WO2003046441A1 - Regulateur d'humidite - Google Patents

Regulateur d'humidite Download PDF

Info

Publication number
WO2003046441A1
WO2003046441A1 PCT/JP2002/010966 JP0210966W WO03046441A1 WO 2003046441 A1 WO2003046441 A1 WO 2003046441A1 JP 0210966 W JP0210966 W JP 0210966W WO 03046441 A1 WO03046441 A1 WO 03046441A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity control
adsorption
adsorption element
control device
Prior art date
Application number
PCT/JP2002/010966
Other languages
English (en)
French (fr)
Inventor
Tomohiro Yabu
Yoshimasa Kikuchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP02803909A priority Critical patent/EP1450113A4/en
Priority to AU2002335545A priority patent/AU2002335545B2/en
Priority to US10/476,531 priority patent/US6959875B2/en
Publication of WO2003046441A1 publication Critical patent/WO2003046441A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1052Rotary wheel comprising a non-axial air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Definitions

  • the present invention relates to a humidity control device for adjusting the humidity of air.
  • the humidity control device described in the above publication includes a disk-shaped suction rotor.
  • the suction port is installed across a flow path for indoor air and a flow path for outdoor air, and is driven to rotate around its axis.
  • one part of the suction port is in contact with the indoor air, and the remaining part is in contact with the outdoor air.
  • an adsorbent is provided just over the adsorption port.
  • the outdoor air is supplied to the adsorption roaster, and the moisture in the outdoor air is adsorbed by the adsorbent.
  • the heated indoor air is supplied to the adsorption roaster, and moisture is desorbed from the adsorbent.
  • this humidity control device returns the room air humidified by the suction port to the room.
  • the humidity control device cannot provide a sufficient humidity control capability.
  • heated air is sent to the adsorption port to desorb water from the adsorbent, and the desorbed water is added to the air to humidify the air. I have.
  • the lower the relative humidity of the air introduced into the adsorption port the easier it is to remove water from the adsorbent.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a humidity control device capable of ensuring a high efficiency and sufficient humidity control capability. Disclosure of the invention
  • the first solution taken by the present invention is directed to a humidity control apparatus for humidifying or dehumidifying intake air and supplying the humidified air to a room.
  • An adsorbing element (81, 82, ...) having a humidity control passage (85) for contacting the flowing air with the adsorbent, and an adsorbing element (81, 82) for regenerating the adsorbent.
  • a heater (92) for heating the air supplied to the humidity control side passage (85) of the adsorption element (81, 82, ...) to the humidity control side passage (85) of the adsorption element (81, 82, ).
  • the second air is composed of a mixture of indoor air and outdoor air.
  • a second solution taken by the present invention is the first solution according to the first aspect, wherein the adsorption element (81, 82, ...) is provided with a cooling device for removing adsorption heat generated in the humidity control passage (85) during the adsorption operation.
  • a third solution taken by the present invention is the second solution, wherein the second air is heated as a cooling fluid after passing through the cooling-side passage (86) of the adsorption element (81, 82,-). It is heated by the vessel (92) and introduced into the humidity control side passage (85) of the adsorption element (81, 82, ).
  • the fourth solution taken by the present invention is the first, second or third solution, wherein a plurality of adsorption elements (81, 82) are provided, and the humidity control of the first adsorption element (81) is performed.
  • the first operation in which the first air is circulated in the side passage (85) to perform the adsorption operation, and at the same time, the second air is circulated in the humidity control side passage (85) of the second adsorption element (82) to perform the regeneration operation.
  • the first air is circulated through the humidity control side passageway (85) of the second adsorption element (82) to perform the adsorption operation,
  • the second operation of performing the regeneration operation by circulating the second air in the humidity control side passage (85) of the adsorption element (81) is alternately performed.
  • one adsorption element (200) is composed of the first part (201) and the remaining second part (202).
  • the first air is introduced into the humidity control passage (85) of the first part (201) as the adsorption operation, and the humidity control side of the second part (202) is simultaneously reproduced as the adsorption operation.
  • the second operation of introducing the first air into the humidity control side passage (85) of (202) is alternately performed by sliding the adsorption element (200).
  • a sixth solution taken by the present invention is the first, second or third solution, wherein the adsorption element (250) has a humidity control side passage (85) penetrating in the thickness direction thereof. While being formed in a disk shape and installed so as to cross both the first air flow path and the second air flow path, the adsorbing element (250) is rotated around its central axis, At the same time as the first air is introduced into the humidity control passage (85) formed in a part of the adsorption element (250) as the adsorption operation, the air generated in the remaining part of the adsorption element (250) is reproduced as the regeneration operation. The second air is introduced into the wet passage (85).
  • the mixing ratio of the indoor air and the outdoor air in the second air is determined based on the temperature of the indoor air and the temperature of the outdoor air. It is adjusted based on the above.
  • An eighth solution taken by the present invention is the first, second, and third solutions, wherein the mixing ratio of the indoor air and the outdoor air in the second air is a relative humidity of the indoor air and a ratio of the outdoor air. It is adjusted based on the relative humidity.
  • the mixing ratio of the indoor air and the outdoor air in the second air is determined based on the temperature and relative humidity of the indoor air.
  • the adjustment is performed based on the temperature and the relative humidity of the outdoor air.
  • the operation using the outdoor air as the first air is performed, while the temperature of the indoor air and the adsorption element (81 , 82 ') and the temperature of the primary air after exiting from The mixing ratio of the indoor air and the outdoor air in the air is adjusted.
  • the eleventh solution taken by the present invention is as described in the second or third solution, wherein the operation using the indoor air as the first air is performed while the temperature of the outdoor air and the adsorption element (81 , 82 '), the mixing ratio of indoor air and outdoor air in the second air is adjusted based on the temperature of the first air after flowing out of the second air.
  • the first and second solutions taken by the present invention are directed to a humidity control apparatus for humidifying or dehumidifying intake air and supplying the humidified air to a room.
  • An adsorbing element (311, 312) for bringing the passing air into contact with the adsorbent and heating or cooling the adsorbent with a heat medium is provided, and the first air and the cooling air are supplied to the adsorbing element (311, 312).
  • An adsorption operation in which a heat medium is supplied to adsorb moisture in the first air to the adsorbent, and a second air and a heat medium for heating are supplied to the adsorption elements (311 and 312) to adsorb the adsorbent.
  • the second air may be a mixture of indoor air and outdoor air.
  • the mixing ratio of the indoor air and the outdoor air in the second air is determined based on the temperature of the indoor air and the temperature of the outdoor air. It is something that is regulated.
  • the mixing ratio of the indoor air and the outdoor air in the second air is based on a relative humidity of the indoor air and a relative humidity of the outdoor air. Is adjusted.
  • the mixing ratio of the indoor air and the outdoor air in the second air is the temperature and the relative humidity of the indoor air and the temperature and the relative temperature of the outdoor air in the second solution. It is adjusted based on the humidity.
  • the adsorption operation and the regeneration operation are performed in the humidity control device.
  • the first air is introduced into the humidity control side passage (85) of the adsorption element (81, ).
  • the first air comes into contact with the adsorbent while flowing through the humidity control passage (85), and the water vapor in the first air is adsorbed by the adsorbent.
  • the second air heated by the heater (92) is introduced into the humidity control side passageway (85) of the adsorption element (81, 82,-).
  • the hot second air comes into contact with the adsorbent, water vapor is released from the adsorbent. That is, adsorption The agent is regenerated.
  • the water vapor desorbed from the adsorbent is provided to the second air.
  • the second air is a mixture of outdoor air and indoor air. That is, in this humidity control device, the outdoor air and the indoor air are taken in, mixed, and then sent to the heater (92) and the adsorption element (81, 82,) as the second air.
  • the humidity control apparatus of the present solution reduces or humidifies the air supplied to the room.
  • the humidity control device operates to supply the first air dehumidified by depriving the steam to the adsorption element (81, 82, ...) to the room, or to remove the moisture from the adsorption element (81, 82, ).
  • An operation of supplying the humidified second air to the room by applying the separated water vapor is performed.
  • the humidity control device may be configured to switch between an operation of supplying the dehumidified first air to the room and an operation of supplying the humidified second air to the room.
  • the cooling element passage (86) is provided in the adsorption element (81, 82, ).
  • the cooling fluid flows through the cooling-side passage (86) during the suction operation. That is, when the water vapor in the first air is adsorbed by the adsorbent, heat of adsorption is generated.
  • a cooling fluid is caused to flow through the cooling side passageway (86) of the adsorption element (81, 82,...), And the generated heat of adsorption is absorbed by the cooling fluid. Then, the temperature rise of the first air is suppressed to suppress the decrease in the relative humidity, and the amount of water adsorbed by the adsorbent is secured.
  • the second air that has passed through the cooling-side passageway (86) of the adsorption element (81, 82, ...) and the heater (92) in order is used to control the humidity of the adsorption element (81, 82 ").
  • the second air is first introduced into the cooling-side passage (86) of the adsorption element (81, 82, . It flows through the cooling-side passage (86) as a working fluid, absorbs the heat of adsorption generated in the humidity-controlling passage (85), and is further heated by the heater (92) before being heated by the heater (92).
  • the humidity control apparatus of the present solution alternately performs the first operation and the second operation.
  • the first operation an adsorption operation is performed on the first adsorption element (81), and a reproduction operation is performed on the second adsorption element (82).
  • the second operation contrary to the first operation, the second operation The adsorption operation is performed on the first adsorption element (82), and the reproduction operation is performed on the first adsorption element (81).
  • one adsorption element (200) is divided into two parts.
  • the first operation and the second operation are performed alternately.
  • the suction operation is performed on the first part (201) of the suction element (200), and the reproduction operation is performed on the second part (202).
  • the second operation contrary to the first operation, the suction operation is performed on the second part (202) of the suction element (200), and the reproduction operation is performed on the first part (201).
  • the humidity control device of the present solution switches the first operation and the second operation by sliding the adsorption element (200).
  • the humidity control device has a state in which the first part (201) of the adsorption element (200) crosses the flow path of the first air and the second part (202) crosses the flow path of the second air.
  • the first operation is continued for a while.
  • the adsorbing element (200) is moved so that the first part (201) crosses the flow path of the second air and the second part (202) crosses the flow path of the first air. 2 Start the operation. After continuing the second operation for a while, the first operation is performed by moving the adsorption element (200) again.
  • the suction element (250) is formed in a disk shape.
  • a humidity control passage (85) is formed in the adsorption element (250) so as to penetrate in the thickness direction.
  • the adsorbing element (250) is installed so as to traverse the first air flow path and the second air flow path, and is driven to rotate around its central axis.
  • the first air flows through the humidity-control-side passage (85) in a portion crossing the flow path of the first air to perform an adsorption operation.
  • the second air flows through the humidity control side passageway (85) to perform the regeneration operation. Then, by rotating the suction element (250), the suction operation and the regeneration operation are performed simultaneously in parallel.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is variable.
  • the mixing ratio of indoor air and outdoor air is adjusted in consideration of the temperature of indoor air and outdoor air.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is variable.
  • the mixing ratio between indoor air and outdoor air is adjusted in consideration of the relative humidity between indoor air and outdoor air.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is variable.
  • the mixing ratio of indoor air and outdoor air is adjusted taking into account the temperature and relative humidity of indoor air and the temperature and relative humidity of outdoor air.
  • the absolute humidity of the air can be derived. Therefore, in this solution, by calculating the absolute humidity from the air temperature and relative humidity by calculation, etc., the mixing ratio of indoor air and outdoor air is adjusted in consideration of the absolute humidity of indoor air and outdoor air. Is also possible.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is variable. Further, in this solution, an operation is performed in which the taken-in outdoor air is used as the first air, and the first air is introduced into the humidity control-side passage (85) of the adsorption element (81, 82, ). However, the humidity control device of the present solution may perform an operation other than this operation.
  • the adsorption element (81, 82,-) of the present solution heat exchange is performed between the first air in the humidity control passage (85) and the cooling fluid in the cooling passage (86). Therefore, considering the heat exchange performance of the adsorption element (81, 82 "), based on the temperature of the first air flowing out of the humidity control side passage (85) of the adsorption element (81, 82 '), The temperature of the first air before flowing into the humidity control passage (85), that is, the temperature of the outdoor air, can be estimated, and therefore, in this solution, the temperature of the outdoor air (85) is used instead of the temperature of the outdoor air. Using the temperature of the first air after the outflow, the mixing ratio of the indoor air and the outdoor air is adjusted based on the temperature of the first air and the temperature of the indoor air.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is variable. Further, in this solution, an operation is performed in which the taken indoor air is used as the first air, and the first air is introduced into the humidity control side passageway (85) of the adsorption element (81, 82, ). However, the humidity control device of the present solution may perform an operation other than this operation.
  • the adsorption element (81, 82, ...) of the present solution heat exchange is performed between the first air in the humidity control passage (85) and the cooling fluid in the cooling passage (86). Therefore, considering the heat exchange performance of the adsorption element (81, 82 '), based on the temperature of the first air after flowing out of the humidity control passage (85) of the adsorption element (81, 82, . , Humidity control passage. (85) The temperature of the first air before the temperature rise, that is, the temperature of the indoor air. Therefore, in this solution, the temperature of the first air after flowing out of the humidity control passage (85) is used instead of the temperature of the indoor air, and the indoor temperature is determined based on the temperature of the first air and the temperature of the outdoor air. Adjust the mixing ratio of air and outdoor air.
  • the adsorption operation and the regeneration operation are performed in the humidity control device.
  • the suction operation the first air and the cooling medium are sent to the suction elements (311 and 312).
  • the adsorption element (311, 312) during the adsorption operation, water in the first air is adsorbed by the adsorbent. The heat of adsorption generated at that time is absorbed by the heat medium for cooling.
  • the second air and the heating medium for heating are sent to the adsorption elements (311 and 312).
  • the adsorbent In the adsorption element (311, 312) during the regeneration operation, the adsorbent is heated by the heating heat medium, and moisture is desorbed from the adsorbent. That is, the adsorbent is regenerated. The water vapor desorbed from the adsorbent is provided to the second air.
  • the second air is a mixture of outdoor air and indoor air. That is, in this humidity control device, the outdoor air and the indoor air are taken in, mixed, and then sent to the heater (92) and the adsorption elements (311, 312) as the second air.
  • the humidity control apparatus of the present solution reduces or humidifies the air supplied to the room.
  • the humidity control device operates to supply the first air dehumidified by depriving the steam to the adsorption element (311, 312) into the room, or to remove the steam desorbed from the adsorption element (311, 312).
  • the operation of supplying the supplied and humidified second air to the room is performed.
  • the humidity control device may be configured to switch between an operation of supplying the dehumidified first air to the room and an operation of supplying the humidified second air to the room.
  • the second air sent to the adsorption element (81, 82, ...) to regenerate the adsorbent is a mixed air of room air and outdoor air.
  • the temperature and humidity of the second air are uniquely determined by the state of the indoor air and the outdoor air.
  • the mixed air of the indoor air and the outdoor air is used as the second air. For this reason, the temperature and humidity of the second air can be changed as needed. Therefore, according to the present invention, by setting the state of the second air appropriately, the efficiency of the humidity control device can be increased. While maintaining, it is possible to ensure sufficient humidity control ability.
  • a cooling-side passage (86) is formed in each of the adsorption elements (81, 82, ...) so that heat of adsorption generated during the adsorption operation is absorbed by the cooling fluid. Therefore, according to the present solution, it is possible to suppress the temperature rise of the first air due to the generated heat of adsorption. As a result, the relative humidity of the first air flowing through the humidity control side passageway (85) of the adsorption element (81, 82 ”) can be kept high, and the amount of water vapor adsorbed by the adsorbent can be increased. it can.
  • the second air is first introduced as a cooling fluid into the cooling-side passage (86) of the adsorption element (81, 82,-), and the second air exiting from the cooling-side passage (86) is introduced.
  • the air is heated by the heater (92).
  • the second air used for regeneration of the adsorption element (81, 82 ⁇ ) is not only supplied to the heater (92) but also to the cooling-side passage (86) of the adsorption element (81, 82, ). Heated. Therefore, according to this solution, the amount of heat that must be given to the second air by the heater (92) can be reduced, and the energy required for operating the humidity control device can be reduced.
  • a heat medium for cooling is introduced into the adsorption elements (311 and 312) during the adsorption operation, and the heat of adsorption generated during the adsorption operation is absorbed by the heat medium. Therefore, according to the present solution, it is possible to suppress an increase in the temperature of the first air due to the generated heat of adsorption. As a result, the relative humidity of the first air passing through the adsorption element (311, 312) can be kept high, and the amount of water vapor adsorbed by the adsorbent can be increased.
  • the mixing ratio of the indoor air and the outdoor air constituting the second air is appropriately adjusted using various parameters.
  • the state of the second air used for the regeneration of the adsorbent can be set more appropriately, and the efficiency of the humidity control device and the humidity control capability can be improved.
  • FIG. 1 is a schematic perspective view showing a configuration of a main part of the humidity control apparatus according to the first embodiment.
  • FIG. 2 is a schematic perspective view showing an adsorption element of the humidity control apparatus according to the first embodiment.
  • FIG. 3 is a schematic perspective view showing a configuration of a main part of the humidity control apparatus according to the second embodiment.
  • FIG. 4 is a schematic perspective view showing an adsorption element of the humidity control apparatus according to the third embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating a configuration of a humidity control apparatus according to Embodiment 3.
  • FIG. 6 is a schematic perspective view showing the adsorption element of the humidity control apparatus according to the fourth embodiment.
  • FIG. 7 is a schematic configuration diagram illustrating a configuration of a humidity control apparatus according to Embodiment 4.
  • FIG. 8 is a piping diagram showing the configuration of the humidity control apparatus according to the fifth embodiment.
  • FIG. 9 is a schematic perspective view showing an adsorption heat exchanger of a humidity control apparatus according to Embodiment 5.
  • the humidity control apparatus is configured to switch between a dehumidifying operation for supplying dehumidified and cooled outside air to a room and a humidifying operation for supplying heated and humidified outside air to a room.
  • the humidity control device includes two adsorption elements (81, 82), and is configured to perform a so-called batch type operation.
  • each adsorption element (81, 82) is formed in the shape of a quadrangular prism.
  • the detailed configuration of the suction elements (81, 82) will be described later.
  • the two suction elements (81, 82) are housed in a casing (not shown) in a side-by-side attitude.
  • the first adsorption element in the casing of the humidity control device, the first adsorption element
  • each of the adsorption elements (81, 82) is installed in such a manner that one diagonal line on its end face is aligned with each other. Further, each of the adsorption elements (81, 82) is installed so as to be rotatable around an axis passing through the center of the end face.
  • each adsorption element (81, 82) is partitioned vertically.
  • the space between the adsorbing elements (81, 82) in the lower space of the upper and lower spaces A regenerative heat exchanger (92) has been installed in the area.
  • This regenerative heat exchanger (92) is installed in such a posture that its longitudinal direction is parallel to the longitudinal direction of the adsorption elements (81, 82).
  • the regenerative heat exchanger (92) is connected to a refrigerant circuit (not shown).
  • the refrigerant circuit includes a compressor and the like and is filled with a refrigerant, and is configured to perform a vapor compression refrigeration cycle by circulating the refrigerant. In the refrigeration cycle of the refrigerant circuit, the regenerative heat exchanger (92) functions as a refrigerant condenser.
  • the adsorption element (81, 82) is configured by alternately stacking square flat plate members (83) and corrugated plate members (84).
  • the corrugated sheet members (84) are stacked such that the ridge directions of the adjacent corrugated sheet members (84) are shifted from each other by 90 °.
  • the adsorption elements (81, 82) are formed in a quadrangular prism shape. That is, each of the suction elements (81, 82) has an end face formed in the same square shape as the flat plate member (83).
  • the humidity control side passage (85) and the cooling side passage (86) form the flat plate member (83). It is divided and formed alternately.
  • a humidity control side passage (85) is opened on a pair of opposed side surfaces, and a cooling side passage (86) is opened on another pair of opposed side surfaces.
  • An adsorbent for adsorbing water vapor is provided on the surface of the flat plate member (83) facing the humidity control side passage (85) or on the surface of the corrugated plate member (84) provided in the humidity control side passage (85). Is applied. Examples of this type of adsorbent include silica gel, zeolite, and ion exchange resin.
  • An air flow path through which the first air and the second air flow are formed in the casing of the humidity control device is formed in the casing of the humidity control device.
  • a damper mechanism for switching an air flow path and a fan for flowing air through the air flow path are housed in the casing.
  • This humidity control device is configured as follows by including a damper mechanism.
  • the humidity control device has a state in which the first air and the second air are sent to the first adsorbing element (81) and a state in which the first air and the second air are sent to the second adsorbing element (82). And are configured to be switchable.
  • the humidity control device is configured such that the outdoor air is taken in as the first air and supplied to the room after passing through the adsorption element (81, 82), and the indoor air is taken in as the first air and is supplied as the first air. , 82) The state can be switched.
  • the humidity control device is configured to take in indoor air and outdoor air, and use a mixture of both as the second air. Further, the humidity control device is configured to be able to switch between a state in which the second air discharged from the adsorption element (81, 82) is exhausted to the outside of the room and a state in which the second air is supplied to the room.
  • the humidity control device is provided with a temperature sensor for detecting the temperature of the indoor air and a temperature sensor for detecting the temperature of the outdoor air.
  • the humidity control device is configured to adjust the mixing ratio of the indoor air and the outdoor air in the second air based on the temperatures detected by the two temperature sensors.
  • the humidity control apparatus takes in the first air and the second air, and switches between the dehumidifying operation and the humidifying operation.
  • the humidity control device performs the dehumidifying operation and the humidifying operation by alternately repeating the first operation and the second operation.
  • the humidity control device takes in the outdoor air as the first air during the dehumidifying operation, and takes in the indoor air as the first air during the humidifying operation.
  • the humidity control apparatus uses the mixed air of the indoor air and the outdoor air as the second air in both the dehumidifying operation and the humidifying operation.
  • an adsorption operation on the first adsorption element (81) and a reproduction operation on the second adsorption element (82) are performed. That is, in the first operation, the first air is dehumidified by the first adsorption element (81), and the adsorbent of the second adsorption element (82) is regenerated.
  • the first suction element (81) and the second suction element (82) are arranged such that the open side of the humidity control passage (85) has the upper left and lower right. And the opening side of the cooling-side passage (86) is positioned at the upper right and lower left.
  • the first air is introduced into the humidity control passage (85) from the lower right side surface of the first adsorption element (81).
  • the humidity control passage (85) the first air flows from the lower right to the upper left, and the water vapor contained in the first air is adsorbed by the adsorbent.
  • the first air dehumidified in the humidity control passage (85) flows out from the upper left side of the first adsorption element (81).
  • the first air flowing out of the first adsorption element (81) is supplied to the room during the dehumidification operation, and is discharged to the outside during the humidification operation.
  • the second air is introduced into the cooling-side passage (86) from the upper right side surface of the first adsorption element (81).
  • the second air flows from the upper right to the lower left, and absorbs the heat of adsorption generated in the humidity-control-side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. Thereafter, the second air leaves the first adsorption element (81) and is sent to the regenerative heat exchanger (92). In the regenerative heat exchanger (92), the second air is heated by heat exchange with the refrigerant.
  • the second air heated by the first adsorption element (81) and the regenerative heat exchanger (92) is introduced into the humidity control side passageway (85) from the lower right side surface of the second adsorption element (82).
  • the second air flows from the lower right to the upper left.
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, regeneration of the adsorbent is performed.
  • the water vapor desorbed from the adsorbent flows out of the second adsorption element (82) together with the second air.
  • the second air to which the water vapor has been added by the second adsorption element (82) is discharged outside the room during the dehumidification operation, and is fed into the room during the humidification operation.
  • the second operation is performed.
  • an adsorption operation on the second adsorption element (82) and a reproduction operation on the first adsorption element (81) are performed.
  • the first adsorption element (81) and the second adsorption element (82) rotate by 90 °.
  • the first suction element (81) and the second suction element (82) are located on the upper right and lower left sides of the opening of the humidity control side passageway (85).
  • the open side of the passage (86) is located at the upper left and lower right.
  • the first air is introduced from the lower left side surface of the second adsorption element (82) into the humidity control passage (85).
  • the humidity control passage (85) the first air flows from the lower left to the upper right, and the water vapor contained in the first air is adsorbed by the adsorbent. 1 Air flows out from the upper right side surface of the second adsorption element (82).
  • the first air flowing out of the second adsorption element (82) is supplied to the room during the dehumidifying operation, and is discharged to the outside during the humidifying operation.
  • the second air is introduced into the cooling side passage (86) from the upper left side surface of the second adsorption element (82).
  • the second air flows from the upper left to the lower right, and absorbs the heat of adsorption generated in the humidity-controlling passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. Thereafter, the second air exits the first adsorption element (81) and is sent to the regenerative heat exchanger (92). In the regenerative heat exchanger (92), the second air is heated by exchanging heat with the refrigerant.
  • the second air heated by the second adsorption element (82) and the regenerative heat exchanger (92) is introduced from the lower left side of the first adsorption element (81) into the humidity control passage (85).
  • the second air flows from the lower left to the upper right.
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, regeneration of the adsorbent is performed.
  • the water vapor desorbed from the adsorbent flows out of the first adsorption element (81) together with the second air.
  • the second air to which the water vapor has been added by the first adsorption element (81) is discharged outside the room during the dehumidifying operation, and is supplied indoors during the humidifying operation.
  • the first air is dehumidified by the second adsorption element (82), and the adsorbent of the first adsorption element (81) is regenerated. If this second operation is continued for a while, the first operation is performed again.
  • the mixed air of the indoor air and the outdoor air is used as the second air.
  • the humidity control device adjusts the mixing ratio of the indoor air and the outdoor air in the second air based on the temperatures of the indoor air and the outdoor air.
  • the absolute humidity of air can be estimated to be higher as the temperature of the air is higher. Therefore, in such a case, the ratio of the higher temperature of the indoor air and the temperature of the outdoor air is increased so that the absolute humidity of the second air becomes higher.
  • the higher the temperature of the second air the better. Therefore, in such a case, the room air and the outdoor air should be adjusted so that the temperature of the second air becomes high. Increase the percentage of higher temperature.
  • the second air is a mixed air of the indoor air and the outdoor air, and the mixing ratio of the indoor air and the outdoor air is variable.
  • the temperature and humidity of the second air are uniquely determined by the state of the indoor air and the outdoor air.
  • the temperature and humidity of the second air can be changed as necessary by adjusting the mixing ratio of the indoor air and the outdoor air constituting the second air. Become. Therefore, according to the present embodiment, by setting the state of the second air appropriately, it is possible to increase the efficiency of the humidity control device and secure the humidity control capability.
  • the cooling side passageway (86) is formed in the adsorption element (81, 82), and the heat of adsorption generated during the adsorption operation is absorbed by the second air. Therefore, according to the present embodiment, it is possible to suppress an increase in the temperature of the first air due to the generated heat of adsorption. As a result, the relative humidity of the first air flowing through the humidity control side passage (85) of the adsorption element (81, 82) can be kept high, and the amount of water vapor adsorbed by the adsorbent can be increased.
  • the second air is first introduced as a cooling fluid into the cooling-side passage (86) of the adsorption element (81, 82), and the second air exiting from the cooling-side passage (86) is regenerated heat. Heated by exchanger (92). That is, the second air used for regeneration of the adsorption elements (81, 82) is heated not only by the regenerative heat exchanger (92) but also by the heat of adsorption generated by the adsorption elements (81, 82). Therefore, according to the present embodiment, the amount of heat that must be given to the second air in the regenerative heat exchanger (92) can be reduced, and the energy required for operating the humidity control device can be reduced.
  • the humidity control apparatus includes two adsorption elements (81, 82) and performs a batch-type operation. It is configured to switch between the dehumidifying operation and the humidifying operation. Also, in this humidity control device, the second air is composed of a mixture of indoor air and outdoor air, and the mixing ratio of indoor air and outdoor air in the second air is adjusted based on the indoor and outdoor air temperatures. You. This is the same as in the first embodiment.
  • the first device is kept with the adsorption element (81, 82) fixed.
  • the operation and the second operation are switched.
  • the configuration of the humidity control apparatus of the present embodiment that is different from that of the first embodiment will be described.
  • two adsorbing elements (81, 82) are installed side by side in the casing of the humidity control device. This is the same as in the first embodiment. Further, the configuration of each adsorption element (81, 82) itself is the same as in the first embodiment.
  • the opening side of the humidity control passage (85) is located on the upper left and lower right, and the opening side of the cooling side passage (86) is located on the upper right and lower left. It is installed in a posture where it does.
  • the opening side of the humidity control passage (85) is located on the upper right and lower left, and the opening side of the cooling side passage (86) is located on the upper left and lower right. It is installed in the position located in.
  • each adsorption element (81, 82) is partitioned vertically. This is the same as in the first embodiment.
  • the regenerative heat exchanger (92) is installed in a substantially horizontal posture between the first adsorption element (81) and the second adsorption element (82). That is, the space between the two adsorption elements (81, 82) is communicated between the upper and lower parts via the regenerative heat exchanger (92).
  • a switching shirt (160) is provided above the regenerative heat exchanger (92) so as to cover the regenerative heat exchanger (92).
  • the switching shirt evening (160) includes a shirt evening board (162) and a pair of side boards (161).
  • Each of the side plates (161) is formed in a semi-circular shape.
  • the diameter of each side plate (161) is almost the same as the left and right width of the regenerative heat exchanger (92).
  • the side plates (161) are provided one by one along the front and rear end surfaces of the regenerative heat exchanger (92).
  • shirt evening plate (162) is formed from one side plate (161) is Wataruconnection extend to the other side plate (161), a curved plate shape which is curved along the periphery of the side plates (161) c
  • This shirt evening plate (162) has a curved surface with a central angle of 90 ° and covers half of the horizontal direction of the regenerative heat exchanger (92).
  • the shirt evening board (162) is configured to move along the periphery of the side board (161).
  • the shirt evening board (162) covers the right half of the regenerative heat exchanger (92) (see Fig. 3 (a)). It is configured to switch to a state that covers the left half of the exchanger (92) (see Fig. 3 (b)). I have.
  • the humidity control device takes in the first air and the second air, and switches between the dehumidifying operation and the humidifying operation.
  • the humidity control device performs the dehumidifying operation and the humidifying operation by alternately repeating the first operation and the second operation.
  • the humidity control device takes in the outdoor air as the first air during the dehumidifying operation, and takes in the indoor air as the first air during the humidifying operation.
  • the humidity control apparatus uses the mixed air of the indoor air and the outdoor air as the second air in both the dehumidifying operation and the humidifying operation.
  • the operation of adjusting the mixture of the indoor air and the outdoor air is the same as in the first embodiment.
  • an adsorption operation for the first adsorption element (81) and a reproduction operation for the second adsorption element (82) are performed. That is, in the first operation, the moisture in the first air is adsorbed by the first adsorption element (81), and the water desorbed from the second adsorption element (82) is applied to the second air.
  • the shutter plate (162) is at a position covering the right half of the regenerative heat exchanger (92).
  • the cooling-side passage (86) of the first adsorption element (81) communicates with the humidity control-side passage (85) of the second adsorption element (82).
  • the first air is introduced into the humidity control side passageway (85) from the lower right side surface of the first adsorption element (81).
  • the first air flows from the lower right to the upper left, and the water vapor contained in the first air is adsorbed by the adsorbent.
  • the first air dehumidified in the humidity control passage (85) flows out from the upper left side of the first adsorption element (81).
  • the first air flowing out of the first adsorption element (81) is supplied to the room during the dehumidifying operation, and is discharged outside the room during the humidifying operation.
  • the second air is introduced into the cooling-side passage (86) from the upper right side surface of the first adsorption element (81).
  • the cooling-side passage (86) the second air flows from the upper right to the lower left, and absorbs the heat of adsorption generated in the humidity-control-side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid.
  • the regenerative heat exchanger (92) the second air is heated by heat exchange with the refrigerant.
  • the second air heated by the first adsorption element (81) and the regenerative heat exchanger (92) is introduced from the upper right side of the second adsorption element (82) into the humidity control passage (85).
  • the second air flows from the upper right to the lower left.
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, regeneration of the adsorbent is performed.
  • the water vapor desorbed from the adsorbent flows out of the second adsorption element (82) together with the second air.
  • the second air to which the steam has been added by the second adsorption element (82) is discharged outside the room during the dehumidifying operation, and is supplied indoors during the humidifying operation.
  • the second operation is performed.
  • an adsorption operation on the second adsorption element (82) and a reproduction operation on the first adsorption element (81) are performed.
  • the shirt board (162) of the switching shirt (160) moves to a position covering the left half of the regenerative heat exchanger (92). As shown in FIG. 3 (b), in this state, the cooling side passageway (86) of the second adsorption element (82) and the humidity control side passageway (85) of the first adsorption element (81) communicate with each other. You.
  • the first air is introduced into the humidity control passage (85) from the lower left side surface of the second adsorption element (82).
  • the humidity control passage (85) the first air flows from the lower left to the upper right, and the water vapor contained in the first air is adsorbed by the adsorbent.
  • the first air dehumidified in the humidity control passage (85) flows out from the upper right side surface of the first adsorption element (81).
  • the first air flowing out of the second adsorption element (82) is supplied to the room during the dehumidification operation, and is discharged to the outside during the humidification operation.
  • the second air flows from the upper left side of the second adsorption element (82) to the cooling-side passage.
  • the second air flows from the upper left to the lower right, and absorbs the heat of adsorption generated in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. Thereafter, the second air exits the second adsorption element (82) and is sent to the regenerative heat exchanger (92). Regenerative heat exchanger (92) In the above, the second air is heated by heat exchange with the refrigerant.
  • the second air heated by the second adsorption element (82) and the regenerative heat exchanger (92) is introduced into the humidity control passage (85) from the upper left side of the first adsorption element (81).
  • this humidity control passage (85) the second air flows from the upper left to the lower right.
  • the adsorbent is heated by the second air, and steam is desorbed from the adsorbent. That is, regeneration of the adsorbent is performed.
  • the water vapor desorbed from the adsorbent flows out of the first adsorption element (81) together with the second air.
  • the second air to which the water vapor has been added by the first adsorption element (81) is discharged outside the room during the dehumidifying operation, and is supplied indoors during the humidifying operation.
  • the first air is dehumidified by the second adsorption element (82),
  • the adsorbent of the adsorption element (81) is regenerated. If this second operation is continued for a while, the first operation is performed again.
  • the humidity control apparatus includes one adsorption element (200).
  • C The humidity control apparatus takes in the first air and the second air, and performs the first operation and the second operation.
  • the dehumidifying operation or the humidifying operation is performed by alternately performing the operations.
  • the adsorption element (200) of the present embodiment is configured by alternately stacking rectangular flat plate members (83) and corrugated plate members (84).
  • This adsorption element (200) has the same configuration as that of the first embodiment except for the overall shape.
  • the adsorption element (200) is formed in a horizontally long and somewhat flat rectangular parallelepiped shape as a whole.
  • a flat plate member (83) and a corrugated plate member (84) are laminated in the longitudinal direction, and a humidity control side passageway (85) is opened on the front and back surfaces in FIG.
  • Cooling-side passages (86) are opened on the upper and lower surfaces in FIG.
  • the adsorption element (200) is divided into a first part (201) and a second part (202) (that is, the left half of the adsorption element (200) becomes the first part (201), and The right half is the second part (202).
  • a right air flow path (211), a center air flow path (212), and a left air flow path (213) are formed in parallel with each other.
  • the first air flows upward from the bottom in FIG.
  • the central air flow path (212) the second air flows from top to bottom in FIG.
  • a right cooling air flow path (214) and a left cooling air flow path (215) are formed in the humidity control apparatus.
  • the right cooling air flow path (214) is formed to be orthogonal to the right air flow path (211).
  • the left cooling air flow path (215) is formed so as to be orthogonal to the left air flow path (213).
  • the adsorption element (200) is installed so as to be able to slide right and left in FIG. Specifically, the adsorption element (200) moves linearly in the longitudinal direction so that the first portion (201) crosses the left air flow path (213) and the left cooling air flow path (215). And the second part (202) crosses the central air flow path (212), the first part (201) crosses the central air flow path (212) and the second part (202) is the right air flow. It is installed so as to switch to a state of crossing the road (211) and the right cooling air flow path (214).
  • a regenerative heat exchanger (92) as a heater is provided upstream of the adsorption element (200) in the central air flow path (212).
  • This regenerative heat exchanger (92) is connected to the refrigerant circuit of the refrigerator and functions as a refrigerant condenser.
  • the mixed air of the indoor air and the outdoor air is used as the second air.
  • the humidity control device is provided with a temperature sensor for detecting the temperature of indoor air and a temperature sensor for detecting the temperature of outdoor air.
  • This humidity control device is configured to adjust the mixing ratio of the indoor air and the outdoor air constituting the second air based on the temperatures detected by the two temperature sensors.
  • the humidity control device takes in the first air and the second air, and switches between the dehumidifying operation and the humidifying operation.
  • the humidity control device performs the dehumidifying operation and the humidifying operation by alternately repeating the first operation and the second operation.
  • the humidity control device takes in the outdoor air as the first air during the dehumidifying operation, and takes in the indoor air as the first air during the humidifying operation.
  • this humidity control device the mixed air of the indoor air and the outdoor air is used in both the dehumidifying operation and the humidifying operation. 2 Use as air.
  • the operation of adjusting the mixture of the indoor air and the outdoor air is the same as in the first embodiment.
  • an adsorption operation for the first portion (201) of the adsorption element (200) and a reproduction operation for the second portion (202) are performed. That is, in the first operation, the moisture in the first air is adsorbed by the first portion (201) of the adsorption element (200), and the moisture desorbed from the second portion (202) is applied to the second air.
  • the adsorption element (200) in the first operation, has its first part (201) crossing the left air flow path (213) and the left cooling air flow path (215).
  • the second portion (202) is in a state of traversing the central air flow path (212).
  • the first air is introduced into the humidity control side passage (85) and the second air is introduced into the cooling side passage (86).
  • the humidity control passage (85) of the first part (201) water vapor contained in the first air is adsorbed by the adsorbent.
  • the first air dehumidified in the humidity control side passageway (85) of the first portion (201) is sent out to the left air passageway (213).
  • the second air that has absorbed the heat of adsorption in the humidity control passage (85) of the first part (201) further absorbs the heat of condensation of the refrigerant in the regenerative heat exchanger (92), and then the second part (202) Into the humidity control side passage (85).
  • the second air is heated by both the cooling side passage (86) of the first part (201) and the regenerative heat exchanger (92), and then is heated by the humidity control side passage ( 85).
  • the adsorbent In the humidity control passage (85) of the second part (202), the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent. That is, regeneration of the adsorbent is performed. The water vapor desorbed from the adsorbent is provided to the second air. The second air humidified in the humidity control passage (85) of the second part (202) is sent out to the central air flow path (212).
  • the dehumidified first air flowing through the left air flow path (213) is supplied to the room, and the humidified second air flowing through the central air flow path (212) is discharged outside the room. Discharge I do.
  • the humidified second air flowing through the central air flow path (212) is supplied to the room, and the dehumidified first air flowing through the left air flow path (213) is discharged outside the room. Discharge.
  • the second operation is performed.
  • an adsorption operation on the second portion (202) of the adsorption element (200) and a reproduction operation on the first portion (201) are performed.
  • the adsorption element (200) slides on the right side in the figure.
  • the adsorption element (200) has a first part (201) crossing the central air flow path (212), and a second part (202) having a right air flow path (211) and a right cooling air flow path. (214).
  • the first air is introduced into the humidity control passage (85), and the second air is introduced into the cooling passage (86).
  • the humidity control passage (85) of the second part (202) the water vapor contained in the first air is adsorbed by the adsorbent.
  • the first air dehumidified in the humidity control side passage (85) of the second part (202) is sent out to the right air passage (211).
  • the second air that has absorbed heat of adsorption in the humidity control side passageway (85) of the second part (202) further absorbs the heat of condensation of the refrigerant in the regenerative heat exchanger (92), and then the first part (201) Into the humidity control side passage (85).
  • the second air is heated by both the cooling side passage (86) of the second portion (202) and the regenerative heat exchanger (92), and then is heated by the humidity control side passage ( 85).
  • the adsorbent In the humidity control passage (85) of the first part (201), the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent. That is, regeneration of the adsorbent is performed. The water vapor desorbed from the adsorbent is provided to the second air. The second air humidified in the humidity control passage (85) of the first portion (201) is sent out to the central air flow path (212).
  • the first air after dehumidification flowing through the right air flow path (211) is used. Air is supplied into the room, and the humidified second air flowing through the central air flow path (212) is discharged outside the room. During the humidification operation, the humidified second air flowing through the central air flow path (212) is supplied to the room, and the dehumidified first air flowing through the right air flow path (211) is discharged outside the room. Discharge.
  • the first air is dehumidified in the second part (202) of the adsorption element (200), and the adsorbent is regenerated in the first part (201). If this second operation is continued for a while, the first operation is performed again.
  • the humidity control apparatus includes one adsorption element (250).
  • C This humidity control apparatus takes in the first air and the second air, and applies the air to one adsorption element (250).
  • the suction operation and the reproduction operation are performed in parallel. That is, in the humidity control apparatus of the present embodiment, the dehumidification of the air by the adsorption element (250) and the regeneration of the adsorbent of the adsorption element (250) are performed simultaneously in parallel.
  • the adsorption element (250) of the present embodiment is formed in a donut shape or a thick cylindrical shape.
  • Humidity control side passages (85) and cooling side passages (86) are alternately formed in the circumferential direction of the adsorption element (250).
  • the humidity control side passage (85) passes through the adsorption element (250) in the axial direction. That is, the humidity control side passage (85) is open to the front and back of the adsorption element (250).
  • An adsorbent is applied to the inner wall of the humidity control passage (85).
  • the cooling side passage (86) penetrates the adsorption element (250) in the radial direction. That is, the cooling-side passage (86) is open to the outer peripheral surface and the inner peripheral surface of the adsorption element (250).
  • the adsorption element (250) is provided across the adsorption zone (251) and the regeneration zone (252).
  • the suction element (250) is continuously driven to rotate around an axis passing through its center.
  • the humidity control device includes a refrigerant circuit.
  • the refrigerant circuit is a closed circuit formed by connecting a compressor, a regenerative heat exchanger (92) as a condenser, an expansion valve as an expansion mechanism, and a cooling heat exchanger (93) as an evaporator. is there.
  • the regenerative heat exchanger (92) constitutes a heater.
  • the refrigerant circuit is configured to perform a vapor compression refrigeration cycle by circulating the charged refrigerant. Note that in FIG. Only the regenerative heat exchanger (92) and the cooling heat exchanger (93) are shown.
  • the mixed air of the indoor air and the outdoor air is used as the second air.
  • the humidity control device is provided with a temperature sensor for detecting the temperature of indoor air and a temperature sensor for detecting the temperature of outdoor air.
  • This humidity control device is configured to adjust the mixing ratio of the indoor air and the outdoor air constituting the second air based on the temperatures detected by the two temperature sensors.
  • the humidity control device takes in the first air and the second air, and switches between a dehumidifying operation and a humidifying operation.
  • This humidity control device takes in outdoor air as the first air during the dehumidifying operation, and takes in the indoor air as the first air during the humidifying operation.
  • the humidity control apparatus uses the mixed air of the indoor air and the outdoor air as the second air in both the dehumidifying operation and the humidifying operation.
  • the operation of adjusting the mixture of the indoor air and the outdoor air is the same as in the first embodiment.
  • the first air is introduced into the humidity control side passage (85) in the portion of the adsorption element (250) located in the adsorption zone (251), and the cooling side passage (86 The second air is introduced into the). At this time, the second air is sent from the inner peripheral surface side of the adsorption element (250) to the cooling-side passage (86).
  • the water vapor contained in the first air is adsorbed by the adsorbent in the humidity control passage (85) of the adsorption element (250).
  • the humidity control passage (85) of the adsorption element (250) When water vapor is adsorbed by the adsorbent in the humidity control passage (85), heat of adsorption is generated. This heat of adsorption is absorbed by the second air flowing through the cooling-side passage (86) of the adsorption element (250).
  • the first air dehumidified by removing moisture in the adsorption zone (251) passes through the cooling heat exchanger (93).
  • the first air exchanges heat with the refrigerant and radiates heat to the refrigerant.
  • the dehumidified and cooled first air is supplied to the room.
  • the first air that has been deprived of water and radiated is exhausted to the outside of the room.
  • the second air deprived of the heat of adsorption in the adsorption zone (251) passes through the regenerative heat exchanger (92).
  • the second air exchanges heat with the refrigerant Absorbs the condensation heat of the refrigerant.
  • the second air heated in the adsorption zone (251) and the regenerative heat exchanger (92) is introduced into the humidity control side passageway (85) of the adsorption element (250) located in the regeneration zone (252).
  • the part of the adsorption element (250) located in the adsorption zone (251) moves to the regeneration zone (252) as the adsorption element (250) rotates.
  • the adsorbent In the part of the adsorption element (250) located in the regeneration zone (252), the adsorbent is heated by the second air in the humidity control side passageway (85) of the part, and steam is desorbed from the adsorbent. That is, regeneration of the adsorbent is performed. The water vapor desorbed from the adsorbent is provided to the second air. Then, during the dehumidifying operation, the second air is exhausted to the outside together with the water vapor desorbed from the adsorbent. During the humidifying operation, the heated and humidified second air is supplied to the room.
  • the humidity control apparatus is configured by connecting two adsorption heat exchangers (311 and 312) to a refrigerant circuit (300) for performing a refrigeration cycle.
  • the humidity control device takes in the first air and the second air, supplies one of them to the first adsorption heat exchanger (311), and supplies the other to the second adsorption heat exchanger (312).
  • the dehumidifying operation and the humidifying operation are switched and performed.
  • the refrigerant circuit (300) includes, in addition to the first and second adsorption heat exchangers (311 and 312), a compressor (301), a four-way switching valve (303), and an expansion valve. (302) is provided.
  • the refrigerant circuit (300) is filled with a refrigerant.
  • the refrigerant circuit (300) is configured to circulate the refrigerant to perform a vapor compression refrigeration cycle.
  • the compressor (301) has its discharge side diverted to the first port of the four-way switching valve (303) and its suction side diverted to the second port of the four-way switching valve (303). Piping is connected.
  • One end of the first adsorption heat exchanger (311) is connected to the third port of the four-way switching valve (303) by piping.
  • the other end of the first adsorption heat exchanger (311) is connected to one end of the second adsorption heat exchanger (312) via an expansion valve (302).
  • the other end of the second adsorption heat exchanger (312) is connected to the fourth port of the four-way switching valve (303) by a pipe.
  • the four-way switching valve (303) has a first port and a fourth port communicating with each other and a second port.
  • the state where the port and the third port communicate (the state shown in Fig. 8 (a)) and the state where the first and third ports communicate and the second and fourth ports communicate ( Figure 8 (b).
  • the first adsorption heat exchanger (312) becomes the condenser and the first adsorption heat exchanger (311) becomes the evaporator, and the first operation is performed.
  • the heat exchanger (311) becomes a condenser and the second adsorption heat exchanger
  • the first and second adsorption heat exchangers (311, 312) are each constituted by a cross-fin type fin-and-tube heat exchanger.
  • the first and second adsorption heat exchangers (311 and 312) include a number of aluminum fins (313) formed in a rectangular plate shape, and a copper transmission penetrating the fins (313). Heat tube (314). The surface of each fin (313) is coated with an adsorbent.
  • These first and second adsorption heat exchangers (311 and 312) allow the air passing between the fins (313) to come into contact with the adsorbent, and the refrigerant flowing through the heat transfer tubes (314) causes the fins to flow.
  • An adsorbing element for heating or cooling the adsorbent on the surface is constituted.
  • the humidity control device In the humidity control apparatus described above, mixed air of indoor air and outdoor air is used as the second air. Further, the humidity control device is provided with a temperature sensor for detecting the temperature of indoor air and a temperature sensor for detecting the temperature of outdoor air. This humidity control device is configured to adjust the mixing ratio of the indoor air and the outdoor air constituting the second air based on the temperatures detected by the two temperature sensors. These points are the same as in the first embodiment.
  • the humidity control device takes in the first air and the second air, and switches between the dehumidifying operation and the humidifying operation.
  • the humidity control device performs the dehumidifying operation and the humidifying operation by alternately repeating the first operation and the second operation.
  • the humidity control device takes in the outdoor air as the first air during the dehumidifying operation, and takes in the indoor air as the first air during the humidifying operation.
  • the humidity control apparatus uses the mixed air of the indoor air and the outdoor air as the second air in both the dehumidifying operation and the humidifying operation.
  • the operation of adjusting the mixture of the indoor air and the outdoor air is the same as in the first embodiment. ⁇ First operation ⁇
  • the adsorption operation of the first adsorption heat exchanger (311) and the regeneration operation of the second adsorption heat exchanger (312) are performed. That is, in the first operation, the moisture in the first air is adsorbed by the first adsorption heat exchanger (311), and the water desorbed from the second adsorption heat exchanger (312) is given to the second air.
  • the first air is supplied to the first adsorption heat exchanger (311), and the second air is supplied to the second adsorption heat exchanger (312). .
  • the four-way switching valve (303) is switched to the state shown in FIG.
  • the second adsorption heat exchanger (312) functions as a condenser
  • the first adsorption heat exchanger (311) functions as an evaporator to perform a refrigeration cycle.
  • the high-temperature and high-pressure refrigerant discharged from the compressor (301) is sent to the second adsorption heat exchanger (312) as a heating medium for heating.
  • the adsorbent on the fin (313) surface is heated by the introduced coolant. Water is desorbed from the heated adsorbent, and the desorbed water is provided to the second air.
  • the second air to which water has been added by the second adsorption heat exchanger (31 2) is discharged outside the room during the dehumidifying operation, and is supplied indoors during the humidifying operation.
  • the refrigerant condensed by releasing heat in the second adsorption heat exchanger (312) is reduced in pressure by the expansion valve (302).
  • the depressurized refrigerant is introduced into the first adsorption heat exchanger (311) as a heat medium for cooling.
  • the first air is sent to the first adsorption heat exchanger (311).
  • the moisture in the first air is adsorbed by the adsorbent of the first adsorption heat exchanger (311), and heat of adsorption is generated at that time.
  • the refrigerant flowing into the first adsorption heat exchanger (311) absorbs the heat of adsorption and evaporates.
  • the first air whose moisture has been deprived by the first adsorption heat exchanger (311), is supplied indoors during the dehumidifying operation and discharged outside the room during the humidifying operation.
  • the refrigerant evaporated in the first adsorption heat exchanger (311) is sucked into the compressor (301).
  • the compressor (301) compresses the sucked coolant and discharges it.
  • the second operation is performed.
  • the adsorption operation for the second adsorption heat exchanger (312) and the adsorption operation for the first adsorption heat exchanger (311) are performed. Is performed.
  • the high-temperature and high-pressure refrigerant discharged from the compressor (301) is sent to the first adsorption heat exchanger (311) as a heating medium for heating.
  • the first adsorption heat exchanger (311) the adsorbent on the fin (313) surface is heated by the introduced coolant. Water is desorbed from the heated adsorbent, and the desorbed water is provided to the second air.
  • the second air to which water has been added in the first adsorption heat exchanger (31 1) is discharged outside the room during the dehumidifying operation, and is supplied indoors during the humidifying operation.
  • the refrigerant that has released heat and condensed in the first adsorption heat exchanger (311) is decompressed by the expansion valve (302).
  • the depressurized refrigerant is introduced into the second adsorption heat exchanger (312) as a heat medium for cooling.
  • the first air is sent to the second adsorption heat exchanger (312).
  • the moisture in the first air is adsorbed by the adsorbent in the second adsorption heat exchanger (312), and heat of adsorption is generated at that time.
  • the refrigerant that has flowed into the second adsorption heat exchanger (312) absorbs the heat of adsorption and evaporates.
  • the first air whose moisture has been deprived by the second adsorption heat exchanger (312), is supplied indoors during the dehumidifying operation and discharged outside the room during the humidifying operation.
  • the refrigerant evaporated in the second adsorption heat exchanger (312) is sucked into the compressor (301).
  • the compressor (301) compresses the sucked refrigerant and discharges it.
  • the first air is dehumidified by the second adsorption heat exchanger (312), and the adsorbent of the first adsorption heat exchanger (311) is regenerated. If this second operation is continued for a while, the first operation is performed again.
  • the second air is used based on the temperatures of the indoor air and the outdoor air.
  • the mixing ratio may be adjusted as follows instead.
  • the mixing ratio of the indoor air and the outdoor air in the second air may be adjusted based on the relative humidity of the indoor air and the outdoor air.
  • the second air introduced into the adsorption element (81, 82, 7) The lower the relative humidity, the more advantageous. Therefore, the humidity control device adjusts the mixing ratio of the indoor air and the outdoor air in consideration of the relative humidity of the two so that the relative humidity of the second air is reduced.
  • the mixing ratio of the indoor air and the outdoor air in the second air may be adjusted based on the temperature and the relative humidity of the indoor air and the temperature and the relative humidity of the outdoor air. For example, if it is desired to secure the humidification amount during the humidification operation, it is required to increase the absolute humidity of the second air supplied to the room. On the other hand, if the temperature and relative humidity of the air are known, the absolute humidity of the air can be calculated. Therefore, in such a case, the humidity control device calculates the absolute humidity of the indoor air and the outdoor air by calculation. Then, the humidity control device increases the ratio of the room air and the outdoor air having the higher absolute humidity so that the absolute humidity of the second air is higher.
  • the temperature of the first air flowing out of the adsorption element (81, 82, to) is used as a parameter when adjusting the mixing ratio of the indoor air and the outdoor air in the second air. May be used.
  • the adsorption elements (81, 82 ') of these embodiments heat exchange is performed between the first air in the humidity control side passage (85) and the second air in the cooling side passage (86).
  • outdoor air is used as the first air during the dehumidification operation in the humidity control apparatus of these embodiments. Therefore, considering the heat exchange performance of the adsorption elements (81, 82, ...), the temperature of the first air after flowing out of the humidity control side passageway (85) of the adsorption elements (81, 82, ...) Based on the above, the temperature of the first air before flowing into the humidity control side passage (85), that is, the temperature of the outdoor air, can be estimated.
  • the temperature of the first air after flowing out of the humidity control passage (85) is used, and the indoor air and the outdoor air are determined based on the temperature of the first air and the temperature of the indoor air.
  • the mixing ratio of air may be adjusted.
  • the indoor air Used as air. Therefore, considering the heat exchange performance of the adsorption element (81, 82 "), the temperature of the first air after flowing out of the humidity control side passage (85) of the adsorption element (81, 82, ...)
  • the temperature of the first air before flowing into the humidity control passage (85) that is, the temperature of the indoor air, can be estimated based on the temperature of the first air before flowing out of the humidity control passage (85).
  • the mixing ratio of the indoor air and the outdoor air may be adjusted based on the temperature of the first air and the temperature of the outdoor air.
  • the first and second adsorption elements (81, 82) are formed in the shape of a quadrangular prism.
  • the shape of the adsorption elements (81, 82) is not limited thereto, and may be, for example, a hexagonal prism. It may be.
  • a humidity control side passage (85) opens on a pair of opposing side surfaces
  • a cooling side passage (86) opens on another pair of opposing side surfaces. A pair of opposing side surfaces are closed.
  • the present invention is useful for a humidity control device for adjusting the humidity of air.

Description

曰月 糸田 β 調湿装置 技術分野
本発明は、 空気の湿度調節を行う調湿装置に関するものである。 背景技術
従来より、 吸着剤を用いて空気の湿度調節を行う調湿装置が知られている。 例えば、 特開平 8— 1 2 8 6 8 1号公報には、 この種の調湿装置と空調機を組み 合わせたものが開示されている。
具体的に、 上記公報に記載された調湿装置は、 円板状の吸着ロータを備えて いる。 この吸着口一夕は、 室内空気の流路と室外空気の流路とに跨って設置され、 その軸周りに回転駆動されている。 つまり、 吸着口一夕は、 その一部分が室内空 気と接触し、 残りの部分が室外空気と接触する。 また、 吸着口一夕には、 吸着剤 が設けられている。
上記調湿装置では、 室外空気が吸着ロー夕へ供給され、 室外空気中の水分が 吸着剤に吸着される。 また、 加熱された室内空気が吸着ロー夕へ供給され、 吸着 剤から水分が脱離する。 そして、 この調湿装置は、 吸着口一夕で加湿された室内 空気を室内へ送り返している。
—解決課題—
しかしながら、 上記調湿装置では、 充分な調湿能力が得られないおそれがあ る。 この点について説明すると、 この調湿装置では、 加熱した空気を吸着口一夕 へ送って吸着剤から水分を脱離させ、 この脱離した水分を空気へ付与することで 空気の加湿を行っている。 その際、 吸着口一夕へ導入される空気の相対湿度が低 いほど、 吸着剤から水分が脱離しやすくなる。
ところが、 上記調湿装置では、 絶対湿度の比較的高い室内空気を加熱して吸 着ロータへ送っている。 このため、 吸着口一夕へ導入される加熱後の室内空気の 相対湿度を充分に下げることができなくなり、 吸着剤から脱離する水分量 (即ち 加湿量) を確保できなくなるおそれがあった。 また、 加熱後の室内空気の相対湿 度を低下させて加湿量を確保しょうとすると、 加熱後の室内空気温度を引き上げ ねばならず、 加熱に要するエネルギが嵩んで調湿装置の効率が低下するという問 題もあった。
本発明は、 かかる点に鑑みてなされたものであり、 その目的とするところは、 高効率で充分な調湿能力を確保しうる調湿装置を提供することにある。 発明の開示
本発明が講じた第 1の解決手段は、 取り込んだ空気を加湿又は減湿して室内 へ供給する調湿装置を対象としている。 そして、 流通する空気を吸着剤と接触さ せるための調湿側通路 (85) が形成された吸着素子 (81,82,〜) と、 上記吸着剤 を再生するために吸着素子 (81,82 ") の調湿側通路 (85) へ供給される空気を 加熱する加熱器 (92) とを備え、 第 1空気を上記吸着素子 (81 , 82,〜) の調湿側 通路 (85) へ導入して第 1空気中の水分を吸着剤に吸着させる吸着動作と、 上記 加熱器 (92) で加熱された第 2空気を上記吸着素子 (81,82,〜) の調湿側通路 (85) へ導入して吸着剤から水分を脱離させる再生動作とを行う一方、 上記第 2 空気を室内空気と室外空気の混合空気により構成しているものである。
本発明が講じた第 2の解決手段は、 上記第 1の解決手段において、 吸着素子 ( 81, 82,〜) は、 吸着動作時に調湿側通路 (85) で生じる吸着熱を奪うための冷 却用流体が流れる冷却側通路 (86) を備えるものである。
本発明が講じた第 3の解決手段は、 上記第 2の解決手段において、 第 2空気 は、 冷却用流体として吸着素子 (81 , 82,—) の冷却側通路 (86) を通過した後に 加熱器 (92) で加熱されて上記吸着素子 (81 , 82,〜) の調湿側通路 (85) へ導入 されるものである。
本発明が講じた第 4の解決手段は、 上記第 1, 第 2又は第 3の解決手段にお いて、 吸着素子 (81 , 82) を複数備え、 第 1の吸着素子 (81) の調湿側通路 (85) で第 1空気を流通させて吸着動作を行うと同時に第 2の吸着素子 (82) の調湿側 通路 (85) で第 2空気を流通させて再生動作を行う第 1動作と、 第 2の吸着素子 ( 82) の調湿側通路 (85) で第 1空気を流通させて吸着動作を行うと同時に第 1 の吸着素子 (81) の調湿側通路 (85) で第 2空気を流通させて再生動作を行う第 2動作とが交互に行われるものである。
本発明が講じた第 5の解決手段は、 上記第 1, 第 2又は第 3の解決手段にお いて、 1つの吸着素子 (200) が第 1部分 (201 ) と残りの第 2部分 (202) とに区 分される一方、 吸着動作として上記第 1部分 (201 ) の調湿側通路 (85) へ第 1空 気を導入すると同時に再生動作として上記第 2部分 (202) の調湿側通路 (85) へ 第 2空気を導入する第 1動作と、 再生動作として上記第 1部分 (201) の調湿側通 路 (85) へ第 2空気を導入すると同時に吸着動作として上記第 2部分 (202) の調 湿側通路 (85) へ第 1空気を導入する第 2動作とを、 上記吸着素子 (200) をスラ ィ ドさせることによって交互に切り換えて行うものである。
本発明が講じた第 6の解決手段は、 上記第 1, 第 2又は第 3の解決手段にお いて、 吸着素子 (250) は、 その厚さ方向へ調湿側通路 (85) が貫通する円板状に 形成されると共に、 第 1空気の流路と第 2空気の流路の両方を横断する姿勢で設 置される一方、 上記吸着素子 (250) をその中心軸周りに回転させ、 吸着動作とし て上記吸着素子 (250) の一部分に形成された調湿側通路 (85) へ第 1空気を導入 すると同時に、 再生動作として上記吸着素子 (250) の残りの部分に形成された調 湿側通路 (85) へ第 2空気を導入しているものである。
本発明が講じた第 7の解決手段は、 上記第 1, 第 2, 第 3の解決手段におい て、 第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度と室外 空気の温度とに基づいて調節されるものである。
本発明が講じた第 8の解決手段は、 上記第 1 , 第 2 , 第 3の解決手段におい て、 第 2空気における室内空気と室外空気の混合割合は、 室内空気の相対湿度と 室外空気の相対湿度とに基づいて調節されるものである。
本発明が講じた第 9の解決手段は、 上記第 1, 第 2, 第 3の解決手段におい て、 第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度及び相 対湿度と室外空気の温度及び相対湿度とに基づいて調節されるものである。
本発明が講じた第 1 0の解決手段は、 上記第 2又は第 3の解決手段において、 室外空気を第 1空気として用いる運転を行う一方、 上記運転時には、 室内空気の 温度と吸着素子 (81,82 ') から流出した後の第 1空気の温度とに基づき、 第 2 空気における室内空気と室外空気の混合割合が調節されるものである。
本発明が講じた第 1 1の解決手段は、 上記第 2又は第 3の解決手段において、 室内空気を第 1空気として用いる運転を行う一方、 上記運転時には、 室外空気の 温度と吸着素子 (81,82 ') から流出した後の第 1空気の温度とに基づき、 第 2 空気における室内空気と室外空気の混合割合が調節されるものである。
本発明が講じた第 1 2の解決手段は、 取り込んだ空気を加湿又は減湿して室 内へ供給する調湿装置を対象としている。 そして、 通過する空気を吸着剤と接触 させると共に該吸着剤を熱媒体により加熱し又は冷却する吸着素子 (311 , 312) を 備え、 上記吸着素子 (311, 312) へ第 1空気と冷却用の熱媒体とを供給して第 1空 気中の水分を吸着剤に吸着させる吸着動作と、 上記吸着素子 (311,312) へ第 2空 気と加熱用の熱媒体とを供給して吸着剤から水分を脱離させる再生動作とを行う 一方、 上記第 2空気を室内空気と室外空気の混合空気により構成しているもので める。
本発明が講じた第 1 3の解決手段は、 上記第 1 2の解決手段において、 第 2 空気における室内空気と室外空気の混合割合は、 室内空気の温度と室外空気の温 度とに基づいて調節されるものである。
本発明が講じた第 1 4の解決手段は、 上記第 1 2の解決手段において、 第 2 空気における室内空気と室外空気の混合割合は、 室内空気の相対湿度と室外空気 の相対湿度とに基づいて調節されるものである。
本発明が講じた第 1 5の解決手段は、 上記第 1 2の解決手段において、 第 2 空気における室内空気と室外空気の混合割合は、 室内空気の温度及び相対湿度と 室外空気の温度及び相対湿度とに基づいて調節されるものである。
—作用—
上記第 1の解決手段では、 調湿装置において、 吸着動作と再生動作とが行わ れる。 吸着動作時には、 第 1空気が吸着素子 (81 , ,…) の調湿側通路 (85) へ 導入される。 調湿側通路 (85) を流れる間に第 1空気が吸着剤と接触し、 第 1空 気中の水蒸気が吸着剤に吸着される。 一方、 再生動作時には、 加熱器 (92) で加 熱された第 2空気が吸着素子 (81 , 82,ー) の調湿側通路 (85) へ導入される。 高 温の第 2空気が吸着剤と接触すると、 水蒸気が吸着剤から脱離する。 即ち、 吸着 剤が再生される。 吸着剤から脱離した水蒸気は、 第 2空気に付与される。
本解決手段の調湿装置において、 第 2空気は、 室外空気と室内空気の混合空 気とされている。 つまり、 この調湿装置では、 室外空気と室内空気が取り込まれ、 混合された後に第 2空気として加熱器 (92) や吸着素子 (81 , 82, ) へ送られる。
本解決手段の調湿装置は、 室内へ供給される空気の減湿又は加湿を行う。 つ まり、 この調湿装置は、 吸着素子 (81 , 82,〜) に水蒸気を奪われて減湿さ た第 1空気を室内へ供給する運転、 又は吸着素子 (81,82,〜) から脱離した水蒸気を 付与されて加湿された第 2空気を室内へ供給する運転を行う。 尚、 上記調湿装置 は、 減湿された第 1空気を室内へ供給する運転と、 加湿された第 2空気を室内へ 供給する運転とを切り換えて行うものであってもよい。
上記第 2の解決手段では、 吸着素子 (81 , 82,〜) に冷却側通路 (86) が設け られる。 この冷却側通路 (86) では、 吸着動作時に冷却用流体が流通する。 つま り、 第 1空気中の水蒸気が吸着剤に吸着される際には、 吸着熱が発生する。 この 吸着熱によって第 1空気の温度が上昇し、 第 1空気の相対湿度が低下すると、 第 1空気中の水蒸気が吸着剤に吸着されにく くなる。 そこで、 吸着素子 (81, 82, ··· ) の冷却側通路 (86) に冷却用流体を流し、 発生した吸着熱を冷却用流体に吸 熱させる。 そして、 第 1空気の温度上昇を抑制して相対湿度の低下を抑え、 吸着 剤に吸着される水分量を確保する。
上記第 3の解決手段では、 吸着素子 (81 , 82,〜) の冷却側通路 (86) と加熱 器 (92) を順に通過した第 2空気が、 吸着素子 (81,82 ") の調湿側通路 (85) へ送り込まれる。 つまり、 本解決手段において、 第 2空気は、 先ず吸着素子 (81 , 82,〜) の冷却側通路 (86) へ導入される。 この第 2空気は、 冷却用流体として冷 却側通路 (86) を流れ、 調湿側通路 (85) で生じた吸着熱を吸熱する。 その後、 第 2空気は、 更に加熱器 (92) で加熱されてから調湿側通路 (85) へ送り込まれ o
上記第 4の解決手段では、 少なくとも 2つの吸着素子 (81,82) が調湿装置に 設けられる。 また、 本解決手段の調湿装置は、 第 1動作と第 2動作を交互に行う。 第 1動作では、 第 1の吸着素子 (81) について吸着動作を行い、 第 2の吸着素子 (82) について再生動作を行う。 一方、 第 2動作では、 第 1動作とは逆に、 第 2 の吸着素子 (82) について吸着動作を行い、 第 1の吸着素子 (81) について再生 動作を行う。
上記第 5の解決手段では、 1つの吸着素子 (200) が 2つの部分に区分される c また、 本解決手段の調湿装置では、 第 1動作と第 2動作が交互に行われる。 第 1 動作では、 吸着素子 (200) の第 1部分 (201) について吸着動作を行い、 その第 2部分 (202) について再生動作を行う。 一方、 第 2動作では、 第 1動作とは逆に、 吸着素子 (200) の第 2部分 (202) について吸着動作を行い、 その第 1部分 (20 1 ) について再生動作を行う。
本解決手段の調湿装置は、 吸着素子 (200) をスライ ドさせて、 第 1動作と第 2動作を切り換える。 例えば、 この調湿装置は、 吸着素子 (200) の第 1部分 (2 01) が第 1空気の流路を横断して第 2部分 (202) が第 2空気の流路を横断する状 態として第 1動作を暫く続ける。 その後、 吸着素子 (200) を移動させ、 その第 1 部分 (201) が第 2空気の流路を横断して第 2部分 (202) が第 1空気の流路を横 断する状態として、 第 2動作を開始する。 そして、 この第 2動作を暫く続けた後、 再び吸着素子 (200) を移動させて第 1動作を行う。
上記第 6の解決手段では、 吸着素子 (250) が円板状に形成される。 吸着素子 (250) には、 その厚さ方向へ貫通するように調湿側通路 (85) が形成される。 こ の吸着素子 (250) は、 第 1空気の流路及び第 2空気の流路を横断する姿勢で設置 されると共に、 その中心軸周りに回転駆動される。 この吸着素子 (250) について、 第 1空気の流路を横断する部分では、 調湿側通路 (85) を第 1空気が流れて吸着 動作が行われる。 また、 第 2空気の流路を横断する部分では、 調湿側通路 (85) を第 2空気が流れて再生動作が行われる。 そして、 吸着素子 (250) を回転させる ことで、 吸着動作と再生動作とが同時に並行して行われる。
上記第 7及び第 1 3の解決手段では、 第 2空気を構成する室内空気と室外空 気の混合割合が可変とされる。 室内空気と室外空気の混合割合は、 室内空気と室 外空気の温度を考慮して調節される。
上記第 8及び第 1 4の解決手段では、 第 2空気を構成する室内空気と室外空 気の混合割合が可変とされる。 室内空気と室外空気の混合割合は、 室内空気と室 外空気の相対湿度を考慮して調節される。 上記第 9及び第 1 5の解決手段では、 第 2空気を構成する室内空気と室外空 気の混合割合が可変とされる。 室内空気と室外空気の混合割合は、 室内空気の温 度及び相対湿度と室外空気の温度及び相対湿度とを考慮して調節される。 ここで、 空気の温度と相対湿度が分かれば、 その空気の絶対湿度を導出できる。 従って、 本解決手段では、 空気の温度と相対湿度から演算等により絶対湿度を導出するこ とで、 室内空気と室外空気の絶対湿度を考慮して室内空気と室外空気の混合割合 を調節することも可能である。
上記第 1 0の解決手段では、 第 2空気を構成する室内空気と室外空気の混合 割合が可変とされる。 また、 本解決手段では、 取り込んだ室外空気を第 1空気と して用い、 この第 1空気を吸着素子 (81, 82,〜) の調湿側通路 (85) へ導入する 運転が行われる。 ただし、 本解決手段の調湿装置は、 この運転以外の運転を行う ものであってもよい。
ここで、 本解決手段の吸着素子 (81,82,ー) では、 調湿側通路 (85) の第 1 空気と冷却側通路 (86) の冷却用流体とが熱交換を行う。 このため、 吸着素子 (81, 82 ") の熱交換性能を考慮すれば、 吸着素子 (81,82 ') の調湿側通路 (85) から流出した後の第 1空気の温度に基づいて、 調湿側通路 (85) へ流出す る前の第 1空気の温度、 即ち室外空気の温度を推測できる。 そこで、 本解決手段 では、 室外空気の温度の代わりに調湿側通路 (85) から流出した後の第 1空気の 温度を用い、 この第 1空気の温度と室内空気の温度とに基づいて室内空気と室外 空気の混合割合を調節する。
上記第 1 1の解決手段では、 第 2空気を構成する室内空気と室外空気の混合 割合が可変とされる。 また、 本解決手段では、 取り込んだ室内空気を第 1空気と して用い、 この第 1空気を吸着素子 (81 , 82,〜) の調湿側通路 (85) へ導入する 運転が行われる。 ただし、 本解決手段の調湿装置は、 この運転以外の運転を行う ものであってもよい。
ここで、 本解決手段の吸着素子 (81 , 82,〜) では、 調湿側通路 (85) の第 1 空気と冷却側通路 (86) の冷却用流体とが熱交換を行う。 このため、 吸着素子 (81, 82 ') の熱交換性能を考慮すれば、 吸着素子 (81 , 82,〜) の調湿側通路 ( 85) から流出した後の第 1空気の温度に基づいて、 調湿側通路.(85) へ流出す る前の第 1空気の温度、 即ち室内空気の温度を推測できる。 そこで、 本解決手段 では、 室内空気の温度の代わりに調湿側通路 (85) から流出した後の第 1空気の 温度を用い、 この第 1空気の温度と室外空気の温度とに基づいて室内空気と室外 空気の混合割合を調節する。
上記第 1 2の解決手段では、 調湿装置において、 吸着動作と再生動作とが行 われる。 吸着動作時には、 吸着素子 (311,312) に対して、 第 1空気と冷却用の熱 媒体とが送り込まれる。 吸着動作時の吸着素子 (311 , 312) では、 第 1空気中の水 分が吸着剤に吸着される。 その際に発生する吸着熱は、 冷却用の熱媒体に吸収さ れる。 一方、 再生動作時には、 吸着素子 (311 , 312) に対して、 第 2空気と加熱用 の熱媒体とが送り込まれる。 再生動作時の吸着素子 (311 , 312) では、 加熱用の熱 媒体によって吸着剤が加熱され、 吸着剤から水分が脱離する。 即ち、 吸着剤が再 生される。 吸着剤から脱離した水蒸気は、 第 2空気に付与される。
本解決手段の調湿装置において、 第 2空気は、 室外空気と室内空気の混合空 気とされている。 つまり、 この調湿装置では、 室外空気と室内空気が取り込まれ、 混合された後に第 2空気として加熱器 (92) や吸着素子 (311 , 312) へ送られる。
本解決手段の調湿装置は、 室内へ供給される空気の減湿又は加湿を行う。 つ まり、 この調湿装置は、 吸着素子 (311, 312) に水蒸気を奪われて減湿された第 1 空気を室内へ供給する運転、 又は吸着素子 (311 , 312) から脱離した水蒸気を付与 されて加湿された第 2空気を室内へ供給する運転を行う。 尚、 上記調湿装置は、 減湿された第 1空気を室内へ供給する運転と、 加湿された第 2空気を室内へ供給 する運転とを切り換えて行うものであってもよい。
一効果一
本発明では、 吸着剤を再生するために吸着素子 (81,82,〜) へ送られる第 2 空気を、 室内空気と室外空気の混合空気としている。 ここで、 室内空気と室外空 気の何れか一方だけを第 2空気として用いた場合、 第 2空気の温度や湿度は、 室 内空気や室外空気の状態によって一義的に定まってしまう。 これに対し、 本発明 では、 室内空気と室外空気の混合空気を第 2空気として用いている。 このため、 必要に応じて第 2空気の温度や湿度を変化させることが可能となる。 従って、 本 発明によれば、 第 2空気の状態を適切に設定することで、 調湿装置の効率を高く 保ちつつ、 調湿能力を充分に確保することができる。
上記第 2の解決手段では、 吸着素子 (81 , 82,〜) に冷却側通路 (86) を形成 し、 吸着動作中に発生する吸着熱を冷却用流体に吸収させている。 従って、 本解 決手段によれば、 発生した吸着熱による第 1空気の温度上昇を抑制することが可 能となる。 この結果、 吸着素子 (81,82 ") の調湿側通路 (85) を流れる第 1空 気の相対湿度を高く保つことができ、 吸着剤に吸着される水蒸気の量を増大させ ることができる。
上記第 3の解決手段では、 第 2空気を先ず冷却用流体として吸着素子 (81 , 8 2,ー) の冷却側通路 (86) へ導入し、 この冷却側通路 (86) から出た第 2空気を 加熱器 (92) で加熱している。 つまり、 吸着素子 (81 , 82^·· ) の再生に用いられ る第 2空気は、 加熱器 (92) だけでなく吸着素子 (81 , 82,〜) の冷却側通路 (8 6) においても加熱される。 従って、 本解決手段によれば、 加熱器 (92) で第 2空 気に与えねばならない熱量を削減でき、 調湿装置の運転に要するエネルギを削減 できる。
上記第 1 2の解決手段では、 吸着動作時の吸着素子 (311,312) へ冷却用の熱 媒体を導入し、 吸着動作中に発生する吸着熱を熱媒体に吸収させている。 従って、 本解決手段によれば、 発生した吸着熱による第 1空気の温度上昇を抑制すること が可能となる。 この結果、 吸着素子 (311,312) を通過する第 1空気の相対湿度を 高く保つことができ、 吸着剤に吸着される水蒸気の量を増大させることができる。 特に、 上記第 7〜第 1 1 , 第 1 3〜第 1 5の各解決手段では、 第 2空気を構成 する室内空気と室外空気の混合割合を、 各種のパラメ一夕を用いて適宜調節して いる。 従って、 これらの解決手段によれば、 吸着剤の再生に利用される第 2空気 の状態を一層適切に設定でき、 調湿装置の高効率化や調湿能力の向上を図ること が可能となる。 図面の簡単な説明
図 1は、 実施形態 1に係る調湿装置の要部の構成を示す概略斜視図である。 図 2は、 実施形態 1に係る調湿装置の吸着素子を示す概略斜視図である。 図 3は、 実施形態 2に係る調湿装置の要部の構成を示す概略斜視図である。 図 4は、 実施形態 3に係る調湿装置の吸着素子を示す概略斜視図である。
図 5は、 実施形態 3に係る調湿装置の構成を示す概略構成図である。
図 6は、 実施形態 4に係る調湿装置の吸着素子を示す概略斜視図である。
図 7は、 実施形態 4に係る調湿装置の構成を示す概略構成図である。
図 8は、 実施形態 5に係る調湿装置の構成を示す配管系統図である。
図 9は、 実施形態 5に係る調湿装置の吸着熱交換器を示す概略斜視図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。 尚、 以下の説明 において、 「上」 「下」 「左」 「右」 「前」 「後」 「手前」 「奥」 は、 何れも参照する図 面におけるものを意味している。
〈発明の実施形態 1〉
実施形態 1に係る調湿装置は、 減湿して冷却した外気を室内へ供給する除湿 運転と、 加熱して加湿した外気を室内へ供給する加湿運転とを切り換えて行うよ うに構成されている。 また、 この調湿装置は、 2つの吸着素子 (81 , 82) を備え、 いわゆるバッチ式の動作を行うように構成されている。
図 1に示すように、 各吸着素子 (81,82) は、 四角柱状に形成されている。 尚、 吸着素子 (81 , 82) の詳細な構成は後述する。 2つの吸着素子 (81,82) は、 左右 に並んだ姿勢で図外のケーシング内に収納されている。
具体的に、 上記調湿装置のケ一シング内では、 その右寄りに第 1吸着素子
( 81) が設置され、 その左寄りに第 2吸着素子 (82) が設置されている。 これら 吸着素子 (81 , 82) は、 それそれの長手方向が互いに平行となる状態で設置されて いる。 また、 これら吸着素子 (81 , 82) は、 その端面が正方形を 4 5 ° 回転させた 菱形をなす姿勢で設置されている。 つまり、 各吸着素子 (81, 82) は、 その端面に おける一方の対角線が互いに一直線上に並ぶような姿勢で設置されている。 更に、 各吸着素子 (81, 82) は、 その端面の中心を通る軸周りに回転可能な状態で設置さ れている。
各吸着素子 (81,82) の左右の空間は、 それそれ上下に仕切られている。 この 上下に仕切られた空間のうち、 下側の空間における両吸着素子 (81,82) の間の部 分には、 再生熱交換器 (92) が設置されている。 この再生熱交換器 (92) は、 そ の長手方向が吸着素子 (81, 82) の長手方向と平行となる姿勢で設置されている。 また、 再生熱交換器 (92) は、 図外の冷媒回路に接続されている。 この冷媒回路 は、 圧縮機等を備えると共に冷媒が充填されており、 冷媒を循環させることで蒸 気圧縮式の冷凍サイクルを行うように構成されている。 この冷媒回路の冷凍サイ クルにおいて、 上記再生熱交換器 (92) は冷媒の凝縮器として機能する。
図 2に示すように、 上記吸着素子 (81,82) は、 正方形状の平板部材 (83) と 波板部材 (84) とを交互に積層して構成されている。 波板部材 (84) は、 隣接す る波板部材 (84) の稜線方向が互いに 9 0 ° ずれる姿勢で積層されている。 そし て、 吸着素子 (81,82) は、 四角柱状に形成されている。 つまり、 各吸着素子 (8 1 , 82) は、 その端面が平板部材 (83) と同様の正方形状に形成されている。
上記吸着素子 (81,82) には、 平板部材 (83) 及び波板部材 (84) の積層方向 において、 調湿側通路 (85) と冷却側通路 (86) とが平板部材 (83) を挟んで交 互に区画形成されている。 吸着素子 (81 , 82) において、 対向する一対の側面に調 湿側通路 (85) が開口し、 これとは別の対向する一対の側面に冷却側通路 (86) が開口している。 また、 調湿側通路 (85) に臨む平板部材 (83) の表面や、 調湿 側通路 (85) に設けられた波板部材 (84) の表面には、 水蒸気を吸着するための 吸着剤が塗布されている。 この種の吸着剤としては、 例えばシリカゲル、 ゼオラ イ ト、 イオン交換樹脂等が挙げられる。
上記調湿装置のケ一シング内には、 第 1空気や第 2空気の流れる空気流路が 形成されている。 また、 ケーシング内には、 図示しないが、 空気の流通経路を切 り換えるためのダンパ機構や、 空気流路で空気を流通させるためのファンが収納 されている。 この調湿装置は、 ダンパ機構を備えることによって次のように構成 されている。
具体的に、 上記調湿装置は、 第 1空気及び第 2空気が第 1吸着素子 (81 ) へ 送られる状態と、 第 1空気及び第 2空気が第 2吸着素子 (82) へ送られる状態と を切り換え可能に構成されている。 また、 調湿装置は、 室外空気が第 1空気とし て取り込まれて吸着素子 (81,82) を通過後に室内へ供給される状態と、 室内空気 が第 1空気として取り込まれて吸着素子 (81 , 82) を通過後に室外へ排出される状 態とを切り換え可能に構成されている。 また、 調湿装置は、 室内空気と室外空気 を取り込み、 両者を混合したものを第 2空気として用いるように構成されている。 また、 調湿装置は、 吸着素子 (81 , 82) から出た第 2空気が室外へ排気される状態 と、 この第 2空気が室内へ供給される状態とを切り換え可能に構成されている。
更に、 上記調湿装置には、 室内空気の温度を検出する温度センサと、 室外空 気の温度を検出する温度センサとが設けられている。 そして、 この調湿装置は、 両温度センサの検出温度に基づいて、 第 2空気における室内空気と室外空気の混 合割合を調節するように構成されている。
一運転動作 - 上述のように、 上記調湿装置は、 第 1空気と第 2空気とを取り込み、 除湿運 転と加湿運転とを切り換えて行う。 また、 この調湿装置は、 第 1動作と第 2動作 とを交互に繰り返すことにより、 除湿運転や加湿運転を行う。
上記調湿装置は、 除湿運転時であれば室外空気を第 1空気として取り込み、 加湿運転時であれば室内空気を第 1空気として取り込む。 一方、 この調湿装置は、 除湿運転時と加湿運転時の何れにおいても、 室内空気と室外空気の混合空気を第 2空気として用いる。
《第 1動作》
第 1動作では、 第 1吸着素子 (81) についての吸着動作と、 第 2吸着素子 (82) についての再生動作とが行われる。 つまり、 第 1動作では、 第 1吸着素子 (81) で第 1空気が減湿され、 第 2吸着素子 (82) の吸着剤が再生される。
図 1 ( a )に示すように、 第 1動作時において、 第 1吸着素子 (81) と第 2吸 着素子 (82) は、 調湿側通路 (85) の開口する側面が左上と右下に位置し、 冷却 側通路 (86) の開口する側面が右上と左下に位置する姿勢とされる。
この状態において、 第 1空気は、 第 1吸着素子 (81) における右下の側面か ら調湿側通路 (85) へ導入される。 この調湿側通路 (85) において、 第 1空気は 右下から左上に向かって流れ、 第 1空気に含まれる水蒸気が吸着剤に吸着される。 調湿側通路 (85) で減湿された第 1空気は、 第 1吸着素子 (81) における左上の 側面から流出する。 第 1吸着素子 (81) から流出した第 1空気は、 除湿運転中に は室内へ供給され、 加湿運転中には室外へ排出される。 一方、 第 2空気は、 第 1吸着素子 (81) における右上の側面から冷却側通路 (86) へ導入される。 この冷却側通路 (86) において、 第 2空気は右上から左下 に向かって流れ、 調湿側通路 (85) で発生した吸着熱を吸収する。 つまり、 第 2 空気は、 冷却用流体として冷却側通路 (86) を流れる。 その後、 第 2空気は、 第 1吸着素子 (81) から出て再生熱交換器 (92) へ送られる。 再生熱交換器 (92) において、 第 2空気は、 冷媒との熱交換によって加熱される。
第 1吸着素子 (81) 及び再生熱交換器 (92) で加熱された第 2空気は、 第 2 吸着素子 (82) における右下の側面から調湿側通路 (85) へ導入される。 この調 湿側通路 (85) において、 第 2空気は右下から左上に向かって流れる。 この調湿 側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱 離する。 つまり、 吸着剤の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2 空気と共に第 2吸着素子 (82) から流出する。 第 2吸着素子 (82) で水蒸気を付 与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中には室内へ供 糸口 れ 。
《第 2動作》
第 1動作を暫く続けると、 続いて第 2動作が行われる。 第 2動作では、 第 2 吸着素子 (82) についての吸着動作と、 第 1吸着素子 (81) についての再生動作 とが行われる。
第 1動作から第 2動作へ切り換える際には、 図 1 ( b )に示すように、 第 1吸 着素子 (81) 及び第 2吸着素子 (82) が 9 0 ° だけ回転する。 そして、 図 1 ( c ) に示すように、 第 1吸着素子 (81) と第 2吸着素子 (82) は、 調湿側通路 (85) の開口する側面が右上と左下に位置し、 冷却側通路 (86) の開口する側面が左上 と右下に位置する姿勢とされる。
この状態において、 第 1空気は、 第 2吸着素子 (82) における左下の側面か ら調湿側通路 (85) へ導入される。 この調湿側通路 (85) において、 第 1空気は 左下から右上に向かって流れ、 第 1空気に含まれる水蒸気が吸着剤に吸着される < 調湿側通路 (85) で減湿された第 1空気は、 第 2吸着素子 (82) における右上の 側面から流出する。 第 2吸着素子 (82) から流出した第 1空気は、 除湿運転中に は室内へ供給され、 加湿運転中には室外へ排出される。 一方、 第 2空気は、 第 2吸着素子 (82) における左上の側面から冷却側通路 ( 86) へ導入される。 この冷却側通路 (86) において、 第 2空気は左上から右下 に向かって流れ、 調湿側通路 (85) で発生した吸着熱を吸収する。 つまり、 第 2 空気は、 冷却用流体として冷却側通路 (86) を流れる。 その後、 第 2空気は、 第 1吸着素子 (81) から出て再生熱交換器 (92) へ送られる。 再生熱交換器 (92) において、 第 2空気は、 冷媒との熱交換によって加熱される。
第 2吸着素子 (82) 及び再生熱交換器 (92) で加熱された第 2空気は、 第 1 吸着素子 (81 ) における左下の側面から調湿側通路 (85) へ導入される。 この調 湿側通路 (85) において、 第 2空気は左下から右上に向かって流れる。 この調湿 側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱 離する。 つまり、 吸着剤の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2 空気と共に第 1吸着素子 (81) から流出する。 第 1吸着素子 (81) で水蒸気を付 与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中には室内へ供 toされる。
このように、 第 2動作では、 第 2吸着素子 (82) で第 1空気が減湿され、 第 1吸着素子 (81) の吸着剤が再生される。 この第 2動作を暫く続けると、 再び第 1動作が行われる。
《混合割合の調節動作》
上述のように、 上記調湿装置では、 室内空気と室外空気の混合空気が第 2空 気として用いられている。 そして、 この調湿装置は、 室内空気と室外空気の温度 に基づき、 第 2空気における室内空気と室外空気の混合割合を調節している。
例えば、 加湿運転時における加湿量を確保したい場合には、 室内へ供給され る第 2空気の絶対湿度をなるベく高くすることが要求される。 また、 一般に、 空 気の絶対湿度は、 その空気が高温であるほど高いと推定できる。 そこで、 このよ うな場合には、 第 2空気の絶対湿度が高くなるように、 室内空気と室外空気のう ち温度の高い方の割合を増加させる。
また、 再生熱交換器 (92) における加熱量を削減して調湿装置の消費エネル ギを削減したい場合には、 第 2空気の温度が高いほど有利である。 そこで、 この ような場合には、 第 2空気の温度が高くなるように、 室内空気と室外空気のうち 温度の高い方の割合を増加させる。
一実施形態 1の効果 - 本実施形態では、 第 2空気を室内空気と室外空気の混合空気とし、 更には室 内空気と室外空気の混合割合を可変としている。 ここで、 室内空気と室外空気の 何れか一方だけを第 2空気として用いた場合、 第 2空気の温度や湿度は、 室内空 気や室外空気の状態によって一義的に定まってしまう。 これに対し、 本実施形態 によれば、 第 2空気を構成する室内空気と室外空気の混合割合調節することによ り、 必要に応じて第 2空気の温度や湿度を変化させることが可能となる。 従って、 本実施形態によれば、 第 2空気の状態を適当に設定することで、 調湿装置の高効 率化や調湿能力の確保が可能となる。
また、 本実施形態では、 吸着素子 (81 , 82) に冷却側通路 (86) を形成し、 吸 着動作中に発生する吸着熱を第 2空気に吸収させている。 従って、 本実施形態に よれば、 発生した吸着熱による第 1空気の温度上昇を抑制することが可能となる。 この結果、 吸着素子 (81,82) の調湿側通路 (85) を流れる第 1空気の相対湿度を 高く保つことができ、 吸着剤に吸着される水蒸気の量を増大させることができる。
また、 本実施形態では、 第 2空気を先ず冷却用流体として吸着素子 (81 , 82) の冷却側通路 (86) へ導入し、 この冷却側通路 (86) から出た第 2空気を再生熱 交換器 (92) で加熱している。 つまり、 吸着素子 (81 , 82) の再生に用いられる第 2空気は、 再生熱交換器 (92) だけでなく吸着素子 (81 , 82) で発生した吸着熱に よっても加熱される。 従って、 本実施形態によれば、 再生熱交換器 (92) で第 2 空気に与えねばならない熱量を削減でき、 調湿装置の運転に要するエネルギを削 減できる。
〈発明の実施形態 2〉
本実施形態に係る調湿装置は、 2つの吸着素子 (81 , 82) を備えてバッチ式の 動作を行い。 除湿運転と加湿運転とを切り換えて行うように構成されている。 ま た、 この調湿装置では、 第 2空気が室内空気と室外空気の混合空気により構成さ れ、 第 2空気における室内空気と室外空気の混合割合は室内外の空気温度に基づ いて調節される。 この点は、 上記実施形態 1と同様である。
ただし、 本実施形態の調湿装置は、 吸着素子 (81 , 82) を固定したままで第 1 動作と第 2動作の切換を行うように構成されている。 ここでは、 本実施形態の調 湿装置について、 上記実施形態 1 と異なる構成について説明する。
図 3に示すように、 上記調湿装置のケーシングには、 2つの吸着素子 (81 , 8 2) が左右に並んで設置されている。 この点は、 上記実施形態 1 と同様である。 ま た、 各吸着素子 (81, 82) 自体の構成は、 上記実施形態 1と同様である。 右側に位 置する第 1吸着素子 (81) は、 調湿側通路 (85) の開口する側面が左上と右下に 位置し、 冷却側通路 (86) の開口する側面が右上と左下に位置する姿勢で設置さ れている。 一方、 左側に位置する第 2吸着素子 (82) は、 調湿側通路 (85) の開 口する側面が右上と左下に位置し、 冷却側通路 (86) の開口する側面が左上と右 下に位置する姿勢で設置されている。
各吸着素子 (81, 82) の左右の空間は、 それそれ上下に仕切られている。 この 点は、 上記実施形態 1と同様である。 本実施形態において、 再生熱交換器 (92) は、 第 1吸着素子 (81) と第 2吸着素子 (82) の間に概ね水平姿勢で設置されて いる。 つまり、 両吸着素子 (81 , 82) の間の空間は、 その上部と下部が再生熱交換 器 (92) を介して連通されている。
再生熱交換器 (92) の上方には、 この再生熱交換器 (92) を覆うように切換 シャツ夕 (160) が設置されている。 切換シャツ夕 (160) は、 シャツ夕板 (162) と一対の側板 (161) とを備えている。
各側板 (161) は、 何れも半円板状に形成されている。 各側板 (161) の直径 は、 再生熱交換器 (92) の左右幅とほぼ同じとなっている。 この側板 (161) は、 再生熱交換器 (92) における手前側と奥側の端面に沿って 1つずつ設けられてい る。 一方、 シャツ夕板 (162) は、 一方の側板 (161) から他方の側板 (161) に亘 つて延長され、 各側板 (161 ) の周縁に沿って湾曲する曲面板状に形成されている c このシャツ夕板 (162) は、 その曲面の中心角が 9 0 ° となっており、 再生熱交換 器 (92) の左右方向の半分を覆っている。 また、 シャツ夕板 (162) は、 側板 (1 61) の周縁に沿って移動するように構成されている。
そして、 切換シャツ夕 (160) は、 シャツ夕板 (162) が再生熱交換器 (92) の右半分を覆う状態 (図 3 ( a )を参照) と、 シャツ夕板 (162) が再生熱交換器 ( 92) の左半分を覆う状態 (図 3 ( b )を参照) とに切り換わるように構成されて いる。
一運転動作一
上述のように、 上記調湿装置は、 第 1空気と第 2空気とを取り込み、 除湿運 転と加湿運転とを切り換えて行う。 また、 この調湿装置は、 第 1動作と第 2動作 とを交互に繰り返すことにより、 除湿運転や加湿運転を行う。
上記調湿装置は、 除湿運転時であれば室外空気を第 1空気として取り込み、 加湿運転時であれば室内空気を第 1空気として取り込む。 一方、 この調湿装置は、 除湿運転時と加湿運転時の何れにおいても、 室内空気と室外空気の混合空気を第 2空気として用いる。 尚、 室内空気と室外空気の混合を調節する動作については、 上記実施形態 1と同様である。
《第 1動作》
第 1動作では、 第 1吸着素子 (81 ) についての吸着動作と、 第 2吸着素子 (82) についての再生動作とが行われる。 つまり、 第 1動作では、 第 1吸着素子 (81) に第 1空気中の水分が吸着され、 第 2吸着素子 (82) から脱離した水分が 第 2空気に付与される。
図 3 ( a )に示すように、 第 1動作時において、 切換シャツ夕 (160) では、 シ ャッ夕板 (162) が再生熱交換器 (92) の右半分を覆う位置となっている。 この状 態では、 第 1吸着素子 (81) の冷却側通路 (86) と、 第 2吸着素子 (82) の調湿 側通路 (85) とが連通される。
第 1空気は、 第 1吸着素子 (81 ) における右下の側面から調湿側通路 (85) へ導入される。 この調湿側通路 (85) において、 第 1空気は右下から左上に向か つて流れ、 第 1空気に含まれる水蒸気が吸着剤に吸着される。 調湿側通路 (85) で減湿された第 1空気は、 第 1吸着素子 (81 ) における左上の側面から流出する。 第 1吸着素子 (81) から流出した第 1空気は、 除湿運転中には室内へ供給され、 加湿運転中には室外へ排出される。
一方、 第 2空気は、 第 1吸着素子 (81) における右上の側面から冷却側通路 (86) へ導入される。 この冷却側通路 (86) において、 第 2空気は右上から左下 に向かって流れ、 調湿側通路 (85) で発生した吸着熱を吸収する。 つまり、 第 2 空気は、 冷却用流体として冷却側通路 (86) を流れる。 その後、 第 2空気は、 第 1吸着素子 (81) から出て再生熱交換器 (92) へ送られる。 再生熱交換器 (92) において、 第 2空気は、 冷媒との熱交換によって加熱される。
第 1吸着素子 (81 ) 及び再生熱交換器 (92) で加熱された第 2空気は、 第 2 吸着素子 (82) における右上の側面から調湿側通路 (85) へ導入される。 この調 湿側通路 (85) において、 第 2空気は右上から左下に向かって流れる。 この調湿 側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱 離する。 つまり、 吸着剤の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2 空気と共に第 2吸着素子 (82) から流出する。 第 2吸着素子 (82) で水蒸気を付 与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中には室内へ供 給される。
《第 2動作》
第 1動作を暫く続けると、 続いて第 2動作が行われる。 第 2動作では、 第 2 吸着素子 (82) についての吸着動作と、 第 1吸着素子 (81) についての再生動作 とが行われる。
第 1動作から第 2動作へ切り換える際には、 切換シャツ夕 (160) のシャツ夕 板 (162) が再生熱交換器 (92) の左半分を覆う位置へ移動する。 図 3 ( b )に示す ように、 この状態では、 第 2吸着素子 (82) の冷却側通路 (86) と、 第 1吸着素 子 (81) の調湿側通路 (85) とが連通される。
第 1空気は、 第 2吸着素子 (82) における左下の側面から調湿側通路 (85) へ導入される。 この調湿側通路 (85) において、 第 1空気は左下から右上に向か つて流れ、 第 1空気に含まれる水蒸気が吸着剤に吸着される。 調湿側通路 (85) で減湿された第 1空気は、 第 1吸着素子 (81 ) における右上の側面から流出する。 第 2吸着素子 (82) から流出した第 1空気は、 除湿運転中には室内へ供給され、 加湿運転中には室外へ排出される。
一方、 第 2空気は、 第 2吸着素子 (82) における左上の側面から冷却側通路
(86) へ導入される。 この冷却側通路 (86) において、 第 2空気は左上から右下 に向かって流れ、 調湿側通路 (85) で発生した吸着熱を吸収する。 つまり、 第 2 空気は、 冷却用流体として冷却側通路 (86) を流れる。 その後、 第 2空気は、 第 2吸着素子 (82) から出て再生熱交換器 (92) へ送られる。 再生熱交換器 (92) において、 第 2空気は、 冷媒との熱交換によって加熱される。
第 2吸着素子 (82) 及び再生熱交換器 (92) で加熱された第 2空気は、 第 1 吸着素子 (81 ) における左上の側面から調湿側通路 (85) へ導入される。 この調 湿側通路 (85) において、 第 2空気は左上から右下に向かって流れる。 この調湿 側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱 離する。 つまり、 吸着剤の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2 空気と共に第 1吸着素子 (81) から流出する。 第 1吸着素子 (81) で水蒸気を付 与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中には室内へ供 給される。
このように、 第 2動作では、 第 2吸着素子 (82) で第 1空気が減湿され、 第
1吸着素子 (81) の吸着剤が再生される。 この第 2動作を暫く続けると、 再び第 1動作が行われる。
〈発明の実施形態 3〉
本発明の実施形態 3に係る調湿装置は、 1つの吸着素子 (200) を備えている c また、 この調湿装置は、 第 1空気と第 2空気を取り込み、 第 1動作と第 2動作を 交互に行うことによって、 除湿運転又は加湿運転を行うように構成されている。
図 4に示すように、 本実施形態の吸着素子 (200) は、 四角形状の平板部材 (83) と波板部材 (84) とを交互に積層して構成されている。 この吸着素子 (20 0) は、 その全体形状以外の点において、 上記実施形態 1のものと同様に構成され ている。
具体的に、 上記吸着素子 (200) は、 全体として横長でやや扁平な直方体状に 形成されている。 この吸着素子 (200) では、 その長手方向に平板部材 (83) と波 板部材 (84) とが積層されており、 図 4における前面及び背面に調湿側通路 (8 5) が開口し、 同図における上面及び下面に冷却側通路 (86) が開口している。 ま た、 吸着素子 (200) は、 第 1部分 (201 ) と第 2部分 (202) とに区分されている ( つまり、 吸着素子 (200) の左半分が第 1部分 (201) となり、 その右半分が第 2 部分 (202) となっている。
図 5に示すように、 本実施形態の調湿装置には、 右側空気流路 (211)、 中央 空気流路 (212)、 及び左側空気流路 (213) が互いに平行に形成されている。 右側 空気流路 (211) 及び左側空気流路 (213) では、 図 5における下から上に向かつ て第 1空気が流通する。 中央空気流路 (212) では、 同図における上から下に向か つて第 2空気が流通する。 また、 上記調湿装置には、 右側冷却空気流路 (214) 及 び左側冷却空気流路 (215) が形成されている。 右側冷却空気流路 (214) は、 右 側空気流路 (211) と直交するように形成されている。 左側冷却空気流路 (215) は、 左側空気流路 (213) と直交するように形成されている。 」 上記吸着素子 (200) は、 各空気流路と直交する姿勢で、 図 5における左右に スライ ド可能な状態で設置されている。 具体的に、 この吸着素子 (200) は、 その 長手方向へ直線的に移動することにより、 第 1部分 (201) が左側空気流路 (21 3) 及び左側冷却空気流路 (215) を横断し且つ第 2部分 (202) が中央空気流路 ( 212) を横断する状態と、 第 1部分 (201) が中央空気流路 (212) を横断し且つ 第 2部分 (202) が右側空気流路 (211) 及び右側冷却空気流路 (214) を横断する 状態とに切り換わるように設置されている。
また、 中央空気流路 (212) における吸着素子 (200) の上流側には、 加熱器 である再生熱交換器 (92) が設けられている。 この再生熱交換器 (92) は、 冷凍 機の冷媒回路に接続されており、 冷媒の凝縮器として機能する。
上記調湿装置では、 室内空気と室外空気の混合空気を、 第 2空気として用い ている。 また、 上記調湿装置には、 室内空気の温度を検出する温度センサと、 室 外空気の温度を検出する温度センサとが設けられている。 この調湿装置は、 両温 度センサの検出温度に基づいて、 第 2空気を構成する室内空気と室外空気の混合 割合を調節するように構成されている。 これらの点は、 上記実施形態 1と同様で める。
—^転動作—
上述のように、 上記調湿装置は、 第 1空気と第 2空気とを取り込み、 除湿運 転と加湿運転とを切り換えて行う。 また、 この調湿装置は、 第 1動作と第 2動作 とを交互に繰り返すことにより、 除湿運転や加湿運転を行う。
上記調湿装置は、 除湿運転時であれば室外空気を第 1空気として取り込み、 加湿運転時であれば室内空気を第 1空気として取り込む。 一方、 この調湿装置は、 除湿運転時と加湿運転時の何れにおいても、 室内空気と室外空気の混合空気を第 2空気として用いる。 尚、 室内空気と室外空気の混合を調節する動作については、 上記実施形態 1と同様である。
《第 1動作》
第 1動作では、 吸着素子 (200) の第 1部分 (201 ) についての吸着動作と、 その第 2部分 (202) についての再生動作とが行われる。 つまり、 第 1動作では、 吸着素子 (200) の第 1部分 (201) に第 1空気中の水分が吸着され、 その第 2部 分 (202) から脱離した水分が第 2空気に付与される。
図 5 ( a )に示すように、 第 1動作時において、 吸着素子 (200) は、 その第 1 部分 (201) が左側空気流路 (213) 及び左側冷却空気流路 (215) を横断し、 その 第 2部分 (202) が中央空気流路 (212) を横断する状態となっている。
この状態において、 吸着素子 (200) の第 1部分 (201) では、 調湿側通路 (85) へ第 1空気が導入され、 冷却側通路 (86) へ第 2空気が導入される。 第 1 部分 (201 ) の調湿側通路 (85) では、 第 1空気に含まれる水蒸気が吸着剤に吸着 される。 第 1部分 (201) の調湿側通路 (85) で減湿された第 1空気は、 左側空気 流路 (213) へと送り出される。
調湿側通路 (85) で水蒸気が吸着剤に吸着される際には、 吸着熱が生じる。 この吸着熱は、 第 1部分 (201) の冷却側通路 (86) を流れる第 2空気に吸熱され る。 つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。
第 1部分 (201) の調湿側通路 (85) で吸着熱を吸熱した第 2空気は、 更に再 生熱交換器 (92) で冷媒の凝縮熱を吸熱してから第 2部分 (202) の調湿側通路 (85) へ導入される。 つまり、 第 2空気は、 第 1部分 (201 ) の冷却側通路 (86) と再生熱交換器 (92) との両方で加熱され、 その後に第 2部分 (202) の調湿側通 路 (85) へ導入される。
第 2部分 (202) の調湿側通路 (85) では、 第 2空気によって吸着剤が加熱さ れ、 吸着剤から水蒸気が脱離する。 つまり、 吸着剤の再生が行われる。 吸着剤か ら脱離した水蒸気は、 第 2空気に付与される。 第 2部分 (202) の調湿側通路 (8 5) で加湿された第 2空気は、 中央空気流路 (212) へと送り出される。
そして、 除湿運転中であれば、 左側空気流路 (213) を流れる減湿後の第 1空 気を室内へ供給し、 中央空気流路 (212) を流れる加湿後の第 2空気を室外へ排出 する。 また、 加湿運転中であれば、 中央空気流路 (212) を流れる加湿後の第 2空 気を室内へ供給し、 左側空気流路 (213) を流れる減湿後の第 1空気を室外へ排出 する。
《第 2動作》
第 1動作を暫く続けると、 続いて第 2動作が行われる。 第 2動作では、 吸着 素子 (200) の第 2部分 (202) についての吸着動作と、 その第 1部分 (201) につ いての再生動作とが行われる。
第 1動作から第 2動作へ切り換える際には、 図 5 ( b )に示すように、 吸着素 子 (200) が同図における右側ヘスライ ドする。 そして、 吸着素子 (200) は、 そ の第 1部分 (201) が中央空気流路 (212) を横断し、 その第 2部分 (202) が右側 空気流路 (211) 及び右側冷却空気流路 (214) を横断する状態となる。
この状態において、 吸着素子 (200) の第 2部分 (202) では、 調湿側通路 (85) へ第 1空気が導入され、 冷却側通路 (86) へ第 2空気が導入される。 第 2 部分 (202) の調湿側通路 (85) では、 第 1空気に含まれる水蒸気が吸着剤に吸着 される。 '第 2部分 (202) の調湿側通路 (85) で減湿された第 1空気は、 右側空気 流路 (211) へと送り出される。
調湿側通路 (85) で水蒸気が吸着剤に吸着される際には、 吸着熱が生じる。 この吸着熱は、 第 2部分 (202) の冷却側通路 (86) を流れる第 2空気に吸熱され る。 つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。
第 2部分 (202) の調湿側通路 (85) で吸着熱を吸熱した第 2空気は、 更に再 生熱交換器 (92) で冷媒の凝縮熱を吸熱してから第 1部分 (201 ) の調湿側通路 (85) へ導入される。 つまり、 第 2空気は、 第 2部分 (202) の冷却側通路 (86) と再生熱交換器 (92) との両方で加熱され、 その後に第 1部分 (201 ) の調湿側通 路 (85) へ導入される。
第 1部分 (201) の調湿側通路 (85) では、 第 2空気によって吸着剤が加熱さ れ、 吸着剤から水蒸気が脱離する。 つまり、 吸着剤の再生が行われる。 吸着剤か ら脱離した水蒸気は、 第 2空気に付与される。 第 1部分 (201) の調湿側通路 (8 5) で加湿された第 2空気は、 中央空気流路 (212) へと送り出される。
そして、 除湿運転中であれば、 右側空気流路 (211) を流れる減湿後の第 1空 気を室内へ供給し、 中央空気流路 (212) を流れる加湿後の第 2空気を室外へ排出 する。 また、 加湿運転中であれば、 中央空気流路 (212) を流れる加湿後の第 2空 気を室内へ供給し、 右側空気流路 (211) を流れる減湿後の第 1空気を室外へ排出 する。
このように、 第 2動作では、 吸着素子 (200) の第 2部分 (202) で第 1空気 が減湿され、 その第 1部分 (201) で吸着剤が再生される。 この第 2動作を暫く続 けると、 再び第 1動作が行われる。
〈発明の実施形態 4〉
本発明の実施形態 4に係る調湿装置は、 1つの吸着素子 (250) を備えている c この調湿装置は、 第 1空気と第 2空気とを取り込み、 1つの吸着素子 (250) につ いての吸着動作と再生動作と並行して行うように構成されている。 つまり、 本実 施形態の調湿装置では、 吸着素子 (250) による空気の減湿と、 吸着素子 (250) の吸着剤の再生とを同時に並行して行われる。
図 6に示すように、 本実施形態の吸着素子 (250) は、 ドーナツ状、 あるいは 厚肉の円筒状に形成されている。 この吸着素子 (250) には、 その周方向において、 調湿側通路 (85) と冷却側通路 (86) とが交互に区画形成されている。 調湿側通 路 (85) は、 吸着素子 (250) をその軸方向に貫通している。 つまり、 調湿側通路 (85) は、 吸着素子 (250) の前面及び背面に開口している。 また、 調湿側通路 (85) の内壁には、 吸着剤が塗布されている。 一方、 冷却側通路 (86) は、 吸着 素子 (250) をその半径方向に貫通している。 つまり、 冷却側通路 (86) は、 吸着 素子 (250) の外周面及び内周面に開口している。
図 7に示すように、 上記調湿装置では、 吸着素子 (250) が吸着ゾーン (25 1) と再生ゾーン (252) とに跨って設置されている。 この吸着素子 (250) は、 そ の中心を通る軸周りで連続的に回転駆動されている。
また、 上記調湿装置は、 冷媒回路を備えている。 この冷媒回路は、 圧縮機、 凝縮器である再生熱交換器 (92)、 膨張機構である膨張弁、 及び蒸発器である冷却 熱交換器 (93) を配管接続して形成された閉回路である。 このうち、 再生熱交換 器 (92) は、 加熱器を構成している。 冷媒回路は、 充填された冷媒を循環させて、 蒸気圧縮式の冷凍サイクルを行うように構成されている。 尚、 図 7においては、 再生熱交換器 (92) 及び冷却熱交換器 (93) だけを図示する。
上記調湿装置では、 室内空気と室外空気の混合空気を、 第 2空気として用い ている。 また、 上記調湿装置には、 室内空気の温度を検出する温度センサと、 室 外空気の温度を検出する温度センサとが設けられている。 この調湿装置は、 両温 度センサの検出温度に基づいて、 第 2空気を構成する室内空気と室外空気の混合 割合を調節するように構成されている。 これらの点は、 上記実施形態 1と同様で ある。
一運転動作一
上記調湿装置は、 第 1空気と第 2空気とを取り込み、 除湿運転と加湿運転と を切り換えて行う。 この調湿装置は、 除湿運転時であれば室外空気を第 1空気と して取り込み、 加湿運転時であれば室内空気を第 1空気として取り込む。 一方、 この調湿装置は、 除湿運転時と加湿運転時の何れにおいても、 室内空気と室外空 気の混合空気を第 2空気として用いる。 尚、 室内空気と室外空気の混合を調節す る動作については、 上記実施形態 1と同様である。
上記調湿装置において、 吸着ゾーン (251 ) に位置する吸着素子 (250) の部 分では、 当該部分の調湿側通路 (85 ) へ第 1空気が導入され、 当該部分の冷却側 通路 (86) へ第 2空気が導入される。 その際、 第 2空気は、 吸着素子 (250) の内 周面側から冷却側通路 (86) へ送り込まれる。
吸着ゾーン (251 ) において、 吸着素子 (250) の調湿側通路 (85) では、 第 1空気に含まれる水蒸気が吸着剤に吸着される。 調湿側通路 (85) で水蒸気が吸 着剤に吸着される際には、 吸着熱が生じる。 この吸着熱は、 吸着素子 (250) の冷 却側通路 (86) を流れる第 2空気に吸熱される。
吸着ゾーン (251 ) で水分を奪われて減湿された第 1空気は、 冷却熱交換器 ( 93) を通過する。 冷却熱交換器 (93) において、 第 1空気は、 冷媒との熱交換 を行い、 冷媒に対して放熱する。 そして、 除湿運転中であれば、 減湿されて冷却 された第 1空気を室内へ供給する。 また、 加湿運転中であれば、 水分を奪われて 放熱した第 1空気を室外へ排気する。
一方、 吸着ゾーン (251 ) で吸着熱を奪った第 2空気は、 再生熱交換器 (92) を通過する。 再生熱交換器 (92) において、 第 2空気は、 冷媒との熱交換を行い、 冷媒の凝縮熱を吸熱する。 吸着ゾーン (251 ) 及び再生熱交換器 (92) で加熱され た第 2空気は、 再生ゾーン (252) に位置する吸着素子 (250) の調湿側通路 (8 5) へ導入される。 この再生ゾーン (252) へは、 吸着素子 (250) の回転移動に伴 つて、 吸着ゾーン (251 ) に位置していた吸着素子 (250) の部分が移動してくる。
再生ゾーン (252) に位置する吸着素子 (250) の部分において、 当該部分の 調湿側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気 が脱離する。 つまり、 吸着剤の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2空気に付与される。 そして、 除湿運転中であれば、 吸着剤から脱離した水蒸 気と共に第 2空気を室外へ排気する。 また、 加湿運転中であれば、 加熱されて加 湿された第 2空気を室内へ供給する。
〈発明の実施形態 5 >
本発明の実施形態 5に係る調湿装置は、 冷凍サイクルを行う冷媒回路 (300) に 2つの吸着熱交換器 (311 , 312) を接続して構成されている。 また、 この調湿装 置は、 第 1空気と第 2空気とを取り込み、 その一方を第 1吸着熱交換器 (311 ) へ 供給して他方を第 2吸着熱交換器 (312) へ供給することにより、 除湿運転と加湿 運転を切り換えて行うように構成されている。
図 8に示すように、 上記冷媒回路 (300) には、 第 1及び第 2吸着熱交換器 ( 311 , 312) の他に、 圧縮機 (301 )、 四方切換弁 (303)、 及び膨張弁 (302) が設 けられている。 また、 冷媒回路 (300) には、 冷媒が充填されている。 この冷媒回 路 (300) は、 冷媒を循環させて蒸気圧縮式の冷凍サイクルを行うように構成され ている。
上記冷媒回路 (300) において、 圧縮機 (301 ) は、 その吐出側が四方切換弁 ( 303) の第 1のポートに、 その吸入側が四方切換弁 (303) の第 2のポー卜にそ れそれ配管接続されている。 第 1吸着熱交換器 (311 ) の一端は、 四方切換弁 (3 03) の第 3のポートに配管接続されている。 第 1吸着熱交換器 (311 ) の他端は、 膨張弁 (302) を介して第 2吸着熱交換器 (312) の一端に配管接続されている。 第 2吸着熱交換器 (312) の他端は、 四方切換弁 (303) の第 4のポートに配管接 続されている。
上記四方切換弁 (303) は、 第 1のポートと第 4のポートが連通し且つ第 2の ポートと第 3のポートが連通する状態 (図 8 ( a )に示す状態) と、 第 1のポート と第 3のポートが連通し且つ第 2のポートと第 4のポートが連通する状態 (図 8 ( b )に示す状態) とに切り換わる。 この四方切換弁 (303) を操作することにより、 第 2吸着熱交換器 (312) が凝縮器となって第 1吸着熱交換器 (311 ) が蒸発器と なる第 1動作と、 第 1吸着熱交換器 (311) が凝縮器となって第 2吸着熱交換器
( 312) が蒸発器となる第 2動作との切り換えが行われる。
図 9に示すように、 第 1 , 第 2吸着熱交換器 (311, 312) は、 それそれクロス フィン式のフィン ·アンド ·チューブ型熱交換器により構成されている。 具体的 に、 第 1 , 第 2吸着熱交換器 (311,312) は、 長方形板状に形成されたアルミニゥ ム製の多数のフィン (313) と、 このフィン (313) を貫通する銅製の伝熱管 (31 4) とを備えている。 また、 各フィン (313) の表面には、 吸着剤が塗布されてい る。 これら第 1, 第 2吸着熱交換器 (311 , 312) は、 フィン (313) の間を通過す る空気を吸着剤と接触させると共に、 伝熱管 (314) を流れる冷媒によってフィン
( 313) 表面の吸着剤を加熱し又は冷却する吸着素子を構成している。
上記'調湿装置では、 室内空気と室外空気の混合空気を、 第 2空気として用い ている。 また、 上記調湿装置には、 室内空気の温度を検出する温度センサと、 室 外空気の温度を検出する温度センサとが設けられている。 この調湿装置は、 両温 度センサの検出温度に基づいて、 第 2空気を構成する室内空気と室外空気の混合 割合を調節するように構成されている。 これらの点は、 上記実施形態 1と同様で ある。
—運転動作—
上述のように、 上記調湿装置は、 第 1空気と第 2空気とを取り込み、 除湿運 転と加湿運転とを切り換えて行う。 また、 この調湿装置は、 第 1動作と第 2動作 とを交互に繰り返すことにより、 除湿運転や加湿運転を行う。
上記調湿装置は、 除湿運転時であれば室外空気を第 1空気として取り込み、 加湿運転時であれば室内空気を第 1空気として取り込む。 一方、 この調湿装置は、 除湿運転時と加湿運転時の何れにおいても、 室内空気と室外空気の混合空気を第 2空気として用いる。 尚、 室内空気と室外空気の混合を調節する動作については、 上記実施形態 1と同様である。 《第 1動作》
第 1動作では、 第 1吸着熱交換器 (311) についての吸着動作と、 第 2吸着熱 交換器 (312) についての再生動作とが行われる。 つまり、 第 1動作では、 第 1吸 着熱交換器 (311) に第 1空気中の水分が吸着され、 第 2吸着熱交換器 (312) か ら脱離した水分が第 2空気に付与される。
図 8 ( a )に示すように、 第 1動作時には、 第 1吸着熱交換器 (311) へ第 1空 気が供給され、 第 2吸着熱交換器 (312) へ第 2空気が供給される。 また、 四方切 換弁 (303) は、 同図に示す状態に切り換えられる。 冷媒回路 (300) では、 第 2 吸着熱交換器 (312) が凝縮器として機能し、 第 1吸着熱交換器 (311 ) が蒸発器 として機能して冷凍サイクルが行われる。
圧縮機 (301) から吐出された高温高圧の冷媒は、 加熱用の熱媒体として第 2 吸着熱交換器 (312) へ送られる。 第 2吸着熱交換器 (312) では、 導入された冷 媒によってフィン (313) 表面の吸着剤が加熱される。 加熱された吸着剤からは水 分が脱離し、 この脱離した水分が第 2空気に付与される。 第 2吸着熱交換器 (31 2) で水分を付与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中 には室内へ供給される。
第 2吸着熱交換器 (312) で放熱して凝縮した冷媒は、 膨張弁 (302) で減圧 される。 減圧後の冷媒は、 冷却用の熱媒体として第 1吸着熱交換器 (311 ) へ導入 される。 また、 第 1吸着熱交換器 (311) へは、 第 1空気が送り込まれる。 第 1空 気中の水分は第 1吸着熱交換器 (311) の吸着剤に吸着され、 その際に吸着熱が発 生する。 第 1吸着熱交換器 (311 ) へ流入した冷媒は、 この吸着熱を吸熱して蒸発 する。
第 1吸着熱交換器 (311) で水分を奪われた第 1空気は、 除湿運転中には室内 へ供給され、 加湿運転中には室外へ排出される。 一方、 第 1吸着熱交換器 (311 ) で蒸発した冷媒は、 圧縮機 (301) へ吸入される。 圧縮機 (301 ) は、 吸入した冷 媒を圧縮して吐出する。
《第 2動作》
第 1動作を暫く続けると、 続いて第 2動作が行われる。 第 2動作では、 第 2 吸着熱交換器 (312) についての吸着動作と、 第 1吸着熱交換器 (311 ) について の再生動作とが行われる。
第 1動作から第 2動作へ切り換える際には、 吸着熱交換器 (311 , 312) へ供給 される空気の切り換えと、 四方切換弁 (303) の操作とが行われる。 図 8 ( b )に示 すように、 第 2動作時には、 第 1吸着熱交換器 (311) へ第 2空気が供給され、 第 2吸着熱交換器 (312) へ第 1空気が供給される。 また、 四方切換弁 (303) は、 同図に示す状態に切り換えられる。 冷媒回路 (300) では、 第 1吸着熱交換器 (3 11) が凝縮器として機能し、 第 2吸着熱交換器 (312) が蒸発器として機能して冷 凍サイクルが行われる。
圧縮機 (301) から吐出された高温高圧の冷媒は、 加熱用の熱媒体として第 1 吸着熱交換器 (311) へ送られる。 第 1吸着熱交換器 (311) では、 導入された冷 媒によってフィン (313) 表面の吸着剤が加熱される。 加熱された吸着剤からは水 分が脱離し、 この脱離した水分が第 2空気に付与される。 第 1吸着熱交換器 (31 1) で水分を付与された第 2空気は、 除湿運転中には室外へ排出され、 加湿運転中 には室内へ供給される。
第 1吸着熱交換器 (311) で放熱して凝縮した冷媒は、 膨張弁 (302) で減圧 される。 減圧後の冷媒は、 冷却用の熱媒体として第 2吸着熱交換器 (312) へ導入 される。 また、 第 2吸着熱交換器 (312) へは、 第 1空気が送り込まれる。 第 1空 気中の水分は第 2吸着熱交換器 (312) の吸着剤に吸着され、 その際に吸着熱が発 生する。 第 2吸着熱交換器 (312) へ流入した冷媒は、 この吸着熱を吸熱して蒸発 する。
第 2吸着熱交換器 (312) で水分を奪われた第 1空気は、 除湿運転中には室内 へ供給され、 加湿運転中には室外へ排出される。 一方、 第 2吸着熱交換器 (312) で蒸発した冷媒は、 圧縮機 (301 ) へ吸入される。 圧縮機 (301) は、 吸入した冷 媒を圧縮して吐出する。
このように、 第 2動作では、 第 2吸着熱交換器 (312) で第 1空気が減湿され、 第 1吸着熱交換器 (311 ) の吸着剤が再生される。 この第 2動作を暫く続けると、 再び第 1動作が行われる。
〈発明のその他の実施形態〉
上記の各実施形態では、 室内空気と室外空気の温度に基づき、 第 2空気にお ける室内空気と室外空気の混合割合の調節を行っているが、 これに代えて、 この 混合割合の調節を次のようにして行ってもよい。
先ず、 室内空気と室外空気の相対湿度に基づき、 第 2空気における室内空気 と室外空気の混合割合の調節を行ってもよい。 例えば、 吸着素子 (81,82 ') か ら脱離する水分量を確保して吸着剤の再生を充分に行うためには、 吸着素子 (81, 82,〜) へ導入される第 2空気の相対湿度が低いほど有利である。 そこで、 調湿装 置は、 第 2空気の相対湿度が低くなるように、 室内空気と室外空気の混合割合を 両者の相対湿度を考慮しながら調節する。
また、 室内空気の温度及び相対湿度と室外空気の温度及び相対湿度とに基づ き、 第 2空気における室内空気と室外空気の混合割合の調節を行ってもよい。 例 えば、 加湿運転時における加湿量を確保したい場合には、 室内へ供給される第 2 空気の絶対湿度をなるベく高くすることが要求される。 一方、 空気の温度と相対 湿度が分かれば、 その空気の絶対湿度を算出できる。 そこで、 このような場合、 調湿装置は、 室内空気と室外空気の絶対湿度を演算により求める。 そして、 調湿 装置は、 第 2空気の絶対湿度が高くなるように、 室内空気と室外空気のうち絶対 湿度の高い方の割合を増加させる。
更に、 上記実施形態 1〜 4では、 第 2空気における室内空気と室外空気の混 合割合を調節する際のパラメ一夕として、 吸着素子 (81 , 82,〜) から流出した第 1空気の温度を用いてもよい。
つまり、 これらの実施形態の吸着素子 (81 , 82 ') では、 調湿側通路 (85) の第 1空気と冷却側通路 (86) の第 2空気とが熱交換を行う。 また、 これら実施 形態の調湿装置における除湿運転時には、 室外空気が第 1空気として用いられる。 このため、 吸着素子 (81 , 82,〜) の熱交換性能を考慮すれば、 吸着素子 (81,82, ··· ) の調湿側通路 (85) から流出した後の第 1空気の温度に基づいて、 調湿側通 路 (85) へ流出する前の第 1空気の温度、 即ち室外空気の温度を推測できる。 そ こで、 室外空気の温度の代わりに調湿側通路 (85) から流出した後の第 1空気の 温度を用い、 この第 1空気の温度と室内空気の温度とに基づいて室内空気と室外 空気の混合割合を調節してもよい。
一方、 これら実施形態の調湿装置における加湿運転時には、 室内空気が第 1 空気として用いられる。 このため、 吸着素子 (81,82 ") の熱交換性能を考慮す れば、 吸着素子 (81 , 82,〜) の調湿側通路 (85) から流出した後の第 1空気の温 度に基づいて、 調湿側通路 (85) へ流出する前の第 1空気の温度、 即ち室内空気 の温度を推測できる。 そこで、 室内空気の温度の代わりに調湿側通路 (85) から 流出した後の第 1空気の温度を用い、 この第 1空気の温度と室外空気の温度とに 基づいて室内空気と室外空気の混合割合を調節してもよい。
尚、 この変形例では、 混合割合を調節する際に空気の温度だけを考慮してい るが、 これに加えて、 室内空気や室外空気の相対湿度などを考慮してもよい。
また、 上記実施形態 1, 2では、 第 1及び第 2吸着素子 (81,82) を四角柱状 に形成しているが、 吸着素子 (81 , 82) の形状はこれに限らず、 例えば六角柱状で あってもよい。 六角柱状の吸着素子 (81 , 82) では、 対向する一対の側面に調湿側 通路 (85) が開口し、 他の対向する一対の側面に冷却側通路 (86) が開口し、 残 りの対向する一対の側面は閉塞される。 産業上の利用可能性
以上のように、 本発明は、 空気の湿度調節を行う調湿装置に対して有用であ る。

Claims

言青 求 の 範 囲
1. 取り込んだ空気を加湿又は減湿して室内へ供給する調湿装置であって、
流通する空気を吸着剤と接触させるための調湿側通路 (85) が形成された吸 着素子 (81,82 ") と、 上記吸着剤を再生するために吸着素子 (81,82,〜) の調 湿側通路 (85) へ供給される空気を加熱する加熱器 (92) とを備え、
第 1空気を上記吸着素子 (81,82 ") の調湿側通路 (85) へ導入して第 1空 気中の水分を吸着剤に吸着させる吸着動作と、 上記加熱器 (92) で加熱された第 2空気を上記吸着素子 (81,82,〜) の調湿側通路 (85) へ導入して吸着剤から水 分を脱離させる再生動作とを行う一方、
上記第 2空気を室内空気と室外空気の混合空気により構成している調湿装置 c
2. 請求の範囲第 1項に記載の調湿装置において、
吸着素子 (81,82, ) は、 吸着動作時に調湿側通路 (85) で生じる吸着熱を 奪うための冷却用流体が流れる冷却側通路 (86) を備えている調湿装置。
3. 請求の範囲第 2項に記載の調湿装置において、
第 2空気は、 冷却用流体として吸着素子 (81,82 ") の冷却側通路 (86) を通 過した後に加熱器 (92) で加熱されて上記吸着素子 (81,82,〜) の調湿側通路 (85) へ導入される調湿装置。
4. 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、
吸着素子 (81,82) を複数備え、
第 1の吸着素子 (81) の調湿側通路 (85) で第 1空気を流通させて吸着動作 を行うと同時に第 2の吸着素子 (82) の調湿側通路 (85) で第 2空気を流通させ て再生動作を行う第 1動作と、 第 2の吸着素子 (82) の調湿側通路 (85) で第 1 空気を流通させて吸着動作を行うと同時に第 1の吸着素子 (81) の調湿側通路 (85) で第 2空気を流通させて再生動作を行う第 2動作とが交互に行われる調湿
5 . 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、
1つの吸着素子 (200) が第 1部分 (201 ) と残りの第 2部分 (202) とに区分 される一方、
吸着動作として上記第 1部分 (201) の調湿側通路 (85) へ第 1空気を導入す ると同時に再生動作として上記第 2部分 (202) の調湿側通路 (85) へ第 2空気を 導入する第 1動作と、 再生動作として上記第 1部分 (201) の調湿側通路 (85) へ 第 2空気を導入すると同時に吸着動作として上記第 2部分 (202) の調湿側通路 (85) へ第 1空気を導入する第 2動作とを、 上記吸着素子 (200) をスライ ドさせ ることによって交互に切り換えて行う調湿装置。
6 . 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、
吸着素子 (250) は、 その厚さ方向へ調湿側通路 (85) が貫通する円板状に形 成されると共に、 第 1空気の流路と第 2空気の流路の両方を横断する姿勢で設置 される一方、
上記吸着素子 (250) をその中心軸周りに回転させ、 吸着動作として上記吸着 素子 (250) の一部分に形成された調湿側通路 (85) へ第 1空気を導入すると同時 に、 再生動作として上記吸着素子 (250) の残りの部分に形成された調湿側通路 (85) へ第 2空気を導入している調湿装置。
7 . 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、
第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度と室外 空気の温度とに基づいて調節されている調湿装置。
8 . 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、
第 2空気における室内空気と室外空気の混合割合は、 室内空気の相対湿度と 室外空気の相対湿度とに基づいて調節されている調湿装置。
9 . 請求の範囲第 1項、 第 2項又は第 3項に記載の調湿装置において、 第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度及び相 対湿度と室外空気の温度及び相対湿度とに基づいて調節されている調湿装置。
1 0 . 請求の範囲第 2項又は第 3項に記載の調湿装置において、
室外空気を第 1空気として用いる運転を行う一方、
上記運転時には、 室内空気の温度と吸着素子 (81,82 ") から流出した後の 第 1空気の温度とに基づき、 第 2空気における室内空気と室外空気の混合割合が 調節されている調湿装置。
1 1 . 請求の範囲第 2項又は第 3項に記載の調湿装置において、
室内空気を第 1空気として用いる運転を行う一方、
上記運転時には、 室外空気の温度と吸着素子 (81,82 ") から流出した後の 第 1空気の温度とに基づき、 第 2空気における室内空気と室外空気の混合割合が 調節されている調湿装置。
1 2 . 取り込んだ空気を加湿又は減湿して室内へ供給する調湿装置であって、 通過する空気を吸着剤と接触させると共に該吸着剤を熱媒体により加熱し又 は冷却する吸着素子 (311 , 312) を備え、
上記吸着素子 (311, 312) へ第 1空気と冷却用の熱媒体とを供給して第 1空気 中の水分を吸着剤に吸着させる吸着動作と、 上記吸着素子 (311 , 312) へ第 2空気 と加熱用の熱媒体とを供給して吸着剤から水分を脱離させる再生動作とを行う一 方、
上記第 2空気を室内空気と室外空気の混合空気により構成している調湿装置。
1 3 . 請求の範囲第 1 2項に記載の調湿装置において、
第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度と室外 空気の温度とに基づいて調節されている調湿装置。
1 4 . 請求の範囲第 1 2項に記載の調湿装置において、 第 2空気における室内空気と室外空気の混合割合は、 室内空気の相対湿度と 室外空気の相対湿度とに基づいて調節されている調湿装置。
1 5 . 請求の範囲第 1 2項に記載の調湿装置において、
第 2空気における室内空気と室外空気の混合割合は、 室内空気の温度及び相 対湿度と室外空気の温度及び相対湿度とに基づいて調節されている調湿装置。
PCT/JP2002/010966 2001-11-26 2002-10-22 Regulateur d'humidite WO2003046441A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02803909A EP1450113A4 (en) 2001-11-26 2002-10-22 MOISTURE REGULATOR
AU2002335545A AU2002335545B2 (en) 2001-11-26 2002-10-22 Humidity controller
US10/476,531 US6959875B2 (en) 2001-11-26 2002-10-22 Humidity controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001359561A JP2003161465A (ja) 2001-11-26 2001-11-26 調湿装置
JP2001-359561 2001-11-26

Publications (1)

Publication Number Publication Date
WO2003046441A1 true WO2003046441A1 (fr) 2003-06-05

Family

ID=19170543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010966 WO2003046441A1 (fr) 2001-11-26 2002-10-22 Regulateur d'humidite

Country Status (6)

Country Link
US (1) US6959875B2 (ja)
EP (1) EP1450113A4 (ja)
JP (1) JP2003161465A (ja)
CN (1) CN100476308C (ja)
AU (1) AU2002335545B2 (ja)
WO (1) WO2003046441A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395677B2 (en) 2004-03-31 2008-07-08 Daikin Industries, Ltd. Air conditioning system
US7730736B2 (en) 2003-10-09 2010-06-08 Daikin Industries, Ltd. Air conditioning system
US7810339B2 (en) 2004-03-31 2010-10-12 Daikin Industries, Ltd. Air conditioner and method of controlling air conditioner
US7841194B2 (en) 2004-03-31 2010-11-30 Daikin Industries, Ltd. Air conditioner and method of controlling such

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511689B1 (ko) * 2003-02-20 2005-09-02 주식회사 은성엔지니어링 에너지 절약형 항온 항습 공기조화장치
JP3646722B2 (ja) 2003-08-18 2005-05-11 ダイキン工業株式会社 調湿装置
JP3668785B2 (ja) * 2003-10-09 2005-07-06 ダイキン工業株式会社 空気調和装置
JP4225181B2 (ja) * 2003-10-21 2009-02-18 ダイキン工業株式会社 調湿装置
JP2005164220A (ja) * 2003-11-12 2005-06-23 Daikin Ind Ltd 空気調和装置
JP2005164148A (ja) * 2003-12-03 2005-06-23 Daikin Ind Ltd 調湿装置
JP2005283041A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 調湿装置
JP2005291592A (ja) * 2004-03-31 2005-10-20 Daikin Ind Ltd 熱交換器
JP4513382B2 (ja) * 2004-03-31 2010-07-28 ダイキン工業株式会社 空気調和システム
JP3797367B2 (ja) * 2004-03-31 2006-07-19 ダイキン工業株式会社 空気調和機
JP3744524B2 (ja) * 2004-03-31 2006-02-15 ダイキン工業株式会社 調湿装置
JP3711999B2 (ja) * 2004-03-31 2005-11-02 ダイキン工業株式会社 調湿装置
CN100445652C (zh) * 2004-03-31 2008-12-24 大金工业株式会社 空调系统
JP4513381B2 (ja) * 2004-03-31 2010-07-28 ダイキン工業株式会社 空気調和システム
JP4513380B2 (ja) * 2004-03-31 2010-07-28 ダイキン工業株式会社 空気調和システム
JP3807409B2 (ja) * 2004-04-27 2006-08-09 ダイキン工業株式会社 調湿装置
JP3788468B2 (ja) * 2004-04-28 2006-06-21 ダイキン工業株式会社 調湿装置
JP3767611B2 (ja) * 2004-04-28 2006-04-19 ダイキン工業株式会社 吸着熱交換器
US7484381B2 (en) * 2004-07-09 2009-02-03 Spinnaker Industries Inc. Energy recovery unit
JP3861902B2 (ja) * 2004-09-09 2006-12-27 ダイキン工業株式会社 調湿装置
JP3879762B2 (ja) * 2005-03-29 2007-02-14 ダイキン工業株式会社 調湿装置
TWI274831B (en) * 2005-04-22 2007-03-01 Foxconn Tech Co Ltd Total heat exchange apparatus
JP4052318B2 (ja) * 2005-05-24 2008-02-27 ダイキン工業株式会社 空調システム
JP4052319B2 (ja) * 2005-05-24 2008-02-27 ダイキン工業株式会社 空調システム
JP3864982B2 (ja) * 2005-05-30 2007-01-10 ダイキン工業株式会社 空調システム
JP4792829B2 (ja) * 2005-06-20 2011-10-12 ダイキン工業株式会社 調湿装置
JP2007010229A (ja) * 2005-06-30 2007-01-18 Daikin Ind Ltd 換気装置
JP2007010231A (ja) * 2005-06-30 2007-01-18 Daikin Ind Ltd 調湿装置
KR100806586B1 (ko) * 2006-03-10 2008-02-28 한국화학연구원 수분의 흡착 및 탈착을 위한 흡착제
JP4175405B2 (ja) * 2006-08-21 2008-11-05 ダイキン工業株式会社 調湿装置
WO2008072896A1 (en) 2006-12-13 2008-06-19 Korea Research Institute Of Chemical Technology A porous organic-inorganic hybrid materials and an absorbent comprising the same
JP5000312B2 (ja) * 2007-01-19 2012-08-15 東芝キヤリア株式会社 空気調和機の室内機
US8137440B2 (en) * 2007-05-09 2012-03-20 Protégé Enterprises Dryer having structure for enhanced drying and method of use
US8668765B2 (en) 2007-05-09 2014-03-11 Protege Enterprises Dryer having structure for enhanced drying efficiency and method of use
JP2009047407A (ja) * 2007-07-23 2009-03-05 Panasonic Corp 調湿装置とその調湿装置を備えた空気調和機
US8973649B2 (en) * 2008-12-23 2015-03-10 Tai-Her Yang Heat exchange apparatus with a rotating disk and automatic control of heat exchange between two fluid streams by modulation of disk rotating speed and/or flow rate
US9038409B2 (en) * 2009-09-21 2015-05-26 Korea Research Institute Of Chemical Technology Apparatus for treating air by using porous organic-inorganic hybrid materials as an absorbent
KR101158456B1 (ko) 2009-11-19 2012-06-19 한국화학연구원 결정성의 다공성 유무기 혼성체 및 그의 제조 방법
US9377207B2 (en) 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
US9297546B2 (en) * 2011-07-27 2016-03-29 Mitsubishi Electric Corporation Humidity control apparatus and air-conditioning system
JP5452565B2 (ja) * 2011-10-27 2014-03-26 三菱電機株式会社 除湿装置
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
EP2929256A4 (en) 2012-12-04 2016-08-03 7Ac Technologies Inc METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS
KR102069812B1 (ko) * 2013-03-01 2020-01-23 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
KR20170133519A (ko) 2013-03-14 2017-12-05 7에이씨 테크놀로지스, 아이엔씨. 소형-분할형 액체 흡수제 공조 방법 및 시스템
JP5700069B2 (ja) * 2013-05-31 2015-04-15 ダイキン工業株式会社 調湿装置
EP3008396B1 (en) 2013-06-12 2019-10-23 7AC Technologies, Inc. Liquid desiccant air conditioning system
CN105899278B (zh) * 2013-09-09 2019-06-07 联邦科学技术研究组织 固体干燥剂冷却系统
EP3120083B1 (en) 2014-03-20 2020-07-01 7AC Technologies, Inc. Rooftop liquid desiccant systems and methods
US10201779B2 (en) * 2014-08-07 2019-02-12 Industry-University Cooperation Foundation Hanyang University Erica Campus Dehumidifying and humidifying device
JP6376890B2 (ja) * 2014-08-13 2018-08-22 クボタ空調株式会社 デシカントブロック装置およびデシカント空気調和機
CN110579044A (zh) 2014-11-21 2019-12-17 7Ac技术公司 用于微分体液体干燥剂空气调节的方法和系统
KR101721556B1 (ko) 2015-05-18 2017-04-10 한국화학연구원 수분 또는 알코올의 흡착을 위한 유무기 하이브리드 나노세공체를 포함하는 흡착제 및 이의 용도
CN110621939B (zh) * 2017-06-14 2021-05-25 大金工业株式会社 调湿单元
EP3704415A4 (en) 2017-11-01 2021-11-03 7AC Technologies, Inc. TANK SYSTEM FOR AN AIR CONDITIONING SYSTEM WITH LIQUID DRYING AGENTS
EP3704416B1 (en) 2017-11-01 2023-04-12 Emerson Climate Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
JP6987635B2 (ja) * 2017-12-26 2022-01-05 矢崎エナジーシステム株式会社 空調装置及びバルブ
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
CN110553326A (zh) * 2018-06-01 2019-12-10 宋伟增 湿度调节件及除湿机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100130U (ja) * 1989-01-27 1990-08-09
JP2001263764A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 調湿システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002150A1 (en) * 1981-12-07 1983-06-23 Yano, Nobuyuki Heat exchange system
US4982575A (en) * 1988-02-05 1991-01-08 Besik Ferdinand K Apparatus and a method for ultra high energy efficient dehumidification and cooling of air
JPH02100130A (ja) 1988-10-07 1990-04-12 Nippon Steel Corp 計算機プログラム作成装置
AU641083B2 (en) * 1991-03-05 1993-09-09 Matsushita Electric Industrial Co., Ltd. Humidity control apparatus
JP3157994B2 (ja) 1994-10-28 2001-04-23 シャープ株式会社 加湿機能付き空気調和機
JP3735941B2 (ja) * 1996-05-23 2006-01-18 松下電器産業株式会社 吸着材の脱着装置
US5937667A (en) * 1997-04-24 1999-08-17 Advanced Thermal Technologies, Llc System for the dehumidification of cooled air
JPH11141917A (ja) * 1997-11-12 1999-05-28 Daikin Ind Ltd 除湿・加湿空気供給装置
JP3669154B2 (ja) * 1998-06-01 2005-07-06 株式会社デンソー 除湿装置および車両用空調装置
JP3709815B2 (ja) * 2001-07-18 2005-10-26 ダイキン工業株式会社 空気調和装置
JP3668846B2 (ja) * 2001-07-18 2005-07-06 ダイキン工業株式会社 吸着素子及び空気調和装置
JP2003097825A (ja) * 2001-07-18 2003-04-03 Daikin Ind Ltd 空気調和装置
JP3680149B2 (ja) * 2001-11-09 2005-08-10 ダイキン工業株式会社 空気調和装置
US6751964B2 (en) * 2002-06-28 2004-06-22 John C. Fischer Desiccant-based dehumidification system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100130U (ja) * 1989-01-27 1990-08-09
JP2001263764A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 調湿システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1450113A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730736B2 (en) 2003-10-09 2010-06-08 Daikin Industries, Ltd. Air conditioning system
US7395677B2 (en) 2004-03-31 2008-07-08 Daikin Industries, Ltd. Air conditioning system
US7810339B2 (en) 2004-03-31 2010-10-12 Daikin Industries, Ltd. Air conditioner and method of controlling air conditioner
US7841194B2 (en) 2004-03-31 2010-11-30 Daikin Industries, Ltd. Air conditioner and method of controlling such

Also Published As

Publication number Publication date
US6959875B2 (en) 2005-11-01
JP2003161465A (ja) 2003-06-06
AU2002335545B2 (en) 2004-06-24
AU2002335545A1 (en) 2003-06-10
CN1551966A (zh) 2004-12-01
CN100476308C (zh) 2009-04-08
US20040262408A1 (en) 2004-12-30
EP1450113A1 (en) 2004-08-25
EP1450113A4 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
WO2003046441A1 (fr) Regulateur d&#39;humidite
JP3992051B2 (ja) 空調システム
US20230022397A1 (en) Air quality adjustment system
JP3709815B2 (ja) 空気調和装置
JP5018402B2 (ja) 調湿装置
WO1999022182A1 (fr) Installation de climatisation avec deshumidification et procede de fonctionnement de cette installation
US20070039343A1 (en) Air conditioning apparatus
JP2003148768A (ja) 空気調和装置
JP2003093832A (ja) 吸着素子及び空気調和装置
JP3695417B2 (ja) 調湿装置
JP2003097825A (ja) 空気調和装置
WO2008015981A1 (fr) Appareil de climatisation
JP3807319B2 (ja) 調湿装置
JP2004060954A (ja) 調湿装置
WO2006103968A1 (ja) 調湿装置
JP4496821B2 (ja) 調湿装置
JP3649196B2 (ja) 調湿装置
WO2003067159A1 (fr) Dispositif de regulation d&#39;humidite
JP2005140372A (ja) 空気調和装置
JP2002018228A (ja) 調湿装置
JP2005164220A (ja) 空気調和装置
JP2002191971A (ja) 吸着素子構造体及び調湿装置
JP3649203B2 (ja) 調湿装置
JP2003139348A (ja) 空気調和装置
JP2004060958A (ja) 調湿装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002803909

Country of ref document: EP

Ref document number: 2002335545

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10476531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028173570

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002803909

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002335545

Country of ref document: AU