WO2003095855A1 - Procede de fabrication de chemin de roulement - Google Patents

Procede de fabrication de chemin de roulement Download PDF

Info

Publication number
WO2003095855A1
WO2003095855A1 PCT/JP2003/006032 JP0306032W WO03095855A1 WO 2003095855 A1 WO2003095855 A1 WO 2003095855A1 JP 0306032 W JP0306032 W JP 0306032W WO 03095855 A1 WO03095855 A1 WO 03095855A1
Authority
WO
WIPO (PCT)
Prior art keywords
raceway
blank
bearing
track portion
roller burnishing
Prior art date
Application number
PCT/JP2003/006032
Other languages
English (en)
French (fr)
Inventor
Masamichi Shibata
Nobuo Komeyama
Hisashi Harada
Original Assignee
Koyo Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002138971A external-priority patent/JP2003329048A/ja
Priority claimed from JP2002277535A external-priority patent/JP4186568B2/ja
Application filed by Koyo Seiko Co., Ltd. filed Critical Koyo Seiko Co., Ltd.
Priority to EP03749996A priority Critical patent/EP1505306A4/en
Priority to US10/514,115 priority patent/US7685717B2/en
Priority to KR10-2004-7017999A priority patent/KR20050004843A/ko
Publication of WO2003095855A1 publication Critical patent/WO2003095855A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/003Making specific metal objects by operations not covered by a single other subclass or a group in this subclass bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B39/00Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor
    • B24B39/04Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor designed for working external surfaces of revolution
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/08Modifying the physical properties of iron or steel by deformation by cold working of the surface by burnishing or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/47Burnishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/49689Race making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/497Pre-usage process, e.g., preloading, aligning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49707Bearing surface treatment

Definitions

  • the present invention relates to a method for manufacturing a bearing race member constituting a rolling bearing, a cross joint, and the like.
  • the raceway of the raceway member must have a longer life.
  • the members are subjected to a surface heat treatment such as carburizing, nitriding, induction hardening or the like (see, for example, Japanese Patent Application Laid-Open No. H5-195070).
  • a surface heat treatment such as carburizing, nitriding, induction hardening or the like.
  • the content of nonmetallic inclusions in the material has been reduced, or the strength has been increased by adding an alloy component (see, for example, Japanese Unexamined Patent Application Publication No. 0 0 2 —2 220 6 3 8).
  • any of the above measures for extending the service life has a problem in that the manufacturing cost of the rolling bearing is high.
  • bearing steel such as bearing steel or carburized steel is used as a material for a raceway member of a general rolling bearing.
  • bearing copper is expensive, the production cost of the rolling bearing is low. There was a problem of sticking. For this reason, it has been performed in some cases to form track members using carbon steel for mechanical structures such as JIS-S45C and JIS-S55C, which are relatively inexpensive.
  • the quenching hardness of the raceway is lower than that of copper for bearings, and it is not possible to secure sufficient fatigue strength. Atsuta.
  • the raceway may be finished to a specified accuracy by turning instead of polishing.
  • the surface roughness of the raceway is rough (for example, the center line average roughness Ra is 0.35 m or more)
  • the lubrication state of the contact part with the rolling elements is boundary lubrication. I have to be.
  • the track member is connected to the rolling element.
  • the cutting conditions are relaxed (a relatively light cutting is performed), or rough grinding is performed.
  • the same problem as described above occurs.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a bearing race member that can extend the life of the bearing race member at low cost. Disclosure of the invention
  • a method of manufacturing a bearing race member includes the steps of: processing a material to manufacture a blank for a bearing race member having an annular race portion; and heat-treating and hardening at least the race portion of the blank.
  • the surface of the raceway is hardened to a hardness of HRC 65 or more by the roller burnishing process, and the center line average roughness Ra of the surface is reduced to 0.1 l / m or less. It is characterized by:
  • the hardness of the surface of the track portion is HRC 65 or more, and the center line average roughness Ra of the surface is 0.1 ⁇ or less.
  • the residual compressive stress at a depth of at least 0.15 mm from the surface of the track portion subjected to the roller burnishing is set to 100 OMPa or more. In this case, the fatigue strength of the raceway can be more effectively increased.
  • the roller burnishing work hardens the hardness at a depth of at least 0.2 mm from the surface of the raceway to HRC 60 or more. In this case, it is necessary to increase the fatigue strength of the raceway more effectively. it can.
  • a method of manufacturing a bearing race member includes the steps of: processing a material to manufacture a blank for a bearing race member having an annular race portion; and heat-treating and hardening at least the race portion of the blank.
  • the track portion of the track member is subjected to roller burnishing so that the hardness at a depth of at least 0.2 mm from the surface of the track portion is set to Hv800 or more.
  • the hardness at a depth of at least 0.2 mm from the surface of the track portion is set to Hv800 or more.
  • carbon steel having a carbon content of 0.42% by weight or more as the mechanical structure carbon steel. In this case, fatigue strength almost equivalent to that of conventional bearing steel can be exhibited.
  • the residual compressive stress at a depth of at least 0.15 mm from the surface of the raceway portion be 800 MPa or more by the roller burnishing.
  • the fatigue strength of the track portion can be more effectively increased as compared with the conventional product.
  • the method of manufacturing a bearing race member according to the third invention is a method of manufacturing a bearing race member used under the condition that the maximum contact surface pressure with a rolling element is 30 OMPa or more.
  • the above-mentioned turning process, the center line average roughness Ra of the raceway surface is reduced to 0.25 im or less by the roller burnishing process, and at least 0.2 mm from the raceway surface.
  • the feature is to make the residual compressive stress at the depth 100 OMPa or more.
  • the center line average roughness Ra of the surface of the raceway portion is set to 0.25 ⁇ or less by roller burnishing, so that the maximum contact surface pressure between the raceway portion and the rolling element is reduced. Even under the use condition of 30 OMPa or more, the lubrication state between the two can be favorably maintained. Further, since the residual compressive stress at a depth of at least 0.2 mm from the surface of the raceway is set to 100 OMPa or more, the danger of generating tensile residual stress in the raceway can be eliminated. Therefore, the life of the bearing race member can be extended.
  • the method of manufacturing a bearing race member according to the fourth invention is a method of manufacturing a bearing race member used under the condition that the maximum contact surface pressure with a rolling element is 30 OMPa or more.
  • the roller burnishing process reduces the center line average roughness Ra of the raceway surface to 0.15 ⁇ or less and at least 0.2 mm from the raceway surface.
  • Depth of The residual compressive stress is characterized in that more than 100 OMP a.
  • the center line average roughness Ra of the raceway surface is reduced to 0.15 ⁇ or less by mouth-to-mouth burnishing. Even under the operating conditions with a maximum contact surface pressure of 300 MPa or more, it is possible to maintain a good lubrication state between the two.
  • the residual compressive stress at a depth of at least 0.2 mm from the surface of the raceway is set to 100 OMPa or more, it is possible to eliminate the risk of generating tensile residual stress in the raceway. Therefore, the life of the bearing race member can be prolonged.
  • the hardness at a depth of at least 0.2 mm from the surface of the track portion is hardened to Hv700 or more by the roller burnishing process. Is preferred. Thereby, the fatigue strength of the track portion can be effectively increased.
  • FIG. 1 is a cross-sectional view showing a rolling bearing obtained by applying the method of manufacturing a bearing race member according to the first embodiment.
  • FIG. 2 is a process chart showing a method of manufacturing the bearing race member according to the first embodiment.
  • FIG. 3 is a rough diagram showing the results of measuring the hardness at each depth from the surface of the inner raceway portion of the rolling bearing.
  • FIG. 4 is a graph showing the results of measuring the residual compression stress at each depth from the surface of the inner raceway of the rolling bearing.
  • FIG. 5 is a process chart showing a method for manufacturing a bearing race member according to the second embodiment.
  • FIG. 6 is a graph showing the results of measuring the hardness at each depth from the surface of the inner raceway portion of the rolling bearing obtained by the manufacturing method according to Embodiment 2.
  • FIG. 7 is a graph showing the results of measuring the residual compressive stress at each depth from the surface of the inner ring raceway portion of the rolling bearing obtained by the manufacturing method according to Embodiment 2.
  • FIG. 8 is a process chart showing a method for manufacturing a bearing race member according to the third embodiment.
  • FIG. 9 is a graph showing the results of measuring the residual compressive stress at each depth from the surface of the inner raceway portion of the rolling bearing obtained by the manufacturing method according to Embodiment 3.
  • FIG. 10 is a graph showing the results of measuring the hardness at each depth from the surface of the inner raceway portion of the rolling bearing obtained by the manufacturing method according to Embodiment 3.
  • the rolling bearing shown in FIG. 1 is obtained by applying the method for manufacturing a bearing race member of the present invention.
  • a plurality of balls 3 as rolling elements are interposed between an inner ring 1 and an outer ring 2 as track members arranged concentrically, and each ball 3 is provided with a cage. 4 keeps them at equal intervals.
  • the inner ring 1 and the outer ring 2 are made of heat-hardened bearing steel such as SUJ-2 (JIS standard).
  • the annular raceways 1 c and 2 c have a surface hardness of HRC 65 or more and a center of the surface.
  • the line average roughness Ra is 0.1 m or less.
  • the residual compressive stress at a depth of at least 0.15 mm from the surface of the raceway portions lc and 2c is 100 OMPa or more, and the hardness at a depth of at least 0.2 mm from the surface is HRC 60 That is all.
  • the method of manufacturing the inner ring 1 of the rolling bearing is as follows. First, an annular material A (see FIG. 2 (a)) is subjected to turning to obtain an end face 1a, an outer circumference 1b, a track portion 1c, an inner circumference 1d, and the like. Is processed into a predetermined shape (see Fig. 2 (b)). Next, the blank B thus turned is heat-treated by so-called quenching so as to harden to a hardness of, for example, HRC 60 to 63 (see FIG. 2 (c)). After that, the end face 1a, the raceway 1c and the inner circumference 1d of the blank 3 after the heat treatment are finished to a predetermined accuracy by polishing (see FIG. 2 (d)).
  • roller burnishing is performed on the surface of the track portion 1c (see FIG. 2 (e)).
  • a mirror-finished ceramic ball C held by hydraulic pressure is moved along the axial cross section of the raceway portion 1c while being pressed against the raceway portion 1c with strong pressure to make rolling contact.
  • the hardness of the raceway 1 c is HRC 65 or more
  • the center line average roughness Ra of the surface is 0.1 / zni or less
  • FIG. 3 is a graph showing the results of measuring the hardness at each depth from the surface of the track portion 1c after the roller burnishing process. For comparison, the measurement results before and after roller burnishing and the shot-behind track after turning are also shown in the same figure.
  • the track portion 1c subjected to the roller burnishing has a hardness of Hv 840 (HRC 65.3) or more near its surface.
  • a hardness of at least Hv 700 (HRC 60.1) is secured at a depth of at least 0.2 mm from the surface, and at the depth of 0.2 mm. The hardness is much harder than before roller burnishing and shot beaning.
  • FIG. 4 is a graph showing the results of measuring the residual compressive stress at each depth from the surface of the track portion 1c after the roller burnishing process. For comparison, the results of measurements before roller burnishing and shot peening on the polished raceway are also shown in the figure.
  • the track portion 1c after the roller burnishing process is 0.1mm from the surface. At a depth of ⁇ 0.2 mm, a residual compressive stress of 100 OMPa or more is generated, and work hardening occurs to a depth approximately twice that of the shotby Jung products.
  • the method of manufacturing the outer ring 2 is basically the same as the method of manufacturing the inner ring 1 described above.
  • the blank B is heat-treated and the raceway portion 2c is polished. In the same manner as in the case of inner ring 1.
  • the inner ring 1 and the outer ring 2 obtained as described above can generate residual compressive stress in the raceway portions by roller burnishing of the raceway portions lc and 2c, and can harden the surface of the raceway portions lc and 2c. Since the surface roughness is set to HRC 65 or more and the center line average roughness Ra of the surface is set to 0.1 ⁇ or less, the fatigue strength of the raceway portions 1 c and 2 c can be increased. In particular, in the above embodiment, since the residual compressive stress at a depth of at least 0.15 mm from the surface of the raceway portions 1 c and 2 c is 100 OMPa or more, the fatigue strength of the raceway portions lc and 2 c is reduced. It can be more effectively increased.
  • the hardness at a depth of at least 0.2 mm from the surface of the raceway portion 1c is HRC 60 or more, the fatigue strength of the raceway portions lc and 2c can be more effectively increased. Therefore, the life of the ball bearing incorporating the inner ring 1 and the outer ring 2 can be significantly extended as compared with the conventional product.
  • the inner ring 1 and outer ring 2 were applied to the bearing model number JIS-6206, and life tests were performed under the following conditions in clean oil and foreign oil, respectively. Has been shown to be three times longer in clean oil and twice as long in foreign oil.
  • the track portions 1c and 2c are merely subjected to roller burnishing, the cost burden is small.
  • Test method 2 sets X 5 times sudden death test
  • the bearing steel is used as the material of the inner ring 1 and the outer ring 2, but the invention is not limited to this, and the present invention may be implemented using other bearing steel such as carburized steel. Good.
  • the rolling bearing may be subjected to roller burnishing only to one of the inner race 1 and the outer race 2 according to the conditions of use.
  • FIG. 5 is a process chart showing a method for manufacturing a bearing race member according to the second embodiment.
  • This manufacturing method shows the case where it is applied to the inner ring 1 of a rolling bearing.
  • a turning process is performed on an annular material A (see Fig. 5 (a)) made of JIS-S55C, which is carbon steel for machine structures.
  • the end face 1a, the outer circumference 1b, the track portion 1c, the inner circumference 1d, and the like are processed into a predetermined shape (see FIG. 5 (b)).
  • the turned blank B is heat-treated by so-called quenching to harden it to a hardness of about 55 HRC (see Fig. 5 (c)).
  • the end face 1a, the track portion 1c and the inner circumference Id of the blank B after the heat treatment are finished to a predetermined accuracy by grinding (see FIG. 5 (d)).
  • roller burnishing is performed on the surface of the track portion 1c (see FIG. 5 (e)).
  • a ceramic mirror ball C held by hydraulic pressure is moved along the axial cross section of the raceway portion 1c while being pressed against the surface of the raceway portion 1c with strong pressure to make rolling contact. Things.
  • the hardness at a depth of at least 0.2 mm from the surface of the raceway 1 c is hardened to Hv 800 or more, and at least 0.15 mm from the surface of the raceway 1 c. At a depth of 80 OMPa or more, more preferably at a depth of at least 0.2 mm from the surface.
  • Select machining conditions such as burnishing amount ⁇ applied pressure so as to be 0 OMPa or more.
  • FIG. 6 is a graph showing the results of measuring the hardness at each depth from the surface of the track portion 1c after the roller burnishing process
  • FIG. 7 is a graph showing each depth from the surface of the track portion 1c.
  • FIG. 6 is a graph showing the results of measuring residual compressive stress at the same time.
  • the measurement results of the track section with induction hardening and the track section with shotby Jung are also shown.
  • the track portion 1c after roller burnishing has a hardness of at least Hv 800 at a depth of at least 0.2mm from its surface, and high frequency quenching. It is much harder than the product and the shot beaning product.
  • the track portion lc has a residual compressive stress of 80 OMPa or more at a depth of at least 0.15 mm from the surface thereof. Hardening has occurred up to twice as deep as the depth.
  • the surface roughness of the raceway portion 1c can be reduced by the roller burnishing process. According to the test of the present inventor, it has been confirmed that the surface roughness can be reduced to 1Z2 or less before processing at the maximum height roughness (Rmax).
  • the inner ring 1 obtained by the above-described manufacturing method has a hardness of at least 0.2 mm deep from the surface of the orbital portion 1c to a hardness of 800 or more Hv from the surface of the orbital portion 1c by roller burnishing. Combined with the fact that the surface roughness of c is reduced, the fatigue strength of the raceway portion 1c can be effectively increased as compared with the conventional product that has not been subjected to roller burnishing.
  • the residual compressive stress at a depth of at least 0.15 mm from the surface of the raceway portion 1c is set to 80 OMPa or more, so that the fatigue strength of the raceway portion 1c can be more effectively reduced. Can be enhanced.
  • the life of the deep groove ball bearing incorporating the inner ring 1 can be significantly extended as compared with the conventional product.
  • the inner ring 1 was applied to the inner ring of bearing model number JIS-6206, and a life test was performed in clean oil. As a result, the life was almost equivalent to that of the same model number made of bearing steel (SUJ-2). It has been confirmed that this can be achieved.
  • the material of the raceway member used in this embodiment includes a force S that can use various types of carbon steel for machine structural use, in particular, JIS standard S45C, S50C, S55C, etc.
  • a life almost equivalent to that of a rolling bearing made of bearing copper such as bearing steel or carburized steel can be exhibited.
  • the blank B may be hardened by induction hardening.
  • at least the track portion 1c may be hardened by heat treatment.
  • FIG. 8 is a process chart showing a method of manufacturing a bearing race member according to still another embodiment of the present invention. This manufacturing method is applied to the inner ring 1 of a rolling bearing used under conditions where the maximum contact surface pressure with the rolling element is 30 OMPa or more.
  • the blank B thus turned is subjected to a heat treatment including carburizing and quenching, and is heat-treated and hardened so that its surface hardness becomes, for example, HRC 60 or more (see FIG. 8 (c)).
  • a heat treatment including carburizing and quenching
  • the end face 1a, the raceway 1c and the inner circumference 1d of the blank B after the heat treatment are finished to a predetermined accuracy by turning (see FIG. 8 (d)).
  • This turning is performed in the same manner as in the prior art, and therefore, the center line average roughness Ra of the surface of the orbital portion 1c is 0.35 ⁇ or more.
  • the finishing of the end face 1a and the inner circumference 1d of the blank may be performed by polishing.
  • roller burnishing is performed on the surface of the track portion 1c (see FIG. 8 (e)).
  • This roller burnishing process moves a mirror-surface ball C made of ceramics, which is held by hydraulic pressure, along the axial cross section of the raceway portion 1c while pressing the raceway portion 1c with high pressure to make rolling contact. It is.
  • the center line average roughness Ra of the surface of the raceway 1c is 0.25 ⁇ m or less, and the residual compressive stress at a depth of at least 0.2 mm from the surface of the raceway 1c.
  • the machining conditions such as the burnishing amount and the applied pressure, are set so that the hardness is at least 100 MPa and the hardness at a depth of at least 0.2 mm from the surface of the raceway 1 c is at least Hv700. select.
  • FIG. 9 is a graph showing the results of measuring the residual compressive stress at each depth from the surface of the track portion 1c after the roller burnishing process. Low for comparison The results of measurements before and after lavanishing and shot beening on track-turned tracks are also shown in the figure.
  • the track portion 1c after the roller burnishing has a residual compression stress of 100 OMPa or more at a depth of at least 0.2 mm from its surface.
  • work hardening occurs about twice as deep as shot peened products.
  • FIG. 10 is a graph showing the results of measuring the hardness at each depth from the surface of the track portion 1c after the roller burnishing process. For comparison, the measurement results before and after the roller burnishing and the shot track on the turned track section are also shown in the figure.
  • the roller burnished track portion 1c has a hardness of HV700 or more at least at a depth of 0.2 mm from its surface, and the roller It is much harder than before burnishing and shot beung. Therefore, the fatigue strength of the raceway portion l c can be effectively increased.
  • the inner ring 1 obtained as described above has a center line average roughness Ra of 0.25 / xm or less on the surface of the raceway 1c by roller burnishing. Even under the use condition where the maximum contact surface pressure with the ball as a moving body is 300 MPa or more, it is possible to maintain a good lubrication state between the users. In addition, since the residual compressive stress at a depth of at least 0.2 mm from the surface of the raceway portion 1 c is set to 100 OMPa or more, the danger of generating tensile residual stress on the surface of the raceway portion 1 c is eliminated. be able to.
  • the life of the ball bearing incorporating the inner ring 1 can be significantly extended as compared with the conventional product.
  • the inner ring 1 was applied to the inner ring of bearing model number JIS-6206, and a life test was conducted at a contact surface pressure of 35 OMPa. It has been confirmed that the life can be exhibited.
  • the track surface 1c of the blank B cured by heat treatment is Finishing to a predetermined accuracy by machining, but by performing rough grinding instead of this turning or by relaxing the turning conditions, the center line average roughness Ra of the surface of the track portion 1c is obtained. May be set to 0.2 ⁇ or more. In this case, after finishing the raceway surface 1c, the surface is subjected to the same roller burnishing as in the previous case, so that the center line average roughness Ra of the surface of the raceway portion lc is 0.15111 or less.
  • the residual compressive stress at a depth of at least 0.2 mm from the surface of the raceway 1 c is 100 OMPa or more, and the hardness at a depth of at least 0.2 mm from the surface of the raceway 1 c is Hv7. 0 Set to 0 or more. In this embodiment, it has been confirmed that the bearing life can be improved in the same manner as described above.
  • carburized steel is used as the material of the raceway member.
  • the present invention is not limited to this and may be implemented using bearing steel such as SUJ-2.
  • the blank may be quenched by induction hardening. In this case, at least the raceway should be hardened by heat treatment.
  • Embodiments 2 to 4 the case where roller burnishing is applied only to the inner ring where the contact condition is severe and the service life is likely to be short is shown.
  • the present invention can be applied and carried out as a manufacturing method.
  • raceways having a track portion used under high-pressure conditions such as a cross shaft as an inner ring of a cruciform joint used for a drive shaft for a steel machine or a cup as an outer ring, are used. It is suitably used as a method for manufacturing a bearing race member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rolling Contact Bearings (AREA)

Description

明 細 書
軸受軌道部材の製造方法 技術分野
この発明は、 転がり軸受ゃ十字軸継手等を構成する軸受軌道部材を製造する方 法に関する。 背景技術
清浄油や異物の混ざった油 (異物油) の中、 或いはグリース潤滑下で使用され る転がり軸受については、 その軌道部材 (軌道輪) の軌道部の長寿命化を図るた めに、 当該軌道部材に浸炭、 窒化、 高周波焼入等の表面熱処理硬化処理を施すこ とが行われている (例えば特開平 5— 1 9 5 0 7 0号公報参照) 。 特に、 清浄油 中での長寿命化に関しては、 材料中の非金属介在物の含有割合を減らしたり、 合 金成分を添加して強度を高めたりすることも行われている (例えば特開 2 0 0 2 —2 2 0 6 3 8号公報参照) 。 しかし、 前記の長寿命化のための方策は、 いずれ も転がり軸受の製造コストが高く付くという問題があった。
また、 一般的な転がり軸受の軌道部材の素材としては、 軸受鋼ゃ浸炭鋼等の軸 受用鋼が用いられているが、 前記軸受用銅は高価であることから、 転がり軸受の 製造コストが髙くつくという問題があった。 そこで、 価格が比較的安い J I S - S 4 5 Cや J I S— S 5 5 C等の機械構造用炭素鋼によって軌道部材を形成する ことが一部で行われている。 しかし、 この場合には、 軌道部の焼入硬さが軸受用 銅と比べて低く、 その疲労強度を十分に確保することができないので、 軌道部材 の寿命が短レ、とレ、う問題があつた。
一方、 外径が 2 4 O mm以上の中型、 大型転がり軸受については、 軌道部材用 のブランクを熱処理した後、 軌道部を研磨加工でなく旋削加工によつて所定の精 度に仕上げる場合がある。 し力、し、 この場合には、 軌道部の表面粗さが粗いので (例えば中心線平均粗さ R aが 0 . 3 5 m以上) 、 転動体との接触部の潤滑状 態が境界潤滑とならざるを得ない。 しかも、 重切削加工であることから軌道部に 引張残留応力が生じるおそれがある。 したがって、 前記軌道部材を転動体との接 触面圧が高い条件下で使用すると、 軌道部に早期剥離を生じ易いという問題があ つた。 また、 前記切削加工後の仕上げ面をさらに良好にすべく (例えば R a 0 . 2 μ πι) 、 切削条件を緩和したり (比較的軽切削加工にしたり) 、 粗研削加工を 施したりすることもあるが、 この場合でも前記と同様な問題が生じている。
この発明は以上の問題点に鑑みてなされたものであり、 軸受軌道部材の寿命を コスト安価に延ばすことができる軸受軌道部材の製造方法を提供することを目的 とする。 発明の開示
第 1の発明に係る軸受軌道部材の製造方法は、 素材を加工して環状の軌道部を 有する軸受軌道部材用のブランクを製造する工程と、 前記ブランクの少なくとも 軌道部を熱処理硬化させる工程と、 熱処理硬化させた前記ブランクの軌道部を所 定精度に仕上げ加ェする工程と、 仕上げ加ェした前記軌道部にローラバニシング 加工を施して当該軌道部を加工硬化させる工程とを含み、 前記素材として軸受用 鋼を用い、 前記ローラバニシング加工によって、 軌道部の表面を H R C 6 5以上 の硬さに加工硬化させるとともに、 その表面の中心線平均粗さ R aを 0 . l // m 以下にすることを特徴としている。
前記第 1の発明によれば、 前記軌道部の表面の硬さを H R C 6 5以上とし、 そ の表面の中心線平均粗さ R aを 0 . 1 μ πι以下としているので、 前記ローラバニ シング加工によって軌道部に残留圧縮応力が生じる点と相まって、 軌道部の疲労 強度を高めることができる。 したがって、 転がり軸受の寿命をコスト安価に延ば すことができる。
前記第 1の発明においては、 前記ローラバニシング加工を施した軌道部の表面 から少なくとも 0 . 1 5 mmの深さの残留圧縮応力を 1 0 0 O M P a以上にする のが好ましい。 この場合には、 軌道部の疲労強度をより効果的に高めることがで さる。
前記第 1の発明においては、 前記ローラバニシング加工によって、 軌道部の表 面から少なくとも 0 . 2 mmの深さの硬さを H R C 6 0以上に加工硬化させるの が好ましい。 この場合には、 軌道部の疲労強度をより一層効果的に高めることが できる。
第 2の発明に係る軸受軌道部材の製造方法は、 素材を加工して環状の軌道部を 有する軸受軌道部材用のブランクを製造する工程と、 前記ブランクの少なくとも 軌道部を熱処理硬化させる工程と、 熱処理硬化させた前記ブランクの軌道部を所 定精度に仕上げ加工する工程と、 仕上げ加工した前記軌道部にローラバニシング 加工を施して当該軌道部を加工硬化させる工程とを含み、 前記素材として機械構 造用炭素鋼を用い、 前記ローラバニシング加工によって、 軌道部の表面から少な くとも 0 . 2 mmの深さの硬さを H v 8 0 0以上に加工硬化させることを特徴と している。
前記第 2の発明によれば、 軌道部材の軌道部にローラバニシング加工を施して、 軌道部の表面から少なくとも 0 . 2 mmの深さの硬さを H v 8 0 0以上にしてい るので、 当該ローラバニシング加工によって軌道部に残留圧縮応力が生じるとと もに、 その表面粗さが向上する点と相まって、 ローラバニシング加工を施してい ない従来品と比べて軌道部の疲労強度を高めることができる。 このため軌道部材 の長寿命化を図ることができる。
前記第 2の発明においては、 機械構造用炭素鋼として、 含有炭素量が 0 . 4 2 重量%以上のもの用いるのが好ましい。 この場合は従来の軸受用鋼にほぼ匹敵す る疲労強度を発揮することができる。
前記第 2の発明においては、 前記ローラバニシング加工によって、 軌道部の表 面から少なくとも 0 . 1 5 mmの深さの残留圧縮応力を、 8 0 0 M P a以上にす るのが好ましい。 この場合には、 前記従来品と比べて軌道部の疲労強度をより効 果的に高めることができる。
第 3の発明に係る軸受軌道部材の製造方法は、 転動体との最大接触面圧が 3 0 O M P a以上の条件下で使用される軸受軌道部材を製造する方法であって、 素材 を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する工程と、 前記ブランクの少なくとも軌道部を熱処理硬化させる工程と、 熱処理硬化させた 前記ブランクの軌道部を所定精度に仕上げカ卩ェする工程と、 仕上げ加工した前記 軌道部にローラバニシング加工を施して当該軌道部を加ェ硬化させる工程とを含 み、 前記仕上げ加工は、 前記軌道部の表面の中心線平均粗さ R aが 0 . 3 5 μ m 以上となる旋削加工であり、 前記ローラバニシング加ェによって、 軌道部の表面 の中心線平均粗さ R aを 0. 25 im以下にするとともに、 軌道部の表面から少 なくとも 0. 2 mmの深さの残留圧縮応力を 100 OMP a以上にすることを特 徴としてレヽる。
前記第 3の発明によれば、 ローラバニシング加工によって軌道部の表面の中心 線平均粗さ R aを 0. 25 μπι以下にしているので、 当該軌道部と転動体との最 大接触面圧が 30 OMP a以上の使用条件下であっても、 両者間の潤滑状態を良 好に維持することができる。 また、 軌道部の表面から少なくとも 0. 2mmの深 さの残留圧縮応力を 100 OMP a以上にしているので、 軌道部に引張残留応力 が生じる危険性を排除することができる。 このため、 軸受軌道部材の長寿命化を 図ることができる。
第 4の発明に係る軸受軌道部材の製造方法は、 転動体との最大接触面圧が 30 OMP a以上の条件下で使用される軸受軌道部材を製造する方法であって、 素材 を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する工程と、 前記ブランクの少なくとも軌道部を熱処理硬化させる工程と、 熱処理硬化させた 前記ブランクの軌道部を所定精度に仕上げカ卩ェする工程と、 仕上げ加工した前記 軌道部にローラバニシング加工を施して当該軌道部を加工硬化させる工程とを含 み、 前記仕上げ加工は、 軌道部の表面の中心線平均粗さ R aが 0. 35 m以上 となる旋削加工又は研削加工であり、 前記ローラバニシング加工によって、 軌道 部の表面の中心線平均粗さ R aを 0. 15 μπι以下にするとともに、 軌道部の表 面から少なくとも 0. 2 mmの深さの残留圧縮応力を 100 OMP a以上にする ことを特徴としている。
この軸受軌道部材の製造方法によれば、 口一ラバニシング加工によつて軌道部 の表面の中心線平均粗さ R aを 0. 15 μπι以下にしているので、 当該軌道部と 転動体との最大接触面圧が 300 MP a以上の使用条件下であっても、 両者間の 潤滑状態を良好に維持することができる。 また、 軌道部の表面から少なくとも 0. 2 mmの深さの残留圧縮応力を 100 OMP a以上にしているので、 軌道部に引 張残留応力が生じる危険性を排除することができる。 このため、 軸受軌道部材の 長寿命化を図ることができる。 前記第 3の発明又は第 4の発明においては、 前記ローラバニシング加工によつ て、 軌道部の表面から少なくとも 0 . 2 mmの深さの硬さを H v 7 0 0以上に加 ェ硬化させるのが好ましい。 これにより、 前記軌道部の疲労強度を効果的に高め ることができる。 図面の簡単な説明
第 1図は、 実施形態 1に係る軸受軌道部材の製造方法を適用して得られる転がり 軸受を示す断面図である。
第 2図は、 実施形態 1に係る軸受軌道部材の製造方法を示す工程図である。
第 3図は、 前記転がり軸受の内輪軌道部の表面からの各深さにおける硬さを測定 した結果を示すダラフ図である。
第 4図は、 前記転がり軸受の内輪軌道部の表面からの各深さにおける残留圧縮応 力を測定した結果を示すグラフ図である。
第 5図は、 実施形態 2に係る軸受軌道部材の製造方法を示す工程図である。
第 6図は、 実施形態 2に係る製造方法によって得られた転がり軸受の内輪軌道部 の表面からの各深さにおける硬さを測定した結果を示すグラフ図である。
第 7図は、 実施形態 2に係る製造方法によって得られた転がり軸受の内輪軌道部 の表面からの各深さにおける残留圧縮応力を測定した結果を示すグラフ図である。 第 8図は、 実施形態 3に係る軸受軌道部材の製造方法を示す工程図である。
第 9図は、 実施形態 3に係る製造方法によって得られた転がり軸受の内輪軌道部 の表面からの各深さにおける残留圧縮応力を測定した結果を示すグラフ図である。 第 1 0図は、 実施形態 3に係る製造方法によって得られた転がり軸受の内輪軌道 部の表面からの各深さにおける硬さを測定した結果を示すグラフ図である。 発明を実施するための最良の形態
実施形態 1
第 1図に示す転がり軸受は、 この発明の軸受軌道部材の製造方法を適用して得 られるものである。 この転がり軸受は、 同芯に配置された軌道部材としての内輪 1及び外輪 2の相互間に、 転動体としての玉 3を複数個介在し、 各玉 3を保持器 4によって等間隔に保持している。 前記内輪 1及び外輪 2は、 熱処理硬化された SUJ— 2 (J I S規格) 等の軸受鋼からなり、 その環状の軌道部 1 c, 2 cは、 表面の硬さが HRC 65以上、 表面の中心線平均粗さ R aが 0. 1 m以下であ る。 また、 前記軌道部 l c, 2 cの表面から少なくとも 0. 15 mmの深さの残 留圧縮応力が 100 OMP a以上であり、 当該表面から少なくとも 0. 2 mmの 深さの硬さが HRC 60以上である。
前記転がり軸受の内輪 1の製造方法は、 まず、 環状素材 A (第 2図(a)参照) に旋削加工を施して、 端面 1 a、 外周 1 b、 軌道部 1 c及び内周 1 d等を所定形 状に加工する (第 2図(b)参照) 。 次に、 この旋削加工されたブランク Bをいわ ゆるズブ焼入によって熱処理して、 例えば HRC60〜63の硬さに熱処理硬化 させる (第 2図(c)参照) 。 その後、 熱処理が完了したブランク 3の端面 1 a、 軌道部 1 c及び内周 1 dを、 研磨加工によって所定精度に仕上げる (第 2図(d) 参照) 。
研磨加工が完了すると、 前記軌道部 1 cの表面にローラバニシング加工を施す (第 2図(e)参照) 。 このローラバニシング加工は、 油圧で保持されたセラミツ クス製の鏡面ボール Cを、 軌道部 1 cに強圧で押し付けて転がり接触させながら、 軌道部 1 cの軸方向断面に沿って移動させるものである。 このローラバニシング 加工は、 軌道部 1 cの硬さが HRC 65以上、 表面の中心線平均粗さ R aが 0. 1 /zni以下、 軌道部 1 cの表面から少なくとも 0. 15 mmの深さの残留圧縮応 力が l O O OMP a以上、 当該表面から少なくとも 0. 2mmの深さの硬さが H RC60以上となるように、 そのバニシング量ゃ加圧力等の加工条件を選択する。 第 3図は前記ローラバニシング加工後における軌道部 1 cの表面からの各深さ における硬さを測定した結果を示すグラフ図である。 比較のためにローラバニシ ング加工を施す前のもの、 及び旋削仕上げされた軌道部にショットビーユングを 施したものの測定結果も同図に併せて記載している。
第 3図より明らかなように、 ローラバニシング加工された軌道部 1 cは、 その 表面付近において Hv 840 (HRC 65. 3) 以上の硬さが確保されている。 また、 当該表面から少なくとも 0. 2mmの深さにおいて、 Hv 700 (HRC 60. 1) 以上の硬さがそれぞれ確保されており、 当該 0. 2mmの深さにおけ る硬さが、 ローラバニシング加工を施す前のもの及びショットビーニングを施し たものよりも大幅に硬くなっている。
第 4図は記ローラバニシング加工後における軌道部 1 cの表面からの各深さに おける残留圧縮応力を測定した結果を示すグラフ図である。 比較のためにローラ バニシング加工を施す前のもの、 及び研磨仕上げされた軌道部にショットピーニ ングを施したものの測定結果も同図に併せて記載している。 第 4図より明らかな ように、 ローラバニシング加工後の軌道部 1 cは、 その表面から 0. lmn!〜 0. 2mmの深さにおいて、 100 OMP a以上の残留圧縮応力が生じており、 しか も、 ショットビーユング品に比べて約 2倍の深さまで加工硬化が生じている。 外輪 2の製造方法についても前記した内輪 1の製造方法と基本的に同じであり、 その軌道部 2 cのローラバニシング加工についても、 ブランク Bを熱処理し、 そ の軌道部 2 cを研磨した後において、 内輪 1の場合と同様にして行う。
以上により得られた内輪 1及び外輪 2は、 軌道部 l c, 2 cのローラバニシン グ加工によって、 軌道部に残留圧縮応力を生じさせることができるとともに、 当 該軌道部 l c, 2 cの表面の硬さを HRC 65以上とし、 その表面の中心線平均 粗さ Raを 0. 1 μπι以下としているので、 当該軌道部 1 c, 2 cの疲労強度を 高めることができる。 特に、 前記実施形態においては、 軌道部 1 c, 2 cの表面 から少なくとも 0. 15 mmの深さの残留圧縮応力が 100 OMP a以上である ので、 当該軌道部 l c, 2 cの疲労強度をさらに効果的に高めることができる。 さらに、 軌道部 1 cの表面から少なくとも 0. 2 mmの深さの硬さが HRC 60 以上であるので、 当該軌道部 l c, 2 cの疲労強度をより一層効果的に高めるこ とができる。 したがって、 前記内輪 1及び外輪 2を組み込んだ玉軸受の寿命を従 来品に比べて大幅に延ばすことができる。 具体的には、 前記内輪 1及ぴ外輪 2を 軸受型番 J I S— 6206に適用し、 清浄油中及び異物油中において下記の条件 でそれぞれ寿命試験を行った結果、 軸受鋼からなる従来品と比べて清浄油中で 3 倍、 異物油中で 2倍の寿命を発揮できることが確認されている。 しかも、 軌道部 1 c , 2 cにローラバニシング加工を施すだけであるので、 そのコスト負担も僅 かで済む。
<寿命試験条件〉 (1)試験機 κ sラジアル寿命試験機
(2)ラジアル荷重 S T O SNZb r g
(3)回転数 1800 r p m
(4)潤滑 タービン油 # 10 油浴
(5)油温 自然昇温 (約 85°C)
(6)試験方法 2セット X 5回 サドンデス試験
なお、 前記実施形態においては、 内輪 1及び外輪 2の素材として軸受鋼を用い ているが、 これに限定されるものではなく、 例えば浸炭鋼等の他の軸受用鋼を用 いて実施してもよい。 また、 前記転がり軸受は、 その使用条件に応じて、 前記内 輪 1及び外輪 2の何れか一方の軌道部のみにローラバニシング加工を施すことも ある。 実施形態 2
第 5図は実施形態 2に係る軸受軌道部材の製造方法を示す工程図である。 この 製造方法は転がり軸受の内輪 1に適用した場合を示しており、 まず、 機械構造用 炭素鋼である J I S— S 55Cからなる環状素材 A (第 5図(a)参照) に旋削加 ェを施して、 端面 1 a、 外周 1 b、 軌道部 1 c及び内周 1 d等を所定形状に加工 する (第 5図(b)参照) 。 次に、 この旋削加工されたブランク Bをいわゆるズブ 焼入によって熱処理して、 HRC 55程度の硬さに熱処理硬化させる (第 5図 (c)参照) 。 その後、 熱処理が完了したブランク Bの端面 1 a、 軌道部 1 c及び 内周 I dを、 研削によって所定精度に仕上げる (第 5図 (d)参照) 。
研削による仕上げ加工が完了すると、 前記軌道部 1 cの表面にローラバニシン グ加工を施す (第 5図(e)参照) 。 このローラバニシング加工は、 油圧で保持さ れたセラミックス製の鏡面ボール Cを、 軌道部 1 cの表面に強圧で押し付けて転 がり接触させながら、 軌道部 1 cの軸方向断面に沿って移動させるものである。 このローラバニシング加ェにおいては、 軌道部 1 cの表面から少なくとも 0. 2 mmの深さの硬さを Hv 800以上に加工硬化させるとともに、 軌道部 1 cの表 面から少なくとも 0. 1 5 mmの深さの残留圧縮応力が 80 OMP a以上、 より 好ましくは、 表面から少なくとも 0. 2 mmの深さにおいても残留圧縮応力が 8 0 OMP a以上となるように、 そのバニシング量ゃ加圧力等の加工条件を選択す る。
第 6図は前記ローラバニシング加工後における軌道部 1 cの表面からの各深さ における硬さを測定した結果を示すグラフ図であり、 第 7図は前記軌道部 1 じの 表面からの各深さにおける残留圧縮応力を測定した結果を示すグラフ図である。 これら各図には、 比較のために軌道部に高周波焼入処理したもの、 及び軌道部に ショットビーユングを施したものの測定結果も併せて記載している。 第 6図より 明らかなように、 ローラバニシング加工後の軌道部 1 cは、 その表面から少なく とも 0. 2mmの深さにおいて、 Hv 800以上の硬さが確保されており、 高周 波焼入品及ぴショットビーニング品よりも大幅に硬くなつている。 また、 第 7図 より明らかなように、 前記軌道部 l cは、 その表面から少なくとも 0. 1 5 mm の深さにおいて、 80 OMP a以上の残留圧縮応力が生じており、 しかも、 ショ ットピーユング品に比べて約 2倍の深さまで加ェ硬化が生じている。
さらに、 前記ローラバニシング加工によって軌道部 1 cの表面粗さを小さくす ることができる。 この表面粗さは本願発明者の試験によれば、 最大高さ粗さ (R max) で加工前の 1Z2以下にできることが確認されている。
前記の製造方法によって得られた内輪 1は、 ローラバニシング加工によって軌 道部 1 cの表面から少なくとも 0. 2 mmの深さの硬さを Hv 800以上に加工 硬化させているので、 軌道部 1 cの表面の粗さが小さくなる点と相まって、 ロー ラバニシング加工を施していない従来品と比べて軌道部 1 cの疲労強度を効果的 に高めることができる。 特に、 前記実施形態においては、 軌道部 1 cの表面から 少なくとも 0. 1 5 mmの深さの残留圧縮応力を 80 OMP a以上としているの で、 軌道部 1 cの疲労強度をより効果的に高めることができる。 したがって、 前 記内輪 1を組み込んだ深溝玉軸受の寿命を従来品に比べて大幅に延ばすことがで きる。 具体的には、 前記内輪 1を軸受型番 J I S— 6206の内輪に適用して、 清浄油中において寿命試験を行った結果、 軸受鋼 (SUJ— 2) からなる同型番 の軸受にほぼ匹敵する寿命を発揮し得ることが確認されている。
この実施形態に用いる軌道部材の素材としては、 種々の機械構造用炭素鋼を用 いることができる力 S、 特に、 J I S規格の S 45C、 S 50C、 S 55 C等、 含 有炭素量が 0 . 4 2重量%以上のものを用いる場合には、 軸受鋼ゃ浸炭鋼等の軸 受用銅からなる転がり軸受にほぼ匹敵する寿命を発揮することができる。 また、 前記ブランク Bの焼入は高周波焼入で行ってもよく、 この場合には、 少なくとも 軌道部 1 cを焼入熱処理硬化させればよい。 実施形態 3
第 8図は、 この発明のさらに他の実施形態に係る軸受軌道部材の製造方法を示 す工程図である。 この製造方法は転動体との最大接触面圧が 3 0 O M P a以上の 条件下で使用される転がり軸受の内輪 1に適用した場合を示しており、 まず、 浸 炭鋼 (S A E 4 3 2 0相当材) からなる環状素材 A (第 8図(a)参照) に旋削加 ェを施して、 端面 1 a、 外周 1 b、 軌道部 1 c及び内周 1 d等を所定形状に加工 する (第 8図(b)参照) 。 次に、 この旋削加工されたブランク Bに浸炭焼入を含 む熱処理を施して、 その表面の硬さが例えば H R C 6 0以上となるように熱処理 硬化させる (第 8図(c)参照) 。 その後、 熱処理が完了したブランク Bの端面 1 a、 軌道部 1 c及び内周 1 dを、 旋削加工によって所定精度に仕上げる (第 8図 (d)参照) 。 この旋削加工は従来と同様にして行うものであり、 したがって、 軌 道部 1 cの表面の中心線平均粗さ R aは 0 . 3 5 μ πι以上である。 なお、 前記ブ ランク Βの端面 1 a及び内周 1 dの仕上げ加工については、 研磨加工で行っても よい。
仕上げ加工が完了すると、 前記軌道部 1 cの表面にローラバニシング加工を施 す (第 8図(e)参照) 。 このローラバニシング加工は、 油圧で保持されたセラミ ックス製の鏡面ボール Cを、 軌道部 1 cに強圧で押し付けて転がり接触させなが ら、 軌道部 1 cの軸方向断面に沿って移動させるものである。 このローラバニシ ング加工においては、 軌道部 1 cの表面の中心線平均粗さ R aが 0 . 2 5 μ m以 下、 軌道部 1 cの表面から少なくとも 0 . 2 mmの深さの残留圧縮応力が 1 0 0 0 MP a以上、 軌道部 1 cの表面から少なくとも 0 . 2 mmの深さの硬さが H v 7 0 0以上になるように、 そのバニシング量ゃ加圧力等の加工条件を選択する。 第 9図は前記ローラバニシング加工後における軌道部 1 cの表面からの各深さ における残留圧縮応力を測定した結果を示すグラフ図である。 比較のためにロー ラバニシング加工を施す前のもの、 及ぴ旋削仕上げされた軌道部にショットビー ニングを施したものの測定結果も同図に併せて記載している。
第 9図より明らかなように、 ローラバニシング加工後の軌道部 1 cは、 その表 面から少なくとも 0 . 2 mmの深さにおいて、 1 0 0 O M P a以上の残留圧縮応 力が生じており、 しかも、 ショッ トピーニング品に比べて約 2倍の深さまで加工 硬化が生じている。
第 1 0図は前記ローラバニシング加工後における軌道部 1 cの表面からの各深 さにおける硬さを測定した結果を示すグラフ図である。 比較のためにローラバニ シング加工を施す前のもの、 及び旋削仕上げされた軌道部にショットビーニング を施したものの測定結果も同図に併せて記載している。
第 1 0図より明らかなように、 ローラバニシング加工された軌道部 1 cは、 そ の表面から少なくとも 0 . 2 mmの深さにおいて、 H V 7 0 0以上の硬さが確保 されており、 ローラバニシング加工を施す前のもの及ぴショットビーユングを施 したものよりも大幅に硬くなつている。 したがって、 軌道部 l cの疲労強度を効 果的に高めることができる。
以上により得られた内輪 1は、 ローラバニシング加工によって軌道部 1 cの表 面の中心線平均粗さ R aを 0 . 2 5 /x m以下にしているので、 当該軌道部 1 cの 表面と転動体としてのボールとの最大接触面圧が 3 0 0 M P a以上の使用条件下 であっても、 两者間の潤滑状態を良好に維持することができる。 また、 軌道部 1 cの表面から少なくとも 0 . 2 mmの深さの残留圧縮応力を 1 0 0 O M P a以上 にしているので、 軌道部 1 cの表面に引張残留応力が生じる危険性を排除するこ とができる。 したがって、 ローラバニシング加工によって軌道部 1 cの硬さが深 部まで硬くなっている点と相まって、 前記内輪 1を組み込んだ玉軸受の寿命を従 来品に比べて大幅に延ばすことができる。 具体的には、 前記内輪 1を軸受型番 J I S - 6 2 0 6の内輪に適用し、 接触面圧 3 5 O M P aにて寿命試験を行った結 果、 従来品と比べて 3 . 5倍の寿命を発揮できることが確認されている。 実施形態 4
前記実施形態 3においては、 熱処理硬化させたブランク Bの軌道面 1 cを、 旋 削加工によつて所定精度に仕上げているが、 この旋削加工に代えて粗研削加工を 施すか或いは旋削条件を緩和することにより、 当該軌道部 1 cの表面の中心線平 均粗さ R aを 0 . 2 μ πι以上としてもよい。 この場合には、 前記軌道面 1 cを仕 上げた後、 その表面に前期と同様なローラバニシング加工して、 軌道部 l cの表 面の中心線平均粗さ R aが 0 . 1 5 111以下、 軌道部 1 cの表面から少なくとも 0 . 2 mmの深さの残留圧縮応力が 1 0 0 O M P a以上、 軌道部 1 cの表面から 少なくとも 0 . 2 mmの深さの硬さが H v 7 0 0以上にする。 この実施形態につ いても、 前記と同様に軸受寿命を向上させ得ることが確認されている。
前記実施形態 3 , 4においては、 軌道部材の素材として浸炭鋼を用いているが、 これに限定されるものではなく、 S U J— 2等の軸受鋼を用いて実施してもよい。 また、 ブランクの焼入は高周波焼入で行ってもよく、 この場合には、 少なくとも 軌道部を焼入熱処理硬化させればよレ、。
また、 前記実施形態 2〜4においては、 接触条件が厳しく短寿命となり易い内 輪のみについてローラバニシングを施した場合について示したが、 何れの実施形 態についても、 転がり軸受の内輪だけでなく外輪の製造方法としても勿論適用し て実施することができる。
さらに、 前記何れの実施形態についても、 例えば鉄鋼機械用のドライブシャフ トに用いられる十字継手の内輪としての十字軸や外輪としてのカップのような、 高圧条件で使用される軌道部を備える種々の軸受軌道部材の製造方法として好適 に用いられる。

Claims

1. 素材を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する 工程と、
前記ブランクの少なくと請も軌道部を熱処理硬化させる工程と、
熱処理硬化させた前記ブランクの軌道部を所定精度に仕上げ加工する工程と、 仕上げ加工した前記軌道部にローラバニシング加工を施して当該軌道部を加
ェ硬化させる工程とを含み、
前記素材として軸受用鋼を用い、
前記ローラバニシング加工によって、 軌道部の囲表面を HRC 65以上の硖さ に加工硬化させるとともに、 その表面の中心線平均粗さ R aを 0. Ι μηι以下 にする軸受軌道部材の製造方法。
2. 前記ローラバニシンダカ卩ェを施した軌道部の表面から少なくとも 0. 1 5m mの深さの残留圧縮応力を 100 OMP a以上にする請求項 1記載の軸受軌道 部材の製造方法。
3. 前記ローラバニシング加工によって、 軌道部の表面から少なくとも 0. 2m mの深さの硬さを HRC 60以上に加工硬化させる請求項 1記載の転がり軸受。
4. 素材を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する 工程と、
前記ブランクの少なくとも軌道部を熱処理硬化させる工程と、
熱処理硬化させた前記ブランクの軌道部を所定精度に仕上げ加工する工程と、 仕上げ加工した前記軌道部にローラバニシング加工を施して当該軌道部を加 ェ硬化させる工程とを含み、
前記素材として機械構造用炭素鋼を用い、
前記ローラバニシング加工によって、 軌道部の表面から少なくとも 0. 2m mの深さの硬さを Hv 800以上に加工硬化させる軸受軌道部材の製造方法。
5. 前記機械構造用炭素鋼として、 含有炭素量が 0. 42重量%以上のものを用 レヽる請求項 4記載の軸受軌道部材の製造方法。
6. 前記ローラバニシング加工によって、 軌道部の表面から少なくとも 0. 1 5 mmの深さの残留圧縮応力を、 80 OMP a以上にする請求項 4記載の軸受軌 道部材の製造方法。
7. 転動体との最大接触面圧が 300 MP a以上の条件下で使用される軸受軌道 部材を製造する方法であって、
素材を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する 工程と、
前記ブランクの少なくとも軌道部を熱処理硬化させる工程と、
熱処理硬化させた前記ブランクの軌道部を所定精度に仕上げ加工する工程と、 仕上げ加工した前記軌道部にローラバニシング加工を施して当該軌道部を加 ェ硬化させる工程とを含み、
前記仕上げ加工は、 前記軌道部の表面の中心線平均粗さ Raが 0. 35 μπι 以上となる旋削加工であり、
前記ローラバニシング加工によって、 軌道部の表面の中心線平均粗さ R aを
0. 25 μηι以下にするとともに、 軌道部の表面から少なくとも 0. 2mmの 深さの残留圧縮応力を 1000 MP a以上にする軸受軌道部材の製造方法。
8. 転動体との最大接触面圧が 300 MP a以上の条件下で使用される軸受軌道 部材を製造する方法であって、
素材を加工して環状の軌道部を有する軸受軌道部材用のブランクを製造する 工程と、
前記ブランクの少なくとも軌道部を熱処理硬化させる工程と、
熱処理硬化させた前記ブランクの軌道部を所定精度に仕上げ加工する工程と、 仕上げ加工した前記軌道部にローラバニシング加工を施して当該軌道部を加 ェ硬化させる工程とを含み、
前記仕上げ加工は、 軌道部の表面の中心線平均粗さ R aが 0. 35 μ m以上 となる旋削加工又は研削加工であり、
前記ローラバニシング加工によって、 軌道部の表面の中心線平均粗さ R aを
0. 15 /zm以下にするとともに、 軌道部の表面から少なくとも 0. 2mmの 深さの残留圧縮応力を 100 OMP a以上にする軸受軌道部材の製造方法。
9. 前記口一ラバニシング加工によって、 軌道部の表面から少なくとも 0. 2m mの深さの硬さを Hv 700以上に加工硬化させる請求項 7又は 8記載の軸受 軌道部材の製造方法。
PCT/JP2003/006032 2002-05-14 2003-05-14 Procede de fabrication de chemin de roulement WO2003095855A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03749996A EP1505306A4 (en) 2002-05-14 2003-05-14 METHOD FOR MANUFACTURING THE RUNWAY
US10/514,115 US7685717B2 (en) 2002-05-14 2003-05-14 Method for manufacturing a bearing raceway member
KR10-2004-7017999A KR20050004843A (ko) 2002-05-14 2003-05-14 베어링 궤도 부재의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002138971A JP2003329048A (ja) 2002-05-14 2002-05-14 軸受軌道部材の製造方法
JP2002/138971 2002-05-14
JP2002/138970 2002-05-14
JP2002138970 2002-05-14
JP2002/277535 2002-09-24
JP2002277535A JP4186568B2 (ja) 2002-09-24 2002-09-24 転がり軸受及び転がり軸受の内輪の製造方法

Publications (1)

Publication Number Publication Date
WO2003095855A1 true WO2003095855A1 (fr) 2003-11-20

Family

ID=29424254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006032 WO2003095855A1 (fr) 2002-05-14 2003-05-14 Procede de fabrication de chemin de roulement

Country Status (5)

Country Link
US (1) US7685717B2 (ja)
EP (1) EP1505306A4 (ja)
KR (1) KR20050004843A (ja)
CN (1) CN100339606C (ja)
WO (1) WO2003095855A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099451A2 (en) * 2003-05-05 2004-11-18 Ab Skf Method for treating the surface of a machine element
CN103934640A (zh) * 2014-04-25 2014-07-23 江西新裕隆汽车零部件有限公司 一种轮毂轴承加工工艺
US20140341492A1 (en) * 2013-05-17 2014-11-20 Jtekt Corporation Ball bearing
CN109505871A (zh) * 2018-12-12 2019-03-22 无锡鹰贝精密轴承有限公司 轴承座护圈
CN114571185A (zh) * 2021-10-20 2022-06-03 重庆江增船舶重工有限公司 一种分体式轴承座的加工及检测方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138165A (ja) * 2002-10-18 2004-05-13 Nissan Motor Co Ltd トラクションドライブ用ディスク及びその製造方法
JP2004293632A (ja) * 2003-03-26 2004-10-21 Ntn Corp 転がり軸受
DE112004001673T5 (de) * 2003-09-11 2006-07-06 Ntn Corp. Spindelmutter und Verfahren zur Herstellung derselben
US20060067824A1 (en) * 2004-09-30 2006-03-30 O'hara Stephen J Turbocharger with titanium component
JP4453624B2 (ja) * 2005-07-21 2010-04-21 株式会社ジェイテクト カムフォロア
DE102007055575B4 (de) * 2007-11-20 2016-06-09 Ab Skf Laufbahnelement einer Wälzlagerung
CN100504093C (zh) * 2008-04-05 2009-06-24 余姚市曙光不锈钢轴承有限公司 镜面不锈钢轴承的加工工艺
KR100894499B1 (ko) * 2008-05-14 2009-04-22 (주)디자인메카 초음파 나노 개질기를 이용한 베어링 가공장치 및 가공방법
US9261189B2 (en) * 2009-01-29 2016-02-16 Borgwarner Inc. Gear shift interlock
EP2427666B1 (de) * 2009-05-06 2017-07-12 Aktiebolaget SKF Grosswälzlager
DE102010009391A1 (de) * 2010-02-26 2011-09-01 Schaeffler Technologies Gmbh & Co. Kg Wälzlageranordnung und Planetengetriebe mit der Wälzlageranordnung
JP5697901B2 (ja) * 2010-06-09 2015-04-08 Ntn株式会社 転がり軸受軌道輪用リング部材および転がり軸受
US8973271B2 (en) 2011-07-08 2015-03-10 Schatz Bearing Corporation Method for manufacturing an integral duplex bearing
CN102284708B (zh) * 2011-08-22 2013-02-06 浙江凯泰轮毂有限公司 汽车轮毂轴承单元以车代磨工艺
DE102011082329A1 (de) * 2011-09-08 2013-03-14 Schaeffler Technologies AG & Co. KG Lagerring für ein Lenkungslager und Lenkungslager mit wenigstens einem Lagerring
DE102011085205B4 (de) * 2011-10-26 2016-09-22 Aktiebolaget Skf Verfahren zum Herstellen eines Laufbahnelements einer Lageranordnung und Laufbahnelement
CN102409151B (zh) * 2011-11-29 2013-12-18 中国重汽集团济南动力有限公司 汽车驱动桥内齿圈热处理工艺
EP2628808A1 (en) * 2012-02-15 2013-08-21 Longevity Engineering SA Localized hardening of metallic surfaces
EP2828540A1 (de) * 2012-03-20 2015-01-28 Aktiebolaget SKF (publ) Verfahren zur herstellung eines wälzlagers und wälzlager
DE102012223475A1 (de) * 2012-12-17 2014-06-18 Aktiebolaget Skf Verfahren zum Bearbeiten eines Oberflächenbereichs eines Wälzlagerrings und Wälzlagerring sowie Wälzlager
DE102013201321A1 (de) * 2013-01-28 2014-07-31 Aktiebolaget Skf Verfahren zur Herstellung eines Wälzlagers und Wälzlager
GB2521220A (en) * 2013-12-16 2015-06-17 Skf Ab Process for treating steel components
WO2016172032A1 (en) 2015-04-23 2016-10-27 The Timken Company Method of forming a bearing component
DE102015207779A1 (de) * 2015-04-28 2016-11-03 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung von Wälzlagerringen und Wälzlager
CN106090024B (zh) * 2016-06-14 2019-01-11 宁波美亚特精密传动部件有限公司 直线轴承外圈加工方法
CZ308546B6 (cs) * 2016-07-07 2020-11-18 Bonatrans Group A.S. Náprava pro kolejová vozidla
JP2018194039A (ja) * 2017-05-12 2018-12-06 株式会社ジェイテクト スラストころ軸受
JP7073193B2 (ja) * 2017-11-24 2022-05-23 Ntn株式会社 転動部品、軸受およびそれらの製造方法
JP7240815B2 (ja) * 2018-03-22 2023-03-16 Ntn株式会社 転動部品の製造方法および軸受の製造方法
DE102018114689A1 (de) * 2018-06-19 2019-12-19 Schaeffler Technologies AG & Co. KG Walzkörper für ein hydrostatisches Walzwerkzeug und hydrostatisches Walzwerkzeug mit dem Walzkörper
CN108838623A (zh) * 2018-06-28 2018-11-20 安庆银亿轴承有限公司 一种轴承套圈的加工方法
DE102018132771A1 (de) 2018-12-19 2020-06-25 Schaeffler Technologies AG & Co. KG Verfahren zur Oberflächenbehandlung, Wälzlagerbauteil und Vorrichtung
CN111421300A (zh) * 2019-11-07 2020-07-17 襄阳汽车轴承股份有限公司 一种窄系列薄壁圆锥轴承内圈或外圈毛坯成型及车加工工艺
CN110814656A (zh) * 2019-11-15 2020-02-21 汇思德自动化科技(惠州)有限公司 一种输送轨道制备方法
DE102019218794A1 (de) * 2019-12-03 2021-06-10 Thyssenkrupp Ag Verfahren zur Erhöhung der Tragfähigkeit und Walzvorrichtung zum Hartwalzen einer randschichtgehärteten Wälzlagerlaufbahn
WO2021166577A1 (ja) * 2020-02-17 2021-08-26 日本精工株式会社 転がり軸受及びその製造方法
CN113458197A (zh) * 2021-05-13 2021-10-01 汪新纪 一种柔性滚弯数控卷板机
CN115415757A (zh) * 2022-09-29 2022-12-02 瓦房店轴承集团国家轴承工程技术研究中心有限公司 盾构机主轴承加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219121A (ja) * 1983-05-30 1984-12-10 Mitsubishi Motors Corp 焼入鋼の表面仕上げ方法
JPH0311557U (ja) * 1989-06-14 1991-02-05
JPH04308038A (ja) * 1991-04-04 1992-10-30 Nippon Seiko Kk 転がり又は滑りを伴う部品
JPH09137854A (ja) * 1995-11-15 1997-05-27 Nissan Motor Co Ltd トラクションドライブ転動体表面の仕上加工方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8500282D0 (en) * 1985-01-05 1985-02-13 Ae Plc Bearings
JPS61235509A (ja) 1985-09-07 1986-10-20 Daibea Kk 鋼製環状部品の部分焼入れ装置
JPS62132031A (ja) * 1985-12-03 1987-06-15 Ntn Toyo Bearing Co Ltd 転がり軸受
JPH0311557A (ja) 1989-06-09 1991-01-18 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池
JPH03199716A (ja) 1989-12-27 1991-08-30 Toyota Motor Corp 軸受部品
US5336338A (en) * 1991-12-03 1994-08-09 Koyo Seiko Co., Ltd. Bearing components and process for producing same
JP3486753B2 (ja) 1992-01-24 2004-01-13 光洋精工株式会社 軸受部品の製造方法
JP3665876B2 (ja) * 1992-01-24 2005-06-29 光洋精工株式会社 軸受部品の製造方法
JP3047088B2 (ja) 1992-02-28 2000-05-29 エヌティエヌ株式会社 転動体を有する機械部品
JP3011557B2 (ja) * 1992-11-26 2000-02-21 三洋電機株式会社 無線通信装置
JPH0819961A (ja) 1993-11-02 1996-01-23 Matsumoto Kokan Kk バニシング方法
US5664991A (en) * 1996-01-11 1997-09-09 Barton, Ii; Kenneth A. Microfinishing and roller burnishing machine
JPH10138128A (ja) 1996-11-06 1998-05-26 Nissan Motor Co Ltd バニシング装置およびバニシング方法
JP3932630B2 (ja) 1997-09-16 2007-06-20 日本精工株式会社 車輪用転がり軸受ユニット
US6620262B1 (en) * 1997-12-26 2003-09-16 Nsk Ltd. Method of manufacturing inner and outer races of deep groove ball bearing in continuous annealing furnace
JP2000190216A (ja) 1998-12-25 2000-07-11 Ryoei Engineering Kk ダイカスト製品の合わせ面加工方法およびその装置
JP2001012475A (ja) 1999-04-28 2001-01-16 Nsk Ltd 転がり軸受
JP3634693B2 (ja) 1999-10-12 2005-03-30 株式会社スギノマシン ローラバニシング装置
JP2002168256A (ja) 2000-11-28 2002-06-14 Nsk Ltd 転がり軸受とその製造方法
JP3889931B2 (ja) 2001-01-26 2007-03-07 Jfeスチール株式会社 軸受材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219121A (ja) * 1983-05-30 1984-12-10 Mitsubishi Motors Corp 焼入鋼の表面仕上げ方法
JPH0311557U (ja) * 1989-06-14 1991-02-05
JPH04308038A (ja) * 1991-04-04 1992-10-30 Nippon Seiko Kk 転がり又は滑りを伴う部品
JPH09137854A (ja) * 1995-11-15 1997-05-27 Nissan Motor Co Ltd トラクションドライブ転動体表面の仕上加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1505306A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099451A2 (en) * 2003-05-05 2004-11-18 Ab Skf Method for treating the surface of a machine element
WO2004099451A3 (en) * 2003-05-05 2005-04-07 Skf Ab Method for treating the surface of a machine element
US7389666B2 (en) 2003-05-05 2008-06-24 Ab Skf Method for treating the surface of a machine element
US20140341492A1 (en) * 2013-05-17 2014-11-20 Jtekt Corporation Ball bearing
US9127716B2 (en) * 2013-05-17 2015-09-08 Jtekt Corporation Ball bearing
CN103934640A (zh) * 2014-04-25 2014-07-23 江西新裕隆汽车零部件有限公司 一种轮毂轴承加工工艺
CN109505871A (zh) * 2018-12-12 2019-03-22 无锡鹰贝精密轴承有限公司 轴承座护圈
CN109505871B (zh) * 2018-12-12 2023-10-31 无锡鹰贝精密液压有限公司 轴承座护圈
CN114571185A (zh) * 2021-10-20 2022-06-03 重庆江增船舶重工有限公司 一种分体式轴承座的加工及检测方法

Also Published As

Publication number Publication date
US7685717B2 (en) 2010-03-30
CN100339606C (zh) 2007-09-26
US20050160602A1 (en) 2005-07-28
EP1505306A4 (en) 2007-01-17
CN1653279A (zh) 2005-08-10
KR20050004843A (ko) 2005-01-12
EP1505306A1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
WO2003095855A1 (fr) Procede de fabrication de chemin de roulement
JP2004339575A (ja) 転動装置部品の製造方法
JPH05157146A (ja) 車両用ベルト式無段変速機
KR102659074B1 (ko) 베어링 부품 및 베어링 부품을 제조하는 방법
JP4186568B2 (ja) 転がり軸受及び転がり軸受の内輪の製造方法
US20180156275A1 (en) Method for producing rolling bearing rings and rolling bearing
JP3665876B2 (ja) 軸受部品の製造方法
JP2005504879A (ja) 窒化鋼円筒ころ部品を用いた転がり軸受
JP2011208751A (ja) ころ軸受、ころの製造方法およびころの加工装置
JP2001065576A (ja) 軸受部品素材
JP2007182926A (ja) 針状ころ軸受用軌道部材の製造方法、針状ころ軸受用軌道部材および針状ころ軸受
JP3321862B2 (ja) 等速ジョイント用アウターレース
JP3752577B2 (ja) 機械部品の製造方法
JP2007239837A (ja) トリポード型等速自在継手及びその製造方法
JP2003329048A (ja) 軸受軌道部材の製造方法
JP2007182607A (ja) 等速ジョイント用転動部材の製造方法、等速ジョイント用転動部材および等速ジョイント
EP1398111A1 (en) Universal cross joint
JPH04333521A (ja) 転がり軸受軌道輪の製造方法
JP2011038600A (ja) 自在継手部品の製造方法
JP4026514B2 (ja) 転がり軸受部材及び転がり軸受部材の製造方法
JPH02168022A (ja) 軸受部品
JP2007182603A (ja) 転動部材の製造方法、転動部材および転がり軸受
JP4284951B2 (ja) 玉軸受用軌道輪の製造方法
JP2004011737A (ja) 自動調心ころ軸受
JP4284956B2 (ja) 転がり摺動部材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047017999

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038107457

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003749996

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047017999

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003749996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10514115

Country of ref document: US