WO2003085710A1 - Equipement de traitement thermique vertical - Google Patents

Equipement de traitement thermique vertical Download PDF

Info

Publication number
WO2003085710A1
WO2003085710A1 PCT/JP2003/003862 JP0303862W WO03085710A1 WO 2003085710 A1 WO2003085710 A1 WO 2003085710A1 JP 0303862 W JP0303862 W JP 0303862W WO 03085710 A1 WO03085710 A1 WO 03085710A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
heat treatment
vertical heat
treatment apparatus
cooling
Prior art date
Application number
PCT/JP2003/003862
Other languages
English (en)
French (fr)
Inventor
Katsuya Toba
Kiichi Takahashi
Mitsuru Obara
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/506,688 priority Critical patent/US6957956B2/en
Priority to EP03715534A priority patent/EP1498937A1/en
Priority to KR1020047009949A priority patent/KR100668585B1/ko
Publication of WO2003085710A1 publication Critical patent/WO2003085710A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a vertical heat treatment apparatus for performing heat treatment on a plurality of substrates to be processed together. More specifically, the present invention relates to a vertical heat treatment apparatus having an improved rotation mechanism for rotating a holder on which a plurality of substrates to be processed are stacked.
  • the vertical heat treatment apparatus is typically used by being incorporated in a semiconductor processing system.
  • semiconductor processing refers to forming a semiconductor layer, an insulating layer, a conductive layer, and the like in a predetermined pattern on a substrate to be processed such as a semiconductor wafer or a glass substrate, and thereby forming a semiconductor on the substrate to be processed. It refers to various processes performed to manufacture structures including devices, wiring, electrodes, etc., connected to semiconductor devices.
  • various types of processing equipment are used for performing processes such as film deposition, oxidation, diffusion, modification, annealing, and etching on a substrate to be processed, for example, a semiconductor wafer.
  • a vertical heat processing apparatus that heat-treats a large number of wafers at once is known.
  • FIG. 7 is a sectional view showing a conventional rotation mechanism for rotating a wafer port used in a vertical heat treatment apparatus.
  • a rotary mechanism 115 is provided on a vertically movable lid 105 that opens and closes the furnace port (load port) of the vertical heat treatment furnace.
  • the rotation mechanism 1 15 has a large number of wafers (substrates to be processed). Used to rotate the wafer boat (holding fixture).
  • the rotation mechanism 115 has a rotation shaft 116 and a support portion 119 rotatably supporting the rotation shaft 116 via a bearing 117 and a seal member 118.
  • a motor 128 is connected to the lower end of the rotating shaft 116 via a belt 130.
  • a rotary table 120 is provided at the upper end of the rotary shaft 116 penetrating the lid 105.
  • the turntable 120 includes a lower member 120a and an upper member 120b that are detachably fixed.
  • a vibration structure 160 is formed.
  • a structure for cooling the rotating shaft 116 is used.
  • an inert gas for example, nitrogen gas N 2
  • N 2 an inert gas flowing around the outer periphery of the rotating shaft 116 and a lid
  • the rotating shaft 1 16 is cooled by the cooling water circulating through the cooling passage 13 formed near the center of 105.
  • the inert gas is supplied to the seal member 1 in the gap between the support portion 119 and the rotating shaft 116.
  • the cooling passages 13 2 are arranged in a substantially annular shape around the center of the lid 105 so as to surround the rotating shaft 116, and cooling water is supplied from one end thereof and discharged from the other end.
  • the vertical heat treatment apparatus is designed to withstand heat treatment at a certain high temperature, for example, about 1000 ° C. Shika, and more When used for heat treatment at a higher temperature, for example, about 1200 ° C., the conventional cooling structure does not provide sufficient cooling. As a result, the bearing 111 and the seal member 118 are damaged, such as galling and seizure between the rotating shaft 116 and the bearing 117 due to thermal expansion. May be caused.
  • the rotating shaft 116 is made of a zirconia shaft that is difficult to conduct heat, heat transmitted from the inside of the furnace is easily accumulated and is difficult to cool.
  • the gap S between the shaft hole provided in the lid 105 and the rotating shaft 1 16 is large, for example, 1 mm, the rotating shaft 1 16 is sufficiently cooled from the cooling passage 13 2 side. Difficult to do.
  • An object of the present invention is to provide a vertical heat treatment apparatus that can sufficiently cool a rotating shaft, can improve the durability of a bearing and a seal member, and can cope with high-temperature heat treatment. And.
  • a vertical type in which a rotating mechanism that rotates a holder holding a large number of substrates to be processed is disposed on a liftable lid that opens and closes a furnace port of a vertical heat treatment furnace.
  • a heat treatment device is provided, which comprises:
  • the rotation mechanism includes: a rotation shaft; and a support portion that rotatably supports the rotation shaft via a bearing and a seal member.
  • the rotation shaft has a thin hollow structure and has inner and outer sides.
  • the supporting portion has a cooling passage through which a coolant formed so as to surround the upper side of the rotating shaft flows through the cooling gas.
  • An airtight processing chamber accommodating the substrate to be processed, and the processing chamber having a load port at a bottom portion,
  • a lid for selectively opening and closing the load port of the processing chamber
  • An exhaust system that exhausts the processing chamber
  • An elevator that raises and lowers the lid while supporting the holder holding the substrate to be processed on the lid;
  • An internal gas passage for cooling is formed inside the rotary shaft, and an external gas passage for cooling is formed between the rotary shaft and the support portion.
  • An inert gas supply system that supplies an inert gas for cooling to the internal gas passage and the external gas passage;
  • the inside of the rotation shaft is vertically divided via a partition wall
  • the seal member is disposed outside the rotating shaft and near the partition wall, and the cooling gas flows inside and outside the rotary shaft above the partition wall, and
  • the inside of the rotating shaft can be configured to be open to the outside below the wall.
  • FIG. 1 is a longitudinal sectional view schematically showing a vertical heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view showing a rotation mechanism for rotating a wafer boat used in the apparatus shown in FIG.
  • FIG. 3 is an enlarged sectional view showing the rotation mechanism shown in FIG.
  • 4A, 4B, and 4C are a longitudinal sectional view, a top plan view, and a sectional view taken along the line IVC-IVC in FIG. 4A, showing the rotation axis of the rotation mechanism shown in FIG.
  • FIG. 5 is an exploded perspective view showing a relationship between a rotary table and a rotary shaft in the rotary mechanism shown in FIG.
  • FIG. 6 is an exploded perspective view showing a cooling passage of the rotation mechanism shown in FIG.
  • FIG. 7 is a cross-sectional view showing a conventional rotation mechanism for rotating a wafer port used in a vertical heat treatment apparatus.
  • FIG. 1 schematically shows a vertical heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 1 schematically shows a vertical heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 1 As shown in Fig. 1, vertical heat treatment equipment
  • the heat treatment furnace 2 includes a vertically long processing chamber opened as a furnace port (load port) 3 at a lower portion, for example, a single-tube quartz reaction tube 4.
  • the furnace B 3 of the reaction tube (processing chamber) 4 is selectively opened and closed by a lid 5 made of e.g.
  • the lid 5 is configured to abut the opening end of the furnace B 3 to seal the furnace B 3.
  • a heater 6 having a heating resistor is provided on a heater base 8. The heater 6 is controlled so as to heat the inside of the reaction tube (furnace) 4 to a predetermined temperature, for example, 300 to 120 ° C.
  • An outward flange 4 a is formed at the lower end of the reaction tube 4.
  • the flange portion 4 a is held by the heater base 8 via the flange holding member 7.
  • the heater base 8 is provided on the base plate 9 via a support frame 10. An opening is formed in the base plate 9 so that the reaction tube 4 can pass through from below.
  • a gas supply system GS including a plurality of gas introduction pipes 11 is connected to a lower portion of the reaction pipe 4 for introducing a processing gas or an inert gas for purging into the reaction pipe 4.
  • An exhaust system ES for exhausting the inside of the reaction tube 4 is connected to the lower side of the reaction tube 4 via an exhaust tube 12.
  • the wafer port (holding tool) is stacked in a horizontal state and at a distance from each other. It is kept at 1 3.
  • the boat 13 has a quartz port main body that holds a large number of wafers W, for example, about 300 mm in diameter, for example, about 25 to 150 wafers W.
  • a work area (loading area) LA for transferring the wafer W to the wafer boat 13 is provided below the heat treatment furnace 2.
  • An elevating mechanism (elevator) 14 for raising and lowering the lid 6 is provided in the work area LA (only the arm of the elevator 14 supporting the lid 5 is shown in FIG. 1).
  • the boat 13 is transported between the work area LA and the reaction tube 4 by the elevator 14 while being supported on the lid 5. That is, the boat 13 is loaded and unloaded to the reaction tube 4 by the elevator 14.
  • the cover 5 is provided with a rotation mechanism 15 for rotating the wafer boat 13.
  • FIG. 2 is a sectional view showing the rotation mechanism 15.
  • FIG. 3 is an enlarged sectional view showing the rotation mechanism 15.
  • 4A, 4B, and 4C are a longitudinal sectional view, a top plan view, and a sectional view taken along a line IVC—IVC in FIG. 4A, showing the rotation axis of the rotation mechanism 15.
  • FIG. 5 is an exploded perspective view showing the relationship between the rotating table and the rotating shaft in the rotating mechanism 15.
  • the rotating mechanism 15 has a rotating shaft 16 and a support (also referred to as a bearing housing) 19 that rotatably supports the rotating shaft 16 via a bearing 17 and a seal member 18.
  • the upper end of the rotating shaft 16 penetrates the lid 5 from below and protrudes from the lid 5.
  • a rotary table 20 that rotates on the lid 5 is fixed to the upper end of the rotary shaft 16.
  • the rotary table 20 is detachably fixed to the lower side It consists of a member 20a and an upper member 20b.
  • the boat 13 is placed on the rotary table 20 via a heat insulating cylinder 21 which is a heat insulating means for the furnace B 3.
  • the turntable 20 is made of, for example, Inconel. It is desirable that the rotating shaft 16 and the supporting portion 19 are made of, for example, SUS having good heat conductivity.
  • the support portion 19 is formed in a cylindrical shape, and its upper end is airtightly fitted into a fitting hole 22 formed vertically through a substantially central portion of the lid 5 and is fixed with screws 23.
  • a bearing 17, for example, a ball bearing is disposed between the rotation shaft 16 and the support portion 19 from below a substantially middle portion in the vertical direction.
  • An end plate 24 for fixing the bearing 17 is fixed to the lower end of the support portion 19 with a screw 25.
  • a nut 26 for fixing the bearing 17, for example, a U-nut (trade name) having a locking function is screwed to the lower side of the rotating shaft 16.
  • a sealing member 18 for sealing a gap between the rotating shaft 16 and the support portion 19, for example, an omni-seal (product name) having heat resistance and rotational wear resistance is provided above the bearing 17. Is established.
  • This omni-seal is formed by covering a ring-shaped spring having a U-shaped cross section with a cover made of Tefpan (registered trademark).
  • Tefpan registered trademark
  • the seal member 18 may be an O-ring.
  • a driven pulley 27 is attached to the lower end of the rotating shaft 16 that protrudes from the support portion 19 in order to drive the rotating shaft 16 to rotate.
  • a timing belt 30 is wound around a driven pulley 27 and a drive pulley 29 attached to a rotating shaft of a motor 28 arranged on the side.
  • a sensor 31 for detecting the rotational position of the rotary shaft 16 is provided near the driven pulley 27.
  • a structure that cools the rotating shaft 16 is used in order to suppress the thermal effect on the bearing 17 and the sealing member 18 from the inside of the furnace via the rotating shaft 16 and the supporting portion 19.
  • the rotating shaft 16 has a thin-walled hollow, and an internal gas passage for cooling is formed inside the rotating shaft 16, while the rotating shaft 16 and the supporting portion 19 are provided between the rotating shaft 16 and the supporting portion 19.
  • An external gas passage for cooling is formed.
  • the cooling gas flowing through these gas passages is made of, for example, an inert gas such as nitrogen gas N 2 .
  • a cooling passage 32 through which a refrigerant such as water or a cooling gas flows is formed in the support portion 19 so as to surround the upper end side of the rotating shaft 16.
  • the lid 5 is provided with a cooling passage 58 for cooling the lid 5 itself.
  • the inside of the rotary shaft 16 is vertically partitioned via a partition wall 33, and a seal member 18 is provided outside the rotary shaft 16 and near the partition wall 33. Is arranged. Above the partition wall 33, the above-described internal gas passage and external gas passage are formed. Below the partition wall 33, the inside of the rotating shaft 16 is opened to the outside, so that the heat of the rotating shaft 16 is radiated to the outside.
  • a flat portion 35 for fixing the rotating table 20 horizontally is formed.
  • a shallow insertion hole 36 is formed to insert the upper end of the rotary shaft 16 into the shallow hole.
  • a substantially trilobal concave portion 37 is formed to reduce the contact area between the rotary shaft 16 and the rotary table 20.
  • the rotary table 20 has screws 3 8 on the flat portions 3 5 at the upper end of the rotary shaft 16. Fixed at.
  • the concave portion 37 may be provided in the flat portion 35 at the upper end of the rotating shaft 16.
  • the flat part 35 at the upper end of the rotating shaft 16 is formed by the upper end of the upper part 39 welded to the rotating shaft 16.
  • a hollow portion 40 is formed above the rotary shaft 16 by the partition wall 33 and the upper part 39 of the hollow rotary shaft 16.
  • a concave portion 41 having the same shape as the concave portion 37 of the turntable 20 is provided on a top surface of the hollow portion 40.
  • the recess 41 is formed in order to reduce the amount of heat transferred to the rotating shaft 16 via the rotating table 20.
  • the upper part 39 may be provided at the upper end of the rotating shaft by a joining means other than welding, for example, by fitting and screwing.
  • a plurality of, for example, six gas inlet holes 42 are formed in a portion corresponding to a lower portion of the hollow portion 40 on the outer peripheral portion of the rotating shaft 16.
  • a plurality of, for example, three gas outlet holes 43 are respectively provided in a portion corresponding to the upper portion (preferably the concave portion 41) of the hollow portion 40.
  • the cooling gas introduced from the gas inlet 45 flows through the hollow portion 40 of the rotating shaft 16 from the inlet hole 42 to the outlet hole 43.
  • An annular groove 44 corresponding to the gas inlet hole 42 is formed in the inner peripheral portion of the support portion 19.
  • the support portion 19 is provided with one gas inlet 45 for introducing an inert gas, for example, nitrogen gas as a cooling gas into the annular groove 44.
  • a gas supply system CGS for supplying nitrogen gas is connected to the gas inlet ports 45 through a gas supply pipe.
  • the gap Sa between the rotating shaft 16 and the support portion 19 is ⁇ .1 to 2 mm, Desirably, it is formed as small as 0.2 to 0.8 mm, for example, about 0.42 mm.
  • Screws 46 and 47 functioning as convex portions and / or concave portions for heat radiation are formed on opposing surfaces of the cooling passages 32 provided in the rotating shaft 16 and the support portion 19. .
  • the screw 46 on the outer periphery of the rotating shaft 16 is, for example, an M30 ⁇ 1.5 male screw.
  • the screw 47 on the inner periphery of the holder 19 is made of, for example, an M33 ⁇ 2 female screw. In this way, by using a so-called heat radiation fin as a screw thread, the cooling effect of the rotating shaft 16 is further improved.
  • FIG. 6 is a developed perspective view showing the cooling passage 32.
  • the cooling passage 32 is desirably formed in a multi-layer structure, for example, a three-layer structure as shown in FIG. That is, the annular passage 3 2 a, which forms the cooling passage 32, 32b and 32c are arranged vertically through a plurality of stages or a plurality of layers, for example, a lower layer, a middle layer, and an upper layer via partitioning portions 62 and 63.
  • the lower and middle passages 3 2a and 3 2b are respectively connected to the left passage 32 ax, 32 bx and the right passage 32 ay, 32 by the two front and rear partition walls 49, 50. Divided.
  • the upper passage 32c is partitioned by one front partition wall 61 to form a C-shaped passage.
  • the upper-layer and middle-layer partitioning portions 63 communicate with the refrigerant by passing the upper-layer passageway 32c and the middle-layer left and right passageways 32bx and 32by near the upper-layer partitioning portion 61.
  • the flow holes 51 and 52 for flowing are formed.
  • an inlet 55 and an outlet 56 for a coolant are formed. These are connected to the supply pipe and the drain pipe (return pipe) of the refrigerant supply system CLS, respectively. Through the inlet 55 and the outlet 56, cooling water (normal temperature water) is supplied and circulated to the cooling passage 32 as shown by an arrow.
  • a small gap S b is formed between the upper surface of the lid 5 and the lower surface of the turntable 20 to allow the inert gas to flow from the center side to the peripheral side.
  • An annular gas reservoir 57 is formed between the upper surface of the lid 5 and the lower surface of the rotating tape 20 in the circumferential direction.
  • the gas reservoir 57 is formed in a hollow chamber shape by forming corresponding annular grooves on the upper surface of the lid 5 and the lower surface of the turntable 20.
  • Rotating shaft 1 6 Inside and outside After passing through the gas passage and the external gas passage, the nitrogen gas flows into the gas reservoir 57 through the gap Sb. Since the nitrogen gas is stored in the gas storage part 57, the processing gas from the furnace is rotated by the rotating shaft 1.
  • the vertical heat treatment apparatus 1 rotates a boat 13 in which a large number of wafers W are mounted on a vertically movable lid 5 that opens and closes a furnace 3 of a vertical heat treatment furnace 2. Equipped with a rotation mechanism 15.
  • the rotating mechanism 15 has a rotating shaft 16 and a support portion 19 that rotatably supports the rotating shaft 16 via a bearing 17 and a seal member 18.
  • the rotating shaft 16 has a thin hollow structure and is configured such that a cooling gas flows inside and outside thereof.
  • the support portion 19 has a cooling passage 32 formed so as to surround the upper side of the rotating shaft 16 and through which a coolant, for example, water flows.
  • the rotating shaft 16 can be sufficiently cooled, the durability of the bearing 17 and the sealing member 18 can be improved, and it is possible to cope with a heat treatment at a high temperature, for example, about 1200 ° C.
  • a heat treatment at a high temperature for example, about 1200 ° C.
  • a cooling gas for example, a nitrogen gas, flows inside and outside of the rotary shaft 16 above the partition wall 33.
  • the inside of the rotating shaft 16 is opened to the outside below the partition wall 33. Thereby, the rotating shaft 16 can be sufficiently cooled.
  • the clearance S a between the rotating shaft 16 and the supporting portion 19 is reduced, and screws 4 which are convex portions and / or concave portions for heat dissipation are provided on the opposing surfaces of the rotating shaft 16 and the supporting portion 19. 6 and 4 7 will be provided. This Therefore, the rotating shaft 16 can be sufficiently cooled from the cooling passage 32 side.
  • the cooling passage 32 is arranged in a substantially spiral shape so as to go around the rotating shaft 16. For this reason, the cooling water can be circulated without dripping, and the rotating shaft 16 and the supporting portion 19 can be cooled in a wide range along the longitudinal direction of the rotating shaft 16.
  • the cooling passage 32 is divided into a plurality of upper and lower stages, and through holes 51, 52, 53, and 54 for allowing the refrigerant to flow through the partitioning portions 62, 63 of each stage are provided. For this reason, the substantially spiral cooling passage 32 can be easily formed.
  • a flat portion 35 for fixing the rotary table 20 is formed at the upper end of the rotary shaft 16. At least one of the flat portion 35 and the rotary table 20 is provided with a concave portion 37 for reducing the contact area. Therefore, heat conduction from the rotary table 20 to the rotary shaft 16 can be suppressed.
  • a rotating table 20 that rotates on the lid 5 is connected to the upper end of the rotating shaft 16.
  • a part 57 is formed. Therefore, it is possible to prevent the processing gas from being circulated from the furnace with a simple structure, eliminate the need for a complicated labyrinth structure, and reduce the cost.
  • wafer boat 13 is made of material other than quartz Material, for example, silicon carbide or polysilicon (Si).
  • the reaction tube 4 may have a double tube structure of an inner tube and an outer tube.
  • An inert gas is desirable as the cooling gas, but a gas other than the inert gas may be used.
  • water is desirable, but a liquid or fluid other than water may be used.
  • the vertical heat treatment apparatus is an example to which the present invention is applied, and the present invention can be similarly applied to other types of vertical heat treatment apparatuses.
  • the vertical heat treatment apparatus can be configured to perform a process other than the diffusion process, for example, a CVD process (including a reduced pressure type), an oxidation process, and an annealing process.
  • a semiconductor wafer has been described as an example of a substrate to be processed, but the present invention can also be applied to an apparatus for processing another substrate such as an LCD substrate. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Details (AREA)

Description

明 細 書
縦型熱処理装置
技術分野
本発明は、 複数の被処理基板に対して一緒に熱処理を施す ための縦型熱処理装置に関する。 よ り 具体的には、 本発明は、 複数の被処理基板を積層搭載する保持具を回転させるための 改良された回転機構を有する縦型熱処理装置に関する。
なお、 当該縦型熱処理装置は、 典型的には、 半導体処理シ ステムに組み込まれて使用 される。 こ こで、 半導体処理と は、 半導体ウェハやガラス基板などの被処理基板上に半導体層、 絶縁層、 導電層などを所定のパターンで形成する こ と によ り 、 該被処理基板上に半導体デバイ スや、 半導体デバイスに接続 される配線、 電極な どを含む構造物を製造するために実施さ れる種々 の処理を意味する。
背景技術
半導体デバイ スの製造においては、 被処理基板、 例えば半 導体ウェハに、 膜堆積、 酸化、 拡散、 改質、 ァニール、 エツ チングな どの処理を施すため、 各種の処理装置が用いられる。 この種の処理装置と しては、 多数枚の ウェハを一度に熱処理 する縦型熱処理装置が知られている。
図 7 は縦型熱処理装置において使用 される、 ウェハポー ト を回転させるための従来の回転機構を示す断面図である。 図 7 に示すよ う に、 縦型熱処理炉の炉口 (ロー ドポー ト) を開 閉する昇降可能な蓋体 1 0 5 に回転機構 1 1 5 が配設される。 回転機構 1 1 5 は、 多数の ウェハ (被処理基板) を搭載した ウェハボー ト (保持具) を回転するために使用される。
回転機構 1 1 5 は、 回転軸 1 1 6 と、 回転軸 1 1 6 を軸受 1 1 7及びシール部材 1 1 8 を介して回転可能に支持する支 持部 1 1 9 と を有する。 回転軸 1 1 6 の下端部にはモータ 1 2 8 がベル ト 1 3 0 を介して連結される。 蓋体 1 0 5 を貫通 した回転軸 1 1 6 の上端部には回転テーブル 1 2 0 が配設さ れる。 回転テーブル 1 2 0 は着脱自在に固定された下側部材 1 2 0 a 及び上側部材 1 2 0 b カゝらなる。 回転テーブル 1 2 0 の周縁部と蓋体 1 0 5 と の間には、 炉内の処理ガスが回転 テーブル 1 2 0 と蓋体 1 0 5 の隙間に回り 込んで漏れるのを 防ぐためのラ ビ リ ンス構造 1 6 0 が形成される。
熱処理炉側からの熱によ り 軸受 1 1 7及びシール部材 1 1 8 の耐久性の低下を防止するため、 回転軸 1 1 6 を冷却する 構造が使用 される。 こ の冷却構造では、 回転軸 1 1 6 の外周 部を流通する不活性ガス (例えば窒素ガス N 2 ) と、 蓋体
1 0 5 の-中央付近に形成された冷却通路 1 3 2 を循環する冷 却水と によ り 、 回転軸 1 1 6 が冷却される。 不活性ガスは、 支持部 1 1 9 と回転軸 1 1 6 と の隙間におけるシール部材 1
1 8 よ り も上方に供給され、 回転テーブル 1 2 0 と蓋体 1 0
5 と の隙間を通って炉内側へ流れる。 冷却通路 1 3 2 は、 蓋 体 1 0 5 の中央付近に回転軸 1 1 6 を囲繞する よ う に略環状 に配設され、 その一端から冷却水が供給され、 他端から排出 される。
縦型熱処理装置は、 ある程度の高温例えば 1 0 0 0 °c程度 の熱処理に耐え得る よ う に設計される。 しカゝし、 それよ り も 更に高い高温例えば 1 2 0 0 °C程度の熱処理に使用 した場合、 従来の冷却構造では冷却が不十分と なる。 こ のた め、 熱膨張 によ る回転軸 1 1 6 と軸受 1 1 7 とのかじ り 付きや焼き付き を生じるな ど、 軸受 1 1 7及びシール部材 1 1 8 の損傷ゃ耐 久性の低下を招 く 恐れがある。
通常、 回転軸 1 1 6 は熱を伝え難い材質のジルコニァ製の 軸からなっているため、 炉内側から伝わった熱が蓄積され易 く 、 冷却 し難い。 また、 蓋体 1 0 5 に配設された軸孔と回転 軸 1 1 6 と の隙間 S は、 例えば 1 m mと大きいため、 冷却通 路 1 3 2側から回転軸 1 1 6 を十分に冷却する こ とが困難で ある。
発明の開示
本発明の 目的は、 回転軸を十分に冷却する こ と ができ、 軸 受及びシール部材の耐久性の向上を図る こ と ができ、 高温の 熱処理に対応可能な縦型熱処理装置を提供する こ と にある。
本発明の第 1 の視点によれば、 縦型熱処理炉の炉口を開閉 する昇降可能な蓋体に、 多数の被処理基板を搭載した保持具 を回転する回転機構が配設された縦型熱処理装置が提供され、 これは、
前記回転機構は、 回転軸と、 前記回転軸を軸受及びシール 部材を介 して回転可能に支持する支持部と を具備 し、 前記回 転軸は薄肉の中空構造をな し且つその内側及び外側に冷却用 ガスが流通される よ う に構成される と共に、 前記支持部は前 記回転軸の上側を囲繞する よ う に形成された冷媒が流通され る冷却通路を有する。 本発明の第 2 の視点によれば、 複数の被処理基板に対して 一緒に熱処理を施すための縦型熱処理装置が提供され、 これ は、
前記被処理基板を収納する気密な処理室と、 前記処理室は 底部にロー ドポー ト を有する こ と と、
前記処理室の前記ロー ドポー ト を選択的に開放及び閉鎖す る蓋体と、
前記処理室内で前記被処理基板を互いに間隔をあけて積重 ねた状態で保持する保持具と、
前記処理室内に処理ガスを供給する供給系 と、
前記処理室内を排気する排気系と、
前記処理室の内部雰囲気を加熱する加熱手段と、
前記被処理基板を保持した前記保持具を前記蓋体上に支持 した状態で前記蓋体を昇降させるエ レベータ と、
前記保持具を回転させるために前記蓋体に配設された回転 機構と、 前記回転機構は、 薄肉で中空構造の回転軸と、 前記 回転軸を軸受及びシール部材を介 して回転可能に支持する支 持部とを含み、 前記回転軸の内部に冷却用の内部ガス通路が 形成される一方、 前記回転軸と前記支持部と の間に冷却用の 外部ガス通路が形成される こ と と、
前記内部ガス通路及び前記外部ガス通路に冷却用の不活性 ガスを供給する不活性ガス供給系と、
を具備する。
前記第 1 及び第 2 の視点に係る縦型熱処理装置において、 前記回転軸の内部は仕切り 壁を介して上下に仕切 られ、 前記 回.転軸の外側で且つ前記仕切 り 壁の近傍に前記シール部材が 配置され、 前記仕切 り 壁よ り も上側で前記回転軸の内部及び 外部に前記冷却用ガスが流通され、 前記仕切 り壁よ り も下側 で前記回転軸の内部が外部に開放される よ う に構成する こ と ができ る。
図面の簡単な説明
図 1 は本発明の実施の形態に係る縦型熱処理装置を概略的 に示す縦断面図。
図 2 は図 1 図示の装置において使用 される、 ウェハボー ト を回転させるための回転機構を示す断面図。
図 3 は図 2 図示の回転機構を拡大して示す断面図。
図 4 A、 B、 Cは図 2 図示の回転機構の回転軸を示す縦断 面図、 頂部平面図、 図 4 A中の IVC - IVC 線に沿つた断面 図。
図 5 は図 2 図示の回転機構における回転テーブルと回転軸 との関係を示す展開斜視図。
図 6 は図 2 図示の回転機構の冷却通路を示す展開斜視図。 図 7 は縦型熱処理装置において使用 される、 ウェハポー ト を回転させるための従来の回転機構を示す断面図。
発明を実施するための最良の形態
本発明の実施の形態について図面を参照 して以下に説明す る。 なお、 以下の説明において、 略同一の機能及ぴ構成を有 する構成要素については、 同一符号を付し、 重複説明は必要 な場合にのみ行う。
図 1 は本発明の実施の形態に係る縦型熱処理装置を概略的 に示す縦断面図である。 図 1 に示すよ う に、 縦型熱処理装置
1 は、 複数の被処理基板、 例えば半導体ウェハ wに対して所 定の処理、 例えば拡散処理を施すための縦型の熱処理炉 2 を 有する。 熱処理炉 2 は、 下部が炉ロ (ロー ドポー ト) 3 と し て開 口 された縦長の処理室、 例えば一重管からなる石英製の 反応管 4 を含む。
反応管 (処理室) 4 の炉ロ 3 は、 昇降可能な、 例えば S U S製の蓋体 5 によって選択的に開放及び閉鎖される。 蓋体 5 は炉ロ 3 の開口端に当接して炉ロ 3 を密閉する よ う に構成さ れる。 反応管 4 の周囲には発熱抵抗体を備えたヒータ 6 が ヒ ータベース 8上に配設される。 ヒータ 6 は、 反応管 (炉) 4 内を所定の温度例えば 3 0 0 〜 1 2 0 ◦ °Cに加熱する よ う に 制御される。
反応管 4 の下端部には外向きの フ ラ ンジ部 4 a が形成され る。 フ ラ ンジ部 4 a はフ ラ ンジ保持部材 7 を介してヒータべ ース 8 に保持される 。 ヒータベース 8 はベース プ レー ト 9 上 に支持枠 1 0 を介して配設される。 ベース プ レー ト 9 には反 応管 4 を下方から揷通可能な開 口部が形成される。
反応管 4 の下側部には、 反応管 4 内に処理ガスやパージ用 の不活性ガスを導入するため、 複数のガス導入管 1 1 を含む ガス供給系 G S が接続される。 反応管 4 の下側部にはまた、 反応管 4 内を排気する排気系 E S が排気管 1 2 を介して接続 さ れる。
ウェハ Wは、 反応管 4 内で処理される際、 水平状態で且つ 互いに間隔をあけて積重ねた状態でウェハポー ト (保持具) 1 3 に保持される。 ボー ト 1 3 は、 大口径、 例えば直径 3 0 0 m mの多数、 例えば 2 5 ~ 1 5 0枚程度のウェハ Wを保持 する石英製のポー ト本体を有する。
熱処理炉 2 の下方には、 ウェハボー ト 1 3 に対する ウェハ Wの移载を行う ための作業領域 (ローデイ ングエ リ ア) L A が配設される。 作業領域 L Aには蓋体 6 を昇降させるための 昇降機構 (エ レベータ) 1 4 が配設される (図 1 では蓋体 5 を支持するエ レベータ 1 4 のアームのみを示す) 。 ボー ト 1 3 は、 蓋体 5上に支持された状態で、 エ レベータ 1 4 によつ て作業領域 L A と反応管 4 との間を搬送される。 即ち、 ボー ト 1 3 は、 エ レベータ 1 4 によって反応管 4 に対してロー ド 及びア ン ロ ー ドされる。
蓋体 5 にはウェハボー ト 1 3 を回転するための回転機構 1 5 が配設される。 図 2 は回転機構 1 5 を示す断面図である。 図 3 は回転機構 1 5 を拡大して示す断面図である。 図 4 A、 B、 Cは回転機構 1 5 の回転軸を示す縦断面図、 頂部平面図、 図 4 A中の IVC — IVC 線に沿った断面図である。 図 5 は回 転機構 1 5 における回転テーブルと回転軸と の関係を示す展 開斜視図である。
回転機構 1 5 は、 回転軸 1 6 と、 回転軸 1 6 を軸受 1 7及 ぴシール部材 1 8 を介して回転可能に支持する支持部 (軸受 ハウジングと もい う ) 1 9 と を有する。 回転軸 1 6 の上端部 は、 蓋体 5 を下方から貫通 して蓋体 5 から突出する。 回転軸 1 6 の上端部には、 蓋体 5 上で回転する回転テーブル 2 0が 固定される。 回転テーブル 2 0 は着脱自在に固定された下側 部材 2 0 a 及ぴ上側部材 2 0 b からなる。 回転テーブル 2 0 上に炉ロ 3 の断熱保温手段である保温筒 2 1 を介 してボー ト 1 3 が戴置される。 回転テーブル 2 0 は例えばイ ンコネル製 である。 回転軸 1 6及び支持部 1 9 は熱伝導性の良い例えば S U S製である こ とが望ま しい。
支持部 1 9 は円筒状に形成され、 その上端部が蓋体 5 の略 中央部に上下方向に貫通形成された嵌合穴 2 2 に気密に嵌合 されてネジ 2 3 で固定される。 回転軸 1 6 と支持部 .1 9 との 間には、 上下方向略中間部から下方に軸受 1 7例えば玉軸受 が配設される。 支持部 1 9 の下端部には軸受 1 7 を固定する 端板 2 4 がネジ 2 5 で固定される。 回転軸 1 6 の下側には軸 受 1 7 を固定するナツ ト 2 6 、 例えば緩み止め機能を有する Uナッ ト (商品名) が螺着される。
軸受 1 7 よ り も上側に、 回転軸 1 6 と支持部 1 9 との隙間 をシールするためのシール部材 1 8 、 例えば耐熱性及ぴ耐回 転摩耗性を有するォムニシール (商品名) が配設される。 こ のォムニシールは、 断面 U字状で環状のスプリ ングをテフ 口 ン (登録商標) 製のカバーで覆って構成される。 なお、 シー ル部材 1 8 は O リ ングであっても よい。
回転軸 1 6 を回転駆動するため、 回転軸 1 6 の支持部 1 9 よ り 突出 した下端部には従動プー リ 2 7 が取付け られる。 従 動プーリ 2 7 と、 側方に配設されたモータ 2 8 の回転軸に取 付けた駆動プー リ 2 9 と にタイ ミ ングベル ト 3 0 が卷き掛け られる。 従動プーリ 2 7 の近傍には回転軸 1 6 の回転位置を 検出するためのセンサ 3 1 が配設される。 炉内側から回転軸 1 6や支持部 1 9 を介 して軸受 1 7及ぴ シール部材 1 8 に与える熱影響を抑制するため、 回転軸 1 6 を冷却する構造が使用 される。 この冷却構造において、 回転 軸 1 6 は薄肉の中空をな し、 回転軸 1 6 の内部に冷却用の内 部ガス通路が形成される一方、 回転軸 1 6 と支持部 1 9 と の 間に冷却用の外部ガス通路が形成される。 これらのガス通路 に流通される冷却用ガス は、 例えば窒素ガス N 2 な どの不 活性ガスか らなる。 更に、 支持部 1 9 内には、 回転軸 1 6 の 上端側を囲繞する よ う に冷媒例えば水や冷却ガスを流通させ る冷却通路 3 2 が形成される。 また、 蓋体 5 には蓋体 5 自体 を冷却するための冷却通路 5 8 が配設される。
図 4 Aにも示すよ う に、 回転軸 1 6 の内部は仕切り壁 3 3 を介 して上下に仕切 られ、 回転軸 1 6 の外側で且つ仕切 り壁 3 3 の近傍にシール部材 1 8 が配置される。 仕切 り壁 3 3 よ り も上側には、 上述の内部ガス通路及び外部ガス通路が形成 される。 仕切 り 壁 3 3 よ り も下側で、 回転軸 1 6 の内部は外 部に開放され、 これによ り 回転軸 1 6 の熱が外部に放熱され る。
回転軸 1 6 の上端には回転テーブル 2 0 を水平に固定する ための平坦部 3 5 が形成される。 回転テーブル 2 0の下面の 略中央部には、 |¾ 5 にも示すよ う に、 回転軸 1 6 の上端部を 揷入する深さの浅い揷入孔 3 6 が形成される。 揷入孔 3 6 の 天上面には、 回転軸 1 6 と回転テーブル 2 0 との接触面積を 小さ く するための略三つ葉状の凹部 3 7 が形成される。 回転 テーブル 2 0 は、 回転軸 1 6 の上端の平坦部 3 5 にネジ 3 8 で固定される。 なお、 凹部 3 7 は回転軸 1 6 上端の平坦部 3 5 に配設されていても よい。
回転軸 1 6 の上端の平坦部 3 5 は、 回転軸 1 6 に溶接され た上側パー ト 3 9 の上端部からなる。 中空の回転軸 1 6 の仕 切 り 壁 3 3及び上側パー ト 3 9 によ り 、 回転軸 1 6 の上側に は中空部 4 0 が形成される。 中空部 4 0 の天上面には、 図 4 Cに示すよ う に、 回転テーブル 2 0 の凹部 3 7 と 同 じ形状の 凹部 4 1 が配設される。 凹部 4 1 は回転テーブル 2 0 を介し て回転軸 1 6 に伝え られる伝熱量を低減するために形成され る。 なお、 上側パー ト 3 9 は回転軸の上端に溶接以外の接合 手段例えば嵌合ゃ螺合などで配設されていても よい。
回転軸 1 6 の外周部には中空部 4 0 の下側部と対応する部 分に、 複数例えば 6 個のガス入口孔 4 2 が形成される。 また、 中空部 4 0 の上側部 (望ま しく は凹部 4 1 ) と対応する部分 には複数例えば 3個のガス出 口孔 4 3 が夫々配設される。 ガ ス導入口 4 5 から導入された冷却用ガスは、 入口孔 4 2 から 出口孔 4 3 へ向かって、 回転軸 1 6 の中空部 4 0 内を流通さ れる。
支持部 1 9 の内周部には、 ガス入口孔 4 2 と対応する環状 溝 4 4が形成される。 支持部 1 9 には、 その環状溝 4 4 に冷 却用ガス と して不活性ガス、 例えば窒素ガスを導入するため の 1 つのガス導入口 4 5 が形成される。 ガス導入口 4 5 には、 窒素ガスを供給するガス供給系 C G S がガス供給管を介 して 接続される。
環状溝 4 4 に導入された窒素ガスの一部は、 回転軸 1 6 と 支持部 1 9 と の間の隙間 S a を通って上昇する。 環状溝 4 4 に導入された窒素ガスの他の一部は、 ガス入口孔 4 2 からガ ス出 口孔 4 3 に至る回転軸 1 6 内の中空部 4 0 を中心と した 内部ガス通路を通って上昇する。 この よ う に して、 回転軸 1 6 を内外から冷却した窒素ガスは、 出 口孔 4 3 の外側で合流 し、 回転テーブル 2 0 の下面と蓋体 5 の上面と の間の隙間 S b を通って、 炉内即ち反応管 4 内に放出される。
冷却通路 3 2側から回転軸 1 6 を更に十分に冷却するため、 即ち冷却効果を向上させるため、 回転軸 1 6 と支持部 1 9 と の間の隙間 S a は◦ . 1 〜 2 m m、 望ま しく は 0 . 2 〜 0 . 8 m m、 例えば 0 . 4 2 m m程度と小さ く 形成される。 また、 回転軸 1 6 及び支持部 1 9 に設け られた冷却通路 3 2 の各々 の対向面には放熱用の凸部及び/または凹部と して機能する ネジ 4 6 、 4 7 が形成される。 具体的には、 回転軸 1 6 の外 周部上のネジ 4 6 は、 例えば M 3 0 X 1 . 5 の雄ネジカゝらな る。 一方、 ホルダ 1 9 の内周部上のネジ 4 7 は、 例えば M 3 3 X 2 の雌ネジカ らなる。 この よ う に、 いわゆる放熱フ ィ ン をネジ山 とする こ と によ り 、 回転軸 1 6 の冷却効果がよ り 改 善される。
一方、 冷却通路 3 2 は、 冷媒例えば冷却水を淀みなく 循環 させるため、 回転軸 1 6 を周回する略螺旋状に配設される。 図 6 は冷却通路 3 2 を示す展開斜視図である。 冷却通路 3 2 は、 加工を容易にするため、 図 6 に展開 して示すよ う に、 複 数層構造例えば 3層構造に形成される こ と が望ま しい。 即ち、 支持部 1 9 には、 冷却通路 3 2 を構成する環状の通路 3 2 a 、 3 2 b、 3 2 c が、 上下に複数段或いは複数層、 例えば下層、 中層、 上層 と して、 仕切 り 部 6 2、 6 3 を介して配設される。
下層および中層の通路 3 2 a、 3 2 b は夫々前後 2つの仕 切 り 壁 4 9、 5 0 によ り 左通路 3 2 a x、 3 2 b x と右通路 3 2 a y、 3 2 b y と に分割される。 上層の通路 3 2 c は前 側 1 つの仕切 り 壁 6 1 によ り仕切 られ C状の通路と される。 この上層 と 中層の仕切 り 部 6 3 には、 上層の仕切 り 部 6 1 の 近傍に上層の通路 3 2 c と 中層の左右の通路 3 2 b x、 3 2 b y と を連通させて冷媒を通流させる通流孔 5 1、 5 2 が形 成される。 中層 と下層の仕切 り 部 6 2 には、 中層の後側仕切 り壁 5 0 の近傍に、 中層の左右の通路 3 2 b x、 3 2 b y と 下層の左右の通路 3 2 a x、 3 2 a y と を連通させて冷媒を 通流させる通流孔 5 3、 5 4が形成される。
下層の前側仕切 り 壁 4 9 の近傍には、 冷媒 (冷却水) の導 入口 5 5 と排出口 5 6 とが形成される。 これらには、 冷媒供 給系 C L S の供給管と排水管 (戻 り 管) と が夫々接続される。 導入口 5 5 と排出口 5 6 と を通 して、 冷却通路 3 2 には矢印 で示すよ う に冷却水 (常温の水) が供給され且つ循環される。
前述のよ う に、 蓋体 5 の上面と 回転テーブル 2 0 の下面と の間には不活性ガスを中心側よ り 周縁側へ流通させるための 小さ な隙間 S b が形成される。 また、 蓋体 5 の上面と回転テ 一プル 2 0 の下面と の間には周方向に連続した環状のガス溜 り 部 5 7 が形成される。 ガス溜 り 部 5 7 は、 蓋体 5 の上面と 回転テーブル 2 0 の下面と に、 対応する環状の溝を形成する こ と によって中空室状に形成される。 回転軸 1 6 内外の内部 ガス通路及ぴ外部ガス通路を通過 した後の窒素ガスは、 隙間 S b を通 してガス溜 り 部 5 7 に流れ込む。 ガス溜 り 部 5 7 に 窒素ガスが溜る こ と によ り 、 炉内からの処理ガスが回転軸 1
6側に回 り 込むのが防止される。
要約する と、 本実施の形態に係る縦型熱処理装置 1 は、 縦 型熱処理炉 2 の炉ロ 3 を開閉する昇降可能な蓋体 5 に多数の ウェハ Wを搭載したボー ト 1 3 を回転する回転機構 1 5 を備 える。 回転機構 1 5 は、 回転軸 1 6 と、 回転軸 1 6 を軸受 1 7及びシール部材 1 8 を介して回転可能に支持する支持部 1 9 と を有する。 回転軸 1 6 は薄肉の中空構造をな し且つその 内側及ぴ外側に冷却用ガスが流通される よ う に構成される。 一方、 支持部 1 9 は回転軸 1 6 の上側を囲繞する よ う に形成 された冷媒例えば水が流通される冷却通路 3 2 を有する。 こ れによ り 、 回転軸 1 6 を十分に冷却する こ とができ、 軸受 1 7及ぴシール部材 1 8 の耐久性の向上させ、 高温例えば 1 2 0 0 °C程度の熱処理に対応可能と なる。 - 回転軸 1 6 の内部は仕切 り壁 3 3 を介して上下に仕切 られ、 回転軸 1 6 の外部で且つ仕切 り 壁 3 3 の近傍にシール部材 1 8 が配置される。 仕切 り壁 3 3 よ り も上側で回転軸 1 6 の内 部及び外部に冷却用ガス、 例えば窒素ガスを流通される。 仕 切り 壁 3 3 よ り も下側で回転軸 1 6 の内部が外部に開放され る。 これによ り 、 回転軸 1 6 を十分に冷却する こ とができ る。
更に、 回転軸 1 6 と支持部 1 9 の隙間 S a を小さ く する と 共に、 回転軸 1 6 と支持部 1 9 の各々 の対向面に放熱用の凸 部及び/または凹部であるネジ 4 6 、 4 7 が配設される。 こ のため、 冷却通路 3 2側から回転軸 1 6 を十分に冷却する こ とができ る。
冷却通路 3 2 は回転軸 1 6 を周回する よ う に略螺旋状に配 設される。 このため、 冷却水を澱みな く 循環させる こ と がで き る と共に、 回転軸 1 6 の長手方向に沿って回転軸 1 6 及び 支持部 1 9 を広範囲に冷却する こ とができ る。 冷却通路 3 2 は上下複数段に仕切 られ、 各段の仕切 り 部 6 2、 6 3 に冷媒 通流させる通流孔 5 1 、 5 2 、 5 3、 5 4 が配設される。 こ のため、 略螺旋状の冷却通路 3 2 を容易に形成する こ と がで さ る。
回転軸 1 6 の上端には回転テーブル 2 0 を固定するための 平坦部 3 5 が形成される。 平坦部 3 5 及ぴ回転テーブル 2 0 の少なく と も一方には接触面積を小さ く するための凹部 3 7 が形成される。 このため、 回転テーブル 2 0 から回転軸 1 6 への熱伝導を抑制する こ と ができ る。
回転軸 1 6 の上端には蓋体 5 上で回転する回転テーブル 2 0 が接続される。 蓋体 5 の上面と 回転テーブル 2 0 の下面と の間には、 不活性ガスを中心側よ り周縁側へ流通させるため の隙間 S b と、 不活性ガスを溜めるための環状のガス溜 り 部 5 7 とが形成される。 このため、 簡単な構造で炉内からの処 理ガスの回 り 込みを防止する こ と ができ、 複雑なラ ビリ ンス 構造が不要と な り 、 コス ト の低減を図る こ と ができ る。
なお、 本発明は上述の実施の形態に限定される も のではな く 、 本発明の要旨を逸脱しない範囲での種々 の設計変更など が可能である。 例えば、 ウェハボー ト 1 3 は、 石英以外の材 料、 例えば炭化珪素やポリ シ リ コ ン ( S i ) から形成する こ とができ る。 反応管 4 は、 内管及び外管の二重管構造を有す る もであっても よい。 冷却用ガス と しては不活性ガスが望ま しいが、 不活性ガス以外のガスであっても よい。 冷媒と して は、 水が望ま しいが、 水以外の液体や流体であっても よい。
上述の実施の形態に係る縦型熱処理装置は本発明を適用す る例であ り 、 本発明は他のタイ プの縦型熱処理装置にも同様 に適用する こ と ができ る。 例えば、 縦型熱処理装置は、 拡散 処理以外の処理、 例えば C V D処理 (減圧タイプを含む) 、 酸化処理、 ァニール処理を行う よ う に構成する こ とができ る。 また、 上述の実施の形態では被処理基板と して半導体ウェハ を例に と って説明 したが、 本発明は L C D基板な どの他の ¾ 板を処理する装置にも適用する こ とができ る。

Claims

請 求 の 範 囲
1 . 縦型熱処理炉の炉口 を開閉する昇降可能な蓋体に、 多 数の被処理基板を搭載した保持具を回転する回転機構が配設 された縦型熱処理装置において、
前記回転機構は、 回転軸と、 前記回転軸を軸受及びシール 部材を介 して回転可能に支持する支持部と を具備し、 前記回 転軸は薄肉の中空構造をな し且つその内側及び外側に冷却用 ガスが流通される よ う に構成される と共に、 前記支持部は前 記回転軸の上側を囲繞する よ う に形成された冷媒が流通され る冷却通路を有する。
2 . 前記回転軸の内部は仕切 り 壁を介して上下に仕切 られ、 前記回転軸の外側で且つ前記仕切 り壁の近傍に前記シール部 材が配置され、 前記仕切 り 壁よ り も上側で前記回転軸の内部 及び外部に前記冷却用ガスが流通され、 前記仕切 り壁よ り も 下側で前記回転軸の内部が外部に開放される請求の範囲 1 に 記載の縦型熱処理装置。 -
3 . 前記回転軸と前記支持部と の間の隙間は小さ く 設定さ れる と共に、 前記回転軸及び前記支持部の少なく と も一方の 対向面に放熱用の凹部または凸部が配設される請求の範囲 1 に記載の縦型熱処理装置。
4 . 前記冷却通路は略螺旋状に配設される請求の範囲 1 に 記載の縦型熱処理装置。
5 . 前記冷却通路は仕切 り 部を介して上下複数段に仕切ら れ、 各段の仕切 り 部に冷媒を通流させる通流孔が形成される 請求の範囲 1 に記載の縦型熱処理装置。
6 . 前記回転軸の上端には回転テーブルを固定する平坦部 が形成され、 前記平坦部及び前記回転テーブルの少なく と も 一方には接触面積を小さ く する凹部が形成される請求の範囲 1 に記載の縦型熱処理装置。
7 . 前記回転軸の上端には前記蓋体上で回転する回転テー ブルが配設され、 前記蓋体の上面と前記回転テーブルの下面 との間には、 不活性ガスを中心側よ り周縁側へ流通させる隙 間が形成される と共に、 前記不活性ガスを溜める環状のガス 溜り 部が形成される請求の範囲 1 に記載の縦型熱処理装置。
8 . 複数の被処理基板に対して一緒に熱処理を施すための 縦型熱処理装置であって、
前記被処理基板を収納する気密な処理室と、 前記処理室は 底部にロ ー ドポー ト を有する こ と と、
前記処理室の前記ロー ドポー ト を選択的に開放及び閉鎖す る蓋体と、
前記処理室内で前記被処理基板を互いに間隔をあけて積重 ねた状態で保持する保持具と、
前記処理室内に処理ガス を供給する供給系 と、
前記処理室内を排気する排気系 と、
前記処理室の内部雰囲気を加熱する加熱手段と、
前記被処理基板を保持した前記保持具を前記蓋体上に支持 した状態で前記蓋体を昇降させるエ レベータ と、
前記保持具を回転させるために前記蓋体に配設された回転 機構と、 前記回転機構は、 薄肉で中空構造の回転軸と、 前記 回転軸を軸受及ぴシール部材を介 して回転可能に支持する支 持部と を含み、 前記回転軸の内部に冷却用の内部ガス通路が 形成される一方、 前記回転軸と前記支持部と の間に冷却用の 外部ガス通路が形成される こ と と、
前記内部ガス通路及び前記外部ガス通路に冷却用の不活性 ガスを供給する不活性ガス供給系 と、
を具備する。
9 . 前記回転軸の内部は仕切 り 壁を介して上下に仕切 られ、 前記回転軸の外側で且つ前記仕切 り壁の近傍に前記シール部 材が配置され、 前記仕切り 壁よ り も上側に前記内部ガス通路 及び前記外部ガス通路が形成され、 前記仕切 り 壁よ り も下側 で前記回転軸の内部が外部に開放される請求の範囲 8 に記載 の縦型熱処理装置。
1 0 . 前記外部ガス通路を形成する領域において、 前記回転 軸の外周面に放熱用の凸部または凹部が形成される請求の範 囲 8 に記載の縦型熱処理装置。
1 1 . 前記回転機構は、 前記回転軸の上端に接続された回転 テーブルを更に具備 し、 前記回転テーブルと前記蓋体と は小 間隙を介して対向する と共に、 両者間に前記小間隙と連通す る環状のガス溜 り 部が形成される こ と と、 前記回転軸は、 前 記不活性ガスが、 前記内部ガス通路及び前記外部ガス通路を 通過後に、 前記小間隙を通 して前記ガス溜 り 部に流れ込むよ う に構成される こ と と、 を具備する請求の範囲 8 に記載の縦 型熱処理装置。
1 2 . 前記外部ガス通路の周囲で前記支持部内に形成された 冷媒を流通させる冷却通路と、 前記冷却通路に冷媒を供給す る冷媒供給系と を更に具備する請求の範囲 8 に記載の縦型熱 処理装置。
1 3 . 前記冷却通路は略螺旋状に配設される請求の範囲 1 2 に記載の縦型熱処理装置。
1 4 . 前記冷却通路は仕切 り 部を介して上下複数段に仕切ら れ、 各段の仕切 り 部に冷媒を通流させる通流孔が形成される 請求の範囲 1 2 に記載の縦型熱処理装置。
1 5 . 前記冷却通路を形成する領域において、 前記回転軸及 び前記支持部の少な く と も一方の対向面に放熱用の凸部また は凹部が形成される請求の範囲 1 2 に記載の縦型熱処理装置。
PCT/JP2003/003862 2002-04-09 2003-03-27 Equipement de traitement thermique vertical WO2003085710A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/506,688 US6957956B2 (en) 2002-04-09 2003-03-27 Vertical heat treating equipment
EP03715534A EP1498937A1 (en) 2002-04-09 2003-03-27 Vertical heat treating equipment
KR1020047009949A KR100668585B1 (ko) 2002-04-09 2003-03-27 종형 열 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002107090A JP3369165B1 (ja) 2002-04-09 2002-04-09 縦型熱処理装置
JP2002-107090 2002-04-09

Publications (1)

Publication Number Publication Date
WO2003085710A1 true WO2003085710A1 (fr) 2003-10-16

Family

ID=19193840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003862 WO2003085710A1 (fr) 2002-04-09 2003-03-27 Equipement de traitement thermique vertical

Country Status (7)

Country Link
US (1) US6957956B2 (ja)
EP (1) EP1498937A1 (ja)
JP (1) JP3369165B1 (ja)
KR (1) KR100668585B1 (ja)
CN (2) CN100338735C (ja)
TW (1) TWI263281B (ja)
WO (1) WO2003085710A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351057B2 (en) * 2005-04-27 2008-04-01 Asm International N.V. Door plate for furnace
CN100358098C (zh) 2005-08-05 2007-12-26 中微半导体设备(上海)有限公司 半导体工艺件处理装置
JP2007251088A (ja) * 2006-03-20 2007-09-27 Tokyo Electron Ltd 縦型熱処理装置及び縦型熱処理装置における移載機構の制御方法
JP4335908B2 (ja) * 2006-12-22 2009-09-30 東京エレクトロン株式会社 縦型熱処理装置及び縦型熱処理方法
JP4930438B2 (ja) * 2008-04-03 2012-05-16 東京エレクトロン株式会社 反応管及び熱処理装置
JP2010080922A (ja) 2008-08-29 2010-04-08 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP5131094B2 (ja) * 2008-08-29 2013-01-30 東京エレクトロン株式会社 熱処理装置及び熱処理方法並びに記憶媒体
JP5042950B2 (ja) * 2008-09-05 2012-10-03 東京エレクトロン株式会社 縦型熱処理装置及び基板支持具
JP5134495B2 (ja) * 2008-10-16 2013-01-30 東京エレクトロン株式会社 処理装置及び処理方法
JP5570359B2 (ja) * 2010-09-10 2014-08-13 キヤノンアネルバ株式会社 ロータリージョイント、及びスパッタリング装置
JP2012204645A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd 蓋体開閉装置
CN103212891B (zh) * 2012-01-19 2015-11-25 昆山思拓机器有限公司 集成薄壁管材气动夹持机构的旋转轴装置
JP5922534B2 (ja) * 2012-09-10 2016-05-24 光洋サーモシステム株式会社 熱処理装置
KR101416978B1 (ko) * 2012-12-28 2014-07-09 주식회사 선익시스템 기판 상하역장치 및 인라인 증착 시스템
WO2014132301A1 (ja) * 2013-02-28 2014-09-04 キヤノンアネルバ株式会社 真空処理装置
JP5941016B2 (ja) * 2013-05-27 2016-06-29 株式会社神戸製鋼所 成膜装置およびそれを用いた成膜方法
JP5856600B2 (ja) * 2013-10-30 2016-02-10 アイシン高丘株式会社 熱電素子及び熱電モジュール、並びに熱電素子の製造方法
KR102162366B1 (ko) * 2014-01-21 2020-10-06 우범제 퓸 제거 장치
JP6258726B2 (ja) * 2014-03-04 2018-01-10 東京エレクトロン株式会社 縦型熱処理装置
JP5951095B1 (ja) * 2015-09-08 2016-07-13 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、プログラム
US20170207078A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition apparatus and semiconductor process
CN109314078B (zh) * 2016-06-23 2023-02-24 株式会社爱发科 保持装置
CN107651678B (zh) * 2016-07-26 2023-08-11 株洲晨昕中高频设备有限公司 一种粉体热处理炉
CN106500979A (zh) * 2016-11-16 2017-03-15 南京航空航天大学 用于研究流体系统部分部件旋转特性试验台及方法
CN106653661B (zh) * 2017-02-28 2020-06-09 北京北方华创微电子装备有限公司 一种热处理设备工艺门冷却系统及冷却方法
US11427912B2 (en) * 2018-06-25 2022-08-30 Applied Materials, Inc. High temperature rotation module for a processing chamber
CN110797279B (zh) * 2018-08-03 2022-05-27 北京北方华创微电子装备有限公司 反应腔室
CN109019451A (zh) * 2018-09-07 2018-12-18 江苏三科精工机械有限公司 一种冷却托臂升降轴承座
CN109611630A (zh) * 2019-01-17 2019-04-12 北京远华天创科技有限责任公司 一种回转密封结构
KR102378581B1 (ko) * 2020-06-19 2022-03-24 씰링크 주식회사 회전축 밀폐장치 및 이를 이용하는 반도체 기판처리장치
KR102607844B1 (ko) * 2020-07-10 2023-11-30 세메스 주식회사 기판 처리 장치 및 기판 지지 유닛

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426115A (ja) * 1990-05-22 1992-01-29 Tokyo Electron Sagami Ltd 縦型熱処理装置
JPH06168904A (ja) * 1992-11-27 1994-06-14 Kokusai Electric Co Ltd 縦型反応炉
US5324540A (en) * 1992-08-17 1994-06-28 Tokyo Electron Limited System and method for supporting and rotating substrates in a process chamber
US5421892A (en) * 1992-12-25 1995-06-06 Tokyo Electron Kabushiki Kaisha Vertical heat treating apparatus
JP2001297987A (ja) * 2000-04-17 2001-10-26 Rigaku Corp 軸封装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908292A (en) * 1997-03-07 1999-06-01 Semitool, Inc. Semiconductor processing furnace outflow cooling system
JP3579278B2 (ja) * 1999-01-26 2004-10-20 東京エレクトロン株式会社 縦型熱処理装置及びシール装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426115A (ja) * 1990-05-22 1992-01-29 Tokyo Electron Sagami Ltd 縦型熱処理装置
US5324540A (en) * 1992-08-17 1994-06-28 Tokyo Electron Limited System and method for supporting and rotating substrates in a process chamber
JPH06168904A (ja) * 1992-11-27 1994-06-14 Kokusai Electric Co Ltd 縦型反応炉
US5421892A (en) * 1992-12-25 1995-06-06 Tokyo Electron Kabushiki Kaisha Vertical heat treating apparatus
JP2001297987A (ja) * 2000-04-17 2001-10-26 Rigaku Corp 軸封装置

Also Published As

Publication number Publication date
JP2003303776A (ja) 2003-10-24
TWI263281B (en) 2006-10-01
TW200401377A (en) 2004-01-16
KR100668585B1 (ko) 2007-01-16
KR20040094670A (ko) 2004-11-10
EP1498937A1 (en) 2005-01-19
CN100338735C (zh) 2007-09-19
CN1647250A (zh) 2005-07-27
CN2706861Y (zh) 2005-06-29
US20050175952A1 (en) 2005-08-11
US6957956B2 (en) 2005-10-25
JP3369165B1 (ja) 2003-01-20

Similar Documents

Publication Publication Date Title
WO2003085710A1 (fr) Equipement de traitement thermique vertical
KR101343025B1 (ko) 회전 기판 지지부 이용 방법
US6602348B1 (en) Substrate cooldown chamber
US10748795B2 (en) Substrate processing method and substrate processing apparatus
KR20090083490A (ko) 성막 장치
JP2015056669A (ja) 半導体ウエハ用のアニールモジュール
JP4260404B2 (ja) 成膜装置
JP2008103707A (ja) 基板処理装置および半導体装置の製造方法
US9818630B2 (en) Substrate processing apparatus
JP3451137B2 (ja) 基板の熱処理装置
JP7280856B2 (ja) 冷却ユニット及びこれを含む基板処理装置
JP4782761B2 (ja) 成膜装置
JP4969127B2 (ja) 基板処理装置
JP2006086401A (ja) 基板処理装置
JP2004063661A (ja) 半導体製造装置
JP7490692B2 (ja) 有機膜形成装置
JP2006253448A (ja) 基板処理装置
JP2000021799A (ja) 枚葉式熱処理装置
JP2004311550A (ja) 基板処理装置
JP2004023060A (ja) 基板処理装置
JPH08222556A (ja) 熱処理装置
JP2007141929A (ja) 基板処理装置
TW202343633A (zh) 處理設備及溫度控制方法
JP5792972B2 (ja) 半導体装置の製造方法及び基板処理装置
JP2001284277A (ja) 基板処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047009949

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003715534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10506688

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038077493

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003715534

Country of ref document: EP