WO2003095693A1 - Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production - Google Patents

Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production Download PDF

Info

Publication number
WO2003095693A1
WO2003095693A1 PCT/JP2002/004493 JP0204493W WO03095693A1 WO 2003095693 A1 WO2003095693 A1 WO 2003095693A1 JP 0204493 W JP0204493 W JP 0204493W WO 03095693 A1 WO03095693 A1 WO 03095693A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
wire
cold drawing
rod
stainless steel
Prior art date
Application number
PCT/JP2002/004493
Other languages
English (en)
Japanese (ja)
Inventor
Koji Takano
Kazuhisa Takeuchi
Yoshinori Tada
Yoshinori Tanimoto
Takayuki Akizuki
Original Assignee
Nippon Steel Corporation
Nippon Seisen Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Nippon Seisen Co., Ltd. filed Critical Nippon Steel Corporation
Priority to PCT/JP2002/004493 priority Critical patent/WO2003095693A1/fr
Priority to CNB02813737XA priority patent/CN1263880C/zh
Priority to JP2004503681A priority patent/JP4212553B2/ja
Priority to KR1020047000223A priority patent/KR100566142B1/ko
Publication of WO2003095693A1 publication Critical patent/WO2003095693A1/fr
Priority to HK05101661A priority patent/HK1069190A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Definitions

  • the present invention relates to a high-strength stainless steel wire, and more particularly to a technique for improving ductility (ductility, toughness) and rigidity of a high-strength austenitic stainless steel wire by cold drawing.
  • the ausforming method of cooling austenite structure after hot or warm working and then transforming it into martensite has long been studied for carbon steel.
  • this method is hardly restricted because it must be quenched immediately after processing the austenitic structure in a hot or warm region, and is hardly used industrially.
  • the prior art does not discuss measures to improve the ductility (ductility and toughness) and rigidity of stainless steel wires used for springs.
  • the torsion value is important as an indicator of the toughness of the high-strength steel wire.Prevention of breakage during use of high-strength stainless steel springs, and stable and lightweight by increasing the spring constant Of high-strength stainless steel wire from the viewpoint of Improvement of toughness (torsion value) and rigidity is the most important issue.
  • an object of the present invention is to control ductility and toughness by using the toughening effect of ausform by grain refinement and cold drawing in addition to regulation of basic components and cleanliness (oxygen and sulfur).
  • An object of the present invention is to provide a high-strength stainless steel wire having a significantly improved rigidity, and a method for manufacturing the same. Disclosure of the invention
  • the present inventors have conducted various studies to solve the above-mentioned problems.
  • the structure, strength and cooling of o-senitic stainless steel have been investigated.
  • the present invention has been made based on this finding.
  • the gist of the present invention is as follows.
  • the present invention has a mass of 0 /. And C: 0.03-0.14%, Si: 0 ⁇ ! ⁇ 4.0%, Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 0.01%, S: 0.0001 ⁇ 0.012%,
  • the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, the Ni equivalent (%) in the following formula (1) is 20 to 24, and the ductility and elasticity are H ⁇ 4 ppm. High strength stainless steel wire with excellent efficiency.
  • Ni equivalent (mass 0 / o) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • steel wire of the present invention may further contain one or more of the following A, B and C in mass%.
  • the steel wire of the present invention preferably has a GI (%) value of the following formula (2) of 30 or less.
  • GI (%) 16C - ( - 2 Mn + 9 Ni- 3 Cr + 8 Mo + 15N (2) Further, the present invention is a mass 0/0, C: 0.03 ⁇ 0.14% , Si: 0.:! ⁇ 4.0% , Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 0.01%, S: 0.0001 ⁇ 0.012% And the balance consists of Fe and unavoidable impurities, and 2C + N is 0.17 to 0.32%, and the Ni equivalent (%) value of the following formula (1) is 20 to 24.
  • Ni equivalent (%) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • a Q is the cross-sectional area of rod or rough wire before cold drawing.
  • the present invention has a mass of 0 /. So, C: 0.03-0.14%, Si: 0.:! ⁇ 4.0%, Mn: 0.1 ⁇ 5.0%, Ni: 5.0 ⁇ 9.0%, Cr: 14.0 ⁇ 19.0%, N: 0.005 ⁇ 0.20%, O: 0.001 ⁇ 01-01%, S: 0.0001 ⁇ 0.012% , And 2C + N is 0.17 to 0.32%, Ni equivalent of formula (1) (%) Is from 20 to 24, and the balance is made of steel consisting of Fe and unavoidable impurities, hot-rolled to form a rod and solution-treated, or this rod is subjected to solution treatment and cooling at least once.
  • Ni equivalent Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N) (1)
  • a Q is the cross-sectional area of rod or rough wire before cold drawing.
  • the steel, rod, or coarse wire may further have a mass 0 /. And may contain one or more selected from the group consisting of A, B, and C below.
  • A Any one or more of Al, Nb, Ti, Zr, Ta, and W: 0.01 to 30%
  • the austenite average crystal grain size before cold drawing of the rod or the rough wire is 30 ⁇ or less.
  • C is added with N in an amount of 0.03% or more in order to obtain high strength after cold drawing.
  • the upper limit was set to 0.14%.
  • Mn is added in an amount of 0.1% or more for deoxidation and for adjusting the Ni equivalent. However, if the content exceeds 5.0%, the rigidity decreases, so the upper limit was set to 5.0%.
  • Ni is added in an amount of 5.0% or more to ensure ductility and adjust the Ni equivalent. However, if the content exceeds 9.0%, the rigidity decreases, so the upper limit was made 9.0 °.
  • N is added together with C in an amount of 0.055% or more to obtain high strength after cold drawing.
  • the upper limit was 0.20%.
  • O is regulated to 0.01% or less to secure the torsion value.
  • the content is 0.001% or less, the cost becomes industrially high and the cost performance deteriorates. Therefore, the lower limit is made 0.001%.
  • S is limited to 0.012% or less to secure the torsion value. However, if the content is less than 0.0001%, the cost is industrially high, and the cost performance is high. The lower limit is set to 0.0001% because the performance is worse.
  • Hydrogen in steel should be less than 4 ppm to ensure ductility. In particular, it is desirable to keep it below 1.5 ppm.
  • Al, Nb, Ti, Zr, Ta, and W form fine carbonitrides, stabilize the austenite crystal grains after solution treatment of steel wire, and improve the ductility. If necessary, add one or two or more of each in an amount of 0.01% or more. However, even if added in an amount of 0.30% or more, the effect saturates, and not only is it not economical, but also lowers the ductility, so the upper limit is set to 0.3%.
  • A1 and Nb are effective because they improve hot workability and contribute to high strength due to the precipitation strengthening effect.
  • V like Al, Nb, Ti, Zr, Ta and W, forms fine carbonitrides and stably refines austenite crystal grains after solution treatment of copper wire to improve ductility. Add 0.1% or more as necessary to improve the performance. However, even if 0.5% or more is added, the effect is saturated and, conversely, the ductility is reduced, so the upper limit is set to 0.5%.
  • Mo is effective for corrosion resistance, so if necessary, add 0.2% or more. However, even if added over 3.0%, the effect saturates and conversely, the elastic modulus decreases, so the upper limit is set to 3.0%. In particular, it is preferably set to 2.0% or less.
  • Cu is desirably reduced to 0.8% or less as necessary in order to suppress work hardening of the austenitic structure and reduce the strength of the steel wire after cold drawing.
  • P is an element that lowers the toughness, it is desirable to reduce P to 0.02% or less as necessary.
  • the strength of the steel wire after cold drawing and the amount of work-induced martensite will be described. If the tensile strength of the steel wire after cold drawing is less than 1700 NZmm 2 , the effect of the present invention will not be remarkably exhibited since the ductility is basically high. On the other hand, when the tensile strength of the steel wire after cold drawing becomes a high-strength material of 1700 N / mm 2 or more, the ductility decreases, and the effects of the present invention such as grain refinement and ausformation are reduced. Becomes clear. Therefore, it is desirable to limit the tensile strength of the steel wire after cold drawing to 1700 N / mm 2 or more. In particular, it is preferable to set it to 1900 N / mm 2 or more, but it is better to keep the upper limit to 2800 N / mm 2 .
  • the amount of work induced martensite is 20% or more.
  • the amount of work-induced martensite after cold drawing exceeds 80%, the amount of ausformed tough martensite itself decreases and the ductility decreases. Therefore, it is desirable to set the upper limit to 80%.
  • the amount of work-induced martensite in the steel wire after cold drawing is preferable to set to 40% to 70%.
  • the amount of the work-induced martensite (volume 0 /.) Can be measured, for example, from the saturation magnetic flux density using a DC magnetization characteristic measuring device or the like. Further, when measuring with a simple ferrite meter or the like, correction is required depending on the wire diameter.
  • 2 C + N (%) was obtained as a result of investigating the effect of C and N on the tensile strength of steel wire after cold drawing.
  • Steel after cold drawing In order to secure a tensile strength of the wire of 1700 N / mm 2 or more, 2 C + N is made 0.17 (%) or more. However, if it exceeds 0.32 (%), the toughness decreases, so the upper limit was set to 0.32 (%).
  • the content be 0.20 (%) or more and 0.30 (%) or less.
  • the Ni equivalent in equation (1) was obtained as a result of investigating the effect of each element on the ductility of the steel wire after cold drawing, and has an effect on the ductility. It shows the elements and the degree of influence.
  • Ni equivalent (%) Ni + 0.65Cr + 0.98Mo + 1.06Mn + 0.35Si + 12.6 (C + N)... (1)
  • the Ni equivalent value exceeds 24 (%), the amount of induced martensite in the steel wire after cold drawing is reduced, the strength is reduced, and the effect of the present invention is diminished. And on the other hand, if the Ni equivalent value is less than 20 (%), the ausformed martensite itself of the steel wire after cold drawing is reduced and the ductility is reduced, so the lower limit is set to 20 (%). did . In particular, in order to maximize the toughness of the ausform by ordinary cold drawing, the Ni equivalent is preferably 21 (%) to 23 (%).
  • GI (%) in equation (2) is obtained as a result of investigating the effect of each element on the stiffness after cold drawing. And the degree of influence.
  • GI (%) 16C + 2Mn + 9Ni-3Cr + 8Mo + 15N (2) If necessary, set the value of GI to 30 (%) or less. If the value of GI exceeds 30 (%), the rigidity after cold drawing decreases, so it is desirable to set the upper limit to 30 (%). In particular, it is preferable to be 25% or less.
  • the steel wire of the present invention is manufactured by one of the following steps (1) and (2).
  • the steel adjusted to the required composition is hot-rolled into a stainless steel rod, which is subjected to solution treatment (including continuous processing after rolling), and then (1) the steel is finished by cold drawing. (2) If the difference between the final steel wire diameter and the stainless rod diameter is large, cold-draw the solution-treated stainless rod one or more times. Processing and annealing (solution treatment) are repeated to form a rough wire (strand), and this rough wire is subjected to strand annealing (solution treatment), followed by finish cold drawing to form a steel wire. (Final product).
  • the solution treatment (including the strand annealing) may be performed in an atmosphere containing hydrogen gas or in an atmosphere not containing hydrogen gas. In the present invention, as described later, At least the final solution treatment is performed in an atmosphere that does not contain hydrogen gas, and finish cold drawing under specific conditions.
  • the solution treatment refers to bringing a carbide into a solid solution state.
  • dehydrogenation is performed in an atmosphere containing no hydrogen, and the finish cold drawing is performed under specific conditions.
  • Equation (3) shows the amount of rod or rough wire that has been cold-drawn after solution treatment
  • equation (4) shows the range.
  • a 0 Cross section of rod or rough wire before cold drawing
  • the ductility indicates the dependence of the hydrogen content of the steel wire as described above. If solution treatment is performed in a reducing gas atmosphere containing hydrogen gas, the steel will contain more than 4 ppm of hydrogen due to the absorption of hydrogen, and the ductility will deteriorate. For this reason, at least the last solution treatment in the above-mentioned process is performed in an atmosphere such as Ar gas, nitrogen gas, or air that does not contain hydrogen gas, and the hydrogen content in steel is set to 4 ppm or less. In particular, an atmosphere such as an Ar gas is preferable because surface oxidation is prevented.
  • one of the steps in the series of steps described above is, for example, cold drawing to roughen rods before and after solution treatment.
  • Dehydrogenation treatment is performed before and after solution treatment for processing, or before and after solution treatment for finish cold drawing. That is, when the dehydrogenation treatment is performed in an atmosphere containing no hydrogen gas at 200 to 600 ° C., the ductility is improved. At this time, the effect is not clear below 200 ° C, and when it exceeds 600 ° C, the oxide scale becomes thick and the manufacturability deteriorates. Therefore, it is desirable to carry out the dehydrogenation treatment in an atmosphere of 200 to 600 ° C., preferably 200 to 400 ° C., such as an Ar gas, a nitrogen gas, or the atmosphere that does not contain hydrogen gas.
  • the conditions for solution treatment of rods or rough wires before cold drawing are, for example, from a temperature range of 950 ° C to 1150 ° C with a cooling rate of 5 ° C Adjust the average grain size of the austenite structure to 30 ⁇ m or less by quenching to below C.
  • the present invention includes a Riwake, cold wire drawing after as the target characteristics of the steel wire, the tensile strength is 1700 NZ mm 2 or more, twisting value is an important factor for extending the toughness of spring steel wire
  • the stiffness modulus an important factor in the elastic modulus of the spring steel wire, was 63 GPa or more.
  • An important factor of the elastic modulus is the Young's modulus, but in the present invention, the rigidity is defined as a representative value.
  • the test material of the example was melted in a normal stainless steel wire manufacturing process, rod-rolled hot to ⁇ 5.5 mm, and finished rolling at 1000 ° C.
  • the obtained rod was subjected to a heat treatment (solution treatment) at about 1050 ° C. for 5 min, followed by water cooling. After that, a part was subjected to dehydrogenation treatment and intermediate cold drawing was performed to obtain a rough wire. After that, the rough wire was subjected to a solution treatment at 1050 ° C in an Ar gas atmosphere in a strand furnace, and then cold-drawn for finishing to obtain a steel wire.
  • the average crystal grain size of the austenite of the rough wire before the finish cold drawing (after solution treatment), the hydrogen content of the steel wire after the finish cold drawing, the amount of work-induced martensite, and the tensile strength The strength, twist value, and rigidity were investigated.
  • the average grain size of coarse-wire austenite before cold drawing is determined by performing cross-section electrolysis in a 10% nitric acid solution on the cross-section of the coarse wire, and then calculating the cross-sectional area of each crystal by image analysis. The average diameter of 10 points of the converted diameter (d) obtained by converting this area is shown. The amount of hydrogen was measured by taking out a sample from the steel wire after cold drawing, and using the inert gas fusion-thermal conduction method.
  • the amount of work-induced martensite of steel wire after cold drawing is the
  • the saturation magnetization was measured using a BH tracer.
  • the tensile strength of the copper wire after cold drawing was measured by a tensile test of JIS Z2241.
  • the torsion value of the steel wire after cold drawing was evaluated by conducting a torsion test and evaluating the number of twists until breaking.
  • the rigidity of the copper wire after cold drawing was measured by the torsion pendulum method.
  • the sample material was subjected to hot rod rolling and solution treatment, and then the intermediate rod was subjected to intermediate cold drawing to ⁇ 3.4 mm to form a coarse wire.
  • the steel wire was subjected to solution treatment in an atmosphere, and then cold-drawn to a finish of 1.6 mm.
  • Table 1 shows the basic components of the examples and the characteristics of the steel wires.
  • Inventive Examples No. 1 to No. 19 and Comparative Examples No. 20 to No. 32 are the components of the matrix that affect the properties of the steel wire; C, Si, Mn, P, S, Ni, Cr , Mo, Cu, O, and N were investigated.
  • the present invention is the tensile strength of all the steel wire 1700 NZ mm 2 or more, twisting value more than 10 times, modulus of not less than 63GPa, twisting value high strength, and excellent modulus of elasticity Was.
  • the twist value was improved by decreasing P.
  • Comparative Example No. 22 since the N content was high and material defects such as blow holes occurred, the torsion value was inferior. In Comparative Example No. 23, the Si content was high and the torsion value was inferior.
  • the effects of the grain refinement and the addition of the grain refinement element of the present invention will be described.
  • the rod after hot rod rolling and solution treatment was subjected to intermediate cold drawing to ⁇ 3.4 mm to form a coarse wire, followed by Ar Solution treatment was performed in an atmosphere. Then, the rough wire was subjected to cold drawing to finish to 1.6 mm in diameter to obtain a steel wire.
  • Table 2 shows the basic components of the examples and the characteristics of the steel wires.
  • Inventive Examples No. 33 to No. 44 and Comparative Examples No. 45 and No. 46 investigated the effects of grain refinement and the addition of a grain refinement element on the twist value of a steel wire. .
  • Example Nos. 34 to 44 of the present invention Al, Nb, Ti, Zr, Ta, W, and V were added to refine the crystal grains, so that the average crystal grain size became about 10 ⁇ m.
  • the torsion value was clearly further improved as compared with Inventive Example No. 33.
  • the effect of high torsion value on grain refinement is clear.
  • examples in Table 2 ⁇ ⁇ 34 to 44 all Ni equivalents are 21.7 to 22.1%
  • No.3 tensile strength is 2000NZmm 2 or more, 11, 12, 18 twisting value (their respective 13 times, 13 times, 11 times, 13 times) by comparing the
  • No.3 tensile strength is 2000NZmm 2 or more, 11, 12, 18 twisting value (their respective 13 times, 13 times, 11 times, 13 times) by comparing the
  • the effect of the addition of the grain refining element is clear.
  • Table 3 shows the manufacturing conditions and characteristics of the examples.
  • steel type A in Table 1 was hot-rolled and solution-treated, and then a part of the rod was dehydrogenated under the conditions shown in Table 3. Then, intermediate cold drawing to ⁇ 3.4 mm is performed to form a rough wire, and then strand annealing (solution treatment) is performed under the conditions of each atmospheric gas in Table 3, and thereafter, the rough wire is formed.
  • the wire was cold-drawn to a diameter of 1.6 mm to form a steel wire.
  • Examples Nos. 47 to 55 of the present invention and Comparative Examples Nos. 56 and 57 investigated the effects of grain refinement and the addition of grain refinement elements on the twist value of steel wire. .
  • the torsion value was high because the amount of hydrogen was low.
  • the twist value was further improved. The effect of increasing the torsion value by reducing hydrogen is clear.
  • Comparative Examples No. 56 and No. 57 were annealed in an atmosphere containing hydrogen gas.
  • the torsion value was inferior due to the high amount of hydrogen in the material.
  • Table 4 shows the cold drawing conditions and characteristics of the examples.
  • steel type AH in Table 2 and steel type I and steel type L in Table 1 were hot-rolled and solution-treated, and then this rod was subjected to intermediate cold elongation to 3.4 mm in diameter.
  • the wire was subjected to wire working to obtain a rough wire, followed by strand annealing (solution treatment) in an Ar atmosphere gas, and then the finished wire was subjected to cold drawing in the amount of cold drawing shown in Table 4
  • the steel wire was formed by hot drawing.
  • Table 4 also shows the range of the optimum cold drawing amount calculated from Eqs. (3) and (4).
  • Invention Examples No. 58 to No. 66 and Comparative Examples No. 67 to No. 72 were obtained by investigating the effects of the amount of cold drawing on the tensile strength, torsion value, and rigidity of the steel wire. is there.
  • Comparative Examples No. 67, No. 69 and No. 71 since the amount of cold drawing was low, the tensile strength was low and the effect of the high torsion value of the present invention was not clear. The amount of work-induced martensite was low and the rigidity was poor. Comparative Examples No. 68, No. 70 and No. 72 were inferior in torsion value because the cold drawing amount was too high and the amount of work-induced martensite was large.
  • the high-strength stainless copper wire having excellent toughness and rigidity of the present invention in addition to the regulation of the basic components and the cleanliness (oxygen and sulfur) of the base material of the austenitic stainless steel wire,
  • the structure, strength and drawing conditions and using the effects of grain refinement and ausform toughening it is possible to stabilize a high-strength stainless steel wire with significantly improved ductility and rigidity. Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne un fil d'acier inoxydable très solide, aux bonnes qualités de ténacité à la ductilité et module de rigidité présentant une composition massique suivante: C = 0,03 à 0,14 %, Si = 0,1 à 4,0 %, Mn = 0,1 à 5,0 %, Ni = 5,0 à 9,0 %, Cr = 14,0 à 19,0 %, N = 0,005 à 0,20 %, O = 0,001 à 0,01 %, S = 0,0001 à 0,012 %, le complément à 100% étant constitué du Fe et des impuretés résiduelles. Toutefois, on doit avoir une valeur de (2C + N) = 0,17 à 0,32 %, et dans la formule suivante (1) une valeur équivalente de Ni (en %) telle que Ni + 0,65Cr + 0,98Mo + 1,06Mn + + 0,35Si + 12,6(C + N) (1) donne de 20 à 24, avec H = 4 ppm. Pour produire ce fil d'acier inoxydable très solide, on agit sur les quantités des composants de base, de l'oxygène, de l'hydrogène et du soufre comme mentionné précédemment, sur la formation des grains fins des cristaux, et l'effet améliorant la résistance de l'écrouissage de l'austénite avant trempe par tréfilage à froid.
PCT/JP2002/004493 2002-05-08 2002-05-08 Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production WO2003095693A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2002/004493 WO2003095693A1 (fr) 2002-05-08 2002-05-08 Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production
CNB02813737XA CN1263880C (zh) 2002-05-08 2002-05-08 扭转次数·刚性模量优良的高强度不锈钢钢丝及其制造方法
JP2004503681A JP4212553B2 (ja) 2002-05-08 2002-05-08 捻回値・剛性率に優れる高強度ステンレス鋼線およびその製造方法
KR1020047000223A KR100566142B1 (ko) 2002-05-08 2002-05-08 염회치·강성율이 우수한 고강도 스테인레스 강선 및 그 제조 방법
HK05101661A HK1069190A1 (en) 2002-05-08 2005-02-28 High strength stainless steel wire excellent in frequency of torque and modulus of rigidity and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/004493 WO2003095693A1 (fr) 2002-05-08 2002-05-08 Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production

Publications (1)

Publication Number Publication Date
WO2003095693A1 true WO2003095693A1 (fr) 2003-11-20

Family

ID=29416517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004493 WO2003095693A1 (fr) 2002-05-08 2002-05-08 Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production

Country Status (5)

Country Link
JP (1) JP4212553B2 (fr)
KR (1) KR100566142B1 (fr)
CN (1) CN1263880C (fr)
HK (1) HK1069190A1 (fr)
WO (1) WO2003095693A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016665A (ja) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp 耐食性,冷間加工性および靱性に優れる磁性を有する安価ステンレス鋼線材または鋼線。
JP2007092116A (ja) * 2005-09-28 2007-04-12 Nippon Seisen Co Ltd 強磁性網体
JP2008045177A (ja) * 2006-08-18 2008-02-28 Daido Steel Co Ltd 高強度高弾性型ステンレス鋼及びステンレス鋼線
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2011026650A (ja) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd 耐水素脆性に優れた高強度ステンレス鋼線及びそれを用いたステンレス鋼成形品
JP2011047008A (ja) * 2009-08-27 2011-03-10 Nippon Metal Ind Co Ltd ばね用オーステナイト系ステンレス鋼
WO2011158464A1 (fr) * 2010-06-15 2011-12-22 住友金属工業株式会社 Procédé d'étirage à froid pour conduite métallique, et procédé pour la production d'une conduite métallique au moyen du procédé
WO2012000638A1 (fr) * 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Acier chrome-nickel, fil métallique martensitique et procédé de fabrication associé
JP2012097350A (ja) * 2010-10-07 2012-05-24 Nippon Steel & Sumikin Stainless Steel Corp 耐疲労性に優れた析出硬化型の準安定オーステナイト系ステンレス鋼線およびその製造方法
JP2015508453A (ja) * 2011-12-28 2015-03-19 ポスコ 高強度オーステナイト系ステンレス鋼及びその製造方法
WO2015156179A1 (fr) * 2014-04-08 2015-10-15 株式会社神戸製鋼所 Plaque d'acier épaisse présentant une exceptionnelle résistance des zones affectées thermiquement à des températures très basses
CN105112803A (zh) * 2015-09-18 2015-12-02 巢湖市南特精密制造有限公司 一种冰箱压缩机曲轴用耐磨合金材料及其制备方法
JP2016527394A (ja) * 2013-07-05 2016-09-08 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj 遅れ割れ耐性を有するステンレス鋼、およびその製造方法
CN113699461A (zh) * 2021-08-30 2021-11-26 南通普创医疗科技有限公司 介入医疗用高强度不锈钢丝及其制备方法
US11268177B2 (en) * 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129175B1 (ko) * 2004-12-24 2012-03-26 주식회사 포스코 304에이치 스테인레스강 선재의 혼립조직 억제를 위한선재 마무리 압연방법
CN100447286C (zh) * 2005-09-09 2008-12-31 洛阳双瑞特钢科技有限公司 制造舰船可焊结构的高强耐蚀和易加工低磁铸钢加工方法
JP5098217B2 (ja) * 2005-09-28 2012-12-12 新日鐵住金株式会社 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接継手並びにその製造方法
KR101401625B1 (ko) * 2010-10-07 2014-06-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내피로성이 우수한 석출 경화형 준안정 오스테나이트계 스테인리스 강선 및 그 제조 방법
CN103338889B (zh) * 2011-01-28 2015-11-25 埃克森美孚上游研究公司 具有优异延性抗扯强度的高韧性焊缝金属
CN102534412B (zh) * 2011-12-31 2013-11-27 戴初发 一种高压锅炉用耐腐蚀钢管
JP6259579B2 (ja) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 耐熱へたり性に優れた高強度ステンレス鋼線、高強度ばね並びにその製造方法
US9637843B2 (en) 2013-06-06 2017-05-02 Toyota Boshoku Kabushiki Kaisha Fabric material
CN104233849A (zh) * 2013-06-08 2014-12-24 丰田纺织株式会社 布材
US10414003B2 (en) * 2013-09-30 2019-09-17 Liburdi Engineering Limited Welding material for welding of superalloys
CN104451424A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种称重传感器的Cr-Ni弹性体材料
CN105483502A (zh) * 2015-12-03 2016-04-13 浙江腾龙精线有限公司 一种弹簧线的生产方法
CN106906428B (zh) * 2015-12-23 2020-07-14 宝钢德盛不锈钢有限公司 一种传送带用硬态奥氏体不锈钢及其制造方法和应用
CN109072376B (zh) * 2016-03-28 2020-10-23 日本制铁株式会社 耐延迟断裂特性优异的钢丝
CN105839030B (zh) * 2016-04-28 2017-06-06 交通运输部公路科学研究所 桥梁用不锈钢丝热铸锚索及其所用拉索
CN107099653B (zh) * 2017-04-13 2019-04-05 邢台钢铁有限责任公司 一种高硅不锈钢盘条的生产方法
CN108130491A (zh) * 2017-12-19 2018-06-08 浙江腾龙精线有限公司 发动机燃油系统用钢棒的加工方法
CN108998748A (zh) * 2018-09-05 2018-12-14 合肥久新不锈钢厨具有限公司 一种加工特性优良的弱剩磁低镍不锈钢
CN109536854A (zh) * 2019-01-09 2019-03-29 河北五维航电科技股份有限公司 一种600℃等级及以下汽轮机叶根垫片的制造方法
CN110819898B (zh) * 2019-11-18 2021-08-31 燕山大学 一种高强度耐腐蚀含锆不锈钢及其制备方法
CN112853209B (zh) * 2020-12-31 2021-12-24 江苏永钢集团有限公司 一种含Zr焊丝钢热轧盘条及其生产工艺
CN113481439B (zh) * 2021-07-06 2022-04-08 中国工程物理研究院机械制造工艺研究所 一种含氮不锈钢、部件制备方法及用途
CN114318145A (zh) * 2021-12-24 2022-04-12 浦项(张家港)不锈钢股份有限公司 一种超长精密弹簧用不锈钢带坯料、精密不锈钢带及应用
CN117210771B (zh) * 2023-08-24 2024-05-14 鞍钢股份有限公司 核电用厚规格高性能含氮奥氏体不锈钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166319A (en) * 1980-05-27 1981-12-21 Nippon Steel Corp Manufacture of nonrefined steel
JPH02236218A (ja) * 1989-03-08 1990-09-19 Sumitomo Metal Ind Ltd 鋼材のオンライン水素拡散除去方法
JPH05287456A (ja) * 1992-04-09 1993-11-02 Nippon Steel Corp 耐銹性に優れた高強度マルテンサイト系ステンレス鋼線材
JPH05295486A (ja) * 1992-04-16 1993-11-09 Nippon Steel Corp 高強度・非磁性ステンレス鋼線材
EP0330752B1 (fr) * 1988-02-29 1994-03-02 Kabushiki Kaisha Kobe Seiko Sho Fil très fin ayant une résistance très élevée et matériaux de renforcement et matériaux composites contenant ce fil
JPH06212358A (ja) * 1992-12-28 1994-08-02 Nippon Steel Corp 非磁性pc鋼線およびその製造方法
JPH06306551A (ja) * 1993-04-28 1994-11-01 Nippon Steel Corp 高強度マルテンサイトステンレス鋼とその製造方法
JPH08246106A (ja) * 1995-03-10 1996-09-24 Nippon Steel Corp 耐応力腐食割れに優れた高強度・高耐力オーステナイト系ステンレス鋼線およびその製造方法
JPH10121208A (ja) * 1996-10-15 1998-05-12 Nippon Steel Corp 耐伸線縦割れ性に優れた高強度ステンレス鋼線

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166319A (en) * 1980-05-27 1981-12-21 Nippon Steel Corp Manufacture of nonrefined steel
EP0330752B1 (fr) * 1988-02-29 1994-03-02 Kabushiki Kaisha Kobe Seiko Sho Fil très fin ayant une résistance très élevée et matériaux de renforcement et matériaux composites contenant ce fil
JPH02236218A (ja) * 1989-03-08 1990-09-19 Sumitomo Metal Ind Ltd 鋼材のオンライン水素拡散除去方法
JPH05287456A (ja) * 1992-04-09 1993-11-02 Nippon Steel Corp 耐銹性に優れた高強度マルテンサイト系ステンレス鋼線材
JPH05295486A (ja) * 1992-04-16 1993-11-09 Nippon Steel Corp 高強度・非磁性ステンレス鋼線材
JPH06212358A (ja) * 1992-12-28 1994-08-02 Nippon Steel Corp 非磁性pc鋼線およびその製造方法
JPH06306551A (ja) * 1993-04-28 1994-11-01 Nippon Steel Corp 高強度マルテンサイトステンレス鋼とその製造方法
JPH08246106A (ja) * 1995-03-10 1996-09-24 Nippon Steel Corp 耐応力腐食割れに優れた高強度・高耐力オーステナイト系ステンレス鋼線およびその製造方法
JPH10121208A (ja) * 1996-10-15 1998-05-12 Nippon Steel Corp 耐伸線縦割れ性に優れた高強度ステンレス鋼線

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519543B2 (ja) * 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 耐食性,冷間加工性および靱性に優れる磁性を有する安価ステンレス鋼線及びその製造方法
JP2006016665A (ja) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp 耐食性,冷間加工性および靱性に優れる磁性を有する安価ステンレス鋼線材または鋼線。
JP2007092116A (ja) * 2005-09-28 2007-04-12 Nippon Seisen Co Ltd 強磁性網体
JP2008045177A (ja) * 2006-08-18 2008-02-28 Daido Steel Co Ltd 高強度高弾性型ステンレス鋼及びステンレス鋼線
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2011026650A (ja) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd 耐水素脆性に優れた高強度ステンレス鋼線及びそれを用いたステンレス鋼成形品
JP2011047008A (ja) * 2009-08-27 2011-03-10 Nippon Metal Ind Co Ltd ばね用オーステナイト系ステンレス鋼
US9120136B2 (en) 2010-06-15 2015-09-01 Nippon Steel & Sumitomo Metal Corporation Drawing method of metallic tube and producing method of metallic tube using same
WO2011158464A1 (fr) * 2010-06-15 2011-12-22 住友金属工業株式会社 Procédé d'étirage à froid pour conduite métallique, et procédé pour la production d'une conduite métallique au moyen du procédé
JP4849194B1 (ja) * 2010-06-15 2012-01-11 住友金属工業株式会社 金属管の引抜加工方法およびそれを用いる金属管の製造方法
WO2012000638A1 (fr) * 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Acier chrome-nickel, fil métallique martensitique et procédé de fabrication associé
JP2012097350A (ja) * 2010-10-07 2012-05-24 Nippon Steel & Sumikin Stainless Steel Corp 耐疲労性に優れた析出硬化型の準安定オーステナイト系ステンレス鋼線およびその製造方法
JP2015508453A (ja) * 2011-12-28 2015-03-19 ポスコ 高強度オーステナイト系ステンレス鋼及びその製造方法
KR101623290B1 (ko) 2011-12-28 2016-05-20 주식회사 포스코 고강도 오스테나이트계 스테인리스강 및 그 제조방법
JP2016527394A (ja) * 2013-07-05 2016-09-08 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj 遅れ割れ耐性を有するステンレス鋼、およびその製造方法
WO2015156179A1 (fr) * 2014-04-08 2015-10-15 株式会社神戸製鋼所 Plaque d'acier épaisse présentant une exceptionnelle résistance des zones affectées thermiquement à des températures très basses
JP2015199983A (ja) * 2014-04-08 2015-11-12 株式会社神戸製鋼所 極低温でのhaz靱性に優れた厚鋼板
CN105112803A (zh) * 2015-09-18 2015-12-02 巢湖市南特精密制造有限公司 一种冰箱压缩机曲轴用耐磨合金材料及其制备方法
US11268177B2 (en) * 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
CN113699461A (zh) * 2021-08-30 2021-11-26 南通普创医疗科技有限公司 介入医疗用高强度不锈钢丝及其制备方法

Also Published As

Publication number Publication date
JPWO2003095693A1 (ja) 2005-09-15
KR100566142B1 (ko) 2006-03-30
JP4212553B2 (ja) 2009-01-21
CN1263880C (zh) 2006-07-12
KR20040013124A (ko) 2004-02-11
HK1069190A1 (en) 2005-05-13
CN1526032A (zh) 2004-09-01

Similar Documents

Publication Publication Date Title
WO2003095693A1 (fr) Fil d'acier inoxydable tres solide aux bonnes qualites de tenacite a la ductilite et module de rigidite, et procede de production
JP6302722B2 (ja) ばね疲労特性に優れた高強度複相ステンレス鋼線材、及びその製造方法、ならびにばね疲労特性に優れた高強度複相ステンレス鋼線
JP5744678B2 (ja) 耐疲労性に優れた析出硬化型の準安定オーステナイト系ステンレス鋼線およびその製造方法
WO2013146876A1 (fr) Câble en acier inoxydable à résistance élevée ayant une excellente résistance à la déformation thermique, ressort à résistance élevée et leur procédé de fabrication
WO2010150537A1 (fr) Câble d'acier zingué et aluminé à haute résistance pour ponts qui présente une excellente résistance à la corrosion et d'excellentes caractéristiques de fatigue, et procédé de fabrication de ce câble
JP6004653B2 (ja) フェライト系ステンレス鋼線材、及び鋼線、並びに、それらの製造方法
EP1734143A1 (fr) Tôle d'acier inoxydable ferritique excellente en termes de capacité au façonnage et procédé de fabrication de celle-ci
JP6232324B2 (ja) 高強度で耐食性に優れたスタビライザー用鋼とスタビライザーおよびその製造方法
JP4319083B2 (ja) 剛性率に優れたばね向け高強度鋼線用の準安定オーステナイト系ステンレス鋼線
JP6782601B2 (ja) 耐温間リラクセーション特性に優れる高強度ステンレス鋼線およびその製造方法、ならびにばね部品
KR101401625B1 (ko) 내피로성이 우수한 석출 경화형 준안정 오스테나이트계 스테인리스 강선 및 그 제조 방법
KR101536402B1 (ko) 고강도이면서 냉간 압연성이 우수한 타이타늄 합금재
JP5154122B2 (ja) 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP4790539B2 (ja) 高強度高弾性型ステンレス鋼及びステンレス鋼線
WO2014157146A1 (fr) Tôle d'acier inoxydable austénitique et procédé permettant de fabriquer un matériau en acier de haute résistance qui utilise cette dernière
JP2002256395A (ja) 捻回特性に優れた高強度低熱膨張合金およびその合金線
WO2003025239A1 (fr) Fil en alliage invar presentant d'excellents caracteristiques de resistance et de torsion, procede de production de ce dernier
JP4850444B2 (ja) 延性に優れる高強度・高耐食性の安価オーステナイト系ステンレス鋼線
JP2019123905A (ja) プレストレストコンクリート用緊張材用の二相ステンレス鋼線材、二相ステンレス鋼線及びプレストレストコンクリート用緊張材
JP4841308B2 (ja) 高強度非磁性ステンレス鋼板及びその製造方法
JP2022155180A (ja) オーステナイト系ステンレス鋼およびその製造方法
JP7274062B1 (ja) 高強度ステンレス鋼線およびばね
JP2001234284A (ja) 結晶粒度特性に優れた鋼およびその製造方法
JP5494173B2 (ja) 捻り破断特性に優れたシートベルト巻き取り装置のトーションバー用鋼およびトーションバー
JP3343505B2 (ja) 冷間加工性と耐遅れ破壊性に優れた高強度ボルト用鋼およびその製法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2004503681

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 1020047000223

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002813737X

Country of ref document: CN