WO2003104499A1 - 超高強度冷延鋼板の製造方法 - Google Patents

超高強度冷延鋼板の製造方法 Download PDF

Info

Publication number
WO2003104499A1
WO2003104499A1 PCT/JP2003/007215 JP0307215W WO03104499A1 WO 2003104499 A1 WO2003104499 A1 WO 2003104499A1 JP 0307215 W JP0307215 W JP 0307215W WO 03104499 A1 WO03104499 A1 WO 03104499A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
steel plate
cooling
rolled steel
cold rolled
Prior art date
Application number
PCT/JP2003/007215
Other languages
English (en)
French (fr)
Inventor
長谷川 浩平
中村 展之
占部 俊明
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US10/485,229 priority Critical patent/US7507307B2/en
Priority to EP03733306A priority patent/EP1512762B1/en
Priority to DE60335624T priority patent/DE60335624D1/de
Publication of WO2003104499A1 publication Critical patent/WO2003104499A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a super-high-strength cold-rolled steel sheet having a tensile strength suitable for mechanical structural members, particularly automobile structural members, of 980 MPa or more, and excellent stretch flangeability ⁇ spot weldability.
  • the present invention relates to a method for manufacturing a steel sheet.
  • ultra-high strength cold-rolled steel sheets with a tensile strength of 98 OMPa or more is being considered for structural members of automobiles from the viewpoint of weight saving for improving fuel efficiency and safety for protecting occupants.
  • ultra-high strength cold-rolled steel sheet has a significantly lower stretch flangeability than the soft cold-rolled steel sheet, so that press forming becomes difficult.
  • JP-A-7-59726 ⁇ Sho 55-22532, JP-B 55-51410, JP-B 1-35051 and JP-B 1-35052.
  • Numerous technologies have been reported in the gazette, Japanese Patent No. 2766693, and Japanese Patent Publication No. Hei 8-30212.
  • none of these technologies can achieve both tensile strength of 980MPa or more and excellent stretch flangeability and ductility, except for ⁇ ⁇ , which increases the C content.
  • ⁇ ⁇ which increases the C content.
  • the spot weld is easily broken, and sufficient joint strength cannot be obtained.
  • An object of the present invention is to provide a method for producing an ultra-high-strength cold-rolled steel sheet for a structural member of an automobile having a tensile strength of 980 MPa or more, and having excellent stretch flangeability, ductility and spot weldability.
  • This purpose is substantially, by weight, C: 0.07 to 0.15%, Si: 0.7 to 2%, Mn: 1.8 to; 3, P: 0,02% or less, S: 0.01% or less, Sol.Al: 0.01 ⁇ 0.1% s N: 0.005%, B: 0.0003 ⁇ 0.003, also has a step of continuously annealing cold-rolled steel sheet consisting of the balance Fe, Step of heating at 800-870 ⁇ for 10 seconds, Step of gradually cooling the steel sheet after calorie heat to 650-750 ° C, and Step of cooling the steel sheet after slow cooling at a cooling rate exceeding 500 ° C / sec.
  • FIG. 1 is a diagram showing the configuration of an existing continuous annealing furnace.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows the configuration of an existing annealing furnace.
  • the continuous annealing furnace has a heating zone 1 that heats the steel sheet S, a soaking zone 2 that keeps the heated steel sheet S at the heating temperature, and a slow cooling zone (gas jet zone) 3 that gradually cools the steel sheet S after soaking. It is composed of a quenching zone 4 in which the steel sheet S after gradual cooling is quenched, and an overaging zone 5 in which the steel sheet S after quenching is overaged (tempered).
  • the steel sheet S supplied from the cold rolled coil 7 on the entry side passes through the heating zone 1, soaking zone 2, slow cooling zone 3, quenching zone 4 and super zone 5, and is heated, soaking, gradual cooling, quenching and super cooling. After being subjected to aging treatment continuously, and subjected to temper rolling as necessary by the temper rolling mill 6 on the delivery side, it is wound as a winding coil 8.
  • the temperature of the steel sheet is inevitable in the slow cooling zone 3 between the tropics 2 and the quenching zone 4. It drops by more than 100 ⁇ .
  • the present inventors have conducted intensive studies on the formation of a steel sheet using such a continuous annealing furnace, and as a result, the amount of carbon that deteriorates spot weldability is not increased unnecessarily, and it is indispensable for improving ductility.
  • a tensile strength of 980MPa or more without reducing the amount of Si it is important to control the yarn during the slow cooling process from quenching to quenching, that is, to suppress the transformation from austenite to ferrite. I found something.
  • C is an important element for strengthening martensite in the quenched structure. If the C content is less than 0.07%, the strength of 980MPa or more cannot be obtained, and if it exceeds 0.15%, the spot-nada properties will be reduced. For this reason, the C content is set to 0.07 to 0.15%.
  • Si is effective for increasing the ductility of a ferrite-martensite two-phase steel sheet. If the Si content is less than 0.7%, the effect is not sufficient. If it exceeds 2, a large amount of Si oxide is formed on the surface of the steel sheet, and the chemical conversion treatment '14 of the steel sheet is deteriorated. Therefore, the amount of Si is set to 0.7 to 2.
  • Mn is an important element for suppressing the formation of ferrite during slow annealing in continuous annealing. If the Mn content is less than 1.8%, the effect is not sufficient, and if it exceeds 3%, cracks occur when a slab is manufactured in a continuous structure. Therefore, the amount of Mn is set to 1.8 to 3.
  • P When the P content exceeds 0.02%, the spot weldability deteriorates significantly. Therefore, p The amount shall be 0.02% or less.
  • Sol.Al A1 is added to deoxidize steel and to precipitate N as A1N. If the amount of Sol.Al is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, the effect is saturated and uneconomical. Therefore, 301.1 is set to 0.01 to 0.1%.
  • N reduces the formability of the steel sheet, so it is desirable to remove and reduce N in the steel making process as much as possible. However, if N is reduced unnecessarily, the cost will increase. Therefore, the amount of N is set to 0.005% or less, which does not substantially affect the formability.
  • B is the most important element in the present invention, and has a remarkable effect in suppressing the formation of ferrite during slow cooling in continuous annealing. However, if the B content is less than 0.0003, the effect is not sufficient. If the B content exceeds 0.003%, not only the effect of the B addition saturates, but also the production of steel sheet '14 decreases. For this reason, the B content is set to 0.0003 to 0.003%.
  • the balance is Fe.
  • the addition of at least one element selected from among 1: 1: 0.003-0.03% and Mo: 0.1-l can more effectively suppress the transformation of austenite to ferrite.
  • the limitation of the Ti amount and the Mo amount is based on the following reasons.
  • Mo has the effect of suppressing the formation of ferrite during slow annealing in continuous annealing. However, if the amount is less than 0.1%, the effect is not sufficient, and if it exceeds 1, the effect is not only saturated but also leads to cost. Therefore, when adding Mo, the amount is set to 0.1 to 1%.
  • an ultra-high-strength cold-rolled steel sheet is produced by annealing a cold-rolled steel sheet having the above composition in a continuous annealing furnace. At this time, in the continuous annealing furnace, the cold-rolled steel sheet is heated in sequence at 800 to 870 for 10 seconds or more, gradually cooled to 650 to 750 ° C, and cooled at a cooling rate exceeding SOO ⁇ / sec. It is quenched to the following, reheated at 325-425 ⁇ for 5-20 minutes, cooled to room temperature and wound.
  • the heating at 800 to 870 ° C for 10 seconds or more is performed when the heating temperature is less than 800 ° C or the heating time is less than 10 seconds, because a sufficient amount of austenite is not generated, and high strength is obtained.
  • the heating temperature exceeds 870, it becomes an austenite single phase, and the coarseness increases, so that the ductility and the stretch flangeability deteriorate.
  • the reason for slow cooling to 650 to 750 ° C after heating is to improve the ductility and adjust the strength by producing an appropriate amount of ferrite in this process.
  • the cooling rate during slow cooling is preferably 20 ° C / sec or less, preferably 5 to 15 ° C / sec.
  • reheating is performed at 325 to 425 ° C for 5 to 20 minutes, in order to temper the martensite formed by the previous quenching to improve ductility and stretch flangeability. If the reheating temperature is less than 325 ° C or the reheating time is less than 5 minutes, this effect is not sufficient. In addition, when the reheating temperature exceeds 425 ° C and the reheating time exceeds 20 minutes, the strength decreases remarkably, and it becomes difficult to achieve a tensile strength of 980 MPa or more.
  • the steel sheet before annealing is manufactured by cooling and reheating a slab manufactured by a continuous casting method or an ingot making method, or hot rolling and then cold rolling.
  • the final rolling temperature (finish temperature) in the hot rolling is desirably in the range from the Ar3 transformation point to 870 ° C. or less in order to refine the reversal and improve the ductility and elongation flangeability.
  • the winding temperature after the hot rolling is to improve the ductility and the stretch flangeability by making the structure finer.
  • the rolling reduction during cold rolling is preferably 55% or more in order to refine the structure and improve ductility and stretch flangeability.
  • the temper rolling is further performed at a rolling reduction of 0.1 to 0.7, the yield elongation of the steel sheet can be eliminated.
  • the cold-rolled steel sheet thus obtained can be electroplated or coated with a solid lubricant.
  • Steel No. 1-10 having the chemical components shown in Table 1 was melted and formed into a slab.
  • the slab was heated to 1250 ° C and hot rolled at a final pass exit temperature of about 8.70 ° C.
  • the steel sheet after hot rolling was cooled at a cooling rate of about 20 ° C / SeC , heated at 600 ° C for 1 hour, cooled in a furnace, and wound up. Subsequently, the steel sheet was cold-rolled to a thickness of 1.2 mm and heat-treated to simulate continuous annealing to produce cold-rolled steel sheets no.
  • Conditions for continuous annealing include heating at a heating rate of about 20 ° C / SeC , heating at 830 ° C for 300 seconds, gradually cooling to 700 ° C at a cooling rate of about 10 ° C / sec, and then jetting After quenching in water, reheat at 400 at 10 minutes (tempering), and finally pass 0.3% temper rolling.
  • the cooling rate during rapid cooling in the jet water was about 2000 ° C / sec.
  • JIS No. 5 test piece JIS Z 2201 is sampled from the direction perpendicular to the rolling direction and subjected to a tensile test according to JIS Z 2241, yield strength (YP), tensile strength (TS) The elongation (El) was measured.
  • Spot welding 14 After welding under the condition of a nugget radial force of .9 rtim (4.5 ⁇ 1/2 ), the tensile shear strength and cross tensile strength were measured.
  • the elongation is 15 or more, the hole expansion rate is 60% or more, the tensile shear strength is 12 kN or more, and the cross tensile strength is S6 kN or more, it can be applied to the current automobile structural materials [5 materials].
  • the steel sheets No. 2, 3, 6, 9, and 10 which are examples of the present invention have a tensile strength of 980 MPa or more, Stretch flange ', excellent in ductility and spot weldability.
  • steel sheets No. 1, 4, 5, 7, and 8 which are the comparative examples are inferior in any of the characteristics.
  • steel sheet No. 1 has low tensile strength, hole expansion ratio and tensile shear strength due to low C content.
  • Steel sheet No. 4 has low cross tensile strength due to high C content. The cause of the decrease in cross tensile strength is considered to be that the weld was excessively hardened and brittlely fractured in the weld.
  • Steel sheet No. 5 has a low elongation ratio due to low Si content.
  • Steel sheet No. 7 has a low Mn content, so its tensile strength and hole expansion ratio are low.
  • Steel sheet No. 8 has a low B content, so its tensile strength and hole expansion ratio are low.
  • Example 1 Using steels having the components of Nos. 2, 3, 6, 9, and 10 shown in Table 1, cold rolling was performed in the same manner as in Example 1, and conditions for simulating continuous annealing under the conditions shown in Table 3 Then, a cold-rolled steel sheet No. AL was manufactured. Then, the same characteristics as in Example 1 were measured. Table 4 shows the results.
  • the steel sheets Nos. B, F, H, and L which are examples of the present invention, have a tensile strength of 980 MPa or more and are excellent in stretch flangeability and ductility and spot weldability.
  • steel sheets No. A, C, D, E, G, I, J and K which are comparative examples, are inferior in any of the properties.
  • steel plate No. A has low tensile strength due to low heating temperature.
  • Steel sheet No. C has a low hole expansion rate due to the high heating temperature. This is probably due to the fact that martensite-based metal thread crafts have been developed.
  • Steel No. D has low tensile strength due to short heating time. This is probably because austenite was not sufficiently generated during heating and a sufficient amount of martensite was not obtained after quenching.
  • Steel plate No. E has low tensile strength because of the low quenching start temperature.
  • Steel sheet No. G has high tensile strength and low elongation due to high quenching start temperature.
  • Steel plate I has low tensile strength due to low quenching rate.
  • Steel sheet J has a low reheating temperature, so it has high tensile strength and low stretch and stretch flangeability. This is probably due to insufficient tempering of martensite during the tempering treatment.
  • Steel plate K has low tensile strength due to high reheating temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、実質的に、重量%で、C:0.07~0.15%、Si:0.7~2%、Mn:1.8~3%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01~0.1%、N:0.005%、B:0.0003~0.003%、残部Feからなる冷間圧延された鋼板を連続焼鈍する工程を有し、かつこの連続焼鈍が、冷間圧延された鋼板を800~870℃で10秒間加熱する工程と、加熱後の鋼板を650~750℃に徐冷する工程と、徐冷後の鋼板を500℃/secを超える冷却速度で100℃以下まで急冷する工程と、急冷後の鋼板を325~425℃で5~20分間再加熱する工程と、再加熱後の鋼板を室温まで冷却して巻取る工程とを有する、超高強度冷延鋼板の製造方法を提供する。本発明の方法により、980MPa以上の引張強度を有し、伸びフランジ性や延性およびスポット溶接性に優れた自動車の構造部材用の超高強度冷延鋼板が得られる。

Description

明細 超高強度冷延鋼板の製造方法 技術分野 本発明は、 機械構造部材、 特に自動車の構造部材に好適な引張強度が 980MPa 以上で、 伸びフランジ性ゃスポット溶接性に優れた超高強度冷延鋼板の製造方法 に関する。
自動車の構造部材には、 燃費向上のための軽量化および乗員保護のための安全 性の観点から、 引張強度が 98 OMPa以上の超高強度冷延鋼板の使用が検討されて いる。 しかし、 こうした超高強度冷延鋼板は、 軟質冷延鋼板と比較して伸ぴフラ ンジ' 14ゃ延 '性が著しく劣るため、 プレス成形が困難になる。
高強度冷延鋼板の成形性に関しては、 これまで、 平 7 - 59726号公報、 ^ 昭 55-22532号公報、 特公昭 55-51410号公報、 特公平 1-35051 公報、 特公平 1 - 35052号公報、 特許第 2766693号公報、 特公平 8-30212号公報などに数多く の技術が報告されている。 しかしながら、 これらの技術には、 C量を高くした^ ^を除くと、 980MPa以上 の引張強度と優れた伸ぴフランジ性ゃ延性とを両立できる技術はなく、 C量を高 くした には、 スポット溶接部が破断し易く、 十分な継手強度が得られないと いう問題がある。 発明の開示 本発明の目的は、 980MPa以上の引張強度を有し、 伸ぴフランジ性ゃ延性およ ぴスポット溶接性に優れた自動車の構造部材用の超高強度冷延鋼板の製造方法を することを目的とする。 この目的は、 実質的に、 重量 で、 C:0.07〜0.15%、 Si:0.7〜2%、 Mn:1.8 〜; 3 、 P:0,02¾以下、 S:0.01¾以下、 Sol.Al:0.01~0.1%s N:0.005%、 B:0.0003〜0.003も、 残部 Feからなる冷間圧延された鋼板を連続焼鈍する工程 を有し、 カゝっこの連続焼鈍が、 冷間圧延された鋼板を 800〜870 ^で 10秒間加熱 する工程と、 カロ熱後の鋼板を 650〜750°Cに徐冷する工程と、 徐冷後の鋼板を 500 °C/secを超える冷却速度で 100°C以下まで急冷する工程と、 急冷後の鋼板を 325 〜425でで 5〜20分間再加熱する工程と、 再加熱後の鋼板を室温まで冷却して卷 取る工程とを有する、 超高強度冷延鋼板の製造方法によって達成される。 図面の簡単な説明 図 1は、 現存の連続焼鈍炉の構成を示す図である。 発明を実施するための形態 図 1に、 現存の連 鈍炉の構成を示す。
連続焼鈍炉は、 鋼板 Sを加熱する加熱帯 1と、 加熱した鋼板 Sを加熱温度に保持 する均熱帯 2と、 均熱後の鋼板 Sを徐冷する徐冷帯(ガスジェット帯) 3と、 徐冷後 の鋼板 Sを急冷する急冷帯 4と、 急冷後の.鋼板 Sに過時効(焼戻し)処理する過時効 帯 5とから構成されている。 入側の冷延コイル7から供給された鋼板 Sは、加熱帯 1、 均熱帯 2、 徐冷帯 3、 急冷帯 4および過 帯 5を通過し、 加熱、 均熱、 徐冷、 急冷、 過時効処理を連続的に施され、 出側の調質圧延機 6により必要に応じて調質圧延 された後、 卷取コイル 8として卷取られる。
この際、 均熱帯 2と急冷帯 4の間にある徐冷帯3において、 鋼板の温度は不可避 的に 100^以上低下する。 フェライト—マルテンサイト 2相型の従来の超高強度冷 延鋼板では鋼板が徐冷帯 3を通過する間に過剰なフエライトの生成が避けられず、 強度が低下する。 したがって、 従来は、 急冷後、 伸ぴフランジ性の向上を目的と して 325=0以上で過時効処理を行う:^は、 高強度ィ匕のために C量を高くするか、 Si量を低下させることが必須となっており、 スポット溶接性あるいは延性の低下 が避けられなかった。
そこで、 本発明者等が、 こうした連続焼鈍炉を用い鋼板の 形成について鋭 意研究を重ねた結果、 スポット溶接性を劣化させる C量を必要以上に高くするこ となく、 また延性向上に不可欠な Si量を低くすることなく、 980MPa以上の引張 強度を得るには、 加 持後急冷するまでの徐冷過程における糸慮制御、 すなわ ちオーステナイトからフェライトへの変態を抑制することが重要であることを見 出した。
また、 この変態の抑制に対しては、 0.0003〜0.003%の8を添加することが極 めて有効であること、 さらに ;1:0.003〜0.03%、 Mo:0.1〜l%の ちから選ば れた少なくとも 1種の元素を添加することが特に有効であることを見出した。
以下に、 その詳細を説明する。
(1) 成分
C: Cは、 焼入れ組織のマルテンサイトを強化するために重要な元素である。 C 量が 0.07%未満では 980MPa以上の強度が得られず、 0.15%を超えるとスポット 灘性が低下する。 このため、 C量は 0.07〜0.15%とする。
Si: Siは、 フェライト一マルテンサイト 2相型の鋼板の延性を高めるために 有効である。 Si量が 0.7%未満ではその効果が十分ではなく、 2 を超えると鋼板 表面に Si酸化物が多量に形成され、 鋼板の化成処理' 14が劣化する。 このため、 Si 量は 0.7〜2 とする。
Μη: Mnは、 連続焼鈍の徐冷時にフェライトの生成を抑制するために重要な元 素である。 Mn量が 1.8%未満ではその効果が十分ではなく、 3%を超えると連続鎵 造でスラブを製造するときに割れが ^する。 このため、 Mn量は 1.8〜3 とする。
P: P量が 0,02%を超えるとスポット溶接性の劣化が顕著となる。 このため、 p 量は 0.02%以下とする。
S: S量が 0.01%を超えるとスポット溶接性の劣ィ匕が顕著となる。 このため、 S 量は 0.01%以下とする。
Sol.Al: A1は、 鋼を脱酸するため、 および Nを A1Nとして析出させるために添 加される。 Sol.Al量が 0.01%未満ではその効果が十分ではなく、 0.1%を超える と効果が飽和し不経済となる。 このため、 301. 1は0.01〜0.1%とする。
N: Nは、 鋼板の成形性を劣ィ匕させるので、 可能な限り製鋼工程で除去、 低減す ることが望ましい。 しかしながら、 Nを必要以上に低減すると^コストが上昇 するため、 N量は実質的に成形性に問題とならなくなる 0.005%以下とする。
B: Bは、 本発明において最も重要な元素であり、 連続焼鈍の徐冷時にフェライ トの生成の抑制に著しい効果を発揮する。 しかし、 B量が 0.0003 未満ではその 効果が十分ではなく、 0.003%を超えると B添加の効果が飽和するばかりか鋼板の 生産' 14を低下させる。 このため、 B量は 0.0003〜0,003%とする。
なお、 残部は Feである。
こうした元素に加え、 さらに1::1:0.003〜0.03%、 Mo:0.1〜l のうち力 ら選 ばれた少なくとも 1種の元素を添加すると、 オーステナイトからフェライトへの 変態をより効果的に抑制できる。 なお、 Ti量と Mo量の限定は以下の理由による。
Ti: 鋼中に固溶 Nが存在すると、 Bは BNとして析出するため上記の B添加による 変態の抑制効果が減じる。 そこで、 Bと一緒に Tiを添加することにより、 Nをあら かじめ TiNとして析出させれば、 Bの効果を高めることができる。 しかし、 Ti量 力 SO .003%未満ではこの効果が十分ではなく、 0.03%を超えると TiCを生成して鋼 板の成形性を劣化させる。 このため、 Tiを添加する場合、 その量は 0.003〜 0.03もとする。
Mo: Moは、 連続焼鈍の徐冷時にフェライトの生成の抑制効果がある。 しかし、 その量が 0.1%未満ではその効果が十分ではなく、 1 を超えるとその効果が飽和 するばかりかコスト增につながる。 このため、 Moを添加する場合、 その量は 0.1 ~1%とする。
(2) 製造条件 本発明の超高強度冷延鋼板の製造方法では、 上記のような組成の冷間圧延され た鋼板を連続焼鈍炉で焼鈍して超高強度冷延鋼板が製造される。 このとき、 連続 焼鈍炉において、 冷間圧延された鋼板は、 順次、 800〜870でで 10秒間以上の加 熱、 650〜750°Cまで徐冷、 SOO^/secを超える冷却速度で 100^以下まで急冷、 325〜425^で 5〜20分間の再加熱を受け、 室温まで冷却後卷取られる。
ここで、 加熱を 800〜870°Cで 10秒間以上にするのは、 加熱温度が 800°C未満 あるいは加熱時間が 10秒間未満では、 十分な量のオーステナイトが生成しないた め高強度が得られず、 また、 加熱温度が 870でを超えると、 オーステナイト単相 となり、 «が粗大化するため延性および伸ぴフランジ性が 化するためである。 加熱後 650〜750°Cまで徐冷するのは、 この過程でフェライトを適量生成させ て延性を向上させるとともに強度の調整を行うためである。 徐冷終了の温度が 650 未満ではフェライトが多くなり過ぎて強度が不足し、 750°Cを超えるとそ の後の急冷により、 鋼板の平坦性が劣化するためである。 徐冷時の冷却速度は 20 °C/sec以下、 5〜15°C/secが望ましい。
徐冷後急冷を行うが、 その時の冷却速度を 500°C/Sec以下にすると焼入れが不 十分となり強度が不足する。 急冷終了の温度は、 100°Cを超えるとオーステナイ トが残留し、 伸ぴフランジ性を劣化させる。
急冷後は、 325〜425°Cで 5〜20分間の再加熱するが、 これは先の急冷で生成し たマルテンサイトを焼戻し、延性およぴ伸ぴフランジ性を向上させるためである。 再加熱温度が 325°C未満または再加熱時間が 5分間未満ではこの効果が十分でない。 また、 再加熱温度が 425°Cを超えるカゝ、 再加熱時間が 20分間超えると強度低下が 顕著となり、 980MPa以上の引張強度を達成するのが困難になる。 焼鈍前の鋼板は、 連続铸造法または造塊法により製造されたスラブを、 冷却後 再加熱してから、 あるいはそのまま熱間圧延後、 冷間圧延して製造される。 熱間 圧延における最終圧延温度 (仕上湄度)は、 翻織を微細化して延性および伸ぴフラ ンジ性を向上させるために、 Ar3変態点以上 870°C以下が望ましい。 また、 熟間 圧延後の卷取温度は、 組織を微細化して延性およぴ伸ぴフランジ性を向上させる ために、 620で以下が望ましい。 冷間圧延時の圧延率は、 組織を微細化して延性 およぴ伸ぴフランジ性を向上させるため、 55%以上が望ましい。 連続焼鈍後に は、 さらに 0 . 1〜0 . 7もの圧延率で調質圧延を行えば、 鋼板の降伏伸ぴをなくする ことができる。 なお、 このようにして得られた冷延鋼板には電気めつきを施した り、 固■滑剤などを塗布することもできる。 実施例 1
表 1に示す化学成分を有する鋼 No . 1-10を溶製し、 スラブに铸造した。 このス ラブを 1250°Cに加熱し、 約 8.70°Cの最終パス出側温度で熱間圧延した。 熱間圧延 後の鋼板は約 20°C/SeCの冷却速度で冷却後、 600°Cで 1時間加熱後炉冷して卷取 りを «した。 続いて鋼板を板厚 1 . 2mmまで冷間圧延を行い、 連続焼鈍を模擬し た熱処理を行い冷延鋼板 no . 1-10を製造した。 連続焼鈍の条件は、 約 20°C/SeC の加熱速度で昇温し、 830°Cで 300秒間加熱後、 約 10°C/secの冷却速度で 700°C まで徐冷し、 続いて噴流水中で急冷後、 400でで 10分間の再加熱. (焼戻し)処理を 行い、 最後に 0 . 3%の調質圧延を行うという条件である。 なお、 噴流水中での急冷 時の冷却速度は約 2000°C/secであった。
このようにして製造した冷延鋼板に対して以下の特性を測定した。
引張特性: JIS 5号試験片 (JIS Z 2201 )を圧延方向おょぴそれと直角方向か ら採取し、 JIS Z 2241に準拠して引張試験を行い、 降伏強度(YP)、 引張強度 (TS)、 伸び (El)を測定した。
伸ぴフランジ性:鉄鋼連盟規格(JFST1001-1996 )に準拠した穴拡げ試験を行 い、 穴広げ率 Iを測定した。
スポット溶換 14:ナゲット径力 .9rtim (4 . 5 X娜 1/2)になる条件で溶接した後、 引張剪断強度と十字引張強度を測定した。
なお、 伸びが 15 以上、 穴広げ率が 60%以上、 引張剪断強度が 12kN以上、 十字 引張強度力 S6kN以上であれば、 現状の自動車の構懲 [5材に適用可能である。
結果を表 2に示す。
本発明例である鋼板 No . 2、 3、 6、 9、 10は、 980MPa以上の引張強度を有し、 伸ぴフランジ' 、 延性おょぴスポット溶接性に優れている。
一方、 比較例である鋼板 No . 1、 4、 5、 7、 8はいずれかの特性に劣っている。 例えば、 鋼板 No . 1は C量が低いため引張強度、 穴広げ率、 引張剪断強度が低い。 鋼板 No . 4は C量が高いため、 十字引張強度が低い。 十字引張強度低下の原因は、 溶接部が過度に硬化して溶接部内で脆性的に破壊したためと考えられる。 鋼板 No . 5は Si量が低いため、 伸ぴゃ穴広げ率が低い。 鋼板 No . 7は Mn量が低いため、 引張強度、 穴広げ率が低い。 鋼板 No . 8は B量が低いため、 引張強度、 穴広げ率が 低い。
表 1
Figure imgf000010_0001
下線部:発明範囲外
Figure imgf000010_0002
実施例 2
表 1に示す鋼 No . 2、 3、 6、 9、 10の成分を有する鋼を用い、 実施例 1と同様に して冷間圧延まで行い、 表 3に示す条件で連続焼鈍を模擬した条件で熱処理を行 い、 冷延鋼板 No . A-Lを製造した。 そして、 実施例 1と同様な特性を測定した。 結果を表 4に示す。
本発明例である鋼板 No . B、 F、 H、 Lは、 980MPa以上の引張強度を有し、 伸ぴ フランジ'性、 延性おょぴスポット溶接性に優れている。
—方、 比較例である鋼板 No . A、 C、 D、 E、 G、 I、 J、 Kはいずれかの特性に劣 つている。 例えば、 鋼板 No . Aは加熱温度が低いため引張強度が低い。 鋼板 No . C は加熱温度が高いため、 穴広げ率が低い。 この 因は、 マルテンサイトを主体と する金属糸職が 化したためと考えられる。 鋼 ¾No . Dは加熱時間が短いため、 引張強度が低い。 この原因は、 加熱中に十分にオーステナイトが生成せず、 焼き 入れ後に十分なマルテンサイト量が得られなかったためと考えられる。 鋼板 No . E は急冷開始温度が低いため、 引張強度が低い。 この原因は、 徐冷中にフェライト が生成し、 焼き入れ後のマルテンサイトの量が減少したためと考えられる。 鋼板 No . Gは急冷開始温度が高いため、 引張強度が高く、 伸びが低い。 鋼板 Iは急冷速 度が低いため、 引張強度が低い。 鋼板 Jは再加熱温度が低いため、 引張強度が高 く、 伸ぴおよぴ伸ぴフランジ性が低い。 この原因は、 焼戻し処理の際にマルテン サイトの焼戻しが不十分であったためと考えられる。 鋼板 Kは再加熱温度が高い ため、 引張強度が低い。
鋼板 鋼 加熱温度加熱時間徐冷速度急泠開始急冷速度 再加熱 再加熱
No . No . kレ (sec Vし/ SeC bclし, 備考
レ)
A 2 760 300 8 750 2000 400 10 比較例
B 3 830 150 10 720 2000 .400 6 発明例
C 6 890 200 16 710 2000 420 15 比較例
D . 9 830 5 13 690 2000 410 18 比較例
Ξ 10 830 270 12 620 2000 380 12 比較例
F 6 830 120 7 700 20.00 405 10 発明例
G 2 860 300 9 770 2000 390 16 比較例
: H 3 840 160 21 725 2000 410 15 発明例
I 6 850 60 15 715 200 385 10 比較例
J 9 830 150 13 680 . 2000 320 12 比較例
K 10 820 120 12 660 2000 450 14 比較例
L 9 840 100 10 670 2000 410 9 発明例 表 4
Figure imgf000012_0001
下線部:目標範囲外

Claims

請求の範囲
1. 実質的に、 重量%で、 C:0.07〜0.15%、 Si:0.7〜2%、 Mn:1.8〜3%、 P:0.02も以下、 S:0.01 以下、 Sol.Al:0.01〜0.1%、 N:0.005%, B:0.0003 〜0.003も、 残部 Feからなる冷間圧延された鋼板を連^ する工程を有し、 カっ前記連 鈍が、
前記冷間圧延された鋼板を 800〜870°Cで 10秒間加熱する工程と、 前 |B¾口熱後の鋼板を 650〜750°Cに徐冷する工程と、
前記徐冷後の鋼板を 500°C/SeCを超える冷却速度で 100°C以下まで急冷す る工程と、
前記急冷後の鋼板を 325〜425°Cで 5〜20分間再加熱する工程と、 前記再加熱後の鋼板を室温まで冷却して卷取る工程と、
を有する、
超高強度冷延鋼板の製 法。
2. さらに、 重量 で、 Ti:0.003〜0.03%、 Mo: 0.1〜: 1 のうちから選ばれた 少なくとも 1種の元素を含有する請求の範囲 1の超高強度冷延鋼板の製造方法。
PCT/JP2003/007215 2002-06-10 2003-06-06 超高強度冷延鋼板の製造方法 WO2003104499A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/485,229 US7507307B2 (en) 2002-06-10 2003-06-06 Method for producing cold rolled steel plate of super high strength
EP03733306A EP1512762B1 (en) 2002-06-10 2003-06-06 Method for producing cold rolled steel plate of super high strength
DE60335624T DE60335624D1 (de) 2002-06-10 2003-06-06 Verfahren zur herstellung einer kaltgewalzten stahlplatte mit superhoher festigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002168210A JP4530606B2 (ja) 2002-06-10 2002-06-10 スポット溶接性に優れた超高強度冷延鋼板の製造方法
JP2002-168210 2002-06-10

Publications (1)

Publication Number Publication Date
WO2003104499A1 true WO2003104499A1 (ja) 2003-12-18

Family

ID=29727679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007215 WO2003104499A1 (ja) 2002-06-10 2003-06-06 超高強度冷延鋼板の製造方法

Country Status (5)

Country Link
US (1) US7507307B2 (ja)
EP (1) EP1512762B1 (ja)
JP (1) JP4530606B2 (ja)
DE (1) DE60335624D1 (ja)
WO (1) WO2003104499A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088255A (zh) * 2013-01-02 2013-05-08 河北钢铁股份有限公司邯郸分公司 一种汽车用高强塑积的低合金高强钢冷轧板的生产工艺

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162455A1 (en) * 2001-08-06 2005-07-28 Kia Silverbrook Printing cartridge with an integrated circuit device
WO2003106723A1 (ja) * 2002-06-14 2003-12-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP4586449B2 (ja) * 2004-02-27 2010-11-24 Jfeスチール株式会社 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
KR101136194B1 (ko) 2004-04-09 2012-04-17 주식회사 포스코 열연 권취코일 냉각방법
CN100430505C (zh) * 2005-09-29 2008-11-05 宝山钢铁股份有限公司 抗拉强度在880Mpa以上的超高强度冷轧带钢及其制造方法
JP4630188B2 (ja) * 2005-12-19 2011-02-09 株式会社神戸製鋼所 スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
JP4772497B2 (ja) * 2005-12-27 2011-09-14 新日本製鐵株式会社 穴拡げ性に優れた高強度冷延薄鋼板及びその製造方法
JP4772496B2 (ja) * 2005-12-27 2011-09-14 新日本製鐵株式会社 穴拡げ性に優れた高強度冷延薄鋼板及びその製造方法
JP5558692B2 (ja) * 2008-10-31 2014-07-23 株式会社神戸製鋼所 ナットプロジェクション溶接性に優れた自動車部材用鋼板および部材
JP5394709B2 (ja) * 2008-11-28 2014-01-22 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた超高強度鋼板
JP5779847B2 (ja) 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
JP5637530B2 (ja) * 2010-10-26 2014-12-10 Jfeスチール株式会社 高延性で、化成処理性に優れる780MPa以上の引張強度を有する超高強度冷延鋼板
JP5549618B2 (ja) * 2011-02-15 2014-07-16 新日鐵住金株式会社 引張強度980MPa以上のスポット溶接用高強度鋼板
EP2732058B1 (en) * 2011-07-15 2018-06-13 Tata Steel IJmuiden BV Apparatus for producing annealed steels and process for producing said steels
KR20170054554A (ko) * 2011-11-28 2017-05-17 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 연성이 향상된 높은 규소 베어링 이중상 강들
CZ303862B6 (cs) * 2011-12-05 2013-05-29 Pilsen Steel S.R.O. Zpusob primárního tepelného zpracování tvárených polotovaru
EP2684975B1 (de) * 2012-07-10 2016-11-09 ThyssenKrupp Steel Europe AG Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
CN103131843B (zh) * 2013-01-02 2014-05-28 河北钢铁股份有限公司邯郸分公司 汽车结构件用低合金高强钢冷轧板的稳定化连续退火工艺
DE102016112231A1 (de) * 2016-07-05 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines gehärteten Blechbauteils
CN111334713A (zh) * 2020-03-30 2020-06-26 包头钢铁(集团)有限责任公司 一种q390d钢板及其生产方法
CN111270151A (zh) * 2020-03-30 2020-06-12 包头钢铁(集团)有限责任公司 一种q345e钢板及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213533A (ja) * 1985-07-09 1987-01-22 Nippon Steel Corp 曲げ特性の優れた高強度薄鋼板の製造方法
JPS6314817A (ja) * 1986-07-05 1988-01-22 Nippon Steel Corp 曲げ特性の優れた高強度薄鋼板の製造方法
JPS63241115A (ja) * 1986-11-26 1988-10-06 Kobe Steel Ltd 伸びフランジ性にすぐれた高強度冷延鋼板の製造方法
JPH0192317A (ja) * 1987-10-05 1989-04-11 Kobe Steel Ltd 伸びフランジ加工性の優れた高強度薄鋼板の製造方法
WO2002022904A1 (fr) * 2000-09-12 2002-03-21 Nkk Corporation Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215046B2 (ja) * 1972-06-22 1977-04-26
JPS5522532B2 (ja) 1973-08-30 1980-06-17
JPS5551410B2 (ja) 1974-01-31 1980-12-24
JPS5855219B2 (ja) 1979-04-24 1983-12-08 日本鋼管株式会社 低降伏比高強度冷延鋼板の製造法
JPH0768583B2 (ja) 1984-03-07 1995-07-26 住友金属工業株式会社 高張力冷延鋼板の製造法
JPS613843A (ja) 1984-06-15 1986-01-09 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法
JPS6237322A (ja) 1985-08-12 1987-02-18 Nisshin Steel Co Ltd 表面性状と曲げ加工性に優れた低降伏比型冷延高張力鋼板の製造法
JPS6299417A (ja) 1985-10-24 1987-05-08 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法
GB8621903D0 (en) 1986-09-11 1986-10-15 British Steel Corp Production of steel
JPH0774412B2 (ja) 1987-01-20 1995-08-09 新日本製鐵株式会社 加工性および耐置き割れ性に優れた高強度薄鋼板およびその製造方法
JPH0759726B2 (ja) 1987-05-25 1995-06-28 株式会社神戸製鋼所 局部延性にすぐれる高強度冷延鋼板の製造方法
JPH0293025A (ja) 1988-09-28 1990-04-03 Nippon Steel Corp 連続焼鈍による耐時効性の優れた冷延鋼板の製造方法
JP2766693B2 (ja) 1989-12-29 1998-06-18 株式会社神戸製鋼所 異方性の小さい高延性高強度冷延鋼板の製造方法
JPH03277743A (ja) 1990-03-27 1991-12-09 Kawasaki Steel Corp 超高張力冷延鋼板およびその製造法
JPH0830212B2 (ja) 1990-08-08 1996-03-27 日本鋼管株式会社 加工性に優れた超高強度冷延鋼板の製造方法
JPH04333524A (ja) 1991-05-09 1992-11-20 Nippon Steel Corp 優れた延性を有する高強度複合組織鋼板の製造方法
JP2545316B2 (ja) 1991-10-30 1996-10-16 新日本製鐵株式会社 強度延性特性の優れた高強度冷延鋼板の製造方法
JP3068927B2 (ja) 1991-11-26 2000-07-24 三井・デュポンポリケミカル株式会社 湿度センサー材料
JP3162485B2 (ja) 1992-06-24 2001-04-25 株式会社東芝 マルチチップモジュール
JP2973767B2 (ja) * 1993-03-17 1999-11-08 日本鋼管株式会社 ストリップ形状の良好な超高強度冷延鋼板の製造方法
JPH0790488A (ja) * 1993-09-27 1995-04-04 Kobe Steel Ltd 耐水素脆化特性の優れた超高強度冷延鋼板とその製造方法
JP2826058B2 (ja) * 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
JP3370436B2 (ja) 1994-06-21 2003-01-27 川崎製鉄株式会社 耐衝撃性に優れた自動車用鋼板とその製造方法
JP3406094B2 (ja) * 1994-11-10 2003-05-12 株式会社神戸製鋼所 耐水素脆化特性にすぐれる超高強度薄鋼板の製造方法
JPH0941040A (ja) 1995-08-04 1997-02-10 Kobe Steel Ltd 伸びフランジ性にすぐれる高強度冷延鋼板の製造方法
JPH09263838A (ja) 1996-03-28 1997-10-07 Kobe Steel Ltd 伸びフランジ性に優れた高強度冷延鋼板の製造方法
JPH1060593A (ja) 1996-06-10 1998-03-03 Kobe Steel Ltd 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JP3370875B2 (ja) 1996-11-18 2003-01-27 株式会社神戸製鋼所 耐衝撃性に優れた高強度鋼板及びその製造方法
JP3478128B2 (ja) 1998-06-12 2003-12-15 Jfeスチール株式会社 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP3793350B2 (ja) 1998-06-29 2006-07-05 新日本製鐵株式会社 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
JP2001226741A (ja) 2000-02-15 2001-08-21 Kawasaki Steel Corp 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
ATE315112T1 (de) * 2000-04-07 2006-02-15 Jfe Steel Corp Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten
WO2001081640A1 (fr) 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
JP3610883B2 (ja) 2000-05-30 2005-01-19 住友金属工業株式会社 曲げ性に優れる高張力鋼板の製造方法
JP4414563B2 (ja) 2000-06-12 2010-02-10 新日本製鐵株式会社 成形性並びに穴拡げ性に優れた高強度鋼板およびその製造方法
JP3729108B2 (ja) 2000-09-12 2005-12-21 Jfeスチール株式会社 超高張力冷延鋼板およびその製造方法
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
WO2003106723A1 (ja) * 2002-06-14 2003-12-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213533A (ja) * 1985-07-09 1987-01-22 Nippon Steel Corp 曲げ特性の優れた高強度薄鋼板の製造方法
JPS6314817A (ja) * 1986-07-05 1988-01-22 Nippon Steel Corp 曲げ特性の優れた高強度薄鋼板の製造方法
JPS63241115A (ja) * 1986-11-26 1988-10-06 Kobe Steel Ltd 伸びフランジ性にすぐれた高強度冷延鋼板の製造方法
JPH0192317A (ja) * 1987-10-05 1989-04-11 Kobe Steel Ltd 伸びフランジ加工性の優れた高強度薄鋼板の製造方法
WO2002022904A1 (fr) * 2000-09-12 2002-03-21 Nkk Corporation Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088255A (zh) * 2013-01-02 2013-05-08 河北钢铁股份有限公司邯郸分公司 一种汽车用高强塑积的低合金高强钢冷轧板的生产工艺

Also Published As

Publication number Publication date
EP1512762A1 (en) 2005-03-09
EP1512762A4 (en) 2006-05-10
EP1512762B1 (en) 2011-01-05
JP4530606B2 (ja) 2010-08-25
DE60335624D1 (de) 2011-02-17
US20040177905A1 (en) 2004-09-16
US7507307B2 (en) 2009-03-24
JP2004010991A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
WO2003104499A1 (ja) 超高強度冷延鋼板の製造方法
KR100928788B1 (ko) 용접성이 우수한 고강도 박강판과 그 제조방법
US11104974B2 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
WO2003106723A1 (ja) 高強度冷延鋼板およびその製造方法
WO2001053554A1 (fr) Tole d'acier zingue par immersion a chaud et procede de production correspondant
JP2002161336A (ja) 超高張力冷延鋼板およびその製造方法
US20210147953A1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
KR20120121811A (ko) 고강도 강판 및 그 제조 방법
KR20100076409A (ko) 고항복비형 고강도 강판 및 그 제조 방법
WO2002022904A1 (fr) Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production
JPH0949026A (ja) 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JP4265153B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP4265152B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP5280795B2 (ja) 機械的特性の安定性に優れた高強度冷延鋼板の製造方法
US20220205059A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
US20040238083A1 (en) High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
JP7167159B2 (ja) 電縫鋼管用熱延鋼板及びその製造方法、並びに電縫鋼管
JP4492105B2 (ja) 伸びフランジ性に優れた高強度冷延鋼板の製造方法
JPH0213013B2 (ja)
JP2001064728A (ja) 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法
JP4670135B2 (ja) 歪時効硬化特性に優れた熱延鋼板の製造方法
JP2621744B2 (ja) 超高張力冷延鋼板およびその製造方法
KR101382854B1 (ko) 용접성 및 굽힘가공성이 우수한 고항복비형 초고강도 냉연강판 및 그 제조방법
US20210071278A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
JP3925064B2 (ja) プレス成形性と歪時効硬化特性に優れた溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003733306

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10485229

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003733306

Country of ref document: EP