの、 例えば特開 2 0 0 0 - 4 4 7号公報に開示され た旋回式微細気泡発生装置のようなものでもよい。 要するに、 本明細書における ラインミキサーとは、 ライン上にあって気液を連続的に混合できるものを広く含 む。
また、 上記の実施の形態においては反応管路 7の例として、 単数または複数の 屈曲管を示したが、 分岐した複数本の直管で構成してもよい。
また、 上記の実施の形態においては、 原料水の種類を明示しなかったが、 例え ば、 淡水、 海水、 不凍液等が考えられる。 また、 原料水に代えて、 液体ホスト物 質やホスト物質溶液のような原料液を用いることも考えられる。 その場合に生成さ れる物質の名称はガスハイドレ一トではなく、 ガスクラスレートであることは言う までもない。
実施の形態 5
実施の形態 5に係るガスクラスレ一ト製造方法は、 原料液と原料ガスをライン途 中で混合して原料ガスを原料液に溶解させる第 1混合 ·溶解工程と、 混合 ·溶解さ れたものを反応管路に流しながら冷却してガスクラスレートを生成するガスクラス レート生成工程と、 生成されたガスクラスレートを前記反応管路に連結された分離 器にて分離する分離工程とを備え、 前記第 1混合'溶解工程の後、 前記ガスクラス 'レート生成工程の前、 または前記ガスクラスレート生成工程の途中において原料ガ スを原料液に溶解させる第 2混合 ·溶解工程を単数又は複数設けたものである。 また、 実施の形態 5に係るガスクラスレート製造装置は、 原料液と原料ガスをラ ィン途中において混合して原料ガスを原料液に溶解させるラインミキサーと、 原料 ガスが混合 ·溶解された原料液を流しながら冷却する反応管路と、 該反応管路に連 結されて生成されたガスクラスレートを分離する分離器とを備え、 前記ラインミキ サ一を、 前記反応管路の上流側に少なくとも 1台設けると共に、 前記反応管路の途 中に単数又は複数のラインミキサーを設けたものである。
また、 ラインミキサーは、 原料ガスの微細気泡を発生させるものであることを 特徴とするものである。
また、 ラインミキサーの下流側にライン圧力を調整する圧力調整手段を設けた ものである。
また、 ラインミキサーの下流側に、 ラインを流れる流体の流速を調整する流速 調整手段を設けたものである。
以下においては、 ガスクラスレートの一態様であるガスハイドレートを例に挙げ て説明する。
図 2 1は実施の形態 5のガスハイドレート製造工程の概要の説明図であり、 原料 ガスとして天然ガスを用いたものを示している。
本実施の形態 5は上記の工程の中で水と天然ガスからスラリ一状のガスハイドレ ートを生成する工程 (S 3 ) を工夫することで、 効率的なハイドレート生成と設備 の簡 匕を実現したものである。 以下、 この点について詳細に説明する。
図 1 8は実施の形態 5の主要な構成機器を示した系統図である。 まず、 図 1 8に 基づいて本実施の形態の構成機器について説明する。 なお、 以下の説明では、 実施 の形態 5が対象としているガスハイドレートを例に挙げて説明する。
本実施の形態のガスハイドレ一ト製造装置は、 天然ガス等の原料ガスの圧力を 昇圧するガス昇圧機 1、 原料水 (本明細書において 「原料水 J というときは、 原 料水のみのものを意味する場合と原料水に原料ガスが溶け込んだ状態のものを意 味する場合の両方がある。 ) を供給する原料水ポンプ 3、 1 9、 原料水と原料ガ スを混合して原料ガスを原料水に溶解させる第 1ラインミキサー 5 a、 ラインミ キサー 5 aでミキシングされたものを冷却しながら流してガスハイドレートを生 成する反応管路 7、 反応管路 7の途中に設けられて反応管路 7を流れる原料水に 原料ガスを混合 ·溶解させる第 2ラインミキサー 5 b、 前記反応管路 7の途中の 前記第 2ラインミキサー 5 bの下流側に設けられ反応管路 7を流れる原料水に原 料ガスを混合 ·溶解させる第 3ラインミキサー 5 cと、 反応管路 7で生成された ガスハイドレ一ト、 未反応ガス、 原料水とを分離する分離器 9とを備えている。 各構成機器は図中矢印を付した実線で示した配管によって連結されている。 ラ ィンミキサー 5 a、 5 b、 5 cに原料ガスを供給する配管ラインにはガス流量を 調整するガス流量制御弁 1 2 a、 1 2 b , 1 2 cがそれぞれ設けられている。 また、 原料ポンプ 3 , 1 9からラインミキサー 5 aに通ずる配管ラインには原 料水の流速を調整する流速制御弁 1 4が設けられている。
さらに、 ガス昇圧機 1で昇圧された原料ガスを分離器 9に供給するラインには 供給ガス量を調整するガス流量調整弁 1 2 dが設けられ、 また、 分離器 9内の余 剰な原料ガスをガスハイドレ一ト生成ラインに戻すラインにはガス流量調整弁 1 2 eとガス昇圧機 2が設けられている。 そして、 分離器 9に設けられた分離器 9 内の圧力を痪出する圧力検出器 1 0の信号に基づいてガス流量制御弁 1 2 d , 1 2 eが制御され、 分離器 9内の圧力が調整される。
上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態のラインミキサ一 5 a、 5 b、 5 cは、 図 2に示すように、 入り口 側が大径で出口側が小径になつた 2段状の筒状体 1 1カらなり、 この筒状体 1 1の 大径部 1 1 a中にガイドベーンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b 内に筒の内周面から中央に延びる複数のキノコ状の衝突体 1 5を有している。 このようなラインミキサー 5においては、 原料水ポンプ 3によってラインミキ サ一 5に供給された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によ つて外側へ押しやられ、 それがキノコ状の衝突体 1 5によってさらに強烈に攪拌 され、 その中に原料ガスが巻き込まれて超微細な気泡群に砕かれ、 原料水と原料 ガスとが混合される。 これによつて、 原料ガスと原料水との接触面積が大きくな り原料ガスは原料水に効率よく溶け込む。
反応管路 7は屈曲した管からなり、 この管の周面をチラ一 1 7で冷却するよう になっている。 このように、 反応管路 7を用いたことで、 周囲からの冷却を効率 よく行えるようになったので、 従来 般的に行われていたように冷却コイル等に よってガス '原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコン パクト化できる。
なお、 このような反応管路 7を用いることができるのは、 原料ガスと原料水の 混合'溶解をラインミキサー 5 a、 5 b、 5 cによって行い、 反応管路 7では冷 却を中心に装置構成を考えることができるからである。 すなわち、 特許文献 1に 示される従来例では原料ガスと原料水の混合 ·溶解と反応冷却を槽状のハイドレ 一ト生成容器内で行っていたため、 混合 ·溶解には一定の広がりをもった空間が 必要となり、 冷却を容器の周囲からのみ行うことはできなかったのに対して、 本 実施の形態においては、 原料ガスと原料水の混合 ·溶解と反応冷却とを分離した ので、 反応工程では冷却を中心に考えることができ、 上記の例のように単純な構 成での冷却が可能となるのである。
分離器 9は、 ガスハイドレート、 未反応ガス、 原料水とを分離するものである が、 分離器 9の例としては、 デカンター、 サイクロン、 遠心分離器、 ベルトプレ ス、 スクリュ一濃縮'脱水機、 回転ドライヤー等が考えられる。
次に、 以上のように構成された本実施の形態の装置によるガスハイドレート製 造方法を説明する。
ガス昇圧機 1によって所定圧力に昇圧された原料ガスがガス流量制御弁 1 2 a を介してラインミキサー 5 aに供給される。 また、 原料水ポンプ 3によって所定 の圧力に昇圧された原料水が流速制御弁 1 4を介してラインミキサー 5 aに供給 される。
ラインミキサー 5 aに供給された原料ガスと原料水は、 前述したメカニズムに よって猛烈な勢いで混合される。 このとき、 原料ガスは微細気泡となって原料水 の中に混じり込み、 原料ガスの溶解が促進される。
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) はチラ一 1 7によって冷却されている反応管路 7に送られる。 反応管路 7の途中 では、 ラインミキサー 5 b、 5 cによって原料ガスがさらに混合 ·溶解されて分 離器 9に送られる。
運転開始時においては、 1 2 d、 1 2 eで分離器圧力がハイドレート生成条件 に保持されており、 分離器に連通する反応管の圧力もそれ以上であるため、 反応 管路においてガスハイドレートの生成が開始される。
ここで、 反応管路 7におけるハイドレート生成のメカニズムを説明する。
ラインミキサー 5 aによって、 原料ガスと原料水が混合され、 原料ガスは微細 気泡となり、 原料水に溶角早して原料水全体が平衡濃度に到達する。
原料水が平衡濃度に到達すると、 反応管路 7の圧力 Pが八ィドレート生成最低 圧力 Ροより高く、 反応管路 7の各部の温度 Tがハイドレート生成最高温度 Toよ り低い条件になっていればガスハイドレートの生成が開始される。 ガスハイドレ ートの生成には発熱を伴うことになるが、 発熱量に相当する熱量をチラ一 1 7の 冷却で奪うことで、 反応管路 7の温度はハイドハイドレ一ト生成最高温度 Toより 低い温度に保たれる。 もっとも、 冷却しすぎると原料水が凝固して反応管路 7内の 流れが阻害されるので、 チラ一 1 7での冷却能力は、 原料水が凝固点以下にならな いように設定されている。
ガスハイドレートが生成されると溶解ガス濃度が下がり、 ¾濃度になるまで 原料ガスがさらに溶け込み、 «濃度以上になるとさらにガスハイドレ一トが生 成される。 効率よく多量のガスハイドレ一トを生成するためには、 原料水が反応 管路 7を流れる間にハイドレート化する量を多くすることが必要である。 そのた めには、 原料水に溶解する原料ガス量を理論水和数に極力近づける必要があり、 そのためには、 原料水が平衡濃度以下になったときに原料ガスが原料水に効率的 に溶解できる環境を作ることが必要である。
そこで、 本実施形態においては、 反応管路 7の途中において第 2、 第 3ライン ミキサ一 5 b、 5 cを設け、 反応管路 7の途中において原料ガスを微細気泡にし て供給することで、 原料ガスの効率的な溶解を実現している。 つまり、 第 1ライ ンミキサー 5 aで微細気泡となつた原料ガスが反応管路 7の途中で全て溶解ある いは八イドレート化してしまう、 もしくは気泡として存在していたとしても、 管 路を流れるにしたがつて気泡同士が合体して大きな気泡となり、 原料水との接触 面積が小さくなり、 溶解効率が悪くなることが考えられる。 そこで、 反応管路 7の 途中において、 再び原料ガスを微細気泡として供給することで、 原料ガスの溶解 効率を高めているのである。
以上のようにして生成されたガスハイドレートは反応管路 7内を流れてゆき、 原料水、 未反応ガス (全量八イドレート化した場合には未反応ガスはない) と共 に、 分離器 9に送られる。
未反応ガスが分離器 9に送られると、 分離器 9内の圧力が上昇するが、 これが 予め設定した値を超えたことが圧力検出手段 1 0によって検出されると、 ガス流 量制御弁 1 2 eが図示しない制御手段によって制御され余剰ガスがハイドレ一ト 生成ラインに戻され、 これによつて分離器 9の圧力及び反応管路 7の圧力が調整 される。
なお、 分離器 9では、 ガスハイドレート、 未反応ガス、 原料水が分離され、 分 離された原料水はポンプ 1 9によって再びラインミキサー 5 aに供給される。 一方、 生成されたガスハイドレートは分離器 9から取り出され、 後処理工程 ( 図 2 1における S 5以降の工程) に送られる。
また、 分離器 9においては、 分離器 9内の水位がレベル計 2 1で検知され、 分 離器 9内の水位が一定レベル以上になるように制御されている。 これは、 ガスが 原料水戻しラインに流入しないように、 原料水に封水効果をもたせるためである 。 そして、 封水に不要な原料水は原料水ポンプ 1 9によって所定の圧力に昇圧さ れてラインミキサー 5 aに供給される。 以上説明したように、 本実施の形態によれば、 ラインミキサーを複数設けたこ とにより、 原料ガスの原料水への溶解が促進され、 効率的なハイドレートの生成 が実現される。
また、 本実施の形態では、 原料水と原料ガスの反応を管路で移動させながら行 うようにしたので、 このガスハイドレ一卜生成工程では、 すべてのもの (生成さ れたガスハイドレート、 未反応ガス、 原料水) が一旦分離器 9まで送られること になり、 ガスハイドレートのみを取り出す仕組みが不要であり、 装置の構成が単 純化できるという効果もある。
さらに、 原料ガスの原料水への溶解を、 筒体からなるラインミキサー 5 a、 5 b、 5 cで連続的に行うようにしたので、 省スペースでかつ効率的に行うことが できる。
また、 原料ガスの原料水への溶解をハイドレ一ト生成容器とは別のラインミキ サ一 5 a、 5 b、 5 cによって行うようにした結果、 大径のハイドレ一ト生成容 器に代えてパイプ状の反応管路 7を用いることができ、 管路の周面を冷却すると いう単純かつコンパクトな冷却手段が可能となる。
しかも、 ラインミキサー 5 a、 5 b、 5 cによる原料ガスの溶解、 反応管路 7 におけるガスハイドレートの生成のいずれも連続的に行うようにしているので、 ガスハイドレートの製造効率を飛躍的に高めることができる。
なお、 上記実施の形態においては、 ラインミキサー 5 aの下流側に 2台のライ ンミキサ一 5 b、 5 cを設置した例を示したが、 ラインミキサ一 5 aの下流側に 設置するラインミキサーの数は 1台若しくは 3台以上でもよい。 また、 反応管路 7の上流側に複数のラインミキサーを設置してもよい。 これは、 ラインミキサー によっては原料水量に対して混合できるガス量に制約がある場合に有効である。 また、 上記実施の形態においては、 ラインミキサー 5 aと反応管路 7との間に 圧力を調整する手段を何ら設けていなかった。
しかし、 図 1 9に示すように、 ラインミキサー 5 aと反応管路 7との間に、 圧力 検出器 2 3及び調整バルブ 2 5からなる圧力調整手段 2 7を設けるようにしても よい。 圧力調整手段 2 7を設けることによってラインミキサー 5 a側の圧力を高くす ることができ、 ラインミキサー 5 aによる原料ガスの原料水への溶解をより促進 できる。
また、 原料ガスの原料水への溶解をより促進させるために、 図 2 0に示すように ラインミキサー 5 の下流側にラインを流れる流体の流速を遅くするための流速 調整手段としての滞留部 2 9を設けてもよい。 滞留部 2 9を設けることにより、 ラインミキサー 5 aで微細気泡となった原料ガスが原料水に溶解するための時間を 稼ぐことができ、 これによつて溶解促進を図ることができる。
なお、 滞留部 2 9の具体例としては、 一定の容積を有するタンクが考えられる また、 上記実施の形態の説明においては各工程における温度、 圧力について特 に明示しないが、 一例としては図 2 1で示したものを挙げることができる。 ただ、 各工程における温度、 圧力は種々の条件によって最適値が選択される。
さらに、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発 生させることにより、 原料ガスを吸引して混合するいわゆるベンチユリ管方式の ものであってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利 用して気液混合するようなもの、 例えば特開 2 0 0 0— 4 4 7号公報に開示され た旋回式微細気泡発生装置のようなものでもよい。 要するに、 本明細書における ラインミキサ一とは、 ライン上にあつて気液を連続的に混合できるものを広く含 む。
また、 上記の実施の形態においては反応管路が単数の場合を示したが、 反応管 路を複数設け、 それぞれの反応管路にそれぞれ同数のラインミキサーを設置して もよい。 また、 複数の反応管路のそれぞれに設置するラインミキサーの数を異な るようにしてもよい。 さらに、 反応管路を途中で分岐して、 分岐前の反応管路に 複数のラインミキサーを設置して分岐後の各反応管路にはラインミキサーを設置 しないようにしたり、 あるいは各分岐反応管路にラインミキサーを同数又は異な る数設置するようにしてもよい。
また、 上記実施形態においては、 原料ガスとしてメタンガスを主成分とする天 然ガスを念頭において説明したが、 その他の例として、 ェタン、 プロパン、 ブ夕 ン、 クリプトン、 キセノン、 二酸化炭素等がある。
さらに、 上記の実施の形態においては、 原料水の種類を明示しなかったが、 例 えば、 淡水、 海水、 不凍液等が考えられる。 また、 原料水に代えて、 液体ホスト 物質やホスト物質溶液のような原料液を用いることも考えられる。 その場合に生成 される物質の名称はガスハイドレートではなく、 ガスクラスレートであることは言 うまでもない。
実施の形態 6
実施の形態 6に係るガス輸送方法は、 原料水と原料ガスとをライン途中で混合 して原料ガスを原料水に溶解させる混合 ·溶解工程と、 混合 ·溶解されたものを反 応管路に流しながら冷却してガスハイドレー卜を生成するガスハイドレ一ト生成ェ 程と、 生成されたガスハイドレートを前記反応管路に連結された輸送用タンクに順 次貯留する工程と、 輸送用タンクを取り外して目的地に搬送する工程とを備えたも のである。
また、 生成されたガスハイドレートを濃縮する濃縮工程又は生成されたガスハイ ドレートと原料水を分離する分離工程を備えたものである。
実施の形態 6に係るガス輸送装置は、 原料水と原料ガスを反応させてハイドレ一 ト化して原料ガスを輸送するものであつて、 原料水と原料ガスをライン途中におい て混合して原料ガスを原料水に溶解させるラインミキサーと、 混合 ·溶解されたも のを冷却する反応管路と、 該反応管路に対して着脱可能に連結されて前記反応管 路で生成されたガスハイドレートを貯留すると共に、 ガスハイドレ一ト充填後に 取り外されて輸送に供される輸送用タンクとを備えたものである。
また、 生成されたガスハイドレートを濃縮する濃縮装置又は生成されたガスハ ィドレートと原料水を分離する分離装置を備えたものである。
本実施の形態のガス輸送方法は、 原料ガスとなる天然ガスをハイドレ一ト化し 、 これを輸送用タンクに連続的に供給貯留して効率的な輸送をするというもので める。
図 2 2はこのような方法を実現するための装置の主要な構成機器を示した系統図 である。 まず、 図 2 2に基づいて本実施の形態の構成機器について説明する。 本実施の形態の装置は、 天然ガス等の原料ガスの圧力を昇圧するガス昇圧機 1 、 原料タンク 2に貯留された原料水を後述のラインミキサー 5に供給する原料水 ポンプ 3、 原料水と原料ガスを混合して原料ガスを原料水に溶解させるラインミ キサー 5、 ラインミキサー 5でミキシングされたものを冷却しながら流してガス ハイドレ一トを生成する反応管路 7、 反応管路 7を冷却するチラ一 1 7、 反応管 路 7に対して着脱可能に設置されて反応管路 7で生成されたガスハイドレートを 貯留する輸送用タンク 9とを備えている。
各構成機器は図中矢印を付した実線で示した配管によって連結されており、 ラ ィンミキサー 5に原料ガスを供給する配管ラインには圧力検出器 6及び該圧力検 出器 6の検出値に基づいて作動するバルブ 4が設けられている。
また、 輸送用タンク 9とラインミキサー 5の上流側とは輸送用タンク 9のガス をラインミキサー 5側に戻す配管ラインが設けられ、 この配管ラインには輸送用 タンク 9に設置された圧力検出器 8の信号に基づいて制御されるバルブ 1 0が設 けられている。 さらに、 このラインにはガス昇圧機 1 2が設置されている。
また、 輸送用夕ンク 9と原料水夕ンク 2間には原料水を原料タンク 2に戻す配 管ラインが設けられ、 該配管ラインには原料水ポンプ 1 9が設置されている。 上記の各構成機器のうち主要なものの構成をさらに詳細に説明する。
本実施の形態のラインミキサー 5は、 図 2に示すように、 入り口側が大径で出口 側が小径になった 2段状の筒状体 1 1からなり、 この筒状体 1 1の大径部 1 1 a中 にガイドべ一ンと呼ばれる翼体 1 3を有し、 その先の小径部 1 1 b内に筒の内周面 から中央に延びる複数のキノコ状の衝突体 1 5を有している。
このようなラインミキサ一 5においては、 原料水ポンプ 3によってラインミキ サ一 5に供給された原料水が翼体 1 3によって旋回流となり、 猛烈な遠心力によ つて外側へ押しやられ、 それがキノコ状の衝突体 1 5によってさらに強烈に攪拌 され、 その中に原料ガスが巻き込まれて超微細な気泡群に砕かれ、 原料水と原料 ガスとが混合される。 これによつて、 原料ガスと原料水との接触面積が大きくな り原料ガスは原料水に効率よく溶け込む。
反応管路 7は屈曲した管からなり、 この管の周面をチラ一 1 7で冷却するよう になっている。 このように、 反応管路 7を用いたことで、 周囲からの冷却を効率 よく行えるようになつたので、 従来一般的に行われていたように冷却コイル等に よってガス ·原料水を直接冷却する必要がなくなり、 装置の構成が単純かつコン パクト化できる。
なお、 このような反応管路 7を用いることができるのは、 原料ガスと原料水の 混合 ·溶解を予めラインミキサー 5によって行い、 反応管路 7では冷却を中心に 装置構成を考えることができるからである。 すなわち、 特許文献 1に示される従 来例では原料ガスと原料水の混合 ·溶解と反応冷却を槽状の耐圧容器内で行って いたため、 混合 ·溶解には一定の広がりをもった空間が必要となり、 冷却を反応 槽の周囲からのみ行うことはできなかったのに対して、 本実施の形態においては 、 原料ガスと原料水の混合'溶解と反応冷却とを分離したので、 反応工程では冷 却を中心に考えることができ、 上記の例のように単純な構成での冷却が可能とな るのである。
輸送用タンク 9は反応管路 7に対して着脱可能に設置され、 ハイドレー卜が所 定量溜まれば取り外してトラック 2 0 (図 2 2参照) 等の輸送手段による輸送に供 することができる。 なお、 輸送用タンク 9の入り口に流体の密度差を利用した濃 縮器を取り付け、 これを通過させることによりガスハイドレートを濃縮して、 濃 縮されたガスハイドレートを輸送用タンク 9に導くようにしてもよい。 また、 例 えば、 デカンター、 サイクロン、 遠心分離器、 ベルトプレス、 スクリュー濃縮 · 脱水機、 回転ドライャ一等のガスハイドレ一トと原料水を分離する機器を設け、 これらの機器によって原料水と分離されたガスハイドレ一トを輸送用タンク 9に 導くようにしてもよい。
輸送用タンク 9はガスハイドレートを圧力によって定まる平衡温度以下の状態 で輸送する。 例えば、 メタンハイドレ一トの場合の平衡温度は次の通りである。 大気圧では— 8 0 °C以下、 2 5気圧では 0 °C以下、 8 0気圧では 1 0 °C以下であ る。
したがって、 輸送用タンク 9は上記圧力に耐えられ、 力つ、 上記圧力で定まる 平衡温度以下となるように、 耐圧断熱構造である必要がある。 もっとも、 長距離 輸送用として、 輸送用タンクに冷凍機を設けるようにしてもよい。
なお、 メ夕ンハイドレ一トの大気圧での平衡温度は— 8 0 °Cであるが、 これよ り高温である一 2 0 °C〜一 1 0 °Cで保存できることが知られている。 これはメ夕 ンハイドレート表面から解離によりガスが抜け、 表面に氷殻が形成され、 この氷 殻が保護容器となって内部のハイドレートの解離を妨げるからである ( 「自己保 存性 J と呼ばれる) 。 従って、 前記平衡温度以上での輸送が可能となる場合もあ る。
次に、 以上のように構成された本実施の形態の装置によるガス輸送方法を説明 する。
原料ガスの圧力をガス昇圧機 1によって所定の圧力に昇圧する。 また、 原料水 も原料水ポンプ 3によって所定の圧力に昇圧する。 昇圧された原料ガスはガス流 量制御弁 4によって制御されて一定量がラインミキサー 5に供給され、 同じくラ ィンミキサ一 5に供給された原料水と共に、 前述したメカニズムによって猛烈な 勢いで混合される。 このとき、 原料ガスは微細気泡となって原料水の中に混じり 込み、 原料ガスの溶解が促進される。 、
原料水に原料ガスが溶け込んだもの (未溶解の微細気泡も含んだ状態のもの) は反応管路 7に送られ、 チラ一 1 7によって冷却されてガスハイドレートが生成 される。
ここで、 反応管路 7におけるハイドレート生成のメカニズムを説明する。 ライ ンミキサー 5によって、 原料ガスと原料水が混合され、 原料ガスは微細気泡とな り、 原料水に溶解して原料水全体が平衡濃度に到達する。
原料水が平衡濃度に到達すると、 反応管路 7の圧力 Pがハイドレート生成最低 圧力 Poより高く、 反応管路 7の各部の温度 Tがハイドレート生成最高温度 Toよ り低くなるように設定されているので、 ガスハイドレートの生成が開始される。 ガスハイドレ一トの生成には発熱を伴うことになるが、 発熱量に相当する熱量を チラ一 1 7の冷却で奪うことで、 反応管路 7の温度はハイドレ一ト生成最高温度 Toより低い温度に保たれる。 なお、 冷却しすぎると原料水が凝固して反応管路 7内の流れが阻害されるので、 チラ一 1 7での冷却能力は、 原料水が凝固点以下 にならないように設定されている。
ガスハイドレートが生成されると溶解ガス濃度が下がり、 平衡濃度になるまで 原料ガスがさらに溶け込み、 平衡濃度以上になるとさらにガスハイドレートが生 成される。
このようにして生成されたガスハイドレートは未反応ガス、 原料水と共に管路 を流れてゆき輸送用タンク 9に送られる。 スラリー状態で、 輸送用タンク 9に搬 入後、 タンクの底部より未反応水を原料水ポンプ 1 9により抜き取る。 もっとも 、 原料水ポンプ 1 9に依らず、 低部から自然流下により抜き取ってもよい。 上記のようにしてガスハイドレートおよび未反応水が充填された輸送用タンク を、 トレ一ラー等により目的地に向けて輸送する。 目的地に到着後、 大気圧まで 減圧し、 ガスハイドレートに含まれる原料ガスを放出する。 このとき、 輸送用夕 ンク 9にヒータを内蔵しておき、 ヒータ一で力 Π温するようにしてもよい。
なお、 ガス放出管の経路中に、 必要に応じて除湿器を設けておき、 原料ガスに 含まれる水分を |5余去するようにする。
以上説明したように、 本実施の形態においては、 原料水と原料ガスの反応を管 路で移動させながら行うようにしたので、 ガスハイドレ一ト生成工程では、 すべ てのもの (生成されたガスハイドレート、 未反応ガス、 原料水) が輸送用タンク 9まで送られることになり、 ガスハイドレートのみを取り出す仕組みが不要であ り、 装置の構成が単純化できる。
また、 原料ガスの原料水への溶解を、 筒体からなるラインミキサー 5で連続的 に行うようにしたので、 省スペースでかつ効率的に行うことができる。
さらに、 原料ガスの原料水への溶解を反応槽とは別のラインミキサー 5によつ て行うようにした結果、 特許文献 1に示されるような大径の反応槽に代えてパイ プ状の反応管路 7を用いることができ、 管路の周面を冷却するという単純かつコ ンパク卜な冷却手段が可能となる。
しかも、 ラインミキサー 5による原料ガスの溶解、 反応管路 7におけるガスハ ィドレートの生成のいずれも連続的に行うようにしているので、 ガスハイドレー トの製造効率を飛躍的に高めることができ、 効率的な輸送が実現できる。
なお、 上記実施の形態においては各工程における温度、 圧力について特に明示 していないが、 各工程における温度、 圧力は種々の条件によって最適値が選択さ れる。
また、 上記の実施の形態においては、 原料ガスとしてメタンガスを主成分とす る天然ガスを念頭において説明したが、 その他の原料ガス例として、 ェタン、 プ 口パン、 ブタン、 クリプトン、 キセノン、 二酸化炭素等がある。 さらに、 ラインミキサーの他の例としては、 筒状体の途中を細くして負圧を発 生させることにより、 原料ガスを吸引して混合するいわゆるベンチユリ管方式の ものであってもよいし、 またあるいは円錐または円錐台状の容器内の旋回流を利 用して気液混合するようなもの、 例えば特開 2 0 0 0— 4 4 7号公報に開示され た旋回式微細気泡発生装置のようなものでもよい。 要するに、 本明細書における ラインミキサーとは、 ライン上にあって気液を連続的に混合できるものを広く含 む。
また、 上記実施の形態においては反応管路 7の例として、 単数の屈曲管を示し たが、 複数の屈曲管を用いてもよいし、 また、 屈曲管に代えて直管を用いてもよ い。
さらに、 上記の実施の形態においては、 原料水の種類を明示しなかったが、 例 えば、 淡水、 海水、 不凍液等が考えられる。

Claims

請求の範囲
1 . 原料液と原料ガスとをライン途中で混合して原料ガスを原料液に溶解させる混 合 .溶解工程と、
原料ガスが溶解した原料液を反応管路に流しながら冷却してガスクラスレート を生成させる生成工程、
を有するガスクラスレ一トの製造方法。
2. 前記混合'溶解工程が、 原料ガスを微細気泡状にして連続的に溶解させること からなる請求の範囲 1に記載のガスクラスレートの製造方法。
3. 前記混合 ·溶解工程が、 反応槽を用いることなく、 原料液と原料ガスとをライ ン途中で混合して原料ガスを原料液に溶解させることからなり ;
前記生成工程が、 反応槽を用いることなく、 混合'溶解されたものを反応管路 に流しながら冷却してガスクラスレートを生成させることからなる、
請求の範囲 1に記載のガスクラスレートの製造方法。
4. 前記混合 ·溶解工程が、 原料ガスを微細気泡状にして連続的に溶解させること からなる請求の範囲 3に記載のガスクラスレートの製造方法。
5. 生成したガスクラスレートを、 未反応原料ガスと原料液と共に、 前記反応管路 を通して分離器に送る工程を有する請求の範囲 1に記載のガスクラスレートの製造 方法。
6. 生成したガスクラスレートを、 未反応原料ガスと原料液と共に、 前記反応管路 を通して分離器に送る工程;と
分離器によって、 ガスクラスレート、 未反応原料ガスと原料液のスラリーを分 離脱水し、 高濃度スラリーまたは固体を生成させる分離脱水工程; を有する請求の範囲 1に記載のガスクラスレートの製造方法。
7. 原料液と原料ガスの混合がラインミキサーによって連続的に行われる請求の範 囲 5に記載のガスクラスレートの製造方法。
8. 原料液と原料ガスの混合がラインミキサーによって連続的に行われる請求の範 囲 6に記載のガスクラスレートの製造方法。
9. 前記混合 ·溶解工程が、 原料液と原料ガスとをラインミキサーによって混合し て原料ガスを原料液に溶解させることからなる請求の範囲 1に記載のガスクラス レートの製造方法。
1 0. 原料液と原料ガスとをライン途中で混合して原料ガスを原料液に溶解させる 混合 ·溶解工程と、
原料ガスが溶解した原料液を反応管路に流しながら冷却してガスクラスレート を生成させる生成工程とを有し、
前記混合 ·溶解工程が、 原料液と原料ガスとを反応槽とは異なるラインミキサ —によって混合して原料ガスを原料液に溶解させることからなり、
前記生成工程が、 原料ガスが溶解した原料液を反応槽とは異なるパイプ状の反 応管路に流しながら管路の周面を冷却してガスクラスレートを生成させる生成工程 からなる、
ガスクラスレートの製造方法。
1 1 . 原料液と原料ガスとをライン途中で混合して原料ガスを原料液に溶解させる 混合 ·溶解工程と、
原料ガスが溶解した原料液を反応管路に流しながら冷却してガスクラスレー トを生成させる生成工程と、
生成したガスクラスレートを、 未反応原料ガスと原料液と共に、 前記反応管 路を通して分離器に送り、 ガスクラスレート、 未反応原料ガスと原料液とに分離す る工程とを有し、 '
前記混合 ·溶解工程が、 原料液と原料ガスとを反応槽とは異なるラインミキ サ一によつて混合して原料ガスを原料液に溶解させることからなり、
前記生成工程が、 原料ガスが溶解した原料液を反応槽とは異なるパイプ状の 反応管路に流しながら管路の周面を冷却してガスクラスレ一トを生成させる生成ェ 程からなる、
ガスクラスレートの製造方法。
1 2 . ラインミキサーと反応管路との間に、 圧力調整手段を設けてラインミキサー 側の圧力が高くなるように圧力調整する工程を有する請求の範囲 9に記載のガスク ラスレ一卜の製造方法。
1 3 . ラインミキサーと反応管路との間に、 圧力調整手段を設けてラインミキサー 側の圧力が高くなるように圧力調整する工程を有する請求の範囲 1 0に記載のガス クラスレートの製造方法。
1 4. ラインミキサーと反応管路との間に、 圧力調整手段を設けてラインミキサー 側の圧力が高くなるように圧力調整する工程を有する請求の範囲 1 1に記載のガス クラスレートの製造方法。 ·.
1 5. ラインミキサーの下流側にラインを流れる流体の流速を遅くするための流速 調整工程を有する請求の範囲 9に記載のガスクラスレートの製造方法。
1 6. ラインミキサーの下流側にラインを流れる流体の流速を遅くするための流速 調整工程を有する請求の範囲 1 0に記載のガスクラスレートの製造方法。
1 7 . ラインミキサーの下流側にラインを流れる流体の流速を遅くするための流速 調整工程を有する請求の範囲 1 1に記載のガスクラスレートの製造方法。
1 8 . 分離器によって分離されたガスクラスレート、 未反応原料ガスと原料液のう ち、 原料液及び未反応原料ガスを再びラインミキサーに供給する工程を有する請求 の範囲 9に記載のガスクラスレートの製造方法。
1 9 . 分離器によって分離されたガスクラスレート、 未反応原料ガスと原料液のう ち、 原料液及び未反応原料ガスを再びラ ンミキサーに供給する工程を有する請求 の範囲 1 0に記載のガスクラスレートの製造方法。
2 0. 分離器によって分離されたガスクラスレート、 未反応原料ガスと原料液のう ち、 原料液及び未反応原料ガスを再びラインミキサーに供給する工程を有する請求 の範囲 1 1に記載のガスクラスレートの製造方法。
2 1 . 分離器において、 ガスが原料液戻しラインに流入しないように、 原料液に封 7]C効果をもたせるように、 分離器内の水位を一定レベル以上に制御する工程を有す る請求の範囲 1 9に記載のガスクラスレ一ト製造方法。
2 2 . 分離器において、 ガスが原料液戻しラインに流入しないように、 原料液に封 7効果をもたせるように、 分離器内の水位を一定レベル以上に制御する工程を有す る請求の範囲 2 0に記載のガスクラスレート製造方法。
2 3 . ガス昇圧機によって昇圧された原料ガスを直接分離器に供給する工程を有す る請求の範囲 1 9に記載のガスクラスレートの製造方法。
2 4. ガス昇圧機によって昇圧された原料ガスを直接分離器に供給する工程を有す る請求の範囲 2 0に記載のガスクラスレートの製造方法。
2 5 . 原料液と原料ガスとをライン途中で混合して原料ガスを原料液に溶解させる 混合 .溶解工程と、
原料ガスが溶解した原料液を反応管路に流しながら冷却してガスクラスレー トを生成させる生成工程とを有し、
前記混合 ·溶解工程と前記生成工程が、 分離して行われるガスクラスレート の製造方法。
2 6 . 前記混合'溶解工程は、 ライン途中で原料ガスと原料液をラインミキサーに より混合して原料ガスを原料液に連続的に溶解させることからなり;
前記生成工程は、 原料ガスが溶解した原料液を反応管路に流しながら冷却し てガスクラスレ一トを生成させることからなる、
請求の範囲 2 5に記載のガスクラスレートの製造方法。
2 7 . 前記混合 ·溶解工程が、 原料液と原料ガスとをラインミキサーによって混合 して原料ガスを微細気泡にして原料液に溶解させることからなる請求の範囲 9に記 載のガスクラスレートの製造方法。
2 8. 前記混合 ·溶解工程が、 原料液と原料ガスとをラインミキサーによって混合 して原料ガスを微細気泡にして原料液に溶解させることからなる請求の範囲 1 0に 記載のガスクラスレートの製造方法。
2 9 . 前記混合 ·溶解工程が、 原料液と原料ガスとをラインミキサーによって混合 して原料ガスを微細気泡にして原料液に溶解させることからなる請求の範囲 1 1に 記載のガスクラスレートの製造方法。
3 0 . 前記混合 ·溶解工程が、 原料液を攪拌してその中に原料ガスを巻き込むこと で原料ガスを微細気泡に砕き原料ガスを原料液に溶解させることからなる請求の範 囲 9に記載のガスクラスレートの製造方法。
3 1 . 前記混合'溶解工程が、 原料液を攪拌してその中に原料ガスを巻き込むこと で原料ガスを微細気泡に砕き原料ガスを原料液に溶解させることからなる請求の範 囲 1 0に記載のガスクラスレートの製造方法。
3 2. 前記混合'溶解工程が、 原料液を攪拌してその中に原料ガスを巻き込むこと で原料ガスを微細気泡に砕き原料ガスを原料液に溶解させることからなる請求の範 囲 1 1に記載のガスクラスレートの製造方法。
3 3. 前記生成工程が、 前記混合'溶解工程で混合溶解された原料ガス全量をクラ スレート化することからなる請求の範囲 1に記載のガスクラスレート製造方法。
3 4. 前記生成工程において、 前記反応管路の出口の圧力 Pがクラスレート生成最 赃カ P。より高く、 反応管路内の温度 Tがクラスレート生成最高温度 T。より低い 温度となり、 かつ、 前記混合 ·溶解工程で混合溶解された原料ガスが全量クラス レート化するときの生成熱を全て奪えるように、 原料液流量、 原料液圧力、 原料ガ ス流量、 原料ガス圧力、 冷却能力、 反応管路長さ及び反応管路径が設定されている 請求の範囲 1に記載のガスクラスレート製造方法。
3 5. さらに、 前記生成工程における反応管路を流れる原料液の流速又は供給する 原料ガス量のいずれか一方又は両方を変ィ匕させることによって生成されるガスクラ スレートの粒径を変化させる工程を有する請求の範囲 1に記載のガスクラスレート の製造方法。
3 6. 前記反応管路が複数の反応管路からなり;
前記ガスクラスレートの製造方法は、 生成工程における前記複数の反応管路 のそれぞれを流れる原料液の流速又は各反応管路に供給される原料ガス量のいずれ か一方又は両方を異ならせることで各反応管路で生成されるガスクラスレートの粒 径が異なるようにする工程を有する請求の範囲 1に記載のガスクラスレートの製造 方法。
3 7. さらに、
生成されたガスクラスレートを前記反応管路に連結された分離器にて分離す る分離:!:程と、
該分離器の圧力を検出する圧力検出工程と、
該圧力検出工程で検出された圧力に基づいて、 前記混合 ·溶解工程における 供給ガス流量、 前記生成工程における原料液流速のいずれか一方又は両方を調整す ることによつて前記分離器の圧力を調整する圧力調整工程と、
を有する請求の範囲 1に記載のガスクラスレートの製造方法。
3 8 . さらに、
生成されたガスクラスレ一トを前記反応管路に連結された分離器にて分離す る分離工程と、
前記混合 ·溶解工程の後、 前記ガスクラスレート生成工程の前、 または前記 生成工程の途中において原料ガスを原料液に溶解させる更なる混合 ·溶解工程と、 を有する請求の範囲 1に記載のガスクラスレ一ト製造方法。
3 9 . さらに、
生成されたガスクラスレ一トを前記反応管路に連結された輸送用タンクに順 次貯留する工程と、
輸送用タンクを取り外して目的地に搬送する工程と、
を有する請求の範囲 1に記載のガスクラスレート製造方法。
4 0. さらに、 生成されたガスクラスレートを濃縮する濃縮工程又は生成されたガ スクラスレートと原料液を分離する分離工程を有する請求の範囲 3 9に記載のガス クラスレート製造方法。
4 1 . 原料液と原料ガスとをライン途中において混合して原料ガスを原料液に溶解 させるラインミキサーと、 ·
原料ガスが溶解した原料液を流しながら冷却してガスクラスレートを生成さ せる反応管路、
とを有するガスクラスレートの製造装置。
4 2 . 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 4 1に記載のガスクラスレートの製造装置。
4 3. さらに、 前記ラインミキサーの下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 4 1に記載のガスクラスレートの製造装置。
4 4. さらに、 前記ラインミキサーの下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 4 2に記載のガスクラスレートの製造装置。
4 5 . さらに、 前記ラインミキサ一の下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 4 1に記載のガスクラスレートの製造装置。
4 6 . さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 4 2に記載のガスクラスレー卜の製造装置。
4 7 . さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 4 3に記載のガスクラスレートの製造装置。
4 8. 原料ガスと原料液の混合 ·溶解と反応冷却を行う槽状の耐圧容器を有してい ない請求の範囲 4 1に記載のガスクラスレートの製造装置。
4 9 . 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 4 8に記載のガスクラスレートの製造装置。
5 0 . さらに、 前記ラインミキサーの下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 4 8に記載のガスクラスレー卜の製造装置。
5 1 . さらに、 前記ラインミキサーの下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 4 9に記載のガスクラスレートの製造装置。
5 2. さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 4 8に記載のガスクラスレー卜の製造装置。
5 3. さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 4 9に記載のガスクラスレートの製造装置。
5 4. さらに、 反応管路で生成されたガスクラスレート、 未反応ガス、 原料液とを 分離する分離器を有する請求の範囲 4 1に記載のガスクラスレートの製造装置。
5 5. 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 5 4に記載のガスクラスレートの製造装置。
5 6. 前記分離器は、 デカンター、 サイクロン、 遠心分離器、 ベルトプレス、 スク リユー濃縮 ·脱水機、 回転ドライヤーのグループから選択された一つである請求の 範囲 5 4に記載のガスクラスレートの製造装置。
5 7 . さらに、 供給する原料ガス流量を調整するガス流量調整手段と、 原料ガス圧 力を調整するガス圧力調整手段と、 供給する原料液の流量を調整する原料液流量調 整手段と、 原料液の圧力を調整する原料液圧力調整手段と、 該反応管路を冷却する 冷却装置と、 反応管路の圧力を調整する圧力調整手段とを備え、 前記ラインミキサーに供給された原料ガス全量をクラスレート化できるように、 前記ガス流量調整手段、 前記ガス圧力調整手段、 前記原料液流量調整手段、 前記原 料液圧力調整手段、 前記冷却装置の冷却能力、 反応管路長さ及び反応管路径が設定 設定されている請求の範囲 4 1に記載のガスクラスレート製造装置。
5 8. さらに、 供給する原料ガス流量を調整するガス流量調整手段と、 原料ガス圧 力を調整するガス圧力調整手段と、 供給する原料液の流量を調整する原料液流量調 整手段と、 原料液の圧力を調整する原料液圧力調整手段と、 該反応管路を冷却する 冷却装置と、 反応管路の圧力を調整する圧力調整手段とを備え、
前記反応管路の出口の圧力 Pがクラスレート生成最低圧力 P。より高く、 反応管 路内の温度 Tがクラスレート生成最高温度 T。より低い温度となり、 力つ、 前記ラ ィンミキサーに供給された原料ガスが全量クラスレ一ト化するときの生成熱を全て 奪えるように、 前記ガス流量調整手段、 前記ガス圧力調整手段、 前記原料液流量調 整手段、 前記原料液圧力調整手段、 前記冷却装置の冷却能力、 反応管路長さ及び反 応管路径が設定されている請求の範囲 4 1に記載のガスクラスレート製造装置。
5 9 . さらに、 反応管路の出口の圧力を検出する圧力検出器を有し、 該圧力検出器 の検出値が予め定めた一定値を越えたときに、 ガス流量調整手段、 原料液流量調整 手段の少なくとも一つが調整される請求の範囲 5 7に記載のガスクラスレートの製
6 0 . さらに、 反応管路の出口の圧力を検出する圧力検出器を有し、 該圧力検出器 の検出値が予め定めた一定値を越えたときに、 ガス流量調整手段、 原料液流量調整 手段の少なくとも一つが調整される請求の範囲 5 8に記載のガスクラスレートの製
6 1 . 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 5 7に記載のガスクラスレートの製造装置。
6 2 . 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 5 8に記載のガスクラスレートの製造装置。
6 3 . さらに、 前記反応管路を流れる原料液の流速を変化させる流速制御手段を有 する請求の範囲 4 1に記載のガスクラスレートの製造装置。
6 4. さらに、 反応管路が複数であり、 前記複数の反応管路を流れる原料液の流速 を制御する流速制御手段と、 前記複数の反応管路に流れる原料液の流速が異なるよ うに前記流速制御手段が設定されている請求の範囲 4 1に記載のガスクラスレート
6 5 . さらに、 前記ラインミキサーに供給する原料ガスの流量を変化させるガス流 量調整手段を有する請求の範囲 4 1に記載のガスクラスレートの製造装置。
6 6 . 前記ラインミキサーが複数のラインミキサーからなり、 前記反応管路が複数 の反応管路からなり ;
前記複数のラインミキサーは、 それぞれのラインミキサーに供給する原料ガ スの流量を調整するガス流量調整手段を有し;
該複数の反応管路を流れる原料ガスの流量が異なるように前記ガス流量制御 手段によりそれぞれのラインミキサーに供給される原料ガスの流量が調整される請 求の範囲 4 Γに記載のガスクラスレートの製造装置。
6 7 . さらに、
" 供給する原料ガス流量を調整するガス流量調整手段と、
該分離器の圧力を検出する圧力検出手段と、
該圧力検出手段で検出された圧力に基づいて前記ガス流量調整手段のガス流 量、 前記原料液流速調整手段の原料液流速のいずれか一方又は両方を調整する制御 手段と、
を有する請求の範囲 5 4に記載のガスクラスレート製造装置。
6 8 . 前記ラインミキサーは、 原料ガスの微細気泡を発生させるラインミキサーで ある請求の範囲 6 7に記載のガスクラスレー卜の製造装置。
6 9. 前記ラインミキサーを、 前記反応管路の上流側に少なくとも 1台設けると共 に、 前記反応管路の途中に単数又は複数のラインミキサーを設けた請求の範囲 5 4 に記載のガスクラスレート製造装置。
7 0. 前記ラインミキサーは、 原料ガスの微細気泡を発生させるものである請求の 範囲 6 9に記載のガスクラスレート製造装置。
7 1 . さらに、 前記ラインミキサーの下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 6 9に記載のガスクラスレート製造装置。
7 2. さらに、 前記ラインミキサ一の下流側にライン圧力を調整する圧力調整手段 を有する請求の範囲 7 0に記載のガスクラスレート製造装置。
7 3. さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 6 9に記載のガスクラスレ一ト製造装置。
7 4. さらに、 前記ラインミキサーの下流側に、 ラインを流れる流体の流速を調整 する流速調整手段を有する請求の範囲 7 0に記載のガスクラスレ一ト製造装置。
7 5. さらに、 該反応管路に対して着脱可能に連結されて前記反応管路で生成され たガスクラスレートを貯留すると共に、 ガスクラスレート充填後に取り外されて輸 送に供される輸送用タンクを有する請求の範囲 4 1に記載のガスクラスレート製造
7 6 . さらに、 生成されたガスクラスレートを濃縮する濃縮装置又は生成されたガ スクラスレートと原料液を分離する分離装置を有する請求の範囲 7 5に記載のガス クラスレート製造装置。
PCT/JP2002/012496 2002-09-11 2002-11-29 ガスクラスレートの製造方法および製造装置 WO2004024854A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/501,299 US20050059846A1 (en) 2002-09-11 2002-11-29 Process for producing gas clathrate and production apparatus
AU2002349639A AU2002349639B2 (en) 2002-09-11 2002-11-29 Process for producing gas clathrate and production apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-265080 2002-09-11
JP2002265079 2002-09-11
JP2002-265079 2002-09-11
JP2002265080 2002-09-11
JP2002-267526 2002-09-13
JP2002267526A JP4062431B2 (ja) 2002-09-13 2002-09-13 ガスクラスレート製造方法および製造装置
JP2002271225A JP2004107468A (ja) 2002-09-18 2002-09-18 ガスクラスレート製造方法および製造装置
JP2002-271225 2002-09-18
JP2002-272901 2002-09-19
JP2002272901A JP2004107512A (ja) 2002-09-19 2002-09-19 ガス輸送方法及び装置

Publications (1)

Publication Number Publication Date
WO2004024854A1 true WO2004024854A1 (ja) 2004-03-25

Family

ID=31999676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012496 WO2004024854A1 (ja) 2002-09-11 2002-11-29 ガスクラスレートの製造方法および製造装置

Country Status (5)

Country Link
US (1) US20050059846A1 (ja)
CN (1) CN1617919A (ja)
AU (1) AU2002349639B2 (ja)
MY (1) MY134335A (ja)
WO (1) WO2004024854A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320438A (ja) * 2004-05-10 2005-11-17 Jfe Engineering Kk ガスクラスレート製造方法及び装置
EP1812535A2 (en) * 2004-11-04 2007-08-01 Heriot-Watt University Novel hydrate based systems
CN110354741A (zh) * 2018-10-09 2019-10-22 新能能源有限公司 加氢气化半焦制浆装置及其稳定运行方法
TWI745698B (zh) * 2019-05-29 2021-11-11 中國鋼鐵股份有限公司 廢棄物轉化裝置及其操作方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004434A (ko) * 2001-03-29 2003-01-14 미츠비시 쥬고교 가부시키가이샤 가스 하이드레이트 제조 장치 및 가스 하이드레이트 탈수장치
JP5019683B2 (ja) * 2001-08-31 2012-09-05 三菱重工業株式会社 ガスハイドレートスラリーの脱水装置及び脱水方法
DE102004053627A1 (de) * 2004-11-01 2006-05-04 Bernd Bonso Verfahren zur Herstellung, Transport und Lagerung von Gashydraten (Gasclathrat)
GB0509747D0 (en) * 2005-05-13 2005-06-22 Ashe Morris Ltd Variable volume heat exchangers
US7781627B2 (en) * 2006-02-27 2010-08-24 Sungil Co., Ltd. (SIM) System and method for forming gas hydrates
WO2007116456A1 (ja) * 2006-03-30 2007-10-18 Mitsui Engineering & Shipbuilding Co., Ltd. ガスハイドレートペレットの製造方法
US7627397B2 (en) * 2007-09-28 2009-12-01 Rockwell Automation Technologies, Inc. Material-sensitive routing for shared conduit systems
WO2009044467A1 (ja) * 2007-10-03 2009-04-09 Mitsui Engineering & Shipbuilding Co., Ltd. ガスハイドレート製造装置
DE102008064116A1 (de) * 2008-12-19 2010-07-01 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung von Clathrathydrat
CN102365543A (zh) 2009-01-16 2012-02-29 纽约大学 用全息视频显微术的自动实时粒子表征和三维速度计量
JP5529504B2 (ja) * 2009-11-13 2014-06-25 三井造船株式会社 混合ガスハイドレート製造プラントの運転方法
KR101213770B1 (ko) * 2010-10-05 2012-12-18 한국생산기술연구원 이중나선 가스하이드레이트 반응기
US10947114B2 (en) * 2011-08-26 2021-03-16 New York University Methods and apparatuses for producing clathrate hydrates
US9822932B2 (en) 2012-06-04 2017-11-21 Elwha Llc Chilled clathrate transportation system
US9303819B2 (en) 2012-06-04 2016-04-05 Elwha Llc Fluid recovery in chilled clathrate transportation systems
US10351790B2 (en) * 2013-06-27 2019-07-16 Dongguk University Industry-Academic Cooperation Foundation Apparatus for molding gas hydrate pellets
WO2015087268A2 (en) * 2013-12-12 2015-06-18 Indian Institute Of Technology Madras Systems and methods for gas hydrate slurry formation
DK3218690T3 (da) 2014-11-12 2022-05-02 Univ New York Kolloidt fingeraftryk til bløde materialer med brug af total holografisk karakterisation
WO2017139279A2 (en) 2016-02-08 2017-08-17 New York University Holographic characterization of protein aggregates
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay
CN114452672B (zh) * 2021-03-18 2023-06-16 广东省农业科学院蚕业与农产品加工研究所 基于co2相变平衡调控的浓缩液制造装置及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010985A (ja) * 1999-06-30 2001-01-16 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレートの製造装置および製造方法
JP2001072615A (ja) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd ハイドレート製造方法及びその製造装置
JP2001233801A (ja) * 2000-02-28 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti メタン水和物の製造方法と装置
JP2002356685A (ja) * 2001-05-30 2002-12-13 Nkk Corp ガスハイドレート製造方法および製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360553A (en) * 1992-09-17 1994-11-01 Baskis Paul T Process for reforming materials into useful products and apparatus
US5434330A (en) * 1993-06-23 1995-07-18 Hnatow; Miguel A. Process and apparatus for separation of constituents of gases using gas hydrates
US5700311A (en) * 1996-04-30 1997-12-23 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
US6237346B1 (en) * 1997-04-14 2001-05-29 Nkk Corporation Method for transporting cold latent heat and system therefor
US6537246B1 (en) * 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
JP3555481B2 (ja) * 1999-02-15 2004-08-18 Jfeエンジニアリング株式会社 水和物スラリーの製造方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010985A (ja) * 1999-06-30 2001-01-16 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレートの製造装置および製造方法
JP2001072615A (ja) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd ハイドレート製造方法及びその製造装置
JP2001233801A (ja) * 2000-02-28 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti メタン水和物の製造方法と装置
JP2002356685A (ja) * 2001-05-30 2002-12-13 Nkk Corp ガスハイドレート製造方法および製造装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320438A (ja) * 2004-05-10 2005-11-17 Jfe Engineering Kk ガスクラスレート製造方法及び装置
JP4514506B2 (ja) * 2004-05-10 2010-07-28 Jfeエンジニアリング株式会社 ガスクラスレート製造方法及び装置
EP1812535A2 (en) * 2004-11-04 2007-08-01 Heriot-Watt University Novel hydrate based systems
CN110354741A (zh) * 2018-10-09 2019-10-22 新能能源有限公司 加氢气化半焦制浆装置及其稳定运行方法
TWI745698B (zh) * 2019-05-29 2021-11-11 中國鋼鐵股份有限公司 廢棄物轉化裝置及其操作方法

Also Published As

Publication number Publication date
CN1617919A (zh) 2005-05-18
US20050059846A1 (en) 2005-03-17
AU2002349639A1 (en) 2004-04-30
AU2002349639B2 (en) 2006-06-22
MY134335A (en) 2007-12-31

Similar Documents

Publication Publication Date Title
WO2004024854A1 (ja) ガスクラスレートの製造方法および製造装置
EP1375630A1 (en) Gas hydrate production device and gas hydrate dehydrating device
CN101818088B (zh) 一种天然气水合物的高效连续制备方法与装置
US20110123432A1 (en) Hydrate formation for gas separation or transport
JP2004075771A (ja) ガスハイドレート製造装置
JP4045476B2 (ja) ガスハイドレート製造方法および製造装置
CN1169929C (zh) 一种制备天然气水合物的方法及装置
KR101161011B1 (ko) 원심 분리 원리에 의한 가스하이드레이트 연속 제조 및 탈수 장치 및 방법
JP4303666B2 (ja) ガスハイドレートスラリーの流動層反応塔
CA2368020A1 (en) Formation, processing, transportation and storage of hydrates
JP5052386B2 (ja) ガスハイドレートの製造装置
JP5004630B2 (ja) ガスハイドレート濃度の測定方法及び測定装置と、その測定方法を用いたガスハイドレート生成装置の制御方法及び制御装置
JP3876348B2 (ja) ガスハイドレート製造方法および製造装置
JP2004107468A (ja) ガスクラスレート製造方法および製造装置
JP2004155747A (ja) ガスクラスレート製造方法および製造装置
JP4062431B2 (ja) ガスクラスレート製造方法および製造装置
JP4062510B2 (ja) ガスクラスレート製造方法および製造装置
JP2004107512A (ja) ガス輸送方法及び装置
JP2002356686A (ja) ガスハイドレート製造方法および製造装置
JP2006143771A (ja) ガスハイドレートの製造方法および装置
JP2006160828A (ja) ガスハイドレート生成装置
JP2003213279A (ja) ガスハイドレート製造方法および製造装置
WO2007110947A1 (ja) ガスハイドレートの製造方法及び装置
JP2003041272A (ja) ガスハイドレートの生成方法および生成装置
JP4514506B2 (ja) ガスクラスレート製造方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN ID US VN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002349639

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20028277406

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1200400815

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 10501299

Country of ref document: US