WO2003018639A1 - Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander - Google Patents

Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander Download PDF

Info

Publication number
WO2003018639A1
WO2003018639A1 PCT/EP2002/008757 EP0208757W WO03018639A1 WO 2003018639 A1 WO2003018639 A1 WO 2003018639A1 EP 0208757 W EP0208757 W EP 0208757W WO 03018639 A1 WO03018639 A1 WO 03018639A1
Authority
WO
WIPO (PCT)
Prior art keywords
amylopectin
branching
hyperbranched
degree
molecular weight
Prior art date
Application number
PCT/EP2002/008757
Other languages
English (en)
French (fr)
Inventor
Klaus Sommermeyer
Original Assignee
Supramol Parenteral Colloids Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/486,943 priority Critical patent/US7393841B2/en
Priority to DK02758435T priority patent/DK1421120T3/da
Priority to MXPA04001606A priority patent/MXPA04001606A/es
Priority to CA2456507A priority patent/CA2456507C/en
Priority to HU0401188A priority patent/HUP0401188A3/hu
Priority to JP2003523498A priority patent/JP2005501930A/ja
Priority to EP02758435A priority patent/EP1421120B1/de
Priority to YUP-147/04A priority patent/RS51420B/en
Application filed by Supramol Parenteral Colloids Gmbh filed Critical Supramol Parenteral Colloids Gmbh
Priority to KR10-2004-7002536A priority patent/KR100898528B1/ko
Priority to AU2002325398A priority patent/AU2002325398B2/en
Priority to ROA200400154A priority patent/RO122279B1/ro
Priority to DE50210039T priority patent/DE50210039D1/de
Publication of WO2003018639A1 publication Critical patent/WO2003018639A1/de
Priority to HK05100431A priority patent/HK1068356A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0026Blood substitute; Oxygen transporting formulations; Plasma extender
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/718Starch or degraded starch, e.g. amylose, amylopectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/20Amylose or amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin

Definitions

  • Hyperbranched amylopectin for use in methods for the surgical or therapeutic treatment of mammals or in diagnostic methods, in particular for use as a plasma volume expander
  • the present invention relates to the use of hyperbranched amylopectin.
  • the invention is directed to a novel use of hyperbranched amylopectin which has a certain degree of branching and a certain molecular weight Mw.
  • the glycogen which also occurs as a natural storage polysaccharide in the human organism.
  • the glycogen achieves its globular structure through its very high degree of branching. Structurally, the glycogen is a glucose polysaccharide with ⁇ -1,4 glycosidic bonds in linear sections to which ⁇ -1,6 glycosidic branching points are fixed.
  • HES plasma expander hydroxyethyl starch
  • hydroxyethyl ether group is extremely stable chemically but also metabolically, so that those anhydroglucose units of hydroxyethyl starch which carry hydroxyethyl ether groups are practically impossible to metabolize. It is also known that only those ⁇ -1,4-glycosidic bonds in the hydroxyethyl starch molecule can be cleaved by the serum ⁇ -amylase which are formed by unsubstituted glucose units. For this reason, it can be stated that even with the optimized HES types, a minimal but still remarkable tissue storage can be determined at least over certain periods of time.
  • HES does not have the ideal globular structure of albumin and therefore its intrinsic viscosity is significantly higher than that of albumin.
  • a lower viscosity is desirable with a plasma expander because after it has been applied to the circulation, the total blood viscosity would be influenced in the sense of a reduction.
  • the task was therefore to develop new improved plasma expanders based on amylopectin which do not have the disadvantages of the lack of complete metabolizability of the amylopectin derivative hydroxyethyl starch.
  • the new plasma expander should have a more globular structure and thus form relatively low-viscosity solutions. It can also be regarded as an object of the invention to open up further areas of use for certain amylopectins.
  • hyperbranched amylopectin which has an average degree of branching between> 10 and 25 mol% and a molecular weight Mw in the range from 40,000 to 800,000 daltons, and possibly its derivatives in methods for the surgical or therapeutic treatment of the human or animal body (i.e. of mammals) or in diagnostic procedures, it is possible to open up a number of new and interesting applications in the medical field in an unpredictable manner for hyperbranched amylopectin.
  • an almost ideal substitute for the starch-based HES products which are still common in practice, is provided, especially in relation to the "plasma volume expansion" sector, an almost ideal, far less dangerous side effect.
  • the invention therefore includes the use of hyperbranched amylopectins and derivatives of such hyperbranched amylopectins in the medical sector.
  • Amylopectins are initially understood to mean very generally branched starches or starch products with ⁇ - (1-4) and ⁇ - (1-6) bonds between the glucose molecules.
  • the branches of the chain are made via the ⁇ - (1-6) bonds. These are irregularly present about every 15-30 glucose segments in naturally occurring amylopectins.
  • the molecular weight of natural amylopectin is very high in the range from 10 7 to 2x10 8 daltons. It is believed that amylopectin also forms helices within certain limits.
  • a degree of branching can be defined for amylopectins.
  • the measure of branching is the ratio of the number of anhydroglucose molecules bearing branch points ( ⁇ - (1-6) bonds) to the total number of molecules the anhydroglucose of amylopectin, this ratio being expressed in mol%.
  • Amylopectin occurring in nature has degrees of branching of approximately 4 mol%.
  • clusters and molecular sections of amylopectin have a slightly higher degree of branching when viewed in isolation than the average degree of branching by nature.
  • Hyperbranched amylopectins in the sense of the invention are now those amylopectins which have a degree of branching which goes significantly beyond the degree of branching known from nature for amylopectins.
  • the degree of branching is in any case an average (mean degree of branching) since amylopectins are polydisperse substances ,
  • hyperbranched amylopectins have significantly higher degrees of branching, expressed as mol% of the branching anhydroglucoses, compared to unchanged amylopectin or hydroxyethyl starch and are therefore more similar in structure to glycogen.
  • the average degree of branching of the hyperbranched amylopectins required for the use according to the invention is in the range between> 10 and 25 mol%. This means that the amylopectins useful in the context of the invention have on average approximately every 10 to 4 glucose units an ⁇ - (1-6) bond and thus a branch point. If the degree of branching is below 10 mol%, the degradation of the branched amylopectin (e.g. when used as a plasma expander) is not sufficiently delayed. If the degree of branching is greater than 25 mol%, the degradation is delayed too much, so that use, for example, as a plasma volume expander is ruled out.
  • amylopectin type that can preferably be used in the medical field is characterized by a degree of branching between 11 and 16 mol%. Further preferred hyperbranched amylopectins have a degree of branching in the range between 13 and 16 mol%.
  • the molecular weight Mw of the hyperbranched amylopectin is also of importance.
  • the molecular weight Mw denotes the weight average molecular weight, as can be measured using relevant methods which provide this mean. These include, for example, aqueous GPC, HPLC, light scattering and the like.
  • the hyperbranched amylopectins which can be used in the invention generally have a value for the weight average molecular weight Mw in the range from 40,000 to 800,000 daltons.
  • the lower limit for the molecular weight range Mw essentially results from the so-called “kidney threshold”, which is to be set at about 40,000 for hyperbranched compounds. If the Mw is less than 40,000 daltons, the molecules would be filtered out too quickly via the kidney No significant benefit is achieved above an Mw of 800,000 Daltons, although in the case of globular structures the intrinsic viscosity no longer depends on the molecular weight.
  • Average values Mw between 90,000 and 300,000 daltons are preferred for use as plasma volume expanders, and molecular weights Mw between 120,000 and 250,000 daltons are particularly useful.
  • a particular embodiment of the invention comprises hyperbranched amylopectin, the mean degree of branching being between 11 and 16 mol% and the molecular weight Mw being between 90,000 and 300,000 daltons.
  • Further expedient embodiments of the invention include hyperbranched amylopectin, the mean degree of branching between 13 and 16 mol% and the molecular weight Mw between 120,000 and is 250,000 daltons.
  • the aforementioned parameters degree of branching and molecular weight allow a targeted influencing and thus setting of a desired pharmacokinetics, in particular the achievement of a desired ⁇ -amylase breakdown.
  • the degree of branching of amylopectin is of key importance. But the molecular weight also has an impact on the kinetics mentioned.
  • the kinetics of the breakdown of the amylopectin can be influenced in a desired direction.
  • the degree of branching is of particular importance for the breakdown of the amylopectin by ⁇ -amylase and thus for the function as a plasma volume expander. Due to the high degree of branching, the attack of the ⁇ -amylase is greatly delayed or no longer occurs in regions of the molecule with a high density of branching points, since the amylase can no longer be accessed there. Such compounds are still degradable by other enzymes down to oligosaccharides and finally glucose.
  • the hyperbranched amylopectins to be used according to the invention can be derivatized.
  • Derivatives of this type include chemical derivatives of amylopectin, as can be obtained, for example, from chemical or biotechnological reactions.
  • Preferred derivatives of the hyperbranched amylopectin are hydroxyethyl, hydroxypropyl and acetyl amylopectin. Of these, hydroxyethyl amylopectin is particularly useful.
  • the kinetics of the breakdown of amylopectin can therefore also be influenced by the derivatization.
  • the degree of derivatization for example the degree of hydroxyethylation, must be considerably lower in these cases in order to have a comparable volume effect or similar pharmacokinetics compared to hydroxyethyl starch (HES) made from normally branched amylopectin.
  • hyperbranched amylopectin which in the sense of the invention is suitable, inter alia, and preferably for use as a plasma expander, is carried out in a manner known per se by enzymatic conversion by so-called branching enzymes, which hydrolysis of the ⁇ -1,4-glycosidic bonds and their transformation catalyze in ⁇ -1, 6-glycosidic compounds.
  • branching enzymes which hydrolysis of the ⁇ -1,4-glycosidic bonds and their transformation catalyze in ⁇ -1, 6-glycosidic compounds.
  • transfer enzymes can in a known manner, for. B. are extracted from algae according to PCT WO 0018893.
  • other glycogen branching enzymes are also known from US Pat. No. 4,454,161 and EP 0418 945, which can also be used accordingly.
  • the enzymatic transglycosylation is carried out in a manner known per se, for example by incubating waxy maize starch with the corresponding enzymes under mild conditions at pH values around 7.5 and temperatures at around 30 ° C. in aqueous solution.
  • the reaction mixture is then worked up in a likewise known manner, the enzymes being deactivated or removed beforehand by changing the pH or filtration steps.
  • the desired molecular weight of the product is then set.
  • the product is then freed of low molecular weight compounds and sodium chloride, which is formed during the neutralization of the acidic hydrolysis batch, by diafiltration with membranes with a cut off of approximately 3,000 daltons.
  • the product is isolated, for example, by spray drying.
  • hyperbranched amylopectins are also useful in other areas of medicine.
  • the hyperbranched amylopectin can be used in all those applications in therapy and surgery where normal HES products based on normally branched starches can also be used.
  • this is preferably the use to improve the microcirculation, the use as a sedimentation aid in cell separation in the context of leukapheresis or the use for cryopreservation of blood components such as erythrocytes or granulocytes.
  • Glycogen from the oyster from SIGMA was broken down by thermo-resistant ⁇ -amylase BAN 480 L from NOVOZYMES in a DMSO / water mixture with 30% DMSO at 70 ° C and pH 6.0.
  • the course of the reaction was monitored by measuring the change in molecular weight by means of gel chromatography and after about 2 hours the reaction was stopped by adding sodium hydroxide solution to inactivate the enzyme.
  • the product was fractionated by ultrafiltration using a cellulose acetate ultrafilter with a nominal cut-off of 1,000 D and 25,000 D to remove low-molecular and high-molecular components.
  • the product was then treated with Amberlite IR 200 C ion exchanger and activated carbon, precipitated with ethanol and dried at 80 ° C.
  • the degree of branching determined by ⁇ NMR spectroscopy integrated of the signals of the anomeric protons gave a degree of branching of 15 mol%.
  • the average molecular weight Mw was 7,000 daltons.
  • Thin-boiling waxy maize starch (> 95% amylopectin) (from Cerestar) was treated in the same manner as described above.
  • the isolated, highly branched fraction of the branching clusters had a degree of branching of 11 mol%, the average molecular weight Mw was 8,000 daltons.
  • the highly branched cluster fractions of amylopectin and glycogen were then subjected to a degradation test by porcine pancreas ⁇ -amylase (from Röche) in phosphate buffer pH 7.2 in 1% solution at 37 ° C. and 0.5 IU / ml enzyme and the degradation kinetics were followed Measurement of molecular weight changes using gel chromatography.
  • a comparative test of the degradation was also carried out using a commercially available hydroxyethyl starch plasma expander (Voluven, Fresenius Kabi). There were clear differences in the degradation kinetics.
  • the half-life of the molecular weight (breakdown of the average molecular weight Mw of the starting substance to half the starting value) was 60 minutes in the case of the fraction with a degree of branching of 15% and thereby reached the half-life determined under the same test conditions as the Voluven plasma expander.
  • Thin-boiling waxy corn starch from Cerestar with an average degree of branching, determined by NMR, of 4 mol% was in accordance with the Data from Example 1 subjected to a degradation test by porcine pancreas ⁇ -amylase.
  • a 1% solution in the phosphate buffer pH 7.2 was gelatinized by briefly heating to about 90 ° C. and the enzyme was added to the mixture after cooling in an amount that resulted in 0.5 IU per ml.
  • the test temperature was 37 ° C.
  • the degradation kinetics were monitored by recording the changes in molecular weight by gel chromatography. Under the same conditions as in Example 1, the molecular weight of the starting substance was reduced to half the value within 10 minutes.
  • the thinly boiling, thin-boiled waxy maize starch is thus so quickly broken down by ⁇ -amylase that it would not be usable as a plasma expander.
  • the two model examples 1 and 2 thus demonstrate that, even if the molecular weights are low, higher branching leads to a delay in ⁇ -amylase degradation and that this effect can be used to produce a plasma expander.

Abstract

Verwendung von hyperverzweigtem Amylopektin, das einen mittleren Verzweigungsgrad zwischen > 10 und 25 mol% und ein Molekulargewicht Mw im Bereich von 40.000 bis 800.000 Dalton aufweist, und dessen Derivaten in Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers oder in Diagnostizierverfahren, bevorzugt als Plasmavolumenexpander. Plasmavolumenexpander auf Basis von hydroxyethyliertem Amylopektin weisen, bedingt durch die Hydroxyethylierung, bislang noch den Nachteil der nicht vollständigen Metabolisierbarkeit und damit vorübergehender Gewebespeicherung, die mit Nebenwirkungen verbunden ist, auf. Es sollen neue Plasmaexpander auf Basis von Polysacchariden gefunden werden, die diesen Nachteil nicht aufweisen. Verbesserte, vollständig metabolisierbare Plasmaexpander auf Basis von hyperverzweigtem Amylopektin erhält man beispielsweise dadurch, dass native Pflanzen-Amylopektine durch Transglycosilierung so verändert werden, dass der einstellbare, hohe Verzweigungsgrad eine Steuerung des Serum-α-Amylaseabbaus ermöglicht, so dass keine oder nur sehr geringfügige Hydroxyethylierung notwendig ist. . Es sollen neue Plasmaexpander auf Basis von Polysacchariden gefunden werden, die diesen Nachteil nicht aufweisen. Verbesserte, vollständig metabolisierbare Plasmaexpander auf Basis von hyperverzweigtem Amylopektin erhält man beispielsweise dadurch, dass native Pflanzen-Amylopektine durch Transglycosilierung so verändert werden, dass der einstellbare, hohe Verzweigungsgrad eine Steuerung des Serum-α-Amylaseabbaus ermöglicht, so dass keine oder nur sehr geringfügige Hydroxyethylierung notwendig ist.

Description

Hyperverzweigtes Amylopektin zum Einsatz in Verfahren zur chirurgischen oder therapeutischen Behandlung von Säugern oder in Diagnostizierverfahren, insbesondere zur Verwendung als Plasmavolumenexpander
Die vorliegende Erfindung betriff den Einsatz von hyperverzweigtem Amylopektin.
Speziell richtet sich die Erfindung auf eine neuartige Verwendung von hyperverzweigtem Amylopektin, das einen bestimmten Verzweigungsgrad und ein bestimmtes Molekulargewicht Mw aufweist.
In der Geschichte der Entwicklung der Plasmavolumenexpander war es immer ein Ziel, die globuläre Struktur des natürlichen Trägers des kolloidosmotischen Druckes im Serum, des Albumins, zu erreichen. Dieser globulären Struktur kommt das Glycogen, welches ebenfalls als natürliches Speicherpolysaccharid im menschlichen Organismus vorkommt, nahe. Seine globuläre Struktur erreicht das Glycogen durch seinen sehr hohen Verzweigungsgrad. Strukturell stellt das Glycogen ein Glucosepolysaccharid dar mit in linearen Abschnitten α-1,4 glycosidischen Bindungen an denen α-1,6 glycosidische Verzweigungspunkte fixiert sind. Weil Glycogen selbst nicht als eine billige Rohstoffquelle zur Verfügung steht, schlug Wiedersheim 1957 vor, an dessen Stelle das geringer verzweigte Amylopektin als Ausgangsmaterial zur Herstellung des Plasmaexpanders Hydroxyethylstärke (HES) einzusetzen. Mittlerweile wird Hydroxyethylstärke in mehreren verschiedenen Typen sehr breit als Plasmaexpander eingesetzt. Die Entwicklung hat zu neuen Hydroxyethylstärke-Typen (HES-Typen) geführt, die einen optimalen Volumeneffekt aufweisen bei sonst minimalen Nebenwirkungen wie z. B. Beeinflussung der Gerinnung oder aber auch intermediäre Speicherung im Gewebe. Die verschiedenen im Markt befindlichen HES-Typen unterschieden sich im
Bezug auf Molekulargewicht, mittleren Substitutionsgrad und
Substitutionsmuster.
Trotz des beachtlichen Fortschritts, der mit diesen Entwicklungen erreicht wurde, verbleiben einige Nachteile auch bei den in den letzten Jahren optimierten HES-Typen, vor allem die nicht vollständige Metabolisierbarkeit.
Es ist bekannt, dass die Hydroxyethyl-Ethergruppe chemisch aber auch metabolisch außerordentlich stabil ist, so dass diejenigen Anhydroglucose- Einheiten der Hydroxyethylstärke, die Hydroxyethyl-Ethergruppen tragen, praktisch nicht metabohsierbar sind. Weiterhin ist bekannt, dass nur diejenigen α-1,4 glycosidischen Bindungen im Hydroxyethyl-Stärkemolekül durch die Serum-α-Amylase gespalten werden können, die durch nicht substituierte Glucoseeinheiten gebildet werden. Aus diesem Grunde ist festzustellen, dass selbst bei den optimierten HES-Typen eine minimale aber immer noch bemerkenswerte Gewebespeicherung zumindest über gewisse Zeiträume festgestellt werden kann.
Als weiterer Nachteil ist festzustellen, dass HES nicht die ideale globuläre Struktur des Albumins aufweist und deshalb seine Grenzviskosität bedeutend höher ist als die von Albumin. Eine niedrigere Viskosität ist bei einem Plasmaexpander deshalb wünschenswert, weil nach dessen Applikation in die Zirkulation die Gesamtblutviskosität im Sinne einer Erniedrigung beeinflusst werden würde.
Es bestand daher die Aufgabe, neue verbesserte Plasmaexpander auf Amylopektinbasis zu entwickeln, die die Nachteile der fehlenden vollständigen Metabolisierbarkeit des Amylopektinderivates Hydroxyethylstärke nicht aufweisen. Gleichzeitig sollte der neue Plasmaexpander eine mehr globuläre Struktur aufweisen und damit relativ niedrigviskose Lösungen bilden. Es kann auch als Aufgabe der Erfindung angesehen werden, weitere Einsatzgebiete für bestimmte Amylopektine zu erschließen.
Diese Aufgaben sowie weitere nicht einzeln aufgeführte Aufgaben, die sich jedoch zwanglos aus der einleitenden Erörterung ableiten lassen, werden durch den Gegenstand des Anspruchs 1 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der auf Anspruch 1 rückbezogenen Ansprüche.
Dadurch, dass man hyperverzweigtes Amylopektin, das einen mittleren Verzweigungsgrad zwischen > 10 und 25 mol% und ein Molekulargewicht Mw im Bereich von 40.000 bis 800.000 Dalton aufweist, und ggf. seine Derivate in Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers (also von Säugern) oder in Diagnostizierverfahren einsetzt, gelingt es auf nicht ohne weiteres vorhersehbare Weise zum einen für hyperverzweigtes Amylopektin eine Reihe von neuen und interessanten Anwendungen im medizinischen Bereich zu erschließen. Zum anderen wird speziell bezogen auf den Sektor „Plasmavolumenexpansion" ein nahezu idealer, weit weniger zu gefährlichen Nebenwirkungen führender, Ersatzstoff für die zur Zeit in der Praxis noch gängigen HES-Produkte auf Stärkebasis bereit gestellt.
Im Bezug auf die Plasmavolumenexpansion wurde nämlich im Rahmen der Erfindung durch aufwendige Studien und Untersuchungen festgestellt, dass die Restfraktionen von Hydroxyethylstärke im Blutstrom und im Urin einige Stunden oder sogar Tage nach Applikation eines Plasmaexpanders eine starke Zunahme des Verzweigungsgrades aufwiesen im Vergleich zur original infundierten Hydroxyethylstärke (HES-Produkt). So stiegen die Verzweigungsgrade, ausgedrückt als mol-% der Anhydroglucosen, die Verzweigungspunkte tragen, von ca. 5 mol-% auf über 7 mol-% 2 Stunden nach Applikation und auf 8 mol-% 7 Stunden nach Applikation an. Gleichzeitig zeigte sich 48 bzw. 42 Stunden nach Infusion in den Urin-Sammelfraktionen ein noch höherer Verzweigungsgrad von 9 bzw. 10 mol-%. Dieses Phänomen wurde beobachtet unabhängig von Molekulargewicht, Substitutionsgrad oder Substitutionsmuster der applizierten Hydroxyethylstärke. Das bedeutet, dass diese Fraktionen sich beim Abbau immer mehr einer Glycogen-ähnlichen Struktur bzw. Verzweigung nähern, die in der Literatur mit ca. bis zu 10 mol-% Verzweigung angegeben wird.
Überraschenderweise wurde nun gefunden, dass die relative Stabilität der α-( 1,6)- Verzweigung in Amylopektin und in Derivaten davon ausgenutzt werden kann, um den Abbau von Amylopektin gegenüber dem dominierenden α- Amylase- Abbau soweit zu reduzieren, dass ein vollständig abbaubares Polysaccharid hergestellt werden kann, welches aber immer noch die Eigenschaften eines idealen Plasmaexpanders im Bezug auf Pharmakokinetik bzw. Volumeneffekt aufweist.
Die Erfindung umfasst daher die Verwendung von hyperverzweigten Amylopektinen und von Derivaten solcher hyperverzweigten Amylopektine auf dem medizinischen Sektor.
Unter Amylopektinen versteht man dabei zunächst ganz allgemein verzweigte Stärken oder Stärkeprodukte mit α-(l-4)- und α-(l-6)-Bindungen zwischen den Glucosemolekülen. Die Verzweigungen der Kette erfolgen dabei über die α-(l- 6)-Bindungen. Diese sind bei natürlich vorkommenden Amylopektinen etwa alle 15-30 Glucosesegmente unregelmäßig vorhanden. Das Molekulargewicht von natürlichem Amylopektin liegt sehr hoch im Bereich von 107 bis zu 2x108 Dalton. Man geht davon aus, dass auch Amylopektin in gewissen Grenzen Helices bildet.
Man kann für Amylopektine einen Verzweigungsgrad definieren. Das Maß für die Verzweigung ist das Verhältnis der Zahl von Molekülen Anhydroglucose, die Verzweigungspunkte (α-(l-6)-Bindungen) tragen, zur Gesamtzahl Moleküle der Anhydroglucose des Amylopektins, wobei dieses Verhältnis in mol-% ausgedrückt wird. In der Natur auftretendes Amylopektin weist Verzweigungsgrade von ca. 4 mol-%. Allerdings ist bekannt, dass Cluster und Molekülabschnitte von Amylopektin bei isolierter Betrachtung einen geringfügig höheren Verzweigungsgrad aufweisen als naturgemäß der Durchschnittsverzweigungsgrad.
Hyperverzweigte Amylopektine sind im Sinne der Erfindung nun solche Amylopektine, die einen über den aus der Natur für Amylopektine bekannten Verzweigungsgrad signifikant hinausgehenden Verzweigungsgrad aufweisen., Dabei handelt es sich beim Verzweigungsgrad in jedem Falle um einen Mittelwert (mittleren Verzweigungsgrad), da Amylopektine polydisperse Substanzen sind.
Solche hyperverzweigte Amylopektine weisen signifikant höhere Verzweigungsgrade, ausgedrückt als mol-% der Verzweigungsanhydroglucosen, auf im Vergleich zu unverändertem Amylopektin bzw. Hydroxyethylstärke und sind demzufolge in ihrer Struktur dem Glycogen ähnlicher.
Der für den erfindungsgemäßen Einsatz erforderlich mittlere Verzweigungsgrad der hyperverzweigten Amylopektine liegt im Bereich zwischen > 10 und 25 mol%. Dies bedeutet, dass die im Sinne der Erfindung nützlichen Amylopektine im Mittel etwa alle 10 bis 4 Glucoseeinheiten eine α-(l-6)-Bindung und damit einen Verzweigungspunkt aufweisen. Liegt der Verzweigungsgrad unterhalb von 10 mol-% ist der Abbau des verzweigten Amylopektins (z. B. beim Einsatz als Plasmaexpander) nicht ausreichend verzögert. Ist der Verzweigungsgrad größer als 25 mol-% ist der Abbau zu stark verzögert, so dass ein Einsatz beispielsweise als Plasmavolumenexpander ausscheidet.
Eine bevorzugt im medizinischen Bereich einsetzbare Amylopektintype kennzeichnet sich durch einen Verzweigungsgrad zwischen 11 und 16 mol-%. Weitere bevorzugte hyperverzweigte Amylopektine besitzen einen Verzweigungsgrad im Bereich zwischen 13 und 16 mol-%.
Daneben kommt auch dem Molekulargewicht Mw des hyperverzweigten Amylopektins eine Bedeutung zu. Das Molekulargewicht Mw bezeichnet das Gewichtsmittel des Molekulargewichts, wie es mit einschlägigen Methoden, die diesen Mittelwert liefern, gemessen werden kann. Hierzu gehören beispielsweise wässrige GPC, HPLC, Lichtstreuung und dergleichen.
Die in der Erfindung einsetzbaren hyperverzweigten Amylopektine besitzen im Allgemeinen einen Wert für das Gewichtsmittel des Molekulargewichts Mw im Bereich von 40.000 bis 800.000 Dalton. Der untere Grenzwert für den Molekulargewichtsbereich Mw ergibt sich bei den bevorzugten Anwendungen im Wesentlichen aus der sogenannten „Nierenschwelle", die bei hyperverzweigten Verbindungen bei eben etwa 40.000 anzusetzen ist. Ist das Mw kleiner als 40.000 Dalton, würden die Moleküle zu schnell über die Niere abfiltriert werden. Oberhalb eines Mw von 800.000 Dalton wird kein zusätzlicher nennenswerter Nutzen erzielt, obwohl bei globulären Strukturen die Grenzviskosität nicht mehr vom Molekulargewicht abhängt.
Bevorzugt für den Einsatz als Plasmavolumenexpander sind Mittelwerte Mw zwischen 90.000 und 300.000 Dalton, ganz besonders zweckmäßig sind Molekulargewichte Mw zwischen 120.000 und 250.000 Dalton.
Eine besondere Ausgestaltung der Erfindung umfasst hyperverzweigtes Amylopektin, wobei der mittlere Verzweigungsgrad zwischen 11 und 16 mol% und das Molekulargewicht Mw zwischen 90.000 und 300.000 Dalton ist. Weiterhin zweckmäßige Ausgestaltungen der Erfindung schließen hyperverzweigtes Amylopektin ein, wobei der mittlere Verzweigungsgrad zwischen 13 und 16 mol% und das Molekulargewicht Mw zwischen 120.000 und 250.000 Dalton ist.
Die vorgenannten Parameter Verzweigungsgrad und Molekulargewicht gestatten eine Ziel gerichtete Beeinflussung und somit Einstellung einer gewünschten Pharmakokinetik, insbesondere das Erreichen eines erwünschten α-Amylase- Abbaus. Dem Verzweigungsgrad des Amylopektins kommt hierbei eine Schlüsselbedeutung zu. Aber auch das Molekulargewicht hat einen Einfluss auf die angesprochene Kinetik. Daneben kann es auch durch Variation der Verteilung der Verzweigungspunkte gelingen, die Kinetik des Abbaus des Amylopektins in eine gewünschte Richtung zu beeinflussen.
Von ganz besonderer Bedeutung für den Abbau des Amylopektins durch α- Amylase und damit für die Funktion als Plasmavolumenexpander ist jedoch der Verzweigungsgrad. Aufgrund des hohen Verzweigungsgrades erfolgt der Angriff der α-Amylase stark verzögert bzw. in Bereichen des Moleküls mit einer starken Dichte an Verzweigungspunkten gar nicht mehr, da dort der Zutritt der - Amylase nicht mehr möglich ist. Solche Verbindungen sind dennoch abbaubar durch andere Enzyme bis herab zu Oligosacchariden und schließlich Glucose.
Im Bedarfsfalle können die erfindungsgemäß anzuwendenden hyperverzweigten Amylopektine derivatisert werden. Derlei Derivate umfassen chemische Abkömmlinge des Amylopektins, wie sie beispielsweise durch chemische oder biotechnologische Umsetzungen erhältlich sind.
Bevorzugte Derivate des hyperverzweigten Amylopektins sind Hydroxyethyl-, Hydroxypropyl- und Acetyl- Amylopektin. Hiervon wiederum ist Hydroxyethyl- Amylopektin ganz besonders günstig einsetzbar. Auch durch die Derivatisierung ist mithin die Kinetik des Abbaus des Amylopektins beeinflussbar. Es ist jedoch von Vorteil, dass der Grad der Derivatisierung, beispielsweise der Hydroxyethylierungsgrad, in diesen Fällen erheblich niedriger sein muss, um einen vergleichbaren Volumeneffekt bzw. eine ähnliche Pharmakokinetik aufzuweisen, im Vergleich zu einer Hydroxy-ethylstärke (HES), die aus normal verzweigtem Amylopektin hergestellt worden ist.
Die Herstellung von hyperverzweigtem Amylopektin, welches im Sinne der Erfindung unter anderem und bevorzugt zum Einsatz als Plasmaexpander geeignet ist, erfolgt in an sich bekannter Weise durch enzymatische Umwandlung durch sogenannte Verzweigungsenzyme, die die Hydrolyse der α- 1,4- glycosidischen Bindungen und ihre Transformation in α-l,6-glycosidische Verbindungen katalysieren. Solche sogenannten Transfer-Enzyme können in an sich bekannter Weise z. B. aus Algen extrahiert werden gemäß PCT WO 0018893. Es sind aber auch aus dem US-Patent 4454 161 und EP 0418 945 andere Glycogen- Verzweigungsenzyme bekannt, die ebenfalls entsprechend eingesetzt werden können. Die Durchführung der enzymatischen Transglycosilierung erfolgt in an sich bekannter Weise beispielsweise durch Inkubation von Wachsmaisstärke mit den entsprechenden Enzymen unter schonenden Bedingungen bei pH- Werten um ca. 7,5 und Temperaturen bei ca. 30 °C in wässriger Lösung. Die Aufarbeitung des Reaktionsansatzes erfolgt anschließend in ebenfalls bekannter Weise, wobei zuvor durch pH- Wert Veränderung bzw. Filtrationsschritte die Enzyme deaktiviert oder entfernt werden.
In einem anschließenden Hydrolyseschritt, der vorzugsweise durch Salzsäure erfolgt, wird dann das gewünschte Molekulargewicht des Produktes eingestellt. Anschließend wird das Produkt durch Diafiltration mit Membranen mit einem cut off von ca. 3.000 Dalton von niedermolekularen Verbindungen sowie Kochsalz, welches bei der Neutralisation des sauren Hydrolyseansatzes entsteht, befreit. Das Produkt wird beispielsweise durch Sprühtrocknung isoliert.
Neben dem Einsatz als Plasmavolumenexpander sind die hyperverzweigten Amylopektine auch in anderen Bereichen der Medizin nutzbringend einsetzbar. So kann das hyperverzweigte Amylopektin bei all denjenigen Anwendungen in der Therapie und Chirurgie zum Einsatz kommen, wo auch übliche HES- Produkte auf Basis normal verzweigter Stärken einsetzbar sind.
Neben der Anwendung als Plasmavolumenexpander handelt sich hierbei vorzugsweise um den Einsatz zur Verbesserung der Mikrozirkulation, die Anwendung als Sedimentationshilfe bei der Zellseparation im Rahmen der Leukapherese oder den Einsatz zur Kryokonservierung von Blutkomponenten wie Erythrozyten oder Granulozyten.
Modell-Beispiel 1
Vergleichende Abbauversuche mit unterschiedlich verzweigten α-1-4 / α-1-6- Glucosacchariden
Glycogen von der Auster der Fa. SIGMA wurde durch fhermoresistente α- Amylase BAN 480 L der Fa. NOVOZYMES in einer DMSO / Wassermischung mit 30 %igem Anteil an DMSO bei 70 °C und pH Wert von 6,0 abgebaut. Der Reaktionsablauf wurde dabei durch Messung der Molekulargewichtsveränderung mittels Gelchromatographie verfolgt und nach ca. 2 Stunden wurde die Reaktion abgestoppt durch Zugabe von Natronlauge zur Enzyminaktivierung. Nach Neutralisation wurde das Produkt fraktioniert durch Ultrafiltration mittels Cellulose-Acetat-Ultrafilter mit einem nominellen cut-off von 1.000 D und 25.000 D zur Entfernung niedermolekularer Anteile sowie noch hochmolekularer Anteile. Das Produkt wurde anschließend mit Ionenaustauscher Amberlite IR 200 C sowie Aktivkohle behandelt, mit Ethanol gefällt und bei 80 °C getrocknet. Der Verzweigungsgrad bestimmt über Η NMR Spektroskopie (Integration der Signale der anomeren Protonen) ergab einen Verzweigungsgrad von 15 mol%. das mittlere Molekulargewicht Mw betrug 7.000 Dalton.
Dünnkochende Wachsmaisstärke (> 95 % Amylopektin) (Fa. Cerestar) wurde in der gleichen Weise behandelt wie vorbeschrieben. Die isolierte, hochverzweigte Fraktion der Verzweigungscluster wies einen Verzweigungsgrad von 11 mol% auf, das mittlere Molekulargewicht Mw betrug 8.000 Dalton.
Die hochverzweigten Clusterfraktionen aus Amylopektin und Glycogen wurden danach einem Abbauversuch durch Schweinepankreas α-Amylase (Fa. Röche) in Phosphatpuffer pH 7,2 in l%iger Lösung bei 37° C und 0,5 IU/ml Enzym unterworfen und die Abbaukinetik verfolgt durch Messung der Molekulargewichtsveränderungen mittels Gel-Chromatographie. Ebenfalls wurde ein Vergleichsversuch des Abbaus mit einem handelsüblichen Hydroxyethylstärke-Plasmaexpander durchgeführt (Voluven, Fa. Fresenius Kabi). Dabei waren deutliche Unterschiede in den Abbaukinetiken zu verzeichnen. Die Halbwertszeit des Molekulargewichts (Abbau des mittleren Molekulargewichts Mw der Ausgangssubstanz auf die Hälfte des Ausgangswertes) betrug im Falle der Fraktion mit einem Verzweigungsgrad von 15 % 60 Minuten und erreichte dabei die unter gleichen Versuchbedingungen ermittelte Halbwertszeit wie der Plasmaexpander Voluven.
Die Halbwertszeit für die Fraktion mit einem mittleren Verzweigungsgrad von 11 mol% betrug hingegen nur 25 Minuten und war damit wesentlich kürzer.
Modell-Beispiel 2
Dünnkochende Wachsmaisstärke der Fa. Cerestar mit einem mittleren, durch NMR bestimmten Verzweigungsgrad von 4 mol% wurde entsprechend den Angaben aus Beispiel 1 einem Abbauversuch durch Schweinepankreas α- Amylase unterworfen. Hierzu wurde eine l%ige Lösung im Phosphatpuffer pH 7,2 durch kurzes Erhitzen auf ca. 90 °C verkleistert und dem Ansatz nach Abkühlung das Enzym in einer Menge zugesetzt, dass 0,5 I.E. pro ml resultierten. Die Versuchstemperatur betrug 37° C.
Die Abbaukinetik wurde verfolgt durch die Erfassung der Molekulargewichtsveränderungen durch Gel-Chromatographie. Unter gleichen Bedingungen wie im Beispiel 1 reduzierte sich das Molekulargewicht der Ausgangssubstanz auf den halben Wert innerhalb von 10 Minuten.
Im Vergleich zu den hochverzweigten α-1-4 / α-1-6 Glucosacchariden aus Beispiel 1 wird somit die im mittel relativ niedrigverzweigte, dünnkochende Wachsmaisstärke so schnell durch α-Amylase abgebaut, dass sie als Plasmaexpander nicht verwendbar wäre.
Damit demonstrieren die beiden Modell-Beipiele 1 und 2, dass, auch wenn die Molekulargewichte niedrig sind, eine höhere Verzweigung zu einer Verzögerung des α-Amylase- Abbaus führt und dass dieser Effekt zur Herstellung eines Plasmaexpanders einsetzbar ist.

Claims

Patentansprüche
1. Hyperverzweigtes Amylopektin, das einen mittleren Verzweigungsgrad zwischen > 10 und 25 mol% und ein mittleres Gewichtsmittel des Molekulargewichts Mw im Bereich von 40.000 bis 800.000 Dalton aufweist, und Derivate davon zur Anwendung in Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers oder in Diagnostizierverfahren.
2. Hyperverzweigtes Amylopektin nach Anspruch 1 als Plasmavolumenexpander.
3. Hyperverzweigtes Amylopektin nach Anspruch 1 zur Verbesserung der Mikrozirkulation.
4. Hyperverzweigtes Amylopektin nach Anspruch 1 als Sedimentationshilfe bei der Zellseparation im Rahmen der Leukapherese.
5. Hyperverzweigtes Amylopektin nach Anspruch 1 zur Kryokonservierung von Blutkomponenten wie Erythrozyten oder Granulozyten.
6. Hyperverzweigtes Amylopektin nach einem der vorhergehenden Ansprüche, wobei der mittlere Verzweigungsgrad zwischen 11 und 16 mol% und das Molekulargewicht Mw zwischen 90.000 und 300.000 Dalton ist.
7. Hyperverzweigtes Amylopektin nach einem der vorhergehenden Ansprüche
1 bis 5 wobei der mittlere Verzweigungsgrad zwischen 13 und 16 mol% und das Molekulargewicht Mw zwischen 120.000 und 250.000 Dalton ist.
PCT/EP2002/008757 2001-08-22 2002-08-06 Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander WO2003018639A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP02758435A EP1421120B1 (de) 2001-08-22 2002-08-06 Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander
MXPA04001606A MXPA04001606A (es) 2001-08-22 2002-08-06 Amilopectina hiperramificada para usarla en metodos para el tratamiento quirurgico o terapeutico de mamiferos o en metodos de diagnostico, especialmente para usarla como un expansor de volumen de plasma.
CA2456507A CA2456507C (en) 2001-08-22 2002-08-06 Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander
HU0401188A HUP0401188A3 (en) 2001-08-22 2002-08-06 Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander
JP2003523498A JP2005501930A (ja) 2001-08-22 2002-08-06 哺乳動物の外科的若しくは治療的な処置方法、又は診断方法に使用、特に血漿増量剤に使用をする高度分枝アミロペクチン
US10/486,943 US7393841B2 (en) 2001-08-22 2002-08-06 Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander
YUP-147/04A RS51420B (en) 2001-08-22 2002-08-06 HYPERSTRUCTURE AMYLOPECTIN FOR USE IN THE PROCEDURES OF SURGICAL OR THERAPEUTIC TREATMENT OF mammals OR IN THE PROCEDURES OF DIAGNOSIS, AND PARTICULARLY FOR USE AS A PLASMA VOLUME EXPANDER
DK02758435T DK1421120T3 (da) 2001-08-22 2002-08-06 Hyperforgrenet amylopektin til anvendelse ved metoder til kirurgisk eller terapeutisk behandling af pattedyr eller til diagnostiske metoder, især til anvendelse som midler til plasmavolumenekspansion
KR10-2004-7002536A KR100898528B1 (ko) 2001-08-22 2002-08-06 포유동물의 외과수술 또는 치료 방법 또는 진단방법에특히 혈장 증량제로서 사용되는 고차분지형 아밀로펙틴
AU2002325398A AU2002325398B2 (en) 2001-08-22 2002-08-06 Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander
ROA200400154A RO122279B1 (ro) 2001-08-22 2002-08-06 Amilopectină hiperramificată pentru utilizare în tratamentul chirurgical şi terapeutic la mamifere sau pentru metode de diagnostic, în special, pentru utilizare ca expandor de volum al plasmei
DE50210039T DE50210039D1 (de) 2001-08-22 2002-08-06 Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander
HK05100431A HK1068356A1 (en) 2001-08-22 2005-01-17 Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10141099 2001-08-22
DE10141099.9 2001-08-22

Publications (1)

Publication Number Publication Date
WO2003018639A1 true WO2003018639A1 (de) 2003-03-06

Family

ID=7696220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008757 WO2003018639A1 (de) 2001-08-22 2002-08-06 Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander

Country Status (20)

Country Link
US (1) US7393841B2 (de)
EP (1) EP1421120B1 (de)
JP (1) JP2005501930A (de)
KR (1) KR100898528B1 (de)
CN (1) CN100390203C (de)
AT (1) ATE360651T1 (de)
AU (1) AU2002325398B2 (de)
CA (1) CA2456507C (de)
DE (2) DE50210039D1 (de)
DK (1) DK1421120T3 (de)
ES (1) ES2283585T3 (de)
HK (1) HK1068356A1 (de)
HU (1) HUP0401188A3 (de)
MX (1) MXPA04001606A (de)
PL (1) PL209763B1 (de)
PT (1) PT1421120E (de)
RO (1) RO122279B1 (de)
RS (1) RS51420B (de)
RU (1) RU2303984C2 (de)
WO (1) WO2003018639A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022602A1 (de) * 2002-08-16 2004-03-18 Fresenius Kabi Deutschland Gmbh Hochverzweigte, nicht oder niedrig substituierte stärkeprodukte, dialyselösung und plasmaexpander enthaltend diese und deren verwendung
FR2864088A1 (fr) * 2003-12-19 2005-06-24 Roquette Freres Polymeres solubles de glucose hautement branches
WO2005058332A2 (en) * 2003-12-16 2005-06-30 Parenteral, A.S. Edestin-comprising agent for substitution of blood plasma and a method of its production
WO2006130978A1 (en) 2005-06-06 2006-12-14 The University Of British Columbia Polymer-based serum albumin substitute
WO2008082298A2 (en) * 2006-12-29 2008-07-10 Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Tno Novel slowly digestible storage carbohydrate
CN106008740A (zh) * 2010-06-17 2016-10-12 株式会社林原 含有支链淀粉的粉末及其制备方法以及用途
CN106008740B (zh) * 2010-06-17 2019-07-16 株式会社林原 含有支链淀粉的粉末及其制备方法以及用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840612B1 (fr) * 2002-06-06 2005-05-06 Roquette Freres Polymeres solubles de glucose hautement branches et leur procede d'obtention
DE10256558A1 (de) * 2002-12-04 2004-09-16 Supramol Parenteral Colloids Gmbh Ester von Polysaccharid Aldonsäuren, Verfahren zu ihrer Herstellung und Verwendung zur Kopplung an pharmazeutische Wirkstoffe
CA2791416C (en) 2010-03-01 2018-05-15 The University Of British Columbia Derivatized hyperbranched polyglycerols
AR095937A1 (es) * 2013-04-05 2015-11-25 Acraf Potenciador de la solubilidad en agua a base de glucógeno

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1279356A (en) * 1969-08-08 1972-06-28 American Hospital Supply Corp Process for the cryogenic preservation of blood and erythrocytes and products produced thereby
DE3313600A1 (de) * 1983-04-14 1984-10-18 Laevosan-Gesellschaft mbH & Co. KG, Linz Plasmastreckmittel auf staerkebasis und verfahren zu ihrer herstellung
WO2000018893A1 (fr) * 1998-09-25 2000-04-06 Roquette Freres Procede de preparation d'un melange d'enzymes de branchement de l'amidon extraites d'algues
EP1075839A1 (de) * 1999-08-10 2001-02-14 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Plasmaexpander, Blutverdünnungsmittel und Kryoprotektor, hergestellt unter Verwendung von Amylopektin-Kartoffelstärke
JP2001294601A (ja) * 2000-04-11 2001-10-23 Akita Prefecture 高度分岐澱粉と該高度分岐澱粉の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125492A (en) * 1974-05-31 1978-11-14 Pedro Cuatrecasas Affinity chromatography of vibrio cholerae enterotoxin-ganglioside polysaccharide and the biological effects of ganglioside-containing soluble polymers
US4111199A (en) * 1977-03-31 1978-09-05 Isaac Djerassi Method of collecting transfusable granulocytes by gravity leukopheresis
DE3029307A1 (de) 1980-08-01 1982-03-04 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Haemoglobin enthaltendes blutersatzmittel
US4454161A (en) * 1981-02-07 1984-06-12 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for the production of branching enzyme, and a method for improving the qualities of food products therewith
NL8902128A (nl) * 1989-08-23 1991-03-18 Avebe Coop Verkoop Prod Vertakkingsenzym en gebruik daarvan.
JP2896580B2 (ja) 1989-08-25 1999-05-31 チッソ株式会社 アミロース―リゾチームハイブリッドと活性化糖およびその製造法
DE19628705A1 (de) 1996-07-08 1998-01-15 Fresenius Ag Neue Sauerstoff-Transport-Mittel, diese enthaltende Hämoglobin-Hydroxyethylstärke-Konjugate, Verfahren zu deren Herstellung, sowie deren Verwendung als Blutersatzstoffe
DE10112825A1 (de) 2001-03-16 2002-10-02 Fresenius Kabi De Gmbh HESylierung von Wirkstoffen in wässriger Lösung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1279356A (en) * 1969-08-08 1972-06-28 American Hospital Supply Corp Process for the cryogenic preservation of blood and erythrocytes and products produced thereby
DE3313600A1 (de) * 1983-04-14 1984-10-18 Laevosan-Gesellschaft mbH & Co. KG, Linz Plasmastreckmittel auf staerkebasis und verfahren zu ihrer herstellung
WO2000018893A1 (fr) * 1998-09-25 2000-04-06 Roquette Freres Procede de preparation d'un melange d'enzymes de branchement de l'amidon extraites d'algues
EP1075839A1 (de) * 1999-08-10 2001-02-14 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Plasmaexpander, Blutverdünnungsmittel und Kryoprotektor, hergestellt unter Verwendung von Amylopektin-Kartoffelstärke
JP2001294601A (ja) * 2000-04-11 2001-10-23 Akita Prefecture 高度分岐澱粉と該高度分岐澱粉の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; "Manufacture of highly-branched starch inhibition of retrogradation of starch, and food containing the starch", XP002222974, retrieved from STN Database accession no. 135:317549 *
GUNJA ZEENAT ET AL.: "Enzymic conversion of amyopectin into a glycogen-type polysaccharide", CHEM. & IND., 1959, London, pages 1017, XP008011341 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209349A (ja) * 2002-08-16 2010-09-24 Fresenius Kabi Deutschland Gmbh 高度に分枝した非置換又は低置換デンプン生成物、これを含有する透析溶液及び血漿増量剤、並びにその使用
US7550446B2 (en) 2002-08-16 2009-06-23 Fresenius Kabi Deutschland Gmbh Highly branched, unsubstituted or low-substituted starch products, dialysis solution and plasma expander containing the same, and the use thereof
WO2004022602A1 (de) * 2002-08-16 2004-03-18 Fresenius Kabi Deutschland Gmbh Hochverzweigte, nicht oder niedrig substituierte stärkeprodukte, dialyselösung und plasmaexpander enthaltend diese und deren verwendung
JP2005539107A (ja) * 2002-08-16 2005-12-22 フレセニウス・カビ・ドイチュランド・ゲーエムベーハー 高度に分枝した非置換又は低置換デンプン生成物、これを含有する透析溶液及び血漿増量剤、並びにその使用
WO2005058332A3 (en) * 2003-12-16 2007-02-01 Parenteral A S Edestin-comprising agent for substitution of blood plasma and a method of its production
WO2005058332A2 (en) * 2003-12-16 2005-06-30 Parenteral, A.S. Edestin-comprising agent for substitution of blood plasma and a method of its production
EP1548033A3 (de) * 2003-12-19 2005-10-26 Roquette FrÀ¨res Hochverzweigte lösliche Glukosepolymerisate
EP1548033A2 (de) * 2003-12-19 2005-06-29 Roquette FrÀ¨res Hochverzweigte lösliche Glukosepolymerisate
US7612198B2 (en) 2003-12-19 2009-11-03 Roquette Freres Soluble highly branched glucose polymers
FR2864088A1 (fr) * 2003-12-19 2005-06-24 Roquette Freres Polymeres solubles de glucose hautement branches
WO2006130978A1 (en) 2005-06-06 2006-12-14 The University Of British Columbia Polymer-based serum albumin substitute
EP1891143A1 (de) * 2005-06-06 2008-02-27 The University of British Columbia Polymerbasierter serumalbumin-ersatzstoff
EP1891143A4 (de) * 2005-06-06 2009-07-15 Univ British Columbia Polymerbasierter serumalbumin-ersatzstoff
US9346029B2 (en) 2005-06-06 2016-05-24 The University Of British Columbia Polymer-based serum albumin substitute
WO2008082298A2 (en) * 2006-12-29 2008-07-10 Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Tno Novel slowly digestible storage carbohydrate
EP1943908A1 (de) * 2006-12-29 2008-07-16 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Neues langsam verdauliches Speicherkohlenhydrat
WO2008082298A3 (en) * 2006-12-29 2008-08-21 Tno Novel slowly digestible storage carbohydrate
CN106008740A (zh) * 2010-06-17 2016-10-12 株式会社林原 含有支链淀粉的粉末及其制备方法以及用途
CN106008740B (zh) * 2010-06-17 2019-07-16 株式会社林原 含有支链淀粉的粉末及其制备方法以及用途

Also Published As

Publication number Publication date
MXPA04001606A (es) 2005-03-07
EP1421120B1 (de) 2007-04-25
US20040157207A1 (en) 2004-08-12
CN1545522A (zh) 2004-11-10
HUP0401188A3 (en) 2012-09-28
KR20040052215A (ko) 2004-06-22
PL369363A1 (en) 2005-04-18
PL209763B1 (pl) 2011-10-31
US7393841B2 (en) 2008-07-01
DE50210039D1 (de) 2007-06-06
DK1421120T3 (da) 2007-09-17
RO122279B1 (ro) 2009-03-30
RU2004108122A (ru) 2005-03-27
EP1421120A1 (de) 2004-05-26
CN100390203C (zh) 2008-05-28
RS51420B (en) 2011-02-28
ES2283585T3 (es) 2007-11-01
AU2002325398B2 (en) 2008-02-28
RU2303984C2 (ru) 2007-08-10
HK1068356A1 (en) 2005-04-29
ATE360651T1 (de) 2007-05-15
RS14704A (en) 2007-02-05
CA2456507A1 (en) 2003-03-06
CA2456507C (en) 2011-05-03
JP2005501930A (ja) 2005-01-20
PT1421120E (pt) 2007-08-03
KR100898528B1 (ko) 2009-05-20
DE10235954A1 (de) 2003-03-06
HUP0401188A2 (hu) 2004-09-28

Similar Documents

Publication Publication Date Title
DE3712246A1 (de) Verfahren zum herstellen modifizierter cyclodextrine
JP2016526053A (ja) フィトグリコーゲンナノ粒子及びその製造方法
EP1421120B1 (de) Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander
DE60219653T2 (de) Pharmazeutische zusammensetzung mit chito-oligomeren
EP1718755A1 (de) Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen
WO2000012590A1 (de) Verfahren zur herstellung von sphärischen mikropartikeln, die ganz oder teilweise aus mindestens einem wasserunlöslichen verzweigungen enthaltenden polyglucan bestehen, sowie mit diesem verfahren erhältliche mikropartikel
DE10237442B4 (de) Hochverzweigte, niedrig substituierte Stärkeprodukte
EP1141370B1 (de) Alpha-1,4-glucanketten enthaltende polysaccharide sowie verfahren zu ihrer herstellung
EP0783528A1 (de) Verfahren zur herstellung von stärkeabbauprodukten
EP2506858B1 (de) Stärkederivatmischungen
DE19839212C2 (de) Verfahren zur Herstellung von sphärischen Nanopartikeln, die ganz oder teilweise aus mindestens einem wasserunlöslichen linearen Polysaccharid bestehen
EP0985733B1 (de) Verfahren zur Herstellung von Cyclodextrin
WO2004065425A1 (de) Kohlensäurediester, verfahren zu ihrer herstellung und verfahren zur herstellung von mit polysacchariden oder polysaccharid-derivaten an freien aminogruppen gekoppelten pharmazeutischen wirkstoffen
DE212020000715U1 (de) Hydrogel auf der Basis eines vernetzten Hydroxyphenylderivats der Hyaluronsäure
AT409928B (de) Plasmaexpander, blutverdünnungsmittel und kryoprotektor, hergestellt unter verwendung von amylopektin-kartoffelstärke
WO2018046129A1 (de) Lektin zur reversiblen immobilisierung von zellen
WO2002052028A1 (de) Mikrobiell erzeugter, physiologisch-verträglicher, permeabler film, bestehend aus chitosan-enthaltender cellulose
Rizoputra et al. Characterization of Glucomannan and Ca-Oxalate from Porang Flour (Amorphophallus muelleri Blume) as Candidates for Hydrogel Materials
EP2413972B1 (de) Verknüpfungsprodukte aminierter polysaccharide
KR980009287A (ko) 고순도 결정성 nocc의 제조방법 및 효소를 이용한 수용성 키토산의 분자량 조절방법
DE102004024241A1 (de) Wasserlösliche, lager- und hydrolysestabile sowie nebenproduktfreie Stärkeacetate und Verfahren zu ihrer Herstellung und Verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-147/04

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2456507

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002758435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10486943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 351/CHENP/2004

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2004 200400154

Country of ref document: RO

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20028163540

Country of ref document: CN

Ref document number: PA/A/2004/001606

Country of ref document: MX

Ref document number: 1020047002536

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003523498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002325398

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2002758435

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002758435

Country of ref document: EP