WO2003064437A1 - Complexes de cuivre et procede de fabrication de films minces contenant du cuivre au moyen desdits complexes de cuivre - Google Patents

Complexes de cuivre et procede de fabrication de films minces contenant du cuivre au moyen desdits complexes de cuivre Download PDF

Info

Publication number
WO2003064437A1
WO2003064437A1 PCT/JP2003/001014 JP0301014W WO03064437A1 WO 2003064437 A1 WO2003064437 A1 WO 2003064437A1 JP 0301014 W JP0301014 W JP 0301014W WO 03064437 A1 WO03064437 A1 WO 03064437A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
carbon atoms
copper complex
complex according
group
Prior art date
Application number
PCT/JP2003/001014
Other languages
English (en)
French (fr)
Inventor
Takumi Kadota
Chihiro Hasegawa
Kouhei Watanuki
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US10/503,064 priority Critical patent/US6992200B2/en
Priority to KR1020047011917A priority patent/KR101074310B1/ko
Priority to CNB038074206A priority patent/CN1307185C/zh
Publication of WO2003064437A1 publication Critical patent/WO2003064437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the present invention is advantageous when forming a thin film containing copper such as a thin film of a metal such as copper or a copper-containing alloy or a thin film of a composite oxide containing copper oxide as one component by a chemical vapor deposition method. It relates to the copper complex used.
  • the present invention also relates to a method for producing a metal thin film such as copper or a copper-containing alloy or a composite oxide thin film containing copper oxide as a component using the copper complex.
  • Copper thin films are used for copper wiring of silicon semiconductors.
  • Metal oxide thin films containing copper oxide as a component are expected to be applied as materials for high-temperature superconductors.
  • CVD Chemical vapor deposition
  • a ⁇ -diketonato copper complex is often used as a raw material for forming a metal copper or copper oxide thin film by the CVD method.
  • Japanese Patent Publication No. 5-59551 discloses a method of forming a copper thin film used as a copper wiring of a silicon semiconductor by using a monovalent copper /?-Diketonato complex as a copper source. Is disclosed.
  • the monovalent copper /?-Diketonato complex is capable of precipitating metallic copper using the disproportionation reaction and is a chemically convenient compound. Due to its stability, it has the drawback that a considerable part of the raw material is decomposed when heated and vaporized to obtain the vapor pressure required for the CVD method.
  • Japanese Patent Application Laid-Open No. 2001-181840 discloses a diketonato of divalent copper represented by the following formula (II) which exists as a liquid at room temperature. Complexes are disclosed. This divalent copper /?-Diketonato copper complex is a viscous liquid at room temperature. Although the problem of steady supply of raw materials to the substrate and blocking of raw materials on the line is solved, the copper film The deposition rate is no different from that of the conventional dibivaloylmenato copper complex, and there is still a problem in terms of copper thin film productivity.
  • An object of the present invention is to provide a copper complex having a low melting point and excellent thermal stability and suitable for forming a copper thin film or a copper oxide thin film by a CVD method.
  • Another object of the present invention is to provide a method for forming a copper-containing thin film such as a copper thin film or a copper oxide thin film by a CVD method using the copper complex.
  • the present inventors have found that a copper complex having a silyl ether bond and having diketonato as a ligand can be used as a copper complex that has solved the above-mentioned problems, and has completed the present invention. Therefore, the present invention resides in a divalent copper complex having a silyl ether bond and / or having diketonate as a ligand.
  • the present invention also resides in a method for producing a copper-containing thin film by a chemical vapor deposition method using a bivalent copper complex having a silyl ether bond / diketonate as a ligand as a copper source.
  • the /?-Diketonato ligand having a silyl ether bond is represented by the following formula:
  • Z is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • X is a group (wherein of the formula (1-1), R a is the number of carbon atoms from 1 to 5 B , R and R d each independently represent a straight or branched alkyl group having 1 to 5 carbon atoms), and
  • Y is a group represented by the formula (1-1) (wherein, R a represents a linear or branched alkylene group having 1 to 5 carbon atoms, and R b , R and R d are each independently Represents a straight-chain or branched alkyl group having 1 to 5 carbon atoms) or represents a straight-chain or branched alkyl group having 1 to 8 carbon atoms]
  • the compound represented by is preferred.
  • the copper complex of the present invention includes the following formula (I):
  • Z is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • X is a group (wherein of the formula (1-1), R a is from 1 to 5 carbon atoms And R b , U and R d each independently represent a straight-chain or branched alkyl group having 1 to 5 carbon atoms), and
  • Y is the formula (I- I) group (wherein represented by, R a represents a linear or branched alkylene group having 1 to 5 carbon atoms, R b, R and R d are each independently Represents a straight-chain or branched alkyl group having 1 to 5 carbon atoms) or represents a straight-chain or branched alkyl group having 1 to 8 carbon atoms]
  • the compound represented by is preferred.
  • X and Y are the same group. It is also desirable that Y is a linear or branched alkyl group having 1 to 8 carbon atoms.
  • R a is preferably a alkylene emissions group which may having 1 to 3 carbon atom having a substituent one or more alkyl groups.
  • Z is a hydrogen atom, R b , R. It is preferable that both Rd and Rd are methyl groups.
  • FIG. 1 is a schematic explanatory view of a CVD apparatus that can be used for forming a copper thin film.
  • silyl ether-containing /?-Diketone compound examples include compounds represented by the following formulas (III) 5 to (XIV).
  • the / 5-diketone compound as described above has a base in the form of a combination of a silylated ketone and a silylated organic acid ester or a silylated organic acid ester and a ketone as shown in the following formula.
  • the reaction can be carried out under an acid treatment and then obtained by a purification method such as distillation or column chromatography, or by other known methods.
  • the 5-diketonato copper complex ie, the copper complex coordinated with the ⁇ -diketone enolatonion, reacts with the ⁇ -diketone and copper hydroxide (copper complex synthesis method 1 below) or the diketone enolate ionone. It can be obtained by a reaction with a copper salt such as cupric chloride (copper complex synthesis method 2 described below).
  • Solvents used in the synthesis include hydrocarbons such as hexane and toluene, ethers such as tetrahydrofuran (THF) and dimethoxyethane, nitriles such as acetonitrile, halogens such as dichloromethane, and alcohols such as isopropanol. Most organic solvents can be used, such as esters such as ethyl acetate.
  • the water generated in the reaction in Synthesis Method 1 may be azeotropically dehydrated with a reaction solvent, for example, toluene, or, in a solvent such as a THF solvent, may be distilled off with the solvent when the solvent is distilled off at room temperature under reduced pressure.
  • a dehydrating agent for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, anhydrous copper sulfate, or molecular sieves, a water-absorbing polymer (nonionic type), etc. can be coexistent in the reaction system and dehydrated and removed. .
  • the copper complex obtained by the reaction can be purified by a column chromatography method using commercially available silica gel for chromatography, a dehydrated silica gel obtained by dehydrating a commercially available silica gel for chromatography, a distillation method, or a combination of these methods.
  • the following formula (III) shows an example of the above-mentioned copper complex containing a silyl ether-based / -diketonato ligand.
  • the compound represented by the formula (III) ′ as a ligand that is, in the general formula (I), X is a (CH 3 ) 3 SiO —C (CH 3 ) 2 — group, Is a (CH 3 ) 3 C— group, and a copper complex with the enolanion of a ⁇ -diketone having Z as a ligand, bis (2, .6,6-trimethyl-2- (trimethylsilyloxy) 3,5-hepnodionato) copper (II) complex [hereinafter referred to as Cu (s obd) 2 ].
  • the copper complex of the present invention can be made into a copper-containing thin film by performing a chemical vapor deposition method using, for example, a known CVD apparatus as shown in FIG.
  • the method of vaporizing the copper complex by the CVD method in the present invention includes a method of directly supplying the copper complex itself to the vaporization chamber, or a method of supplying the copper complex of the present invention to a suitable solvent, for example, a solvent such as hexane, toluene, and tetrahydrofuran. It can be used for the method of diluting and supplying the solution to the vaporization chamber to vaporize.
  • a suitable solvent for example, a solvent such as hexane, toluene, and tetrahydrofuran. It can be used for the method of diluting and supplying the solution to the vaporization chamber to vaporize.
  • a known CVD method can be used for vapor deposition on the substrate.
  • a reducing gas for example, hydrogen or the like may coexist with the copper complex of the present invention, or may be used in the presence of hydrogen gas.
  • a method of depositing metallic copper by a plasma CVD method can also be used.
  • the obtained compounds were identified by IR and elemental analysis.
  • the obtained compound was identified by NMR, IR and MS.
  • the obtained compound was identified by IR and elemental analysis.
  • the generated sodium acetate was filtered off to obtain a yellow solution.
  • the desired 2,6-dimethyl-12- (trimethylsilyloxy) -13,5-hepnodione, which is the main product of the reaction was purified by column chromatography using a silica gel, which was concentrated and dehydrated. 91 g (3.71 mmol, yield 71%) were obtained.
  • the obtained compound was identified by NMR, IR and MS.
  • the obtained compound was identified by IR and elemental analysis.
  • the obtained compound was identified by NMR, IR and MS.
  • the copper complex obtained in (2-3) above was identified by IR and elemental analysis.
  • the equipment shown in Fig. 1 was used for the test.
  • the copper complex 8 in the vaporizer (glass amble) 1 is heated and vaporized in the heater 2 and exits the vaporizer with the helium gas introduced after preheating in the heater 6.
  • the gas exiting the vaporizer merges with the preheated hydrogen gas introduced from the hydrogen gas line, and is introduced into the reactor 3.
  • the center of the glass reactor has a structure that can be heated in the evening.
  • the copper complex introduced into the reactor is set at the center of the reactor, heated to a predetermined temperature, and undergoes reductive pyrolysis on the surface of the substrate 7 under the reducing atmosphere, thereby depositing metallic copper on the substrate. .
  • the gas leaving the reactor passes through trap 5 and is exhausted to the atmosphere. .
  • the copper thin film formation characteristics depend on the vapor deposition conditions such as the vaporization temperature of the copper complex and the substrate temperature.
  • the substrate to be deposited a rectangular substrate having a size of 7 mm ⁇ 40 mm was used.
  • the copper complex of the present invention is a divalent copper complex, it has better thermal stability than a thermally unstable monovalent copper complex and suppresses thermal decomposition in a vaporizer. Therefore, it is advantageously used in a method for industrially producing a copper-containing thin film by a chemical vapor deposition method. Also, as compared with conventionally known divalent copper complexes, the copper deposition rate is faster and more practical, and it is effective in the production of copper thin films that are in great demand as semiconductor wiring materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 銅錯体およびこれを用いた銅含有薄膜の製造方法
[技術分野]
本発明は、 化学気相蒸着法により銅あるいは銅含有合金等の金属の薄膜または 銅酸化物を一構成成分とする複合酸化物の薄膜等の銅を含有する薄膜を形成させ る際に有利に使用される銅錯体に関する。 本発明はまた、 当該銅錯体を用いた銅 あるいは銅含有合金等の金属薄膜または銅酸化物を一構成成分とする複合酸化物 薄膜の製造方法にも関する。
[背景技術]
金属銅薄膜 (以下、 単に銅薄膜と称す) はシリコン半導体の銅配線としてに利 用される。 また酸化銅を一構成成分とする金属酸化物薄膜 (以下、 単に酸化銅薄 膜と称す) は、 高温超伝導体の材料として応用が期待される。
銅薄膜、 あるいは酸ィヒ銅を成分として含む複合酸化物薄膜を蒸着法により形成 させる方法は数種知られているが、 銅原子を含む化合物を特定の環境条件下で熱 分解させ、 金属銅薄膜あるいは酸化銅薄膜等の銅含有薄膜を基板上に析出させる 化学気相蒸着法 (以下、 C V D法と称す) も多用されるものの一つである。
C V D法により金属銅あるいは酸化銅薄膜を形成させる原料としては、 β—ジ ケトナト銅錯体が良く用いられている。
例えば、 特閧平 5— 5 9 5 5 1号公報には、 一価の銅の/?—ジケトナト錯体を 銅源として使用し、 シリコン半導体の銅配線として使用される銅薄膜を形成させ る方法が開示されている。 一価の銅の/?—ジケトナト錯体は、 不均化反応を利用 して金属銅を析出させることが可能であり、 化学的には都合の良い化合物である 反面、 本質的に熱的に不安定であることから、 C VD法の実施に必要な蒸気圧を 得るために加熱気化させる際に原料のうちの相当部分が分解してしまうという欠 点を有する。
一方、 二価の銅の ^一ジケトナト錯体として C VD法で最も多用されるものに ジビバロイルメ夕ナト銅 (II) 錯体がある。 これは、 一価の銅の ?—ジケトナト 錯体より熱安定性に優れるが、 融点が 1 9 8 °Cと高いことから、 C VD実施装置 のライン上での原料固化によるラインの閉塞の問題がある。 また、 成膜速度が遅 いという問題もあった。 なお、 ジピバロィルメタナト銅錯体に限らず、 従来公知 の銅の ージケトナト錯体の多くは、 蒸気圧が低く、 そのため成膜速度が遅く、 また融点が高いため、 ライン上での原料固化閉塞の問題があり、 実用的な材料と しては不適であった。
特開 2 0 0 1— 1 8 1 8 4 0号公報には、 上記欠点を解決するものとして、 室 温では液体で存在する下記式 (II) で代表される二価の銅の ?一ジケトナト錯体 が開示されている。 この二価銅の/?—ジケトナト銅錯体は、 室温で粘性のある液 体であり、 基板への定常的な原料供給性やライン上での原料閉塞の問題は解決さ れるものの、 銅膜の成膜速度は、 従来のジビバロイルメ夕ナト銅錯体のそれと変 わらず、 銅薄膜生産性の点では、 依然問題を抱えたものである。
Figure imgf000004_0001
[発明の開示]
本発明は、 低融点で且つ熱的安定性に優れ、 C VD法による銅薄膜又は酸化銅 薄膜形成に適した銅錯体を提供することを目的とする。 本発明はまた、 該銅錯体 を用いた C V D法による銅薄膜又は酸化銅簿膜等の銅含有薄膜形成方法を提供す ることも、 その目的とする。
本発明者は、 シリルェ一テル結合を持っ^ージケトナトを配位子とする銅錯体 が、 前記の問題を解決した銅錯体として利用できることを見出し、 本発明を完成 した。 従って、 本発明は、 シリルエーテル結合を有する/?一ジケトナトを配位子とす る二価の銅錯体にある。
本発明はまた、 銅供給源としてシリルェ一テル結合を有する/?一ジケトナトを 配位子とする二価の銅錯体を用いて化学気相蒸着法により銅含有薄膜を製造する 方法にもある。
上記のシリルエーテル結合を有する/?—ジケトナト配位子としては、 下記式
(I) , :
(I) , 一 Ra一。ー (I一 I)
Figure imgf000005_0001
[式中、 Zは、 水素原子または炭素原子数 1〜4のアルキル基を表わし、 Xは、 上記式 (1— 1) で表わされる基 (式中、 Raは、 炭素原子数 1〜 5の 直鎖または分枝のアルキレン基を表わし、 : b、 R 及び Rdは、 夫々独立して 炭素原子数 1〜5の直鎖または分枝のアルキル基を表わす) を表わし、 そして
Yは、 式 (1— 1) で表わされる基 (式中、 Raは、 炭素原子数 1〜5の直鎖 または分枝のアルキレン基を表し、 Rb、 R 及び Rdは、 夫々独立して炭素原 子数 1~5の直鎖または分枝のアルキル基を表わす) か、 あるいは炭素原子数 1 〜 8の直鎖または分枝のアルキル基を表わす]
で表わされる化合物が好ましい。
また、 本発明の銅錯体としては、 下記式 (I ) :
一 I)
Figure imgf000005_0002
[式中、 Zは、 水素原子または炭素原子数 1〜4のアルキル基を表わし、 Xは、 上記式 (1— 1 ) で表わされる基 (式中、 R aは、 炭素原子数 1〜5の 直鎖または分枝のアルキレン基を表わし、 R b、 U 及び R dは、 夫々独立して 炭素原子数 1〜5の直鎖または分枝のアルキル基を表わす) を表わし、 そして
Yは、 式 (I— I ) で表わされる基 (式中、 R aは、 炭素原子数 1〜5の直鎖 または分枝のアルキレン基を表し、 R b、 R 及び R dは、 夫々独立して炭素原 子数 1〜5の直鎖または分枝のアルキル基を表わす) か、 あるいは炭素原子数 1 〜 8の直鎖または分枝のアルキル基を表わす]
で表わされる化合物が好ましい。
上記の式において、 Xと Yとが同一の基であることが望ましい。 また、 Yが炭 素原子数 1〜 8の直鎖または分枝のアルキル基である場合も望ましい。 R aは、 一以上のアルキル基を置換基として有してもよい炭素原子数 1乃至 3のアルキレ ン基であることが望ましい。 特に、 Zが水素原子で、 R b、 R。及び R dのいずれ もがメチル基であることが好ましい。
[図面の簡単な説明]
図 1は、 銅薄膜形成に使用できる C V D装置の概略説明図である。
1 :ガラス製アンプル、 2 : ヒ一夕 (気化器) 、 3 :反応器、 4 : ヒータ (反 応器) 、 5 : トラップ、 6 :ヒ一夕 (予熱部) 、 7 :基板、 8 :原料銅錯体
[発明の詳細な説明]
本発明において、 シリルエーテルを含有する/?—ジケトン化合物の具体的な例 としては、 下記の式 (I I I) 5 〜 (XIV) , に示される化合物が挙げられる。
Figure imgf000007_0001
(III)' (IV)'
Figure imgf000007_0002
上記の様な /5—ジケトン化合物は、 次式に示すように、 シリル化されたケトン とシリル化された有機酸ェステルあるいは、 シリル化された有機酸エステルとケ トン等の組み合わせで塩基の存在下にて反応させ、 酸処理後、 蒸留あるいはカラ ムクロマト法等の精製手段により得るか、 あるいは他の公知法によって得ること ができる。 PC謂雇 014 + MeOH
Figure imgf000008_0001
Figure imgf000008_0002
5—ジケトナト銅錯体、 即ち^—ジケトンのェノラ一トァニォンが配位した銅 錯体は、 ^一ジケトンと水酸化銅との反応 (下記の銅錯体合成法 1 ) あるいは ージケトンのエノ'ラ一トァニオンと塩化第二銅などの銅塩との反応 (下記の銅錯 体合成法 2 ) によって得ることができる。 合成で用いられる溶媒としては、 へキ サン、 トルエン等の炭化水素類、 テトラヒドロフラン (T H F ) 、 ジメトキシェ タン等のエーテル類、 ァセトニトリル等の二トリル類、 ジクロロメタン等のハロ ゲン類、 イソプロパノール等のアルコール類、 酢酸ェチルなどのエステル類など、 ほとんどの有機溶媒が使用できる。 合成法 1において反応で生成する水は、 反応 溶媒、 例えば、 トルエンと共に、 共沸脱水するかあるいは、 T H F溶媒のような 溶媒では、 反応後、 室温で減圧下溶媒留去の際、 溶媒と共に留去される方法で反 応系外へ留去する。 あるいは、 脱水剤、 例えば、 無水硫酸ソ一ダ、 無水硫酸マグ ネシゥム、 無水硫酸銅、 あるいはモレキュラシ一ブス、 吸水性ポリマー (ノニォ ン系 ).等を反応系に共存させて脱水除去することができる。
Figure imgf000009_0001
Figure imgf000009_0002
反応で得られた銅錯体の精製は、 市販のクロマト用シリカゲルあるいは、 市販 のクロマト用シリカゲルを脱水処理した脱水シリカゲルを用いるカラムクロマト 法、 あるいは蒸留法あるいはこれ等の方法の組み合わせで行うことができる。 前記したシリルエーテル系の/?一ジケトナト配位子を含む銅錯体の例を下記の 式 (III) に示す。 これは、 配位子として、 上記式(III)' に示される化合物、 す なわち、 前記一般式 (I) において Xが(CH3)3S iO— C(CH3)2—基、 Yが (CH3)3C—基、 Zが Hである^—ジケトンのエノラートァニオンを配位子とす る銅錯体、 ビス (2,. 6, 6—トリメチルー 2— (トリメチルシリロキシ) 一 3, 5—ヘプ夕ジォナト)銅 (II)錯体 [以下、 Cu(s obd)2と称す] である。
Figure imgf000010_0001
前記の式 (IV) , 〜式 (XIV) ' に示される ?ージケトンについても、 夫々の ージケトンのエノラートァニオンを配位子とした、 式 (ΠΙ) と同様の構造式 で表される下記の銅錯体 (IV)〜(XIV) を与える。
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
(≥χ 本発明の銅錯体は、 例えば、 図 1に示すような公知の CVD装置を利用して、 化学気相蒸着法を実施することにより銅含有簿膜とすることができる。
本発明での銅錯体の C V D法での気化方法としては、 銅錯体そのものを気化室 に直接供給する方法、 あるいは本発明の銅錯体を適当な溶媒、 例えば、 へキサン、 トルエン、 テトラヒドロフラン等の溶媒に希釈し、 気化室にその溶液を供給して 気化させる方法等に使用できる。
また、 基板上への蒸着についても、 公知の CVD法が使用できる。 減圧下また は不活性ガス存在下での単純な熱分解による銅蒸着の他に、 還元性のガス、 例え ば、 水素等を本発明の銅錯体と共存させて、 あるいは水素ガス存在下においてプ ラズマ CVD法で金属銅を蒸着させる方法も使用できる。
更に、 酸素存在下での熱分解あるいはプラズマ CVD法で、 酸化銅膜を蒸着さ せることも可能である。
次に、 具体例を挙げて、 本発明を更に詳しく説明する。
[実施例 1 ]
( 1) 2, 6—ジメチル一 2, 6—ジ (トリメチルシリロキシ) ー3, 5—ヘプ 夕ジオン [式(V), で示される化合物、 以下 d s ob dと称す] の合成:
5 OmLのフラスコに 6◦ %水素化ナトリウム 1. 8 0 g (4 5. 0ミリモル) および 2— (トリメチルシリロキシ) 一 2—メチループロヒオン酸メチル 9. 8 3 g (5 1. 7ミリモル) を入れ、 その溶液を 1 20。Cに加熱しながら、 トルェ ン 9mLに 2— (トリメチルシリロキシ) 一 2—メチルー 3—ブ夕ノン 3. 0 0 g ( 17. 2ミリモル) を溶かしたトルエン溶液をゆっくり滴下した。 滴下終 了後、 1 2 0°Cで 1時間反応させた。 その後、 室温に戻し、 次いで反応液を酢酸 一トルエン溶媒で弱酸性にした。 生成した酢酸ナトリウムを濾別し、 黄色の溶液 を得た。
この溶液を濃縮し脱水したシリカゲルを用いるカラムクロマト法により、 反応 での主生成物である目的の 2 , 6—ジメチル— 2, 6—ジ (トリメチルシリロキ シ) 一 3, 5—へプ夕ジオンを 1. 20 g (3. 6 1ミリモル、 収率 2 1 %) 得 た。
得られた化合物は、 NMR、 IR、 MSで同定した。 ^-NMR (CDC 13) : δ 0. 15 (s, 9H) 、 1. 41 (s, 9H) 、 . 00 (s, 0. 4H) 、 6. 43 (s, 0. 8 H)、 15. 55(s5 0. 8H)
IR (cm -1) : 2961、 1605 (br) 、 1252 , 1198, 104 8, 8'42
MS (m/e) : 332
(2) Cu(d s obd)2 [ビス (2, 6—ジメチル一 2, 6—ジ (トリメチ ルシリロキシ) —3, 5—ヘプ夕ジォナト) 銅 (II) ] 錯体の合成:
上述の方法で、 目的の^—ジケトン配位子の生成が確認されたことから、 上記 と同じ反応の生成物に銅源を添加し、 銅錯体 Φ合成を行なつた。
すなわち、 5 OmLのフラスコに 60%水素化ナトリウム 1. 80 g (45. 0ミリモル) および 2— (トリメチルシリロキシ) 一 2—メチループロピオン酸 メチル 9. 83 g- (51. 7ミリモル) を入れ、 その溶液を 120°Cに加熱しな がら、 トルエン 9mLに 2— (トリメチルシリロキシ) 一 2—メチル一3—ブ夕 ノン 3. 00 g (17. 2ミリモル) を溶かしたその溶液をゆっくり滴下した。 滴下終了後、 120 °Cで 1時間反応させた後、 反応液を 30 °Cに冷却した。 この 時点で、 2, 6—ジメチル一 2, 6—ジ (トリメチルシリロキシ) 一3, 5—へ プ夕ジォナト N a塩が 1. 28g (3. 61ミリモル) 得られている。 そこでこ の反応液に塩化第二銅 0· 24g (1. 78ミリモル) を加えた。 反応液はす ぐに暗緑色に変化した。 80°Cで 2時間撹拌を続け、 室温に戻した後、 反応液を 水洗した。 得られた有機層を乾燥後、 脱水したシリカゲルを充填したカラムクロ マト法により、 目的の銅錯体、 ビス (2, 6—ジメチルー 2, 6—ジ (トリメチ ルシリロキシ) 一 3, 5—ヘプ夕ジォナト) 銅 (II) を 1. 10 g (1. 52ミ リモル、 収率 85% (塩化第二銅基準) ) 得た。
. 得られた化合物の同定は、 IR、 元素分析により行った。
IR (cm"1) : 2978、 1567、 1498、 1414、 1252. 11 97、 1045、 842
元素分析: C3QH6208 S i4Cu
測定値 C: 49. 0%、 H: 8. 99%、 Cu: 8. 6% 理論値 C: 49. β %、 Η : 8. 60%、 Cu: 8. 74% . I R分析では、 ジケトン特有の 1605 cm— 1のビークが消失し、 代わり にジケトナト特有のピーク 1567 cm— 1が得られており、 銅錯体の生成が確認 された。 この銅錯体は、 新規物質である。
[実施例 2]
(1) 2, 6, 6—トリメチルー 2— (トリメチルシリロキシ) 一3, 5—ヘプ 夕ジオン [ (式(ΙΠ)' で示される化合物、 以下 s ob dと称す] の合成:
5 OmLのフラスコにナトリゥムアミド 0. 40g (10. 3ミリモル) お よびビナコリン 1. 20g (12. 0ミリモル) をトルエン 3 mLに懸濁させ、 室温で 30分撹拌した。 その後、 トルエン 6 mLに 2— (トリメチルシリロキシ) — 2—メチル—プロピオン酸メチル 1. 00g (5. 25ミリモル) を溶かした トルエン溶液をゆっくり滴下した。 滴下終了後、 室温で 1時間反応させた。 次い で、 反応液を酢酸一トルエン溶媒で弱酸性にした。 生成した酢酸ナトリゥムを濾 別し、 黄色の溶液を得た。 この溶液を濃縮し脱水したシリカゲルを用いるカラム クロマト法により、 反応での主生成物である目的の 2, 6, 6—トリメチル一2 - (トリメチルシリ口キシ) 一 3, 5—ヘプ夕ジオンを 0. 83 g ( 3. 21ミ リモル、 収率 61 %) 得た。
得られた化合物は、 NMR、 IR、 MSで同定した。
^-NMR (CD C 13) : ό" 0. 14 (s, 9H) 、 1. 17 (s, 9 H) 、 1· 39 (s, 6U) 、 3. 86 (s, 0. 3H) 、 6. 09 (s, 0. 85 H) 、 15. 72(s, 0. 85 H)
I R (cm-1) : 2966、 1600 (br) 、 1252, 1197, 10 45, 841
MS (m/e) : 258
(2) Cu(s obd)2 [ビス (2, 6, 6—トリメチルー 2— (トリメチル シリロキシ) —3, 5—ヘプ夕ジォナト) 銅 (Π)錯体、 式 (III) で示される 化合物] の合成:
上述の方法で目的の^—ジケトン配位子の生成が確認されたことから、 上記と 4 同じ反応の生成物に銅源を添加し、 銅錯体の合成を行なった。
すなわち、 5 OmLのフラスコにナトリウムアミド 0. 40 g ( 10 · 3ミ リモル) およびピナコリン 1. 20g (12. 0ミリモル) をトルエン 3 mLに 懸濁させ、 室温で 30分撹拌した。 その後、 トルエン 6mLに 2— (トリメチル シリロキシ) —2—メチル一プロピオン酸メチル 1. O Og ( 5. 25.ミリモル) を溶かしたトルエン溶液をゆっくり滴下した。 滴下終了後、 室温で 1時間反応さ せた。 その後、 同様にその反応液に塩化第二銅 0. 22g (1. 60ミリモル) を加えた。 反応液はすく、に暗緑色に変化した。 室温で 1時間撹袢を続け、 次に、 反応液を水洗した。 得られた有機層を乾燥後、 脱水したシリカゲルを充填した力 ラムクロマト法により、 目的の銅錯体、 ビス (ビス (2, 6, 6—トリメチルー 2— (トリメチルシリロキシ) 一3, 5—ヘプ夕ジォナト) 銅 (II) を 0. 80 g ( 1. 38ミリモル、 収率 86 % (塩化第二銅基準) ) 得た。
得られた化合物の同定は、 IR、 元素分析により行った。
IR (cm-1) : 2960、 1561、 1501、 1412、 1252、 11 96、 1047、 840
元素分析: C26H5。06S i2Cu
測定値 C : 54. 8%、 H : 8. 20%、 Cu : l l%
理論値 C: 54. 0%、 H: 8. 71%、 Cu: 11. 0%
融点: 59 °C
IR分析では、 ^一ジケトン特有の 1600 cm— 1のピークが消失し、 代わり にジケトナト特有のピーク 1561 cm—1が得られている。 この銅錯体は、 新規 物質である。
[実施例 3 ]
(1) 2, 6—ジメチルー 2— (トリメチルシリロキシ) ー3, 5—ヘプタジォ ン [式 (VIII), で示される化合物、 以下 s o pdと称す] の合成。
5 OmLのフラスコにナトリゥムアミ ド 0. 50g (12. 8ミリモル) お よび 3—メチルー 2—ブ夕ノン 0, 45g (5. 22ミリモル) をへキサン 1. 5 gに懸濁させ、 15°Cで 30分撹拌した。 その後、 へキサン 3 gに 2— (トリ メチルシリロキシ) 一2—メチル一プロピオン酸メチル 1. 2 0 g ( 6. 3 1ミ リモル) を溶かしたへキサン溶液をゆつくり滴下した。 滴下終了後、 1 5°Cで 1 時間反応させた。 その後、 反応液を酢酸一トルエン溶媒で弱酸性にした。 生成し た酢酸ナトリウムを濾別し、 黄色の溶液を得た。 この溶液を濃縮し脱水したシリ 力ゲルを用いるカラムクロマト法により、 反応での主生成物である目的の 2 , 6 ージメチル一 2— (トリメチルシリロキシ) 一3, 5—ヘプ夕ジオンを 0. 9 1 g (3. 7 1ミリモル、 収率 7 1 %) 得た。
得られた化合物は、 NMR、 I R、 MSで同定した。
'H-NMR (CD C 13) : δ 0. 14 (s , 9 H) . 1. 14 (d, 6 H) 、 1. 39 (s, 6 H) 、 2. 44-2. 50 (m, 0. 8 5 H) 、 2. 6 4 - 2. 6 9 (m, 0. 1 5 H) 3. 77 (s, 0. 3 H) . 5. 97 (s , 0.
8 5 H) , 1 5. 5 1( s, 0 8 5 H)
I R (cm"1) : 2 9 7 1 1 6 0 6 (b r) 、 1 2 5 3, 1 9 9, 1 0 45 , 842
MS (m/e) : 244
(2) Cu(s opd)2 [ビス (2, 6—ジメ^ル一 2— (トリメチルシリロ キシ) 一 3, 5—ヘプ夕ジォナト) 銅 (II)錯体、 式(VIII)で示される化合物] の合成:
上述の方法で目的の ージケトン配位子の生成が確認されたことから、 上記と 同じ反応の生成物に銅源を添カ卩し、 銅錯体の合成を行なつた。
すなわち、 5 OmLのフラスコにナトリウムアミド 0. 5 0 g ( 12. 8ミ リモル) および 3—メチルー 2—ブ夕ノン 0. 45 g ( 5. 2 2ミリモル) を へキサン 1. 5 gに懸濁させ、 1 5 °Cで 3 0分撹拌した。 その後、 へキサン 3 g に 2— (トリメチルシリロキシ) 一 2—メチル一プロビオン酸メチル 1. 2 0 g (6. 3 1ミリモル) を溶かしたへキサン溶液をゆつくり滴下した。 滴下終了後、 1 5 °Cで 1時間反応させた。 その後、 その反応液に塩化第二銅 0. 2 5 g ( 1. 8 6ミリモル) を加えた。 反応液はすく、に暗緑色に変化した。 室温で 1時間撹拌 を続け、 その後、 反応液を水洗した。得られた有機層を乾燥後、 脱水したシリカ ゲルを充填したカラムクロマト法により、 目的の銅錯体、 ビス (2, 6 _ジメチ ル一2— (トリメチルシリロキシ) 一3, 5—ヘプ夕ジォナト) 銅 (II) を 0.
86 g (1. 56ミリモル、 収率 84% (塩化第二銅基準) ) 得た。
得られた化合物の同定は、 IR、 元素分析により行った。
IR (cm-1) : 296 5、 1 5 92、 150 1、 1428、 12 52、 1 1
99、 1044、 847
元素分析: C24H4606 S i2Cu
測定値 C: 53. 2%s H: 8 53%、 Cu : 1 1 %
理論値 C: 52. 4 %、 H: 8 42%、 Cu: 1 1. 5%
融点: 62 °C
IR分析では、 ;5—ジケトン特有の 1 606 cm— 1のピークが消失し、 代わり にジケトナト特有のピーク 1 59 2 cm— 1が得られている。 この銅錯体は、 新規 物質である。
[実施例 4]
( 1 ) 別法による s o p dの合成
50mLのフラスコにナトリウムアミ ド 13. 7 g (0. 35 1mo l) を へキサン 20 OmLに懸濁させ、 そこに 2— (トリメチルシリロキシ) 一 2—メ チル一プロピオン酸メチル 26. 7 g ( 0. 14 Omo 1) を加えた。 その溶液 に 3—メチルー 2—ブ夕ノン 12. 1 g (0. 14 1ミリモル) を滴下し、 1 5°Cに保った。 反応の進行に伴ない、 反応液からアンモニアガスの発生が見られ た。 15°Cで 1時間反応した後、 反応液を酢酸で弱酸性にした。 得られたへキサ ン層を水で洗浄後、 無水硫酸ナトリゥムで乾燥した後、 蒸留 ( 1 0 Ι^Ζδπιπι Eg) により、 目的の 2, 6—ジメチル一 2— (トリメチルシリロキシ) 一 3, 5—ヘプ夕ジオンを 18. 8 g (0. 77 Omo 1、 収率 55 %)得た。
得られた化合物は、 NMR、 IR、 MSで同定した。
^-NMR (CD C 1.3) : δ 0. 14 (s, 9 Η) s 1. 14 (d, 6 Η) 、 1. 39 (s, 6H) 、 2. 44-2. 50 (m, 0. 85 H) 、 2 · 64- 2. 69 (m, 0. 15H) 、 3. 77 (s, 0. 3 H) 、 5. 97 (s, 0. 85 H) 、 1 5. 5 l(s, 0. 85 H) IR (cm- : 2971、 1606 (br) 、 1253, 1199, 10
45, 842
MS (m/e) : 244 以下の (2— 1) ~ (2-3) では、 この方法で得た 23 6—ジメチルー 2— (トリメチルシリロキシ) —3, 5—へプ夕ジオンを配位子とし、 三種の異なる 方法で銅錯体 Cu (sopd) 2の合成を行った。
(2— 1) Cu(s opd)2錯体の合成 [トルエン共沸脱水法による] : 10 OmLのフラスコに水酸化銅 4. 43 g (45. 4ミリモル) および 2, 6—ジメチルー 2— (トリメチルシリロキシ) 一 3, 5—ヘプ夕ジオン 22. 2 s (90. 8ミリモル) およびトルエン 5 OmLを入れ、 加熱 (130°C) に より反応で生成する水をトルエンと共に共沸脱水し、 水分定量受器で所定量の水 の留去を確認した。 およそ 1時間で反応が終了した。 得られた暗緑色の液をろ過 後濃縮し、 粘性の暗緑色液体が得られた。 その液を 179 °CZ0. 5Torrで 蒸留精製することにより、 目的の銅錯体、 ビス (2, 6—ジメチルー 2— (トリ メチルシリロキシ) 一3, 5—ヘプ夕ジォナト) 銅 (II) を 20. 2 g (36. 8ミリモル、 収率 81%)得た。
(2-2) Cu(s opd)2錯体の合成 [THF溶媒中室温合成法による] : 2, 6—ジメチル— 2— (トリメチルシリロキシ) 一 3, 5—ヘプ夕ジオンと 水酸化銅 (Π) とを、 室温下、 エーテル類、 ァセトニトリル類、 アルコール類、 ケトン類、 ステル類あるいは炭化水素等の有機溶媒中で反応させることにより、 目的とする銅錯体 Cu (s opd) 2が得られるが、 ここでは、 THF溶媒中で の合成例を示す。
10 OmLのフラスコに水酸化銅 4. 50 g (46. 2ミリモル) および 2, 6—ジメチルー 2— (トリメチルシリロキシ) 一3, 5—ヘプ夕ジオン 22. 6
5 (92. 3ミリモル) および THF50mLを入れ、 脱水剤の添加無しに室 温で 1時間撹袢した。得られた暗青色の液をろ過後、 THF溶媒を留去濃縮し、 粘性の暗緑色液体が得られた。 その液を 179°C/0. 5 T o r rで蒸留精製す ることにより、 目的の銅錯体、 ビス (2, 6—ジメチルー 2— (トリメチルシリ 口キシ) 一 3 , 5—ヘプ夕ジォナト) 銅 (II) を 2 1. 1 g (38. 3ミリモル、 収率 83%) 得た。
(2 -3) Cu(s opd)2錯体の合成 [ジメトキシェタン溶媒中室温合成に よる] :
次に、 ジメトキシェタン溶媒中での合成例を示す。
5 OmLのフラスコに水酸化銅 1. 10 g (l l . 3ミリモル) および 2, 6—ジメチル一 2— (トリメチルシリロキシ) 一3, 5—へプ夕ジオン 5. 00 g (2 0. 5ミリモル) および ジメトキシェタン 1 5mLを入れ、 脱水剤の添 加無しに室温で 2時間撹拌した。 得られた暗青色の液をろ過後、 ジメトキシエタ ン溶媒を留去濃縮し、 粘性の暗緑色液体が得られた。 その液を 1 79°CZ0. 5 To r rで蒸留精製することにより、 目的の銅錯体、 ビス (2, 6—ジメチル一 2— (トリメチルシリロキシ) 一 3, 5—ヘプ夕ジォナト)銅 (II) を 4. 57 g (8. 30ミリモル、 収率 81 %) 得た。
上記 (2— 3) で得られた銅錯体の同定は、 IR、 元素分析により行った。
I R (cm-1) : 345 8 (b r) 、 2963、 1 568、 1 5 18、 142 2、 125 1、 1 196、 1035、 889、 841
元素分析: C24H4606 S i2Cu
測定値 C: 53. 0 %、 H: 8. 39%、 C u: 1 1. 5 %
理論値 C : 52. 4%、 H: 8. 42%、 C : 1 1. 5 %
融点: 62 °C
なお、 (2— 1) 、 (2— 2) で得られた化合物も、 ここに示したものとほと んど同じ分析値を示す。 .
この銅錯体の IR分析では、 5—ジケトン特有の 1606 cm— 1のピークが消 失し、 代わりにジケトナト特有のピーク 1568 cm— 1が現れている。 また 34 00 cm— 1付近に見られるブロードなビークは、 銅錯体に配位した結晶水に由来 する。 なお、 このブロードのピークは、 蒸留後の保存状態が良い場合には認めら れなかった。 „
PC〜™
T/JP03/01014
(3)蒸着試験
実施例 3で製造した銅錯体 Cu(s opd)2 [式 (VIII)で示される化合物] を 用いて、 CVD法による蒸着試験を実施し、 製膜特性を評価した。 なお、 比較の ために、 前記の式 (II) で示されるビス (6-ェチル一2, 2—ジメチル一 3, 5 —デカンジォナト) 銅錯体を用いた蒸着試験を実施した。
試験には、 図 1に示す装置を使用した。 気化器 (ガラス製アンブル) 1に入れ た銅錯体 8は、 ヒー夕 2で加熱され気化し、 ヒー夕 6で予熱後導入されたへリウ ムガスに同伴し気化器を出る。 気化器を出たガスは、 水素ガスラインより導入さ れた予熱水素ガスと合流し、 反応器 3に導入される。 ガラス製反応器の中央部は ヒ一夕 4で加熱可能な構造となっている。 反応器に導入された銅錯体は、 反応器 内中央部にセットされ所定の温度に加熱され還元雰囲気下にある被蒸着基板 7の 表面上で還元熱分解し、 基板上に金属銅が析出する。 反応器を出たガスは、 トラ ップ 5を経て、 大気中に排気される。 .
銅薄膜生成特性は、 銅錯体気化温度、 基板温度等の蒸着条件に依存するが、 今 回採用した蒸着条件及び製膜結果を表 1に示す。 尚、 被蒸着基板としては、: 7 m mx 40mmサイズの矩形のものを使用した。
結果を表 1に示す。
18
差替え用紙(規則 26)
Figure imgf000021_0001
18/ 1 差替え用紙(規則 26) 本発明の C u ( s o p d ) 2が、 従来公知の材料に比して、 優れた成膜1生を有 することが分かる。
[産業上の利用可能性]
本発明の銅錯体は、 二価の銅錯体であることから、 熱的に不安定である一価の 銅錯体に比べ熱安定性に優れており、 気化器での熱分解が抑制される。 従って、 化学気相蒸着法により銅含有薄膜を工業的に製造する方法に有利に利用される。 また従来知られている二価の銅錯体に比べ、 銅の成膜速度が速く、 より実用的で あり、 半導体の配線材料として需要の大きい銅薄膜の製造に威力を発揮する。
19

Claims

請 求 の 範 囲
1. シリルェ一テル結合を有する/?ージケトナトを配位子とする二価の銅錯体
2. シリルエーテル結合を有する ージケトナト配位子が下記式 (I) , :
(I一 I)
Figure imgf000023_0001
[式中、 Zは、 水素原子または炭素原子数 1~4のアルキル基を表わし、 Xは、 上記式 (I— I) で表わされる基 (式中、 Raは、 炭素原子数 1〜 5の 直鎖または分枝のアルキレン基を表わし、 Rb、 R 及び Rdは、 夫々独立して 炭素原子数 1〜5の直鎖または分枝のアルキル基を表わす) を表わし、 そして Yは、 式 (I— I) で表わされる基 (式中、 Raは、 炭素原子数 1〜5の直鎖 または分枝のアルキレン基を表し、 Rb、 Rc、 及び Rdは、 夫々独立して炭素原 子数 1〜 5の直鎖または分枝のアルキル基を表わす) か、 あるいは炭素原子数 1 〜 8の直鎖または分枝のアルキル基を表わす]
で表わされる化合物である請求の範囲 1に記載の銅錯体。
3. 下記式 (I) :
(1— 1)
Figure imgf000023_0002
20 [式中、 Zは、 水素原子または炭素原子数 1〜4のアルキル基を表わし、 Xは、 上記式 (I— I) で表わされる基 (式中、 Raは、 炭素原子数 1〜 5の 直鎖または分枝のアルキレン基を表わし、 Rb、 R 及び Rdは、 夫々独立して 炭素原子数 1〜5の直鎖または分枝のアルキル基を表わす) を表わし、 そして
Yは、 式 (I— I) で表わされる基(式中、 Raは、 炭素原子数 1〜5の直鎖 または分枝のアルキレン基を表し、 Rb、 Rc 及び Rdは、 夫々独立して炭素原 子数 1〜 5の直鎖または分枝のアルキル基を表わす) か、 あるいは炭素原子数 1 〜 8の直鎖または分枝のアルキル基を表わす]
で表わされる化合物である請求の範囲 1に記載の銅錯体。
4. Xと Yとが同一の基である請求の範囲 2に記載の銅錯体。
5. Xと Yとが同一の基である請求の範囲 3に記載の銅錯体。
6. Yが炭素原子数 1〜 8の直鎖または分枝のアルキル基である請求の範囲 2 に記載の銅錯体。 '
7. Yが炭素原子数 1〜 8の直鎖または分枝のアルキル基である請求の範囲 3 に記載の銅錯体。
8. Raが、 一以上のアルキル基を置換基として有してもよい炭素原子数 1乃 至 3のアルキレン基である請求の範囲 2に記載の銅錯体。
9. Raが、 一以上のアルキル基を置換基として有してもよい炭素原子数 1乃 至 3のアルキレン基である請求の範囲 3に記載の銅錯体。
10. Zが水素原子で、 Rb、 IT及び Rdのいずれもがメチル基である請求の 範囲 2に記載の銅錯体。
21
11. Zが水素原子で、 Rb、 Rc及び; Rdのいずれもがメチル基である請求の 範囲 3に記載の銅錯体。
12. 銅供給源として請求の範囲 1に記載の銅錯体を用いて化学気相蒸着法に より銅含有薄膜を製造する方法。
13.銅供給源として請求の範囲 2に記載の銅錯体を用いて化学気相蒸着法に より銅含有薄膜を製造する方法。
14. 銅供給源として請求の範囲 3に記載の銅錯体を用いて化学気相蒸着法に より銅含有薄膜を製造する方法。
11
PCT/JP2003/001014 2002-01-31 2003-01-31 Complexes de cuivre et procede de fabrication de films minces contenant du cuivre au moyen desdits complexes de cuivre WO2003064437A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/503,064 US6992200B2 (en) 2002-01-31 2003-01-31 Copper complexes and process for formation of copper-containing thin films by using the same
KR1020047011917A KR101074310B1 (ko) 2002-01-31 2003-01-31 구리 착체 및 이를 이용한 구리 함유 박막의 제조 방법
CNB038074206A CN1307185C (zh) 2002-01-31 2003-01-31 铜络合物和利用该铜络合物形成含铜薄膜的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002022798 2002-01-31
JP2002-22798 2002-01-31
JP2002261357A JP4120925B2 (ja) 2002-01-31 2002-09-06 銅錯体およびこれを用いた銅含有薄膜の製造方法
JP2002-261357 2002-09-06

Publications (1)

Publication Number Publication Date
WO2003064437A1 true WO2003064437A1 (fr) 2003-08-07

Family

ID=27667458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001014 WO2003064437A1 (fr) 2002-01-31 2003-01-31 Complexes de cuivre et procede de fabrication de films minces contenant du cuivre au moyen desdits complexes de cuivre

Country Status (6)

Country Link
US (1) US6992200B2 (ja)
JP (1) JP4120925B2 (ja)
KR (1) KR101074310B1 (ja)
CN (1) CN1307185C (ja)
TW (1) TWI255816B (ja)
WO (1) WO2003064437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035823A1 (ja) * 2003-10-14 2005-04-21 Ube Industries, Ltd. β−ジケトナト配位子を有する金属錯体および金属含有薄膜の製造方法
US8034403B2 (en) * 2004-09-27 2011-10-11 Ulvac, Inc. Method for forming copper distributing wires

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909195B1 (ko) 2004-09-27 2009-07-23 가부시키가이샤 알박 구리 함유막 형성 방법
JP2006111538A (ja) * 2004-10-12 2006-04-27 Central Glass Co Ltd イオン性金属錯体の合成法
JP2006282611A (ja) * 2005-04-01 2006-10-19 Ube Ind Ltd シリルエーテル基を有するβ−ジケトン化合物の製法
JP4710698B2 (ja) * 2006-04-10 2011-06-29 宇部興産株式会社 シリルエーテル基を有するβ−ジケトン化合物の製造法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852229A2 (en) * 1997-01-07 1998-07-08 Sharp Kabushiki Kaisha Precursor with (methoxy) (methyl) silylolefin ligands to deposit copper and method for the same
JP2001077051A (ja) * 1999-09-07 2001-03-23 Tokyo Electron Ltd 銅層の形成方法、半導体装置の製造方法、および半導体装置の製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225686B1 (ko) * 1995-03-20 1999-10-15 모리시다 요이치치 막형성용 재료 및 배선형성방법
EP1264817A1 (en) * 2000-03-14 2002-12-11 Nissan Chemical Industries, Ltd. $g(b)-DIKETONATOCOPPER(I) COMPLEX CONTAINING ALLENE COMPOUND AS LIGAND AND PROCESS FOR PRODUCING THE SAME
US6838573B1 (en) * 2004-01-30 2005-01-04 Air Products And Chemicals, Inc. Copper CVD precursors with enhanced adhesion properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852229A2 (en) * 1997-01-07 1998-07-08 Sharp Kabushiki Kaisha Precursor with (methoxy) (methyl) silylolefin ligands to deposit copper and method for the same
JP2001077051A (ja) * 1999-09-07 2001-03-23 Tokyo Electron Ltd 銅層の形成方法、半導体装置の製造方法、および半導体装置の製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035823A1 (ja) * 2003-10-14 2005-04-21 Ube Industries, Ltd. β−ジケトナト配位子を有する金属錯体および金属含有薄膜の製造方法
JPWO2005035823A1 (ja) * 2003-10-14 2006-12-21 宇部興産株式会社 β−ジケトナト配位子を有する金属錯体および金属含有薄膜の製造方法
US8034403B2 (en) * 2004-09-27 2011-10-11 Ulvac, Inc. Method for forming copper distributing wires

Also Published As

Publication number Publication date
KR20040079978A (ko) 2004-09-16
TWI255816B (en) 2006-06-01
TW200302829A (en) 2003-08-16
CN1307185C (zh) 2007-03-28
JP2003292495A (ja) 2003-10-15
US6992200B2 (en) 2006-01-31
KR101074310B1 (ko) 2011-10-17
CN1642964A (zh) 2005-07-20
JP4120925B2 (ja) 2008-07-16
US20050080282A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US6099903A (en) MOCVD processes using precursors based on organometalloid ligands
EP0369297B1 (en) Volatile fluorinated beta-ketoimines and associated metal complexes
JP2006516031A (ja) タンタル系材料の蒸着のための化学蒸着前駆体
WO2006082739A1 (ja) タンタル化合物、その製造方法、タンタル含有薄膜、及びその形成方法
US6982341B1 (en) Volatile copper aminoalkoxide complex and deposition of copper thin film using same
WO2003064437A1 (fr) Complexes de cuivre et procede de fabrication de films minces contenant du cuivre au moyen desdits complexes de cuivre
KR20140070591A (ko) 유기 백금 화합물을 포함하는 화학 증착용 원료 및 상기 화학 증착용 원료를 사용한 화학 증착법
JP2002522453A (ja) 化学蒸着のための有機銅前駆体
KR100298125B1 (ko) 구리의 화학 증착에 유용한 유기 구리 전구체
JP3282392B2 (ja) 蒸気圧の高い有機金属化学蒸着による銅薄膜形成用有機銅化合物
Zharkova et al. X-ray diffraction study of volatile complexes of dimethylgold (III) derived from symmetrical β-diketones
KR100704464B1 (ko) 구리 아미노알콕사이드 화합물, 이의 합성 방법 및 이를이용한 구리 박막의 형성 방법
JP4059662B2 (ja) 化学気相成長用銅原料及びこれを用いた薄膜の製造方法
JP5454141B2 (ja) 有機白金錯体及び当該白金錯体を用いた化学気相蒸着法による白金含有薄膜の製造法
JP2768250B2 (ja) 蒸気圧の高い有機金属化学蒸着による銀薄膜形成用有機銀化合物
JP2762917B2 (ja) 有機金属化学蒸着法による白金膜形成材料と形成方法
KR100600468B1 (ko) 시클로알켄 구리 전구체의 제조방법
JPH0853470A (ja) 蒸気圧の高い有機金属化学蒸着による銀薄膜形成用有機銀化合物
TW202033533A (zh) 金屬有機化合物
TW202112787A (zh) 產生含金屬或半金屬的膜之方法
JPWO2010032679A1 (ja) ニッケル含有膜形成材料およびニッケル含有膜の製造方法
EP0373513A2 (en) Fluorinated beta-ketoimines and beta-ketoiminato metal complexes
JP2001131745A (ja) 銅薄膜形成用有機銅化合物
JP2010229112A (ja) β−ジケトナト基を配位子として有するコバルト錯体及びそれを用いてコバルト含有薄膜を製造する方法
KR20020035466A (ko) 유기금속성 구리 착물 및 cvd에 의한 구리 박막의 제조

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10503064

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047011917

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038074206

Country of ref document: CN

122 Ep: pct application non-entry in european phase