WO2003052776A2 - Verfahren zum herstellen eier elektrisch leitenden widerstandsschicht sowie heiz- und/oder kühlvorrichtung - Google Patents

Verfahren zum herstellen eier elektrisch leitenden widerstandsschicht sowie heiz- und/oder kühlvorrichtung Download PDF

Info

Publication number
WO2003052776A2
WO2003052776A2 PCT/EP2002/014310 EP0214310W WO03052776A2 WO 2003052776 A2 WO2003052776 A2 WO 2003052776A2 EP 0214310 W EP0214310 W EP 0214310W WO 03052776 A2 WO03052776 A2 WO 03052776A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
layer
resistance layer
spraying
conductive resistance
Prior art date
Application number
PCT/EP2002/014310
Other languages
English (en)
French (fr)
Other versions
WO2003052776A3 (de
Inventor
Elias Russegger
Original Assignee
Elias Russegger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7709725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003052776(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Elias Russegger filed Critical Elias Russegger
Priority to EP02796639A priority Critical patent/EP1459332B1/de
Priority to CA 2471268 priority patent/CA2471268C/en
Priority to DE50213016T priority patent/DE50213016D1/de
Publication of WO2003052776A2 publication Critical patent/WO2003052776A2/de
Publication of WO2003052776A3 publication Critical patent/WO2003052776A3/de
Priority to US10/872,752 priority patent/US7361869B2/en
Priority to US11/328,469 priority patent/US20060108354A1/en
Priority to US13/903,710 priority patent/US9029742B2/en
Priority to US14/669,836 priority patent/US9758854B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/245Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by mechanical means, e.g. sand blasting, cutting, ultrasonic treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Definitions

  • the invention initially relates to a method for producing an electrically conductive resistance layer, in which an electrically conductive material is applied to a non-conductive substrate by means of thermal spraying.
  • Such a method is known from DE 198 10 848 AI.
  • This describes a heating element which is produced by applying strip-shaped layers of an electrically conductive and resistance-forming material to surfaces of a substrate by means of arc sputtering or in the plasma spraying process.
  • a separating layer is previously applied to the substrate by means of a printing process.
  • the separating layer is made of a material such that the electrically conductive material does not adhere to those points on the substrate where the separating layer is present.
  • the known method has the disadvantage that it is relative is complex and therefore the parts with the electrically conductive resistance layers are comparatively expensive. In addition, only more or less flat parts can be provided with an electrically conductive layer using the known method.
  • the object of the present invention is therefore to develop a method of the type mentioned at the outset in such a way that the production of an electrically conductive layer on a substrate is simpler and less expensive, and even complex-shaped objects can be provided with such an electrically conductive resistance layer.
  • the electrically conductive material from which the resistance layer is made becomes flat and in Generally applied evenly on the non-conductive surface.
  • the application by means of thermal spraying ensures that the electrically conductive material adheres to the non-conductive surface.
  • a wide variety of materials can be applied quickly and very evenly to the non-conductive surface in this way.
  • the applied electrically conductive material is then removed at certain points by means of a suitable device. This also enables a complex shaping of the electrically conductive layer in only two work steps.
  • the material When using laser radiation, the material is heated to such an extent that it evaporates.
  • the use of a laser beam has the advantage that very high energies can be coupled into the electrically conductive material very quickly, so that it evaporates immediately. This instantaneous vaporization of the electrical conductive material ensures that only comparatively little heat is injected into the subsurface beneath the electrically conductive material. This is therefore not damaged in the method according to the invention. Evaporation has the advantage over burning that essentially no residues remain in the evaporated areas on the substrate and their insulating effect is very good.
  • Appropriate optics of the device which emits the laser beam, can be directed onto the workpiece to be produced in almost any way.
  • any complex contours can be evaporated out of the sprayed-on electrically conductive material, so that correspondingly complex contoured electrical resistance layers can be produced.
  • workpieces can also be machined that are themselves three-dimensionally complex. An electrically conductive resistance layer with complex geometry can thus be produced in a total of only two work steps.
  • the electrical resistance of the electrically conductive resistance layer is at least indirectly detected during the removal of the material layer in regions. In this way, precise quality control is possible directly during the production of the electrically conductive layer.
  • an actual value of the electrical resistance of the electrically conductive resistance layer is compared with a target value and that the electrical resistance of the electrically conductive layer is changed by removing additional electrically conductive material in regions such that the difference between the actual value and the target value is reduced.
  • Such deviations can arise, for example, from the fact that when the thermally conductive material is sprayed, different amounts of the electrically conductive material reach the substrate in some areas, so that the resulting electrically conductive layer has a different thickness at one point than at another point.
  • deviations of the actual value of the electrical resistance of the electrically conductive layer from the target value can be compensated with an accuracy of +/- 1%.
  • the removal of additional electrically conductive material in certain areas can include shortening or lengthening the electrically conductive layer and / or changing the width of the electrically conductive layer.
  • the material layer be removed in such a way that a desired melting point in the sense of a fuse is created at at least one point on the electrically conductive layer.
  • a desired melting point in the sense of a fuse is created at at least one point on the electrically conductive layer.
  • the material layer is removed in such a way that the electrically conductive resistance layer is at least partially mutually shaped. This enables the formation of the longest possible electrically conductive resistance layer on a small area.
  • the electrically conductive material preferably comprises bismuth, tellurium, germanium, silicon and / or gallium arsenide. These materials have proven to be particularly favorable for application by means of thermal spraying and subsequent processing using laser radiation. In addition, the relevant known technical effects can be realized with these materials.
  • Plasma spraying, high-speed flame spraying, arc spraying, oxy-fuel spraying, laser spraying or cold gas spraying have proven to be favorable for the application of the electrically conductive material to the substrate.
  • the electrically conductive material be applied and the material layer removed in some areas and include such a material that an electrical heating or an electrical cooling layer is formed.
  • the "Peltier effect" is advantageously used in the production of an electrical cooling layer.
  • the local electrical resistance of the electrically conductive resistance layer is set by a local heat treatment.
  • oxides can be introduced locally into the layer, which affects the local electrical conductivity of the material. This enables a particularly precise and fine adjustment of the electrical resistance.
  • the electrically conductive resistance layer is sealed. This has advantages above all in the case of a porous substrate (for example metal with an A1203 intermediate layer). Sealing reduces the risk of electrical breakdown due to air humidity, especially at high voltages. Silicone, polyimide, or water glass, the latter based on sodium or potassium, is suitable as the material for the seal. It can be applied by dipping, spraying, brushing, etc. The tightness of the seal is best when the sealing layer is applied under vacuum.
  • Glass or glass ceramic can also be used as a non-conductive substrate.
  • the electrical resistance layer can then be applied permanently, above all by plasma spraying.
  • the good insulating properties of glass make earthing unnecessary when the resistance layer is in operation.
  • the invention also relates to a heating and / or cooling device with a non-conductive base and an electrically conductive resistance layer applied to the substrate by thermal spraying.
  • the manufacturing costs for such a heating and / or cooling device can be reduced if the resistance layer comprises an electrically conductive material which was initially applied to the surface by thermal spraying and which was subsequently removed in regions by means of laser radiation and thus brought into a desired shape.
  • Figure 1 is a perspective view of a tube onto which an electrically conductive material is sprayed;
  • Figure 2 shows the tube of Fig. 1, the electrically conductive
  • Material layer is processed by means of laser radiation
  • Figure 3 is a side view of the tube of Figure 2 after processing
  • Figure 4 is a plan view of a plate-shaped part a meandering electrically conductive resistance layer
  • FIG. 5 shows two diagrams, one diagram showing the time course of the electrical resistance and the other diagram the time course of the length of the electrically conductive resistance layer from FIG. 4 during its manufacture;
  • FIG. 6 shows a section through a plate-shaped part with two electrically conductive resistance layers arranged one above the other.
  • FIG. 1 and 2 show the production of a tubular instantaneous water heater: an electrically conductive material layer 14 is applied to a tube 12 made of a material which is resistant to high temperatures and forms an electrical insulator (FIG. 1).
  • the application takes place by means of a device 16 with which germanium particles 18 are sprayed onto the tube 12. It is applied by cold gas spraying (also called “gas dynamic powder coating").
  • the unmelted germanium particles are moved at speeds of approximately 300 - Accelerated 1,200 m / s and sprayed onto the tube 12.
  • the germanium particles 18 and also the surface of the tube 12 deform.
  • the impact breaks up surface oxides on the surface of the tube 12. Micro-friction due to the impact increases the temperature at the contact surface and leads to micro-welding.
  • the germanium particles 18 are accelerated by means of a conveying gas, the temperature of which can be slightly increased. However, since the germanium powder 18 never reaches its melting temperature, the temperatures arising on the surface of the tube 12 are relatively moderate, so that, for example, a comparatively inexpensive plastic material can be used for the tube 12.
  • the coating of the tube 12 with the germanium particles 18 is initially carried out in such a way that the entire Surface of the tube 12 is covered with the material layer 14 made of germanium (see FIG. 1).
  • this material layer 14 does not yet have the desired shape: in order to be able to produce a tubular instantaneous water heater, an electrically conductive resistance layer must be produced, which extends in the manner of a spiral in the circumferential direction around the tube 12.
  • a laser beam 22 is directed onto the still "informal" material layer 14 by means of a laser device 20 in such a way that an area 24, which extends in a spiral shape around the tube 12, is created, in which the sprayed-on electrically conductive material 14 is no longer available.
  • the laser device 20 on the one hand, and a device, not shown in the figure, with which the tube 12 is held, are moved in such a way that a continuous working process by the laser device 20 is possible.
  • FIG. 4 shows a plan view of a flat heating plate 28.
  • This consists of a non-conductive base which is not visible in this plan view and on which is analogous to that shown in FIGS. 1 and 2, a flat material layer 14 was first applied, from which areas 24 were subsequently evaporated by means of a laser beam (for reasons of illustration, only one area 24 is provided with reference numerals).
  • the material layer 14 from which the electrically conductive resistance layer 26 is made has been evaporated in such a way that the conductor track 26 has a cross-sectional constriction. This creates a fuse 30, by which the operation of the heating plate 28 is secured.
  • a second special feature is that the heating power or the heat flow density of the electrically conductive resistance layer was corrected during its manufacture so that it corresponds to the desired heating power and the desired heat flow density with very high precision. This is done in the following way: An electrical voltage is applied to end regions 32 and 34 of the electrically conductive resistance layer 26 during the evaporation of the regions 24, so that the electrical resistance of the electrically conductive layer 26 can be measured continuously during this evaporation.
  • the material layer 14 is only evaporated with the laser beam in initially very narrow areas 24. The evaporated areas 24 running horizontally in FIG. 4 thus initially only run from an edge 36 shown in dashed lines in FIG.
  • the material layer 14 is first processed by the laser beam in such a way that the lower electrical end region 34 in FIG. 4 is relatively wide. This is also represented by a dashed line with the reference symbol 40.
  • the electrically conductive resistance layer 26 is lengthened by a dimension d1 (cf. FIGS. 4 and 5) and the actual electrical resistance WIST then increases until it approximately corresponds to the desired resistance WSOLL.
  • the final position of the boundary line of the lower electrical connection 34 is designated by the reference symbol 42 in FIG. 4.
  • a plate-shaped heating device is shown in section. In contrast to the exemplary embodiments described above, it comprises not only one electrically conductive resistance layer, but two electrically conductive resistance layers 26a and 26b. An electrically non-conductive intermediate layer 46 is present between these.
  • This electrical heating plate 28 is produced as follows: First, as in the above exemplary embodiments, an electrically conductive material is applied to a plate-shaped carrier 12. The application takes place over a large area by thermal spraying in such a way that the material layer resulting therefrom initially has essentially no desired shape. Subsequently, the material layer is partially evaporated by means of laser radiation (reference numeral 24a) in such a way that an electrically conductive resistance layer 26a is produced which has the desired shape.
  • the electrically insulating intermediate layer 46 is applied to the finished electrically conductive resistance layer 26a in the further course of the manufacturing process. Then the process described above is repeated, i. H. again electrically conductive material is applied to the non-conductive intermediate layer 46 by thermal spraying in such a way that a second material layer resulting therefrom does not yet have the desired shape. This is then processed by means of laser radiation and partially evaporated (reference numeral 24b) in such a way that a second electrically conductive resistance layer (26b) is produced in the desired shape.
  • the material of the electrically conductive layer is selected so that an electrical instead of an electrical heating layer Cooling layer is formed.
  • the temperature of the heating layer is monitored by a ceramic switch.
  • a ceramic switch This is understood to mean a non-mechanical switch which has an element whose conductivity depends to a considerable extent on its temperature.
  • a bimetal switch can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Resistance Heating (AREA)
  • Conductive Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

Eine elektrisch leitende Widerstandsschicht (26) wird dadurch hergestellt, dass zunächst mittels thermischem Spritzen auf einen nicht leitenden Untergrund (12) ein elektrisch leitendes Material (18) flächig aufgebracht wird. Eine hieraus entstandene Materialschicht (14) weist zunächst im Wesentlichen noch keine gewünschte Form. Danach wird die Materialschicht (14) bereichsweise derart entfernt (24), dass eine elektrisch leitende Widerstandsschicht (26) entsteht, welche im Wesentlichen die gewünschte Form hat.

Description

Titel: Verfahren zum Herstellen einer elektrisch leitenden Widerstandsschicht sowie Heiz- und/oder Kühlvorrichtung
Beschreibung
Die Erfindung betrifft zunächst ein Verfahren zum Herstellen einer elektrisch leitenden Widerstandsschicht, bei dem ein elektrisch leitendes Material mittels thermischem Spritzen auf einen nicht leitenden Untergrund aufgebracht wird.
Ein solches Verfahren ist aus der DE 198 10 848 AI bekannt. In dieser ist ein Heizelement beschrieben, welches dadurch hergestellt wird, dass auf Oberflächen eines Substrats mittels Lichtbogenzerstäubung oder im Plasmaspritzverfahren bandförmige Schichten aus einem elektrisch leitenden und einen Widerstand bildenden Material aufgetragen werden. Um die gewünschte Form der elektrisch leitenden Schicht zu erzielen, wird zuvor mittels eines Printverfahrens eine Trennlage auf das Substrat aufgebracht . Die Trennlage ist aus einem solchen Material, dass an jenen Stellen des Substrats, an denen die Trennlage vorhanden ist, das elektrisch leitende Material nicht anhaftet.
Das bekannte Verfahren hat den Nachteil, dass es relativ aufwändig ist und daher die Teile mit den elektrisch leitenden Widerstandsschichten vergleichsweise teuer sind. Darüber hinaus können mit dem bekannten Verfahren nur mehr oder weniger ebene Teile mit einer elektrisch leitenden Schicht versehen werden.
Die vorliegende Erfindung hat daher die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass die Herstellung einer elektrisch leitenden Schicht auf einem Untergrund einfacher und preiswerter möglich ist und auch komplex geformte Gegenstände mit einer derartigen elektrisch leitenden Widerstandsschicht versehen werden können.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass das elektrisch leitende Material flächig derart aufgebracht wird, dass eine hieraus entstandene Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist und danach die Materialschicht bereichsweise derart entfernt wird, dass eine elektrisch leitende Widerstandsschicht entsteht, welche im Wesentlichen die gewünschte Form hat.
Bei dem erfindungsgemäßen Verfahren ist keine spezielle Vorbehandlung erforderlich, um die gewünschte Form der elektrisch leitenden Widerstandsschicht zu erhalten. Stattdessen wird zunächst das elektrisch leitende Material, aus dem die Widerstandsschicht besteht, flächig und im Allgemeinen gleichmäßig auf dem nicht leitenden Untergrund aufgebracht. Die Aufbringung mittels thermischem Spritzen sorgt dabei für eine hohe Anhaftung des elektrisch leitenden Materials auf dem nicht leitenden Untergrund. Darüber hinaus können die unterschiedlichsten Materialien schnell und sehr gleichmäßig auf diese Art und Weise auf dem nicht leitenden Untergrund aufgebracht werden.
Danach wird mittels einer geeigneten Einrichtung das aufgebrachte elektrisch leitende Material an bestimmten Stellen entfernt. Hierdurch wird auch eine komplexe Formgebung der elektrisch leitenden Schicht in nur zwei Arbeitsschritten ermöglicht.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
Zunächst wird vorgeschlagen, dass das bereichsweise Entfernen der Materialschicht mittels Laserstrahlung oder mittels eines Wasserstrahls oder mittels eines Pulver-Sandstrahls erfolgt.
Bei der Verwendung von Laserstrahlung wird das Material so stark erhitzt, dass es verdampft. Die Verwendung eines Laserstrahls hat dabei den Vorteil, dass mit ihm sehr rasch sehr hohe Energien in das elektrisch leitende Material eingekoppelt werden können, so dass dieses sofort verdampft. Durch diese augenblickliche Vedampfung des elektrisch leitenden Materials wird sichergestellt, dass nur vergleichsweise wenig Wärme in den unter dem elektrisch leitenden Material vorhandenen Untergrund eingekoppelt wird. Dieser wird bei dem erfindungsgemäßen Verfahren also nicht beschädigt. Das Abdampfen hat gegenüber dem Verbrennen den Vorteil, dass im Wesentlichen keine Rückstände in den abgedampften Bereichen auf dem Untergrund verbleiben und so deren Isolierwirkung sehr gut ist.
Durch eine entsprechende Optik der Vorrichtung, welche den Laserstrahl aussendet, kann dieser in beinahe beliebiger Weise auf das herzustellende Werkstück gerichtet werden. Somit können zum einen beliebig komplexe Konturen aus dem aufgespritzten elektrisch leitenden Material herausgedampft werden, so dass entsprechend komplex konturierte elektrische Widerstandsschichten hergestellt werden können. Zum anderen können aber auch solche Werkstücke bearbeitet werden, welche selbst dreidimensional komplex gestaltet sind. In insgesamt nur zwei Arbeitsschritten kann somit eine elektrisch leitende Widerstandsschicht mit komplexer Geometrie hergestellt werden.
Bei der Verwendung eines Wasserstrahls wird überhaupt keine thermische Energie in das Werkstück eingekoppelt. Dies ist besonders bei der Bearbeitung wärmeempfindlicher Kunststoffe vorteilhaft. Gleiches gilt auch für die Verwendung von Pulver-Sandstrahlen. In einer anderen besonders bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass während des bereichsweisen Entfernens der Materialschicht der elektrische Widerstand der elektrisch leitenden Widerstandsschicht wenigstens mittelbar erfasst wird. Auf diese Weise ist bereits unmittelbar während der Herstellung der elektrisch leitenden Schicht eine präzise Qualitätskontrolle möglich.
In Weiterbildung hierzu wird vorgeschlagen, dass ein Istwert des elektrischen Widerstandes der elektrisch leitenden Widerstandsschicht mit einem Sollwert verglichen und durch bereichsweises Entfernen zusätzlichen elektrisch leitenden Materials der elektrische Widerstand der elektrisch leitenden Schicht derart verändert wird, dass die Differenz zwischen Istwert und Sollwert reduziert wird. Dies hat den Vorteil, dass bereits während der Herstellung der elektrisch leitenden Schicht Abweichungen von einem gewünschten Widerstand ausgeglichen werden können.
Derartige Abweichungen können bspw. dadurch entstehen, dass beim Spritzen des thermisch leitenden Materials bereichsweise unterschiedliche Mengen des elektrisch leitenden Materials auf den Untergrund gelangen, so dass die hieraus entstehende elektrisch leitende Schicht an einer Stelle eine andere Dicke aufweist als an einer anderen Stelle. Mit dem hier vorgeschlagenen Verfahren können Abweichungen des Istwerts des elektrischen Widerstands der elektrisch leitenden Schicht vom Sollwert mit einer Genauigkeit von +/- 1 % ausgeglichen werden. Das bereichsweise Entfernen zusätzlichen elektrisch leitenden Materials kann eine Verkürzung oder Verlängerung der elektrisch leitenden Schicht und/oder die Veränderung der Breite der elektrisch leitenden Schicht beinhalten.
Dabei ist es wiederum besonders vorteilhaft, wenn die Erfassung des Istwerts des elektrischen Widerstand der elektrisch leitenden Widerstandsschicht und die Reduktion der Differenz zwischen Istwert und Sollwert parallel erfolgen. Dies ist möglich, da bereits während der Bearbeitung der elektrisch leitenden Schicht mittels Laserstrahlung der elektrische Widerstand der elektrisch leitenden Schicht gemessen werden kann. Wird dieses erfindungsgemäße Verfahren angewendet, kann bei der Herstellung der elektrisch leitenden Widerstandsschicht Zeit und somit Geld gespart werden.
In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird auch vorgeschlagen, dass die Materialschicht derart entfernt wird, dass an mindestens einer Stelle der elektrisch leitenden Schicht eine Soll-Schmelzstelle im Sinne einer Schmelzsicherung entsteht. Eine solche integrierte Schmelzsicherung erhöht die Sicherheit bei der Verwendung der elektrisch leitenden Widerstandsschicht. Dabei kann die Schmelzsicherung praktisch ohne zusätzliche Kosten und zusätzlichen Zeitaufwand in die elektrisch leitende Widerstandsschicht integriert werden.
Vorteilhaft ist auch, wenn die Materialschicht derart entfernt wird, dass die elektrisch leitende Widerstandsschicht wenigstens bereichsweise äander örmig ist. Dies ermöglicht die Ausbildung einer möglichst langen elektrisch leitenden Widerstandsschicht auf einer kleinen Fläche.
Vorgeschlagen wird auch, dass nach dem bereichsweisen Entfernen des elektrisch leitenden Materials und der Fertigstellung der elektrisch leitenden Widerstandsschicht auf diese eine nicht leitende Zwischenschicht aufgebracht, danach ein elektrisch leitendes Material mittels thermischem Spritzen auf die nicht leitende Zwischenschicht flächig derart aufgebracht wird, dass eine hieraus entstandene Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist, und danach mittels Laserstrahlung die Materialschicht bereichsweise derart entfernt wird, dass eine zweite elektrisch leitende Schicht entsteht, welche die gewünschte Form hat. Erfindungsgemäß ist es also möglich, mehrere Schichten übereinander anzuordnen. Dabei sei an dieser Stelle ausdrücklich darauf hingewiesen, dass das erfindungsgemäße Verfahren nicht nur für die Ausbildung von zwei übereinander angeordneten elektrisch leitenden Widerstandsschichten, sondern für eine beliebige Anzahl übereinander angeordneter Widerstandsschichten anwendbar ist.
Das elektrisch leitende Material umfasst vorzugsweise Bismut, Tellurium, Germanium, Silizium und/oder Galliumarsenid. Diese Materialien haben sich für das Aufbringen mittels thermischem Spritzen und die anschließende Bearbeitung mittels Laserstrahlung als besonders gunstig erwiesen. Darüber hinaus sind mit diesen Materialien die einschlagig bekannten technischen Effekte realisierbar.
Als gunstig für die Aufbringung des elektrisch leitenden Materials auf den Untergrund hat sich Plasmaspritzen, Hochgeschwindigkeitsflammspritzen, Lichtbogenspritzen, Autogenspritzen, Laserspritzen oder Kaltgasspritzen erwiesen.
Vorgeschlagen wird ferner, dass das elektrisch leitende Material so aufgebracht und die Materialschicht bereichsweise so entfernt wird und ein solches Material umfasst, dass eine elektrische Heiz- oder eine elektrische Kuhlschicht gebildet wird. Bei der Herstellung einer elektrischen Kuhlschicht wird vorteilhafterweise der "Peltier-Effekt" ausgenutzt.
In vorteilhafter Weiterbildung wird auch vorgeschlagen, dass der ortliche elektrische Widerstand der elektrisch leitenden Widerstandsschicht durch eine lokale Wärmebehandlung eingestellt wird. Durch eine Erwärmung können lokal Oxide in die Schicht eingetragen werden, was sich auf die ortliche elektrische Leitfähigkeit des Materials auswirkt. Dies ermöglicht eine besonderes präzise und feine Einstellung des elektrischen Widerstands.
Außerdem ist es günstig, wenn die elektrisch leitende Widerstandsschicht versiegelt wird. Dies hat vor allem Vorteile bei einem porösen Untergrund (beispielsweise Metall mit A1203-Zwischenschicht) . Eine Versieglung vermindert das Risiko von Elektrodurchschlägen aufgrund der Luftfeuchtigkeit, insbesondere bei hoher Spannung. Als Material für die Versiegelung eignet sich Silikon, Polyimid, oder Wasserglas, letzteres auf Natrium- oder Kaliumbasis. Die Aufbringung kann durch Tauchen, Spritzen, Streichen, etc. erfolgen. Die Dichtigkeit der Versiegelung ist dann am besten, wenn die Versiegelungsschicht unter Vakuum aufgebracht wird.
Als nichtleitender Untergrund kommt auch Glas oder Glaskeramik in Frage. Hierauf kann die elektrische Widerstandsschicht vor allem durch Plasmaspritzen dauerhaft aufgebracht werden. Die gute Isolierwirkung von Glas macht eine Erdung im Betrieb der Widerstandsschicht überflüssig. Möglich ist auch die Verwendung von speziellem Hochtemperaturglas, wie beispielsweise Ceranglas (R) .
Die Erfindung betrifft auch eine Heiz- und/oder Kühlvorrichtung mit einem nicht leitenden Untergrund und einer auf den Untergrund durch thermisches Spritzen aufgebrachten elektrisch leitenden Widerstandsschicht.
Die Herstellkosten für eine derartige Heiz- und/oder Kühlvorrichtung können gesenkt werden, wenn die Widerstandsschicht ein durch thermisches Spritzen zunächst flächig aufgebrachtes elektrisch leitendes Material umfasst, welches danach mittels Laserstrahlung bereichsweise entfernt und so in eine gewünschte Form gebracht wurde.
Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
Figur 1 eine perspektivische Darstellung eines Rohres, auf welches ein elektrisch leitendes Material aufgespritzt wird;
Figur 2 das Rohr von Fig. 1, dessen elektrisch leitende
Materialschicht mittels Laserstrahlung bearbeitet wird;
Figur 3 eine Seitenansicht des Rohres von Fig. 2 nach der Bearbeitung;
Figur 4 eine Draufsicht auf ein plattenförmiges Teil mit einer mäanderförmigen elektrisch leitenden WiderStandsschicht;
Figur 5 zwei Diagramme, wobei im einen Diagramm der zeitliche Verlauf des elektrischen Widerstands und im anderen Diagramm der zeitliche Verlauf der Länge der elektrisch leitenden Widerstandsschicht von Fig. 4 während ihrer Herstellung dargestellt sind; und
Figur 6 einen Schnitt durch ein plattenförmiges Teil mit zwei übereinander angeordneten elektrisch leitenden WiderStandsschichten.
In den Figuren 1 und 2 ist die Herstellung eines rohrförmigen Durchlauferhitzers dargestellt: Dabei wird auf ein Rohr 12 aus einem hochtemperaturbeständigen und einen elektrischen Isolator bildenden Werkstoff eine elektrisch leitende Materialschicht 14 aufgebracht (Fig. 1) . Die Aufbringung erfolgt im vorliegenden Ausführungsbeispiel mittels einer Vorrichtung 16, mit der Germaniumpartikel 18 auf das Rohr 12 aufgespritzt werden. Die Aufbringung erfolgt durch Kaltgasspritzen (auch "gasdynamisches Pulverbeschichten" genannt) .
Bei diesem Spritzprozess werden die ungeschmolzenen Germaniumpartikel auf Geschwindigkeiten von ungefähr 300 - 1.200 m/s beschleunigt und auf das Rohr 12 gespritzt. Beim Aufprall auf das Rohr 12 verformen sich die Germaniumpartikel 18 und auch die Oberfläche des Rohres 12. Durch den Aufprall werden Oberflächenoxide auf der Oberfläche des Rohrs 12 aufgebrochen. Durch Mikroreibung aufgrund des Aufpralls steigt die Temperatur an der Berührungsfläche und führt zu Mikroverschweißungen .
Die Beschleunigung der Germaniumpartikel 18 erfolgt mittels eines Fördergases, dessen Temperatur leicht erhöht sein kann. Da jedoch das Germaniumpulver 18 in keinem Fall seine Schmelztemperatur erreicht, sind die an der Oberfläche des Rohres 12 entstehenden Temperaturen relativ moderat, so dass bspw. ein vergleichsweise preiswertes Kunststoffmaterial für das Rohr 12 verwendet werden kann.
In anderen, nicht dargestellten Ausführungsbeispielen kann anstelle des Kaltgasspritzens auch Plasmaspritzen, Hochgeschwindigkeitsflammspritzen, Lichtbogenspritzen, Autogenspritzen oder Laserspritzen zur Aufbringung des elektrisch leitenden Materials auf den Untergrund verwendet werden. Anstelle von Germanium eignen sich auch Bismut, Tellurium, Silizium und/oder Galliumarsenid, je nach gewünschtem technischen Effekt.
Die Beschichtung des Rohres 12 mit den Germaniumpartikeln 18 erfolgt zunächst so, dass nach und nach die gesamte Oberfläche des Rohres 12 mit der aus Germanium bestehenden Materialschicht 14 bedeckt ist (vgl. Fig.l). Diese Materialschicht 14 hat jedoch noch nicht die gewünschte Form: Um einen rohrförmigen Durchlauferhitzer herstellen zu können, muss eine elektrisch leitende Widerstandsschicht hergestellt werden, welche in der Art einer Spirale in Umfangsrichtung um das Rohr 12 verläuft. Hierzu wird, wie aus Fig. 2 ersichtlich ist, mittels einer Laservorrichtung 20 ein Laserstrahl 22 so auf die noch "formlose" Materialschicht 14 gerichtet, dass ein sich spiralenförmig um das Rohr 12 erstreckender Bereich 24 geschaffen wird, in dem das aufgespritzte elektrisch leitende Material 14 nicht mehr vorhanden ist.
Dies geschieht dadurch, dass das Material der Materialschicht 14 an dem Ort, an dem der Laserstrahl 22 auf die Schicht 14 trifft, schlagartig so stark erhitzt wird, dass es verdampft. Die Laservorrichtung 20 einerseits und eine in der Figur nicht dargestellte Vorrichtung, mit welcher das Rohr 12 gehalten ist, werden dabei so bewegt, dass ein kontinuierlicher Arbeitsprozess durch die Laservorrichtung 20 möglich ist.
Wie aus Fig. 3 ersichtlich ist, wird hierdurch eine sich von einem axialen Ende des Rohres 12 zum anderen erstreckende und spiralenförmig in Umfangsrichtung verlaufende elektrisch leitende Widerstandsschicht 26 geschaffen. Das Rohr 12 und die elektrisch leitende Widerstandsschicht 26 bilden insgesamt einen elektrischen Durchlauferhitzer 28.
Figur 4 zeigt in der Draufsicht eine ebene Heizplatte 28. Diese besteht aus einem in dieser Draufsicht nicht sichtbaren nicht leitenden Untergrund, auf dem analog zu dem in den Fign. 1 und 2 beschriebenen Verfahren zunächst eine flächige Materialschicht 14 aufgebracht wurde, aus der anschließend Bereiche 24 mittels eines Laserstrahls abgedampft wurden (aus Darstellungsgründen ist nur ein Bereich 24 mit Bezugszeichen versehen) . Hierdurch entstand eine mäanderförmig sich von einem Ende zum anderen Ende der Platte 28 erstreckende elektrisch leitende Widerstandsschicht 26. Diese weist jedoch zwei Besonderheiten auf:
Zunächst ist an dem in Fig. 4 oberen Ende die Materialschicht 14, aus der die elektrisch leitende Widerstandsschicht 26 hergestellt ist, so abgedampft worden, dass die Leiterbahn 26 eine Querschnittsverengung aufweist. Hierdurch wird eine Schmelzsicherung 30 geschaffen, durch welche der Betrieb der Heizplatte 28 abgesichert wird.
Eine zweite Besonderheit besteht darin, dass die Heizleistung bzw. die Wärmestromdichte der elektrisch leitenden Widerstandsschicht noch während ihrer Herstellung so korrigiert wurde, dass sie mit sehr hoher Präzision der gewünschten Heizleistung und der gewünschten Wärmestromdichte entspricht. Dies geschieht auf folgende Art und Weise: An Endbereiche 32 und 34 der elektrisch leitenden Widerstandsschicht 26 wird während des Abdampfens der Bereiche 24 eine elektrische Spannung angelegt, so dass während dieses Abdampfens der elektrische Widerstand der elektrisch leitenden Schicht 26 kontinuierlich gemessen werden kann. Mit dem Laserstrahl wird dabei die Materialschicht 14 nur in zunächst sehr schmalen Bereichen 24 abgedampft. Die in Fig. 4 horizontal verlaufenden abgedampften Bereiche 24 verlaufen also zunächst nur von einem in Fig. 4 gestrichelt dargestellten Rand 36 bis zu dem darüber liegenden horizontalen Rand 38 der elektrisch leitenden Widerstandsschicht 26 (auch hier ist aus Darstellungsgründen nur in einem Bereich 24 das entsprechende Bezugszeichen eingetragen) . Darüber hinaus wird die Materialschicht 14 zunächst vom Laserstrahl so bearbeitet, dass der in Fig. 4 untere elektrische Endbereich 34 relativ breit ist. Dies ist ebenfalls durch eine gestrichelte Linie mit dem Bezugszeichen 40 dargestellt.
Im vorliegenden Ausführungsbeispiel wird während des Abdampfens der Bereiche 24 aus der Materialschicht 14 durch Widerstandsmessung der entstehenden Schicht 26 festgestellt, dass der tatsächliche elektrische Widerstand WIST (vgl. Fig. 5) der elektrisch leitenden Widerstandsschicht 26 geringer ist als der an sich gewünschte elektrische Widerstand WSOLL. Der in Fig. 4 untere Anschlussbereich 34 der elektrisch leitenden Widerstandsschicht 26 wird daher vom Laserstrahl so bearbeitet, dass seine Breite abnimmt, es wird also zusätzliches Material abgedampft. Hierdurch verlängert sich die elektrisch leitende Widerstandsschicht 26 um ein Maß dl (vgl. Fig. 4 und 5) und in der Folge steigt der tatsächliche elektrische Widerstand WIST an, bis er in etwa dem gewünschten Widerstand WSOLL entspricht. Die endgültige Position der Begrenzungslinie des unteren elektrischen Anschlusses 34 trägt in Fig. 4 das Bezugszeichen 42.
Um die Wärmestromdichte einzustellen, werden ferner die in Fig. 4 horizontalen abgedampften Bereiche 24 vergrößert. Die endgültige Begrenzung, bei welcher die elektrisch leitende Widerstandsschicht 26 die gewünschte Wärmestromdichte aufweist, trägt in Fig. 4 das Bezugszeichen 44 (aus Darstellungsgründen ist auch dieses Bezugszeichen nur bei einem abgedampften Bereich 24 eingetragen) .
In Fig. 6 ist eine plattenförmige Heizvorrichtung im Schnitt dargestellt. Im Gegensatz zu den oben beschriebenen Ausführungsbeispielen umfasst sie nicht nur eine elektrisch leitende Widerstandsschicht, sondern zwei elektrisch leitende Widerstandsschichten 26a und 26b. Zwischen diesen ist eine elektrisch nicht leitende Zwischenschicht 46 vorhanden. Die Herstellung dieser elektrischen Heizplatte 28 erfolgt folgendermaßen: Zunächst wird wie bei den obigen Ausführungsbeispielen ein elektrisch leitendes Material auf einen plattenförmigen Träger 12 aufgebracht. Die Aufbringung erfolgt dabei flächig durch thermisches Spritzen in einer Art und Weise, dass die hieraus entstehende Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist. Anschließend wird mittels Laserstrahlung die Materialschicht bereichsweise (Bezugszeichen 24a) derart abgedampft, dass eine elektrisch leitende Widerstandsschicht 26a erzeugt wird, welche die gewünschte Form aufweist.
Auf die fertige elektrisch leitende Widerstandsschicht 26a wird im weiteren Verlauf des Herstellungsvorgangs die elektrisch isolierende Zwischenschicht 46 aufgebracht. Dann wird der oben beschriebene Vorgang wiederholt, d. h. es wird wieder elektrisch leitendes Material mittels thermischem Spritzen auf die nicht leitende Zwischenschicht 46 flächig derart aufgebracht, dass eine hieraus entstandene zweite Materialschicht im Wesentlichen noch nicht die gewünschte Form aufweist. Diese wird dann mittels Laserstrahlung bearbeitet und bereichsweise (Bezugszeichen 24b) derart abgedampft, dass eine zweite elektrisch leitende Widerstandsschicht (26b) in der gewünschten Form entsteht.
In einem nicht dargestellten Ausführungsbeispiel ist das Material der elektrisch leitenden Schicht so gewählt, dass anstelle einer elektrischen Heizschicht eine elektrische Kühlschicht gebildet wird.
In einem anderen nicht dargestellten Ausführungsbeispiel wird die Temperatur der Heizschicht durch einen keramischen Schalter überwacht. Hierunter wird ein nicht-mechanischer Schalter verstanden, welcher ein Element aufweist, dessen Leitfähigkeit in erheblichem Umfang von seiner Temperatur abhängt. Alternativ kann auch ein Bimetallschalter verwendet werden.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer elektrisch leitenden Widerstandsschicht (26; 26a, 26b), bei dem ein elektrisch leitendes Material (18) mittels thermischem Spritzen (16) auf einen nicht leitenden Untergrund (12; 12, 46) aufgebracht wird, dadurch gekennzeichnet' dass das elektrisch leitende Material (18) flächig derart aufgebracht wird, dass eine hieraus entstandene Materialschicht (14) zunächst im Wesentlichen noch keine gewünschte Form aufweist, und danach die Materialschicht (14) bereichsweise derart entfernt wird (24; 24a, 24b), dass eine elektrisch leitende Widerstandsschicht (26; 26a, 26b) entsteht, welche im Wesentlichen die gewünschte Form hat.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das bereichsweise Entfernen der Materialschicht mittels Laserstrahlung oder mittels eines Wasserstrahls oder mittels eines Pulver-Sandstrahls erfolgt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass während des bereichsweisen Entfernens (24) der Materialschicht (14) der elektrische Widerstand (WIST) der elektrisch leitenden Widerstandsschicht (26) wenigstens mittelbar erfasst wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Istwert (WIST) des elektrischen Widerstands der elektrisch leitenden Widerstandsschicht mit einem Sollwert (WSOLL) verglichen und durch bereichsweises Entfernen (24) zusätzlichen elektrisch leitenden Materials (38, 42) der elektrische Widerstand (WIST) der elektrisch leitenden Widerstandsschicht (26) derart verändert wird, dass die Differenz zwischen Istwert (WIST) und Sollwert (WSOLL) reduziert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Erfassung des Istwerts (WIST) des elektrischen Widerstands der elektrisch leitenden Widerstandsschicht und die Reduktion der Differenz zwischen Istwert (WIST) und Sollwert (WSOLL) parallel erfolgen.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialschicht (14) derart entfernt wird (24), dass an mindestens einer Stelle der elektrisch leitenden Widerstandsschicht (26) eine Soll-Schmelzstelle (30) im Sinne einer Schmelzsicherung entsteht.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialschicht (18) derart entfernt wird (24), dass die elektrisch leitende Widerstandsschicht (26) wenigstens bereichsweise mäanderförmig ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem bereichsweisen Entfernen (24a) der Materialschicht und der Fertigstellung der elektrisch leitenden Widerstandsschicht (26a) auf diese eine nichtleitende Zwischenschicht (46) aufgebracht, danach ein elektrisch leitendes Material mittels thermischem Spritzen auf die nicht leitende Zwischenschicht (46) flächig derart aufgebracht wird, dass eine hieraus entstandene Materialschicht zunächst im Wesentlichen noch keine gewünschte Form aufweist, und danach die Materialschicht bereichsweise derart entfernt wird (24b) , dass eine zweite elektrisch leitende Widerstandsschicht (26b) entsteht, welche die gewünschte Form hat.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitende Material Bismut, Te-llurium, Germanium (18), Silizium, und/oder Galliumarsenid umfasst.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitende Material (18) durch Plasmaspritzen, Hochgeschwindigkeitsflammspritzen, Lichtbogenspritzen, Autogenspritzen, Laserspritzen, oder Kaltgasspritzen (16) aufgebracht wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitende Material (18) so aufgebracht und die Materialschicht
(14) bereichsweise so entfernt wird (24) und ein solches Material umfasst, dass eine elektrische Heizschicht (26) oder eine elektrische Kühlschicht gebildet wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der örtliche elektrische Widerstand der elektrisch leitenden Widerstandsschicht durch eine lokale Wärmebehandlung eingestellt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrisch leitende Widerstandsschicht versiegelt wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Versiegeln mittels Silikon, Polyimid, oder Wasserglas erfolgt.
15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass das Versiegeln unter Vakuum erfolgt .
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der nichtleitende Untergrund Glas umfasst.
17. Heiz- und/oder Kühlvorrichtung (28), mit einem nicht leitenden Untergrund (12; 12, 46) und einer auf den Untergrund (12; 12, 46) durch thermisches Spritzen (16) aufgebrachten elektrisch leitenden Widerstandsschicht (26; 26a, 26b) , dadurch gekennzeichnet, dass die elektrisch leitende Widerstandsschicht (26; 26a, 26b) ein durch thermisches Spritzen (16) zunächst flächig aufgebrachtes elektrisch leitendes Material (18) umfasst, welches danach bereichsweise entfernt (24; 24a, 24b) und so in eine gewünschte Form gebracht wurde.
PCT/EP2002/014310 2001-12-19 2002-12-16 Verfahren zum herstellen eier elektrisch leitenden widerstandsschicht sowie heiz- und/oder kühlvorrichtung WO2003052776A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP02796639A EP1459332B1 (de) 2001-12-19 2002-12-16 Verfahren zum herstellen einer elektrisch leitenden widerstandsschicht sowie heiz- und/oder kuehlvorrichtung
CA 2471268 CA2471268C (en) 2001-12-19 2002-12-16 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
DE50213016T DE50213016D1 (de) 2001-12-19 2002-12-16 Verfahren zum herstellen einer elektrisch leitenden widerstandsschicht sowie heiz- und/oder kuehlvorrichtung
US10/872,752 US7361869B2 (en) 2001-12-19 2004-06-21 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
US11/328,469 US20060108354A1 (en) 2001-12-19 2006-01-09 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
US13/903,710 US9029742B2 (en) 2001-12-19 2013-05-28 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
US14/669,836 US9758854B2 (en) 2001-12-19 2015-03-26 Method for the production of an electrically conductive resistive layer and heating and/or cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162276.7 2001-12-19
DE10162276.7A DE10162276C5 (de) 2001-12-19 2001-12-19 Rohrförmiger Durchlauferhitzer und Heizplatte sowie Verfahren zu deren Herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/872,752 Continuation US7361869B2 (en) 2001-12-19 2004-06-21 Method for the production of an electrically conductive resistive layer and heating and/or cooling device

Publications (2)

Publication Number Publication Date
WO2003052776A2 true WO2003052776A2 (de) 2003-06-26
WO2003052776A3 WO2003052776A3 (de) 2004-03-04

Family

ID=7709725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014310 WO2003052776A2 (de) 2001-12-19 2002-12-16 Verfahren zum herstellen eier elektrisch leitenden widerstandsschicht sowie heiz- und/oder kühlvorrichtung

Country Status (8)

Country Link
US (4) US7361869B2 (de)
EP (2) EP2009648B1 (de)
AT (1) ATE414321T1 (de)
CA (1) CA2471268C (de)
DE (2) DE10162276C5 (de)
ES (2) ES2314125T3 (de)
PT (2) PT2009648E (de)
WO (1) WO2003052776A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053361A2 (en) * 2003-11-25 2005-06-09 Watlow Electric Manufacturing Company Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device
DE102008049215A1 (de) 2008-09-27 2010-04-01 Hotset Heizpatronen U. Zubehör Gmbh Elektrisches Heizelement für technische Zwecke
WO2013001016A1 (fr) * 2011-06-30 2013-01-03 Valeo Systemes Thermiques Procede de fabrication d'un dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et dispositif thermo electrique obtenu par un tel procede

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162276C5 (de) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Rohrförmiger Durchlauferhitzer und Heizplatte sowie Verfahren zu deren Herstellung
DE102004047357A1 (de) * 2004-09-29 2006-04-06 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Elektrische Anordnung und Verfahren zum Herstellen einer elektrischen Anordnung
US7280750B2 (en) * 2005-10-17 2007-10-09 Watlow Electric Manufacturing Company Hot runner nozzle heater and methods of manufacture thereof
EP2179426B1 (de) 2007-11-02 2018-05-02 INTERPANE Entwicklungs- und Beratungsgesellschaft mbH & Co. KG Mehrschichtsystem mit kontaktelementen und verfahren zum erstellen eines kontaktelements für ein mehrschichtsystem
US8306408B2 (en) * 2008-05-30 2012-11-06 Thermoceramix Inc. Radiant heating using heater coatings
US20110188838A1 (en) * 2008-05-30 2011-08-04 Thermoceramix, Inc. Radiant heating using heater coatings
US8318265B2 (en) * 2008-06-12 2012-11-27 General Electric Company Plasma mediated processing of non-conductive substrates
US20100077602A1 (en) * 2008-09-27 2010-04-01 Wolfgang Kollenberg Method of making an electrical heater
US8291728B2 (en) * 2009-02-27 2012-10-23 Corning Incorporated Method for the joining of low expansion glass
US9090022B1 (en) 2009-09-17 2015-07-28 Flexible Steel Lacing Company Belt splicing apparatus for conveyor belts
WO2012012519A2 (en) 2010-07-22 2012-01-26 Watlow Electric Manufacturing Company Combination fluid sensor system
US20130071716A1 (en) * 2011-09-16 2013-03-21 General Electric Company Thermal management device
DE102011057105B4 (de) 2011-12-28 2016-11-17 Webasto Ag Elektrische Fahrzeugheizvorrichtung
DE102011057108A1 (de) 2011-12-28 2013-07-04 Webasto Ag Elektrische Fahrzeugheizvorrichtung mit Wärmeabschirmung
WO2013130593A1 (en) 2012-02-27 2013-09-06 Watlow Electric Manufacturing Company Temperature detection and control system for layered heaters
US9224626B2 (en) 2012-07-03 2015-12-29 Watlow Electric Manufacturing Company Composite substrate for layered heaters
US9673077B2 (en) 2012-07-03 2017-06-06 Watlow Electric Manufacturing Company Pedestal construction with low coefficient of thermal expansion top
DE102013105292A1 (de) * 2013-05-23 2014-11-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Thermoelektrisches Modul, thermoelektrische Generatorvorrichtung und Verfahren zur Herstellung eines thermoelektrischen Moduls
DE102014005339B4 (de) * 2014-01-28 2022-06-09 Wolfgang B. Thörner Verfahren zur Herstellung eines Kontaktelements
EP3384179B1 (de) 2015-12-03 2021-07-21 Flexible Steel Lacing Company Riemenspleissvorrichtung
DE102017003416A1 (de) * 2017-04-07 2018-10-11 Stiebel Eltron Gmbh & Co. Kg Elektrisches Warmwasseraufbereitungssystem
DE102017213339A1 (de) 2017-08-02 2018-08-23 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zur Herstellung einer Schaltungsanordnung
CN108070815B (zh) * 2017-11-20 2019-08-16 四川富乐德科技发展有限公司 一种应用于电子产业腔体设备的铝熔射层的制备工艺
DE102019201818A1 (de) * 2019-02-12 2020-08-13 Vitesco Technologies GmbH Heizvorrichtung mit einer Mehrzahl von elektrischen Heizelementen
DE102019133039A1 (de) * 2019-09-19 2021-03-25 Dbk David + Baader Gmbh Fluidheizer
DE102019214566B4 (de) * 2019-09-24 2021-04-01 Vitesco Technologies GmbH Heizanordnung
DE102019214588A1 (de) 2019-09-24 2021-03-25 Vitesco Technologies GmbH Elektrische Heizvorrichtung für ein Fahrzeug
DE102019214550B4 (de) * 2019-09-24 2021-06-24 Vitesco Technologies GmbH Verfahren zum Herstellen eines elektrischen Heizelements
DE102019127753A1 (de) * 2019-10-15 2021-04-15 Türk + Hillinger GmbH Verfahren zur Herstellung eines elektrischen Heizelements für elektrische Heizvorrichtungen und/oder Lastwiderstände
DE102020207875A1 (de) 2020-06-24 2021-12-30 Vitesco Technologies GmbH Elektrische Heizanordnung und elektrische Heizvorrichtung mit einer solchen Heizanordnung
CN111778501A (zh) * 2020-06-30 2020-10-16 武汉武钢华工激光大型装备有限公司 一种在Cr20Ni80热喷涂层上制备导电层的方法及装置
DE102022117290A1 (de) 2022-07-12 2024-01-18 Marelli Automotive Lighting Reutlingen (Germany) GmbH Verfahren zum Bereitstellen einer Schaltungsträgerplatte und Schaltungsträgerplatte
WO2024017494A1 (en) * 2022-07-19 2024-01-25 Oerlikon Metco Ag, Wohlen Electric heating element production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1018375A (en) * 1963-04-10 1966-01-26 Corning Glass Works An article comprising a substrate and a metal oxide film
US3534472A (en) * 1967-05-30 1970-10-20 Philips Corp Method of making an electrical resistor
US3750049A (en) * 1970-09-30 1973-07-31 R Rorden Laser trimming tool
US4566936A (en) * 1984-11-05 1986-01-28 North American Philips Corporation Method of trimming precision resistors

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE235132C (de) * 1909-12-18
US1767715A (en) * 1927-02-19 1930-06-24 Central Radio Lab Electrical resistance
US2022314A (en) * 1933-12-29 1935-11-26 Globar Corp Electrical resistor and its manufacture
US2622178A (en) * 1946-04-22 1952-12-16 Blue Ridge Glass Corp Electric heating element and method of producing the same
US2673142A (en) * 1949-04-15 1954-03-23 Blue Ridge Glass Corp Electric heating element
US2623971A (en) * 1951-06-21 1952-12-30 Blue Ridge Glass Corp Electric resistance heater
US2842464A (en) * 1953-03-02 1958-07-08 Saint Gobain Method of producing an electrical resistance on glass
US2859321A (en) * 1955-07-11 1958-11-04 Garaway Alexander Electric resistance heater
US2878357A (en) * 1956-07-13 1959-03-17 Gen Dynamics Corp Electric heated laminated glass panel
US2966430A (en) * 1957-02-05 1960-12-27 Kanthal Ab Electric resistance elements
US3169892A (en) * 1959-04-08 1965-02-16 Jerome H Lemelson Method of making a multi-layer electrical circuit
US3220889A (en) * 1962-08-02 1965-11-30 Philco Corp Electrical circuit components
US3375342A (en) * 1963-03-04 1968-03-26 Sprague Electric Co Electron beam milling of electrical coatings
US3417229A (en) * 1965-10-14 1968-12-17 Sanders Associates Inc Electrical resistance heating articles
US3564475A (en) * 1967-10-24 1971-02-16 Nippon Kogaku Kk Variable resistance element with multiple patterns for measuring instruments
US3675317A (en) * 1970-05-13 1972-07-11 Welwya Canada Ltd Method for spiralling electrical resistors
US3657510A (en) * 1970-11-19 1972-04-18 Union Carbide Corp Q-switched laser device for altering surfaces
BE789555A (fr) * 1971-09-30 1973-03-29 Saint Gobain Correction de la resistance electrique de vitrages a chauffage electrique
US4032861A (en) * 1973-11-15 1977-06-28 Union Carbide Corporation Laser device for altering surfaces in accordance with given patterns
US4016645A (en) * 1974-05-02 1977-04-12 Asg Industries, Inc. Electric heater plate and terminal thereof
GB1546091A (en) * 1975-02-28 1979-05-16 Johnson Matthey Co Ltd Thermometers
US4057707A (en) * 1975-10-17 1977-11-08 Corning Glass Works Electric heating unit
FR2339313A1 (fr) * 1976-01-23 1977-08-19 Murata Manufacturing Co Element chauffant a semiconducteur a coefficient de temperature positif
US4297670A (en) * 1977-06-03 1981-10-27 Angstrohm Precision, Inc. Metal foil resistor
US4176445A (en) * 1977-06-03 1979-12-04 Angstrohm Precision, Inc. Metal foil resistor
US4306217A (en) * 1977-06-03 1981-12-15 Angstrohm Precision, Inc. Flat electrical components
FR2398374A1 (fr) * 1977-07-19 1979-02-16 Lignes Telegraph Telephon Ajustement de resistances pour circuits hybrides
US4258078A (en) * 1978-06-22 1981-03-24 Bell Telephone Laboratories, Incorporated Metallization for integrated circuits
JPS5889380A (ja) * 1981-11-20 1983-05-27 Matsushita Electric Ind Co Ltd サ−マルヘツド
JPS59175580A (ja) * 1983-03-25 1984-10-04 株式会社日立製作所 発熱抵抗体
JPS60140693A (ja) * 1983-12-28 1985-07-25 日立金属株式会社 抵抗膜加熱器具
DE3512659A1 (de) * 1985-04-06 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Heizung fuer elektrisch betriebene warmwassergeraete
DE3630393C2 (de) * 1985-09-10 1994-06-23 Sharp Kk Widerstandsthermometer
DE3545454A1 (de) * 1985-12-20 1987-07-02 Bosch Siemens Hausgeraete Heizelement fuer thermische hausgeraete, insb. fuer kochstellen
KR870005921A (ko) * 1985-12-26 1987-07-07 노부오 사수가 전도성 유리판
US4684779A (en) * 1986-01-22 1987-08-04 General Motors Corporation Laser welding metal sheets with associated trapped gases
DE3619530A1 (de) * 1986-04-11 1987-10-15 Wolfgang Dr Hoettler Datentraeger, insbesondere in etiketten- oder kartenform
EP0257677A2 (de) * 1986-08-08 1988-03-02 SILICONIX Incorporated Abgleichbarer Widerstand mit hohem Wert aus polykristallinem Silizium
US4703557A (en) * 1986-10-07 1987-11-03 Cts Corporation Adjustment of thick film resistor (TCR) by laser annealing
DE3708577A1 (de) * 1987-03-17 1988-09-29 Ver Glaswerke Gmbh Mit einer elektrisch leitenden und waermestrahlen reflektierenden schicht versehene autoglasscheibe
FR2620820B1 (fr) * 1987-09-22 1992-06-19 Degussa Resistance electrique chauffante pour rheometre
JPH01220406A (ja) * 1988-02-29 1989-09-04 Taiyo Yuden Co Ltd 金属皮膜抵抗器の製造方法
US4897520A (en) * 1988-10-31 1990-01-30 American Telephone And Telegraph Company, At&T Technologies, Inc. Laser debris vacuum scoop
JPH02304905A (ja) * 1989-05-19 1990-12-18 Tama Electric Co Ltd 抵抗器の製造法
JPH02308291A (ja) * 1989-05-24 1990-12-21 Onoda Cement Co Ltd 複写機用熱定着ロール及びその製造方法
DE8908139U1 (de) * 1989-07-04 1989-10-12 Siegert Gmbh, 8501 Cadolzburg, De
JPH0832304B2 (ja) * 1989-08-18 1996-03-29 株式会社日立製作所 無機ポリマ薄膜の形成方法
JPH03295185A (ja) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd 発熱体
JP2564415B2 (ja) * 1990-04-18 1996-12-18 株式会社日立製作所 空気流量検出器
JP2938143B2 (ja) * 1990-05-29 1999-08-23 沖電気工業株式会社 定着装置の製造方法
US5233327A (en) * 1991-07-01 1993-08-03 International Business Machines Corporation Active resistor trimming by differential annealing
JPH05307926A (ja) * 1991-11-21 1993-11-19 Nippon Autom Kk 温度ヒューズ
EP0546495B1 (de) * 1991-12-09 1997-03-12 Toshiba Lighting & Technology Corporation Fixier-Heizelement und Verfahren zu dessen Herstellung
JPH05326112A (ja) * 1992-05-21 1993-12-10 Shin Etsu Chem Co Ltd 複層セラミックスヒーター
DE4222278C1 (de) * 1992-07-07 1994-03-31 Roederstein Kondensatoren Verfahren zur Herstellung elektrischer Dickschichtsicherungen
JPH06290917A (ja) * 1993-04-02 1994-10-18 Ebara Corp 溶射発熱体の製造法
JPH06326246A (ja) * 1993-05-13 1994-11-25 Mitsubishi Electric Corp 厚膜回路基板及びその製造方法
US5750958A (en) * 1993-09-20 1998-05-12 Kyocera Corporation Ceramic glow plug
WO1995020819A1 (fr) * 1994-01-31 1995-08-03 Nippon Tungsten Co., Ltd. Element chauffant plat c.t.p. et procede de regulation de la valeur de resistance de cet element
US5616266A (en) * 1994-07-29 1997-04-01 Thermal Dynamics U.S.A. Ltd. Co. Resistance heating element with large area, thin film and method
JPH08101592A (ja) * 1994-09-30 1996-04-16 Toshiba Lighting & Technol Corp 定着ヒータ、その製造方法、定着装置及び画像形成装置
GB2301223B (en) * 1995-05-26 1999-04-21 Johnson Electric Sa Polymeric type positive temperature coefficient thermistors
NL1000729C1 (nl) * 1995-07-05 1997-01-08 Ooithuis Beheer B V Spouwconstructie.
WO1997042792A1 (fr) * 1996-05-05 1997-11-13 Seiichiro Miyata Element chauffant electrique et mandrin electrostatique pourvu d'un tel element
GB9622695D0 (en) * 1996-10-31 1997-01-08 Delta Theta Ltd Thermal elements
DE29702813U1 (de) * 1997-01-10 1997-05-22 Ego Elektro Geraetebau Gmbh Kontaktwärmeübertragendes Kochsystem mit einer Elektro-Kochplatte
EP0904562A1 (de) * 1997-03-17 1999-03-31 Koninklijke Philips Electronics N.V. Optische schaltvorrichtung
US5923995A (en) * 1997-04-18 1999-07-13 National Semiconductor Corporation Methods and apparatuses for singulation of microelectromechanical systems
AU7291398A (en) * 1997-05-06 1998-11-27 Thermoceramix, L.L.C. Deposited resistive coatings
US6096995A (en) * 1997-05-30 2000-08-01 Kyocera Corporation Heating roller for fixing
US6099974A (en) * 1997-07-16 2000-08-08 Thermal Spray Technologies, Inc. Coating that enables soldering to non-solderable surfaces
DE19810848A1 (de) * 1998-02-06 1999-08-12 Heinz Zorn Spiegelheizeinrichtung
WO2000007850A1 (en) 1998-08-05 2000-02-17 Lear Automotive Dearborn, Inc. Trim panel having electrical connectors
DE19856087A1 (de) * 1998-12-04 2000-06-21 Siceram Gmbh Elektrischer Durchlauferhitzer und Verfahren zu seiner Herstellung
WO2000070915A1 (en) * 1999-05-18 2000-11-23 Advanced Heating Technologies Ltd. Electrical heating elements and method for producing same
DE10001330A1 (de) * 2000-01-14 2001-07-19 Heinrich Schuermann Elektrokochplatte
EP1981041A2 (de) * 2000-01-17 2008-10-15 Matsushita Electric Industrial Co., Ltd. Widerstand und Herstellungsverfahren dafür
US6433319B1 (en) * 2000-12-15 2002-08-13 Brian A. Bullock Electrical, thin film termination
WO2001067819A1 (en) * 2000-03-03 2001-09-13 Cooper Richard P Thin film tubular heater
KR100352892B1 (ko) * 2000-05-22 2002-09-16 주식회사 팍스텍 박막 발열체의 제조방법 및 이것을 이용한 발열장치
DE10029244A1 (de) * 2000-06-14 2002-01-03 Elias Russegger Elektrische Heizvorrichtung
US6609292B2 (en) * 2000-08-10 2003-08-26 Rohm Co., Ltd. Method of making chip resistor
KR100501559B1 (ko) * 2000-08-30 2005-07-18 마쯔시다덴기산교 가부시키가이샤 저항기 및 그 제조 방법
JP3967553B2 (ja) * 2001-03-09 2007-08-29 ローム株式会社 チップ型抵抗器の製造方法、およびチップ型抵抗器
DE10162276C5 (de) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Rohrförmiger Durchlauferhitzer und Heizplatte sowie Verfahren zu deren Herstellung
DE10355043A1 (de) 2003-11-25 2005-06-23 Watlow Electric Manufacturing Co., St. Louis Verfahren zum Befestigen eines elektrischen Leiters auf einem Flächenelement, sowie Heißkanalelement, insbesondere für eine Kunststoff-Spritzeinrichtung
JP5263727B2 (ja) * 2007-11-22 2013-08-14 コーア株式会社 抵抗器
TWI381170B (zh) * 2009-09-17 2013-01-01 Cyntec Co Ltd 電流感測用電阻裝置與製造方法
US8686292B2 (en) * 2011-02-23 2014-04-01 Miraco, Inc. Tunable resistance conductive ink circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1018375A (en) * 1963-04-10 1966-01-26 Corning Glass Works An article comprising a substrate and a metal oxide film
US3534472A (en) * 1967-05-30 1970-10-20 Philips Corp Method of making an electrical resistor
US3750049A (en) * 1970-09-30 1973-07-31 R Rorden Laser trimming tool
US4566936A (en) * 1984-11-05 1986-01-28 North American Philips Corporation Method of trimming precision resistors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 534 (E-852), 29. November 1989 (1989-11-29) & JP 01 220406 A (TAIYO YUDEN CO LTD;OTHERS: 01), 4. September 1989 (1989-09-04) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 090 (E-1040), 5. März 1991 (1991-03-05) -& JP 02 304905 A (TAMA ELECTRIC CO LTD), 18. Dezember 1990 (1990-12-18) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053361A2 (en) * 2003-11-25 2005-06-09 Watlow Electric Manufacturing Company Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device
WO2005053361A3 (en) * 2003-11-25 2005-07-28 Watlow Electric Mfg Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device
US7964825B2 (en) 2003-11-25 2011-06-21 Watlow Electric Manufacturing Company Method for the attachment of an electrical lead wire on a surface element, as well as a heating element, especially for a plastic-spraying device
DE102008049215A1 (de) 2008-09-27 2010-04-01 Hotset Heizpatronen U. Zubehör Gmbh Elektrisches Heizelement für technische Zwecke
WO2013001016A1 (fr) * 2011-06-30 2013-01-03 Valeo Systemes Thermiques Procede de fabrication d'un dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et dispositif thermo electrique obtenu par un tel procede
FR2977373A1 (fr) * 2011-06-30 2013-01-04 Valeo Systemes Thermiques Procede de fabrication d'un dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et dispositif thermo electrique obtenu par un tel procede
US9343648B2 (en) 2011-06-30 2016-05-17 Valeo Systemes Thermiques Method for manufacturing a thermoelectric device, particularly intended to generate an electric current in a motor vehicle, and thermoelectric device obtained by such a method

Also Published As

Publication number Publication date
US20150267288A1 (en) 2015-09-24
US9029742B2 (en) 2015-05-12
DE10162276A1 (de) 2003-07-17
US7361869B2 (en) 2008-04-22
EP2009648A1 (de) 2008-12-31
WO2003052776A3 (de) 2004-03-04
US20050025470A1 (en) 2005-02-03
US9758854B2 (en) 2017-09-12
EP2009648B1 (de) 2014-01-29
US20130260048A1 (en) 2013-10-03
DE10162276B4 (de) 2015-07-16
DE10162276C5 (de) 2019-03-14
CA2471268C (en) 2007-07-17
PT2009648E (pt) 2014-03-25
PT1459332E (pt) 2008-12-29
US20060108354A1 (en) 2006-05-25
ES2452325T3 (es) 2014-03-31
ATE414321T1 (de) 2008-11-15
EP1459332A2 (de) 2004-09-22
ES2314125T3 (es) 2009-03-16
EP1459332B1 (de) 2008-11-12
DE50213016D1 (de) 2008-12-24
CA2471268A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
EP1459332B1 (de) Verfahren zum herstellen einer elektrisch leitenden widerstandsschicht sowie heiz- und/oder kuehlvorrichtung
EP1844181B1 (de) Verfahren zum kaltgasspritzen
EP0165565B1 (de) Vakuum-Plasma-Beschichtungsanlage
DE102005018062A1 (de) Verfahren zum Erzeugen von beheizten Komponenten für Spritzgussgeräte und Heizungsausrüstungen im Allgemeinen
DE4129120C2 (de) Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen und Verwendung des Verfahrens
DE3933713C2 (de)
DE102008051921A1 (de) Mehrschichtsystem mit Kontaktelementen und Verfahren zum Erstellen eines Kontaktelements für ein Mehrschichtsystem
DE102018120015A1 (de) 3D-Metalldruckverfahren und Anordnung für ein solches
DE1553761A1 (de) Verfahren zum UEberziehen der Schneiden von geschaerften Geraeten
DE102017125597A1 (de) 3D-Metalldruckverfahren und Anordnung für ein solches
DE3417596C2 (de) Verfahren und Vorrichtung zur Bildung einer Beschichtung auf einer Glas- oder glasartigen Unterlage
EP3147067A1 (de) Vorrichtung und verfahren zur herstellung und/oder reparatur von, insbesondere rotationssymmetrischen, bauteilen
CH691761A5 (de) Ueberwachung und Regelung von thermischen Spritzverfahren.
CH663922A5 (de) Elektrode fuer drahtschneide-funkenerosion.
DE2026007A1 (de) Verfahren zum Herstellen von Schicht korpern
EP2984202A1 (de) Verfahren und vorrichtung zum aufbau einer struktur auf einem substrat
DE3007169C2 (de) Verfahren zur Herstellung von Mikrobohrungen in Metallteilen mit Hilfe eines Leistungs-Lasers
DE2125643C2 (de) Halbleiterbauelement und Verfahren zu seiner Herstellung
DE2544847C2 (de) Plasmaspritzvorrichtung
DE2257280A1 (de) Verfahren zum emaillieren metallischer gegenstaende
DE3050181A1 (en) Method for manufacturing a hollow glass punch for piece molding
WO2003049500A2 (de) Verfahren und vorrichtung zur erzeugung einer elektrischen leiterbahn auf einem substrat
DE20302566U1 (de) Lötspitze
EP1640108A1 (de) Kontaktherstellungsverfahren
DE19821772A1 (de) Keramische Verdampferschiffchen mit verbessertem Erstbenetzungsverhalten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10872752

Country of ref document: US

Ref document number: 2471268

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002796639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002796639

Country of ref document: EP