WO2003012199A1 - Papierstreichmassen für das gussstrichverfahren - Google Patents

Papierstreichmassen für das gussstrichverfahren Download PDF

Info

Publication number
WO2003012199A1
WO2003012199A1 PCT/EP2002/007934 EP0207934W WO03012199A1 WO 2003012199 A1 WO2003012199 A1 WO 2003012199A1 EP 0207934 W EP0207934 W EP 0207934W WO 03012199 A1 WO03012199 A1 WO 03012199A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper coating
coating slip
temperature
paper
polymer dispersion
Prior art date
Application number
PCT/EP2002/007934
Other languages
English (en)
French (fr)
Inventor
Dieter Distler
Volker Schädler
Titus Leman
Thomas Steinmacher
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/484,720 priority Critical patent/US7081305B2/en
Priority to KR10-2004-7001144A priority patent/KR20040019367A/ko
Priority to CA002453836A priority patent/CA2453836A1/en
Priority to BR0211347-3A priority patent/BR0211347A/pt
Priority to AU2002321227A priority patent/AU2002321227B2/en
Priority to DE50212712T priority patent/DE50212712D1/de
Priority to JP2003517367A priority patent/JP4629975B2/ja
Priority to EP02754894A priority patent/EP1415039B1/de
Publication of WO2003012199A1 publication Critical patent/WO2003012199A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/08Rearranging applied substances, e.g. metering, smoothing; Removing excess material
    • D21H25/12Rearranging applied substances, e.g. metering, smoothing; Removing excess material with an essentially cylindrical body, e.g. roll or rod
    • D21H25/14Rearranging applied substances, e.g. metering, smoothing; Removing excess material with an essentially cylindrical body, e.g. roll or rod the body being a casting drum, a heated roll or a calender
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/58Polymers or oligomers of diolefins, aromatic vinyl monomers or unsaturated acids or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate

Definitions

  • the invention relates to a paper coating slip containing a mineral pigment and an aqueous polymer dispersion as a binder, characterized in that the polymer dispersion is obtainable by emulsion polymerization of ethylenically unsaturated compounds (monomers) and the paper coating slip gels above 35 ° C, i.e. the viscosity of the paper coating slip increases between 35 and 60 ° C to at least twice the value compared to the viscosity at 30 ° C.
  • the invention further relates to a process for the production of coated papers.
  • Paper coating slips for the cast coating process contain proteins with an isoelectric point, in particular casein, as binders. Among other things, the protein gelation of the paper coating slip during the casting process.
  • the paper coating slip is applied to the base paper and partially dried at temperatures of 50 - 80 ° C.
  • the still moist, coated paper is placed on a hot cylinder, generally a chrome cylinder, the temperature of which. preferably calibrated above 90 ° C, but below 150 ° C.
  • the gelation of the casein enables calendering without damaging the paper and the production of paper with special properties such as gloss and smoothness.
  • Thermosensitive polymer dispersions ie polymer dispersions with a strongly temperature-dependent viscosity are e.g. B. known from DE 2400428. They are recommended for different applications, especially as binders for nonwovens.
  • the object of the present invention was therefore alternative paper coating slips for the cast coating process.
  • the paper coating slips should give papers with the highest possible gloss, high smoothness and good printability.
  • An essential feature of the paper coating slip according to the invention is that the entire paper coating slip gels at a temperature between 35 and 60 ° C, i.e. the viscosity of the entire paper coating slip rises sharply in this temperature range, at least twice. Value, preferably at least 2.5, in particular at least 3 times the viscosity of the paper coating slip at 30 ° C., in particular also on the corresponding multiple of the value at 35 ° C.
  • the viscosity of the paper coating slices is below 30 ° C. or also 35 ° C., in particular in the range between 30 and 10 ° C., generally 100 to 1500 mPas, preferably 200 to 1000 mPas.
  • the viscosity in this area is generally not temperature-dependent. Gelation occurs above 35 ° C.
  • the viscosity then increases in the range from 35 to 60 ° C. to the multiple stated above. From 60 ° C, often also from around 50 ° C, this increase ends and the temperature dependence becomes significantly lower.
  • the representation of the viscosity as a function of the temperature generally shows an S-shaped course in the range between 35 and 60 ° C., which is characterized by an inflection point (called the gelation point) in the middle of the gelation area.
  • the viscosity is preferably measured as a Brookfield viscosity (at 100 revolutions per minute) and stated in mPas.
  • the paper coating slip contains, as an essential component, an aqueous polymer dispersion as a binder.
  • the polymer mass can be obtained by emulsion polymerization of ethylenically unsaturated compounds (monomers).
  • the polymer dispersed in the aqueous dispersion (hereinafter referred to as polymer for short) consists of at least 40% by weight, in particular at least 60% by weight, particularly preferably at least 80% by weight, of so-called main monomers selected from C 1 ⁇ to C 2 o-Al yl (meth) acrylates, vinyl esters of up to 20 C atoms, ethylenically unsaturated nitriles, vinyl halides, vinyl ethers of alcohols containing 1 to 10 C atoms, aliphatic hydrocarbons with 2 to 8 C atoms and one or two double bonds or mixtures of these monomers.
  • Vinyl esters of carboxylic acids with 1 to 20 carbon atoms are e.g. B. vinyl laurate, stearate, vinyl propionate, vinyl versatic acid and vinyl acetate.
  • Suitable vinyl aromatic compounds are vinyl toluene, a- and p-methylstyrene, a-butylstyrene, 4-n-butylstyrene, 4-n-decylstyrene and preferably styrene.
  • nitriles are acrylonitrile and methacrylonitrile.
  • the vinyl halides are chlorine, fluorine or bromine-substituted ethylenically unsaturated compounds, preferably vinyl chloride and vinylidene chloride.
  • vinyl ethers examples include B. vinyl methyl ether or vinyl isobutyl ether. Vinyl ethers of alcohols containing 1 to 4 carbon atoms are preferred.
  • hydrocarbons with 2 to 8 carbon atoms and a double bond are ethylene or propylene; aliphatic hydrocarbons with at least two, preferably conjugated double bonds are C 4 to Cs hydrocarbons such as butadiene, isoprene or chloroprene.
  • Polymers are preferred with C ⁇ -C 2 o _ alkyl (meth) acrylates, in particular C ⁇ -C ⁇ o-alkyl (meth) acrylates or mixtures of these alkyl (meth) acrylates with vinylaromatics as main monomers (polyacrylate binder).
  • polyacrylate binder polymers with aliphatic hydrocarbons with 4 to 8 carbon atoms and two conjugated double bonds or mixtures of these aliphatic hydrocarbons with vinyl aromatics, in particular styrene, are also preferred as main monomers (styrene (S) -butadiene (B) binder).
  • the free-radically polymerized polymer may contain further monomers as structural components, e.g. B. monomers with carboxylic acid, sulfonic acid or phosphonic acid groups.
  • Carboxylic acid groups are preferred. May be mentioned for. As acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • monomers are e.g. also monomers containing hydroxyl groups, in particular -CC-hydroxyalkyl (meth) acrylates, (meth) acrylamide.
  • Phenyloxyethylglycol ono (meth) acrylate, glycidyl acrylate, glycidyl methacrylate, amino (meth) acrylates such as 2-aminoethyl (meth) acrylate may also be mentioned as further monomers.
  • Crosslinking monomers e.g. in the case of polyacrylate binders, are also further monomers, e.g. Called divinylbenzene.
  • the polymers are prepared by emulsion polymerization, so it is an emulsion polymer.
  • the manufacture can e.g. B. also by solution polymerization and subsequent dispersion in water.
  • ionic and / or non-ionic emulsifiers and / or protective colloids or stabilizers are used as surface-active compounds.
  • Suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 411 to 420.
  • Both anionic and cationic come as emulsifiers as well as nonionic emulsifiers.
  • Preferably, only accompanying emulsifiers are used as accompanying surface-active substances, the molecular weight of which, in contrast to the protective colloids, is usually below 2000 g / mol.
  • the individual components must be compatible with one another, which can be checked with a few preliminary tests if in doubt.
  • Anionic see and nonionic emulsifiers used as surfactants are e.g. B. ethoxylated fatty alcohols (EO degree: 3 to 50, alkyl radical: Cs to C 3 e) / ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 - to Cg) , Alkali metal salts of dialkyl esters of sulfosuccinic acid and alkali and ammonium salts of alkyl sulfates (alkyl radical: C ⁇ - to C ⁇ 2 ), of ethoxylated alkanols (EO grade: 4 to 30, alkyl radical: C ⁇ 2 - to cig), of ethoxylated alkylphenols ( EO grade: 3 to 50, alkyl radical: C 4 - to C 9 ), of alkyl sulfonic acids (alkyl radical:
  • Suitable emulsifiers are compounds of the general formula II
  • R 5 and R 6 are hydrogen or C 4 - to -C 4 alkyl and are not simultaneously hydrogen, and X and Y can be alkali metal ions and / or ammonium ions.
  • R 5 , R 6 are preferably linear or branched alkyl radicals having 6 to 18 carbon atoms or hydrogen and in particular having 6, 12 and 16 carbon atoms, where R 5 and R 5 are not both hydrogen at the same time.
  • X and Y are preferably sodium, potassium or ammonium ions, with sodium being particularly preferred.
  • Compounds II in which X and Y are sodium, R 5 is a branched alkyl radical having 12 C atoms and R s is hydrogen or R 5 are particularly advantageous.
  • Technical mixtures are frequently used which have a proportion of 50 to 90% by weight of the monoalkylated product, for example Dowfax® 2A1 (trademark of the Dow Chemical Company).
  • Suitable emulsifiers can also be found in Houben-Weyl, Methods of Organic Chemistry, Volume 14/1, Macromolecular Substances, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • emulsifiers are e.g. B. Dowfax®2 AI, Emulan® NP 50, Dextrol® OC 50, Emulsifier 825, Emulsifier 825 S, Emulan® 0G, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Disponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25.
  • the surface-active substance is usually used in amounts of 0.1 to 10% by weight, preferably 0.2 to 5% by weight, based on the monomers to be polymerized.
  • Water-soluble initiators for emulsion polymerization are e.g. Ammonium and alkali metal salts of peroxidic sulfuric acid, e.g. Sodium peroxodisulfate, hydrogen peroxide or organic peroxides, e.g. tert-butyl hydroperoxide.
  • peroxidic sulfuric acid e.g. Sodium peroxodisulfate
  • hydrogen peroxide or organic peroxides e.g. tert-butyl hydroperoxide.
  • red-ox reduction-oxidation
  • the Red-Ox initiator systems consist of at least one mostly inorganic reducing agent and one inorganic or organic oxidizing agent.
  • the oxidation component is e.g. to the initiators for emulsion polymerization already mentioned above.
  • the reduction components are e.g. alkali metal salts of sulfurous acid, e.g. Sodium sulfite, sodium hydrogen sulfite, alkali salts of disulfuric acid such as sodium disulfite, bisulfite addition compounds of aliphatic aldehydes and ketones such as acetone bisulfite or reducing agents such as hydroxymethanesulfinic acid and the like. Salts, or ascorbic acid.
  • the Red-Ox initiator systems can be used with the use of soluble metal compounds, the metallic component of which can occur in several valence levels.
  • red-ox initiator systems are e.g. ascorbic acid /
  • the individual components, e.g. the reduction component, can also be mixtures e.g. a mixture of the sodium salt of hydroxymethanesulfinic acid and sodium disulfite.
  • the compounds mentioned are mostly used in the form of aqueous solutions, the lower concentration being determined by the amount of water which is acceptable in the dispersion and the upper concentration being determined by the solubility of the compound in question in water.
  • the concentration is generally 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 1.0 to 10% by weight, based on the solution.
  • the amount of initiators is generally 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the monomers to be polymerized. Several different initiators can also be used in emulsion polymerization.
  • Regulators can be used in the polymerization, e.g. in amounts of 0 to 1.2 parts by weight, based on 100 parts by weight of the monomers to be polymerized, by means of which the molecular weight is reduced. Suitable are e.g. Compounds with a thiol group such as tert. -Butyl mercaptan, thioglycolic acid, ethyl acrylate, mercapto-ethynol, mercaptopropyltrimethoxysilane or tert. -Dodecylmercapant.
  • a thiol group such as tert. -Butyl mercaptan, thioglycolic acid, ethyl acrylate, mercapto-ethynol, mercaptopropyltrimethoxysilane or tert. -Dodecylmercapant.
  • the emulsion polymerization is usually carried out at 30 to 130, preferably 50 to 90 ° C.
  • the polymerization medium can consist only of water, as well as mixtures of water and thus miscible liquids such as methanol. Preferably only water is used.
  • the emulsion polymerization can be carried out either as a batch process or in the form of a feed process, including a step or gradient procedure.
  • the feed is preferably experienced by introducing part of the polymerization batch, heating to the polymerization temperature, polymerizing and then the rest of the polymerization batch, usually via a plurality of spatially separate feeds, one or more of which are the monomers in pure or in emulsified form contain, continuously, stepwise or with superimposition of a concentration gradient while maintaining the polymerization of the polymerization zone.
  • a polymer seed is presented for better adjustment of the particle size.
  • the manner in which the initiator is added to the polymerization vessel in the course of the free radical aqueous emulsion polymerization is known to the person skilled in the art. It can either be completely introduced into the polymerization vessel or used continuously or in stages in the course of the free-radical aqueous emulsion polymerization, depending on its consumption. In detail, this depends on the chemical nature of the initiator system as well as on the polymerization temperature. A portion is preferably introduced and the remainder is fed to the polymerization zone in accordance with the consumption.
  • initiator is usually also added after the end of the actual emulsion polymerization, ie after a conversion of the monomers of at least 95%.
  • the individual components can be added to the reactor in the feed process from above, in the side or from below through the reactor floor.
  • aqueous dispersions of the polymer are generally obtained with solids contents of from 15 to 75% by weight, preferably from 40 to 75% by weight.
  • dispersions with the highest possible solids content are preferred.
  • solids contents of> 60% by weight one should set a bimodal or polymodal particle size, since otherwise the viscosity becomes too high and the dispersion can no longer be handled.
  • a new generation of particles can be generated, for example, by adding seeds (EP 81083), by adding excess amounts of emulsifier or by adding mini-emulsions.
  • Another advantage associated with the low viscosity at high solids content is the improved coating behavior at high solids contents.
  • a new / new generation of particles can be generated at any time. It depends on the particle size distribution desired for a low viscosity.
  • the polymer thus produced is preferably used in the form of its aqueous dispersion.
  • the glass transition temperature of the polymer or of the emulsion polymer is preferably -60 to + 60 ° C, particularly preferably -30 to + 30 ° C and very particularly preferably -20 to + 10 ° C.
  • the glass transition temperature can be determined by conventional methods such as differential thermal analysis or differential scanning calorimetry (see e.g. ASTM 3418/82, so-called “midpoint temperature”).
  • Another essential component of the paper coating slip is a pigment, in particular a white pigment, which later gives the coated paper the desired color.
  • white pigments are e.g. Barium sulfate, calcium carbonate, calcium sulfoaluminate, kaolin, talc, titanium dioxide, zinc oxide, chalk, coating clay or satin white.
  • the paper coating slip may also optionally contain auxiliaries such as thickeners, defoamers, biocides but also so-called auxiliaries or co-binders such as starch or cellulose.
  • Paper coating slips mainly consist of the pigment. Based on 100 parts by weight of pigment, the paper coating slip therefore generally contains 1 to 40 parts by weight of polymer (solid, ie without water), preferably 8 to 25 parts by weight of polymer.
  • the paper coating slip according to the invention preferably contains less than 3 parts by weight of proteins, e.g. Casein, based on 100 parts by weight of pigment, particularly preferably it contains less than 1 part by weight, very particularly preferably no proteins, no casein.
  • proteins e.g. Casein
  • the paper coating slip according to the invention preferably contains less than 3 parts by weight of proteins, e.g. Casein, based on 100 parts by weight of pigment, particularly preferably it contains less than 1 part by weight, very particularly preferably no proteins, no casein.
  • the paper coating slip according to the invention shows a gelation of the entire paper coating slip even without casein or other proteins as binders (see above).
  • At least one of the constituents of the paper coating slip or at least one of the structural components of one of the constituents of the paper coating slip has a temperature-dependent light transmission such that there is a temperature range limited by the temperatures T1 (lower temperature) and T2 (higher temperature) in which the light transmission is one aqueous solution, which contains this component or this structural component, drops to less than 80% of the light transmittance T1.
  • the temperature range T1 to T2 preferably comprises a maximum of 15, in particular a maximum of 10 ° C.
  • the light transmittance of the component or the structural components of the component drops in this temperature range to less than 80%, in particular less than 50%, very particularly less than 30% of the light transmittance at Tl.
  • the temperature range T1 to T2 is preferably in the same temperature range in which the viscosity is to increase, i.e. the paper coating slip gels.
  • the turbidity is determined on a 5% by weight solution or emulsion of the components in water.
  • the components with temperature-dependent light transmission are a monomer as part of the polymer, it is not the monomer as such but rather its homopolymer with a number average molecular weight between 1000 and 20,000 (Gel permeation chromatography, H 2 0, acrylamide standard) used in determining the turbidity.
  • the components with temperature-dependent light transmission are preferably
  • an emulsifier for stabilizing the polymer which is preferably already used during the polymerization, or
  • Particularly suitable as polymeric compound a) are those which, owing to their temperature-dependent solubility in water, have a corresponding turbidity range T1 to T2.
  • R 1 , R 2 and R 4 independently of one another represent a hydrogen atom, a monovalent organic radical preferably having 1 to 10 C atoms and R 3 represents a divalent organic radical having 1 to 10 C atoms.
  • Polysiloxanes are also particularly suitable.
  • the molecular weight of the polymeric compound is generally between 500 and 50,000 g / mol (number average molecular weight determined by gel permeation chromatography, PEG standard, solvent H 2 O).
  • Preferred compounds a) contain 0.05-40 g of silicon (Si) in the form of siloxane groups and / or 0.1 to 30 g of oxygen in the form
  • the total amount of silicon, oxygen and / or nitrogen in the form of the above groups is preferably 0.1 to 40 g per 100 g; the minimum total is particularly preferred
  • an amount of 30 g of silicon, oxygen and nitrogen is preferably not exceeded in total.
  • Emulsifiers b) which also contain at least one siloxane group, ammonium group or alkylene oxide group may be mentioned as emulsifiers b).
  • N-isopropylacrylamide may be mentioned.
  • Component a) with temperature-dependent light transmission is preferably used in combination with an ionically stabilized polymer dispersion.
  • sulfate or sulfonate groups preference is given to 40 sulfate or sulfonate groups.
  • emulsifiers with such groups are used in emulsion polymerization (see above).
  • the amount by weight of compound a) is preferably 0.5 to 45 parts by weight, particularly preferably 1 to 5 parts by weight per 100 parts by weight of polymer.
  • the components can be mixed in a known manner.
  • the paper coating slips are aqueous paper coating slips.
  • the water content can be adjusted depending on the desired viscosity or flow properties.
  • the pH of the paper coating slip is preferably adjusted to pH values greater than 7, in particular greater than 8.
  • the paper coating slips are suitable for coating e.g. of paper or cardboard.
  • the paper coating slip can then be applied to the papers or cardboard to be coated using customary methods.
  • the application amount is generally 1 to 30, preferably 10 to 25 g / m 2 (solid, without water).
  • the paper coating slips according to the invention are particularly suitable for the cast coating process.
  • the paper coating slip gels during the coating process and the coated paper is brought into contact with a metal cylinder, preferably a chrome cylinder, in particular is calendered via this cylinder.
  • the base paper is first coated with the paper coating slip
  • the coating is dried, residual water preferably remaining in the coating,
  • the coated paper is calendered over the metal cylinder, preferably chrome cylinder.
  • the coated paper preferably first runs over a pressure roller, which presses the coated paper onto the metal cylinder. If necessary, water is added before or during calendering in order to keep the coating still moist.
  • the temperature of the metal cylinder is preferably between 90 5 and 150 ° C.
  • the cast paper process gives the coated papers special properties such as high gloss and smoothness.
  • the papers are particularly suitable as decorative papers or high-quality packaging papers or labels, e.g. for perfume, for advertising purposes, etc.
  • the paper coating slips according to the invention are very suitable for the cast coating process.
  • the papers coated with the paper coating slips according to the invention show the desired properties, such as gloss, smoothness, to a high degree.
  • coated papers are easily printable in the usual printing processes, e.g. B. in offset, letterpress or gravure printing. 20
  • the solids content of the dispersion was about 50% by weight.
  • the 10 light transmission was 44%.
  • the weight-average particle size dso was 170 nm.
  • the pH was 6.2 and the glass transition temperature was 5 ° C.
  • the monomer emulsion and 2.25 g of sodium peroxodisulfate in 27 g of water were then added simultaneously to the mixture over two separate feeds within 6 hours while maintaining the temperature
  • the solids content of the dispersion was about 50% by weight.
  • the light transmission was 60%.
  • the weight-average particle size dso was 180 nm.
  • the pH was 7.7 and the glass transition temperature was -15 ° C. Latex 3
  • the glass transition temperature of this polymer was 2 ° C.
  • the paper coating slip was prepared by mixing the components according to Table 1
  • the viscosity of the paper coating slip was measured as indicated above in the description and the gelation point was determined.
  • Example gel learning point / ° C 1 40 2 3 35
  • the monomer emulsion contained 113 g of a 40% solution of emulsifier K30 in water, 210 g of styrene, 180 g of acrylonitrile, otherwise like latex 2. After cooling, 37 g of a 40% solution of emulsifier K30 in water were added ,
  • the solids content of the dispersion was about 50% by weight.
  • the light transmission was 50%.
  • the weight-average particle size dso was 180 nm.
  • the pH was 7.8 and the glass transition temperature was -24 ° C.
  • the solids content of the dispersion was adjusted to 45% by weight.
  • the light transmission was 50%.
  • the weight-average particle size dso was 185 nm.
  • the pH was 7.1 and the glass transition temperature was -5 ° C.
  • the coated papers were produced with the aid of a laboratory cast coating apparatus comprising an application unit, a pressure roller and a chrome cylinder.
  • the gloss of the coated papers was then measured according to Lehmann.
  • the gloss obtained corresponds to a high degree to the requirements for high-quality papers such as those obtained using the cast coating process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)

Abstract

Papierstreichmasse enthaltend ein mineralisches Pigment und eine wässrige Polymerdispersion als Bindemittel, dadurch gekennzeichnet, dass die Polymerdispersion erhältlich ist durch Emulsionspolymerisation von ethylenisch ungesättigten Verbindungen (Monomere) und die Papierstreichmasse oberhalb von 35°C geliert, d.h. die Viskosität der Papierstreichmasse zwischen 35 und 60°C auf mindestens den doppelten Wert verglichen mit der Viskosität bei 30°C ansteigt. Die Papierstreichmasse eignet sich insbesondere für das Gusstrichverfahren (auf englisch: cast-coating), wobei die Streichmasse während des Beschichtungsprozesses geliert und das beschichtete Papier mit einem Metallzylinder in Kontakt gebracht wird.

Description

Papierstreichmassen für das Gussstrichverfahren
Beschreibung
Die Erfindung betrifft eine Papierstreichmasse enthaltend ein mineralisches Pigment und eine wäßrige Polymerdispersion als Bindemittel, dadurch gekennzeichnet, dass die Polymerdispersion erhältlich ist durch Emulsionspolymerisation von ethylenisch un- gesättigten Verbindungen (Monomere) und die Papierstreichmasse oberhalb von 35°C geliert, d.h. die Viskosität der Papierstreichmasse zwischen 35 und 60 °C auf mindestens den doppelten Wert verglichen mit der Viskosität bei 30°C ansteigt.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von beschichteten Papieren.
Die Herstellung von hochwertigen Papieren mit sehr hohem Glanz und Glätte, z. B: für dekorative Verpackungen oder Grußpostkarten oder Etiketten erfolgt oft nach dem so genannten Gussstrichverfahren. Das Gussstrichverfahren ist z.B. in US 3356517 beschrieben.
Papierstreichmassen für das Gussstrichverfahren enthalten Pro- teine mit einem isoelektrischen Punkt, insbesondere Kasein, als Bindemittel. Das Protein bewirkt u.a. eine Gelierung der Papierstreichmasse während des Gussstrichverfahrens .
Beim Gussstrichverfahren wird die Papierstreichmasse auf das Roh- papier aufgetragen und bei Temperaturen von 50 - 80°C teilgetrocknet. Das noch feuchte, beschichtete Papier wird auf einem heißen Zylinder, im allgemeinen einem Chromzylinder, dessen Temperatur . vorzugsweise oberhalb 90°C, aber unterhalb 150°C liegt, kalan- driert. Die Gelierung des Kasein ermöglicht hierbei eine Kalan- drierung ohne Schädigung des Papiers und die Herstellung eines Papiers mit besonderen Eigenschaften, wie Glanz und Glätte.
Beim bisherigen Gussstrichverfahren ist man auf die Verwendung geeigneter Proteine, im allgemeinen Kasein angewiesen.
Gewünscht sind daher alternative Papierstreichmassen, welche sich für das Gussstrichverfahren eignen und die Herstellung von Papieren mit unvermindert hochwertigem Erscheinungsbild erlauben. Thermosensible Polymerdispersionen, d.h. Polymerdispersionen mit stark temperaturabhängiger Viskosität sind z. B. bekannt aus DE 2400428. Sie werden empfohlen für unterschiedliche Anwendungen, insbesondere als Bindemittel für Faservliese.
Aufgabe der vorliegenden Erfindung waren daher alternative Papierstreichmassen für das Gussstrichverfahren. Die Papierstreichmassen sollen Papiere mit möglichst hohem Glanz, hoher Glätte und guter Bedruckbarkeit ergeben.
Demgemäß wurden die eingangs definierten Papierstreichmassen gefunden.
Ein wesentliches Merkmal der erfindungsgemäßen Papierstreichmasse ist, daß die gesamte Papierstreichmasse bei einer Temperatur zwischen 35 und 60°C geliert, d.h. die Viskosität der gesamten Papierstreichmasse steigt in diesem Temperaturbereich stark an, mindestens auf den doppelten. Wert, vorzugsweise mindestens auf 2,5-, insbesondere mindestens auf den 3-fachen Wert der Viskosi- tat der Papierstreichmasse bei 30°C, insbesondere auch auf das entsprechende Vielfache des Wertes bei 35°C.
Die Viskosität der Papierstreic massse liegt unterhalb 30°C bzw. auch 35°C, insbesondere im Bereich zwischen 30 und 10°C, im allge- meinen bei 100 bis 1500 mPas vorzugsweise 200 bis 1000 mPas. Die Viskosität ist in, diesem Bereich im allgemeinen wenig temperaturabhängig. Oberhalb 35°C tritt die Gelierung ein.
Die Viskosität steigt dann im Bereich von 35 bis 60°C auf das oben angegebene Vielfache an. Ab 60°C, oft auch schon ab ca. 50°C endet dieser Anstieg und die Temperaturabhängigkeit wird deutlich geringer. Die Darstellung der Viskosität als Funktion der Temperatur zeigt im Bereich zwischen 35 und 60°C im allgemeinen einen S-förmigen Verlauf, der durch einen Wendepunkt (Gelierungspunkt genannt) in der Mitte des Gelierungsbereichs gekennzeichnet ist.
Die Viskosität wird vorzugsweise als Brookfield Viskosität (bei 100 Umdrehungen pro Minute) gemessen und im mPas angegeben.
Die Papierstreichmasse enthält als wesentlichen Bestandteil eine wäßrige Polymerdispersion als Bindemittel.
Die Polymermasse ist erhältlich durch Emulsionspolymerisation von ethylenisch ungesättigten Verbindungen (Monomere) . Vorzugsweise besteht das in der wäßrigen Dispersion dispergierte Polymer (im nachfolgenden kurz Polymer genannt) zu mindestens 40 Gew.-%, insbesondere zu mindestens 60 Gew.-%, besonders bevorzugt zu mindestens 80 Gew.-% aus sogenannten Hauptmonomeren, ausgewählt aus Cι~ bis C2o-Al yl (meth)acrylaten, Vinylestern von bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylhaloge- niden, Vinylethern von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und ein oder zwei Doppelbindungen oder Mischungen dieser Monomeren.
Zu nennen sind z . B. (Meth) acrylsäurealkylester mit einem Ci-Cio-Alkylrest, wie Methylmethacrylat, Methylacrylat, n-Butyl- acrylat, Ethylacrylat und 2-Ethylhexylacrylat.
Insbesondere sind auch Mischungen der (Meth) acrylsäurealkylester geeignet .
Vinylester von Carbonsäuren mit 1 bis 20 C-Atomen sind z. B. Vinyllaurat, -stearat, Vinylpropionat, Versaticsäurevinylester und Vinylacetat.
Als vinylaromatische Verbindungen kommen Vinyltoluol, a- und p- Methylstyrol, a-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol und vorzugsweise Styrol in Betracht. Beispiele für Nitrile sind Acrylnitril und Methacrylnitril .
Die Vinylhalogenide sind mit Chlor, Fluor oder Brom substituierte ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlorid und Vinylidenchlorid.
Als Vinylether zu nennen sind z. B. Vinylmethylether oder Vinyl- isobutylether. Bevorzugt wird Vinylether von 1 bis 4 C-Atome enthaltenden Alkoholen.
Als Kohlenwasserstoffe mit 2 bis 8 C-Atomen und einer Doppelbindung seien z.B. Ethylen oder Propylen genannt, aliphatische Kohlenwasserstoffe mit mindestens zwei, vorzugsweise konjugierten Doppelbindungen sind C4- bis Cs-Kohlenwasserstoffe wie Butadien, Isopren oder Chloropren.
Bevorzugt sind Polymere mit Cι-C2o_alkyl (meth) acrylaten insbesondere Cι-Cιo-Alkyl (meth) acrylate oder Gemischen dieser Alkyl- (meth) acrylate mit Vinylaromaten als Hauptmonomere (Polyacrylat- Bindemittel) . Alternativ sind ebenfalls Polymere bevorzugt mit aliphatischen Kohlenwasserstoffen mit 4 bis 8 C-Atomen und zwei konjugierten Doppelbindungen oder Gemische dieser aliphatischen Kohlenwasserstoffe mit Vinylaromaten, insbesondere Styrol, als Hauptmonomeren (Styrol (S) -Butadien (B) - Bindemittel).
Neben den Hauptmonomeren kann das radikalisch polymerisierte Polymer weitere Monomere als Aufbaukomponenten enthalten, z. B. Monomere mit Carbonsäure, Sulfonsäure oder Phosphonsäuregruppen. Bevorzugt sind Carbonsäuregruppen. Genannt seien z. B. Acryl- säure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure.
Weitere Monomere sind z.B. auch Hydroxylgruppen enthaltende Monomere, insbesondere Cι-Cιo-Hydroxyalkyl (meth) acrylate, (Meth) acrylamid.
Als weitere Monomere seien darüberhinaus Phenyloxyethylglykol- ono- (meth-) acrylat, Glycidylacrylat, Glycidylmethacrylat, A ino- (meth-) acrylate wie 2-Aminoethyl- (meth-) acrylat genannt.
Als weitere Monomere seien, insbesondere im Falle der Polyacry- lat-Bindemittel, auch vernetzende Monomere, z.B. Divinylbenzol genannt.
Die Herstellung der Polymere erfolgt in einer bevorzugten Aus- führungsform durch Emulsionspolymerisation, es handelt sich daher um ein Emulsionspolymerisat.
Die Herstellung kann jedoch z. B. auch durch Lösungspoly- merisation und anschließende Dispergierung in Wasser erfolgen.
Bei der Emulsionspolymerisation werden ionische und/oder nicht- ionische Emulgatoren und/oder Schutzkolloide bzw. Stabilisatoren als grenzflächenaktive Verbindungen verwendet.
Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, S. 411 bis 420. Als Emulgatoren kommen sowohl anionische, kat- ionische als auch nichtionische Emulgatoren in Betracht. Vorzugsweise werden als begleitende grenzflächenaktive Substanzen ausschließlich Emulgatoren eingesetzt, deren Molekulargewicht im Unterschied zu den Schutzkolloiden üblicherweise unter 2000 g/mol liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Vorzugsweise werden anioni- sehe und nichtionische Emulgatoren als grenzflächenaktive Substanzen verwendet. Gebräuchliche begleitende Emulgatoren sind z. B. ethoxylierte Fettalkohole (EO-Grad: 3 bis 50, Alkylrest: Cs- bis C3e) / ethoxylierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4- bis Cg) , Alkalimetallsalze von Dialkyl- estern der Sulfobernsteinsäure sowie Alkali- und Ammoniumsalze von AlkylSulfaten (Alkylrest: Cβ- bis Cχ2) , von ethoxylierten Alkanolen (EO-Grad: 4 bis 30, Alkylrest: Cχ2- bis Cig) , von ethoxylierten Alkylphenolen (EO-Grad: 3 bis 50, Alkylrest: C4- bis C9) , von Alkylsulfonsäuren (Alkylrest: Cχ - bis C±g) und von Alkylarylsulfonsäuren (Alkylrest: C9- bis Cia) .
Weitere geeignete Emulgatoren sind Verbindungen der allgemeinen Formel II
Figure imgf000006_0001
worin R5 und R6 Wasserstoff oder C4- bis Cι4-Alkyl bedeuten und nicht gleichzeitig Wasserstoff sind, und X und Y Alkalimetall- ionen und/oder Ammoniumionen sein können. Vorzugsweise bedeuten R5, R6 lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen oder Wasserstoff und insbesondere mit 6, 12 und 16 C-Atomen, wobei R5 und R5 nicht beide gleichzeitig Wasserstoff sind. X und Y sind bevorzugt Natrium, Kalium oder Ammoniumionen, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen II in denen X und Y Natrium, R5 ein verzweigter Alkylrest mit 12 C-Atomen und Rs Wasserstoff oder R5 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalkylierten Produktes aufweisen, beispielsweise Dowfax® 2A1 (Warenzeichen der Dow Chemical Company) .
Geeignete Emulgatoren finden sich auch in Houben-Weyl, Methoden der organischen Chemie, Band 14/1, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961, Seiten 192 bis 208.
Handelsnamen von Emulgatoren sind z. B. Dowfax®2 AI, Emulan® NP 50, Dextrol® OC 50, Emulgator 825, Emulgator 825 S, Emulan® 0G, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Dis- ponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25. Die grenzflächenaktive Substanz wird üblicherweise in Mengen von 0,1 bis 10 Gew. -%, bevorzugt 0,2 - 5 Gew.-% bezogen auf die zu polymerisierenden Monomeren verwendet.
Wasserlösliche Initiatoren für die Emulsionspolymerisation sind z.B. Ammonium- und Alkalimetallsalze der Peroxidischwefelsäure, z.B. Natriumperoxodisulfat, Wasserstoffperoxid oder organische Peroxide, z.B. tert-Butylhydroperoxid.
Geeignet sind auch sogenannte Reduktions-Oxidations (Red-Ox) -Initiator Systeme.
Die Red-Ox-Initiator- Systeme bestehen aus mindestens einem meist anorganischen Reduktionsmittel und einem anorganischen oder orga- nischen Oxidationsmittel .
Bei der Oxidationskomponente handelt es sich z.B. um die bereits vorstehend genannten Initiatoren für die Emulsionspolymerisation.
Bei der Reduktionskomponenten handelt es sich z.B. um Alkali- metallsalze der schwefligen Säure, wie z.B. Natriumsulfit, Natriumhydrogensulfit, Alkalisalze der Dischwefligen Säure wie Natriumdisulfit, Bisulfitadditionsverbindungen aliphatischer Aldehyde und Ketone, wie Acetonbisulfit oder Reduktionsmittel wie Hydroxymethansulfinsäure und deren. Salze, oder Ascόrbinsäure. Die Red-Ox-Initiator-Systeme können unter Mitverwendung löslicher Metallverbindungen, deren metallische Komponente in mehreren Wertigkeitsstufen auftreten kann, verwendet werden.
Übliche Red-Ox-Initiator-Systeme sind z.B. Ascorbinsäure/
Eisen (II) sulfat/Natriumperoxidisulfat, tert-Butylhydroperoxid/ Natriumdisulfit, tert-Butylhydroperoxid/Na-Hydroxymethansulfinsäure. Die einzelnen Komponenten, z.B. die Reduktionskomponente, können auch Mischungen sein z.B. eine Mischung aus dem Natrium- salz der Hydroxymethansulfinsäure und Natriumdisulfit.
Die genannten Verbindungen werden meist in Form wäßriger Lösungen eingesetzt, wobei die untere Konzentration durch die in der Dispersion vertretbare Wassermenge und die obere Konzentration durch die Löslichkeit der betreffenden Verbindung in Wasser bestimmt ist. Im allgemeinen beträgt die Konzentration 0,1 bis 30 Gew.-%, bevorzugt 0,5 bis 20 Gew.-%, besonders bevorzugt 1,0 bis 10 Gew.-%, bezogen auf die Lösung. Die Menge der Initiatoren beträgt im allgemeinen 0,1 bis 10 Gew.-%, bevorzugt 0,5 bis 5 Gew. -%, bezogen auf die zu polyme- risierenden Monomeren. Es können auch mehrere, verschiedene Initiatoren bei der Emulsionspolymerisation Verwendung finden.
Bei der Polymerisation können Regler eingesetzt werden, z.B. in Mengen von 0 bis 1,2 Gew. -Teile, bezogen auf 100 Gew. -Teile der zu polymerisierenden Monomeren, durch die die Molmasse verringert wird. Geeignet sind z.B. Verbindungen mit einer Thiolgruppe wie tert . -Butylmercaptan, Thioglycolsäureethylacrylester, Mercapto- ethynol, Mercaptopropyltrimethoxysilan oder tert . -Dodecylmercap- tan.
Die Emulsionspolymerisation erfolgt in der Regel bei 30 bis 130, vorzugsweise 50 bis 90°C. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozeß als auch in Form eines ZulaufVerfahrens, einschließ- lieh Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zulauf erfahren, bei dem man einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich ge- trennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisations - zone zuführt. Bei der Polymerisation kann auch z.B. zur besseren Einstellung der Teilchengröße eine Polymersaat vorgelegt werden.
Die Art und Weise, in der der Initiator im Verlauf der radikalischen wäßrigen Emulsionspolymerisation dem Polymerisationsgefäß zugegeben wird, ist dem Durchschnittsfachmann bekannt. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchs im Verlauf der radikalischen wäßrigen Emulsionspolymerisation kontinuierlich oder stufenweise eingesetzt werden. Im einzelnen hängt dies von der chemischen Natur des Initiatorsystems als auch von der Polymersiationstempe- ratur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zugeführt.
Zur Entfernung der Restmonomeren wird üblicherweise auch nach dem Ende der eigentlichen Emulsionspolymerisation, d.h. nach einem Umsatz der Monomeren von mindestens 95 %, Initiator zugesetzt. Die einzelnen Komponenten können dem Reaktor beim Zulaufverfahren von oben, in der Seite oder von unten durch den Reaktorboden zugegeben werden.
Bei der Emulsionspolymerisation werden wäßrige Dispersionen des Polymeren in der Regel mit Feststoffgehalten von 15 bis 75 Gew. -%, bevorzugt von 40 bis 75 Gew.-% erhalten.
Für eine hohe Raum/Zeitausbeute des Reaktors sind Dispersionen mit einem möglichst hohen Feststoffgehalt bevorzugt. Um Fest- stoffgehalte > 60 Gew. -% erreichen zu können, sollte man eine bi- oder polymodale Teilchengröße einstellen, da sonst die Viskosität zu hoch wird, und die Dispersion nicht mehr handhabbar ist. Die Erzeugung einer neuen Teilchengeneration kann beispielsweise durch Zusatz von Saat (EP 81083) , durch Zugabe überschüssiger Emulgatormengen oder durch Zugabe von Miniemulsionen erfolgen. Ein weiterer Vorteil, der mit der niedrigen Viskosität bei hohem Feststoffgehalt einhergeht, ist das verbesserte Beschichtungsver- halten bei hohen Feststoffgehalten. Die Erzeugung einer neuen/ neuer Teilchengeneration/en kann zu einem beliebigen Zeitpunkt erfolgen. Er richtet sich nach den für eine niedrige Viskosität angestrebten Teilchengrößenverteilung.
Das so hergestellte Polymer wird vorzugsweise in Form seiner wäßrigen Dispersion verwendet.
Die Glasübergangstemperatur des Polymeren bzw. des Emulsionspolymerisats beträgt vorzugsweise -60 bis +60°C, besonders bevorzugt -30 bis +30°C und ganz besonders bevorzugt -20 bis +10°C.
Die Glasübergangstemperatur läßt sich nach üblichen Methoden wie Differentialthermoanalyse oder Differential Scanning Calorimetrie (s. z.B. ASTM 3418/82, sog. "midpoint temperature") bestimmen.
Ein weiterer wesentlicher Bestandteil der Papierstreichmasse ist ein Pigment, insbesondere ein Weißpigment, welches später dem beschichteten Papier die insbesondere gewünschte Farbe gibt.
Als Weißpigmente bekannt sind z.B. Bariumsulfat, Calciu carbonat, Calciumsulfoaluminat, Kaolin, Talkum, Titandioxid, Zinkoxid, Kreide, Streichclay oder Satinweiß.
Die Papierstreichmasse kann weiterhin gegebenenfalls Hilfsmittel wie Verdicker, Entschäumer, Biozide aber auch sogenannte Hilfs- oder Co-bindemittel wie Stärke oder Cellulose enthalten. Papierstreichmassen bestehen zum überwiegenden Teil aus dem Pigment. Bezogen auf 100 Gew. -Teile Pigment enthält die Papierstreichmasse daher im allgemeinen 1 bis 40 Gew. -Teile Polymer (fest, d.h. ohne Wasser), vorzugsweise 8 bis 25 Gew. -Teile Poly- mer.
Die erfindungsgemäße Papierstreichmasse enthält vorzugsweise weniger als 3 Gew. -Teil Proteine, z.B. Kasein, bezogen auf 100 Gew. -Teile Pigment, besonders bevorzugt enthält sie weniger als 1 Gew. -Teil, ganz besonders bevorzugt keine Proteine, kein Casein.
Die erfindungsgemäße Papierstreichmasse zeigt auch ohne Kasein oder andere Proteine als Bindemittel eine Gelierung der gesamten Papierstreichmasse (siehe oben) .
Vorzugsweise hat dazu mindestens einer der Bestandteile der Papierstreichmasse oder mindestens eine der Aufbaukomponenten eines der Bestandteile der Papierstreichmasse eine temperaturabhängige Lichtdurchlässigkeit derart, daß es einen Temperaturbereich begrenzt durch die Temperaturen Tl (tiefere Temperatur) und T2 (höhere Temperatur) gibt, in dem die Lichtdurchlässigkeit einer wässrigen Lösung, welche diesen Bestandteil oder diese Aufbaukomponente enthält, auf weniger als 80 % der Lichtdurchlässigkeit Tl abfällt.
Der Temperaturbereich Tl bis T2 umfaßt vorzugsweise maximal 15, insbesondere maximal 10°C.
Die Lichtdurchlässigkeit des Bestandteils bzw. der Aufbaukomponenten des Bestandteils (im nachfolgenden kurz zusammenfassend Komponente mit temperaturabhängiger Lichtdurchlässigkeit genannt) fällt in diesem Temperaturbereich auf weniger als 80 % insbesondere weniger als 50 %, ganz besonders weniger als 30 % der Licht- durchlässigkeit bei Tl ab.
Der Temperaturbereich Tl bis T2 liegt vorzugsweise in dem gleichen Temperaturbereich, in dem die Viskosität ansteigen soll, d.h. die Papierstreichmasse geliert.
Die Trübung wird bestimmt an einer 5 Gew.-%igen Lösung oder Emulsion der Komponenten in Wasser.
Falls es sich bei den Komponenten mit temperaturabhängiger Licht- durchlässigkeit um ein Monomer als Bestandteil des Polymeren handelt, wird nicht das Monomer als solches sondern dessen Homopoly- er mit einem zahlenmittleren Molgewicht zwischen 1000 und 20000 (Gelpermeationschromatographie, H20, Acrylamid-Standard) bei der Bestimmung der Trübung verwendet.
Vorzugsweise handelt es sich bei den Komponenten mit temperatu- rabhängiger Lichtdurchlässigkeit um
a) polymere Verbindungen, welche der Dispersion als Additiv zugesetzt sind,
b) einen Emulgator zur Stabilisierung des Polymeren, der vorzugsweise bereits während der Polymerisationspolymerisation verwendet wird oder
c) ein Monomer als Aufbaukomponente des Polymeren.
Als polymere Verbindung a) geeignet sind insbesondere solche, welche bedingt durch ihre temperaturabhängige Löslichkeit in Wasser einen entsprechenden Trübungsbereich Tl bis T2 aufweisen.
Genannt seien insbesondere Verbindungen, die Alkoxygruppen, vorzugsweise Ethylenoxid- oder Propylenoxidgruppen, quaternäre Ammoniumgruppen, Siloxangruppen (Si-O) oder Kombinationen dieser Gruppen enthalten.
In Betracht kommen z.B. Verbindungen mit mindestens 2, vorzugsweise mindestens 4 quaternären Ammoniumgruppen, insbesondere ' sol - ehe der Formel I
Figure imgf000011_0001
worin R1, R2 und R4 unabhängig voneinander für ein Wasserstoff- atom, einen einwertigen organischen Rest mit vorzugsweise 1 bis 10 C-atomen stehen und R3 für einen zweiwertigen organischen Rest mit 1 bis 10 C-Atomen steht.
Genannt seien Verbindungen mit seitenständigen Alkylenoxidgrup- pen, z.B. Polyvinylether.
In Betracht kommen insbesondere auch Polysiloxane. Besonders bevorzugt sind Verbindungen a) mit Kombinationen der obigen Gruppen, insbesondere solche mit Ammoniumgruppen und Alky- lenoxidgruppen oder solche mit Siloxangruppen und Alkylenoxid- gruppen 5
Kommerziell erhältlich sind z.B. Polyvinylether/Polysiloxan- Blockcopolymere (TEGO Coagulant der Firma Goldschmidt) .
Das Molgewicht der polymeren Verbindung liegt im allgemeinen zwi- 10 sehen 500 und 50000 g/mol (zahlenmittleres Molgewicht bestimmt durch Gelpermeationschromatographie, PEG-Standard, Lösemittel H20) .
Besonders bevorzugt sind niedermolekulare Verbindungen a) mit ei- 15 nem zahlenmittleren Molgewicht unter 10.000 insbesondere unter 5000 bzw. unter 3000 g/mol.
Bevorzugte Verbindungen a) erhalten 0,05 - 40 g Silizium (Si) in form von Siloxangruppen und/oder 0,1 bis 30 g Sauerstoff in Form
20 von Alkoxygruppen und/oder 0,05 bis 20 g Stickstoff in Form von quaternären Ammoniumgruppen, bezogen auf 100 g der Verbindung a) . Die Gesamtmenge an Silizium, Sauerstoff und/oder Stickstoff in Form der vorstehenden Gruppen beträgt vorzugsweise 0,1 bis 40 g auf 100 g; besonders bevorzugt ist der Mindestgehalt insgesamt
25 0,5 g, insbesondere 2 g und ganz besonders bevorzugt 5 g pro
100 g Verbindung a) , eine Menge von 30 g Silizium, Sauerstoff und Stickstoff wird insgesamt vorzugsweise nicht überschritten.
Als Emulgatoren b) seien Emulgatoren genannt, die ebenfalls min- 30 destens eine Siloxangruppen, Ammoniumgruppe oder Alkylenoxid- gruppe enthalten.
Als Monomer c) sei zum Beispiel N-isopropylacrylamid erwähnt.
35 Vorzugsweise findet die Komponente a) mit temperaturabhängiger Lichtdurchlässigkeit Verwendung in Kombination mit einer ionisch stabilisierten Polymerdispersion.
Zur ionischen Stabilisierung der Polymerdispersion sind Vorzugs - 40 weise Sulfat- oder Sulfonatgruppen geeignet. Insbesondere werden Emulgatoren mit derartigen Gruppen bei der Emulsionspolymerisation verwendet (siehe oben) .
Die Gewichtsmenge der Verbindung a) beträgt vorzugsweise 0,5 bis 45 10 Gew. -Teile, besonders bevorzugt 1 bis 5 Gew. -Teile auf 100 Gew. -Teile Polymer. Zur Herstellung der Papierstreichmasse können die Bestandteile in bekannter Weise gemischt werden.
Bei den Papierstreichmassen handelt es sich um wäßrige Papier- Streichmassen. Der Wassergehalt kann je nach gewünschter Viskosität oder Verlaufeigenschaften eingestellt werden.
Der pH-Wert der Papierstreichmasse wird vorzugsweise auf pH-Werte größer 7, insbesondere größer 8 eingestellt.
Die Papierstreichmassen eignen sich zur Beschichtung z.B. von Papier oder Karton. Die Papierstreichmasse kann dann nach üblichen Verfahren auf die zu beschichteten Papiere oder Karton auf - gebracht werden.
Die Auftragsmenge beträgt dabei im allgemeinen 1 bis 30, vorzugsweise 10 bis 25 g/m2 (fest, ohne Wasser) .
Insbesondere eignen sich die erfindungsgemäßen Papierstreichmas - sen für das Gussstrichverfahren (cast-coating) .
Wesentlich bei diesen Beschichtungsverfahren ist, daß die Papierstreichmasse während des Beschichtungsprozesses geliert und das beschichtete Papier mit einem Metalizylinder, vorzugsweise einem Chromzylinder in Kontakt gebracht wird, insbesondere über diesen Zylinder kalandriert wird.
Bekannte Gussstrichverfahren sind der Warren- oder der Champion- prozess .
Gemeinsam ist den Gussstrichverfahren, daß
das Rohpapier zunächst mit der Papierstreichmasse beschichtet wird
eine Trocknung der Beschichtung erfolgt, wobei vorzugsweise Restwasser in der Beschichtung verbleibt,
anschließend das beschichtete Papier über den Metallzylinder, vorzugsweise Chromzylinder, kalandriert wird.
Zur Kalandrierung läuft das beschichtete Papier vorzugsweise zunächst über eine Anpresswalze, die das beschichtete Papier an den Metallzylinder anpresst. Gegebenenfalls wird vor oder während der Kalandrierung Wasser zugeführt, um die Beschichtung noch feucht zu halten.
Die Temperatur des Metalizylinders liegt vorzugsweise zwischen 90 5 und 150°C.
Durch das Gussstrichverfahren erhalten die beschichteten Papiere besondere Eigenschaften, wie hoher Glanz und hohe Glätte. Die Papiere eignen sich insbesondere als Dekorpapiere, oder hochwertige 10 Verpackungspapiere oder Etiketten, z.B. für Parfüm, für Werbezwecke, etc.
Die erfindungsgemäßen Papierstreichmassen eignen sich sehr gut für das Gussstrichverfahren. Die mit den erfindungsgemäßen Pa- 15 pierstreichmassen beschichteten Papiere zeigen die gewünschten Eigenschaften wie Glanz, Glätte, in hohem Maße.
Die beschichteten Papiere sind in den üblichen Druckverfahren gut bedruckbar, z. B. im Offset-, Hoch- oder Tiefdruckverfahren. 20
Beispiele
1) Herstellung der Latices:
25 Latex 1
In einem Polymerisationsgefäß legte man 300 g Wasser, 32 g einer 33 gew.-%igen Polymerisat (dso 30 nm) , sowie 10 % der Initiatorlösung (Zulauf 2) vor und erwärmte auf 70°C.
30
Dann gab man über zwei getrennte Zuläufe zeitgleich beginnend innerhalb von 5,5 h die Monomeremulsion und die Restmenge der Initiatorlösung unter Beibehaltung der Temperatur in das Polymerisationsgefäß. Nach Beendigung der Monomerzugabe kühlte man auf
35 60°C und gab 4g tert.-Butylhydroperoxid in 70 g Wasser sowie eine Lösung 2,5 g Aceton und 7 g einer 40 gew %igen Lösung Natriumdi- sulfit in 84 g Wasser unter Beibehaltung der Temperatur innerhalb von 2 h zu. Anschließend wurden 60 g einer 25 gew.-%igen Natron¬ lauge zugegeben. Danach kühlte man auf Raumtemperatur ab.
40
Zulauf 1:
970 g entionisiertes Wasser
24 g Natriumlaurylsulfat, 28 gew.-%ig in Wasser
45 700 g Styrol
100 g Acrylnitril
630 g Butadien 15 g tert. -Dodecylmerkaptan
45 g Methacrylsäure
10 g 25 gew.-%ige wässrige Natronlauge
5 Zulauf 2:
15,0 g Natriumperoxodisulfat in 210 g Wasser
Der Feststoffgehalt der Dispersion lag bei etwa 50 Gew.-%. Die 10 Lichtdurchlässigkeit betrug 44 %. Die gewichtsmittlere Teilchengröße dso lag bei 170 nm. Der pH-Wert lag bei 6,2 und die Glas- übergangstemperatur betrug 5 °C.
Latex 2
15
In einem Polymerisationsgefäß legte man 321 g Wasser, 22,3 g einer 33 gew.-%igen Polymerisat (dso 30 nm) , 180 g Acrylnitril sowie 180 g Butadien vor und erwärmte auf 65°C. Bei Erreichen der Solltemperatur werden 2,25 g Natriumperoxodisulfat als 10 gew.%ige 20 wäßrige Lösung zum Starten der Reaktion zugegeben.
Dann gab man über zwei getrennte Zuläufe zeitgleich beginnend innerhalb von 6 h die Monomeremulsion und 2,25 g Natriumperoxodisulfat in 27 g Wasser unter Beibehaltung der Temperatur in das
25 Polymerisationsgefäß. Nach Beendigung der Monomerzugabe wurden 4g tert.-Butylhydroperoxid in 70 g Wasser sowie eine Lösung 2,5 g Aceton und 7 g einer 40 gew %igen Lösung Natriumdisulfit in 84 g Wasser unter Beibehaltung der Temperatur innerhalb von 2 h zugegeben. Anschließend wurden 23g einer 10 gew.-%igen Natronlauge
30 zugegeben. Danach kühlte man auf Raumtemperatur ab.
Monomeremulsion:
860 g entionisiertes Wasser
35 60 g Natriumlaurylsulfat, 15 gew.-%ig in Wasser
735 g Butadien
210 g Acrylnitril
150 g Styrol
45 g Methacrylsäure
40 12 g tert. -Dodecylmerkaptan
Der Feststoffgehalt der Dispersion lag bei etwa 50 Gew.-%. Die Lichtdurchlässigkeit betrug 60 %. Die gewichtsmittlere Teilchen- größe dso lag bei 180 nm. Der pH-Wert lag bei 7,7 und die Glas- 45 Übergangstemperatur betrug -15 °C. Latex 3
Analog Latex 2 j edoch wurden in der Monomeremulsion statt Natri - umlauryl sulfat 112 g eine 40 gew. -%igen Lösung von Texapon K30 (ethoxyliertes Natriumalkansulfat, Henkel) in Wasser verwendet .
Latex 4
Analog Latex 3 jedoch wurden in der Monomeremulsion 620g Butadien und 265 g Styrol verwendet.
Die Glasübergangstemperatur dieses Polymers betrug 2 °C.
2) Rezeptur der Papierstreichmasse
Die Papierstreichmasse wurde hergestellt durch Mischen der Bestandteile gemäß Tabelle 1
Tabelle 1
Figure imgf000016_0001
*zum Vergleich
1 Weißpigment
2 TEGO Coagulant 4710 der Firma Goldschmidt, Trübungstemperatur 40°C (Siloxan- inylether Blockcopolymer) Gelierung
Die Viskosität der Papierstreichmasse wurde wie oben in der Beschreibung angegeben gemessen und der Gelierungspunkt bestimmt.
Beispiel Gel: Lerungspunkt/°C 1 40 2 3 35
4 37 5 36 6 38
3. Weitere Beispiele
Latex 5
Analog Latex 2 jedoch wurden 120 g Acrylnitril, 30 g Styrol und 180 g Butadien vorgelegt; die Monomeremulsion enthielt statt Na- triumlaurylsulfat 113 g einer 40 %igen Lösung Emulgator K30 in Wasser, 210 g Styrol, 180 g Acrylnitril, sonst wie Latex 2. Nach Abkühlen wurde die Reaktionsmischung mit 37 g einer 40 %igen Lösung Emulgator K30 in Wasser versetzt.
Der Feststoffgehalt der Dispersion lag bei etwa 50 Gew.-%. Die Lichtdurchlässigkeit betrug 50 %. Die gewichtsmittlere Teilchengröße dso lag bei 180 nm. Der pH-Wert lag bei 7,8 und die Glasübergangstemperatur betrug -24°C.
Analog Latex 5, jedoch 120 g statt 180 g Butadien in Vorlage; 375 g statt 210 g Styrol und 630 statt 735 g Butadien in Zulauf; sonst wie Latex 5.
Der Feststoffgehalt der Dispersion wurde auf 45 Gew.-% eingestellt. Die Lichtdurchlässigkeit betrug 50 %. Die gewichtsmittlere Teilchengröße dso lag bei 185 nm. Der pH-Wert lag bei 7,1 und die Glasübergangstemperatur betrug -5°C.
4. Herstellung der beschichteten Papiere im Gusstrichverfahren
Die Herstellung der beschichteten Papiere erfolgte mit Hilfe einer Labor-Gusstrich-Apparatur aus Auftragsaggregat, Anpreßwalze, Chromzylinder. Anschließend wurde der Glanz der beschichteten Papiere nach Lehmann gemessen.
Figure imgf000018_0001
Weißpigment
TEGO Coagulant 4710, Goldschmidt AG
Der erhaltene Glanz entspricht dem in hohem Maße den Anforderun- gen an Papiere mit hoher Qualität, wie sie im Gussstrichverfahren erhalten werden.

Claims

Patentansprüche
1. Papierstreichmasse enthaltend ein mineralisches Pigment und eine wäßrige Polymerdispersion als Bindemittel, dadurch gekennzeichnet, dass die Polymerdispersion erhältlich ist durch Emulsionspolymerisation von ethylenisch ungesättigten Verbindungen (Monomere) und die Papierstreichmasse oberhalb von 35°C geliert, d.h. die Viskosität der Papierstreichmasse zwi- sehen 35 und 60°C auf mindestens den doppelten Wert verglichen mit der Viskosität bei 30°C ansteigt.
2. Papierstreichmasse gemäß Anspruch 1, dadurch gekennzeichnet, dass mindestens einer der Bestandteile der Papierstreichmasse oder mindestens eine der Aufbaukomponenten eines der Bestandteile der Papierstreichmasse eine temperaturabhängige Lichtdurchlässigkeit aufweist, derart, dass es einen Temperaturbereich begrenzt durch die Temperaturen Tl (tiefere Temperatur) und T2 (höhere Temperatur) gibt, in dem die Lichtdurchlässig- keit einer wässrigen Lösung, welche diesen Bestandteil oder diese Aufbaukomponente enthält, auf weniger als 80 % der Lichtdurchlässigkeit bei Tl abfällt.
3. Papierstreichmasse gemäß Anspruch 1, dadurch gekennzeichnet, dass die Papierstreichmasse eine der folgenden Bestandteile enthält:
a) eine ionisch stabilisierte Polymerdispersion in Kombination mit einer polymeren Verbindung mit einer temperatu- rabhängigen Lichtdurchlässigkeit,
b) eine mit einem nichtionischen Emulgator stabilisierte wäßrige Polymerdispersion, wobei der Emulgator eine temperaturabhängige Lichtdurchlässigkeit aufweist oder
eine wäßrige Polymerdispersion, worin das dispergierte Polymer als Aufbaukomponente ein Monomer enthält, dessen Homopolymer eine temperaturabhängige Lichtdurchlässigkeit aufweist,
wobei in allen vorstehenden Fällen temperaturabhängige Lichtdurchlässigkeit bedeutet, dass es einen Temperaturbereich begrenzt durch die Temperaturen Tl (tiefere Temperatur) und T2 (höhere Temperatur) gibt, in dem die Lichtdurchlässigkeit auf weniger als 80 % der Lichtdurchlässigkeit bei Tl abfällt.
4. Papierstreichmasse gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei der Polymerdispersion um die Dispersion eines Polymeren, welches zu mindestens 40 Gew.-% aus sogenannten Hauptmonomeren, ausgewählt aus Cl bis C20 Al-
5 kyl (meth) acrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-atomen, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, Vinyl- ethern von 1 bis 10 C Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C Atomen und ein oder 10 zwei Doppelbindungen oder Mischungen dieser Monomeren aufgebaut ist, handelt.
5. Papierstreichmasse gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei der Polymerdispersion um die
15 Dispersion eines Polymeren mit einer Glasübergangstemperatur im Bereich von -60 bis +60°C handelt.
6. Papierstreichmasse gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Papierstreichmasse einen pH Wert
20 größer 7 hat.
7. Papierstreichmasse gemäß Ansprüche 3, dadurch gekennzeichnet, dass es sich bei der polymeren Verbindung unter a) um eine bei 21°C wasserlösliche Verbindung mit Polyethergruppen han-
25 delt.
8. Papierstreichmasse gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Papierstreichmasse kein Protein, insbesondere kein Kasein, enthält.
30
9. 'Verfahren zur Herstellung von beschichteten Papieren durch Beschichtung von Rohpapieren mit Papierstreichmassen gemäß einem der Ansprüche 1 bis 8.
35 10. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Beschichtung der Papiere nach einem Gussstrichverfahren erfolgt, welches durch folgende Verfahrensschritte gekennzeichnet ist:
40 - Aufbringen der wässrigen Papierstreichmasse auf Rohpapier
Inkontaktbringen des beschichteten Papiers mit einem auf mindestens 90°C aufgeheizten Zylinder aus Metall, insbesondere mit einem Chromzylinder 45
11. Beschichtete Papiere, erhältlich unter Verwendung einer Papierstreichmasse gemäß einem der Ansprüche 1 bis 8.
12. Beschichtete Papiere, erhältlich nach einem Verfahren gemäß einem der Ansprüche 9 oder 10.
PCT/EP2002/007934 2001-07-25 2002-07-17 Papierstreichmassen für das gussstrichverfahren WO2003012199A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/484,720 US7081305B2 (en) 2001-07-25 2002-07-17 Paper coating slurries for cast coating
KR10-2004-7001144A KR20040019367A (ko) 2001-07-25 2002-07-17 캐스트 코팅을 위한 종이 코팅 슬립
CA002453836A CA2453836A1 (en) 2001-07-25 2002-07-17 Paper coating slurries for cast coating
BR0211347-3A BR0211347A (pt) 2001-07-25 2002-07-17 Suspensões de revestimento de papel contendo um pigmento mineral e uma dispersão de polìmero aquosa como agente aglutinante, processo para a produção de papéis revestidos, e, papéis revestidos
AU2002321227A AU2002321227B2 (en) 2001-07-25 2002-07-17 Paper coating slurries for cast coating
DE50212712T DE50212712D1 (de) 2001-07-25 2002-07-17 Papierstreichmassen für das gussstrichverfahren
JP2003517367A JP4629975B2 (ja) 2001-07-25 2002-07-17 キャストコーティング法のための紙塗被材料
EP02754894A EP1415039B1 (de) 2001-07-25 2002-07-17 Papierstreichmassen für das gussstrichverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10135380A DE10135380A1 (de) 2001-07-25 2001-07-25 Papierstreichmassen für das Gussstrichverfahren
DE10135380.4 2001-07-25

Publications (1)

Publication Number Publication Date
WO2003012199A1 true WO2003012199A1 (de) 2003-02-13

Family

ID=7692490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007934 WO2003012199A1 (de) 2001-07-25 2002-07-17 Papierstreichmassen für das gussstrichverfahren

Country Status (11)

Country Link
US (1) US7081305B2 (de)
EP (1) EP1415039B1 (de)
JP (1) JP4629975B2 (de)
KR (1) KR20040019367A (de)
CN (1) CN1236140C (de)
AT (1) ATE406477T1 (de)
AU (1) AU2002321227B2 (de)
BR (1) BR0211347A (de)
CA (1) CA2453836A1 (de)
DE (2) DE10135380A1 (de)
WO (1) WO2003012199A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076209A1 (en) 2012-11-14 2014-05-22 Olink Ab Localised rca-based amplification method
WO2015071445A1 (en) 2013-11-14 2015-05-21 Olink Ab Localised rca-based amplification method using a padlock-probe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2584919C (en) * 2004-11-12 2015-06-02 Basf Aktiengesellschaft Paper coating slip based on pigment-polymer hybrids
ATE550486T1 (de) * 2004-11-12 2012-04-15 Basf Se Wässrige papierstreichmasse, enthaltend pigment- polymer-hybride
JP5034244B2 (ja) * 2006-01-31 2012-09-26 日本ゼオン株式会社 塗被紙用組成物、および該組成物を用いて得られる塗被紙
CN102076722A (zh) * 2008-06-24 2011-05-25 巴斯夫欧洲公司 含有水溶性共聚物的水分散体的含金属盐颜料的纸张涂布剂
EP2310915B1 (de) 2008-07-25 2018-04-25 Hewlett-Packard Development Company, L.P. Zusammengesetzte beschichtung und substrat zur verwendung beim elektrofotografischen flüssigdruck und verfahren
CA2769503A1 (en) * 2009-07-29 2011-02-03 Basf Corporation Novel glossing system for paper and paperboard coatings
CN107407057B (zh) * 2015-02-04 2020-09-04 奥斯龙-明士克德廷根有限公司 生产包含生物聚合物纳米颗粒的预浸渍装饰原纸的组合物和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356517A (en) * 1963-12-17 1967-12-05 Scott Paper Co Heat coagulatable paper coating composition
EP0359349A2 (de) * 1988-09-12 1990-03-21 Japan as represented by Director-General, Agency of Industrial Science and Technology Thermoübertragbarer Eindicker
EP0718379A1 (de) * 1994-07-08 1996-06-26 Sanyo Chemical Industries, Ltd. Wärmereversible verdickbare bindemittelzusammensetzung
US5658981A (en) * 1993-10-07 1997-08-19 Sanyo Chemical Industries, Ltd. Thermoreversible thickener
WO2000000528A1 (fr) * 1998-06-26 2000-01-06 Rhodia Chimie Composition thermoepaississante pour bains de couchage a base d'un copolymere possedant une temperature critique inferieure de solubilite
US6117491A (en) * 1997-01-13 2000-09-12 Metsa-Serla Oy Process and coating color for coating of paper and board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140410A (en) * 1974-10-03 1976-04-05 Kanzaki Paper Mfg Co Ltd Kyokotakutohishino seizoho
JP3033265B2 (ja) * 1991-07-19 2000-04-17 ジェイエスアール株式会社 紙塗被用組成物
JP3133238B2 (ja) * 1995-10-26 2001-02-05 日本製紙株式会社 インクジェット記録用キャストコート紙及びその製造方法
JP3423830B2 (ja) * 1996-02-16 2003-07-07 鐘淵化学工業株式会社 水性塗料用樹脂組成物および耐汚染性に優れた塗膜の形成方法
JPH1112987A (ja) * 1997-06-12 1999-01-19 Mitsui Chem Inc キャストコート紙用塗料組成物及び該組成物を塗工して なるキャストコート紙
JP4149066B2 (ja) * 1998-02-25 2008-09-10 レンゴー株式会社 無機多孔結晶−親水性高分子複合体を含有する織物、不織布または紙
JP4427692B2 (ja) * 1998-03-31 2010-03-10 荒川化学工業株式会社 製紙用内添紙力剤の製造方法
JP2000226547A (ja) * 1999-02-05 2000-08-15 Sanyo Chem Ind Ltd バインダー組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356517A (en) * 1963-12-17 1967-12-05 Scott Paper Co Heat coagulatable paper coating composition
EP0359349A2 (de) * 1988-09-12 1990-03-21 Japan as represented by Director-General, Agency of Industrial Science and Technology Thermoübertragbarer Eindicker
US5658981A (en) * 1993-10-07 1997-08-19 Sanyo Chemical Industries, Ltd. Thermoreversible thickener
EP0718379A1 (de) * 1994-07-08 1996-06-26 Sanyo Chemical Industries, Ltd. Wärmereversible verdickbare bindemittelzusammensetzung
US6117491A (en) * 1997-01-13 2000-09-12 Metsa-Serla Oy Process and coating color for coating of paper and board
WO2000000528A1 (fr) * 1998-06-26 2000-01-06 Rhodia Chimie Composition thermoepaississante pour bains de couchage a base d'un copolymere possedant une temperature critique inferieure de solubilite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076209A1 (en) 2012-11-14 2014-05-22 Olink Ab Localised rca-based amplification method
WO2015071445A1 (en) 2013-11-14 2015-05-21 Olink Ab Localised rca-based amplification method using a padlock-probe

Also Published As

Publication number Publication date
CA2453836A1 (en) 2003-02-13
US7081305B2 (en) 2006-07-25
EP1415039A1 (de) 2004-05-06
BR0211347A (pt) 2004-09-21
CN1236140C (zh) 2006-01-11
DE10135380A1 (de) 2003-02-06
JP4629975B2 (ja) 2011-02-09
CN1535345A (zh) 2004-10-06
JP2005522588A (ja) 2005-07-28
AU2002321227B2 (en) 2007-12-20
ATE406477T1 (de) 2008-09-15
DE50212712D1 (de) 2008-10-09
EP1415039B1 (de) 2008-08-27
US20040175590A1 (en) 2004-09-09
KR20040019367A (ko) 2004-03-05

Similar Documents

Publication Publication Date Title
EP1268931B1 (de) Papierstreichmassen, enthaltend bindemittel mit makromonomeren
EP2398831B1 (de) Wässrige polymerdispersion aus vinylaromatischer verbindung, konjugiertem aliphatischen dien und ethylenisch ungesättigter säure
EP1191044A2 (de) Verfahren zur Herstellung wässriger Styrol-Butadien-Polymerdispersionen
DE3103463A1 (de) Verwendung von emulsionscopolymerisaten auf basis von acrylaten als alleiniges bindemittel fuer papierstreichmassen
EP0814103A2 (de) Verfahren zur Herstellung niedrigviskoser, wässriger Polymerisatdispersionen mit Polymervolumenkozentrationen von wenigstens 50 vol.-%
EP2510067B1 (de) Haftklebstoff für pvc-folien
DE2149282A1 (de) Papierstreichmassen
EP1415039B1 (de) Papierstreichmassen für das gussstrichverfahren
EP0724663B1 (de) Verwendung von mit bestimmten bindemittelmischungen beschichtetem papier für den offsetdruck
EP1316567B1 (de) Wässrige Polymerisatdispersion und ihre Verwendung als Wasserdampfsperre
DE60028694T2 (de) Emulsionspolymere
EP0742857B1 (de) Verwendung von mit bestimmten papierstreichmassen gestrichenen papieren im offsetdruck
DE1795301A1 (de) Verfahren zur Herstellung von Copolymeren aus Vinylacetat und AEthylen als Latex
WO2018086861A1 (de) Antidröhnmasse mit emulsionspolymerisat mit alkyleniminseitenketten
EP1434806B1 (de) Verfahren zur herstellung wässriger styrol-butadien-polymerdispersionen
DE3035179A1 (de) Copolymerlatex, verfahren zur herstellung und die verwendung als papierstreichmasse
DE2658118A1 (de) Waessrige harzdispersionen und daraus hergestellte hitzehaertbare ueberzugsmittel
EP0819708B1 (de) Stabile, wässrige Dispersionen von Copolymerisaten auf Basis von konjugierten, aliphatischen Dienen und vinylaromatischen Verbindungen
EP1132521B1 (de) Papierstreichmassen auf Basis von gering vernetzten Bindemitteln
EP0866811A1 (de) Verfahren zur herstellung niedrigviskoser, wässriger polymerisatdispersionen mit polymergehalten von wenigstens 50 vol-%
WO2020114797A1 (de) Verfahren zur herstellung einer wässrigen polymerdispersion aus vinylaromatischer verbindung und konjugiertem aliphatischen dien
EP0991681B1 (de) Papierstreichmassen auf basis von bindemitteln mit n-vinylformamidderivaten
EP0833752B1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im offsetdruck
WO1997001000A1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im tiefdruck
DE1927133B2 (de) Verfahren zur herstellung von waessrigen terpolymerisat-dispersionen und ihre verwendung als sperr- und bindemittel bei der papier- und pappenherstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002754894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2453836

Country of ref document: CA

Ref document number: 20028147251

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002321227

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003517367

Country of ref document: JP

Ref document number: 10484720

Country of ref document: US

Ref document number: 1020047001144

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002754894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2002321227

Country of ref document: AU

Date of ref document: 20020717

Kind code of ref document: B

WWG Wipo information: grant in national office

Ref document number: 2002754894

Country of ref document: EP