WO2001073199A1 - Papierstreichmassen, enthaltend bindemittel mit makromonomeren - Google Patents

Papierstreichmassen, enthaltend bindemittel mit makromonomeren Download PDF

Info

Publication number
WO2001073199A1
WO2001073199A1 PCT/EP2001/003469 EP0103469W WO0173199A1 WO 2001073199 A1 WO2001073199 A1 WO 2001073199A1 EP 0103469 W EP0103469 W EP 0103469W WO 0173199 A1 WO0173199 A1 WO 0173199A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylenically unsaturated
paper coating
weight
polymer
coating slip
Prior art date
Application number
PCT/EP2001/003469
Other languages
English (en)
French (fr)
Inventor
Volker Schädler
David Christie
Roland Ettl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE50101000T priority Critical patent/DE50101000D1/de
Priority to AT01936144T priority patent/ATE254691T1/de
Priority to EP01936144A priority patent/EP1268931B1/de
Priority to US10/240,267 priority patent/US6852423B2/en
Priority to AU2001262138A priority patent/AU2001262138A1/en
Publication of WO2001073199A1 publication Critical patent/WO2001073199A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/58Polymers or oligomers of diolefins, aromatic vinyl monomers or unsaturated acids or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • Y10T428/31902Monoethylenically unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer

Definitions

  • the invention relates to paper coating slips containing a copolymer as a binder, which is obtainable by radical polymerization of ethylenically unsaturated compounds, characterized in that at least one of the ethylenically unsaturated compounds is a polymer with at least one copolymerizable ethylenically unsaturated group, a number average molecular weight of 500 to 50,000 g / mol and at least one carboxylic acid group (hereinafter referred to as ethylenically unsaturated polymer).
  • Paper coating slips essentially consist of pigment and binder.
  • the binder is intended to fix the pigments on the paper and to ensure cohesion in the coating obtained.
  • pick resistance When printing e.g. in an offset printing machine, because of the high viscosity of the printing ink, strong tensile forces act on the coated paper (paper coating). The resistance that the paper coating provides to these forces is called pick resistance. A distinction is made between dry pick resistance and wet pick resistance. The wet pick resistance is particularly important in aqueous offset printing, since in the second printing unit you will find printing ink on water-moist paper and the paper coating must have sufficient binding power under these conditions.
  • the polymers generally contain acid groups. Such polymers are e.g. described in WO 97/00776.
  • Emulsion polymers which have ethylenically unsaturated polymers with several acid groups as structural components are the subject of WO 95/04767.
  • the object of the present invention was therefore paper coating slips with improved pick resistance. Accordingly, the paper coating slips defined at the outset were found.
  • the paper coating slip according to the invention contains the copolymer defined at the beginning as a binder.
  • the copolymer can be obtained by radical polymerization, preferably by emulsion polymerization of copolymerizable, ethylenically unsaturated compounds.
  • At least one of the ethylenically unsaturated compound is a polymer with at least one copolymerizable, ethylenically unsaturated group, a number average molecular weight of 500 to 50,000 g / mol and at least one carboxylic acid group (hereinafter referred to as ethylenically unsaturated polymer).
  • the content of ethylenically unsaturated groups and carboxylic acid groups relates to the content per polymer chain.
  • the ethylenically unsaturated polymer preferably contains one or two, particularly preferably an ethylenically unsaturated, group.
  • the or one (if more than one) ethylenically unsaturated group is particularly preferably in the terminal position in the respective polymer chain.
  • the ethylenically unsaturated group is an acrylic or methacrylic group, preferably a methacrylic group.
  • the ethylenically unsaturated polymer preferably contains more than 2, particularly preferably more than 4, very particularly preferably more than 8 carboxylic acid groups.
  • the ethylenically unsaturated polymer is preferably composed of compounds which can be polymerized by free radicals and is obtainable accordingly by free-radical polymerization of these compounds.
  • the ethylenically unsaturated polymer preferably consists of at least 50% by weight, particularly preferably 80% by weight, of -C-C 0 alkyl (meth) acrylates, (meth) acrylic acid and mixtures thereof.
  • the ethylenically unsaturated polymer very particularly preferably consists of at least 50% by weight, in particular at least 80% by weight, of acrylic acid or methacrylic acid. Methacrylic acid is preferred.
  • the average molecular weight Mn of the ethylenically unsaturated polymer is preferably 800 to 20,000, particularly preferably 1,000 to 10,000 g / mol. Mn is determined by gel permeation chromatography (polyacrylic acid standard and water as eluent).
  • the ethylenically unsaturated polymer is preferably produced by radical polymerization in the presence of a
  • Transition metal complex as a molecular weight regulator, e.g. of a cobalt chelate complex. This process is known as catalytic chain transfer polymerization (CCT) and is e.g. in WO 95/04767 and the documents cited in this document.
  • CCT catalytic chain transfer polymerization
  • the copolymer preferably consists of at least 0.1, particularly preferably at least 0.3, very particularly preferably at least 1% by weight, in particular also at least 2% by weight, of the ethylenically unsaturated polymer. A content of 30% by weight, in particular 20% by weight and particularly preferably 15% by weight, is generally not exceeded.
  • the copolymer is preferably composed entirely of
  • main monomers selected from Ci to C 2 o alkyl (eth) acrylates, vinyl esters of carboxylic acids containing up to 20 C atoms, vinyl aromatics with up to 20 C atoms, ethylenically unsaturated nitriles , Vinyl halides, vinyl ethers or allyl ethers from 1 to 10 C-
  • Alcohol-containing atoms aliphatic hydrocarbons with 2 to 8 carbon atoms and 1 or 2 double bonds or mixtures of these monomers
  • the copolymer is preferably composed entirely of
  • the copolymer is very particularly preferably composed of
  • the main monomers are z.
  • Vinyl esters of carboxylic acids with 1 to 20 carbon atoms are, for. B.
  • Vinyl laurate, stearate, vinyl propionate, vinyl versatic acid and vinyl acetate Vinyl laurate, stearate, vinyl propionate, vinyl versatic acid and vinyl acetate.
  • Suitable vinylaromatic compounds are vinyltoluene- and p-methylstyrene, ⁇ -butylstyrene, 4-n-butylstyrene, 4 -n-decylstyrene and preferably styrene.
  • Examples of nitriles are
  • the vinyl halides are chlorine, fluorine or bromine-substituted ethylenically unsaturated compounds, preferably vinyl chloride and
  • vinyl ethers examples include B. vinyl methyl ether or vinyl isobutyl ether. Vinyl ethers of alcohols containing 1 to 4 carbon atoms are preferred.
  • hydrocarbons with 2 to 8 carbon atoms and one or two olefinic double bonds butadiene, isoprene and chloroprene, ethylene and propylene may be mentioned.
  • the main monomers are the C 1 to C 10 alkyl acrylates and methacrylates, in particular C 1 to C 8 alkyl acrylates and methacrylates, the acrylates being particularly preferred in each case.
  • Methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate and mixtures of these monomers are very particularly preferred.
  • the copolymer is preferably an acrylate-based copolymer, ie the copolymer consists of at least 60% by weight of C .--C o alkyl (meth) acrylates or mixtures thereof with vinyl aromatics.
  • a copolymer based on butadiene is also preferred, ie the copolymer is composed of at least 60% by weight of butadiene or. their mixtures with vinyl aromatics.
  • the polymer may contain other ethylenically unsaturated compounds, e.g. B. monomers with carboxylic acid, sulfonic acid or phosphonic acid groups.
  • Carboxylic acid groups are preferred. May be mentioned for. As acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • Monomers containing hydroxyl groups may also be mentioned, in particular C 1 -C 8 -hydroxyalkyl (meth) acrylates or (meth) acrylamide.
  • ethylenically unsaturated compounds are also phenyloxyethyl glycol mono- (meth) acrylate, glydidyl acrylate, glycidyl ethacrylate, amino (meth) acrylates such as 2-aminoethyl (meth) acrylate.
  • the glass transition temperature of the polymer is preferably below 50 ° C, in particular it is -40 to + 50 ° C, particularly preferably -20 to + 30 ° C and very particularly preferably -10 to + 25 ° C and in particular -5 to + 20 ° C.
  • the glass transition temperature of the polymer can be determined by conventional methods such as differential thermal analysis or differential scanning calorimetry (see e.g. ASTM 3418/82, so-called "midpoint te perature").
  • the copolymer is preferably prepared by emulsion polymerization, and is therefore an emulsion copolymer.
  • the manufacture can e.g. B. also by solution polymerization and subsequent dispersion in water.
  • ionic and / or nonionic emulsifiers and / or protective colloids or stabilizers are used as surface-active compounds.
  • Suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 411 to 420. Both anionic and cationic come as emulsifiers as well as nonionic emulsifiers. Preferably, only accompanying emulsifiers are used as accompanying surface-active substances, the molecular weight of which is The difference to the protective colloids is usually less than 2000 g / mol. Of course, if mixtures of surface-active substances are used, the individual components must be compatible with one another, which can be checked with a few preliminary tests if in doubt.
  • Anionic and nonionic emulsifiers are preferably used as surface-active substances.
  • Common accompanying emulsifiers are e.g. B. ethoxylated fatty alcohols (EO degree: 3 to 50, alkyl radical: Ca "to C 36 ), ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 - to C 9 ) , Alkali metal salts of dialkyl esters of sulfosuccinic acid and alkali and ammonium salts of alkyl sulfates (alkyl radical: C 8 - to C ⁇ 2 ), of ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C ⁇ 2 - to Cia), of ethoxylated alkylphenols (EO grade: 3 to 50, alkyl radical: C - to C 9 ), of alkyl sulfonic acids (alkyl radical
  • Suitable emulsifiers are compounds of the general formula II
  • R 5 and R 6 are hydrogen or C - to C 14 alkyl and are not simultaneously hydrogen, and C and Y can be alkali metal ions and / or ammonium ions.
  • R 5 , R 6 are preferably linear or branched alkyl radicals having 6 to 18 carbon atoms or hydrogen and in particular having 6, 12 and 16 carbon atoms, where R 5 and R 6 are not both hydrogen at the same time.
  • X and Y are preferably sodium, potassium or ammonium ions, with sodium being particularly preferred.
  • Compounds II in which X and Y are sodium, R 5 is a branched alkyl radical having 12 C atoms and R 6 is hydrogen or R 5 are particularly advantageous.
  • Technical mixtures are frequently used which have a proportion of 50 to 90% by weight of the monoalkylated product, for example Dowfax® 2A1 (trademark of the Dow Chemical Company).
  • Suitable emulsifiers can also be found in Houben-Weyl, Methods of Organic Chemistry, Volume 14/1, Macromolecular Substances, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • Trade names of emulsifiers are e.g. B. Dowfax®2 AI, Emulan® NP 50, Dextrol® OC 5 ' 0, Emulsifier 825, Emulsifier 825 S, Emulan® OG, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Dis - ponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25.
  • the surface-active substance is usually used in amounts of 0.1 to 10% by weight, based on the monomers to be polymerized.
  • Water-soluble initiators for emulsion polymerization are e.g. B. ammonium and alkali metal salts of peroxidic sulfuric acid, e.g. As sodium peroxodisulfate, hydrogen peroxide or organic peroxides, e.g. B. tert-butyl hydroperoxide.
  • B. ammonium and alkali metal salts of peroxidic sulfuric acid e.g. As sodium peroxodisulfate, hydrogen peroxide or organic peroxides, e.g. B. tert-butyl hydroperoxide.
  • red-ox reduction-oxidation
  • the redox initiator systems consist of at least one mostly inorganic reducing agent and one inorganic or organic oxidizing agent.
  • the oxidation component is e.g. B. the initiators for emulsion polymerization mentioned above.
  • the reduction components are e.g. B. to alkali metal salts of sulfurous acid, such as. B. sodium sulfite, sodium bisulfite, alkali metal salts of disulfuric acid such as sodium disulfite, bisulfite addition compounds aliphatic aldehydes and ketones such as acetone bisulfite or reducing agents such as hydroxymethanesulfinic acid and its salts, or ascorbic acid.
  • the Red-Ox initiator systems can be used with the use of soluble metal compounds, the metallic component of which can occur in several valence levels.
  • Common Red Ox initiator systems are e.g. B. ascorbic acid / iron (II) sulfate / sodium peroxydisulfate, tert-butyl hydroperoxide / sodium disulfite, tert-butyl hydroperoxide / Na hydroxymethanesulfinic acid.
  • the individual components, e.g. B. the reduction component can also be mixtures e.g. a mixture of the sodium salt of hydroxymethanesulfinic acid and sodium disulfite.
  • the compounds mentioned are mostly used in the form of aqueous solutions, the lower concentration being determined by the amount of water acceptable in the dispersion and the upper concentration being determined by the solubility of the compound in question in water.
  • the concentration is generally 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 1.0 to 10% by weight, based on the solution.
  • the amount of initiators is generally 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the monomers to be polymerized. Several different initiators can also be used in emulsion polymerization.
  • Regulators can be used in the polymerization, e.g. B. in amounts of 0 to 0.8 parts by weight, based on 100 parts by weight of the monomers to be polymerized, by which the molecular weight is reduced. Are suitable for.
  • B. Compounds with a thiol group such as tert. -Butylmercaptan, thioglycolic acid ethyl acrylate, mercaptoethynol, mercaptopropyltrimethoxysilane or tert. -Dodecylmercapant.
  • the emulsion polymerization is usually carried out at 30 to 130, preferably 50 to 95 ° C.
  • the polymerization medium can consist only of water, as well as mixtures of water and thus miscible liquids such as methanol. Preferably only water is used.
  • the emulsion polymerization can be carried out either as a batch process or in the form of a feed process, including a step or gradient procedure.
  • the feed process is preferred, in which part of the polymerization batch is initially charged, heated to the polymerization temperature, polymerized and then the rest of the polymerization batch, usually via a plurality of spatially separate feeds, one or more of which contain the monomers in pure or in emulsified form , continuously, stepwise or by superimposing a concentration gradient while maintaining the polymerization of the polymerization zone.
  • a polymer seed In the polymerization z. B. to better adjust the particle size, a polymer seed.
  • the manner in which the initiator is added to the polymerization vessel in the course of the free-radical aqueous emulsion polymerization is known to the person skilled in the art. It can either be completely introduced into the polymerization vessel or used continuously or in stages in the course of the free radical aqueous emulsion polymerization, depending on its consumer. In detail, this depends on the chemical nature of the initiator system as well as on the polymerisation temperature. A portion is preferably introduced and the remainder is fed to the polymerization zone in accordance with the consumption. To remove the residual monomers, initiator is usually also added after the end of the actual emulsion polymerization, ie after a conversion of the monomers of at least 95%.
  • the individual components can be added to the reactor in the feed process from above, in the side or from below through the reactor floor.
  • aqueous dispersions of the polymer are generally obtained with solids contents of from 15 to 75% by weight, preferably from 40 to 75% by weight.
  • dispersions with the highest possible solids content are preferred.
  • solids contents of> 60% by weight one should set a bimodal or polymodal particle size, since otherwise the viscosity becomes too high and the dispersion can no longer be handled.
  • a new generation of particles can be generated, for example, by adding seeds (EP 81083), by adding excess amounts of emulsifier or by adding mini-emulsions.
  • Another advantage associated with the low viscosity at high solids content is the improved coating behavior at high solids contents.
  • a new / new generation of particles can be generated at any time. It depends on the particle size distribution desired for a low viscosity.
  • the copolymer is preferably used in the form of its aqueous dispersion.
  • the paper coating slips according to the invention contain the copolymer as a binder, preferably in amounts of 1 to 50, in particular 5 to 20 wt.
  • pigments are usually the main component of the paper coating slips.
  • pigments are, for example, barium sulfate, calcium carbonate, calcium sulfoaluminate, kaolin, talc, titanium dioxide, zinc oxide, chalk or coating clay or organic pigments, eg. B. Particulate plastics.
  • the paper coating slips can contain other additives.
  • the paper coating slips can contain, for example, dispersants. Suitable dispersants are polyanions, for example of polyphosphoric acids or of polyacrylic acids (polysalts), which are usually present in amounts of 0.1 to 3% by weight, based on the amount of pigment.
  • the paper coating slips can also contain so-called "co-binders".
  • cobinders examples include Starch, casein, gelatin, alginates and soy proteins, mentioned as modified natural products hydroxyethyl cellulose, methyl cellulose and carboxymethyl cellulose and cationically modified starch.
  • conventional synthetic cobinders e.g. based on vinyl acetate or acrylate.
  • These can e.g. in amounts of 0.1 to 10% by weight, based on the amount of pigment.
  • the constituents are mixed in a known manner, the polymer generally being used in the form of an aqueous dispersion, suspension or solution.
  • the water content in the paper coating slip is usually set to 25 to 75% by weight, based on the total paper coating slip (including water).
  • the paper coating slip can be applied to the papers to be coated by customary methods (cf. Ulimann's Encyclopedia of Technical Chemistry, 4th edition, vol. 17, pp. 603 ff).
  • the papers coated with the paper coating slips according to the invention have a high dry and wet pick resistance (adhesion of the paper coating slip). This makes them particularly suitable for offset printing, in which high tensile forces are exerted by the printing ink on the coated paper.
  • the papers coated with the paper coating slips according to the invention show good printability.
  • the papers are also particularly suitable for offset printing processes. Examples
  • the template was heated to 85 ° C. and polymerized for 15 minutes. Then the monomer emulsion was metered in over 2 hours and the initiator (1% by weight solution of 6.29 g of sodium peroxodisulfate in H0) was metered in over 2.5 hours. The mixture was then polymerized for a further 1 hour and cooled.
  • the preparation corresponded to Example 1, but only 12 g of acrylic acid and additionally 12 g of PMS were used.
  • the preparation corresponded to Example 1, but only 6 g of acrylic acid and an additional 18 g of PMS were used.
  • the preparation corresponded to Example 1, but no acrylic acid and instead 24 g of PMS were used.
  • composition of the copolymers in% by weight is given in Table 1.
  • a paper coating slip was prepared by stirring the following components.
  • CMC 7L2T carboxymethyl cellulose
  • the solids content was adjusted to 65% by weight with water.
  • a wood-free coating base paper with a basis weight of 70 g / m 2 was used as the base paper.
  • the paper coating slip was applied on one side at 10 g / m 2 on a laboratory coating machine. Drying was carried out using an IR radiator. Before the application tests, the papers passed four times through a laboratory calender (a pair of rollers, line pressure: 2000 N / cm).
  • Strips in the size of 33 x 3 cm were cut lengthwise from the papers to be tested and these strips were stored for 15 hours at 27 ° C. with a relative atmospheric humidity of 50 in the climatic room.
  • the strips were then printed in a printing unit (IGT printability tester AC2 / AIC2) with a standard color (printing ink 3808 from Lorilleux-Lefranc).
  • the test strips are performed with continuously increasing speed (maximum 'rate 200 cm / sec) through the printing unit. As a measure of the dry pick resistance, the speed is given in cm / sec, at which 10 tears from the paper coating slip (pick points) occurred after the start of printing.
  • test strips were produced and prepared as described above.
  • the printing unit (IGT printability tester AC2 / AIC2) was set up so that the test strips are moistened with water before the printing process.
  • Printing was carried out at a constant speed of 0.6 cm / s.
  • the papers to be tested are turned into samples with a size of
  • a corresponding amount of the printing ink is placed on the inking roller and run for 1 min. Then a pressure disc is inserted and colored for 30 s.
  • the printing speed is 1 m / s.
  • a paper strip is brought back to the starting position on a print sample carrier with the printed paper strip. After a specified period of time, the printing process is started again without replacing the printing disc. This process is repeated several times.
  • the picking on the printed side of the paper strip is checked visually. The number of passes is indicated until the first picking occurs. If the picking is very strong, the last pass is only started as half give (eg strong plucking after the 3rd pass is given as 2.5).

Abstract

Papierstreichmassen, enthaltend als Bindemittel ein Copolymerisat, welches erhältlich ist durch radikalische Polymerisation von ethylenisch ungesättigten Verbindungen, dadurch gekennzeichnet, daß es sich bei mindestens einer der ethylenisch ungesättigten Verbindungen um ein Polymer mit mindestens einer copolymerisierbaren ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer genannt) handelt.

Description

I
Papierstreichmassen, enthaltend Bindemittel mit Makromonomeren
Beschreibung
Die Erfindung betrifft Papierstreichmassen, enthaltend als Bindemittel ein Copolymerisat, welches erhältlich ist durch radikalische Polymerisation von ethylenisch ungesättigten Verbindungen, dadurch gekennzeichnet, daß es sich bei mindestens einer der ethylenisch ungesättigten Verbindungen um ein Polymer mit mindestens einer copolymerisierbaren ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer genannt) handelt.
Papierstreichmassen bestehen im wesentlichen aus Pigment und Bindemittel. Durch das Bindemittel sollen die Pigmente auf dem Papier fixiert und der Zusammenhalt in der erhaltenen Beschichtung gewährleistet werden.
Beim Druckvorgang z.B. in einer Offsetdruckmaschine, wirken wegen der hohen Viskosität der Druckfarbe starke Zugkräfte auf das beschichtete Papier (Papierstrich) . Der Widerstand, den der Papier- strich gegen diese Kräfte leistet, wird als Rupffestigkeit bezeichnet. Man unterscheidet Trockenrupffestigkeit und Naßrupffe- stigkeit. Die Naßrupffestigkeit hat insbesondere beim wäßrigen Offsetdruck Bedeutung, da im zweiten Druckwerk dir Druckfarbe auf ein wasserfeuchtes Papier trifft, und der Papierstrich unter die- sen Bedingungen eine ausreichende Bindekraft aufweisen muß.
Zur Erhöhung der Rupffestigkeit enthalten die Polymere im allgemeinen Säuregruppen. Derartige Polymere sind z.B. in WO 97/00776 beschrieben.
Emulsionspolymerisate, welche ethylenisch ungesättigte Polymere mit mehreren Säuregruppen als Aufbaukomponenten aufweisen sind Gegenstand der WO 95/04767.
Bei bisher bekannten Papierstreichmassen ist die Bindekraft des Bindemittels und somit die Rupf estigkeit noch nicht ausreichend.
Aufgabe der vorliegenden Erfindung waren daher Papierstreic - massen mit einer verbesserten Rupffestigkeit. Demgemäß wurden die eingangs definierten Papierstreichmassen gefunden.
Die erfindungsgemäße Papierstreichmasse enthält als Bindemittel das eingangs definierte Copolymerisat .
Das Copolymerisat ist erhältlich durch radikalische Polymerisation, vorzugsweise durch Emulsionspolymerisation von copoly- merisierbaren, ethylenisch ungesättigten Verbindungen.
Bei mindestens einer der ethylenisch ungesättigten Verbindung handelt es sich um ein Polymer mit mindestens einer copoly- merisierbaren, ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäuregruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer) . Der Gehalt an ethylenisch ungesättigten Gruppen und Carbonsäuregruppen bezieht sich dabei auf den Gehalt je Polymerkette. Bevorzugt enthält das ethylenisch ungesättigte Polymer ein oder zwei, besonders bevorzugt eine ethylenisch unge- sättigte Gruppe. Die oder eine (falls mehrere vorhanden) ethylenisch ungesättigte Gruppe befindet sich besonders bevorzugt endständig in der jeweiligen Polymerkette. Insbesondere handelt es sich bei der ethylenisch ungesättigten Gruppe um eine Acryl - oder Methacrylgruppe, vorzugsweise um eine Methacrylgruppe.
Das ethylenisch ungesättigte Polymer enthält vorzugsweise mehr als 2, besonders bevorzugt mehr als 4, ganz besonders bevorzugt mehr als 8 Carbonsäuregruppen.
Das ethylenisch ungesättigte Polymer ist vorzugsweise aus radikalisch polymerisierbaren Verbindungen aufgebaut und entsprechend erhältlich durch radikalische Polymerisation dieser Verbindungen.
Vorzugsweise besteht das ethylenisch ungesättigte Polymer zu min- destens 50 Gew. -%, besonders bevorzugt zu 80 Gew. -% aus Cι-C0 Alkyl (meth)acrylaten, (Meth) acrylsäure und deren Mischungen.
Ganz besonders bevorzugt bestht das ethylenisch ungesättigte Polymer zu mindestens 50 Gew.-%, insbesondere mindestens 80 Gew. -% aus Acrylsäure oder Methacrylsäure. Bevorzugt ist Methacrylsäure.
Das mittlere Molgewicht Mn des ethylenisch ungesättigte Polymeren beträgt vorzugsweise 800 bis 20.000, besonders bevorzugt 1.000 bis 10.000 g/mol. Mn wird bestimmt durch Gelpermeationschromatographie (Polyacryl- säurestandard und- Wasser als Elutionsmittel) .
Das ethylenisch ungesättigte Polymer wird vorzugsweise herge- stellt durch radikalische Polymerisation in Gegenwart eines
Übergangsmetallkomplexes als Molekulargewichtsregler, z.B. eines Kobaltchelatkomplexes. Dieses Verfahren ist als catalytic chain transfer polymerization (CCT) bekannt und wird z.B. in der WO 95/04767 und den in dieser Schrift zitierten Dokumenten beschrie- ben.
Vorzugsweise besteht das Copolymerisat zu mindestens 0,1 besonders bevorzugt zu mindestens 0,3, ganz besonders bevorzugt zu mindestens 1 Gew. -%, insbesondere auch zu mindestens 2 Gew.-%, aus dem ethylenisch ungesättigten Polymeren. Ein Gehalt von 30 Gew.-%, insbesondere 20.Gew.-% und besonders bevorzugt 15 Gew. - wird im allgemeinen nicht überstiegen.
Das Copolymerisat ist vorzugsweise insgesamt aufgebaut aus
a) 30 bis 99,9 Gew.-% sogenannter Hauptmonomere, ausgewählt aus Ci bis C2o Alkyl ( eth) acrylaten, Vinylestern von bis zu 20 C- Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinyl- halogeniden, Vinylethern oder Allylethern von 1 bis 10 C-
Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und 1 oder 2 Doppelbindungen oder Mischungen dieser Monomeren
b) 0,1 bis 30 Gew.-% des ethylenisch ungesättigten Polymeren
c) 0 bis 40 Gew.-% anderen ethylenisch ungesättigten Verbindungen.
Das Copolymerisat ist vorzugsweise insgesamt aufgebaut aus
a) 50 bis 99,5 Gew. -% Hauptmonomere
b) 0,5 bis 20 Gew.-% ethylenisch ungesättigtes Polymer und
c) 0 bis 30 Gew.-% weitere Monomere.
Ganz besonders bevorzugt ist das Copolymerisat aufgebaut aus
a) 60 bis 99 Gew. -% Hauptmonomere b) 1 bis 20 Gew.-% ethylenisch ungesättigtes Polymer
c) 0 bis 20 Gew.-% weitere Monomere.
Als Hauptmonomere zu nennen sind z. B. (Meth) acrylsäurealkylesfcer mit einem Ci-Cio-Alkylrest, wie Methylmethacrylat, Methylacrylat, n-Butylacrylat, Ethylacrylat und 2-Ethylhexylacrylat .
Insbesondere sind auch Mischungen der (Meth) acrylsäurealkylester geeignet.
Vinylester von Carbonsäuren mit 1 bis 20 C -Atomen sind z. B.
Vinyllaurat, -stearat, Vinylpropionat, Versaticsäurevinylester und Vinylacetat.
Als vinylaromatische Verbindungen kommen Vinyltoluol - und p-Me- thylstyrol, α-Butylstyrol, 4 -n-Butylstyrol, 4 -n-Decylstyrol und vorzugsweise Styrol in Betracht. Beispiele für Nitrile sind
Acrylnitril und Methacrylnitril.
Die Vinylhalogenide sind mit Chlor, Fluor oder Brom substituierte ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlorid und
Vinylidenchlorid .
Als Vinylether zu nennen sind z. B. Vinylmethylether oder Vinyl- isobutylether . Bevorzugt wird Vinylether von 1 bis 4 C-Atome enthaltenden Alkoholen.
Als Kohlenwasserstoffe mit 2 bis 8 C-Atomen und ein oder zwei olefinischen Doppelbindungen seien Butadien, Isopren und Chloro- pren, Ethylen und Propylen genannt.
Als Hauptmonomere bevorzugt sind die Ci- bis Cio-Alkylacrylate und -methacrylate, insbesondere Ci- bis Ca-Alkylacrylate und -meth- acrylate, wobei die Acrylate jeweils besonders bevorzugt sind.
Ganz besonders bevorzugt sind Methylacrylat, Methylmethacrylat, Ethylacrylat, n-Butylacrylat, n-Hexylacrylat, Octylacrylat und 2-Etyhlhexylacrylat sowie Mischungen dieser Monomere.
Bevorzugt handelt es sich bei dem Copolymerisat um ein Copolymerisat auf Acrylatbasis, d.h. daß das Copolymerisat zu mindestens 60 Gew.-% aus Cχ-C o Alkyl (meth) acrylaten oder dessen Mischungen mit Vinylaromaten besteht. Bevorzugt ist ebenfalls ein Copolymerisat auf Butadienbasis, d.h. das das Copolymerisat zu mindestens 60 Gew.-% aus Butadien oder . deren Mischungen mit Vinylaromaten besteht.
Neben den Hauptmonomeren und dem ethylenisch ungesättigten Polymer kann das Polymer andere ethylenisch ungesättigte Verbindungen enthalten, z. B. Monomere mit Carbonsäure, Sulfonsäure oder Phosphonsäuregruppen. Bevorzugt sind Carbonsäuregruppen. Genannt seien z. B. Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fummarsäure.
Genannt seien auch Hydroxylgruppen enthaltende Monomere, insbesondere Cι-Cιo-Hydroxyalkyl (meth) acrylate oder (Meth) acrylamid.
Als andere ethylenisch ungesättigte Verbindungen kommen darüber- hinaus Phenyloxyethylglykolmono- (meth- ) acrylat, Glydidylacrylat, Glycidyl ethacrylat, A ino- (meth- ) acrylate wie 2 -Aminoethyl - (meth-) acrylat in Betracht.
Die Glasübergangstemperatur des Polymeren liegt bevorzugt unter 50°C, insbesondere beträgt sie -40 bis +50°C, besonders bevorzugt -20 bis +30°C und ganz besonders bevorzugt -10 bis +25°C und insbesondere -5 bis +20°C.
Die Glasüberganstemperatur des Polymerisats läßt sich nach üblichen Methoden wie Differentialthermoanalyse oder Differential Scanning Calorimetrie (s. z.B. ASTM 3418/82, sog. "midpoint te perature" ) bestimmen.
Die Herstellung des Copolymerisats erfolgt vorzugsweise durch 'Emulsionspolymerisation, es handelt sich daher um ein Emulsions- copolymerisat .
Die Herstellung kann jedoch z. B. auch durch Lösungspoly- merisation und anschließende Dispergierung in Wasser erfolgen.
Bei der Emulsionspolymerisation werden ionische und/oder nicht - ionische Emulgatoren und/oder Schutzkolloide bzw. Stabilisatoren als grenzflächenaktive Verbindungen verwendet.
Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, S. 411 bis 420. Als Emulgatoren kommen sowohl anionische, kat- ionische als auch nichtionische Emulgatoren in Betracht. Vorzugsweise werden als begleitende grenzflächenaktive Substanzen ausschließlich Emulgatoren eingesetzt, deren Molekulargewicht im Un- terschied zu den Schutzkolloiden üblicherweise unter 2000 g/mol liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Vorzugsweise werden anionische und nichtionische Emulgatoren als grenzflächenaktive Substanzen verwendet. Gebräuchliche begleitende Emulgatoren sind z. B. ethoxylierte Fettalkohole (EO-Grad: 3 bis 50, Alkylrest: Ca" bis C36) , ethoxylierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4- bis C9) , Alkalimetallsalze von Dialkyl- estern der Sulfobernsteinsäure sowie Alkali- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8- bis Cχ2) , von ethoxylierten Alkanolen (EO-Grad: 4 bis 30, Alkylrest: Cι2- bis Cia) , von ethoxylierten Alkylphenolen (EO-Grad: 3 bis 50, Alkylrest: C - bis C9) , von Alkylsulfonsäuren (Alkylrest: Cι - bis C8) und von Alkylarylsulfonsäuren (Alkylrest: C9- bis Cia) .
Weitere geeignete Emulgatoren sind Verbindungen der allgemeinen Formel II
Figure imgf000007_0001
worin R5 und R6 Wasserstoff oder C - bis C14-Alkyl bedeuten und nicht gleichzeitig Wasserstoff sind, und C und Y Alkalimetall- ionen und/oder Ammoniumionen sein können. Vorzugsweise bedeuten R5, R6 lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen oder Wasserstoff und insbesondere mit 6, 12 und 16 C-Atomen, wobei R5 und R6 nicht beide gleichzeitig Wasserstoff sind. X und Y sind bevorzugt Natrium, Kalium oder Ammoniumionen, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen II in denen X und Y Natrium, R5 ein verzweigter Alkylrest mit 12 C-Atomen und R6 Wasserstoff oder R5 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew. -% des monoalkylierten Produktes aufweisen, beispielsweise Dowfax® 2A1 (Warenzeichen der Dow Chemical Company) .
Geeignete Emulgatoren finden sich auch in Houben-Weyl, Methoden der organischen Chemie, Band 14/1, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961, Seiten 192 bis 208. Handelsnamen von Emulgatoren sind z. B. Dowfax®2 AI, Emulan® NP 50, Dextrol® OC 5'0, Emulgator 825, Emulgator 825 S, Emulan® OG, Texapon®NSO, Nekanil® 904 S, Lumiten® I-RA, Lumiten E 3065, Dis- ponil FES 77, Lutensol AT 18, Steinapol VSL, Emulphor NPS 25.
Die grenzflächenaktive Substanz wird üblicherweise in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die zu polymerisierenden Monomeren verwendet.
Wasserlösliche Initiatoren für die Emulsionspolymerisation sind z. B. Ammonium- und Alkalimetallsalze der Peroxidischwefelsäure, z. B. Natriumperoxodisulfat, Wasserstoffperoxid oder organische Peroxide, z. B. tert-Butylhydroperoxid.
Geeignet sich insbesondere sogenannte Reduktions-Oxida- tions (Red-Ox) -Initiator Systeme.
Die Red-Ox-Initiator-Systeme bestehen aus mindestens einem meist anorganischen Reduktionsmittel und einem anorganischen oder orga- nischen Oxidationsmittel.
Bei der Oxidationskomponente handelt es sich z. B. um die bereits vorstehend genannten Initiatoren für die Emulsionspolymerisation.
Bei der Reduktionskomponenten handelt es sich z. B. um Alkalimetallsalze der schwefligen Säure, wie z. B. Natriumsulfit, Natriumhydrogensulfit, Alkalisalze der Dischwefligen Säure wie Natriumdisulfit, Bisulfitadditionsverbindungen aliphatischer Aldehyde und Ketone, wie Acetonbisulfit oder Reduktionsmittel wie Hydroxymethansulfinsäure und deren Salze, oder Ascorbinsäure. Die Red-Ox-Initiator-Systeme können unter Mitverwendung löslicher Metallverbindungen, deren metallische Komponente in mehreren Wertigkeitsstufen auftreten kann, verwendet werden.
Übliche Red-Ox-Initiator-Systeme sind z. B. Ascorbinsäure/Ei- sen(II) sulfat/Natriumperoxidisulfat, tert-Butylhydroperoxid/Na- triumdisulfit, tert-Butylhydroperoxid/Na-Hydroxymethansulfinsäure. Die einzelnen Komponenten, z. B. die Reduktionskomponente, können auch Mischungen sein z.B. eine Mischung aus dem Natrium- salz der Hydroxymethansulfinsäure und Natriumdisulfit.
Die genannten Verbindungen werden meist in Form wäßriger Lösungen eingesetzt, wobei die untere Konzentration durch die in der Dispersion vertretbare Wassermenge und die obere Konzentration durch die Löslichkeit der betreffenden Verbindung in Wasser bestimmt ist. Im allgemeinen beträgt die Konzentration 0,1 bis 30 Gew.-%, bevorzugt 0,5 bis 20 Gew. -%, besonders bevorzugt 1,0 bis 10 Gew. -%, bezogen auf die Lösung.
Die Menge der Initiatoren beträgt im allgemeinen 0,1 bis 10 Gew. -%, bevorzugt 0,5 bis 5 Gew. -%, bezogen auf die zu polyme- risierenden Monomeren. Es können auch mehrere, verschiedene Initiatoren bei der Emulsionspolymerisation Verwendung finden.
Bei der Polymerisation können Regler eingesetzt werden, z. B. in Mengen von 0 bis 0,8 Gew. -Teile, bezogen auf 100 Gew. -Teile der zu polymerisierenden Monomeren, durch die die Molmasse verringert wird. Geeignet sind z. B. Verbindungen mit einer Thiolgruppe wie tert. -Butylmercaptan, Thioglycolsäureethylacrylester, Mercaptoe- thynol, Mercaptopropyltrimethoxysilan oder tert. -Dodecylmercap- tan.
Die Emulsionspolymerisation erfolgt in der Regel bei 30 bis 130, vorzugsweise 50 bis 95°C. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozeß als auch in Form eines Zulaufverfahrens, einschlie- ßich Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zülaufverfahren, bei dem man einen Teil des Po- lymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich getrennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Auf - rechterhaltung der Polymerisation der Polymerisationszone zuführt. Bei der Polymerisation kann auch z. B. zur besseren Einstellung der Teilchengröße eine Polymersaat vorgelegt werden.
Die Art und Weise, in der der Initiator im Verlauf der radikalischen wäßrigen Emulsionspolymerisation dem Polymerisationsg'efäß zugegeben wird, ist dem Durchschnittsfachmann bekannt. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchers im Verlauf der radika- lischen wäßrigen Emulsionspolymerisation kontinuierlich oder stufenweise eingesetzt werden. Im einzelnen hängt dies von der chemischen Natur des Initiatorsystems als auch von der Polymersiati- onstemperatur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zuge- führt. Zur Entfernung der Restmonomeren wird üblicherweise auch nach dem Ende der eigentlichen Emulsionspolymerisation, d. h. nach einem Umsatz der Monomeren von mindestens 95 %, Initiator zugesetzt.
Die einzelnen Komponenten können dem Reaktor beim Zulaufverfahren von oben, in der Seite oder von unten durch den Reaktorboden zugegeben werden.
Bei der Emulsionspolymerisation werden wäßrige Dispersionen des Polymeren in der Regel mit Feststoffgehalten von 15 bis 75 Gew. -%, bevorzugt von 40 bis 75 Gew. -% erhalten.
Für eine hohe Raum/Zeitausbeute des Reaktors sind Dispersionen mit einem möglichst hohen Feststoffgehalt bevorzugt. Um Fest- stoffgehalte > 60 Gew. -% erreichen zu können, sollte man eine bi- oder polymodale Teilchengröße einstellen, da sonst die Viskosität zu hoch wird, und die Dispersion nicht mehr handhabbar ist. Die Erzeugung einer neuen Teilchengeneration kann beispielsweise durch Zusatz von Saat (EP 81083), durch Zugabe überschüssiger Emulgatormengen oder durch Zugabe von Miniemulsionen erfolgen. Ein weiterer Vorteil, der mit der niedrigen Viskosität bei hohem Feststoffgehalt einhergeht, ist das verbesserte Beschichtungsver- halten bei hohen Feststoffgehalten. Die Erzeugung einer neuen/ neuer Teilchengeneration/en kann zu einem beliebigen Zeitpunkt erfolgen. Er richtet sich nach den für eine niedrige Viskosität angestrebten Teilchengrößenverteilung .
Das Copolymerisat wird vorzugsweise in Form seiner wäßrigen Dispersion verwendet.
Die erfindungsgemäße Papierstreichmassen enthalten das Copolymerisat, als Bindemittel, vorzugsweise in Mengen von 1 bis 50, insbesondere 5 bis 20 Gew.-%, bezogen auf den Pigmentgehalt der Papierstreichmassen (Angabe bezieht sich auf das Copolymerisat als solches, d. h. fest, ohne Lösemittel).
Üblicherweise stellen Pigmente neben dem Bindemittel die Haupt- komponente der Papierstreichmassen dar. Häufig verwendete Pigmente sind beispielsweise Bariumsulfat, Calciumcarbonat, Calcium- sulfoaluminat, Kaolin, Talkum, Titandioxid, Zinkoxid, Kreide oder Streichclay oder organische Pigmente, z. B. Kunststoffe in Teilchenform.
Neben dem Bindemittel und den Pigmenten können die Papierstreich- massen weitere Zusatzstoffe enthalten. Die Papierstreichmassen können z.B. Dispergiermittel enthalten. Geeignete Dispergiermittel sind Polyanionen, beispielsweise von Polyphosphorsäuren oder von Polyacrylsäuren (Polysalze) , welche üblicherweise in Mengen von 0,1 bis 3 Gew. -%, bezogen auf die Pigmentmenge, enthalten sind.
Außerdem können die Papierstreichmassen sogenannte "Co-Binder" enthalten. Als natürliche Cobinder seien z.B. Stärke, Kasein, Gelatine, Alginate und Sojaproteine, als modifizierte Naturprodukte Hydroxyethylcellulose, Methylcellulose und Carboxymethylcellulose sowie kationisch modifizierte Stärke erwähnt. Es können aber auch übliche synthetische Cobinder, z.B. auf Vinylacetat- oder Acrylatbasis, verwendet werden.
Diese können z.B. in Mengen von 0,1 bis 10 Gew. -%, bezogen auf die Pigmentmenge- enthalten sein.
Zur Herstellung der Papierstreichmasse werden die Bestandteile in bekannter Weise gemischt, wobei das Polymere im allgemeinen in Form einer wäßrigen Dispersion, Suspension oder Lösung verwendet wird.
Der Gehalt an Wasser in der Papierstreichmasse wird üblicherweise auf 25 bis 75 Gew. -%, bezogen auf die gesamte Papierstreichmasse (inclusive Wasser) , eingestellt.
Die Papierstreichmasse kann nach üblichen Verfahren auf die zu beschichtenden Papiere aufgebracht werden (vgl. Ulimann' s Encyclopädie der Technischen Chemie, 4. Auflage, Bd. 17, S. 603 ff) .
Die mit den erfindungsgemäßen Papierstreichmassen beschichteten Papiere weisen eine hohe Trocken- und Naßrupffestigkeit (Haftung der Papierstreichmasse) auf. Dadurch sind sie besonders für den Offsetdruck geeignet, bei dem hohe Zugkräfte durch die Druckfarbe das beschichtete Papier beanspruchen.
Die mit den erfindungsgemäßen Papierstreichmassen beschichteten Papiere zeigen eine gute Bedruckbarkeit. Die Papiere sind ins- besondere auch für Offsetdruckverfahren geeignet. Beispiele
I. Herstellung der Polymethacrylsäure, kurz PMS (ethylenisch ungesättigtes Polymer)
Figure imgf000012_0001
CoBf : F F
B O" ^0
Figure imgf000012_0002
Vorlage: 17,5 mg CoBF
0,75 g VA 044
450,00 g VE -Wasser
Zulauf 1: 190,00 g Methacrylsäure 9, 00 mg CoBF
Fahrweise: VE -Wasser wurde zum Sieden erhitzt und mit N2 be- gast. Zulauf 1 wurde ebenfalls mit N2 begast. Die Apparatur wurde 5x mit N abgepresst und evakuiert. Die Vorlage wurde in die Apparatur eingesaugt, wobei keine Luft mit eingesaugt werden darf. Es wurde auf 55°C aufgeheizt, dann mit Zulauf 1 begonnen. Die Handhabung des Zulaufgefäßes entsprach der Vorlage. Zulauf 1 wurde in 1,5 Std. langsam zuge- tropft, 1,5 Std. nachpolymerisiert, dann abgekühlt.
Analysedaten
Figure imgf000012_0003
FG* : Festgehält, ** Standard: Polyacrylsäure
Elutionsmittel: H20
Herstellung der Polymerdispersion
Die Vorlage wurde auf 85°C aufgeheizt und 15 Minuten polymerisiert. Dann wurde die Monomeremulsion über 2 Stunden und der Initiator (1 gew. -%ige Lösung von 6,29 g Natrium- peroxodisulfat in H0) über 2,5 Stunden zudosiert. Danach wurde noch 1 Stunde nachpolymerisiert und abgekühlt.
Beispiel 1 (zum Vergleich)
Vorlage: 18 g Saatlatex (Polystyrolsaat, 30 n )
457 g Wasser 5 Gew. -% der nachstehenden Monomeremulsion
Monomeremulsion: 330 g n-Butylacrylat 270 g Styrol
24 g Acrylsäure
6,7 g Domfax 2 AI (45 %ig in H0)
564 g Wasser
Beispiel 2
Die Herstellung entsprach Beispiel 1, jedoch wurden nur 12 g Acrylsäure und zusätzlich 12 g PMS verwendet.
Beispiel 3
Die Herstellung entsprach Beispiel 1, jedoch wurden nur 6 g Acrylsäure und zusätzlich 18 g PMS verwendet.
Beispiel 4
Die Herstellung entsprach Beispiel 1, jedoch wurde keine Acrylsäure und stattdessen 24 g PMS verwendet.
Die Zusammensetzung der Copolymerisate in Gew.-% ist in Tabelle 1 angegeben.-
Figure imgf000014_0001
III . Herstellung der Papierstreichmasse
Es wurde eine Papierstreichmasse durch Verrühren folgender Bestandteile hergestellt.
10 Gew. -Teile der Copolymerisate
70 Gew. -Teile Hydrocarb (Calziumcarbonat)
30 Gew. -Teile Amazon (Kaolin)
0,4 Gew. -Teile Polysalz (Dispergierhilfsmittel)
0,05 Gew. -Teile NaOH
0,5 Gew. -Teile CMC 7L2T (Carboxymethylcellulose)
Der Feststoffgehalt wurde mit Wasser auf 65 Gew. -% eingestellt.
Anwendungstechnische Prüfung
Als Rohpapier wurde ein holzfreies Streichrohpapier mit einem Flächengewicht von 70 g/m2 verwendet. Der Auftrag der Papierstreichmasse erfolgte einseitig mit 10 g/m2 auf einer Labor- Streichmaschine. Die Trocknung erfolgte mit einem IR-Strahler. Die Papiere passierten vor den anwendungstechnischen Prüfungen viermal einen Laborkalander (ein Walzenpaar, Liniendruck: 2000 N/cm) .
Trockenrupffestigkeit
Aus den zu prüfenden Papieren wurden Streifen in der Größe 33 x 3 cm in Längsrichtung geschnitten und diese Streifen 15 Stunden bei 27°C mit einer relativen Luf feuchtigkeit von 50 im Klimaraum gelagert.
Die Streifen wurden anschließend in einem Druckwerk (IGT Bedruc - barkeitsprüfer AC2/AIC2) mit einer Standardfarbe (Druckfarbe 3808 der Fa. Lorilleux-Lefranc) bedruckt. Die Prüfstreifen werden mit kontinuierlich steigender Geschwindigkeit (maximale' Geschwindigkeit 200 cm/sec) durch das Druckwerk geführt. Als Maß für die Trockenrupffestigkeit wird die Geschwindigkeit in cm/sec angegeben, bei der nach Druckbeginn 10 Ausrisse aus der Papierstreichmasse (Rupfpunkte) erfolgt sind.
Naßrupffestigkeit
Die Prüfstreifen wurden wie oben beschrieben hergestellt und vor- bereitet.
Das Druckwerk (IGT Bedruckbarkeitsprüfer AC2/AIC2) wurde so eingerichtet, daß die Prüfstreifen vor dem Druckvorgang mit Wasser befeuchtet werden.
Der Druck wurde mit einer konstanten Geschwindigkeit von 0,6 cm/s durchgeführt .
Ausrisse aus der Papierstreichmasse bzw. dem Papier sind als unbedruckte Stellen sichtbar. Zur Bestimmung der Naßrupffestigkeit wird daher mit einem Farbdensitometer die Farbdichte im Vergleich zum vollen Farbton in % bestimmt. Je höher die angegebene Farbdichte, desto besser die Naßrupffestigkeit.
Offsettest
Papier:
Aus den zu prüfenden Papieren werden Proben mit einer Größe von
240 x 46 mm in der Längsrichtung ausgeschnitten.
Durchführung der Prüfung:
Auf die Einfärbewalze wird eine entsprechende Menge der Druckfarbe gegeben und 1 min laufen gelassen. Dann wird eine Druckscheibe eingesetzt und 30 s eingefärbt.
Die Druckgeschwindigkeit beträgt 1 m/s. Ein Papierstreifen wird auf einen Druckprobeträger mit dem bedruckten Papierstreifen erneut in die Ausgangsstellung gebracht. Nach einer festgelegten Zeitspanne wird der Druckvorgang ohne Austausch der Druckscheibe erneut gestartet. Dieser Vorgang wird mehrmals wiederholt.
Nach jedem Durchgang wird das Rupfen auf der bedruckten Seite des Papierstreifens visuell begutachtet. Es wird die Anzahl der Durchgänge angegeben bis zum ersten Mal ein Rupfen auftritt. Bei sehr starkem Rupfen wird der letzte Durchgang nur als halb ange- geben (z.B. starkes Rupfen nach dem 3. Durchgang wird mit 2,5 angegeben) .
Angabe des Ergebnisses: Anzahl der Durckvorgänge bis zum Auftreten des ersten Rupfens.
Figure imgf000016_0001

Claims

Patentansprüche
1. Papierstreichmassen, enthaltend als Bindemittel ein Copoly- merisat, welches erhältlich ist durch radikalische Polymerisation von ethylenisch ungesättigten Verbindungen, dadurch gekennzeichnet, daß es sich bei mindestens einer der ethylenisch ungesättigten Verbindungen um ein Polymer mit mindestens einer copolymerisierbaren ethylenisch ungesättigten Gruppe, einem zahlenmittleren Molekulargewicht von 500 bis 50000 g/mol und mindestens einer Carbonsäure- gruppe (im nachfolgenden kurz ethylenisch ungesättigtes Polymer genannt) handelt.
2. Papierstreichmasse gemäß Anspruch 1, dadurch gekennzeichnet, daß -das ethylenisch ungesättigte Polymer ein oder zwei copolymerisierbare ethylenisch ungesättigte Gruppen enthält.
3. Papierstreichmasse gemäß Anspruch 1 oder 2, dadurch geken - zeichnet, daß es sich bei der oder den ethylenisch ungesättigten Gruppen des ethylenisch ungesättigten Polymeren um Acryl- oder Methacrylgruppen handelt.
4. Papierstreichmasse gemäß Anspruch 1 oder 3, dadurch gekenn- zeichnet, daß das ethylenisch ungesättigte Polymer mehr als 2
Carbonsäuren enthält.
5. Papierstreichmasse gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer aus radikalisch polymerisierbaren Verbingungen aufgebaut ist.
6. Papierstreichmasse gemäß Anspruch 1 oder 5, dadurch gekennzeichnet, daß das ethylenisch ungesättigte Polymer durch radikalische Polymerisation in Gegenwart eines Übergangme- tallkomplexes als Molekulargewichtsregler erhältlich ist.
7. Papierstreichmasse gemäß Anspruch 1 oder 6, dadurch gekennzeichnet, daß das Copolymerisat aufgebaut ist aus a) 30 bis 99,9 Gew. -% sogenannter Hauptmonomere, ausgewählt aus CI bis C20 Alkyl (meth) acrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitri- 5 len, Vinylhalogeniden, Vinylethern oder Alkylethern von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und 1 oder 2 Doppelbindungen oder Mischungen dieser Monomeren.
10 b) 0,1 bis 30 Gew.-% des ethylenisch ungesättigten Polymeren.
c) 0 bis 40 Gew.-% anderen ethylenisch ungesättigten Verbindungen.
15
Verwendung eines Copolymerisats gemäß einem der Ansprüche 1 bis 7 als Bindemittel in Papierstreichmassen.
9. Mit einer Papierstreichmasse gemäß einem der Ansprüche 1 bis 20 7 beschichtete Papiere.
10. Verwendung von Papieren gemäß Anspruch 9 im Offset-Druckverfahren.
25 11. Bedruckte Papiere erhältlich durch Verwendung gemäß Anspruch 10.
30
35
40
45
PCT/EP2001/003469 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren WO2001073199A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50101000T DE50101000D1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren
AT01936144T ATE254691T1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren
EP01936144A EP1268931B1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren
US10/240,267 US6852423B2 (en) 2000-03-28 2001-03-27 Paper coating slips containing binding agents with macromonomers
AU2001262138A AU2001262138A1 (en) 2000-03-28 2001-03-27 Paper coating slips containing binding agents with macromonomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10015262.7 2000-03-28
DE10015262A DE10015262A1 (de) 2000-03-28 2000-03-28 Papierstreichmassen, enthaltend Bindemittel mit Makromonomeren

Publications (1)

Publication Number Publication Date
WO2001073199A1 true WO2001073199A1 (de) 2001-10-04

Family

ID=7636607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003469 WO2001073199A1 (de) 2000-03-28 2001-03-27 Papierstreichmassen, enthaltend bindemittel mit makromonomeren

Country Status (7)

Country Link
US (1) US6852423B2 (de)
EP (1) EP1268931B1 (de)
CN (1) CN1234937C (de)
AT (1) ATE254691T1 (de)
AU (1) AU2001262138A1 (de)
DE (2) DE10015262A1 (de)
WO (1) WO2001073199A1 (de)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070982A2 (de) * 2004-01-21 2005-08-04 Basf Aktiengesellschaft Thermisch polymerisierbare mischungen aus multifunktionellen makromonomeren und polymerisationsinitiatoren
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8017358B2 (en) 2001-03-02 2011-09-13 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1817456B1 (de) * 2004-11-12 2015-01-07 Basf Se Papierstreichmassen auf basis von pigment-polymer-hybriden
JPWO2009096473A1 (ja) * 2008-01-29 2011-05-26 株式会社トクヤマ 燃料電池用隔膜およびその製造方法
CN104662056B (zh) 2012-09-28 2017-10-20 罗门哈斯公司 水性聚合物接枝乳胶
PL3075904T3 (pl) * 2015-03-31 2018-02-28 Billerudkorsnäs Ab Podłoże z rozciągliwą powłoką

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058366A2 (de) * 1981-02-17 1982-08-25 Bayer Ag Wässrige Dispersionen, ihre Herstellung und Verwendung
US4448924A (en) * 1982-03-24 1984-05-15 Rhone-Poulenc Specialites Chimiques Aqueous interpolymer emulsions, process for their preparation and use of the emulsions as binders for coating paper
EP0320594A2 (de) * 1987-12-14 1989-06-21 Nippon Shokubai Co., Ltd. Wässrige härtbare Harzdispersionen, Verfahren zu deren Herstellung und deren Verwendung
WO1995004767A1 (en) * 1993-08-05 1995-02-16 Zeneca Limited Production of polymer emulsions
EP0714922A2 (de) * 1994-12-01 1996-06-05 Basf Aktiengesellschaft Alkenylnitril enthaltende Bindemittel für Papierstreichmassen
WO1997000776A1 (de) * 1995-06-21 1997-01-09 Basf Aktiengesellschaft Verwendung von papierstreichmassen mit hohem butadiengehalt im offsetdruck
US5872189A (en) * 1995-01-06 1999-02-16 Rhone-Poulenc Chimie Water-redispersible powders of film-forming polymers with a "core/shell" structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058366A2 (de) * 1981-02-17 1982-08-25 Bayer Ag Wässrige Dispersionen, ihre Herstellung und Verwendung
US4448924A (en) * 1982-03-24 1984-05-15 Rhone-Poulenc Specialites Chimiques Aqueous interpolymer emulsions, process for their preparation and use of the emulsions as binders for coating paper
EP0320594A2 (de) * 1987-12-14 1989-06-21 Nippon Shokubai Co., Ltd. Wässrige härtbare Harzdispersionen, Verfahren zu deren Herstellung und deren Verwendung
WO1995004767A1 (en) * 1993-08-05 1995-02-16 Zeneca Limited Production of polymer emulsions
EP0714922A2 (de) * 1994-12-01 1996-06-05 Basf Aktiengesellschaft Alkenylnitril enthaltende Bindemittel für Papierstreichmassen
US5872189A (en) * 1995-01-06 1999-02-16 Rhone-Poulenc Chimie Water-redispersible powders of film-forming polymers with a "core/shell" structure
WO1997000776A1 (de) * 1995-06-21 1997-01-09 Basf Aktiengesellschaft Verwendung von papierstreichmassen mit hohem butadiengehalt im offsetdruck

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US9416424B2 (en) 2001-03-02 2016-08-16 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8017358B2 (en) 2001-03-02 2011-09-13 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents
US9752184B2 (en) 2001-03-02 2017-09-05 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8815513B2 (en) 2001-03-02 2014-08-26 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents in epidemiological and forensic investigations
US8802372B2 (en) 2001-03-02 2014-08-12 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8921047B2 (en) 2001-06-26 2014-12-30 Ibis Biosciences, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8380442B2 (en) 2001-06-26 2013-02-19 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US9725771B2 (en) 2002-12-06 2017-08-08 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8476415B2 (en) 2003-05-13 2013-07-02 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8394945B2 (en) 2003-09-11 2013-03-12 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8013142B2 (en) 2003-09-11 2011-09-06 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8288523B2 (en) 2003-09-11 2012-10-16 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8242254B2 (en) 2003-09-11 2012-08-14 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
WO2005070982A2 (de) * 2004-01-21 2005-08-04 Basf Aktiengesellschaft Thermisch polymerisierbare mischungen aus multifunktionellen makromonomeren und polymerisationsinitiatoren
WO2005070982A3 (de) * 2004-01-21 2006-08-10 Basf Ag Thermisch polymerisierbare mischungen aus multifunktionellen makromonomeren und polymerisationsinitiatoren
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US9447462B2 (en) 2004-02-18 2016-09-20 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8987660B2 (en) 2004-05-24 2015-03-24 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US9449802B2 (en) 2004-05-24 2016-09-20 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US9027730B2 (en) 2008-09-16 2015-05-12 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US9023655B2 (en) 2008-09-16 2015-05-05 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8252599B2 (en) 2008-09-16 2012-08-28 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8609430B2 (en) 2008-09-16 2013-12-17 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8796617B2 (en) 2009-02-12 2014-08-05 Ibis Biosciences, Inc. Ionization probe assemblies
US9165740B2 (en) 2009-02-12 2015-10-20 Ibis Biosciences, Inc. Ionization probe assemblies
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US10119164B2 (en) 2009-07-31 2018-11-06 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection

Also Published As

Publication number Publication date
CN1419620A (zh) 2003-05-21
AU2001262138A1 (en) 2001-10-08
DE50101000D1 (de) 2003-12-24
ATE254691T1 (de) 2003-12-15
EP1268931A1 (de) 2003-01-02
EP1268931B1 (de) 2003-11-19
DE10015262A1 (de) 2001-10-04
US20030068478A1 (en) 2003-04-10
CN1234937C (zh) 2006-01-04
US6852423B2 (en) 2005-02-08

Similar Documents

Publication Publication Date Title
EP1268931B1 (de) Papierstreichmassen, enthaltend bindemittel mit makromonomeren
DE2821835A1 (de) Waessriger polymerlatex
DE102005005205A1 (de) Verwendung einer wässrigen Polymerdispersion als Bindemittel für cellulosische Fasern sowie zur Herstellung von Filtermaterialien
DE10046930A1 (de) Verfahren zur Herstellung wässriger Styrol-Butadien-Polymerdispersionen
WO1998006764A1 (de) Haftklebstoffe auf basis mehrstufig aufgebauter polymerisate
EP0724663B1 (de) Verwendung von mit bestimmten bindemittelmischungen beschichtetem papier für den offsetdruck
EP0742857B1 (de) Verwendung von mit bestimmten papierstreichmassen gestrichenen papieren im offsetdruck
EP1415039B1 (de) Papierstreichmassen für das gussstrichverfahren
WO2007082819A1 (de) Verwendung einer wässrigen polymerzusammensetzung zum imprägnieren von roh-papier
EP1434806B1 (de) Verfahren zur herstellung wässriger styrol-butadien-polymerdispersionen
WO2006050871A2 (de) Wässrige papierstreichmasse, enthaltend pigment-polymer-hybride
EP0952161B2 (de) Emulgatorgemisch für die Emulsionspolymerisation
EP0714922B1 (de) Alkenylnitril enthaltende Bindemittel für Papierstreichmassen
EP1132521B1 (de) Papierstreichmassen auf Basis von gering vernetzten Bindemitteln
DE19628446A1 (de) Stabile, wäßrige Dispersionen von Copolymerisaten auf Basis von konjugierten, aliphatischen Dienen und vinylaromatischen Verbindungen
EP0991681B1 (de) Papierstreichmassen auf basis von bindemitteln mit n-vinylformamidderivaten
EP0833752B1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im offsetdruck
WO1997001000A1 (de) Verwendung von papierstreichmassen mit hohem butadiengehalt im tiefdruck
DE10126266A1 (de) Emulgatorgemisch für die Emulsionspolymerisation
DE2937268C2 (de) Wäßrige Emulsion aus einem synthetischen Mehrkomponentenharz und Verfahren zu ihrer Herstellung
WO2007033930A1 (de) Papierstreichmassen mit terpinolen-haltigem bindemittel für vorhangstreichverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001936144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018069932

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10240267

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001936144

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001936144

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP