WO2003062776A1 - Spectroscope - Google Patents

Spectroscope Download PDF

Info

Publication number
WO2003062776A1
WO2003062776A1 PCT/JP2002/013506 JP0213506W WO03062776A1 WO 2003062776 A1 WO2003062776 A1 WO 2003062776A1 JP 0213506 W JP0213506 W JP 0213506W WO 03062776 A1 WO03062776 A1 WO 03062776A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
support member
environmental temperature
measured
Prior art date
Application number
PCT/JP2002/013506
Other languages
English (en)
French (fr)
Inventor
Atsushi Katsunuma
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US10/502,345 priority Critical patent/US7173695B2/en
Publication of WO2003062776A1 publication Critical patent/WO2003062776A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements

Definitions

  • the present invention relates to a splitter using a wavelength dispersion element such as a grating or a prism.
  • spectrometers using wavelength dispersive elements are widely used in various fields such as physical analysis and chemical analysis.
  • the environmental temperature when using a spectrometer is basically kept constant. If the ambient temperature is kept constant, it is possible to almost avoid the situation in which the spectral image of the light incident on the spectrometer drifts in the direction of wavelength dispersion, and the measurement wavelength accuracy of the spectrometer is stabilized.
  • a spectroscope so that the spectral image does not drift in the direction of wavelength dispersion even if the environmental temperature changes.
  • What has already been proposed as such a spectrometer with a temperature compensation mechanism is mostly a splitter using a concave reflection type grating as a wavelength dispersive element and a diode array as a detector for detecting a spectral image. It is.
  • the thermal expansion coefficients of the grating holder and the casing are selected to match the thermal expansion coefficients of the diode array.
  • the shape of the grating holder with the casing It has been proposed to reduce the drift of the toll image.
  • JP-A-2000-0266 the way of holding the grating and diode array is devised, and the positioning structure of the grating holding member, the diode array holding member and the carrier is Optimization is proposed to reduce the drift of the spectral image due to changes in ambient temperature.
  • the temperature compensation technology proposed in the above-mentioned conventional spectrometer with a temperature compensation mechanism is, even when it is full, a technology unique to a splitter using a concave reflection type grating as a wavelength dispersive element and a diode array as a detector. It is. For this reason, it is difficult to apply the above-mentioned temperature compensation technology to various other types of spectroscopes, and if it is applied forcibly, the configuration becomes complicated. Disclosure of the invention
  • An object of the present invention is to provide a simple spectroscope incorporating a temperature compensation mechanism capable of reliably reducing the drift in the direction of wavelength dispersion of a spectral image due to a change in environmental temperature regardless of the form of the spectroscope.
  • a spectroscope comprises: an incident member for taking in light to be measured; a wavelength dispersion element for dispersing the light to be measured from the incident member according to a wavelength;
  • a spectroscope including a condensing optical system which condenses the light to be measured to form a spectral image, and a detection element which detects the spectral image the wavelength dispersive element is rotatable.
  • a rotation mechanism is provided which rotates the wavelength dispersive element in response to a change in environmental temperature, and is configured to cancel the drift in the wavelength dispersion direction of the spectrum image due to the change in environmental temperature.
  • the spectroscope according to the first aspect of the present invention employs a reflective grating as the wavelength dispersive element, and a temperature change per degree C.
  • the amount of rotation ⁇ a of the wavelength dispersive element is the drift amount of the spectral image per 1 ° C. of temperature change
  • s is the focal length of the light collecting optical system, and Assuming that the incident angle of measurement light is ⁇ , and the diffraction angle of diffracted light emitted from the wavelength dispersive element is
  • a a A s / i / (l + c o s a / c o s jS)
  • ⁇ and / 3 are angles measured with reference to the wavelength dispersive element grating surface normal line.
  • a spectroscope comprises: an incident member for taking in light to be measured; a wavelength dispersion element for dispersing the light to be measured from the incident member according to a wavelength; A condensing optical system that condenses the light to be measured to form a spectral image; a detection element that detects the spectral image; the incident member, the condensing optical system, and the detection element A first supporting member integrally supported, a second supporting member configured to be made of a material having a linear expansion coefficient different from that of the first supporting member, and supporting the wavelength dispersive element, and an environmental temperature is changed.
  • Amount of expansion and contraction of the first support member and the second It includes a deformable member that elastically deforms according to the difference with the expansion and contraction amount of the support member, and includes a rotary member that slightly rotates according to the inertia deformation of the deformable member, and the wavelength dispersive element has a wavelength dispersion direction of It is attached to the rotating member in a direction orthogonal to the axial direction of the rotating member.
  • the rotation angle and the rotation direction of the rotary member when the environmental temperature changes is preset so as to cancel the drift of the wavelength dispersion direction of the spectrum image.
  • the second support portion The material is a V-shaped member in which two arm members are connected via the thin-walled deformation member, and one of the two arm members constitutes the rotating member, and the transmission member is It is a member which connects both ends of a V-shaped member and the first support member, and changes an angle formed by the two arm members according to expansion and contraction of the first support member.
  • the rotation angle of the rotary member capable of canceling out the drift in the direction of wavelength dispersion of the spectral image when the environmental temperature changes by 1 ° C.
  • the linear expansion coefficient b of the first support member, the linear expansion coefficient of the second support member, the length y of one of the two arm members, and the length z of the other, and 2 The following relationship can be satisfied with the angle a formed by the two arm members.
  • FIG. 1 is a view showing the overall configuration of a spectroscope 10 of the present embodiment.
  • Fig. 2A and Fig. 2B show the structure of the grating mount 16.
  • FIG. 3 is a view for explaining a modification of the grating mount 16.
  • the spectroscope 10 of this embodiment includes an optical filter 11, a mirror 12, a single lens 13 and a grating 14 and a one-dimensional line. It consists of a sensor 15, a grating mount 16, and a base member 17. In front of optical fiber 1 1 A light source (not shown) is disposed on the stage.
  • optical fiber 1 1, mirror 1 2, retro 1 lens 1 3, and one-dimensional line sensor 15 are based on the basic
  • the grating 14 is placed on the member 17, the grating 14 is placed on the mounting plate 16, and the grating mount 16 is placed on the base member 17.
  • the spectrometer 10 of the present embodiment is a spectrometer with a temperature compensation function that can be used in a range of ambient temperature from 20 ° C. to + 60 ° C.
  • the optical fiber 11 is a member (for example, a single mode fiber) for taking the light to be measured from a light source (not shown) into the interior of the spectrometer 10, and the diameter of the light emitting portion thereof is, for example, 10 mm. .
  • the optical fiber 11 corresponds to the “incidence member” in the claims.
  • the mirror 12 is an optical element for reflecting the light to be measured from the optical fiber 11 and guiding it to the Litrow lens 13.
  • the Litrow lens 13 has a function of collimating the light to be measured L 1 from the mirror 12 and a function of condensing the diffracted light L 3 (described later) from the grating 14 to form a spectral image. And a lens with a focal length of 50 mm, for example.
  • the measurement light L 2 collimated by the retro-one lens 13 is guided to the grating 14, and the measurement light L 4 collected by the Litrow lens 13 is a one-dimensional line sensor. It is led to one five.
  • the litrow lens 13 corresponds to the “collecting optical system” in the claims.
  • the grating 14 is a reflective planar grating in which a large number of elongated grooves are one-dimensionally arranged. The arrangement direction of the large number of grooves corresponds to the wavelength dispersion direction of the doubling 14.
  • Grating 1 4 is an optical fiber 1
  • the measured light L2 guided through 1 to the mirror 12 and the Litrow lens 13 is dispersed according to the wavelength.
  • the measurement light after dispersion by the trailing 14 corresponds to the diffracted light L3 described above.
  • the grating 14 corresponds to the “wavelength dispersion element” in the claims.
  • the retro-singlet lens 13 and the grating 14 constitute a both-side telecentric optical system. That is, the lens arrangement is regarded as an aperture stop and is disposed at the focus position of the Litrow lens 13.
  • One-dimensional line sensor 15 has a light-receiving surface in which a large number of light-receiving units are arranged in a one-dimensional array, and this light-receiving surface coincides with the focal position (position where a spectral image is formed) of retro-first lens 13. Is located in The one-dimensional line sensor 15 is a detection element that detects the spectrum image formed by the Litrow lens 13. Note that the arrangement direction of the large number of light receiving units corresponds to the wavelength dispersion direction of the trailing edge 14.
  • each light receiving section in the direction of wavelength dispersion is set according to the wavelength resolution required for detection of a spectral image (for example, 25 m).
  • the number of light receiving portions arranged on the light receiving surface of the one-dimensional line sensor 15 is set so as to be able to detect this wavelength range completely according to the wavelength range required for detection of a spectral image.
  • the light to be measured which has entered the inside of the spectrometer 10 from the optical fiber 1 1 is collimated by the retro-lens 13 and the grating 1 4 Diffraction, and return to the Litrow lens 13 again to be collected.
  • a spectral image is formed on the light receiving surface of the one-dimensional line sensor 15, and a spectral image is detected by each of the light receiving sections arranged on the light receiving surface.
  • the spectral image is the light emission of the optical fiber 1 1
  • the spot shape is almost similar to that of the department.
  • the spectral image has a shape that spreads along the wavelength dispersion direction.
  • spot-like spectral images may be discretely arranged in a large number along the wavelength dispersion direction.
  • ( ⁇ ) is the variation of the focal length of the Litrow lens 13.
  • (2) is the fluctuation of the refractive index of air.
  • (3) is the fluctuation of the lattice constant due to the expansion and contraction of the grating 14.
  • (4) is the movement of the optical fiber 11 in the direction of wavelength dispersion by the expansion and contraction of the base member 17.
  • (5) is the rotation of grating 14 around the scribe line direction.
  • the factor of the drift of the spectral image to be considered in the spectroscope 10 of this embodiment is (3) variation of grating constant of the grating 14 and (4) wavelength dispersion of the optical fiber 1 1 Movement in the direction and (5) rotation of grating 14 around the scribe line direction.
  • the spectrum image is described above. Is designed to drift to the short wavelength side by 20 by the factor (3) (4) It is assumed that The short wavelength side is the direction shown by arrow B in FIG.
  • the drift of the spectral image due to the change of environmental temperature is almost proportional to the change of temperature.
  • the drift amount A s can not be ignored with respect to the width (25 zm) of the wavelength dispersion direction of one light receiving portion of the one-dimensional line sensor 15.
  • the spectral image in the case where the light to be measured incident on the spectrometer 10 includes many types of light of different wavelengths has a shape that is spread along the wavelength dispersion direction, as described above.
  • the spot images become discretely arranged in large numbers. Strictly speaking, although the amount of drift differs slightly for each wavelength, the difference is negligible.
  • the light of the wavelength of interest for example, the light of the center wavelength
  • the light of wavelengths near the wavelength of interest of interest are the environment As the temperature changes, the behavior is almost the same, that is, it is regarded as drifting by the same amount ⁇ s (0.2 5 / m / ° C).
  • the spectral image drifts by 0.25 nm / ° C. toward the short wavelength side (the direction of arrow B) as the environmental temperature rises. It is street.
  • the rotation of the grating 14 about the direction of the scribe line remains as a factor of the drift of the spectral image, as described above.
  • the spectroscope 10 of the present embodiment has the grating 14 so as to cancel out the drift ⁇ s (0.25 m / ° C. on the short wavelength side) of the spectrum image due to the above factors (3) and (4). It is what makes it rotate. A detailed description of the mechanism for rotating the grating 14 (grating mount 16 and base member 17) will be described later.
  • the diffracted light L 3 emitted from the grating 14 is deflected.
  • the spectrum image drifts in the wavelength dispersion direction on the light receiving surface of the one-dimensional line sensor 15.
  • the grating 14 is rotated in the direction in which the incident angle ⁇ of the measured light L 2 incident on the grating 14 becomes smaller (direction shown by the arrow C in FIG. 1), the spectral image becomes longer wavelength (arrow Will drift in the opposite direction). This is a drift in the direction to cancel the drift ⁇ s due to the above factor (3) (4).
  • the above incident angle a is an angle starting from the normal 14 a of the grating 14.
  • ⁇ a represents the focal length f of the retro-singlet lens 13, the incident angle a of the light to be measured L 2 incident on the grating 14, and the diffraction angle 3 of the diffracted light L 3 emitted from the trailing 14. It can be expressed by the following equation (1). Diffraction angle; 3 is also an angle starting from the normal 14a.
  • ⁇ a ⁇ s / f / (1 + cos a / cos / 3) ⁇ ⁇ ⁇ ⁇ (1)
  • the rotation angle ⁇ a of the grating 14 is the required rotation angle per ° C. of temperature change.
  • the values of ⁇ and 3 are angles with respect to light of the wavelength of interest (eg, light of center wavelength).
  • the base member 17 integrally supports the optical fiber 1 1, the mirror 1 2, the Litrow lens 1 3, and the one-dimensional line sensor 1 5.
  • the base member 17 corresponds to the "first support member” in the claims.
  • the base member 17 expands and contracts in accordance with its linear expansion coefficient pb.
  • the relative positional relationship between the optical fiber 1 1, the mirror 1 2, the Litrow lens 1 3, and the one-dimensional line sensor 1 5 installed on the base member 17 is constant in an isotropic angular relationship. It changes while keeping it.
  • the hanging mount 16 has a V-shaped member 21 supporting the hanging 14 and both end portions 2 2 and 3 of the V-shaped member 21.
  • the base member 17 is composed of connecting members 24 and 25 which are connected to each other.
  • 2A is a top view
  • FIG. 2B is a side view. In FIG. 2B, the portion corresponding to the V-shaped member 21 is dotted with dots.
  • the V-shaped member 21 of the grating mount 16 corresponds to the "second support member” in the claims.
  • the connecting members 24, 25 correspond to "transmission members”.
  • the grating mount 16 expands and contracts according to its linear expansion coefficient pm. Since the linear expansion coefficient pm of the mounting mount 16 is different from the linear expansion coefficient pb of the base member 17, the amount of expansion and contraction when the environmental temperature changes is equal to that of the mounting mount 16. It will be different from the ones of seventeen members.
  • V-shaped member 21 will be described in more detail.
  • the V-shaped member 21 has a configuration in which two arm members 26 and 27 are connected via an elastically deformable thin-walled deformable member 28. Also, as described above, the V-shaped member 21 is connected to the base member 17 at its both ends 22 and 23 via the connecting members 24 and 25 respectively. Further, both end portions 2 2 and 2 3 of the V-shaped member 21 are thin-walled deformable members which can be elastically deformed in the same manner as the deformable members 28 described above.
  • the base member 17 expands and contracts according to the linear expansion coefficient P b when the environmental temperature changes, the amount of expansion and contraction of the base member 17 is changed from the connecting members 24 and 25 to the V-shaped member 21 It is transmitted. That is, the distance between the connecting members 24 and 25 changes as the base member 17 expands and contracts, and the distance between the end portions 22 and 23 of the V-shaped member 21 also changes.
  • the end portions 2 2 and 2 3 of the V-shaped member 21 and the deformation member 28 are elastically deformed in accordance with the difference between the amount of expansion and contraction of the V-shaped member 21 and the amount of expansion and contraction of the base member 17. This elastic deformation is all absorbed by the change in bending angle.
  • the arm members 26 and 27 of the V-shaped member 21 expand and contract in accordance with its linear expansion coefficient pm.
  • the center of one end 22 of the V-shaped member 21 is “I”
  • the center of the other end 23 is “K”
  • the center of the deformation member 28 is “J”
  • the length of the side IK of the triangle IJK (the distance between both ends 2 2 and 2 3) changes according to the amount of expansion and contraction of the base member 17.
  • the apex angle a 'or the apex angle a represents the bending angle of the deformation member 2 8.
  • the change in bending angle (apex angle a ⁇ a ') of the deformation member 2 8 is elastic deformation.
  • the apex angle a of the triangle IJK is the environmental temperature. As it becomes larger as it rises, it can be seen that it coincides with the direction of arrow C shown in Fig. 1 (the direction in which the incident angle ⁇ decreases).
  • the wavelength dispersion direction is orthogonal to the axial direction of the arm member 26 (direction perpendicular to the paper surface). It is attached. As a result, the direction of the marking line of the trailing edge 14 is parallel to the axial direction of the arm member 26. Note that the difference between the linear expansion coefficients of the arm member 26 and the grating 14 is different. In order to prevent the occurrence of deflection due to, for example, bonding is performed by using a resilient adhesive.
  • the arm member 2 6 of the V-shaped member 21 corresponds to the “rotating member” in the claims.
  • the grating 14 mounted on the beam member 2 6 always rotates slightly with the phantom member 2 6 about the direction of the marking line of the falling edge 1 4 become. And when the environmental temperature rises In Fig. 1, it slightly rotates in the direction (arrow C direction) where the incident angle 0!
  • the arm member 26 of the V-shaped member 21 supporting the grating 14 is configured to rotate by the above rotation angle ⁇ a when the temperature change is 1 ° C., the grating 14 can be obtained.
  • the rotation angle ⁇ a of will actually be realized.
  • the base member 17 and the grating mount 1 6 expand and contract different amounts by force S, and the amount of expansion and contraction
  • the drattering 14 slightly rotates by a predetermined angle to reliably cancel the drift of the spectral image in the direction of wavelength dispersion, so the spectrum on the light receiving surface of the one-dimensional array sensor 15
  • the position of the image can be kept at the same position even if the environmental temperature changes. -For this reason, it is difficult to keep the ambient temperature of the spectrometer 10 constant, and even when the ambient temperature changes in the range from 200 ° C to + 60 ° C, the measurement accuracy is stable. It is possible to measure the spectrum of light.
  • the one-dimensional line sensor 15 is used as an element for receiving a spectral image, spectrum images of many wavelengths can be obtained even when the grating 14 is fixed. It can receive light simultaneously. That is, when the light to be measured includes many kinds of light having different wavelengths, the intensity of each wavelength of the light to be measured can be easily measured.
  • Such a spectroscope 10 is, for example, a semiconductor laser as a light source (a light source in which a plurality of predetermined frequency lights are polymerized) in a wavelength division multiplexing (WDM) type optical communication system (for example, 1. Minutes of light emitted from 5 m band) It is suitable for use as a device (wavelength monitor) that monitors the intensity characteristics of each frequency.
  • WDM wavelength division multiplexing
  • the spectroscope 10 of this embodiment is used as a wavelength monitor, and the measurement results by the By feeding back to the laser, even when the environmental temperature changes, the intensity of the light emitted from the semiconductor laser can be kept constant for each wavelength, and stable optical communication can be achieved.
  • the present invention can be applied to a configuration using a transmissive diffraction grating. Also, it can be applied to a spectroscope using one concave diffraction grating instead of the plane diffraction grating and the Littrow lens. Furthermore, the collimating optical system and the focusing optical system may be separately disposed instead of one retro-linear lens. The t collimating optical system and the focusing optical system may be either a dioptric system or a catoptric system. Good Re. Also, although gratings (gratings) were used as wavelength dispersion elements, prisms can also be used.
  • the present invention can be easily applied to any of such various forms of spectrometers. That is, the wavelength dispersive element of each spectroscope is the arm member
  • the drift of the spectral image in the direction of wavelength dispersion can be canceled by simply attaching it to a rotating member similar to 26. That is, the configuration of the temperature-compensated spectroscope to which the present invention is applied does not become complicated.
  • the wavelength dispersion direction must be orthogonal to the axial direction of the rotary member.
  • the linear expansion coefficient pm of the support member (corresponding to the V-shaped member 21) including the rotating member, and the linear expansion coefficient of the base member supporting the other members (such as the optical fiber 11) excluding the wavelength dispersive element It is also necessary to properly select various parameters such as b.
  • the rotation angle ⁇ a of the wavelength dispersive element necessary for temperature compensation should be determined when designing the individual spectrometers. Is preferred.
  • the one-dimensional line sensor 15 is used as an element for detecting a spectral image, but instead of the one-dimensional line sensor 15, an emission slit and a detector can be used.
  • the exit slit (detecting element) has one elongated opening, which is arranged to coincide with the formation position of the spectral image. Then, the partial image of the spectral image that has passed through the aperture is received by the detector.
  • a spectroscope having such a configuration is also suitable for use as the above-mentioned wavelength monitor in a wavelength division multiplexing (WDM) optical communication system.
  • WDM wavelength division multiplexing
  • the optical fiber 11 is used as an incident member for causing the light to be measured to be incident on the spectrometer 10.
  • an entrance slit can be used.
  • the entrance slit has an elongated single opening.
  • the both-side telecentric optical system is configured by the retro one lens 13 and the grating 14, but the present invention is not limited to this.
  • the present invention can also be applied to a configuration in which the telecentricity of the retro one lens 13 and the grating 14 is shifted.
  • the present invention can also be applied to a configuration using transmission-type draying.
  • a simple temperature compensation mechanism can be incorporated which can reliably reduce the drift in the direction of wavelength dispersion of the spectral image due to the change of the environmental temperature regardless of the form of the spectroscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

分光器 技術分野
本発明は、 グレーティングゃプリズムなどの波長分散素子を用いた分 光器に関する。
背景の技術
従来より、 波長分散素子を用いた分光器は、 物理分析や化学分析など の様々な分野において広く使用されている。 ただし、 分光器の測定波長 精度は環境温度の変化による影響を受けて不安定になりやすいため、 分 光器を使用する際の環境温度は原則として一定に保たれる。 環境温度が 一定に保たれていれば、 分光器に入射した光のスぺクトル像が波長分散 方向にドリフトする事態をほぼ回避することができ、 分光器の測定波長 精度が安定化する。
しかし、 分光器の使用環境によっては温度を一定に保つことが難しい 場合もある。 このため、 近年では、 環境温度が変化してもスペクトル像 が波長分散方向にドリフトしないように分光器を構成することが望ま れている。 このような温度補償機構付き分光器として既に提案されてい るものは、 波長分散素子として凹面反射型のグレーティングを用い、 ス ぺクトル像を検出するディテク夕としてダイオードアレイを用いた分 光器がほとんどである。
例えば特開平 8 _ 2 5 4 4 6 3号公報ゃ特開平 9 一 2 1 8 0 9 1号 公報には、 ダイオードアレイの熱膨張係数と適合するようにグレーティ ングホルダとケーシングの熱膨張係数を選択し、 グレーティングホルダ の形状をケーシングと適合させることで、 環境温度の変化によるスぺク トル像のドリフトを軽減することが提案されている。
また、 特開 2 0 0 0— 2 9 8 0 6 6号公報には、 グレーティングゃダ ィォードアレイの保持の仕方を工夫し、 グレーティング保持部材とダイ ォ一ドアレイ保持部材とキャリアとの位置決め搆造を最適化すること で、 環境温度の変化によるスペクトル像のドリフトを軽減することが提 案されている。
しかしながら、 上記した従来の温度補償機構付き分光器において提案 された温度補償技術は、 飽くまでも、 波長分散素子として凹面反射型の グレーティングを用い、 ディテクタとしてダイォードアレイを用いた分 光器に固有の技術である。 このため、 その他の様々な形態の分光器に上 記の温度補償技術を適用することは困難であり、 無理に適用しょうとす ると構成が複雑に'なつてしまう。 発明の開示
本発明の目的は、 環境温度の変化によるスペクトル像の波長分散方向 のドリフトを分光器の形態に関わらず確実に軽減できる温度補償機構 が組み込まれた簡素な分光器を提供することにある。
本発明の第 1の態様による分光器は、 被測定光を取り込む入射部材と、 前記入射部材からの前記被測定光を波長に応じて分散させる波長分散 素子と、 前記波長分散素子による分散後の前記被測定光を集光してスぺ クトル像を形成する集光光学系と、 前記スぺクトル像を検出する検出素 子とを備えた分光器において、 前記波長分散素子は、 回転可能に設けら れ、 かつ環境温度の変化に応じて、 前記波長分散素子を回転させる回転 機構を設け、 環境温度の変化による前記スぺクトル像の波長分散方向の ドリフトを相殺するように構成したことを特徴とする。
本発明の第 1の態様による前記分光器は、 好ましくは、 前記波長分散 素子として反射型グレーティングを採用し、 かつ、 温度変化 1 °Cあたり の前記波長分散素子の回転量 ^ aは、 温度変化 1 °Cあたりの前記スぺク トル像のドリフト量を s、 前記集光光学系の焦点距離を f 、 前記波長 分散素子に入射する被測定光の入射角度を α、 前記波長分散素子から射 出される回折光の回折角度を |3としたときに次式
. A a. = A s / i / ( l + c o s a / c o s jS )
で表される。 ただし、 α、 /3共、 前記波長分散素子グレーティング面法 線を基準として測った角度である。
本発明の第 2の態様による分光器は、 被測定光を取り込む入射部材と, 前記入射部材からの前記被測定光を波長に応じて分散させる波長分散 素子と、 前記波長分散素子による分散後の前記被測定光を集光してスぺ クトル像を形成する集光光学系と、 前記スぺクトル像を検出する検出素 子と、 前記入射部材と前記集光光学系と前記検出素子とを一体に支持す る第 1支持部材と、 線膨張係数が前記第 1支持部材とは異なる材料によ つて構成され、 前記波長分散素子を支持する第 2支持部材と、 環境温度 が変化したときに、 前記第 1支持部材の伸縮量を前記第 2支持部材に伝 達する伝達部材とを備えたものであり、 さらに、 前記第 2支持部材は、 環境温度が変化したときに、 前記伝達部材から伝達される前記第 1支持 部材の伸縮量と当該第 2支持部材の伸縮量との相異に応じて弾性変形 する変形部材を含むと共に、 該変形部材の弹性変形に応じて微小回転す る回転部材を含み、 前記波長分散素子は、 その波長分散方向が前記回転 部材の軸方向に対して直交する向きで、 前記回転部材に取り付けられて いる。
本発明の第 2の態様による好ましい分光器において、 環境温度が変化 したときの前記回転部材の回転角度および回転方向が、 前記スぺクトル 像の波長分散方向のドリフトを相殺するように予め設定されたもので ある。
本発明の第 2の態様による好ましい分光器において、 前記第 2支持部 材は、 2つのアーム部材が薄肉状の前記変形部材を介して連結され、 前 記 2つのアーム部材のうち一方が前記回転部材を構成している V字形 部材であり、 前記伝達部材は、 前記 V字形部材の両端部と前記第 1支持 部材とを各々連結すると共に、 前記 2つのアーム部材のなす角度を前記 第 1支持部材の伸縮に応じて変化させる部材である。
本発明の第 2の態様による好ましい分光器において、 環境温度が 1 °C 変化したときの前記スぺク トル像の波長分散方向のドリフトを相殺可 能な前記回転部材の回転角度を Δ aとするとき、 前記第 1支持部材の線 膨張係数 bと、 前記第 2支持部材の線膨張係数 と、 前記 2つのァ —ム部材のうち一方の長さ yおよび他方の長さ zと、 前記 2つのァ一ム 部材のなす角度 aとは、 以下の関係式を満足するものとすることができ る。
y / z = { A土 (A2— 4 ) } 1 2
A = 2 cos a + sin a - A a /( - m) 図面の簡単な説明
図 1は、 本実施形態の分光器 1 0の全体構成を示す図である。
図 2 A及び図 2 Bは、 グレーティングマウント 1 6の構造を示す図で ある。
図 3は、 グレーティングマウント 1 6の変形を説明する図である。 発明の実施の形態
以下、 図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の分光器 1 0は、 図 1に示すように、 オプティカルフブイ ノ 1 1と、 ミラ一 1 2と、 リ ト口一レンズ 1 3と、 ダレ一ティング 1 4 と、 1次元ラインセンサ 1 5と、 グレーティングマウント 1 6と、 ベー ス部材 1 7とで構成されている。 なお、 オプティカルファイバ 1 1の前 段には不図示の光源が配置されている。
また、 分光器 1 0を構成する光学素子(1 1〜 1 5 )のうち、 ォプティ カルフアイノ、 1 1,ミラ一 1 2 ,リ トロ一レンズ 1 3 , 1次元ラインセンサ 1 5は、 ベ一ス部材 1 7の上に設置され、 グレーティング 1 4は、 ダレ 一ティングマウント 1 6の上に設置され、 このグレ一ティングマウント 1 6は、 ベ一ス部材 1 7の上に設置されている。
本実施形態の分光器 1 0は、 環境温度が一 2 0 °Cから + 6 0 °Cまでの 範囲において使用可能な温度補償機能付き分光器である。
先ず初めに、 光学素子(1 1〜 1 5 )の構成や機能の説明を行い、 その 後で、 グレーティングマウント 1 6とベース部材 1 7について具体的に 説明する。
オプティカルファイバ 1 1は、 光源 (不図示)からの被測定光を分光器 1 0の内部に取り込むための部材 (例えばシングルモードファイバ) で あり、 その光射出部の直径は例えば 1 0 i mである。 オプティカルファ ィバ 1 1は、 請求項の 「入射部材」 に対応する。
ミラー 1 2は、 オプティカルファイバ 1 1からの被測定光を反射して リ トローレンズ 1 3に導くための光学素子である。
リ トローレンズ 1 3は、 ミラ一 1 2からの被測定光 L 1をコリメート する機能と、 ダレ一ティング 1 4からの回折光 L 3 (後述する)を集光し てスペクトル像を形成する機能とを兼ね備えたレンズである (焦点距離 は例えば 5 0 mm)。 リ トロ一レンズ 1 3によってコリメ一卜された被 測定光 L 2は、 グレーティング 1 4に導かれ、 リ トローレンズ.1 3によ つて集光された被測定光 L 4は、 1次元ラインセンサ 1 5に導かれる。 リ トローレンズ 1 3は、 請求項の 「集光光学系」 に対応する。
グレーティング 1 4は、 細長い多数の溝が 1次元配列された反射型平 面回折格子である。 多数の溝の配列方向は、 ダレ一ティング 1 4の波長 分散方向に相当する。 グレーティング 1 4は、 オプティカルファイバ 1 1からミラー 1 2とリ トローレンズ 1 3を介して導かれた被測定光 L 2を波長に応じて分散させる。 ダレ一ティング 1 4による分散後の被測 定光が上記の回折光 L 3に対応する。 グレーティング 1 4は、 請求項の 「波長分散素子」 に対応する。
また、 本実施形態において、 リ トロ一レンズ 1 3とグレーティング 1 4とは、 両側テレセントリック光学系を構成している。 すなわち、 ダレ 一ティング 1 4を開口絞りと見なして、 リ トローレンズ 1 3の焦点位置 に配置している。
1次元ラインセンサ 1 5は、 多数の受光部が 1次元配列された受光面 を有し、 この受光面がリ トロ一レンズ 1 3の焦点位置 (スペクトル像が 形成される位置) と一致するように配置されている。 1次元ラインセン サ 1 5は、 リ トローレンズ 1 3によって形成されたスぺクトル像を検出 する検出素子である。 なお、 多数の受光部の配列方向は、 ダレ一ティン グ 1 4の波長分散方向に相当する。
また、 各々の受光部の波長分散方向の幅は、 スペクトル像の検出に必 要な波長分解能に応じて設定されている (例えば 2 5 m)。 1次元ラ インセンサ 1 5の受光面に配列された受光部の数は、 スペクトル像の検 出に必要な波長範囲に応じて、 この波長範囲を余すところなく検出でき るように設定される。
上記した光学素子(1 1〜1 5 )において、 オプティカルファイバ 1 1 から分光器 1 0の内部に入射した被測定光は、 リ トロ一レンズ 1 3でコ リメ一トされ、 グレ一ティング 1 4で回折され、 再びリ トローレンズ 1 3に戻って集光される。 その結果、 1次元ラインセンサ 1 5の受光面上 にはスぺク トル像が形成され、 受光面に配列された各々の受光部によつ てスペクトル像が検出される。 .
ここで、 分光器 1 0に入射する被測定光が単色光 (任意の単一波長の 光) である場合、 スペクトル像は、 オプティカルファイバ 1 1の光射出 部とほぼ相似なスポット状になる。 また、 被測定光が波長の異なる多種 類の光を含む場合、 スペクトル像は、 波長分散方向に沿って広がった形 状となる。 波長分散方向に沿ってスポット状のスぺクトル像が離散的に 多数配列された状態となることもある。
ところで、 1次元ラインセンサ 1 5の受光面上においてスペクトル像 が波長分散方向にドリフトすると、 分光器 1 0の測定精度が低下してし まう。 このようなスペクトル像の波長分散方向のドリフトは、 環境温度 が変化したときに生じやすく、次の(1 )〜( 5 )が主な要因として考えられ る。
( Γ)は、 リ トローレンズ 1 3の焦点距離の変動である。 (2 )は、 空気の 屈折率の変動である。 (3 )は、 グレーティング 1 4の伸縮による格子定 数の変動である。 (4 )は、 ベ一ス部材 1 7の伸縮によるオプティカルフ アイバ 1 1の波長分散方向への移動である。 (5 )は、 グレーティング 1 4の刻線方向を中心とした回転である。
ただし、 上記した要因(1 )〜(5 )のうち、 (1 )リ トロ一レンズ 1 3の焦 点距離の変動は、 光学設計により実用上問題とならない程度に小さく抑 えることができる。 また、 (2 )空気の屈折率の変動は、 環境温度の変化 幅が 1 0 0 °C程度であれば問題とならない。 すなわち、 環境温度が 1 0 0 °C程度変化しても、 空気中の光の波長変化は無視できる程度にしかな らない。
すなわち、 本実施形態の分光器 1 0において実際に考慮するべきスぺ クトル像のドリフトの要因は、 (3 )グレーティング 1 4の格子定数の変 動と、 (4 )オプティカルファイバ 1 1の波長分散方向への移動と、 (5 ) グレーティング 1 4の刻線方向を中心とした回転との 3つである。
本実施形態の分光器 1 0の場合、 環境温度が最低温度(- 2 0 °C)から 最高温度(+ 6 0 °C)まで 8 0 °C上昇したときに、 スぺクトル像が上記し た要因(3 )( 4 )によって 2 0 だけ短波長側にドリフトするよう設計 されているとする。 短波長側とは図 1に矢印 Bで示す方向である。
また、 環境温度の変化によるスペクトル像のドリフトは、 温度変化に ほぼ比例している。 このため、 スペクトル像の温度変化 1 °Cあたりのド リフト量 A s W:、 2 0 im/8 0°C= 0.2 5 m/°Cとなる。 このドリフ ト量 A sは、 1次元ラインセンサ 1 5の 1つの受光部の波長分散方向の 幅 (2 5 zm) に対して無視できない量である。
なお、 分光器 1 0に入射する被測定光が波長の異なる多種類の光を含 む場合のスペクトル像は、 既に述べたように、 波長分散方向に沿って広 がった形状となったり、 スポット像が離散的に多数配列された状態とな つたりする。 厳密にいえば、 各々の波長ごとにドリフト量は少し異なる が、 その相違は無視できる程度である。
このため、 本実施形態では、 分光器 1 0に入射する被測定光のうち、 着目する波長の光 (例えば中心波長の光) と、 この着目する波長前後近 傍の波長の光とは、 環境温度の変化によってほぼ同じ挙動を示す、 つま り、 同じ量△ sだけドリフトする(0.2 5 /m/°C)と見なすことにする。 さて、 上記の要因(3 )(4)により、環境温度の上昇に伴ってスぺクトル 像が短波長側 (矢印 Bの方向)に 0.2 5 n m/°Cだけドリフトすることは、 既に説明した通りである。 また、 スペクトル像のドリフトの要因には、 あと、 (5)グレーティング 14の刻線方向を中心とした回転が残されて いることも、 既に説明した通りである。
本実施形態の分光器 1 0は、上記の要因(3)(4)によるスぺクトル像の ドリフト△ s (短波長側に 0.2 5 m/°C)を相殺するように、グレーティ ング 14を回転させるものである。 グレーティング 14を回転させる機 構(グレーティングマウント 1 6,ベ一ス部材 1 7) についての詳細な説 明は後述する。
グレーティング 1 4が刻線方向 (図 1の紙面に垂直な方向) を中心と して回転すると、 グレーティング 1 4から射出される回折光 L 3は偏向 され、 その結果、 1次元ラインセンサ 1 5の受光面上においてスぺクト ル像が波長分散方向にドリフトする。
このとき、 グレーティング 14に入射する被測定光 L 2の入射角度 α が小さくなる方向 (図 1に矢印 Cで示す方向) にグレーティング 14を 回転させると、 この回転によってスペクトル像は長波長側 (矢印 Βとは 反対の方向) にドリフトすることになる。 これは、 上記の要因(3)(4) によるドリフト Δ sを相殺する方向へのドリフトである。 上記の入射角 度 aは、 グレーティング 14の法線 14 aを起点とする角度である。 また、 典型的にはグレーティング 14は反射型であって、 そのとき上 記の要因(3 )(4)によるドリフト△ s (= 0.2 5 m/°C)を相殺可能なグ レーティング 14の回転角度△ aは、 リ トロ一レンズ 1 3の焦点距離 f と、 グレーティング 14に入射する被測定光 L 2の入射角度 aと、 ダレ —ティング 14から射出される回折光 L 3の回折角度 3とを用いて、 次 の式(1)で表すことができる。 回折角度 ;3も法線 1 4 aを起点とする角 度である。
Δ a = Δ s / f /( 1 + cos a /cos /3 ) ···( 1 )
なお、 上記式(1)が成立するのは、 空気中の光の波長変動を無視でき ることが前提となっている。 グレーティング 1 4の回転角度△ aは、 .温 度変化 1 °Cあたりの必要な回転角度である。
上記式( 1 )に基づいて具体的なダレ一ティング 1 4の回転角度 Δ aを 計算すると、 Δ a = 2.7 6 X 1 0-6radian/°C,となる。 この計算に当た つては、 Δ s = 0.2 5 m/V, f = 5 0 mm, = 7 0 ° , j3 = 6 5 ° を用 いた。 α, 3の値は、 着目する波長の光 (例えば中心波長の光) に関する 角度である。
このように、 環境温度が変化したときに、 グレーティング 1 4を入射 角度ひが小さくなる方向 (矢印 Cの方向) に上記した回転角度△ aだけ 回転させれば、 上記の要因(3)(4)によるスぺクトル像のドリフト Δ s (短波長側に 0.2 5 ^m/°C)を相殺することができる。
次に、 グレーティング 14を回転させる機構 (グレーティングマウン ト 1 6,ベース部材 1 7)について、詳細に説明する。この機構の特徴は、 ベース部材 1 7とダレ一ティングマウント 1 6の線膨脹係数の違いを 利用した点にある。
ベース部材 1 7は、 才プティカルファイバ 1 1,ミラー 1 2 ,リ トロー レンズ 1 3 , 1次元ラインセンサ 1 5を一体に支持している。このベース 部材 1 7は、 請求項の 「第 1支持部材」 に対応する。 本実施形態のベー ス部材 1 7は、線膨張係数 p b(= 24.3 X 1 O-sdegree-i)のアルミニゥ ム合金によって構成されている。
環境温度が変化したとき、 ベース部材 1 7は、 自身の線膨張係数 p b に応じて伸縮する。 なお、 ベ一ス部材 1 7の上に設置されたォプティカ ルファイバ 1 1 ,ミラー 1 2,リ トローレンズ 1 3, 1次元ラインセンサ 1 5の相対位置関係は、 等方的に角度関係は一定に保ったまま変化する。 ダレ一ティングマウント 1 6は、 図 2A、 図 2 Bに示すように、 ダレ —ティング 1 4を支持する V字形部材 2 1と、 この V字形部材 2 1の両 端部 2 2,2 3をベース部材 1 7に各々連結する連結部材 2 4,2 5とで 構成されている。 図 2 Aは上面図、 図 2 Bは側面図である。 図 2 Bにお いて、 V字形部材 2 1に対応する部分には、 点ハッチングを付した。 本実施形態のグレーティングマウント 1 6は、線膨張係数 p m(= 2 3. 6 X 1 0-6degree-i)のアルミニウム合金によって構成されている。 グレ —ティングマウント 1 6の V字形部材 2 1は請求項の 「第 2支持部材」 に対応する。 連結部材 24,2 5は 「伝達部材」 に対応する。
環境温度が変化したとき、 グレーティングマウント 1 6は、 自身の線 膨張係数 p mに応じて伸縮する。 なお、 ダレ一ティングマウント 1 6の 線膨張係数 pmがべ一ス部材 1 7の線膨張係数 p bとは異なるため、 環 境温度が変化したときの伸縮量は、 ダレ一ティングマウント 1 6とべ一 ス部材 1 7とで異なることになる。
ここで、 V字形部材 2 1をさらに詳しく説明する。
V字形部材 2 1は、 2つのアーム部材 2 6,2 7が、 弾性変形可能な薄 肉状の変形部材 2 8を介して連結された構成となっている。.また、 V字 形部材 2 1は、 上記の通り、 その両端部 2 2, 2 3が連結部材 24, 2 5 を介してベース部材 1 7に各々連結されている。 さらに、 V字形部材 2 1の両端部 2 2,2 3は、 上記した変形部材 28と同様、 弹性変形可能な 薄肉状の変形部材である。
このため、 環境温度が変化したときにベ一ス部材 1 7が線膨張係数 P bに応じて伸縮すると、 ベース部材 1 7の伸縮量は、 連結部材 24,2 5 から V字形部材 2 1に伝達される。 つまり、 ベ一ス部材 1 7が伸縮した 分だけ連結部材 24,2 5の距離が変化し、 V字形部材 2 1の両端部 2 2, 2 3の距離も変化することになる。
また、 V字形部材 2 1の両端部 2 2,2 3と変形部材 2 8とは、 自身の 伸縮量とベース部材 1 7の伸縮量との相異に応じて弾性変形する。 この 弾性変形は、全て、折れ曲がり角度の変化によって吸収される。そして、
V字形部材 2 1のアーム部材 2 6,2 7は、自身の線膨張係数 p mに応じ て伸縮する。
ここで、 V字形部材 2 1の一端部 22の中心を「 I」、 他端部 2 3の中 心を「K」、 変形部材 28の中心を「 J」とし、 3つの中心 I , J ,Κを結ん で得られる三角形 I J K (図 3) に注目して、 環境温度の変化による V 字形部材 2 1の変形、 つまり三角形 I J Kの変形について考える。
環境温度が変化すると、 三角形 I J Kの辺 I Kの長さ (両端部 2 2, 2 3の距離) は、 ベ一ス部材 1 7の伸縮量に応じて変化する。 これに対 し、 残りの 2辺の長さ、 つまり、 辺 I Jの長さ (アーム部材 27の長さ) と、 辺 J Kの長さ (アーム部材 2 6の長さ) とは、 自身の V字形部材 2 1の伸縮量に応じて変化する。 したがって、 環境温度が変化した後の三角形 I ' J 'K 'は、 元々の三角 形' I J Κとは相似形にならない。 また、 三角形 I ' J の頂角 a ' ( = Ζ·
1 ' J 'Κ ') は、 三角形 I J Kの頂角 a ( = Z I J K ) とは異なることに なる。 なお、 頂角 a 'または頂角 aは、 変形部材 2 8 .の折れ曲がり角度を 表す。 変形部材 2 8の折れ曲がり角度の変化 (頂角 a→a ') は、 弾性変 形である。 ·
さらに、 変形部材 2 8の弾性変形に応じて三角形 I J Kの頂角 aが変 化すると、 この頂角 aを挟む 2つの辺 J K, J I (ァ一ム部材 2 6 , 2 7 ) は、 なす角度が変化し、 結果として微小回転することになる。 この微小 回転の軸方向は、 三角形 I J Kによる平面 (紙面に平行な平面) に対し て直交する。
また、 環境温度が上昇したときに三角形 I 】 の辺】 (ァ一ム部材
2 6 ) が微小回転する方.向 (回転方向) は、 自身の線膨張係数 がべ 一ス部材 1 Ίの線膨張係数 p bより小さいことを考慮すると、 三角形 I J Kの頂角 aは環境温度の上昇によって大きくなるため、 図 1に示す矢 印 Cの方向 (入射角度 αが小さくなる方向) と一致することが分かる。
このため、 グレーティング 1 4は、 V字形部材 2 1の一方のアーム部 材 2 6の上に、 波長分散方向がアーム部材 2 6の軸方向 (紙面に垂直な 方向) に対して直交する向きで取り付けられる。 これにより、 ダレ一テ イング 1 4の刻線方向は、 アーム部材 2 6の軸方向に対して平行となる なお、 ァ一ム部材 2 6とグレーティング 1 4とは、 それぞれの線膨張 係数の差によってたわみが生じないように、 例えば弾力性のある接着剤 を使用するなどの方式で接合される。 V字形部材 2 1のアーム部材 2 6 は、 請求項の 「回転部材」 に対応する。
このようにしてァ一ム部材 2 6の上に取り付けられたグレーティン グ 1 4は、 常に、 ァ一ム部材 2 6と共に、 ダレ一ティング 1 4の刻線方 向を中心に微小回転することになる。 そして、 環境温度が上昇したとき には、 図 1 示す入射角度 0!が小さくなる方向 (矢印 Cの方向) に微小 回転する。
ここで、 前述した要因(3 )(4)によるスぺクトル像のドリフト△ s (= 0.2 5 m/°C)を相殺可能なグレーティング 1 4の回転角度△ a、 つま り、 環境温度が 1 °C変化したときに必要な回転角度△ aは、 上記式(1) の通りであり、 具体的には A a= 2.7 6 X 1 0 -Sradian である。
したがって、 グレーティング 1 4を支持している V字形部材 2 1のァ —ム部材 2 6が温度変化 1 °Cのときに上記の回転角度 Δ aだけ回転す るように構成すれば、 グレーティング 1 4の回転角度 Δ aが実際に実現 することになる。
温度変化 1 °Cのときのアーム部材 2 6の回転角度 Δ a = a '― aとす るとき、 この回転角度△ aと、 ベ一ス部材 1 7の線膨張係数 i) bと、 グ レーティングマウント 1 6の線膨張係数 p mと、 ァ一ム部材 2 6 (辺 J K)の長さ yと、 アーム部材 2 7 (辺】 I )の長さ zと、 アーム部材 2 6 , 2 7のなす角度 a (=Z I J K)とは、 次の関係式(2 ),(3)を満足する。
y/z = { A土 "(As— 4)} 12 --{2)
Α= 2 cos a +sina ·厶 a/ b—) 0 m) ···( 3 )
この関係式(2), (3)に対して、 本実施形態の分光器 1 0における具体 的な数値 (a = 9 0 ° ,A a = 2.7 6 X 1 0 -eradian, p b = 2 4.3 X 1 0 '6degree-i, P m= 2 3.6 X 1 0 -edegree"1)を代入することにより、 パラメ一タ Aの値ば A= 3.94 と求められ、 結果として、 ァ一ム部材
2 6(辺 J K)とアーム部材 2 7 (辺】 I)との長さの比(y/z)は y/z =
3.6 7 (または 1 /3.6 7 ) と求められる。
得られた結果に基づいてアーム部材 2 6,2 7 (辺 J K, J I)の長さ y, zを決定し、ァ一ム部材 2 6,2 7のなす角度 aが 9 0 ° となるように V 字形部材 2 1を構築すれば、 環境温度が 1°C上昇したときに、 アーム部 材 2 6を上記の回転角度△ aだけ図 1の矢印 Cの方向に微小回転させ ることができる。 . その結果、 アーム部材 2 6の上に取り付けられたグレーティング 1 4 も、 環境温度が 1 °C上昇したときに、 上記の回転角度 Δ aだけ図 1の矢 印 Cの方向(入射角度 αが小さくなる方向)に微小回転することになる。 したがって、 前述した要因(3 )( 4 )によるスペクトル像のドリフト△ s (短波長側に 0 . 2 5 Ai m/°C)を相殺することができる。
上記した本実施形態の分光器 1 0によれば、 環境温度が変化したとき にベース部材 1 7とグレーティングマウント 1 6 (V字形部材 2 1 )と力 S 異なる量の伸縮をし、 この伸縮量の違いに応じてダレ一ティング 1 4が 予め定めた角度だけ微小回転して、 スペクトル像の波長分散方向のドリ フトを確実に相殺するので、 1次元アレイセンサ 1 5の受光面における スぺクトル像の位置を環境温度が変化しても同じ位置に留めることが できる。 - このため、 分光器 1 0の環境温度を一定に保つことが難しく、 環境温 度が一 2 0 °Cから + 6 0 °Cまでの範囲において変化した場合でも、 安定 した測定精度による被測定光のスぺクトル測定が可能となる。
また、 特別に環境温度をコントロールする必要もなく、 分光器 1 0自 体に環境温度をコントロール機能を設ける必要もないため、 安価で使い やすい分光器 1 0が実現できる。
さらに、 本実施形態の分光器 1 0では、 スペクトル像を受光する素子 として 1次元ラインセンサ 1 5を用いたので、 グレーティング 1 4を固 定させた状態でも、 多数の波長のスぺクトル像を同時に受光することが できる。 つまり、 被測定光が波長の異なる多種類の光を含む場合、 被測 定光の波長ごとの強度を簡単に測定することができる。
このような分光器 1 0は、 例えば、 波長分割多重 (WD M)方式の光通 信システムにおいて、 光源である半導体レーザ (予め決められた複数の 周波数光が重合された光源) (例えば 1 . 5 m帯) から射出される光を分 光し、 各々の周波数ごとの強度特性を監視する装置 (波長モニター) と して用いるのに好適である。
光通信機器には一般に厳しい環境温度条件の下で作動することが要 求されるため、 本実施形態の分光器 1 0を波長モニタ一として用い、 分 光器 1 0による測定結果を半導体レ一ザにフィ一ドバックすることで、 環境温度が変化した場合でも、 半導体レーザから射出される光の強度を 波長ごとに一定に保つことができ、 安定した光通信が可能となる。
なお、 上記した実施形態では、 反射型の回折格子を用いた分光器 1 0 の例を説明したが、 透過型の回折格子を用いた構成にも本発明を適用で きる。 また、 平面回折格子およびリ トローレンズに代えて、 1つの凹面 回折格子を用いた分光器にも適用できる。 さらに、 1つのリ トロ一レン ズに代えて、 コリメート光学系と集光光学系とを別々に配置しても良い t コリメート光学系と集光光学系とは、 屈折光学系でも反射光学系でも良 レ 。 また、 波長分散素子としてグ,レーティング(回折格子)を用いたが、 プリズムを用いることもできる。
このような様々な形態の分光器の何れにも、 本発明は簡単に適用する ことができる。 つまり、 各々の分光器の波長分散素子を上記アーム部材
2 6と同様の回転部材に取り付けるだけで、 スぺクトル像の波長分散方 向のドリフトを相殺することができる。 つまり、 本発明を適用した温度 補償機能付き分光器の構成が複雑になることはない。
ただし、 波長分散素子を回転部材に取り付けるに当たっては、 波長分 散方向を回転部材の軸方向に対して直交させなければならない。 また、 この回転部材を含む支持部材 (V字形部材 2 1に対応)の線膨張係数 p m や、 波長分散素子を除く他の部材 (オプティカルファイバ 1 1など)を支 持するベース部材の線膨張係数 bなどの各種パラメータを適切に選 択することも必要である。 さらに、 温度補償に必要な波長分散素子の回 転角度 Δ aは、 個々の分光器を設計する際に、 最適な値を決定すること が好ましい。
また、 上記した実施形態では、 スペクトル像を検出する素子として 1 次元ラインセンサ 1 5を用いたが、 この 1次元ラインセンサ 1 5に代え て、 射出スリットとディテクタとを用いることもできる。 射出スリット (検出素子) は、 細長い 1つの開口部を有し、 この開口部がスペクトル 像の形成位置と一致するように配置される。 そして、 スペクトル像のう ち開口部を通過した部分像がディテクタにより受光される。
この構成では、 射出スリットおよびディテクタを波長分散方向に沿つ て移動させたり、 波長分散素子を波長分散方向と直交する軸まわりに回 転させたりすることで、 異なる波長の光を測定することができる。 この ような構成の分光器も、 波長分割多重 (W D M)方式の光通信システムに おける上記の波長モニタ一として用いるのに好適である。
さら.に、 上記した実施形態では、 分光器 1 0に被測定光を入射させる 入射部材としてオプティカルファイバ 1 1を用いたが、 これに代えて入 射スリットを用いることもできる。 入射スリットは、 細長い 1つの開口 部を有する。
また、 上記した実施形態では、 リ トロ一レンズ 1 3とグレーティング 1 4とで両側テレセントリック光学系を構成したが、 本発明はこれに限 定されない。 リ トロ一レンズ 1 3とグレーティング 1 4とのテレセン性 がずれた構成でも、 本発明を適用できる。
また、 上記した実施形態では、 反射型のダレ一ティングを用いた構成 としたが、 本発明は透過型のダレ一ティングを用いた構成でも適用でき る。
以上説明したように、 本発明によれば、 環境温度の変化によるスぺク トル像の波長分散方向のドリフトを分光器の形態に関わらず確実に軽 減できる温度補償機構が組み込まれた簡素な分光器を提供できる。

Claims

請 求 の 範 囲
1 . 被測定光を取り込む入射部材と、
前記入射部材からの前記被測定光を波長に応じて分散させる波長分散 素子と、
前記波長分散素子による分散後の前記被測定光を集光してスぺクト ル像を形成する集光光学系と、 前記スぺクトル像を検出する検出素子と を備えた分光器において
前記波長分散素子は、 回転可能に設けられ、 かつ環境温度の変化に応 じて、 前記波長分散素子を回転させる回転機構を設け、 環境温度の変化 による前記スぺク トル像の波長分散方向のドリフトを相殺するように 構成したことを特徴とする分光器。
2 . 温度変化 1 °Cあたりの前記波長分散素子の回転量 l aは、 前記波 長分散素子として反射型グレーティングを採用したとき、
温度変化 1 °Cあたりの前記スぺクトル像のドリフト量を s、 前記集 光光学系の焦点距離を ί、 前記波長分散素子に入射する被測定光の入射 角度を α、 前記波長分散素子から射出される回折光の回折角度を とし たときに次式
A a. = Α Έ> / ί / ( l + c o s a / c o s ^ )
(ただし、 (¾、 /3共、 前記波長分散素子グレーティング面法線を基準 として測った角度)
で表されることを特徴とする請求項 1に記載の分光器。
3 . 被測定光を取り込む入射部材と、
前記入射部材からの前記被測定光を波長に応じて分散させる波長分 散素子と、 前記波長分散素子による分散後の前記被測定光を集光して スペクトル像を形成する集光光学系と、 '
前記スぺクトル像を検出する検出素子と、
前記入射部材と前記集光光学系と前記検出素子とを一体に支持する 第 1支持部材と、
5 線膨張係数が前記第 1支持部材とは異なる材料によって構成され、 前 - 記波長分散素子を支持する第 2支持部材と、
環境温度が変化したときに、 前記第 1支持部材の伸縮量を前記第 2支 持部材に伝達する伝達部材とを備え、
前記第 2支持部材は、 環境温度が変化したときに、 前記伝達部材から 10 伝達される前記第 1支持部材の伸縮量と当該第 2支持部材の伸縮量と の相異に応じて弾性変形する変形部材を含むと共に、 該変形部材の弹性 変形に応じて微小回転する回転部材を含み、
前記波長分散素子は、 その波長分散方向が前記回転部材の軸方向に対 して直交する向きで、 前記回転部材に取り付けられる
15 ことを特徴とする分光器。
4 . 請求項 3に記載の分光器において、
環境温度が変化したときの前記回転部材の回転角度および回転方向 . . は、 前記スペクトル像の波長分散方向のドリフトを相殺するように予め 20 設定されている
ことを特徴とする分光器。
5 . 請求項 3または請求項 4に記載の分光器において、
前記第 2支持部材は、 2つのアーム部材が薄肉状の前記変形部材を介 25 して連結され、 前記 2つのアーム部材のうち一方が前記回転部材を構成 している V字形部材であり、
前記伝達部材は、 前記 V字形部材の両端部と前記第 1支持部材とを 各々連結すると共に、 前記 2つのアーム部材のなす角度を前記第 1支持 部材の伸縮に応じて変化させる部材である
ことを特徴とする分光器。 ' 6. 請求項 5に記載の分光器において、
環境温度が 1 °C変化したときの前記スぺク トル像の波長分散方向の ドリフトを相殺可能な前記回転部材の回転角度を Δ aとするとき、 前記第 1支持部材の線膨張係数 p bと、 前記第 2支持部材の線膨張係 数 pmと、 前記 2つのアーム部材のうち一方の長さ yおよび他方の長さ zと、 前記 2つのアーム部材のなす角度 aとは、 以下の関係式を満足す ることを特徴とする分光器。
y/z = { A土 Γ(Α2_ 4)} 12
A = 2 cos a + sin a 'A a八 p b— pm)
PCT/JP2002/013506 2002-01-24 2002-12-25 Spectroscope WO2003062776A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/502,345 US7173695B2 (en) 2002-01-24 2002-12-25 Spectroscope with thermal compensation mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/15920 2002-01-24
JP2002015920A JP4151271B2 (ja) 2002-01-24 2002-01-24 分光装置

Publications (1)

Publication Number Publication Date
WO2003062776A1 true WO2003062776A1 (fr) 2003-07-31

Family

ID=27606122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013506 WO2003062776A1 (fr) 2002-01-24 2002-12-25 Spectroscope

Country Status (4)

Country Link
US (1) US7173695B2 (ja)
JP (1) JP4151271B2 (ja)
CN (1) CN100425958C (ja)
WO (1) WO2003062776A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576856B2 (en) * 2006-01-11 2009-08-18 Baker Hughes Incorporated Method and apparatus for estimating a property of a fluid downhole
US7595876B2 (en) * 2006-01-11 2009-09-29 Baker Hughes Incorporated Method and apparatus for estimating a property of a fluid downhole
JP2008159718A (ja) * 2006-12-21 2008-07-10 Sharp Corp マルチチップモジュールおよびその製造方法、並びにマルチチップモジュールの搭載構造およびその製造方法
DE102008024598A1 (de) * 2007-05-21 2008-12-18 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren zur Kompensation von temperaturbedingten Messfehlern einer optischen Anordnung sowie optische Anordnung
JP4891840B2 (ja) * 2007-06-08 2012-03-07 浜松ホトニクス株式会社 分光モジュール
JP5424957B2 (ja) 2009-04-30 2014-02-26 キヤノン株式会社 分光測色装置およびそれを用いた画像形成装置
JP5781188B1 (ja) * 2014-03-26 2015-09-16 株式会社フジクラ 導光装置、製造方法、及び、ldモジュール
JP6430075B2 (ja) * 2016-07-12 2018-11-28 三菱電機株式会社 光部品および光モジュール
JP7164814B2 (ja) * 2018-12-25 2022-11-02 日本電信電話株式会社 光波長選択フィルタモジュール及び光波長選択方法
CN110596846B (zh) * 2019-09-20 2022-04-08 武汉光迅科技股份有限公司 一种标准具封装结构及波长锁定装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125825A (en) * 1981-01-29 1982-08-05 Nippon Kogaku Kk <Nikon> Diffraction grating spectroscope
JPH02231536A (ja) * 1989-03-03 1990-09-13 Anritsu Corp 分光器
JPH06331850A (ja) * 1993-05-25 1994-12-02 Matsushita Electric Ind Co Ltd 光フィルタおよび光フィルタに用いる回折素子
JPH08254463A (ja) * 1995-02-14 1996-10-01 Hewlett Packard Co <Hp> ダイオードアレー分光測光器
JPH0915048A (ja) * 1995-06-28 1997-01-17 Shimadzu Corp 分光光度計
JPH09184806A (ja) * 1995-12-28 1997-07-15 Shimadzu Corp 発光分光分析装置
JPH09218091A (ja) * 1996-02-08 1997-08-19 Hewlett Packard Co <Hp> ダイオードアレー分光測光器
JP2000298066A (ja) * 1999-04-01 2000-10-24 Gretag Macbeth Ag 分光計
JP2001108523A (ja) * 1999-10-14 2001-04-20 Matsushita Electric Ind Co Ltd 分光測定装置
JP2001188023A (ja) * 1999-12-28 2001-07-10 Yokogawa Electric Corp 分光装置
JP2002031572A (ja) * 2000-07-17 2002-01-31 Ando Electric Co Ltd 分光器及びこれを備えた光スペクトラムアナライザ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504835C1 (de) 1995-02-14 1996-03-21 Hewlett Packard Gmbh Diodenzeilen-Spektralphotometer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125825A (en) * 1981-01-29 1982-08-05 Nippon Kogaku Kk <Nikon> Diffraction grating spectroscope
JPH02231536A (ja) * 1989-03-03 1990-09-13 Anritsu Corp 分光器
JPH06331850A (ja) * 1993-05-25 1994-12-02 Matsushita Electric Ind Co Ltd 光フィルタおよび光フィルタに用いる回折素子
JPH08254463A (ja) * 1995-02-14 1996-10-01 Hewlett Packard Co <Hp> ダイオードアレー分光測光器
JPH0915048A (ja) * 1995-06-28 1997-01-17 Shimadzu Corp 分光光度計
JPH09184806A (ja) * 1995-12-28 1997-07-15 Shimadzu Corp 発光分光分析装置
JPH09218091A (ja) * 1996-02-08 1997-08-19 Hewlett Packard Co <Hp> ダイオードアレー分光測光器
JP2000298066A (ja) * 1999-04-01 2000-10-24 Gretag Macbeth Ag 分光計
JP2001108523A (ja) * 1999-10-14 2001-04-20 Matsushita Electric Ind Co Ltd 分光測定装置
JP2001188023A (ja) * 1999-12-28 2001-07-10 Yokogawa Electric Corp 分光装置
JP2002031572A (ja) * 2000-07-17 2002-01-31 Ando Electric Co Ltd 分光器及びこれを備えた光スペクトラムアナライザ

Also Published As

Publication number Publication date
CN1613004A (zh) 2005-05-04
US7173695B2 (en) 2007-02-06
CN100425958C (zh) 2008-10-15
US20050088649A1 (en) 2005-04-28
JP2003214952A (ja) 2003-07-30
JP4151271B2 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4473665B2 (ja) 分光器
US7688445B2 (en) Spectroscope and spectroscopic method
JP5453730B2 (ja) 分光器
US9146155B2 (en) Optical system and manufacturing method thereof
WO2003062776A1 (fr) Spectroscope
US6597451B1 (en) Spectrometry measuring apparatus
JP2002031572A (ja) 分光器及びこれを備えた光スペクトラムアナライザ
US20010052980A1 (en) Spectroscope for measuring spectral distribution
EP1485686A2 (en) High resolution spectral measurement device
JP2006234920A (ja) 光学モジュール
EP0096317A1 (en) Grating monochromator
JP2005127943A (ja) 光計測装置及び分光装置
EP1055917A1 (en) Czerny-Turner monochromator with compensation of thermal expansion
US6583874B1 (en) Spectrometer with holographic and echelle gratings
KR101884118B1 (ko) 투과 회절 격자 기반 분광기
US6738136B2 (en) Accurate small-spot spectrometry instrument
JP3861792B2 (ja) 分光方法
JP2001221688A (ja) 分光器
JP2990891B2 (ja) 変位情報検出装置及び速度計
JPH0518893A (ja) 屈折率測定装置
JP2001108614A (ja) ラジカル計測用光学系
JP2023019805A (ja) 第1光学系、分光器、及び光学装置
JP2000055733A (ja) マルチチャンネル分光計
JP2023076887A (ja) 干渉フィルター、分光測定装置、及び分光測定システム
JP2006208102A (ja) 分光測色装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028270525

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10502345

Country of ref document: US

122 Ep: pct application non-entry in european phase