EP1268931B1 - Papierstreichmassen, enthaltend bindemittel mit makromonomeren - Google Patents

Papierstreichmassen, enthaltend bindemittel mit makromonomeren Download PDF

Info

Publication number
EP1268931B1
EP1268931B1 EP01936144A EP01936144A EP1268931B1 EP 1268931 B1 EP1268931 B1 EP 1268931B1 EP 01936144 A EP01936144 A EP 01936144A EP 01936144 A EP01936144 A EP 01936144A EP 1268931 B1 EP1268931 B1 EP 1268931B1
Authority
EP
European Patent Office
Prior art keywords
ethylenically unsaturated
paper coating
paper
weight
coating slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01936144A
Other languages
English (en)
French (fr)
Other versions
EP1268931A1 (de
Inventor
Volker Schädler
David Christie
Roland Ettl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1268931A1 publication Critical patent/EP1268931A1/de
Application granted granted Critical
Publication of EP1268931B1 publication Critical patent/EP1268931B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/58Polymers or oligomers of diolefins, aromatic vinyl monomers or unsaturated acids or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • Y10T428/31902Monoethylenically unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer

Definitions

  • the invention relates to paper coating slips containing as binders a copolymer which is obtainable by radical polymerization of ethylenically unsaturated Compounds, characterized in that it is at least one of the ethylenically unsaturated compounds around a polymer with at least one copolymerizable ethylenic unsaturated group, a number average molecular weight of 500 to 50,000 g / mol and at least one carboxylic acid group (in hereinafter referred to briefly as ethylenically unsaturated polymer) is.
  • Paper coating slips essentially consist of pigment and binder.
  • the pigments are supposed to be on the paper through the binder fixed and the cohesion in the coating obtained be guaranteed.
  • pick resistance When printing e.g. in an offset press, because of the high viscosity of the printing ink has strong tensile forces on the coated Paper (paper stroke). The resistance that the paper stroke against these forces is called pick resistance. A distinction is made between dry pick resistance and wet pick resistance. The wet pick resistance has especially in the aqueous Offset printing meaning, because in the second printing unit you have printing ink a damp paper hits, and the paper stroke underneath it Conditions must have sufficient binding power.
  • the polymers generally contain to increase the pick resistance Acid groups.
  • Such polymers are e.g. in WO-A-97/00776 described.
  • Emulsion polymers which are ethylenically unsaturated polymers having multiple acid groups as structural components Subject of WO-A-95/04767.
  • the object of the present invention was therefore paper coating slips with an improved pick resistance.
  • the paper coating slip according to the invention contains as a binder the copolymer defined at the outset.
  • the copolymer can be obtained by radical polymerization, preferably by emulsion polymerization of copolymerizable, ethylenically unsaturated compounds.
  • At least one of the ethylenically unsaturated compound is it a polymer with at least one copolymerizable, ethylenically unsaturated group, a number average Molecular weight of 500 to 50,000 g / mol and at least a carboxylic acid group (hereinafter briefly ethylenically unsaturated Polymer).
  • the content of ethylenically unsaturated groups and carboxylic acid groups refer to the content of each Polymer chain.
  • the ethylenically unsaturated polymer preferably contains one or two, particularly preferably one ethylenically unsaturated Group.
  • the or one (if there are several) ethylenically unsaturated group is particularly preferred terminal in the respective polymer chain.
  • the ethylenically unsaturated group is an acrylic or Methacrylic group, preferably around a methacrylic group.
  • the ethylenically unsaturated polymer preferably contains more than 2, particularly preferably more than 4, very particularly preferred more than 8 carboxylic acid groups.
  • the ethylenically unsaturated polymer is preferably radical polymerizable compounds built up and accordingly obtainable by radical polymerization of these compounds.
  • the ethylenically unsaturated polymer preferably consists of at least 50% by weight, particularly preferably 80% by weight, of C 1 -C 10 alkyl (meth) acrylates, (meth) acrylic acid and mixtures thereof.
  • the ethylenically unsaturated polymer is very particularly preferably at least 50% by weight, in particular at least 80% by weight from acrylic acid or methacrylic acid. Methacrylic acid is preferred.
  • the average molecular weight Mn of the ethylenically unsaturated polymer is preferably 800 to 20,000, particularly preferably 1,000 up to 10,000 g / mol.
  • Mn is determined by gel permeation chromatography (polyacrylic acid standard and water as eluent).
  • the ethylenically unsaturated polymer is preferably made by radical polymerization in the presence of a Transition metal complex as molecular weight regulator, e.g. one Kobaltchelatkomplexes. This process is called catalytic chain transfer polymerization (CCT) and is e.g. in WO-A-95/04767 and the documents cited in this document.
  • a Transition metal complex as molecular weight regulator, e.g. one Kobaltchelatkomplexes.
  • CCT catalytic chain transfer polymerization
  • the copolymer preferably consists of at least 0.1 in particular preferably at least 0.3, very particularly preferably at at least 1% by weight, in particular also at least 2% by weight, from the ethylenically unsaturated polymer.
  • a salary of 30% by weight, in particular 20% by weight and particularly preferably 15 % By weight is generally not exceeded.
  • the main monomers are z.
  • mixtures of the (meth) acrylic acid alkyl esters suitable.
  • Vinyl esters of carboxylic acids with 1 to 20 carbon atoms are e.g. B. Vinyl laurate, stearate, vinyl propionate, vinyl versatic acid and vinyl acetate.
  • the vinylaromatic compounds are vinyltoluene ⁇ - and p-methylstyrene, ⁇ -butylstyrene, 4-n-butylstyrene, 4-n-decylstyrene and preferably styrene.
  • nitriles are Acrylonitrile and methacrylonitrile.
  • the vinyl halides are substituted with chlorine, fluorine or bromine ethylenically unsaturated compounds, preferably vinyl chloride and Vinylidene chloride.
  • vinyl ethers examples include B. vinyl methyl ether or vinyl isobutyl ether. Vinyl ethers containing 1 to 4 carbon atoms are preferred Alcohols.
  • hydrocarbons with 2 to 8 carbon atoms and one or two olefinic double bonds are butadiene, isoprene and chloroprene, Called ethylene and propylene.
  • Preferred main monomers are the C 1 to C 10 alkyl acrylates and methacrylates, in particular C 1 to C 8 alkyl acrylates and methacrylates, the acrylates being particularly preferred in each case.
  • Methyl acrylate methyl methacrylate, Ethyl acrylate, n-butyl acrylate, n-hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate and mixtures of these monomers.
  • the copolymer is preferably an acrylate-based copolymer, ie that at least 60% by weight of the copolymer consists of C 1 -C 20 alkyl (meth) acrylates or mixtures thereof with vinyl aromatics.
  • butadiene-based copolymer i.e. that the copolymer of at least 60 wt .-% of butadiene or their mixtures with vinyl aromatics.
  • the polymer can contain other ethylenically unsaturated compounds included, e.g. B. monomers with carboxylic acid, sulfonic acid or Phosphonic. Carboxylic acid groups are preferred. Called be z. As acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • Monomers containing hydroxyl groups may also be mentioned, in particular C 1 -C 10 -hydroxyalkyl (meth) acrylates or (meth) acrylamide.
  • the glass transition temperature of the polymer is preferably below 50 ° C, in particular it is -40 to + 50 ° C, particularly preferred -20 to + 30 ° C and very particularly preferably -10 to + 25 ° C and in particular -5 to + 20 ° C.
  • the glass transition temperature of the polymer can be reduced usual methods such as differential thermal analysis or differential Scanning calorimetry (see e.g. ASTM 3418/82, so-called “midpoint temperature ").
  • the copolymer is preferably prepared by Emulsion polymerization, it is therefore an emulsion copolymer.
  • the manufacture can e.g. B. also by solution polymerization followed by dispersion in water.
  • ionic and / or nonionic Emulsifiers and / or protective colloids or stabilizers used as surfactant compounds.
  • Suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 411 to 420.
  • Both anionic, cationic and nonionic emulsifiers Preferably, only accompanying emulsifiers are used as accompanying surface-active substances, the molecular weight of which, in contrast to the protective colloids, is usually below 2000 g / mol.
  • the individual components must be compatible with one another, which can be checked in the case of doubt using a few preliminary tests.
  • Anionic and nonionic emulsifiers are preferably used as surface-active substances.
  • Common accompanying emulsifiers are e.g. B. ethoxylated fatty alcohols (EO grade: 3 to 50, alkyl radical: C 8 to C 36 ), ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 - to C 9 ) , Alkali metal salts of dialkyl esters of sulfosuccinic acid and alkali and ammonium salts of alkyl sulfates (alkyl radical: C 8 - to C 12 ), of ethoxylated alkanols (EO grade: 4 to 30, alkyl radical: C 12 - to C 18 ), of ethoxylated alkyl phenols ( EO grade: 3 to 50, alkyl radical: C 4 - to C 9 ), of alkyl sulfonic acids (alky
  • R 5 and R 6 are hydrogen or C 4 - to C 14 -alkyl and are not simultaneously hydrogen
  • C and Y can be alkali metal ions and / or ammonium ions.
  • R 5 , R 6 are preferably linear or branched alkyl radicals having 6 to 18 carbon atoms or hydrogen and in particular having 6, 12 and 16 carbon atoms, where R 5 and R 6 are not both hydrogen at the same time.
  • X and Y are preferably sodium, potassium or ammonium ions, with sodium being particularly preferred.
  • Compounds II in which X and Y are sodium, R 5 is a branched alkyl radical having 12 C atoms and R 6 is hydrogen or R 5 are particularly advantageous.
  • Technical mixtures are frequently used which have a proportion of 50 to 90% by weight of the monoalkylated product, for example Dowfax® 2A1 (trademark of the Dow Chemical Company).
  • Suitable emulsifiers can also be found in Houben-Weyl, Methods der organic chemistry, volume 14/1, macromolecular substances, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • emulsifiers are e.g. B. Dowfax®2 A1, Emulan® NP 50, Dextrol® OC 50, Emulsifier 825, Emulsifier 825 S, Emulan® OG, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Disponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25.
  • the surfactant is usually used in amounts of 0.1 to 10 wt .-%, based on the monomers to be polymerized used.
  • Water-soluble initiators for emulsion polymerization are z.
  • red-ox reduction-oxidation
  • the Red-Ox initiator systems usually consist of at least one inorganic reducing agent and an inorganic or organic Oxidant.
  • the oxidation component is e.g. B. the already The aforementioned initiators for emulsion polymerization.
  • the reduction components are e.g. B. alkali metal salts the sulphurous acid, e.g. B. sodium sulfite, Sodium hydrogen sulfite, alkali salts of disulfuric acid such as Sodium disulfite, bisulfite addition compounds more aliphatic Aldehydes and ketones such as acetone bisulfite or reducing agents such as Hydroxymethanesulfinic acid and its salts, or ascorbic acid.
  • the Red-Ox initiator systems can be more soluble when used Metal compounds, their metallic component in several valence levels can occur can be used.
  • Common red-ox initiator systems are e.g. B. ascorbic acid / iron (II) sulfate / sodium peroxidisulfate, tert-butyl hydroperoxide / sodium disulfite, tert-butyl hydroperoxide / Na hydroxymethanesulfinate.
  • the individual components, e.g. B. the reduction component can also be mixtures e.g. a mixture of the sodium salt of hydroxymethanesulfinic acid and sodium disulfite.
  • the compounds mentioned are mostly in the form of aqueous solutions used, the lower concentration by the in the dispersion acceptable amount of water and the upper concentration determines the solubility of the compound in question in water is.
  • the concentration is generally 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 1.0 to 10 wt .-%, based on the solution.
  • the amount of initiators is generally 0.1 to 10 wt .-%, preferably 0.5 to 5 wt .-%, based on those to be polymerized Monomers. Several different initiators can also be used find use in emulsion polymerization.
  • Regulators can be used in the polymerization, e.g. B. in Amounts from 0 to 0.8 parts by weight, based on 100 parts by weight of the monomers to be polymerized, by means of which the molecular weight is reduced becomes.
  • B. Compounds with a thiol group such as tert-butyl mercaptan, ethyl thioglycolate, mercaptoethynol, Mercaptopropyltrimethoxysilane or tert-dodecyl mercaptan.
  • the emulsion polymerization usually takes place at 30 to 130, preferably 50 to 95 ° C.
  • the polymerization medium can both only from water, as well as from mixtures of water and thus miscible liquids such as methanol exist. Preferably only water is used.
  • the emulsion polymerization can be both Batch process as well as in the form of a feed process, including Step or gradient driving style can be carried out.
  • the feed process in which part of the polymerization batch is used is preferred submitted to the polymerization temperature heated, polymerized and then the rest of the polymerization batch, usually over several spatially separated Inlets, one or more of which are in pure monomer or contained in emulsified form, continuously, in stages or while maintaining a concentration gradient overlay supplies the polymerization to the polymerization zone.
  • z. B. for better Setting the particle size a polymer seed can be submitted.
  • the way in which the initiator over the course of the radical aqueous emulsion polymerization the polymerization vessel is added is known to those of ordinary skill in the art. It can both completely placed in the polymerization vessel, as also according to its consumer in the course of the radical aqueous emulsion polymerization continuously or in stages be used. In particular, this depends on the chemical Nature of the initiator system as well as the polymerization temperature from. A part is preferably submitted and the Remainder fed to the polymerization zone in accordance with the consumption.
  • the individual components can the reactor in the feed process added from above, in the side or from below through the reactor floor become.
  • aqueous dispersions of Polymers usually with solids contents of 15 to 75% by weight, preferably from 40 to 75% by weight.
  • a bioder Adjust the polymodal particle size, otherwise the viscosity becomes too high and the dispersion is no longer manageable.
  • the Generation of a new generation of particles can, for example by adding seeds (EP 81083), by adding excess Emulsifier amounts or by adding mini emulsions. Another advantage with the low viscosity at high Solid content is accompanied by the improved coating behavior at high solids contents.
  • the creation of a new / new one Particle generation / s can be at any time respectively. It depends on the for a low viscosity desired particle size distribution.
  • the copolymer is preferably in the form of its aqueous dispersion used.
  • the paper coating slips according to the invention contain the copolymer, as a binder, preferably in amounts of 1 to 50, in particular 5 to 20 wt .-%, based on the pigment content of the Paper coating slips (Information refers to the copolymer as such, d. H. solid, without solvent).
  • Pigments are usually the main component in addition to the binder of the paper coating slips. Frequently used pigments are, for example, barium sulfate, calcium carbonate, calcium sulfoaluminate, Kaolin, talc, titanium dioxide, zinc oxide, chalk or Spreadable clay or organic pigments, e.g. B. Particulate plastics.
  • the paper coating slips can also be used contain other additives.
  • the paper coating slips can e.g. Contain dispersants.
  • Suitable dispersants are polyanions, for example from Polyphosphoric acids or of polyacrylic acids (polysalts), which usually in amounts of 0.1 to 3 wt .-%, based on the Amount of pigment included.
  • the paper coating slips can also contain so-called "co-binders" contain.
  • cobinders examples include Starch, casein, gelatin, Alginates and soy proteins, as modified natural products Hydroxyethyl cellulose, methyl cellulose and carboxymethyl cellulose as well as cationically modified starch. But it can also conventional synthetic cobinders, e.g. on vinyl acetate or Acrylate base.
  • These can e.g. in amounts of 0.1 to 10 wt .-%, based on the amount of pigment included.
  • the components in mixed in a known manner the polymer generally in Form used as an aqueous dispersion, suspension or solution becomes.
  • the water content in the paper coating slip is usually to 25 to 75% by weight, based on the total paper coating slip (including water).
  • the paper coating slip can be made by conventional methods coating papers are applied (see Ullmann's Encyclopedia of Technical Chemistry, 4th Edition, Vol. 17, P. 603 ff).
  • Papers have a high dry and wet pick resistance (adhesion of the paper coating slip). This makes them especially for the Suitable for offset printing, with the high tensile forces due to the printing ink claim the coated paper.
  • the coated with the paper coating slips according to the invention Papers show good printability.
  • the papers are special also suitable for offset printing processes.
  • the template was heated to 85 ° C. and polymerized for 15 minutes. Then the monomer emulsion was metered in over 2 hours and the initiator (1% strength by weight solution of 6.29 g of sodium peroxodisulfate in H 2 O) was metered in over 2.5 hours. The mixture was then polymerized for a further 1 hour and cooled.
  • the preparation corresponded to Example 1, but only 12 g Acrylic acid and an additional 12 g PMS are used.
  • the preparation corresponded to Example 1, but only 6 g Acrylic acid and an additional 18 g PMS are used.
  • Example 2 The preparation corresponded to Example 1, but none was Acrylic acid and 24 g PMS used instead.
  • composition of the copolymers in% by weight is given in Table 1: example 1 2 3 4 nBA 52.9 52.9 52.9 St 43.3 43.3 43.3 43.3 AS 3.8 1.9 0.9 - PMS - 1.9 2.9 3.8
  • a paper coating slip was prepared by stirring the following components. 10 Parts by weight of the copolymers 70 Parts by weight of hydrocarb (calcium carbonate) 30 Parts by weight Amazon (kaolin) 0.4 Parts by weight of polysalt (dispersing aid) 0.05 Parts by weight of NaOH 0.5 Parts by weight of CMC 7L2T (carboxymethyl cellulose)
  • the solids content was adjusted to 65% by weight with water.
  • a wood-free coating base paper with a basis weight of 70 g / m 2 was used as the base paper.
  • the paper coating slip was applied on one side at 10 g / m 2 on a laboratory coating machine. Drying was carried out using an IR radiator. Before the application tests, the papers passed four times through a laboratory calender (a pair of rollers, line pressure: 2000 N / cm).
  • the paper to be tested became strips in size 33 x 3 cm cut lengthways and these strips 15 hours at 27 ° C with a relative humidity of 50% stored in the climate room.
  • the strips were then in a printing unit (IGT printability tester AC2 / AIC2) with a standard color (printing color 3808 from Lorilleux-Lefranc) printed.
  • test strips are moving at a continuously increasing speed (maximum speed 200 cm / sec) through the printing unit guided.
  • the speed is a measure of the dry pick resistance in cm / sec, with 10 tears after the start of printing from the paper coating slip (pick points).
  • test strips were prepared and prepared as described above.
  • the printing unit (IGT printability tester AC2 / AIC2) was set up so that the test strips with water before printing be moistened.
  • the pressure was applied at a constant speed of 0.6 cm / s carried out.
  • the papers to be tested are turned into samples with a size of Cut out 240 x 46 mm in the longitudinal direction.
  • a corresponding amount of printing ink is placed on the inking roller given and allowed to run for 1 min. Then a thrust washer inserted and colored for 30 s.
  • the printing speed is 1 m / s.
  • a strip of paper will on a print sample with the printed paper strip again brought into the starting position. After a set Time will be the printing process without changing the printing disc started again. This process is repeated several times.

Description

Die Erfindung betrifft Papierstreichmassen, enthaltend als Bindemittel ein Copolymerisat, welches erhältlich ist durch radikalische Polymerisation von ethylenisch ungesättigten Verbindungen, dadurch gekennzeichnet, daß es sich bei mindestens einer der ethylenisch ungesättigten Verbindungen um ein Polymer mit mindestens einer copolymerisierbaren ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer genannt) handelt.
Papierstreichmassen bestehen im wesentlichen aus Pigment und Bindemittel. Durch das Bindemittel sollen die Pigmente auf dem Papier fixiert und der Zusammenhalt in der erhaltenen Beschichtung gewährleistet werden.
Beim Druckvorgang z.B. in einer Offsetdruckmaschine, wirken wegen der hohen Viskosität der Druckfarbe starke Zugkräfte auf das beschichtete Papier (Papierstrich). Der Widerstand, den der Papierstrich gegen diese Kräfte leistet, wird als Rupffestigkeit bezeichnet. Man unterscheidet Trockenrupffestigkeit und Naßrupffestigkeit. Die Naßrupffestigkeit hat insbesondere beim wäßrigen Offsetdruck Bedeutung, da im zweiten Druckwerk dir Druckfarbe auf ein wasserfeuchtes Papier trifft, und der Papierstrich unter diesen Bedingungen eine ausreichende Bindekraft aufweisen muß.
Zur Erhöhung der Rupffestigkeit enthalten die Polymere im allgemeinen Säuregruppen. Derartige Polymere sind z.B. in WO-A-97/00776 beschrieben.
Emulsionspolymerisate, welche ethylenisch ungesättigte Polymere mit mehreren Säuregruppen als Aufbaukomponenten aufweisen sind Gegenstand der WO-A-95/04767.
Bei bisher bekannten Papierstreichmassen ist die Bindekraft des Bindemittels und somit die Rupffestigkeit noch nicht ausreichend.
Aufgabe der vorliegenden Erfindung waren daher Papierstreichmassen mit einer verbesserten Rupffestigkeit.
Demgemäß wurden die eingangs definierten Papierstreichmassen gefunden.
Die erfindungsgemäße Papierstreichmasse enthält als Bindemittel das eingangs definierte Copolymerisat.
Das Copolymerisat ist erhältlich durch radikalische Polymerisation, vorzugsweise durch Emulsionspolymerisation von copolymerisierbaren, ethylenisch ungesättigten Verbindungen.
Bei mindestens einer der ethylenisch ungesättigten Verbindung handelt es sich um ein Polymer mit mindestens einer copolymerisierbaren, ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer). Der Gehalt an ethylenisch ungesättigten Gruppen und Carbonsäuregruppen bezieht sich dabei auf den Gehalt je Polymerkette. Bevorzugt enthält das ethylenisch ungesättigte Polymer ein oder zwei, besonders bevorzugt eine ethylenisch ungesättigte Gruppe. Die oder eine (falls mehrere vorhanden) ethylenisch ungesättigte Gruppe befindet sich besonders bevorzugt endständig in der jeweiligen Polymerkette. Insbesondere handelt es sich bei der ethylenisch ungesättigten Gruppe um eine Acryloder Methacrylgruppe, vorzugsweise um eine Methacrylgruppe.
Das ethylenisch ungesättigte Polymer enthält vorzugsweise mehr als 2, besonders bevorzugt mehr als 4, ganz besonders bevorzugt mehr als 8 Carbonsäuregruppen.
Das ethylenisch ungesättigte Polymer ist vorzugsweise aus radikalisch polymerisierbaren Verbindungen aufgebaut und entsprechend erhältlich durch radikalische Polymerisation dieser Verbindungen.
Vorzugsweise besteht das ethylenisch ungesättigte Polymer zu mindestens 50 Gew.-%, besonders bevorzugt zu 80 Gew.-% aus C1-C10 Alkyl(meth)acrylaten, (Meth)acrylsäure und deren Mischungen.
Ganz besonders bevorzugt bestht das ethylenisch ungesättigte Polymer zu mindestens 50 Gew.-%, insbesondere mindestens 80 Gew.-% aus Acrylsäure oder Methacrylsäure. Bevorzugt ist Methacrylsäure.
Das mittlere Molgewicht Mn des ethylenisch ungesättigte Polymeren beträgt vorzugsweise 800 bis 20.000, besonders bevorzugt 1.000 bis 10.000 g/mol.
Mn wird bestimmt durch Gelpermeationschromatographie (Polyacrylsäurestandard und Wasser als Elutionsmittel).
Das ethylenisch ungesättigte Polymer wird vorzugsweise hergestellt durch radikalische Polymerisation in Gegenwart eines Übergangsmetallkomplexes als Molekulargewichtsregler, z.B. eines Kobaltchelatkomplexes. Dieses Verfahren ist als catalytic chain transfer polymerization (CCT) bekannt und wird z.B. in der WO-A-95/04767 und den in dieser Schrift zitierten Dokumenten beschrieben.
Vorzugsweise besteht das Copolymerisat zu mindestens 0,1 besonders bevorzugt zu mindestens 0,3, ganz besonders bevorzugt zu mindestens 1 Gew.-%, insbesondere auch zu mindestens 2 Gew.-%, aus dem ethylenisch ungesättigten Polymeren. Ein Gehalt von 30 Gew.-%, insbesondere 20 Gew.-% und besonders bevorzugt 15 Gew.-% wird im allgemeinen nicht überstiegen.
Das Copolymerisat ist vorzugsweise insgesamt aufgebaut aus
  • a) 30 bis 99,9 Gew.-% sogenannter Hauptmonomere, ausgewählt aus C1 bis C20 Alkyl(meth)acrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, Vinylethern oder Allylethern von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und 1 oder 2 Doppelbindungen oder Mischungen dieser Monomeren
  • b) 0,1 bis 30 Gew.-% des ethylenisch ungesättigten Polymeren
  • c) 0 bis 40 Gew.-% anderen ethylenisch ungesättigten Verbindungen.
  • Das Copolymerisat ist vorzugsweise insgesamt aufgebaut aus
  • a) 50 bis 99,5 Gew.-% Hauptmonomere
  • b) 0,5 bis 20 Gew.-% ethylenisch ungesättigtes Polymer und
  • c) 0 bis 30 Gew.-% weitere Monomere.
  • Ganz besonders bevorzugt ist das Copolymerisat aufgebaut aus
  • a) 60 bis 99 Gew.-% Hauptmonomere
  • b) 1 bis 20 Gew.-% ethylenisch ungesättigtes Polymer
  • c) 0 bis 20 Gew.-% weitere Monomere.
  • Als Hauptmonomere zu nennen sind z. B. (Meth)acrylsäurealkylester mit einem C1-C10-Alkylrest, wie Methylmethacrylat, Methylacrylat, n-Butylacrylat, Ethylacrylat und 2-Ethylhexylacrylat.
    Insbesondere sind auch Mischungen der (Meth)acrylsäurealkylester geeignet.
    Vinylester von Carbonsäuren mit 1 bis 20 C-Atomen sind z. B. Vinyllaurat, -stearat, Vinylpropionat, Versaticsäurevinylester und Vinylacetat.
    Als vinylaromatische Verbindungen kommen Vinyltoluol α- und p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol und vorzugsweise Styrol in Betracht. Beispiele für Nitrile sind Acrylnitril und Methacrylnitril.
    Die Vinylhalogenide sind mit Chlor, Fluor oder Brom substituierte ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlorid und Vinylidenchlorid.
    Als Vinylether zu nennen sind z. B. Vinylmethylether oder Vinylisobutylether. Bevorzugt wird Vinylether von 1 bis 4 C-Atome enthaltenden Alkoholen.
    Als Kohlenwasserstoffe mit 2 bis 8 C-Atomen und ein oder zwei olefinischen Doppelbindungen seien Butadien, Isopren und Chloropren, Ethylen und Propylen genannt.
    Als Hauptmonomere bevorzugt sind die C1- bis C10-Alkylacrylate und -methacrylate, insbesondere C1- bis C8-Alkylacrylate und -methacrylate, wobei die Acrylate jeweils besonders bevorzugt sind.
    Ganz besonders bevorzugt sind Methylacrylat, Methylmethacrylat, Ethylacrylat, n-Butylacrylat, n-Hexylacrylat, Octylacrylat und 2-Etyhlhexylacrylat sowie Mischungen dieser Monomere.
    Bevorzugt handelt es sich bei dem Copolymerisat um ein Copolymerisat auf Acrylatbasis, d.h. daß das Copolymerisat zu mindestens 60 Gew.-% aus C1-C20 Alkyl(meth)acrylaten oder dessen Mischungen mit Vinylaromaten besteht.
    Bevorzugt ist ebenfalls ein Copolymerisat auf Butadienbasis, d.h. das das Copolymerisat zu mindestens 60 Gew.-% aus Butadien oder deren Mischungen mit Vinylaromaten besteht.
    Neben den Hauptmonomeren und dem ethylenisch ungesättigten Polymer kann das Polymer andere ethylenisch ungesättigte Verbindungen enthalten, z. B. Monomere mit Carbonsäure, Sulfonsäure oder Phosphonsäuregruppen. Bevorzugt sind Carbonsäuregruppen. Genannt seien z. B. Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fummarsäure.
    Genannt seien auch Hydroxylgruppen enthaltende Monomere, insbesondere C1-C10-Hydroxyalkyl(meth)acrylate oder (Meth)acrylamid.
    Als andere ethylenisch ungesättigte Verbindungen kommen darüberhinaus Phenyloxyethylglykolmono- (meth-)acrylat, Glydidylacrylat, Glycidylmethacrylat, Amino- (meth-)acrylate wie 2-Aminoethyl-(meth-)acrylat in Betracht.
    Die Glasübergangstemperatur des Polymeren liegt bevorzugt unter 50°C, insbesondere beträgt sie -40 bis +50°C, besonders bevorzugt -20 bis +30°C und ganz besonders bevorzugt -10 bis +25°C und insbesondere -5 bis +20°C.
    Die Glasüberganstemperatur des Polymerisats läßt sich nach üblichen Methoden wie Differentialthermoanalyse oder Differential Scanning Calorimetrie (s. z.B. ASTM 3418/82, sog. "midpoint temperature") bestimmen.
    Die Herstellung des Copolymerisats erfolgt vorzugsweise durch Emulsionspolymerisation, es handelt sich daher um ein Emulsionscopolymerisat.
    Die Herstellung kann jedoch z. B. auch durch Lösungspolymerisation und anschließende Dispergierung in Wasser erfolgen.
    Bei der Emulsionspolymerisation werden ionische und/oder nichtionische Emulgatoren und/oder Schutzkolloide bzw. Stabilisatoren als grenzflächenaktive Verbindungen verwendet.
    Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, S. 411 bis 420. Als Emulgatoren kommen sowohl anionische, kationische als auch nichtionische Emulgatoren in Betracht. Vorzugsweise werden als begleitende grenzflächenaktive Substanzen ausschließlich Emulgatoren eingesetzt, deren Molekulargewicht im Unterschied zu den Schutzkolloiden üblicherweise unter 2000 g/mol liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Vorzugsweise werden anionische und nichtionische Emulgatoren als grenzflächenaktive Substanzen verwendet. Gebräuchliche begleitende Emulgatoren sind z. B. ethoxylierte Fettalkohole (EO-Grad: 3 bis 50, Alkylrest: C8bis C36), ethoxylierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4- bis C9), Alkalimetallsalze von Dialkylestern der Sulfobernsteinsäure sowie Alkali- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8- bis C12), von ethoxylierten Alkanolen (EO-Grad: 4 bis 30, Alkylrest: C12- bis C18), von ethoxylierten Alkylphenolen (EO-Grad: 3 bis 50, Alkylrest: C4- bis C9), von Alkylsulfonsäuren (Alkylrest: C12- bis C18) und von Alkylarylsulfonsäuren (Alkylrest: C9- bis C18).
    Weitere geeignete Emulgatoren sind Verbindungen der allgemeinen Formel II
    Figure 00060001
    worin R5 und R6 Wasserstoff oder C4- bis C14-Alkyl bedeuten und nicht gleichzeitig Wasserstoff sind, und C und Y Alkalimetallionen und/oder Ammoniumionen sein können. Vorzugsweise bedeuten R5, R6 lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen oder Wasserstoff und insbesondere mit 6, 12 und 16 C-Atomen, wobei R5 und R6 nicht beide gleichzeitig Wasserstoff sind. X und Y sind bevorzugt Natrium, Kalium oder Ammoniumionen, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen II in denen X und Y Natrium, R5 ein verzweigter Alkylrest mit 12 C-Atomen und R6 Wasserstoff oder R5 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalkylierten Produktes aufweisen, beispielsweise Dowfax® 2A1 (Warenzeichen der Dow Chemical Company).
    Geeignete Emulgatoren finden sich auch in Houben-Weyl, Methoden der organischen Chemie, Band 14/1, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961, Seiten 192 bis 208.
    Handelsnamen von Emulgatoren sind z. B. Dowfax®2 A1, Emulan® NP 50, Dextrol® OC 50, Emulgator 825, Emulgator 825 S, Emulan® OG, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Disponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25.
    Die grenzflächenaktive Substanz wird üblicherweise in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die zu polymerisierenden Monomeren verwendet.
    Wasserlösliche Initiatoren für die Emulsionspolymerisation sind z. B. Ammonium- und Alkalimetallsalze der Peroxidischwefelsäure, z. B. Natriumperoxodisulfat, Wasserstoffperoxid oder organische Peroxide, z. B. tert-Butylhydroperoxid.
    Geeignet sich insbesondere sogenannte Reduktions-Oxidations(Red-Ox)-Initiator Systeme.
    Die Red-Ox-Initiator-Systeme bestehen aus mindestens einem meist anorganischen Reduktionsmittel und einem anorganischen oder organischen Oxidationsmittel.
    Bei der Oxidationskomponente handelt es sich z. B. um die bereits vorstehend genannten Initiatoren für die Emulsionspolymerisation.
    Bei der Reduktionskomponenten handelt es sich z. B. um Alkalimetallsalze der schwefligen Säure, wie z. B. Natriumsulfit, Natriumhydrogensulfit, Alkalisalze der Dischwefligen Säure wie Natriumdisulfit, Bisulfitadditionsverbindungen aliphatischer Aldehyde und Ketone, wie Acetonbisulfit oder Reduktionsmittel wie Hydroxymethansulfinsäure und deren Salze, oder Ascorbinsäure. Die Red-Ox-Initiator-Systeme können unter Mitverwendung löslicher Metallverbindungen, deren metallische Komponente in mehreren Wertigkeitsstufen auftreten kann, verwendet werden.
    Übliche Red-Ox-Initiator-Systeme sind z. B. Ascorbinsäure/Eisen(II)sulfat/Natriumperoxidisulfat, tert-Butylhydroperoxid/Natriumdisulfit, tert-Butylhydroperoxid/Na-Hydroxymethansulfinsäure. Die einzelnen Komponenten, z. B. die Reduktionskomponente, können auch Mischungen sein z.B. eine Mischung aus dem Natriumsalz der Hydroxymethansulfinsäure und Natriumdisulfit.
    Die genannten Verbindungen werden meist in Form wäßriger Lösungen eingesetzt, wobei die untere Konzentration durch die in der Dispersion vertretbare Wassermenge und die obere Konzentration durch die Löslichkeit der betreffenden Verbindung in Wasser bestimmt ist. Im allgemeinen beträgt die Konzentration 0,1 bis 30 Gew.-%, bevorzugt 0,5 bis 20 Gew.-%, besonders bevorzugt 1,0 bis 10 Gew.-%, bezogen auf die Lösung.
    Die Menge der Initiatoren beträgt im allgemeinen 0,1 bis 10 Gew.-%, bevorzugt 0,5 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomeren. Es können auch mehrere, verschiedene Initiatoren bei der Emulsionspolymerisation Verwendung finden.
    Bei der Polymerisation können Regler eingesetzt werden, z. B. in Mengen von 0 bis 0,8 Gew.-Teile, bezogen auf 100 Gew.-Teile der zu polymerisierenden Monomeren, durch die die Molmasse verringert wird. Geeignet sind z. B. Verbindungen mit einer Thiolgruppe wie tert.-Butylmercaptan, Thioglycolsäureethylacrylester, Mercaptoethynol, Mercaptopropyltrimethoxysilan oder tert.-Dodecylmercaptan.
    Die Emulsionspolymerisation erfolgt in der Regel bei 30 bis 130, vorzugsweise 50 bis 95°C. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozeß als auch in Form eines Zulaufverfahrens, einschließich Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zulaufverfahren, bei dem man einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich getrennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zuführt. Bei der Polymerisation kann auch z. B. zur besseren Einstellung der Teilchengröße eine Polymersaat vorgelegt werden.
    Die Art und Weise, in der der Initiator im Verlauf der radikalischen wäßrigen Emulsionspolymerisation dem Polymerisationsgefäß zugegeben wird, ist dem Durchschnittsfachmann bekannt. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchers im Verlauf der radikalischen wäßrigen Emulsionspolymerisation kontinuierlich oder stufenweise eingesetzt werden. Im einzelnen hängt dies von der chemischen Natur des Initiatorsystems als auch von der Polymersiationstemperatur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zugeführt.
    Zur Entfernung der Restmonomeren wird üblicherweise auch nach dem Ende der eigentlichen Emulsionspolymerisation, d. h. nach einem Umsatz der Monomeren von mindestens 95 %, Initiator zugesetzt.
    Die einzelnen Komponenten können dem Reaktor beim Zulaufverfahren von oben, in der Seite oder von unten durch den Reaktorboden zugegeben werden.
    Bei der Emulsionspolymerisation werden wäßrige Dispersionen des Polymeren in der Regel mit Feststoffgehalten von 15 bis 75 Gew.-%, bevorzugt von 40 bis 75 Gew.-% erhalten.
    Für eine hohe Raum/Zeitausbeute des Reaktors sind Dispersionen mit einem möglichst hohen Feststoffgehalt bevorzugt. Um Feststoffgehalte > 60 Gew.-% erreichen zu können, sollte man eine bioder polymodale Teilchengröße einstellen, da sonst die Viskosität zu hoch wird, und die Dispersion nicht mehr handhabbar ist. Die Erzeugung einer neuen Teilchengeneration kann beispielsweise durch Zusatz von Saat (EP 81083), durch Zugabe überschüssiger Emulgatormengen oder durch Zugabe von Miniemulsionen erfolgen. Ein weiterer Vorteil, der mit der niedrigen Viskosität bei hohem Feststoffgehalt einhergeht, ist das verbesserte Beschichtungsverhalten bei hohen Feststoffgehalten. Die Erzeugung einer neuen/neuer Teilchengeneration/en kann zu einem beliebigen Zeitpunkt erfolgen. Er richtet sich nach den für eine niedrige Viskosität angestrebten Teilchengrößenverteilung.
    Das Copolymerisat wird vorzugsweise in Form seiner wäßrigen Dispersion verwendet.
    Die erfindungsgemäße Papierstreichmassen enthalten das Copolymerisat, als Bindemittel, vorzugsweise in Mengen von 1 bis 50, insbesondere 5 bis 20 Gew.-%, bezogen auf den Pigmentgehalt der Papierstreichmassen (Angabe bezieht sich auf das Copolymerisat als solches, d. h. fest, ohne Lösemittel).
    Üblicherweise stellen Pigmente neben dem Bindemittel die Hauptkomponente der Papierstreichmassen dar. Häufig verwendete Pigmente sind beispielsweise Bariumsulfat, Calciumcarbonat, Calciumsulfoaluminat, Kaolin, Talkum, Titandioxid, Zinkoxid, Kreide oder Streichclay oder organische Pigmente, z. B. Kunststoffe in Teilchenform.
    Neben dem Bindemittel und den Pigmenten können die Papierstreichmassen weitere Zusatzstoffe enthalten.
    Die Papierstreichmassen können z.B. Dispergiermittel enthalten. Geeignete Dispergiermittel sind Polyanionen, beispielsweise von Polyphosphorsäuren oder von Polyacrylsäuren (Polysalze), welche üblicherweise in Mengen von 0,1 bis 3 Gew.-%, bezogen auf die Pigmentmenge, enthalten sind.
    Außerdem können die Papierstreichmassen sogenannte "Co-Binder" enthalten. Als natürliche Cobinder seien z.B. Stärke, Kasein, Gelatine, Alginate und Sojaproteine, als modifizierte Naturprodukte Hydroxyethylcellulose, Methylcellulose und Carboxymethylcellulose sowie kationisch modifizierte Stärke erwähnt. Es können aber auch übliche synthetische Cobinder, z.B. auf Vinylacetat- oder Acrylatbasis, verwendet werden.
    Diese können z.B. in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die Pigmentmenge-enthalten sein.
    Zur Herstellung der Papierstreichmasse werden die Bestandteile in bekannter Weise gemischt, wobei das Polymere im allgemeinen in Form einer wäßrigen Dispersion, Suspension oder Lösung verwendet wird.
    Der Gehalt an Wasser in der Papierstreichmasse wird üblicherweise auf 25 bis 75 Gew.-%, bezogen auf die gesamte Papierstreichmasse (inclusive Wasser), eingestellt.
    Die Papierstreichmasse kann nach üblichen Verfahren auf die zu beschichtenden Papiere aufgebracht werden (vgl. Ullmann's Encyclopädie der Technischen Chemie, 4. Auflage, Bd. 17, S. 603 ff).
    Die mit den erfindungsgemäßen Papierstreichmassen beschichteten Papiere weisen eine hohe Trocken- und Naßrupffestigkeit (Haftung der Papierstreichmasse) auf. Dadurch sind sie besonders für den Offsetdruck geeignet, bei dem hohe Zugkräfte durch die Druckfarbe das beschichtete Papier beanspruchen.
    Die mit den erfindungsgemäßen Papierstreichmassen beschichteten Papiere zeigen eine gute Bedruckbarkeit. Die Papiere sind insbesondere auch für Offsetdruckverfahren geeignet.
    Beispiele
  • I. Herstellung der Polymethacrylsäure, kurz PMS (ethylenisch ungesättigtes Polymer)
    VA 044:
    Figure 00110001
    2HCl
    CoBf:
    Figure 00110002
    Vorlage:
    17,5 mg CoBF
    0,75 g VA 044
    450,00 g VE-Wasser
    Zulauf 1:
    190,00 g Methacrylsäure
    9,00 mg CoBF
    Fahrweise:
    VE-Wasser wurde zum Sieden erhitzt und mit N2 begast. Zulauf 1 wurde ebenfalls mit N2 begast. Die Apparatur wurde 5x mit N2 abgepresst und evakuiert. Die Vorlage wurde in die Apparatur eingesaugt, wobei keine Luft mit eingesaugt werden darf. Es wurde auf 55°C aufgeheizt, dann mit Zulauf 1 begonnen. Die Handhabung des Zulaufgefäßes entsprach der Vorlage. Zulauf 1 wurde in 1,5 Std. langsam zugetropft, 1,5 Std. nachpolymerisiert, dann abgekühlt.
  • Analysedaten
    Endprobe
    FG: 25,5 %
    Umsatz: 89 %
    pH: 2,2
    GPC:
    Mn: 3.400
    Mw: 7.200
    II. Herstellung der Polymerdispersion
    Die Vorlage wurde auf 85°C aufgeheizt und 15 Minuten polymerisiert. Dann wurde die Monomeremulsion über 2 Stunden und der Initiator (1 gew.-%ige Lösung von 6,29 g Natriumperoxodisulfat in H2O) über 2,5 Stunden zudosiert. Danach wurde noch 1 Stunde nachpolymerisiert und abgekühlt.
    Beispiel 1 (zum Vergleich)
    Vorlage:
    18 g Saatlatex (Polystyrolsaat, 30 nm) 457 g Wasser
    5 Gew.-% der nachstehenden Monomeremulsion
    Monomeremulsion:
    330 g n-Butylacrylat
    270 g Styrol
    24 g Acrylsäure
    6,7 g Domfax 2 A1 (45 %ig in H2O)
    564 g Wasser
    Beispiel 2
    Die Herstellung entsprach Beispiel 1, jedoch wurden nur 12 g Acrylsäure und zusätzlich 12 g PMS verwendet.
    Beispiel 3
    Die Herstellung entsprach Beispiel 1, jedoch wurden nur 6 g Acrylsäure und zusätzlich 18 g PMS verwendet.
    Beispiel 4
    Die Herstellung entsprach Beispiel 1, jedoch wurde keine Acrylsäure und stattdessen 24 g PMS verwendet.
    Die Zusammensetzung der Copolymerisate in Gew.-% ist in Tabelle 1 angegeben:
    Beispiel 1 2 3 4
    nBA 52,9 52,9 52,9 52,9
    St 43,3 43,3 43,3 43,3
    AS 3,8 1,9 0,9 -
    PMS - 1,9 2,9 3,8
    III. Herstellung der Papierstreichmasse
    Es wurde eine Papierstreichmasse durch Verrühren folgender Bestandteile hergestellt.
    10 Gew.-Teile der Copolymerisate
    70 Gew.-Teile Hydrocarb (Calziumcarbonat)
    30 Gew.-Teile Amazon (Kaolin)
    0,4 Gew.-Teile Polysalz (Dispergierhilfsmittel)
    0,05 Gew.-Teile NaOH
    0,5 Gew.-Teile CMC 7L2T (Carboxymethylcellulose)
    Der Feststoffgehalt wurde mit Wasser auf 65 Gew.-% eingestellt.
    Anwendungstechnische Prüfung
    Als Rohpapier wurde ein holzfreies Streichrohpapier mit einem Flächengewicht von 70 g/m2 verwendet. Der Auftrag der Papierstreichmasse erfolgte einseitig mit 10 g/m2 auf einer Laborstreichmaschine. Die Trocknung erfolgte mit einem IR-Strahler. Die Papiere passierten vor den anwendungstechnischen Prüfungen viermal einen Laborkalander (ein Walzenpaar, Liniendruck: 2000 N/cm).
    Trockenrupffestigkeit
    Aus den zu prüfenden Papieren wurden Streifen in der Größe 33 x 3 cm in Längsrichtung geschnitten und diese Streifen 15 Stunden bei 27°C mit einer relativen Luftfeuchtigkeit von 50 % im Klimaraum gelagert.
    Die Streifen wurden anschließend in einem Druckwerk (IGT Bedruckbarkeitsprüfer AC2/AIC2) mit einer Standardfarbe (Druckfarbe 3808 der Fa. Lorilleux-Lefranc) bedruckt.
    Die Prüfstreifen werden mit kontinuierlich steigender Geschwindigkeit (maximale Geschwindigkeit 200 cm/sec) durch das Druckwerk geführt. Als Maß für die Trockenrupffestigkeit wird die Geschwindigkeit in cm/sec angegeben, bei der nach Druckbeginn 10 Ausrisse aus der Papierstreichmasse (Rupfpunkte) erfolgt sind.
    Naßrupffestigkeit
    Die Prüfstreifen wurden wie oben beschrieben hergestellt und vorbereitet.
    Das Druckwerk (IGT Bedruckbarkeitsprüfer AC2/AIC2) wurde so eingerichtet, daß die Prüfstreifen vor dem Druckvorgang mit Wasser befeuchtet werden.
    Der Druck wurde mit einer konstanten Geschwindigkeit von 0,6 cm/s durchgeführt.
    Ausrisse aus der Papierstreichmasse bzw. dem Papier sind als unbedruckte Stellen sichtbar. Zur Bestimmung der Naßrupffestigkeit wird daher mit einem Farbdensitometer die Farbdichte im Vergleich zum vollen Farbton in % bestimmt. Je höher die angegebene Farbdichte, desto besser die Naßrupffestigkeit.
    Offsettest Papier:
    Aus den zu prüfenden Papieren werden Proben mit einer Größe von 240 x 46 mm in der Längsrichtung ausgeschnitten.
    Durchführung der Prüfung:
    Auf die Einfärbewalze wird eine entsprechende Menge der Druckfarbe gegeben und 1 min laufen gelassen. Dann wird eine Druckscheibe eingesetzt und 30 s eingefärbt.
    Die Druckgeschwindigkeit beträgt 1 m/s. Ein Papierstreifen wird auf einen Druckprobeträger mit dem bedruckten Papierstreifen erneut in die Ausgangsstellung gebracht. Nach einer festgelegten Zeitspanne wird der Druckvorgang ohne Austausch der Druckscheibe erneut gestartet. Dieser Vorgang wird mehrmals wiederholt.
    Nach jedem Durchgang wird das Rupfen auf der bedruckten Seite des Papierstreifens visuell begutachtet. Es wird die Anzahl der Durchgänge angegeben bis zum ersten Mal ein Rupfen auftritt. Bei sehr starkem Rupfen wird der letzte Durchgang nur als halb angegeben (z.B. starkes Rupfen nach dem 3. Durchgang wird mit 2,5 angegeben).
    Angabe des Ergebnisses:
    Anzahl der Durckvorgänge bis zum Auftreten des ersten Rupfens.
    Bindemittel aus Trockenrupffestigkeit cm/s Naßrupffestigkeit Offsettest
    Beispiel 1 50 42,1 2,5
    Beispiel 2 51 41,7 3
    Beispiel 3 85 45,6 5
    Beispiel 4 86 47,2 5

    Claims (11)

    1. Papierstreichmassen, enthaltend als Bindemittel ein Copolymerisat, welches erhältlich ist durch radikalische Polymerisation von ethylenisch ungesättigten Verbindungen, dadurch gekennzeichnet, daß es sich bei mindestens einer der ethylenisch ungesättigten Verbindungen um ein Polymer mit mindestens einer copolymerisierbaren ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer genannt) handelt.
    2. Papierstreichmasse gemäß Anspruch 1, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer ein oder zwei copolymerisierbare ethylenisch ungesättigte Gruppen enthält.
    3. Papierstreichmasse gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei der oder den ethylenisch ungesättigten Gruppen des ethylenisch ungesättigten Polymeren um Acryl- oder Methacrylgruppen handelt.
    4. Papierstreichmasse gemäß Anspruch 1 oder 3, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer mehr als 2 Carbonsäuren enthält.
    5. Papierstreichmasse gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer aus radikalisch polymerisierbaren Verbingungen aufgebaut ist.
    6. Papierstreichmasse gemäß Anspruch 1 oder 5, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer durch radikalische Polymerisation in Gegenwart eines Übergangmetallkomplexes als Molekulargewichtsregler erhältlich ist.
    7. Papierstreichmasse gemäß Anspruch 1 oder 6, dadurch gekennzeichnet, daß das Copolymerisat aufgebaut ist aus
      a) 30 bis 99,9 Gew.-% sogenannter Hauptmonomere, ausgewählt aus C1 bis C20 Alkyl(meth)acrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, Vinylethern oder Alkylethern von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und 1 oder 2 Doppelbindungen oder Mischungen dieser Monomeren.
      b) 0,1 bis 30 Gew.-% des ethylenisch ungesättigten Polymeren.
      c) 0 bis 40 Gew.-% anderen ethylenisch ungesättigten Verbindungen.
    8. Verwendung eines Copolymerisats gemäß einem der Ansprüche 1 bis 7 als Bindemittel in Papierstreichmassen.
    9. Mit einer Papierstreichmasse gemäß einem der Ansprüche 1 bis 7 beschichtete Papiere.
    10. Verwendung von Papieren gemäß Anspruch 9 im Offset-Druckverfahren.
    11. Bedruckte Papiere erhältlich durch Verwendung gemäß Anspruch 10.
    EP01936144A 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren Expired - Lifetime EP1268931B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10015262 2000-03-28
    DE10015262A DE10015262A1 (de) 2000-03-28 2000-03-28 Papierstreichmassen, enthaltend Bindemittel mit Makromonomeren
    PCT/EP2001/003469 WO2001073199A1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren

    Publications (2)

    Publication Number Publication Date
    EP1268931A1 EP1268931A1 (de) 2003-01-02
    EP1268931B1 true EP1268931B1 (de) 2003-11-19

    Family

    ID=7636607

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01936144A Expired - Lifetime EP1268931B1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren

    Country Status (7)

    Country Link
    US (1) US6852423B2 (de)
    EP (1) EP1268931B1 (de)
    CN (1) CN1234937C (de)
    AT (1) ATE254691T1 (de)
    AU (1) AU2001262138A1 (de)
    DE (2) DE10015262A1 (de)
    WO (1) WO2001073199A1 (de)

    Families Citing this family (42)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
    US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
    US20040121309A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in blood, bodily fluids, and bodily tissues
    US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
    US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
    US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
    JP2006516193A (ja) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド ヒトおよび動物における病原体の迅速な同定方法
    US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
    US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
    US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
    US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
    US8394945B2 (en) 2003-09-11 2013-03-12 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
    US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
    US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
    DE102004003262A1 (de) * 2004-01-21 2005-08-11 Basf Ag Thermisch polymerisierbare Mischungen aus multifunktionellen Makromonomeren und Polymerisationsinitiatoren und ihre Verwendung als Bindemittel für Substrate
    US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
    CA2567839C (en) 2004-05-24 2011-06-28 Isis Pharmaceuticals, Inc. Mass spectrometry with selective ion filtration by digital thresholding
    US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
    US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
    CA2584919C (en) * 2004-11-12 2015-06-02 Basf Aktiengesellschaft Paper coating slip based on pigment-polymer hybrids
    CA2600184A1 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
    US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
    CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
    EP2010679A2 (de) 2006-04-06 2009-01-07 Ibis Biosciences, Inc. Zusammensetzungen für die identifizierung von pilzen
    EP2064332B1 (de) 2006-09-14 2012-07-18 Ibis Biosciences, Inc. Gezielte gesamtgenomamplifizierung zur identifizierung von krankheitserregern
    WO2008104002A2 (en) 2007-02-23 2008-08-28 Ibis Biosciences, Inc. Methods for rapid forensic dna analysis
    US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
    EP2242136A4 (de) * 2008-01-29 2011-12-28 Tokuyama Corp Membran für eine brennstoffzelle und prozess zu ihrer herstellung
    WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
    US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
    US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
    WO2010093943A1 (en) 2009-02-12 2010-08-19 Ibis Biosciences, Inc. Ionization probe assemblies
    WO2010104798A1 (en) 2009-03-08 2010-09-16 Ibis Biosciences, Inc. Bioagent detection methods
    US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
    EP2454000A4 (de) 2009-07-17 2016-08-10 Ibis Biosciences Inc Systeme zur identifizierung von biowirkstoffen
    US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
    WO2011014811A1 (en) 2009-07-31 2011-02-03 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
    WO2011017656A2 (en) 2009-08-06 2011-02-10 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
    EP2488656B1 (de) 2009-10-15 2015-06-03 Ibis Biosciences, Inc. Mehrfache verschiebungsverstärkung
    US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
    JP6367200B2 (ja) 2012-09-28 2018-08-01 ローム アンド ハース カンパニーRohm And Haas Company 水性ポリマーグラフト化ラテックス
    EP3075904B1 (de) * 2015-03-31 2017-11-08 BillerudKorsnäs AB Substrat mit dehnbarer beschichtung

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3105779A1 (de) 1981-02-17 1982-09-02 Bayer Ag, 5090 Leverkusen Waessrige dispersionen, ihre herstellung und verwendung
    FR2523984A1 (fr) 1982-03-24 1983-09-30 Rhone Poulenc Spec Chim Emulsions aqueuses d'interpolymere, procede pour les preparer et utilisations notamment comme liants pour le couchage du papier
    US5087603A (en) 1987-12-14 1992-02-11 Nippon Shokubai Co., Ltd. Heat-sensitive recording paper having an overcoat layer formed from an aqueous crosslinkable resin dispersion
    GB9316221D0 (en) 1993-08-05 1993-09-22 Zeneca Ltd Production of polymer emulsions
    DE4442729A1 (de) 1994-12-01 1996-06-05 Basf Ag Alkenylnitril enthaltende Bindemittel für Papierstreichmassen
    FR2729150A1 (fr) 1995-01-06 1996-07-12 Rhone Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes a structure "coeur/ecorce"
    DE19522399A1 (de) 1995-06-21 1997-01-02 Basf Ag Verwendung von Papierstreichmassen mit hohem Butadiengehalt im Offsetdruck

    Also Published As

    Publication number Publication date
    CN1234937C (zh) 2006-01-04
    ATE254691T1 (de) 2003-12-15
    CN1419620A (zh) 2003-05-21
    DE50101000D1 (de) 2003-12-24
    AU2001262138A1 (en) 2001-10-08
    WO2001073199A1 (de) 2001-10-04
    DE10015262A1 (de) 2001-10-04
    US6852423B2 (en) 2005-02-08
    EP1268931A1 (de) 2003-01-02
    US20030068478A1 (en) 2003-04-10

    Similar Documents

    Publication Publication Date Title
    EP1268931B1 (de) Papierstreichmassen, enthaltend bindemittel mit makromonomeren
    EP1191044A2 (de) Verfahren zur Herstellung wässriger Styrol-Butadien-Polymerdispersionen
    EP2102247A1 (de) Herstellung von polymerdispersionen in gegenwart von anorganischen polymerteilchen
    EP0724663B1 (de) Verwendung von mit bestimmten bindemittelmischungen beschichtetem papier für den offsetdruck
    DE2123857A1 (de) Bindemittel für Zusammensetzungen zum Beschichten oder Imprägnieren von Cellulosematerialien
    EP0742857B1 (de) Verwendung von mit bestimmten papierstreichmassen gestrichenen papieren im offsetdruck
    EP1415039B1 (de) Papierstreichmassen für das gussstrichverfahren
    WO2007082819A1 (de) Verwendung einer wässrigen polymerzusammensetzung zum imprägnieren von roh-papier
    EP1434806B1 (de) Verfahren zur herstellung wässriger styrol-butadien-polymerdispersionen
    WO2007033929A1 (de) Blister-arme papierstreichmassen
    EP0819708B1 (de) Stabile, wässrige Dispersionen von Copolymerisaten auf Basis von konjugierten, aliphatischen Dienen und vinylaromatischen Verbindungen
    EP0714922B1 (de) Alkenylnitril enthaltende Bindemittel für Papierstreichmassen
    EP0952161B2 (de) Emulgatorgemisch für die Emulsionspolymerisation
    EP0991681B1 (de) Papierstreichmassen auf basis von bindemitteln mit n-vinylformamidderivaten
    EP0833752B1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im offsetdruck
    EP0833983A1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im tiefdruck
    DE10126266A1 (de) Emulgatorgemisch für die Emulsionspolymerisation
    DE102005045444A1 (de) Papierstreichmassen mit Terpinolen-haltigem Bindemittel für Vorhangstreichverfahren
    DE19810051A1 (de) Füllbare, weichmacherhaltige wässrige Polymerdispersionen und deren Verwendung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020816

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: SCHAEDLER, VOLKER

    Inventor name: ETTL, ROLAND

    Inventor name: CHRISTIE, DAVID

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031119

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031119

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031119

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031119

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50101000

    Country of ref document: DE

    Date of ref document: 20031224

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031224

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040219

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040302

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040327

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040327

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20031119

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    BERE Be: lapsed

    Owner name: *BASF A.G.

    Effective date: 20040331

    RIN2 Information on inventor provided after grant (corrected)

    Inventor name: ETTL, ROLAND

    Inventor name: CHRISTIE, DAVID

    Inventor name: SCHAEDLER, VOLKER

    26N No opposition filed

    Effective date: 20040820

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040419

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20080314

    Year of fee payment: 8

    Ref country code: IT

    Payment date: 20080322

    Year of fee payment: 8

    Ref country code: SE

    Payment date: 20080306

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080407

    Year of fee payment: 8

    Ref country code: FR

    Payment date: 20080311

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080402

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090327

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090327

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20091130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090327

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091123

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090327

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090328