WO2002020879A1 - Procede de production d'une mince couche d'oxyde de composite, dispositif correspondant et mince couche d'oxyde de composite ainsi produite - Google Patents

Procede de production d'une mince couche d'oxyde de composite, dispositif correspondant et mince couche d'oxyde de composite ainsi produite Download PDF

Info

Publication number
WO2002020879A1
WO2002020879A1 PCT/JP2001/007280 JP0107280W WO0220879A1 WO 2002020879 A1 WO2002020879 A1 WO 2002020879A1 JP 0107280 W JP0107280 W JP 0107280W WO 0220879 A1 WO0220879 A1 WO 0220879A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
composite oxide
layer
target
temperature
Prior art date
Application number
PCT/JP2001/007280
Other languages
English (en)
French (fr)
Inventor
Sundaresan Athinarayanan
Jiacai Nie
Hideo Ihara
Original Assignee
Japan Science And Technology Corporation
National Institute Of Advanced Industrial Science And Technology
Ihara, Yoshiko
Ihara, Hideyo
Ihara, Gen-Ei
Ihara, Hidetaka
Ihara, Chiaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, National Institute Of Advanced Industrial Science And Technology, Ihara, Yoshiko, Ihara, Hideyo, Ihara, Gen-Ei, Ihara, Hidetaka, Ihara, Chiaki filed Critical Japan Science And Technology Corporation
Priority to EP01958485A priority Critical patent/EP1342820A4/en
Priority to US10/363,050 priority patent/US7335283B2/en
Publication of WO2002020879A1 publication Critical patent/WO2002020879A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4512Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing thallium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Definitions

  • the present invention relates to a method and an apparatus for producing a composite oxide thin film and a composite oxide thin film produced by this method.
  • composite oxide materials In recent years, ferroelectric materials, oxide magnetic materials, oxide semiconductor materials, non-linear optical materials, insulator materials, transparent materials, low dielectric materials, and oxide superconductivity materials have been used as composite oxide materials. Attention has been paid. These composite oxide materials are formed by laminating phases having different compositions, lattice constants, or crystal structures. For this reason, it has been difficult to obtain a composite oxide material having good crystallinity grown by epitaxy at each phase.
  • a Cu-based superconducting material which has been attracting attention as an oxide superconducting material, has a crystal structure in which a charge supply layer and a superconducting layer are stacked in a c-axis direction.
  • To realize a Cu-based superconducting material with excellent superconducting properties it is necessary to realize a crystal structure with an excellent c-axis alignment force between the charge supply layer and the superconducting layer.
  • the charge supply layer and the superconducting layer have a large lattice non-age, it is difficult to grow the charge supply layer and the superconducting layer by a single method. It was difficult to grow the charge supply layer and the superconducting layer by epitaxy.
  • the high-pressure synthesis method or the method for producing Cu-based superconducting materials by T1 or Hg treatment is expensive, it is difficult to obtain an awake thin film, it is difficult to mass produce, and toxicity is high. There was a problem such as there is.
  • it is difficult to produce a substrate lattice structure with high reproducibility by arbitrarily controlling the base lattice structure and requires a high-temperature and long-time treatment in an oxidizing atmosphere or a reducing atmosphere after the fabrication.
  • a high temperature is required during fabrication, and therefore, a high-temperature material for bonding a crystal substrate to produce a crystal thin film with excellent c-axis orientation. The fee was limited.
  • the present invention provides a composite oxide that can be easily manufactured at low temperature without using high temperature and pressure, excellent in crystallinity, arbitrarily controlling the basic unit cell structure, and not requiring post-heat treatment. It is an object of the present invention to provide a method and an apparatus for producing a system thin film and a composite oxide film produced by the method. Disclosure of the invention
  • the manufacturing method of the present invention combines physical control of the structure and film thickness, self-assembled self-formation, surface diffusion, and epitaxy growth on an oriented crystal substrate. To produce a composite oxide thin film at a low temperature.
  • the composite oxide thin film is a ferroelectric thin film, an oxide magnetic thin film, an oxide semiconductor thin film, a nonlinear optical thin film, an insulator thin film, a transparent electrode film, a low dielectric film, and an oxide superconducting thin film.
  • each sputtering target having the atomic composition of each phase constituting the composite oxide-based thin film is alternately applied to each target in the basic unit cell of the composite oxide. This is performed by controlling the film thickness of the phase and performing sputtering to laminate the layers.
  • the aforementioned 33 ⁇ 4 plane diffusion is characterized in that the surface atoms of the composite oxide in the stack move on the surface and are arranged at the lattice points of the phase at a predetermined substrate temperature.
  • the chemical self-formulation is achieved by the reaction promoting property and the structural stability of the specific phase by the constituent atoms of the specific phase of the composite oxide-based thin film or by substituting a part of the atoms with the specific atoms.
  • the purpose is to promote lattice formation and / or improve the lattice properties of a specific phase and other phases laminated on this phase by chemical modification to promote substance formation. It will be a mound.
  • the chemical self-forming controls the concentration of holes in a specific phase of the composite oxide-based thin film by controlling the oxygen concentration of a specific phase of the composite oxide-based thin film.
  • the feature is to improve the lattice property of other phases to be stacked on the phase. With these configurations, the hole concentration force of a specific phase of the composite oxide-based thin film is increased, the ion bonding property is increased, and the lattice property between the specific phase and another phase forming this phase is improved.
  • a composite oxide thin film with good crystallinity can be produced.
  • the epitaxy growth using the oriented crystal substrate is characterized in that a buffer layer having lattice matching is laminated on the oriented crystal substrate, and a layer composed of another phase is laminated on the buffer layer, thereby performing epitaxy growth.
  • a buffer layer having lattice matching is laminated on the oriented crystal substrate, and a layer composed of another phase is laminated on the buffer layer, thereby performing epitaxy growth.
  • the physical control of the composition and film thickness of the charge supply layer and the superconducting layer, which are the constituent phases of the Cu-based high-temperature superconducting thin film, in the method for producing the Cu-based high-temperature superconducting thin film as an oxide superconducting thin film That is, the target for the charge supply layer having the composition of the charge supply layer and the target for the superconducting layer having the composition of the superconducting layer are controlled by alternately controlling the film thickness and sputtering.
  • the charge supply layer and the superconducting layer can be laminated while controlling the composition and film thickness.
  • the chemical self-formation is achieved by promoting the reaction promotion property and the stabilization of the structure of the charge supply layer by the Cu atom itself in the charge supply layer or by replacing a part of the atom with a specific atom. It is characterized in that the layer and the superconducting layer are lattice-matched to promote material formation.
  • the self-chemical self-formation is characterized by controlling the hole concentration of the charge supply layer by controlling the oxygen concentration of the charge supply layer and causing the charge supply layer and the superconducting layer to be latticed. .
  • the hole concentration in the charge supply layer is increased, the ionic bonding property is increased, and the lattice age between the charge supply layer and the superconducting layer is improved.
  • a method of replacing a part of Cu atoms in the charge supply layer with a specific atom is as follows.
  • the present invention is characterized in that a charge supply layer is formed by sputtering a supply layer evening get. With this configuration, a charge supply layer having a composition in which some of the Cu atoms are replaced with specific atoms can be stacked.
  • the method of increasing the oxygen concentration in the charge supply layer and the superconducting layer is characterized in that an oxidizing gas of a predetermined pressure is mixed into a sputtering gas atmosphere when sputtering the charge supply layer and the Z or superconducting layer. I do. With this configuration, a charge supply layer having a high concentration can be stacked.
  • a buffer layer consisting of a charge supply layer in which part of Cu atoms are replaced with specific atoms or a buffer layer consisting of elements with good lattice matching is laminated on the oriented crystal substrate. Then, it is characterized in that a superconducting layer is stacked on the buffer layer and epitaxially grown. With this configuration, lattice mismatch between the oriented crystal substrate and the superconducting layer can be mitigated, a superconducting thin film having good crystallinity can be laminated, and the type of oriented crystal substrate that can be used is determined. Can be increased.
  • a target for a mixed oxide thin film in which a predetermined amount of a specific atom is mixed on an oriented crystal substrate heated to a predetermined substrate temperature in a vacuum chamber.
  • a buffer or a target of a substance having a good lattice property to form a buffer layer and then introduce an oxidizing gas into the vacuum chamber at a predetermined pressure.
  • the target composed of the atomic composition of the first phase of the oxide-based thin film is sputtered and stacked by the thickness of the first phase in the basic unit cell of the composite oxide-based thin film.
  • a target composed of the atomic composition of the second phase of the composite oxide thin film is sputtered and laminated by the thickness of the second phase in the basic unit cell of the composite oxide thin film.
  • the same process as (a) or (b) above is performed only for the types of phases constituting the oxide thin film. It is a special feature that the steps (a), (b), and (c) or the iTC process thereof are repeated to produce a composite oxide thin film having a predetermined thickness.
  • the oriented crystal substrate and each phase constituting the composite oxide thin film can grow epitaxially with lattice matching, and can be laminated while controlling the thickness of each phase.
  • a composite oxide thin film having a unit cell can be manufactured.
  • the substrate is heated to a predetermined temperature and laminated in an oxidizing atmosphere, the surface diffusion and surface reaction of the constituent atoms occur layer by layer, and epitaxy grows layer by layer. Furthermore, a composite oxide-based thin film can be obtained in situ (in the same bath) without breaking vacuum and as grown.
  • a charge supply layer target in which a predetermined amount of a specific atom is mixed is spattered on a oriented crystal substrate heated to a predetermined substrate temperature in a vacuum chamber.
  • a buffer layer is laminated, an oxidizing gas is introduced into the vacuum chamber at a predetermined pressure, and (a) a target for a superconducting layer is sputtered on the buffer layer to form a Cu-based high-temperature superconducting thin film.
  • the charge supply layer in the basic unit lattice of the Cu-based high-temperature superconducting thin film is formed by laminating the target for the charge supply layer on this layer. Are laminated by the thickness of.
  • the method is characterized in that the steps or steps (a) and (b) are repeated to produce a Cu-based high-temperature superconducting thin film having a predetermined thickness.
  • the orientation crystal substrate, the charge supply layer, and the superconducting layer can be laminated by controlling the thickness of the superconducting layer by controlling the thickness of the charge supplying layer and the thickness of the superconducting layer.
  • a Cu-based high-temperature superconducting thin film having a lattice (eg, Cu — 1223, Cu-1234, and Cu-1245) having a desired thickness can be formed.
  • the substrate is heated to a predetermined temperature and stacked in an oxidizing atmosphere, the surface diffusion and surface reaction of the constituent atoms occur for each layer, and epitaxy grows for each layer.
  • a charge supply layer target obtained by mixing a predetermined amount of a specific atom on a directional crystal substrate heated to a predetermined substrate temperature in a vacuum chamber is sputtered.
  • a buffer layer is laminated, and then an oxidizing gas is introduced into the vacuum chamber at a predetermined pressure, and (a) a target for a superconducting layer is sputtered on the buffer layer to form a Cu-based high-temperature superconducting thin film base:
  • the superconducting layer is stacked by the thickness of the superlattice layer, and a target for the charge supply layer is sputtered on this layer to form the basic unit of the Cu-based high-temperature superconducting thin film. Laminate only by that amount.
  • Steps (a) and (b) above The above process is repeated to produce the above-mentioned Cu-based high-temperature superconducting thin film having a predetermined thickness.
  • (c) a target made of an insulator is spaked, and a predetermined thickness of the Cu-based high-temperature superconducting thin film is formed.
  • the method is characterized in that an insulating layer is formed, and then the steps (a) and (b) or the iTC is repeated to produce a predetermined Cu-based high-temperature superconducting thin film.
  • a Josephson junction device or the like having an insulator sandwiched between superconducting thin films as a barrier can be formed in situ, without breaking a vacuum, and with asgr 0 wn.
  • Particular atoms replacing some of the Cu atoms are T1, Bi, Pb, In, Ga, A1, B, Sn, Ge, Si, C, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, W, Re, Ru, 0s are one or more elements.
  • the honole concentration can be increased by appropriately selecting the ionic valence, ionic radius, and oxygen coordination number of these atoms.
  • the oxidizing gas is directed to FEATURE: the 0 2, 0 3, and N 2 0, NO or N0 2,. According to this configuration, ⁇ coordinated to Cu in the charge supply layer is added, and the hole concentration increases.
  • the composite oxide-based thin film manufacturing apparatus of the present invention includes a sputter thin film manufacturing chamber, a load lock chamber, a plurality of systems of sputtering power supplies, a substrate holding / rotating / heating device, a shutter and a substrate rotation control device, and a gas flow rate.
  • 'It has a pressure control device, two exhaust systems, and a control computer, and can realize the composite oxide thin film according to claim 1.
  • the sputtering thin film production chamber is provided with at least two or more vertically arranged shutters, a shutter arranged in parallel with these target surfaces, and a substrate which is formed in a manner that the substrate surface is a target surface. It has a substrate holding, rotating, and heating device that is arranged parallel to the line direction and outside of the sputter plasma, rotates, and heats.
  • the substrate In the mouth lock chamber, the substrate can be replaced without breaking the vacuum in the sputtering thin film production chamber, and the load lock chamber is provided with vapor deposition means. According to this configuration, Josephson junction devices and the like, in situ, without breaking the vacuum, And an electrode can be formed by asgro wn.
  • the plurality of systems of the sputtering power source, the substrate holding / rotating / heating device, the shutter and the substrate rotation controlling device, the gas flow rate and the pressure controlling device, and the humidifying system exhausting device each have a power and a temperature of 1 degree.
  • the sputtering target having the atomic composition of each phase constituting the composite oxide-based thin film is alternately alternately formed with the film thickness of each phase in the basic unit cell of the composite oxide.
  • the laminating process is carried out in the following manner: a computer for controlling—in the evening, the sputtering power of each substrate having the atomic composition of each phase, the substrate rotation speed 'temperature, gas flow' pressure, and the degree of vacuum , The deposition time of each material determined from the thin film deposition rate of each target material and ⁇ ? In the basic unit cell of each layer, and the number of repetitions corresponding to the thickness of the composite oxide thin film to be produced.
  • a plurality of sputtering power supplies, substrate holding / rotating / heating devices, the shutters and the It is characterized by controlling a gas rotation control device, a gas flow rate pressure control device, and a system exhaust device, whereby a composite oxide thin film can be obtained.
  • the charge supply layer and the superconducting layer constituting the Cu-based high-temperature superconducting thin film, the charge supply layer target and the superconducting layer target are each controlled alternately.
  • the control computer sends the target for the charge supply layer and the target for the superconducting layer each sputtering power, substrate rotation speed, temperature, gas flow rate, pressure, degree of vacuum, and each target. Enter the deposition time of each material determined from the material thin film deposition rate and the film thickness of each layer in the basic unit lattice, and the number of repetitions corresponding to the film thickness of the Cu-based high-temperature superconducting thin film to be prepared.
  • Control computer programmed based on these input values, communication with terminal computer, multiple systems of power supply, substrate holding, rotation, heating device, shutter and shutter It controls the rotation control device, the gas flow rate 'pressure control device, and the two exhaust systems.
  • the recording medium that describes the composite oxide thin film manufacturing program is a recording medium that stores a program for controlling a composite oxide thin film manufacturing apparatus by a computer.
  • a composite oxide-based thin film as large as 100 to 100 atomic layers can be accurately manufactured without manual operation.
  • a record recording a program for controlling the production of a Cu-based high-temperature superconducting thin film by a computer wherein the control program comprises a target for a charge supply layer and a target for a charge supply layer.
  • the substrate rotation speed 'temperature, gas flow rate' pressure, degree of vacuum, the thin film deposition rate of each of the above materials, and the film thickness of each layer in the basic unit cell Based on the input time of each material to be determined and the number of repetitions corresponding to the film thickness of the Cu-based high-temperature superconducting thin film to be produced, through the communication with the terminal computer, It is characterized by controlling a substrate holding, a rotation, a heating device, the shutter and shutter rotation control device, a gas flow rate, a pressure control device, and a plurality of exhaust systems.
  • a Cu-based high-temperature superconducting thin film having a thickness of 100 to 100 atomic layers can be accurately manufactured without manual operation.
  • Oxide-based thin films and Cu-based high-temperature superconducting thin films can be produced.
  • I ⁇ formula: C u ix M x (B a iy S r y) 2 C a "-i C u n 0 2n + y; M T l, B i, Pb, I n, Ga, A 1, One element of B, Sn, Ge, Si, C, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, W, Re, Ru, 0s or Multiple elements; 0 ⁇ ⁇ ⁇ 1.0, 0 ⁇ 1, 0 ⁇ z ⁇ l, -2 ⁇ w ⁇ A, 3 ⁇ n ⁇ l5 Has excellent superconducting properties and can be manufactured very easily.
  • M T 1, B i, Pb, In, Ga, A 1, B, Sn, Ge, Si, C, Ti, V, Cr, Mn, Fe, Co , Ni, Zr, Nb, Mo, W, Re, Ru, Os; one or more elements;
  • L Mg, one element or a humidifier element; 0 ⁇ 1.0, (Cu, M) high-temperature superconducting thin films represented by 0 ⁇ 1, Q ⁇ z ⁇ l, -2 ⁇ w ⁇ A, 3 ⁇ n ⁇ 16 have excellent superconductivity and extremely It can be easily manufactured further, produced in any method or apparatus of the present invention, I ⁇ formula:.
  • I ⁇ formula: Cu: - X T 1 ( B a S r y) 2 (C a z L z) 2 C u 3 0 10 - w; L M g, Al force One or more metal elements; 0 1, ⁇ 1, Q ⁇ z ⁇ l, ⁇
  • L Mg, Al metal element or elements; 0 ⁇ 1, 0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1, -2 ⁇ w ⁇ A, 3 ⁇ n ⁇ 1 6
  • the (Cu, Re) -based high-temperature superconducting thin film represented by It has excellent conductivity and can be manufactured very easily.
  • I ⁇ formula C ui- M (B a iy S r y) (C a L z) n C u 3 O n + 4 - w;
  • M Ti, V, Cr, B, Ge, Si, C;
  • L Mg, one or more alkali metal elements;
  • the (Cu, M) -based high-temperature superconducting thin film represented by,-2 ⁇ w ⁇ A and 3 ⁇ n ⁇ 16 has excellent superconducting properties and can be manufactured extremely easily.
  • FIG. 1 is a diagram showing a basic unit cell structure of a typical Cu-based high-temperature superconductor.
  • FIG. 2 is a schematic view of an entire apparatus for producing a composite oxide thin film. .
  • FIG. 3 is a schematic top perspective view of a sputtering thin film production chamber.
  • FIG. 4 is a schematic side perspective view of a sputtering thin film production chamber.
  • FIG. 5 is a graph showing a distribution of a deposition rate in a direction perpendicular to a target surface of the composite oxide-based thin film manufacturing apparatus of the present invention.
  • FIG. 6 is a graph showing a distribution of a deposition rate in a direction parallel to a target surface of the composite oxide-based thin film manufacturing apparatus of the present invention.
  • Figure 7 is a graph showing a composition ratio distribution of the constituent atoms of the vertical charge supply layer and the superconducting layer of the gas composition of the sputtering atmosphere (A rX0 2) the parameters one coater to evening one Getting Bok surface.
  • Figure 8 is a one target surface data showing a composition ratio distribution of the constituent atoms of the horizontal charge supply layer and the superconducting layer of the gas of the sputtering atmosphere, the composition of (A r / 0 2) in the parameter one coater .
  • FIG. 9 is a flowchart of a program for manufacturing a composite oxide thin film.
  • FIG. 10 is a graph showing an X-ray diffraction measurement result of a Cu-based high-temperature superconducting thin film manufactured by using the method and the apparatus of the present invention.
  • FIG. 11 is a graph showing the results of X-ray diffraction measurement of a CuT1-1234-based high-temperature superconducting thin film produced using the method and the apparatus of the present invention.
  • FIG. 12 is a graph showing the results of X-ray diffraction measurement of a Cu-1245-based high-temperature superconducting thin film produced using the method and apparatus of the present invention.
  • CuBa 2 0 - the target for the charge supply layer having a composition of charge supply layer 1 made of 7, C a n - i C u n 0 2n formed of (n 3 to 5) superconducting layer 2
  • a superconducting layer gate having the following composition is prepared separately, and these targets are alternately sputtered and laminated while controlling the time to produce a Cu-based superconducting thin film.
  • the film deposition rate from a target for the charge supply layer and a target for the superconducting layer set in advance are determined.
  • a target having a uniform composition is used to form the charge supply layer 1 and the superconducting layer 2 having a uniform composition, and the film thickness is controlled by the sputtering times t 1 and t 2.
  • a Cu-based superconducting thin film having a basic unit cell can be produced. Furthermore, by setting the substrate temperature to an appropriate temperature, the constituent atoms on the surface of the layer are subjected to surface diffusion and surface reaction to improve epitaxy growth between layers.
  • the chemical self-formation in the present invention refers to replacing a specific constituent atom of a material with another highly reactive and highly controllable atom in the crystal structure of a substance to be realized, or It refers to the addition of other highly reactive and highly controllable atoms to a substance, that is, the chemical modification of the source and the substance to make this structure more realizable.
  • the lengths of the a-axis of the charge supply layer 1 and the superconducting layer 2 are different. Therefore, the lattice ages of the charge supply layer 1 and the superconducting layer 2 are poor. It is difficult to form a single crystal structure in which the supply layer 1 and the superconducting layer 2 are epitaxially grown.
  • the Cu atoms in the charge supply layer 1 are replaced with atoms having a larger ionic valence than the Cu atoms, a relatively small ion radius, a coordination number of 6 or more, and a specific ratio (C u ix M x B a 2 0 , - ⁇ ; M is a substituted atom), the charge supply layer 1 of hole concentration force Soe, increased ionic bonding of the charge supply layer 1, shortened C u O bond length force . Due to this effect, the length of the a-axis of the charge supply layer 1 and the superconducting layer 2 approaches the lattice force, and the lattice becomes belly. As a result, a single crystal structure in which the charge supply layer 1 and the superconducting layer 2 grow epitaxially is obtained.
  • the atom having this effect is one or more elements such as a transition metal element in addition to T1.
  • the ion valence of Cu increases, the ion bonding property of the charge supply layer 1 increases, and the Cu 0 bond length increases. Shorten. However, if the valence of Cu is too high, it becomes unstable. Therefore, it is necessary to replace a part of Cu with a high-valent ion.
  • the length of the a-axis of the charge supply layer 1 and the superconducting layer 2 approaches the lattice force, and the lattice aging property is improved, and the charge supply layer 1 and the superconducting layer 2 grow epitaxially. A single crystal structure is obtained.
  • the target Bok for charge supply to replace the Cu atom in a specific ratio Cui- X M x B a 2 0 4 - y (M is a substituted atom) Ri by the the use of the target composition
  • the a-axis lengths of the charge supply layer 1 and the superconducting layer 2 are made closer by reactive sputtering by mixing an oxidizing gas into the sputtering atmosphere, thereby improving the lattice property and making the charge supply layer 1
  • a single crystal structure obtained by epitaxial growth with the conductive layer 2 is obtained.
  • epitaxy growth on an oriented substrate will be described.
  • the types of oriented crystal substrates that can be used for Cu-based superconducting thin films are limited.
  • the orientation crystal substrate is widely used, there is a S r T i 0 3.
  • the lattice constant of S r T i 0 3 a-axis is 0. 390 nm
  • the lattice constant of a-axis of the superconducting layer C aCu0 2 is a 0. 384 nm
  • Epitakishi one in lattice mismatch this ⁇ It was a viable and could only be realized in a limited temperature range.
  • a silicon steel sheet can be used as the oriented crystal substrate.
  • SAE Self Assemb 1 ing Epitaxy
  • FIG. 2 is a schematic diagram of the entire device.
  • FIG. 3 is a schematic top perspective view of a sputtering thin film production chamber.
  • FIG. 4 is a schematic side perspective view of a sputtered thin film production chamber.
  • This equipment consists of a sputter thin film production chamber 3 which is an ultra-high vacuum deposition chamber (basic pressure 1 X 10-7 T 0 rr), and a mouth drop connected to this thin film production chamber 3 via a gate valve. And a control computer 5.
  • the sputtered film produced chamber 3 three types of sputtering 'target (sintered B a 2 Cu0 2 and C aCu0 2 and insulator)
  • sputter electrodes 6 vertically mounted with a target, and a shutter 7 provided in close proximity to cover these target surfaces.
  • the shutter 17 is independently driven by a shutter rotation control device (not shown) to control deposition and non-deposition of a thin film on a substrate by sputtering.
  • the substrate is placed in the substrate holding / rotating / heating device 8 to control the rotation and temperature of the substrate.
  • the installed substrate surface is disposed parallel to the normal direction of the above-mentioned evening get surface and outside the sputter plasma.
  • reference numeral 9 denotes a shutter for preventing contamination of the substrate surface.
  • the main parts and parts of the above-mentioned equipment are configured to have commonality and compatibility with the Josephson junction characteristic evaluation equipment and laser ablation (pulse laser deposition: PLD).
  • Fig. 5 shows the distribution of deposition rate in the direction perpendicular to the target surface of this apparatus.
  • Figure 6 shows the distribution of the deposition rate in the direction parallel to the target surface of this device.
  • the substrate temperature is at room temperature
  • the composition ratio distribution of the constituent atoms of the vertical charge supply and superconductivity layer of the target surface the gas composition of the sputtering atmosphere (A r / 0 2)
  • the parameters one Fig. 8 shows the composition ratio distribution of the constituent atoms of the charge supply layer and the superconducting layer in the horizontal direction on the target surface when the substrate temperature was room temperature. r / 0 2 ) is shown as a parameter.
  • composition distribution has a very small area force at a specific gas composition.
  • the mouth lock chamber 4 has a transfer mouth 10 that enables the substrate to be replaced without breaking the vacuum in the sputtering thin film production chamber, and has a sputtering chamber in the load lock chamber 4 for producing electrodes and the like. Equipped with hand g and Z or vapor deposition means.
  • the sputtering thin film production chamber 3 has two systems, a sputter power supply, a substrate holding / rotating 'heating device 8, a shutter 7 and a shutter rotation control device, a gas flow rate' pressure control device. Based on the output of this terminal computer, an exhaust device, a sensor for measuring the power, the temperature, the position, the gas flow rate, the pressure, and the degree of vacuum, and a terminal computer for controlling the operation of each device. It has a communication device with the control computer 5 and has a communication means with the control computer 5 to drive the L-time device based on the communication with the control computer and the sensor output. This is the configuration to control.
  • the sputtering power of the target for the charge supply layer and the target for the superconducting layer, the substrate rotation speed 'temperature, the gas flow rate', the pressure, and the degree of vacuum correspond to each evening target.
  • a control computer programmed based on these input values.
  • the program for manufacturing a Cu-based high-temperature superconducting thin film is a program for controlling the production of a Cu-based high-temperature superconducting thin film by a computer.
  • the control program includes a target for a charge supply layer and a superconducting layer. Power of each target, substrate rotation speed 'temperature, gas flow rate' pressure, degree of vacuum, shutter opening time corresponding to each target, and Cu-based high-temperature superconducting thin film Based on the input value of the number of repetitions corresponding to the film thickness, through communication with the terminal computer, multiple systems of sputter power supply, substrate holding, rotation, heating device, shutter and shutter one-rotation control device, gas flow rate, It controls the pressure control device and the two exhaust systems.
  • FIG. 9 shows a flowchart of a composite oxide thin film manufacturing program. This example shows an example of manufacturing using a 3 ⁇ 1 target.
  • control computer 5 first, the substrate temperature, the substrate once 3 ⁇ 4 ⁇ degree, the flow rate and pressure of A r and Sani ⁇ gas (0 2 or N 2 0), data one target eight made of a material A, a substance B
  • the control computer 5 controls a plurality of systems of sputtering power supply, substrate holding and rotation • heating device, shirt and shutter rotation control device, gas flow rate and pressure control device, and two systems of exhaust.
  • Each control command is output to each device which is a device.
  • the control computer 5 executes the process indicated by process A in FIG. That is, a control command to turn on the sputter power supply of the target A is output, and after a waiting time A, a control command to open the shutter of the target A is output.
  • the control command for shutting off the target is output, and the control command for the sputtering power supply 0 FF for target A is output.
  • the control computer 5 executes the same process as the process A shown by the process B in FIG. That is, a control command to turn on the sputtering power source of target B is output, and after waiting time B, a control command to open the shutter of target B is output. A control command to close is output, and a control command to turn off the sputtering power of target B is output.
  • the control computer 5 executes the same steps as the processes A and B indicated by the process C in FIG. This step is the same as the description of the above processes A and B, and will not be described.
  • control computer 5 increases the number of repetitions in which the initial value is set to 0 by one, compares this number of repetitions with the previously entered number of repetitions, and determines that the number of repetitions is less than the number of repetitions. In this case, return to the sputtering power supply of get A in the evening, and thereafter, the steps including the above processes A, B, and C are repeated.
  • control When the number of repetitions is equal to the number of repetitions, the computer 5 outputs a device termination setting control command to each of the devices, and receives a response indicating the completion of the control command from the terminal computer of each control device. After that, the control ends.
  • FIG. 9 illustrates the case where there are three types of targets. Even in the case of a composite oxide thin film that requires four or more types of targets, the program shown in FIG. E,. It is clear that it can be supported by adding and programming like '.
  • FIG. 10 shows the results of X-ray diffraction measurement of a Cu-based high-temperature superconducting thin film produced using the method and apparatus of the present invention.
  • the diffraction peak of the superconducting layer is only a diffraction peak corresponding to the diffraction of the c-plane of the C a C u0 2 crystals are observed. That is, the superconducting layer CaCu0 2, the charge supply layer Tl B a 2 Cu0 5 - show that c-axis oriented are epitaxially grown on the y.
  • Example 2
  • FIG. 11 shows the results of X-ray diffraction measurement of a CuT1-1234-based high-temperature superconducting thin film produced using the method and apparatus of the present invention.
  • a N 2 0 As oxidizing atmosphere gas, a N 2 0, have use the STO (S r T i 0 3 ) in the substrate, was prepared at a substrate temperature of 520 ° C.
  • the X-ray diffraction pattern in Fig. 11 is formed by peaks corresponding to CuT1-1234, and the c-axis lattice constant is 1.879 nm. You can see that it was made.
  • the measurement of the AC susceptibility of this Cu T 1-1234 based high-temperature superconducting thin film showed that T c (superconducting critical temperature) was about 20 K.
  • FIG. 12 shows an X-ray diffraction measurement result of a Cu — 1245-based high-temperature superconducting thin film produced using the method and the apparatus of the present invention.
  • oxidizing atmosphere gas a N 2 0, using NdGa0 3 substrate was prepared at a substrate temperature of 520 ° C.
  • the X-ray diffraction pattern in Fig. 12 is formed by the peak corresponding to Cu_l 245, and the c-axis lattice constant is 20,000 nm. I understand.
  • the high-temperature superconducting thin film that can be produced by using the method and the apparatus of the present invention is not limited to the Cu-based high-temperature superconducting thin film described above.
  • This paper uses a Cu-based high-temperature superconducting thin film with the composition shown below.
  • a Cu-based high-temperature superconducting thin film having excellent superconductivity can be produced very easily.
  • a Cu-based high-temperature superconducting thin film represented by the crystal structures of Cu-1223, Cu_1234, and Cu-1245, which has the formula: C i — Mx (B ai- y S r y) 2 C a "-i C Un 0 2 n + 4- y; M T 1, B ⁇ , Pb, I n, G a, A 1, B, Sn, G e, S i , C, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, W, Re, Ru, 0s One or more elements; 0 ⁇ x ⁇ 1 0, 0 ⁇ 1, 0 ⁇ ⁇ 1, — 2 ⁇ w ⁇ 4, 3 ⁇ n ⁇ l 5 (C u, M)
  • the present invention can provide a method and apparatus for producing a composite oxide thin film which can be produced in a wide range, and a composite oxide thin film produced by the method.
  • Ferroelectric materials, oxide magnetic materials, oxide semiconductor materials, nonlinear optical materials It is extremely useful as an insulator material, a transparent electrode material, a low dielectric material, and an oxide superconducting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 複合酸化物系薄膜の作製方法
及びその装置並びにそれにより作製した複合酸化物系薄膜 技術分野
この発明は、 複合酸化物系薄膜の作製方法及び作製装置並びにこの方法により 作製した複合酸化物系薄膜に関する。 技 景
近年、 強誘電体材料、 酸化物磁性材料、 酸化物半導体材料、非線形光学材料、 絶縁体材料、 透明職材料、 低誘電体材料及び酸化物超伝謝料として、 複合酸 ィ匕物系材料が注目されている。 これらの複合酸化物系材料は、互いに組成、 格子 定数あるいは結晶構造の異なった相が積層されて構成されている。 このため、各 相力 ぃにェピタキシ一成長した良好な結晶性を有する複合酸化物系材料を得る こと力難しかった。
酸化物超伝 才料として注目されている C u系超伝導材料は、 電荷供給層と超 伝導層とが c軸方向に配向して積層した結晶構造を有している。 優れた超伝導特 性を有する C u系超伝導材料を実現するには、 電荷供給層と超伝導層の c軸配向 力優れた結晶構造を実現することが必 である。 ところが、電荷供給層と超伝導 層は格子の不齢性が大きいため、電荷供給層と超伝導層をヱピタキシ一成長す ること力難しく、従来は、 高圧合成法または T 1の後処理による以外に電荷供給 層と超伝導層をェピタキシ一成長させることが困難であつた。
しかしな力 ら、高圧合成法または T 1や H gの «理による C u系超伝導材料 の製造方法では、 コストが高い、大醒の薄膜が得難い、大量生産をすることが 難しい、 また毒性がある等の問題があった。 また、 基 位格子構造を任意に制 御して再現性良く作製すること力難しく、作製後に酸化性雰囲気または還元性雰 囲気での高温かつ長時間の後 «理を必要としていた。 また、作製時に高温を必 要とし、 このため、 c軸配向が優れた結晶薄膜を作るための結晶基板力着高温材 料に限られていた。
上記説明では、 C u系超伝 才料の従来技術の課題について説明した力 複合 酸化物系材料に共通する課題である。
そこで、 本発明は、上記問題点にかんがみ、 高温高圧を用いず、結晶性に優れ 、基本単位格子構造を任意に制御でき、 後熱処理を必要とせず、 低温でかつ容易 に製造できる複合酸化物系薄膜の作製方法及びその装置並びにそれにより作製し た複合酸化物系薄膜を提供することを目的とする。 発明の開示
土記目的を達成するために、 本発明の製造方法は、 組 び膜厚の物理的な制 御と、ィ匕学的な自己形成と、表面拡散と、 配向結晶基板によるエピタキシー成長 とを組み合わせて低温で複合酸化物系薄膜を作製することを特徵とする。
前記複合酸化物系薄膜は、 強誘電体薄膜、 酸化物磁性薄膜、 酸化物半導体薄膜 、 非線形光学薄膜、 絶縁体薄膜、 透明電極膜、 低誘電体膜及び酸化物超伝導薄膜 であることを特徵とする。
前言 且録び酵の物理的な制御は、複合酸化物系薄膜を構成する各々の相の 原子の組成を有する各々のスパッタ用ターゲットを、 それぞれ交互に、複合酸化 物の基本単位格子における各々の相の膜厚を制御してスパッタして積層すること により、 行われる。
この構成により、 複合酸化物系薄膜を構成する各々の相の組成と膜厚を制御し て積層できる。
前言 3¾面拡散は、 所定の基板温度によって、積層中の複合酸化物の表面原子が 表面を移動し、相の格子点位置に配置することを特徴とする。 この構成により、 結晶性の良い複合酸化物系薄膜を作製でき、 かつ、 必要とする基板温度は、 熱平 衡条件での結晶成長温度より低 L、。
前記化学的な自己形成は、複合酸化物系薄膜の特定の相の構成原子そのものに より、 またはその一部を特定の原子と置換することによって、 特定の相の反応促 進性と構造安定ィ匕を促すこと、及び/又は化学的な修飾により、 特定の相とこの 相に積層する他の相との格子 性を向上させ、物質形成を促進させることを特 徼とする。
また、前記化学的な自己形成は、 複合酸化物系薄膜の特定の相の酸素濃度を制 御することによって、 複合酸化物系薄膜の特定の相のホール濃度を制御し、 特定 の相とこの相に積層する他の相との格子^^性を向上させることを特徵とする。 これらの構成により、 複合酸化物系薄膜の特定の相のホ一ル濃度力増え、 ィォ ン結合性が増加し、特定の相とこの相に する他の相との格子 性が向上し 、結晶性の良 ヽ複合酸化物系薄膜を作製できる。
前記配向結晶基板によるエピタキシー成長は、 配向結晶基板上に、 または格子 整合 を持つバッファ層を積層し、 このバッファ層上に他の相から成る層を積層 してエピタキシー成長させることを特徵とする。 この構成により、配向結晶基板 と複合酸化物系薄膜を構成する他の相との格子不 を緩和することができ、良 好な結晶性を有する複合酸化物系薄膜を積層することができると共に、使用可能 な配向結晶基板の種類を増やすことができる。
酸化物超伝導薄膜である C u系高温超伝導薄膜の作製方法における、 C u系高 温超伝導薄膜を構成する相である電荷供給層と超伝導層の組成及び膜厚の物理的 制御は、上記電荷供給層の組成を有する電荷供給層用ターゲッ卜と上記超伝導層 の組成を有する超伝導層用ターゲッ卜とをそれぞれ交互に膜厚を制御してスパッ タすることで制御することを特徴とする。 この構成により、電荷供給層と超伝導 層の組成と膜厚を制御して積層できる。
前記化学的な自己形成は、電荷供給層の C u原子そのものにより、 またはその 一部を特定の原子と置換することによって、電荷供給層の反応促進性と構造安定 化を促すことにより、 電荷供給層と超伝導層を格子整合させ、 物質形成を促進さ せることを特徴とする。
また、 Ιί!己化学的な自己形成は、 電荷供給層の酸素濃度を制御することによつ て電荷供給層のホール濃度制御し、 電荷供給層と超伝導層を格子 させること を特徵とする。
これらの構成により、 電荷供給層中にホール濃度が増え、 イオン結合性が増加 し、電荷供給層と超伝導層の格子齢性力向上する。
さらに、電荷供給層の C u原子の一部を特定の原子と置換する方法は、電荷供 給層の組成を有する夕一ゲッ卜に、 イオン半径、反応性、分解温度、蒸気圧、 を 考慮し、所定の量の特定の原子を混合し、所定の量の特定の原子を混合した電荷 供給層用夕一ゲットをスパッ夕して電荷供給層を形成することを特徵とする。 こ の構成により、 C u原子の一部を特定の原子と置換した組成を有する電荷供給層 が積層できる。
また、 電荷供給層と超伝導層の酸素濃度を増やす方法は、 電荷供給層及び Z又 は超伝導層をスパッタする際、 スパッタガス雰囲気に所定の圧力の酸化性ガスを 混入することを特徵とする。 この構成により、 »濃度が高い電荷供給層を積層 できる。
また、 配向結晶基板によるエピタキシー成長は、配向結晶基板上に、 C u原子 の一部を特定の原子と置換した電荷供給層から成るバッファ層または 元素か ら成る格子整合性の良いバッファ層を積層し、 バッファ層上に超伝導層を積層し てエピタキシー成長させることを特徵とする。 この構成により、 配向結晶基板と 超伝導層との格子不整合を緩和することができ、良好な結晶性を有する超伝導薄 膜を積層することができると共に、使用可能な配向結晶基板の種類を増やすこと ができる。
さらに、 本発明の他の態様によれば、真空槽内で、 所定の基板温度に加熱した 配向結晶基板上に、 所定の量の特定の原子を混合した複合酸化物系薄膜用タ一ゲ ット、 または格子^性の良い物質のタ一ゲットをスパッタしてバッファ層を積 層し、 次に酸化性ガスを真空槽に所定の圧力で導入し、バッファ層上に、 ( a ) 複合酸化物系薄膜の第一の相の原子組成から成るターゲットをスパッタして、複 合酸化物系薄膜の基本単位格子における第一の相の厚さ分だけ積層し、 この層上 に、 (b ) 複合酸化物系薄膜の第二の相の原子組成から成るターゲットをスパッ タして、複合酸化物系薄膜の基本単位格子における第二の相の厚さ分だけ積層し 、 (c ) 以下、複合酸化物系薄膜を構成する相の種類だけ、上記 ( a ) または ( b ) と同様の工程を繰り返し、 (a )、 (b ) 及び (c ) の工程またはその iTC 程を繰り返して所定の膜厚の複合酸化物系薄膜を作製することを特徼とする。 この構成により、 配向結晶基板と複合酸化物系薄膜を構成する各相とが格子整 合してエピタキシー成長し、各相の厚さを制御して積層できるから、所望の基本 単位格子を有する複合酸化物系薄膜を作製できる。 さらに、基板を所定の温度に 加熱し、 かつ酸化性雰囲気で積層するから、一層毎に構成原子の表面拡散と表面 反応がおこり、一層毎にエピタキシー成長する。 さらにまた、 i n s i t u ( 同一槽内) で、真空を破ることなく、 かつ、 a s g r own (成長したまま) で、複合酸化物系薄膜を得ることができる。
本発明のさらに別の態様によれば、 真空槽内で、所定の基板温度に加熱した配 向結晶基板上に、 所定の量の特定の原子を混合した電荷供給層用タ一ゲットをス パッ夕してバッファ層を積層し、 酸化性ガスを真空槽に所定の圧力で導入し、バ ッファ層上に、 (a) 超伝導層用ターゲットをスパッ夕して、 Cu系高温超伝導 薄膜の基本単位格子における超伝導層の厚さ分だけ積層し、 この層上に、 (b) 電荷供給層用タ一ゲットをスパッ夕して、 Cu系高温超伝導薄膜の基本単位格子 における電荷供給層の厚さ分だけ積層する。 そして、 (a)、 (b) の工程また は ίΤΠ程を繰り返して所定の膜厚の C u系高温超伝導薄膜を作製することを特徵 とする。
この構成により、 配向結晶基板と電荷供給層と超伝導層力格子整合してェピタ キシ一成長し、電荷供給層の厚さと超伝導層の厚さを制御して積層できるから、 所望の単位基本格子 (例えば、 Cu_ 1223、 Cu— 1234、及び C u - 1 245) を有する所望厚さの Cu系高温超伝導薄膜を作製できる。 さらに、 基板 を所定の温度に加熱し、 かつ酸化性雰囲気で積層するから、一層毎に構成原子の 表面拡散と表面反応がおこり、一層毎にエピタキシー成長する。 さらに、 i n s i t u (同一槽内) で、真空を破ることなく、 かつ、 a s g r own (成長 したまま) で、超伝導特性を有する Cu系高温超伝導薄膜を得ることができる。 本発明のさらに別の態様によれば、 真空槽内で、所定の基板温度に加熱した配 向結晶基板上に、 所定の量の特定の原子を混合した電荷供給層用ターゲットをス パッタしてバッファ層を積層し、 次に酸化性ガスを真空槽に所定の圧力で導入し 、 バッファ層上に、 (a)超伝導層用ターゲットをスパッタして、 Cu系高温超 伝導薄膜の基: «位格子における超伝導層の厚さ分だけ積層し、 この層上に、 ( b) 電荷供給層用タ一ゲットをスパッタして、 Cu系高温超伝導薄膜の基本単位 格子における電荷供給層の厚さ分だけ積層する。上記 (a)、 (b) の工程また は 程を繰り返して所定の膜厚の上記 C u系高温超伝導薄膜を作製し、 次に、 (c)絶縁物から成るターゲットをスパックし、所定の膜厚の Cu系高温超伝導 薄 に所定の娜の絶縁層を形成し、続いて、上記(a)、 (b) の工程また は iTC程を繰り返して所定の »の C u系高温超伝導薄膜を作製することを特徵 とする。 この構成によれば、超伝導薄膜に挟まれた絶縁物をバリア一とするジョ セフソン接合デバイスなどを、 i n s i t uで、 真空を破ることなく、 かつ、 a s g r 0 wnでィ ^できる。
前記 Cu原子の一部と置換する特定の原子は、 T 1, B i, Pb, I n, Ga , A 1, B, Sn, Ge, S i, C, Ti, V, C r、 Mn, F e, Co, N i , Zr, Nb, Mo, W, Re, Ru, 0 sの一元素または複数元素である。 こ の構成によれば、 これらの原子のイオン価数、 イオン半径、酸素配位数を適切に 選択することによって、 ホーノレ濃度を増加させることができる。
前記酸化性ガスは、 02、 03、 N2 0、 NO、 または N02 であることを特 徵とする。 この構成によれば、電荷供給層の Cuに配位する〇が增加し、 ホール 濃度が増加する。
本発明の複合酸化物系薄膜作製装置は、 スパッタ薄膜作製室と、 ロードロック 室と、複数系統のスパッタ電源と、 基板保持 ·回転 ·加熱装置と、 シャッター及 び基板回転制御装置と、 ガス流量'圧力制御装置と、 2系統の排気装置と、 制御 用コンピュータとを有し、請求項 1に記載の複合酸化物系薄膜を実現できること を特徴とする。
前記スパッ夕薄膜作製室は、 垂直に配設した少なくとも 2つ以上の夕一ゲット と、 これらのタ一ゲット面に平行に配設したシャッターと、基板をこの基板面が タ一ゲット面の法線方向に平行にかつスパッタ ·プラズマの外に配設し、 回転し 、 かつ加熱する基板保持 ·回転 ·加熱装置とを有する。
これらの構成によれば、 スパッタ荷電粒子の衝突による損傷が無く、 かつ、 膜 厚及び組成分布の良い複合酸化物系薄膜を得ることができる。
前記口一ドロック室は、 スパッ夕薄膜作製室の真空を破らずに基板の交換が可 能であると共に、 ロードロック室内に蒸着手段を備えている。 この構成によれば 、 ジョセフソン接合デバイスなどに、 i n s i t uで、 真空を破ることなく、 かつ、 a s g r o wnで電極を形成できる。
前記複数系統のスパッタ電源と、 基板保持 ·回転 ·加熱装置と、 シャッター及 び基板回転制御装置と、 ガス流量'圧力制御装置と、 謙系統の排気装置は、各 々、電力、 回 ¾1度'温度、位置、 ガス流量'圧力、 及び真空度を計量するセン サ一と、各々、装置の駆動を制御する端末コンピュータと、 この端末コンビユ一 タの出力に基づき駆動するァクチユエ一夕と、 各々、 制御用コンピュータとの通 信手段とを有し、 制御用コンピュータとの通信とセンサ一出力とに基づ L、てァク チユエ一タを駆動かつ制御する。
また、 本発明において、 複合酸化物系薄膜を構成する各々の相の原子の組成を 有する各々のスパッタ用タ一ゲットを各々交互に、複合酸化物の基本単位格子に おける各々の相の膜厚を制御してスパッタして積層する工程は、 制御用コンピュ —夕に、各々の相の原子組成を有する夕一ゲットの各々のスパッタ電力、 基板回 転速度'温度、 ガス流量'圧力、 真空度、各々のタ一ゲット物質の薄膜堆積速度 と上記各々の層の基本単位格子における^?から決定する各々の物質の堆積時間 、 及び作製する複合酸化物薄膜の膜厚に对応する繰り返し回数を入力し、 これら の入力値に基づき、 プログラムされた制御用コンピュータ力端末コンピュータと の通信を介し、複数系統のスパッタ電源、基板保持 ·回転 ·加熱装置、前記シャ ッタ一及びシャッター回転制御装置、 ガス流量'圧力制御装置、及び 系統の 排気装置を制御することを特徴とし、 これにより複合酸化物系薄膜を得ることが できる。
また、 本発明において、 C u系高温超伝導薄膜を構成する電荷供給層と超伝導 層を、 電荷供給層用タ—ゲッ卜と超伝導層用ターゲッ卜とを、各々交互に膜厚を 制御してスパッ夕する工程は、制御用コンピュータに、電荷供給層用ターゲット と超伝導層用ターゲッ卜の各々のスパッタ電力、 基板回転速度'温度、 ガス流量 •圧力、真空度、各々のタ一ゲット物質の薄膜堆積速度と上記各々の層の基本単 位格子における膜厚から決定する各々の物質の堆積時間、 及び作製する C u系高 温超伝導薄膜の膜厚に対応する繰り返し回数を入力し、 これらの入力値に基づき プログラムされた制御用コンピュータ力 端末コンピュータとの通信を介し、複 数系統のスパッ夕電源、 基板保持 ·回転 ·加熱装置、 シャツタ一及びシャッター 回転制御装置、 ガス流量'圧力制御装置、及び 2系統の排気装置を制御する。 さらに、複合酸化物系薄膜製造用プログラムを言 Ξϋした記録媒体は、 コンビュ —夕によつて複合酸化物系薄膜の製造装置を制御するプログラムを記録した記録 媒体であって、 この制御プログラムは、複合酸化物系薄膜を構成する各々の相の 原子の組成を有する各々のスパッタ用タ一ゲッ卜の各々のスパッタ電力、 基板回 転速度'温度、 ガス流量'圧力、 真空度、各々のタ一ゲット物質の薄膜堆積速度 と上記各々の層の基本単位格子における膜厚から決定する各々の物質の堆積時間 、及び作製する複合酸化物系薄膜の膜厚に対応する繰り返し回数の入力値に基づ き、端末コンピュータとの通信を介し、複数系統のスパッタ電源、基板保持'回 転'加熱装置、 シャッター及びシャッター回転制御装置、 ガス流量'圧力制御装 置、及び複数系統の排気装置を制御することを特徴とする。
これらの構成によれば、 1 0 0〜1 0 0 0 0原子層にも及ぶ複合酸化物系薄膜 を、人手によることなく、 かつ、 正確に製造できる。
さらに、 本発明の別態様によれば、 コンピュータによって C u系高温超伝導薄 膜の製造を制御するプロダラムを記録した記録 »であつて、 この制御プログラ ムは、 電荷供給層用ターゲッ卜と超伝導層用ターゲッ卜のそれぞれのスパッタ電 力、 基板回転速度'温度、 ガス流量'圧力、 真空度、 上記それぞれの夕一ゲット 物質の薄膜堆積速度と上記各々の層の基本単位格子における膜厚から決定する各 々の物質の堆積時間、 及び作製する C u系高温超伝導薄膜の膜厚に対応する繰り 返し回数の入力値に基づき、端末コンピュータとの通信を介し、 ¾系統のスパ ッ夕電源、 基板保持 ·回転 ·加熱装置、前記シャッタ一及びシャッター回転制御 装置、 ガス流量 ·圧力制御装置、 及び複数系統の排気装置を制御することを特徵 とする。
これらの構成によれば、 1 0 0 ~ 1 0 0 0 0原子層にも及ぶ C u系高温超伝導 薄膜を、人手によることなく、 かつ、正確に製造できる。
以上の構成による本発明の装置によれば、組成及び膜厚の物理的な制御と、 表 面拡散効果と、ィ匕学的な自己形成効果と、配向結晶基板によるエピタキシー成長 とを組み合わせて複合酸化物系薄膜及び C u系高温超伝導薄膜を作製することが できる。 本発明のいずれかの方法または装置で作製した、 Cu— 1 2 2 3、 C u- 1 2 34、 及び C u— 124 5の結晶構造で代表される C u系高温超伝導薄膜であつ て、ィ匕学式: C u i-x Mx (B a i-y S r y ) 2 C a„-i C un 02n+ y; M= T l, B i, Pb, I n, Ga, A 1, B, S n, Ge, S i, C, T i, V, C r, Mn, F e, C o, N i, Z r, Nb, Mo, W, Re, Ru, 0 sの一 元素または複数元素; 0≤χ≤ 1. 0, 0≤γ≤ 1 , 0≤z≤l, - 2≤w≤A , 3≤n≤ l 5で表される (Cu, M) 系高温超伝導薄膜は、超伝導特性に優れ 、 かつ、極めて容易に製造できる。
また、 本発明のいずれかの方法または装置で作製した、ィ匕学式: Cui-X Mx (B a i-y S r y ) 2 (C a i-z Lz ) „-i C un 02n+4w; M=T 1 , B i , Pb, I n, Ga, A 1 , B, S n, G e, S i, C, T i, V, C r, Mn, F e, Co, N i, Z r, Nb, Mo, W, Re, Ru, Osの一元素または複 数元素; L =Mg、 アル力リ金属元素の一元素または謙元素; 0≤χ≤ 1. 0 , 0≤γ≤ 1 , Q≤ z≤ l, - 2≤w≤A, 3≤n≤ 1 6で表される (Cu, M ) 系高温超伝導薄膜は、 超伝導特性に優れ、 かつ、 極めて容易に製造できる。 さらに、 本発明のいずれかの方法または装置で作製した、 ィ匕学式: Cui-x T 1 (B a i-y S r y ) z (C a —z Lz ) C 02n+4一" L=Mg、 ァ ルカリ金属元素の一元素または複数元素; 0≤x≤ l. 0, ≤ γ≤ 1 , 0≤ ζ ≤ 1 , - 2≤w≤ A, 3≤n≤ 1 6で表される (Cu, T 1 ) 系高温超伝導薄膜 は、超伝導特性に優れ、 かつ、極めて容易に製造できる。
さらに、 本発明のいずれかの方法または装置で作製した、 ィ匕学式: Cu:-X T 1 (B a S r y ) 2 (C a z L z ) 2 C u 3 010- w ; L =M g、 アル力 リ金属元素の一元素または複数元素; 0 1, ≤γ≤ 1 , Q≤z≤ l, ―
2≤w≤4で表される (Cu, T 1) 系高温超伝導薄膜は、 超伝導特性に優れ、 かつ、極めて容易に製造できる。
また、 本発明のいずれかの方法または装置で作製した、ィ匕学式: Cui-X Re x (B a i-y S r y ) 2 (C a i-z Lz ) n-i C un 02n+4w; L=Mg、 アル 力リ金属元素の一元素または複数元素; 0≤χ≤ 1 , 0≤ Ύ≤ 1 , 0≤ ζ≤ 1 , - 2≤w≤ A, 3≤n≤ 1 6で表される (Cu, R e ) 系高温超伝導薄膜は、 超 伝導特性に優れ、 かつ、 極めて容易に製造できる。
さらに、 本発明のいずれかの方法または装置で作製した、 ィ匕学式: C ui— M (B a i-y S r y ) (C a Lz ) n C u3 On+4w ; M=T i、 V、 C r, B, G e, S i, C ; L =Mg、 アルカリ金属元素の一元素または複数元素 ; Q≤x≤ l, 0≤y≤ 1, 0≤ ζ≤ 1, - 2≤w≤ A, 3≤n≤ 1 6、 で表さ れる (C u, M) 系高温超伝導薄膜は、超伝導特性に優れ、 かつ、極めて容易に 製造できる。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図面に基づいて、 より良く理解されるものとなろう。 なお、添付図面に示す種々の実施例は本発明 を特定又は限定することを意図するものではなく、単に本発明の説明及び理解を 容易とするためだけに記載されたものである。
図中、
図 1は、代表的な C u系高温超伝導体の基本単位格子構造を示す図である。 図 2は、複合酸化物系薄膜の作製装置全体の概略図である。 。
図 3は、 スパッタ薄膜作製室の概略上面透視図である。
図 4は、 スパッタ薄膜作製室の概略側面透視図である。
図 5は、 本発明の複合酸化物系薄膜作製装置のターゲット面に垂直方向の堆積 速度の分布 示すグラフである。
図 6は、 本発明の複合酸化物系薄膜作製装置のターゲット面に平行方向の堆積 速度の分布を示すグラフである。
図 7は、 夕一ゲッ卜面に垂直方向の電荷供給層及び超伝導層の構成原子の組成 比分布をスパッタ雰囲気のガス組成 (A rX02 ) をパラメ一ターに示したもの である。
図 8は、 タ一ゲット面に水平方向の電荷供給層及び超伝導層の構成原子の組成 比分布をスパッタ雰囲気のガス,組成 (A r/02 ) をパラメ一ターに示したもの である。
図 9は、 複合酸化物系薄膜の製造用プログラムのフローチヤ一トを示す。 図 10は、 本発明の方法及び装置を用いて作製した Cu系高温超伝導薄膜の X 線回折測定結果を示すグラフである。
図 11は、 本発明の方法及び装置を用いて作製した C uT 1 - 1234系高温 超伝導薄膜の X線回折測定結果を示すグラフである。
図 12は、 本発明の方法及び装置を用いて作製した Cu— 1245系高温超伝 導薄膜の X線回折測定結果を示すグラフである。
図 13は、 本発明の方法及び装置を用いて作製した (CuS r 02 ) m / (C a Cu02 ) n ; (m=2. 5, n = 5. 7) 系高温超伝導薄膜の X線回折測定 結果を示すグラフである。 発明を実施するための最良の形態
以下、 図面に示した実施の形態に基づ 、てこの発明を詳細に説明する。
本実施の形態では、複合酸化物系薄膜の一例である C u系高温超伝導薄膜につ いて説明する。
まず始めに、組成及び膜厚の物理的制御について説明する。
図 1は、代表的な C u系高温超伝導体の基本単位格子を示す。 これらの基本単 位格子は、 基本単位格子の上 T®を構成する、 CuB a2 04y で成る電荷供給 層 1とこの上下面以外の層である、 C an— t Cun 02n (n = 3〜5) で成る超 伝導層 2とから構成されている。
本発明では、 CuBa2 0 -7 で成る電荷供給層 1の組成を有する電荷供給層 用のターゲットと、 C an— i C un 02n (n=3〜5) で成る超伝導層 2の組成 を有する超伝導層用の夕一ゲッ卜とを別々に用意し、 これらのターゲットを時間 を制御して交互にスパッ夕して積層し、 Cu系超伝導薄膜を作製する。例えば、 図 1に示した Cu— 1234構造の Cu系超伝導薄膜を作製する場合には、 あら かじめ設定した電荷供給層用のターゲッ卜と超伝導層用のターゲッ卜からの膜堆 積速度から、 図 1に示した C u— 1234構造の電荷供給層 1及び超伝導層 2の 厚さに相当する膜厚が積層する時間 t 1、 t 2を求め、電荷供給層用のターゲッ トを t 1時間スパッ夕し、 弓 Iき続き、超伝導層用のターゲットを t 2時間スパッ 夕する。 この交互のスパッタを必要な回数、 繰り返して所望の膜厚の Cu_ 12 3 4構造の C u系超伝導薄膜を作製する。
この方法によれば、均一な組成のターゲットを用い、均一な組成の電荷供給層 1と超伝導層 2力形成され、 またスパッタ時間 t 1, t 2によって膜厚が制御さ れるから、 所望の基本単位格子を有する C u系超伝導薄膜を作製することができ る。 さらに基板温度を適切な温度に設定して、 層表面の構成原子を表面拡散及び 表面反応させることにより層間のエピタキシー成長性を向上させている。
次に、 ィヒ学的な自己形成について説明する。 本発明における化学的な自己形成 とは、 実現しょうとする物質の結晶構造において、 原 質の特定の構成原子を 他の反応性が高く、構造制御性の高い原子に置換すること、 あるいは、 原料物質 に他の反応性が高く、 構造制御性の高い原子を付加すること、 すなわち、 原, 質に化学的修飾を加えることによって、 この構造がより、 に実現されるよう にすることを言う。 本発明の C u系超伝導薄膜においては、 電荷供給層 1と超伝 導層 2の a軸の長さが異なり、 このため、電荷供給層 1と超伝導層 2の格子齢 力悪く、電荷供給層 1と超伝導層 2とがエピタキシー成長した単結晶構造にする こと力難しい。
電荷供給層 1の C u原子を、 C u原子よりもイオン価数が大きく、 かつ、 ィォ ン半径が比較的小さく、 配位数が 6以上の原子で、 かつ特定の割合で置換 ( C u i-x Mx B a 2 0 ,-γ ; Mは置換原子) すると、 電荷供給層 1のホール濃度 力 曽ぇ、電荷供給層 1のイオン結合性が増加し、 C u O結合長力短縮する。 この 効果により、電荷供給層 1と超伝導層 2の a軸の長さ力近づき、 格子鈴するよ うになり、 電荷供給層 1と超伝導層 2とがエピタキシー成長した単結晶構造が得 られる。 この効果を有する原子は、 T 1の外、 遷移金属元素などの一元素または 複数元素である。
また、電荷供給層 1の C u原子に配位する 0を増やすことによつても、 C uの ィォン価数が増え、電荷供給層 1のィォン結合性が増加し、 C u 0結合長が短縮 する。 ただし、 C uの価数が高すぎると不安定になるため、 C uの一部を高原子 価のィォンで置換する必要がある。
この効果により、 電荷供給層 1と超伝導層 2の a軸の長さ力近づき、 格子齢 性が向上するようになり、電荷供給層 1と超伝導層 2とがエピタキシー成長した 単結晶構造が得られる。
本発明では、 電荷供給層用のターゲッ卜に、 Cu原子を特定の割合で置換した Cui-X Mx B a2 04-y (Mは置換原子) 組成のターゲットを用いることによ り、 また、 スパッタ雰囲気中に酸化性ガスを混入することによる反応性スパッタ により、電荷供給層 1と超伝導層 2の a軸の長さを近づけ、格子 性を向上さ せ、 電荷供給層 1と超伝導層 2とがエピタキシー成長した単結晶構造を得る。 次に、 配向性基板によるエピタキシー成長につ 、て説明する。
すぐれた結晶性を有する C u系超伝導薄膜を成長させるには、 格子整合性の良 、配向結晶基板が必 である。
さらに、 C u系超伝導薄膜に使用できる配向結晶基板は種類が限られている。 例えば、従来、広く用いられている配向結晶基板に、 S r T i 03 がある。 S r T i 03 の a軸の格子定数は 0. 390 nmであり、 超伝導層 C aCu02 の a 軸の格子定数は 0. 384 nmであるが、 この禾 の格子不整合でもェピタキシ 一成長力 しく、 限られた温度範囲でしか実現できなかった。
本発明では、 電荷供給層 C L — x MX B a2 0,-y をバッファ層として用いる ことにより、配向結晶基板と超伝導層の格子整合条件を満たし、 使用できる配向 結晶基板の種類を増やすと共に、 エピタキシー成長を容易にしている。 ちなみに 、 配向結晶基板として、 ケィ素鋼板を用いることも可能である。
以上に説明した C u系超伝導薄膜の製造方法を、 SAE (S e l f As s e mb 1 i n g Ep i t axy) 法と名付ける。
[ 0 043]
つぎに上記 S AE法を実現する装置の構成を説明する。
図 2, 図 3, 図 4に、 本発明の装置の概略構成を示す。 図 2は装置全体の概略 図である。 図 3はスパッタ薄膜作製室の概略上面透視図である。 図 4はスパッタ 薄膜作製室の概略側面透視図である。
この装置は、 超高真空堆積室 (基本圧力 1 X 10— 7 T 0 r r ) であるスパッ タ薄膜作製室 3と、 この薄膜作製室 3にゲ一ト弁を介して接続された口一ドロッ ク室 4と、 制御コンピュータ 5とからなる。 スパッタ薄膜作製室 3には、 3種類 のスパッタ 'ターゲット (焼結された B a2 Cu02 と C aCu02及び絶縁物 のターゲット) を垂直に装備した 3系統のスパッタ電極 6と、 これらのターゲッ ト面を覆うように近接してシャッター 7が設けられている。 このシャツタ一 7は 図示しないシャッタ一回転制御装置によりそれぞれ独立に駆動され、 スパッタリ ングによる基板への薄膜の堆積及び非堆積を制御する。 基板は、 基板保持'回転 •加熱装置8に設置され、基板の回 ¾ϋ度、温度が制御される。 設置された基板 面は、上記夕一ゲット面の法線方向に平行にかつスパッタ ·プラズマの外に配設 される。 この構成により、 スパッタ荷電粒子の衝突による損傷が無く、 かつ、膜 厚及び組成分布の良い C u系高温超伝導薄膜を得ることができる。
なお、 図 3, 図 4中、 9は基板面の汚染を防ぐシャッターである。 本装置には 図示しない、 ガス流量 ·圧力制御装置、 2系統の排気装置、各種のビューイング ポート、 スパッタガン取り付け部、 P L D用ターゲット (レーザアブレ一シヨン タ一ゲット) 取り付け部、 レーザビーム導入部等が備えられ、 また、上記装置の 主要部分及び主要部品は、 ジヨセフソン接合特性評価装置及びレーザアブレ一シ ヨン (パルスレーザ堆積: P L D) と共通性及び互換性を持つ構成である。 図 5にこの装置のターゲット面に垂直方向の堆積速度の分布を示す。 図 6にこ の装置のターゲット面に平行方向の堆積速度の分布を示す。
図 5、 図 6から明らかなように、 ターゲッ卜からの垂直距離が 7 0 mm付近で 、 ターゲッ卜に垂直及び平行方向の膜厚分布力非常によいことが分かる。 なお、 図 6において、 図中の数値は、 ターゲッ卜からの垂直距離を示す。
図 7は、 基板温度が室温での、 ターゲット面に垂直方向の電荷供給層及び超伝 導層の構成原子の組成比分布を、 スパッタ雰囲気のガス組成(A r /02 ) をパ ラメータ一に示したものであり、 また、 図 8は、基板温度が室温での、 ターゲッ ト面に水平方向の電荷供給層及び超伝導層の構成原子の組成比分布を、 スパッタ 雰囲気のガス組成 (A r /02 ) をパラメ一ターに示したものである。
図 7及び図 8から明らかなように、特定のガス組成で組成分布が非常によぃ領 域力存在すること力分かる。
口一ドロック室 4は、 スパッ夕薄膜作製室の真空を破らずに基板の交換を可能 にするトランスファ一口ッド 1 0を有すると共に、 ロードロック室 4内に電極作 製等のための、 スパッタ手 g¾び Z又は蒸着手段を備えている。 さらに、 スパッタ薄膜作製室 3は、嫌系統のスパッ夕電源と、 基板保持 ·回 転'加熱装置 8と、 シャッター 7及びシャッター回転制御装置.と、 ガス流量'圧 力制御装置と、 2系統の排気装置と、各々、 電力、 回 度 '温度、位置、 ガス 流量'圧力、及び真空度を計量するセンサ一と、各々の装置の駆動を制御する端 末コンピュータと、 この端末コンピュータの出力に基づき専隱するァクチユエ一 夕と、 を有し、 また、 制御用コンピュータ 5との通信手段を有しており、 制御用 コンピュータとの通信とセンサー出力とに基づ L、てァクチユエ一夕を駆動かつ制 御する構成である。
次に、 本装置の動作の形態を説明する。
C U系高温超伝導薄膜を構成する電荷供給層と超伝導層を、電荷供給層用タ一 ゲッ卜と超伝導層用ターゲッ卜とをそれぞれ交互に膜厚を制御してスパッ夕する 工程は、制御用コンピュータ 5に、 電荷供給層用ターゲッ卜と超伝導層用ターゲ ットのそれぞれのスパッタ電力、 基板回転速度'温度、 ガス流量'圧力、 真空度 、 それぞれの夕一ゲッ卜に対応するシャッターの開時間、及び作製する C u系高 温超伝導薄膜の膜厚に対応する繰り返し回数を入力し、 これらの入力値に基づき プログラムされた制御用コンピュータ 5力 端末コンピュータとの通信を介し、 複数系統のスパッタ電源、基板保持 '回転'加熱装置 8、 シャツタ一及びシャツ タ一回転制御装置、 ガス流量 ·圧力制御装置、及び 2系統の排気装置を制御して 、 C u系高温超伝導薄膜を作製する。
また、 C u系高温超伝導薄膜製造用プログラムは、 コンピュータによって C u 系高温超伝導薄膜の製造を制御するプログラムであつて、 この制御プログラムは 、電荷供給層用タ一ゲッ卜と超伝導層用ターゲッ卜のそれぞれのスパッタ電力、 基板回転速度'温度、 ガス流量'圧力、 真空度、 それぞれのタ一ゲッ卜に対応す るシャッタ一の開時間、及び作製する C u系高温超伝導薄膜の膜厚に対応する繰 り返し回数の入力値に基づき、端末コンピュータとの通信を介し、複数系統のス パッタ電源、基板保持 ·回転 ·加熱装置、 シャッター及びシャッタ一回転制御装 置、 ガス流量 ·圧力制御装置、及び 2系統の排気装置を制御するものである。 これらの構成によって、 1 0 0〜1 0 0 0原子層にも及ぶ C u系高温超伝導薄 膜を、人手によることなく、 かつ、 正確に製造できる。 図 9に複合酸化物系薄膜の製造用プログラムのフローチャートを示す。 この例 は、 3 ^1のターゲットを使用して作製する例について示している。
制御用コンピュータ 5において、 まず、 基板温度、 基板回 ¾ϋ度、 A rと酸ィ匕 性ガス (02 あるいは N2 0) の流量及び圧力、物質 Aからなるタ一ゲット八、 物質 Bからなるターゲッ B、及び物質 Cから成るタ一ゲット Cのスパッタ電力 、 物質 A、物質 B、及び物質 Cの一層当たりの堆積時間、作製する複合酸化物系 薄膜の厚さに対応する基本単位格子の数、 すなわち、繰り返し回数、 および、 プ ロセス微調整のために適宜に設定する待ち時間を入力する。 つぎに、上記入力値 に基づき、 制御用コンピュータ 5は、複数系統のスパッタ電源、 基板保持 ·回転 •加熱装置、 シャツ夕一及びシャッター回転制御装置、 ガス流量 ·圧力制御装置 、 及び 2系統の排気装置である各々の装置に、各々の制御命令を出力する。 上記 各々の制御装置の端末コンピュー夕から、上記制御命令完了の応答を受け取った 後、制御用コンピュータ 5は、 図 9においてプロセス Aで示す工程を実行する。 すなわち、 夕一ゲット Aのスパッタ電源 O Nの制御命令を出力し、待ち時間 Aの 後、 ターゲッ ト Aのシャッター開の制御命令を出力し、物質 Aの一層当たりの堆 積時間経過後、 ターゲット Aのシャツタ一閉の制御命令を出力し、 タ一ゲット A のスパッタ電源 0 F Fの制御命令を出力する。
待ち時間 Xの後、 制御用コンピュータ 5は、 図 9においてプロセス Bで示すプ ロセス Aと同様な工程を実行する。 すなわち、 ターゲット Bのスパッタ電源 O N の制御命令を出力し、 待ち時間 Bの後、 ターゲット Bのシャッター開の制御命令 を出力し、物質 Bの一層当たりの堆積時間経過後、 夕一ゲット Bのシャッター閉 の制御命令を出力し、 ターゲット Bのスパッタ電源 O F Fの制御命令を出力する 。 待ち時間 Yの後、 制御用コンピュータ 5は、 図 9においてプロセス Cで示すプ ロセス A及び Bと同様な工程を実行する。 この工程は上記プロセス A, Bの説明 と同等なので省略する。
次に、 制御用コンピュータ 5は、 初期値を 0に設定した繰り返し数を 1増やし 、 この繰り返し数と、 あらかじめ入力してある上記繰り返し回数とを比較し、ェ 程繰り返し数が繰り返し回数未満であった場合に、 夕一ゲット Aのスパッタ電源 O Nに戻り、 以下、上記プロセス A, B , 及び Cから成る工程を繰り返す。 制御 用コンピュータ 5は、繰り返し数が繰り返し回数に等しかった場合は、装置終了 設定制御命令を上記各々の装置に出力し、各々の制御装置の端末コンピュー夕か ら、上記制御命令完了の応答を受け取った後、 制御を終了する。
なお、 図 9は、 ターゲットが 3種類の場合について例示したものであって、 4 種類以上のターゲットを必 とする複合酸化物系薄膜の場合であっても、 図 9に 示すプログラムにプロセス D、 E、 。 'のように追加してプログラムすることに よつて対応可倉なことは明らかである。
次に、 本発明の実施例を説明する。
実施例 1 :
図 10は、 本発明の方法及び装置を用いて作製した、 Cu系高温超伝導薄膜の X線回折測定結果を示す。
配向性基板として、 S r T i 03 ( 100)基板を用い、 この上に電荷供給層
(Cu, T 1) B a2 Oy を衝蘭し、 さらに超伝導層 CaCu02 を積層した。 基板温度は 430 °C〜520 °Cである。 図 10の下側の X線回折図から判るよう に、電荷供給層の回折ピークは、 T 1 B a 2 Cu05-y結晶の c面の回折に相当 する回折ピークのみが観測される。 すなわち、 電荷供給層 Tl B a2 C u05-y カ^ S r T i 03 ( 100)基 に c軸配向してエピタキシー成長しているこ とを示す。 また、 図 10の上側の X線回折図から判るように、 超伝導層の回折ピ ークは C a C u02 結晶の c面の回折に相当する回折ピークのみが観測される。 すなわち、超伝導層 CaCu02 は、電荷供給層 Tl B a2 Cu05y上に c軸 配向してエピタキシー成長していることを示す。
従来、 SrTi03 (a = 0. 390 n m)基板上への超伝導層 C a C u02
(a = 0. 384 nm) のエピタキシー成長は、 a軸の格子不整合のため、 狭い 温度範囲 (430〜440°C) に限られていた。
これに対し、 本発明では、 基板 S r T i 03 (a= 0. 390 nm) と超伝導 層 CaCu02 (a = 0. 384 n m) の間に、電荷供給層 T 1 B a 2 C u 05y (a= 0. 389 nm) を格子^"のためのバッファ層として揷入しているた め、 430 °C〜520 °Cの広い温度範囲において、 安定してエピタキシー成長さ せることができる。 実施例 2 :
図 11は、 本発明の方法及び装置を用いて作製した、 C u T 1— 1234系高 温超伝導薄膜の X線回折測定結果を示す。
酸化性雰囲気ガスとして、 N2 0を用い、 基板に STO (S r T i 03 ) を用 い、基板温度 520 °Cで作製した。
図 11の X線回折パターンは CuT 1 - 1234に相当するピークによって形 成されており、 また、 c軸格子定数は 1. 879 nmであることから、 C uT 1 - 1234系高温超伝導薄膜力作製できたこと力判る。 この C u T 1— 1234 系高温超伝導薄膜は、 交流帯磁率の測定で、 T c (超伝導臨界温度) が約 20 K であることを示した。
実施例 3 :
図 12は、 本発明の方法及び装置を用いて作製した、 C u _ 1245系高温超 伝導薄膜の X線回折測定結果を示す。 酸化性雰囲気ガスとして、 N2 0を用い、 基板に NdGa03 を用い、基板温度 520 °Cで作製した。
図 12の X線回折パターンは Cu_l 245に相当するピークによって形成さ れており、 また、 c軸格子定数は 2. 0000 nmであることから、 CuTl— 1245系高温超伝導薄膜が作製できたことが判る。
実施例 4 :
図 13は、 本発明の方法及び装置を用いて作製した、 (CuS r 02 ) m / ( CaCu02 ) n ; (m=2. 5, n = 5. 7 )系高温超伝導薄膜の X線回折測 定結果を示す。 酸化性雰囲気ガスとして、 N2 0を用い、 基板に S TO (S rT i Oa ) を用い、 基板温度 500。Cで作製した。
図 13の X線回折パターンは (C u S r 02 ) m / (C a C u02 ) n ; (m =2. 5, n=5. 7)系結晶構造に相当するピークによって形成されており、 また、 c軸格子定数は 2. 643 nmであることから、 (CuS r02 ) m / ( C aCu02 ) „ ; (m=2. 5, n=5. 7 )系高温超伝導薄膜が作製できた こと力判る。
本発明の方法及び装置を用 、て作製できる高温超伝導薄膜は、 上記に説明した C u系高温超伝導薄膜に限らない。 下記に示す組成の C u系高温超伝導薄膜を本 発明の方法及び装置を用いて作製すれば、極めて容易に、 かつ、 優れた超伝導特 性を有する C u系高温超伝導薄膜が作製できる。
(1) Cu - 1 22 3、 Cu_ 1 23 4、及び C u- 1 245の結晶構造で代 表される C u系高温超伝導薄膜であって、ィ匕学式: C i — Mx (B ai-y S r y ) 2 C a„-i C Un 02 n+4-y; M=T 1 , B ί , Pb, I n, G a, A 1, B , Sn, G e, S i, C, T i, V, C r, Mn, F e, C o, N i, Z r, N b, Mo, W, Re, Ru, 0 sの一元素または複数元素; 0≤x≤ 1. 0, 0 ≤γ≤ 1, 0≤ ζ≤ 1, — 2≤w≤ 4, 3≤n≤ l 5で表される (C u, M) 系
(2) ィ匕学式: C L — x Mx (B a i-y S r y ) 2 (C a i-z Lz ) n-i C u n 02 n+4-w; M = T 1, B i, Pb, I n, G a, A 1, B, S n, Ge, S i , C, T i, V, C r, Mn, F e, C o, N i, Z r, Nb, Mo, W, Re , Ru, 0 sの一元素または複数元素; L =M g、 アル力リ金属元素の一元素ま たは複数元素; 0≤x≤ 1. 0, 0≤γ≤ 1, 0≤ z≤ l, ~ 2≤w≤ 4, 3≤ n≤ l 6で表される (Cu, M) 系高温超伝導薄膜。
(3) ィ匕学式: C ut— x T 1 x (B ai-y S ry ) 2 (C ai-z Lz ) n-i C u„ 02 n+4-w; L=Mg、 アルカリ金属元素の一元素または複数元素; 0≤x≤ 1. 0, 0≤y≤ 1, 0≤ ζ≤ 1, - 2≤w≤ 4, 3≤n≤ 1 6で表される (C u, T I) 系高温超伝導薄膜。
(4) ィ匕学式: C —x T lx (B ai-y S ry ) 2 (C ai-Z L2 ) 2 Cu 3 O io-w; L=Mg、 アルカリ金属元素の一元素または複数元素; 0≤x l, 0≤γ≤ 1, 0≤ ζ≤ 1, — 2≤w≤ 4で表される (Cu, T 1 ) 系高温超伝導
(5) ィ匕学式: C in— Rex (B at— y S ry ) 2 (C ai-z Lz ) n-i C u„ 02 n+4-w L=Mg、 アルカリ金属元素の一元素または複数元素; 0≤x≤ 1, 0≤y≤ l, 0≤ ζ≤ 1, - 2≤w≤ 4, 3≤n≤ 1 6で表される (Cu, R e ) 系高温超伝導薄膜。
(6) Cui-x Mx (B a i_y S r y ) 2 (C a i-2 Lz ) „-i C un 02n+4 -w; M=T i、 V、 C r, B, Ge、 S i, C ; L=Mg、 アルカリ金属元素の 一元素または複数元素; 0≤χ≤ 1, 0≤γ≤ 1, 0≤ ζ≤ 1, - 2≤w≤ A, Z≤n≤ l 6で表される (C u, M) 系高温超伝導薄膜。 産 の利用可能性
以上の説明から理解されるように、 本発明によれば、 高温高圧を用いず、 結晶 性に優れ、 基; W位格子構造を任意に制御でき、 後熱処理を必要とせず、 低温で かつ容易に製造できる複合酸化物系薄膜の作製方法及びその装置並びにそれによ り作製した複合酸化物系薄膜を提供することができ、 強誘電体材料、 酸化物磁性 材料、 酸化物半導体材料、非線形光学材料、 絶縁体材料、 透明電極材料、 低誘電 体材料及び酸化物超伝導材料などとして、極めて有用である。

Claims

請 求 の 範 囲
1. 組 ¾び膜厚の物理的な制御と、表面拡散と、ィ匕学的な自己形成と、 配向結晶基板によるエピタキシー成長とを組み合わせて作製することを特徵とす る、複合酸化物系薄膜の作製方法。
2 . 前記複合酸化物系薄膜は、 強誘電体薄膜、磁性体薄膜、半導体薄膜、 非線形光学薄膜、 騰体薄膜、透明《®薄膜、 低誘電体薄膜及び超伝導薄膜であ ることを特徴とする、 請求の範囲第 1項に記載の複合酸化物系薄膜の作製方法。
3. 前言 ¾組成及び膜厚の物理的な制御は、前記複合酸化物系薄膜を構成す る各々の相の原子の組成を有する各々のスパッ夕用ターゲットを、 それぞれ交互 に、上記複合酸化物の基本単位格子における各々の相の膜厚を制御してスパッタ して積層することを特徵とする、請求の範囲第 1項に記載の複合酸化物系薄膜の 作製方法
4. 前記表面拡散は、所定の基板温度によって、前記積層中の複合酸化物 の表面原子力壞面を移動し、前記相の格子点位置に配置することを特徵とする、 請求の範囲第 1項に記載の複合酸化物系薄膜の作製方法。
5. 前言己化学的な自己形成は、前記複合酸化物系薄膜の特定の前記相の構 成原子そのものにより、 またはその一部を特定の原子と置換することによって、 上記特定の相の反応促進性と構造安定化を促すこと、 及び Ζ又は化学的な修飾に より、 上記特定の相とこの相に積層する他の相との格子 を向上させ、上記 複合酸化物系薄膜の形成を促進させることを特徴とする、請求の範囲第 1項に記 載の複合酸化物系薄膜の作製方法。
6 . 前記化学的な自己形成は、前記複合酸化物系薄膜の特定の Iff己相の酸 素濃度を制御することによって、 上記複合酸化物系薄膜の特定の相のホール濃度 を制御し、上記特定の相とこの相に積層する他の相との格子 性を向上させる ことを特徴とする、請求の範囲第 1項に記載の複合酸化物系薄膜の作製方法。
7 . 前記配向結晶 S¾によるエピタキシー成長は、上記配向結晶基板上に または格子^ を持つバッファ層を上記配向結晶基 fchに積層しこのバッファ 層上に、前記複合酸化物系薄膜を構成する他の相から成る層を積層してェピタキ シ一成長させることを特徵とする、請求の範囲第 1項に記載の複合酸化物系薄膜 の作製方法。
8 . 前記酸化物超伝導薄膜は、 C u系高温超伝導薄膜であることを特徴と する、 請求の範囲第 2項に記載の複合酸化物系薄膜の作製方法。
9 . 前記 C u系高温超伝導薄膜を構成する相である電荷供給層と超伝導層 の前記組成及び膜厚の物理的な制御を行うに際し、上記電荷供給層の組成を有す る電荷供給層用ターゲット及び上記超伝導層の組成を有する超伝導層用タ一ゲッ トをそれぞれ ¾Sに膜厚を制御してスパッ夕することを特徵とする、請求の範囲 第 8項に記載の C u系高温超伝導薄膜作製方法。
1 0 . 前記化学的な自己形成は、前記電荷供給層の C u原子そのものによ り、 またはその一部を特定の原子と置換することによって、上言己電荷供給層の反 応促進性と構造安定ィ匕を促すことにより、上記電荷供給層と前記超伝導層を格子 整合させ、 前記 C u系高温超伝導薄膜の形成を促進させることを特徵とする、請 求の範囲第 8項に記載の C u系高温超伝導薄膜作製方法。
1 1. 前記化学的な自己形成は、前記電荷供給層の酸素濃度を制御するこ とによって、上記電荷供給層のホール濃度を制御し、上記電荷供給層と超伝導層 を格子 させることを特徵とする、請求の範囲第 8項に記載の C u系高温超伝
1 2. 前記電荷供給層の C u原子の一部を特定の原子と置換する方法は、 前記電荷供給層の組成を有するターゲッ卜に、所定の量の上記特定の原子を混合 し、 この所定の量の特定の原子を混合した電荷供給層用タ一ゲットをスパックし て上記電荷供給層を形成することを特徵とする、請求の範囲第 1 0項に記載の C u系高温超伝導薄膜作製方法
1 3. 前記電荷供給層の «濃度を制御する方法は、上記電荷供給層及び /又は超伝導層をスパッタする際、 スパッタガス雰囲気中の酸化性ガス分圧を調 節して行うことを特徵とする、請求の範囲第 1 1項に記載の C u系高温超伝導薄 膜作製方法。
1 4. 前記配向結晶基板によるェピタキシ一成長は、上記配向結晶基板上 に前記 C u原子の一部を特定の原子と置換した電荷供給層から成るバッファ層、 または難元素から成る格子^"性の良 Lヽバッファ層を積層し、 このバッファ層 上に前記超伝導層を積層してエピタキシー成長させることを特徴とする、請求の 範囲第 8項に記載の C u系高温超伝導薄膜作製方法。
1 5. 真空槽内で、所定の基板温度に加熱した配向結晶基板上に、所定の 量の特定の原子を混合した複合酸化物系薄膜用タ一ゲット、 または格子整合性の 良い物質のターゲットをスパックしてバッファ層を積層し、 次に酸化性ガスを上 記真空槽に所定の圧力で導入し、上記バッファ層上に、
( a ) 上記複合酸化物系薄膜の第一の相の原子組成から成るタ一ゲットをスパ ッタして、 上記複合酸化物系薄膜の基本単位格子における上記第一の相の厚さ分 だけ積層し、 この層上に、
( b ) 上記複合酸化物系薄膜の第二の相の原子組成から成るターゲットをスパ ッ夕して、 上記複合酸化物系薄膜の基本単位格子における上記第二の相の厚さ分 だけ積層し、
( c ) 以下、上記複合酸化物系薄膜を構成する相の種類だけ、上記 (a ) また は (b ) と同様の工程を繰り返し、 上記 (a)、 (b) 及び (c) の工程またはその逆工程を繰り返して所定の膜 厚の上記複合酸化物系薄膜を作製することを特徵とする、複合酸化物系薄膜の作 製方法。
16. 真空槽内で、 所定の基板温度に加熱した配向結晶基板上に、所定の 量の特定の原子を混合した電荷供給層用ターゲット、 または格子 性の良い物 質の夕一ゲットをスパックしてバッファ層を積層し、 次に酸化性ガスを上記真空 槽に所定の圧力で導入し、上記バッファ層上に、
(a) 超伝導層用ターゲットをスパッタして、 Cu系高温超伝導薄膜の基本単 位格子における超伝導層の厚さ分だけ積層し、 この層上に、
(b) 上記電荷供給層用ターゲットをスパックして、 上記 Cu系高温超伝導薄 膜の基本単位格子における上記電荷供給層の厚さ分だけ積層し、
上記 (a)、 (b) の工程またはその逆工程を繰り返して所定の Hi?の上記 C u系高温超伝導薄膜を作製することを特徴とする、 C u系高温超伝導薄膜の作製 方法。
17. 真空槽内で、 所定の基板温度に加熱した配向結晶基板上に、所定の 量の特定の原子を混合した電荷供給層用夕一ゲット、 または格子整合性の良い物 質のタ一ゲットをスパッ夕してバッファ層を積層し、 次に酸化性ガスを上記真空 槽に所定の圧力で導入し、上記バッファ層上に、
(a) 超伝導層用ターゲットをスパッタして、 Cu系高温超伝導薄膜の基本単 位格子における上記超伝導層の厚さ分だけ積層し、 この層上に、
(b) 上記電荷供給層用夕一ゲットをスパッ夕して、 上記 Cu系高温超伝導薄 膜の基; φ 位格子における上記電荷供給層の厚さ分だけ積層し、
上記( a )、 (b) の工程を繰り返して所定の の上記 C u系高温超伝導薄 膜を作製し、 次に、
(c) 絶縁物から成るタ一ゲットをスパッ夕し、上記所定の膜厚の Cu系高温 超伝導薄膜上に所定の膜厚の 椽層を形成し、続いて、
上記 (a)、 (b) の工程またはその逆工程を繰り返して所定の膜厚の上記 C u系高温超伝導薄膜を作製することを特徵とする、 C u系高温超伝導薄膜作製方 法。
18. 前記 Cu原子の一部と置換する特定の原子は、 Tl, B i, Pb, I n, Ga, A 1 , B, Sn, Ge, S i, C, Ti, V, Cr、 Mn, F e, Co, Ni, Zr, Nb, Mo, W, Re, Ru, 0 sの一元素または複数元素 であることを特徵とする、請求の範囲第 8、 16又は 17項に記載の Cu系高温
19. 前記酸化性ガスは、 02、 03、 N2 0, NO、 または N02 であ ることを特徵とする、 請求の範囲第 8、 16又は 17項に記載の Cu系高温超伝 導薄膜作製方法。
20. スパッタ薄膜作製室と、 ロードロック室と、複数系統のスパッタ電 源と、 基板保持 ·回転 ·加熱装置と、 シャッター及びシャッタ一回転制御装置と 、 ガス流量 ·圧力制御装置と、 2系統の排気装置と、 制御用コンピュータとを有 し、請求の範囲第 1項に記載の複合酸化物系薄膜の作製方法を実現する、 複合酸 化物系薄膜の作製装置。
21. 前記スパッ夕薄膜作製室は、 垂直に配設した少なくとも 2つ以上の タ一ゲッ卜と、 これらのタ一ゲット面に平行に配設したシャツ夕一と、基板をこ の基板面が上記夕一ゲット面の法線方向に平行にかつスパッ夕 ·プラズマの外に 配設して回転しかつ加熱する基板保持 ·回転 ·加熱装置とを有することを特徴と する、請求の範囲第 20項に記載の複合酸化物系薄膜の作製装置。
22. 前記口一ドロック室は、前記スパッタ薄膜作製室の真空を破らずに 前記基板の交換が可能であると共に、上記ロードロック室内に蒸着手段を備えて いることを特徵とする、請求の範囲第 20項に記載の複合酸化物系薄膜の作觀
2 3. 前記複数系統のスパッ夕電源、前言己基板保持 ·回転 ·加熱装置、前 記シャッタ一及びシャッタ一回転制御装置、前記ガス流量 ·圧力制御装置及び前 記複数系統の排気装置は、
各々、 電力、 回転速度'温度、位置、 ガス流量'圧力及び真空度を計量するセ ンサ一と、
各々、 上記装置の駆動を制御する端末コンピュータと、 この端末コンピュータ の出力に基づき駆動するァクチユエ一夕と、
各々、 前記制御用コンピュータとの通信手段とを有し、
上記制御用コンピュータとの通信と上記センサー出力とに基づ Lヽて上記ァクチ ユエ一夕を駆動かつ制御することを特徼とする、請求の範囲第 2 0項に記載の複 合酸化物系薄膜の作製装置。
2 4. 複合酸化物系薄膜を構成する各々の相の原子の組成を有する各々の スパッタ用タ一ゲットをそれぞれ交互に、上記複合酸化物の基本単位格子におけ る各々の相の膜厚を制御してスパッタして積層する工程を含み、 この工程は、 プロダラムされた制御用コンピュータに、上記各々の相の原子組成を有する夕 —ゲッ卜の各々のスパッタ電力、 基板回転速度'温度、 ガス流量'圧力、 真空度 、 上言己それぞれのターゲット物質の薄膜堆積速度と基本単位格子における各々の 相の膜厚から決定する各々の物質の堆積時間、 及び作製する上記複合酸化物系薄 膜の膜厚に対応する繰り返し回数を入力し、 これらの入力値に基づき、 プロダラ ムされた上記制御用コンピュータが端末コンピュータとの通信を介し、複数系統 のスパッ夕電源、 S«保持 ·回転 ·加熱装置、 シャッタ一及びシャッタ一回転制 御装置、 ガス流量'圧力制御装置、 及び複数系統の排気装置を制御することを特 徵とする、複合酸化物系薄膜の製造方法。
2 5. C u系高温超伝導薄膜を構成する電荷供給層と超伝導層を、上記電 荷供給層用ターゲッ卜と上記超伝導雇用ターゲットとを、 それぞれ交互に膜厚を 制御してスパッ夕する工程を含み、 この工程は、 プログラムされた制御用コンピュータに、上記電荷供給層用タ一ゲットと上言己 超伝導層用タ一ゲットの各々のスパッタ電力、 回 Si度'温度、 ガス流量' 圧力、 真空度、上記各々のターゲット物質の薄膜堆積速度と上記各々の層の基本 単位格子における膜厚から決定する各々の物質の堆積時間、及び作製する c u系 高温超伝導薄膜の膜厚に対応する繰り返し回数を入力し、 これらの入力値に基づ き、 プログラムされた上記制御用コンピュータが端末コンピュータとの通信を介 し、複数系統のスパッタ電源、基板保持 ·回転 ·加熱装置、 シャッタ一及びシャ ッター回転制御装置、 ガス流量 ·圧力制御装置、及び 2系統の排気装置を制御す ることを特徵とする、 C u系高温超伝導薄膜製造方法。
2 6 . コンピュータによって複合酸化物系薄膜の製造を制御するプロダラ ムを記録した言^媒体であって、
この制御プログラムは、 複合酸化物系薄膜を構成する各々の相の原子の組成を 有する各々のスパッタ用タ一ゲットそれぞれのスパッタ電力、 基板回転速度'温 度、 ガス流量'圧力、 真空度、上記それぞれのターゲット物質の薄膜堆積速度と 基本単位格子における各々の相の膜厚から決定する各々の物質の堆積時間、及び 作製する上記複合酸化物系薄膜の膜厚に対応する繰り返し回数の入力値に基づき 、 端末コンピュータとの通信を介し、複数系統のスパッタ電源、 基板保持'回転 '加熱装置、 シャツタ一及びシャツタ一回転制御装置、 ガス流量'圧力制御装置 、 及び複数系統の排気装置を制御することを特徵とする、複合酸化物系薄膜の製 造用プログラムを記録した記録媒体。
2 7. コンピュータによって C u系高温超伝導薄膜の製造を制御するプロ グラムを言己録した言己録媒体であつて、
この制御プログラムは、電荷供給層用夕一ゲッ卜と超伝導層用ターゲッ卜のそ れぞれのスパッタ電力、 基板回転速度'温度、 ガス流量'圧力、 真空度、 上記そ れぞれのターゲット物質の薄膜堆積速度と上記各々の層の基本単位格子における 膜厚から決定する各々の物質の堆積時間、及び作製する C u系高温超伝導薄膜の 膜厚に対応する繰り返し回数の入力値に基づき、端末コンピュータとの通信を介 し、複数系統のスパッタ電源、基板保持 ·回転 ·加熱装置、前記シャッタ一及び シャッター回転制御装置、 ガス流量.圧力制御装置、及び複数系統の排気装置を 制御することを特徵とする、 C u系高温超伝導薄膜製造用プログラムを記録した 記録媒体。
2 8. 請求の範囲第 1〜 2 7項に記載の L、ずれかの方法または装置で作製 した、 C u— 1 2 2 3、 C u- 1 2 3 4及び C u- 1 2 4 5で代表される結晶構 造を有する C u系高温超伝導薄膜であって、 ィ匕学式: C u i-x Mx (B a :-y S ry ) 2 C an-i C Un 02n+4-y ; M=T 1, B i, Pb, I n, G a, A 1 , S n, T i , V, C r, Mn, F e, C o, N i, Z r, Nb, Mo, W, Re , Ru, O sの一元素または複数元素; 0≤x≤ l. 0, 0≤y≤ 1, 0≤ z≤ 1, - 2≤w≤ 4, 3≤n≤ 1 5で表される (C u, M) 系高温超伝導薄膜。
2 9. 請求の範囲第 1〜 2 7項に記載の L、ずれかの方法または装置で作製 した、 ィ匕学式: C u i—x Mx (B a i-y S r y ) 2 (C a i-z Lz ) n-i C un 02n+一; M=T 1, B i , Pb, I n, G a, A 1 , B, S n, G e, S i , C, T i, V, C r, Mn, F e, C o, N i, Z r, Nb, Mo, W, Re, Ru, O sの一元素または複数元素; L=Mg、 アルカリ金属元素の一元素また は複数元素; 0≤χ≤ 1. 0, 0≤γ≤ 1, Q≤ z≤ l, - 2≤w≤ 4, 3≤n ≤ 1 6で表される (C u, M) 系高温超伝導薄膜。
3 0. 請求の範囲第 1〜 2 7項に記載の 、ずれかの方法または装置で作製 した、ィ匕学式: C ut— T 1 x (B a i-y S ry ) 2 (C i-z L , ) n-i C u n 02n + 4-w; L=Mg、 アルカリ金属元素の一元素または皿元素; 0≤x≤ 1
. 0, 0≤γ≤ 1, 0≤ ζ≤ 1, - 2≤w≤ , 3≤n≤ 1 6で表される (C u , T 1 ) 系高温超伝導薄膜。
3 1. 請求の範囲第 1〜 2 7項に記載の 、ずれかの方法または装置で作製 した、 ィ匕学式: C Τ 1 (B ai-y S ry ) 2 (C a i-z Lz ) 2 C u3 Oio-w ; L =M g、 アル力リ金属元素の一元素または 元素; 0≤χ≤ 1, 0 ≤γ≤ 1, 0≤ ζ≤ 1, 一 2≤w≤ 4で表される (C u, T 1 ) 系高温超伝導薄
3 2. 請求の範囲第 1〜 2 7項に記載の 、ずれかの方法または装置で作製 した、 ィ匕学式: C i -x R ex (B a i-r S ry ) 2 (C a i-z Lz ) n -! C u n 02 n+4-w ; L=Mg、 アルカリ金属元素の一元素または «元素; Q≤x≤ l , 0≤γ≤ 1, 0≤ ζ≤ 1, - 2≤w≤ , 3≤n≤ 1 6で表される (C u, R e ) 系高温超伝導薄膜。
3 3. 請求の範囲第 1〜 2 7項に記載の L、ずれかの方法または装置で作製 した、ィ匕学式: C u卜 Mx (B a i-y S r y ) 2 (C a Lz ) n-i C un 02 n+4-w; M=T i, V, C r, B, Ge, S i, C; L=Mg、 アルカリ金属 元素の一元素または複数元素; 0≤x≤ 1, 0≤γ≤ 1, Q≤ z≤ l, - 2≤w ≤ 4. 3≤n≤ l 6で表される (C u, M) 系高温超伝導薄膜。
PCT/JP2001/007280 2000-09-01 2001-08-24 Procede de production d'une mince couche d'oxyde de composite, dispositif correspondant et mince couche d'oxyde de composite ainsi produite WO2002020879A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01958485A EP1342820A4 (en) 2000-09-01 2001-08-24 MIXING OXIDE THIN FILM MANUFACTURING METHOD, MIXED OXIDE FILMS PRODUCED THEREFOR AND THEREFOR
US10/363,050 US7335283B2 (en) 2000-09-01 2001-08-24 Production method for composite oxide thin film and device therefor and composite oxide film produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-266132 2000-09-01
JP2000266132A JP3579690B2 (ja) 2000-09-01 2000-09-01 複合酸化物系薄膜の作製方法及びその装置並びにそれにより作製した複合酸化物系薄膜。

Publications (1)

Publication Number Publication Date
WO2002020879A1 true WO2002020879A1 (fr) 2002-03-14

Family

ID=18753278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007280 WO2002020879A1 (fr) 2000-09-01 2001-08-24 Procede de production d'une mince couche d'oxyde de composite, dispositif correspondant et mince couche d'oxyde de composite ainsi produite

Country Status (4)

Country Link
US (1) US7335283B2 (ja)
EP (1) EP1342820A4 (ja)
JP (1) JP3579690B2 (ja)
WO (1) WO2002020879A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281310A1 (en) * 2005-06-08 2006-12-14 Applied Materials, Inc. Rotating substrate support and methods of use
JP5618971B2 (ja) * 2011-11-28 2014-11-05 株式会社フジクラ 光ファイバの製造方法、制御装置、及びプログラム
JP5801755B2 (ja) * 2012-05-28 2015-10-28 日本電信電話株式会社 超伝導体の作製方法
CN103088295A (zh) * 2013-01-28 2013-05-08 湖北大学 一种巨红移高吸收钒镓共掺杂氧化钛薄膜的制备方法
US11393970B2 (en) 2016-08-30 2022-07-19 University Of Houston System Quality control of high performance superconductor tapes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279192A (ja) * 1992-03-27 1993-10-26 Nec Corp 酸化物超電導薄膜合成方法
JPH10236821A (ja) * 1997-02-28 1998-09-08 Agency Of Ind Science & Technol 不確定性原理に基づく低異方性高温超伝導体とその製造方法
JPH11278996A (ja) * 1998-03-27 1999-10-12 Agency Of Ind Science & Technol 酸化物薄膜の結晶成長方法
JP2000086388A (ja) * 1998-09-11 2000-03-28 Japan Science & Technology Corp コンビナトリアル分子層エピタキシー装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963524A (en) * 1987-09-24 1990-10-16 Semiconductor Energy Laboratory Co., Ltd. Sputtering device for manufacturing superconducting oxide material and method therefor
US5132280A (en) * 1987-09-25 1992-07-21 At&T Bell Laboratories Method of producing a superconductive oxide layer on a substrate
US4994435A (en) * 1987-10-16 1991-02-19 The Furukawa Electric Co., Ltd. Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
EP0322306B1 (en) * 1987-12-20 1995-09-20 Sumitomo Electric Industries Limited Process for producing a superconducting thin film
DE3805010A1 (de) * 1988-02-18 1989-08-24 Kernforschungsanlage Juelich Verfahren zur herstellung duenner schichten aus oxydischem hochtemperatur-supraleiter
US4923585A (en) * 1988-11-02 1990-05-08 Arch Development Corporation Sputter deposition for multi-component thin films
CA2037795C (en) * 1990-03-09 1998-10-06 Saburo Tanaka Process for preparing high-temperature superconducting thin films
EP0461592B1 (en) * 1990-06-11 1996-09-04 Mitsubishi Chemical Corporation Thin film Josephson device
JPH04342497A (ja) * 1991-05-20 1992-11-27 Sumitomo Electric Ind Ltd 複合酸化物超電導薄膜の成膜方法
US5629267A (en) * 1992-06-16 1997-05-13 Kabushiki Kaisha Toshiba Superconducting element having an intermediate layer with multiple fluorite blocks
JP2958455B1 (ja) * 1998-03-27 1999-10-06 工業技術院長 酸化物薄膜の結晶成長方法
JP3023780B1 (ja) * 1998-09-14 2000-03-21 工業技術院長 Cu系高温超伝導材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279192A (ja) * 1992-03-27 1993-10-26 Nec Corp 酸化物超電導薄膜合成方法
JPH10236821A (ja) * 1997-02-28 1998-09-08 Agency Of Ind Science & Technol 不確定性原理に基づく低異方性高温超伝導体とその製造方法
JPH11278996A (ja) * 1998-03-27 1999-10-12 Agency Of Ind Science & Technol 酸化物薄膜の結晶成長方法
JP2000086388A (ja) * 1998-09-11 2000-03-28 Japan Science & Technology Corp コンビナトリアル分子層エピタキシー装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIDEO IHARA ET AL.: "Cu-1234kei wo moto ni shita saikou seinou kouonn choudendou zairyou no sousei ni kansuru kenkyuu", DENSHI GIJUTSU SOUGOU KENKYUUSHO IHOU, vol. 63, no. 1-2, 20 March 1999 (1999-03-20), pages 67 - 75, XP002947318 *
M. ALEXE ET AL.: "Self-patterning nano-electrodes on ferroelectric thin films for gigabit memory applications", APPL. PHYS. LETT., vol. 73, no. 11, 14 September 1998 (1998-09-14), pages 1592 - 1594, XP002947319 *
See also references of EP1342820A4 *

Also Published As

Publication number Publication date
EP1342820A4 (en) 2008-05-21
US20040127064A1 (en) 2004-07-01
EP1342820A1 (en) 2003-09-10
JP2002068894A (ja) 2002-03-08
JP3579690B2 (ja) 2004-10-20
US7335283B2 (en) 2008-02-26

Similar Documents

Publication Publication Date Title
CA1330193C (en) Method for making artificial layered high-t_ superconductors
JPH10223476A (ja) 強誘電体薄膜およびその製造方法
WO2002020879A1 (fr) Procede de production d'une mince couche d'oxyde de composite, dispositif correspondant et mince couche d'oxyde de composite ainsi produite
Joseph et al. Ferroelectric behavior of epitaxial Bi 2 VO 5.5 thin films on Si (100) formed by pulsed-laser deposition
JPH10182292A (ja) 酸化物積層構造およびその製造方法
JP3037514B2 (ja) 薄膜超伝導体及びその製造方法
JPH07172996A (ja) 誘電体薄膜の製造方法及びその製造装置
JPS63236794A (ja) 酸化物超伝導薄膜の作製方法
US7507290B2 (en) Flux assisted solid phase epitaxy
JP2005113220A (ja) 多結晶薄膜及びその製造方法、酸化物超電導導体
JPH046108A (ja) 絶縁体および絶縁薄膜の製造方法と、超伝導薄膜および超伝導薄膜の製造方法
JP2961852B2 (ja) 薄膜超電導体の製造方法
JPH05170448A (ja) セラミックス薄膜の製造方法
JP2022072611A (ja) 結晶性酸化物膜、該結晶性酸化物膜を有する構造体、及び該結晶性酸化物膜の製造方法
JP2541037B2 (ja) 酸化物超電導薄膜合成方法
JP3315737B2 (ja) 強誘電体薄膜およびその製造方法
JPH07206437A (ja) 超電導体およびその製造方法
JPH08325019A (ja) ビスマス層状化合物の製造方法
JPH0722662A (ja) 絶縁体とその製造方法及び超電導体薄膜とその製造方法
JPH0259403A (ja) 酸化物超電導材料の製造法とイオンビーム・スパツタ装置及び電子素子
JPH0382749A (ja) 薄膜超電導体およびその製造方法
JPH05170437A (ja) 酸化物超電導体の製造方法
JPH0244782A (ja) 超伝導素子およびその製造方法
JPH0781934A (ja) 超電導体およびその製造方法
JPH06115935A (ja) 超電導体およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001958485

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001958485

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10363050

Country of ref document: US