WO2002006885A1 - Affichage a cristaux liquides comprenant une cellule ocb et son procede de commande - Google Patents

Affichage a cristaux liquides comprenant une cellule ocb et son procede de commande Download PDF

Info

Publication number
WO2002006885A1
WO2002006885A1 PCT/JP2001/005949 JP0105949W WO0206885A1 WO 2002006885 A1 WO2002006885 A1 WO 2002006885A1 JP 0105949 W JP0105949 W JP 0105949W WO 0206885 A1 WO0206885 A1 WO 0206885A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
liquid crystal
crystal display
display device
frame
Prior art date
Application number
PCT/JP2001/005949
Other languages
English (en)
French (fr)
Inventor
Yoshihito Ohta
Katsuyuki Arimoto
Takahiro Kobayashi
Taro Funamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/088,329 priority Critical patent/US7095396B2/en
Priority to KR1020027003351A priority patent/KR20020070962A/ko
Priority to EP01947935A priority patent/EP1302807A4/en
Priority to CA002384992A priority patent/CA2384992C/en
Publication of WO2002006885A1 publication Critical patent/WO2002006885A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0491Use of a bi-refringent liquid crystal, optically controlled bi-refringence [OCB] with bend and splay states, or electrically controlled bi-refringence [ECB] for controlling the color
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0633Adjustment of display parameters for control of overall brightness by amplitude modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/103Detection of image changes, e.g. determination of an index representative of the image change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present invention relates to a method of driving an active matrix type liquid crystal display device and a liquid crystal display device, and more particularly to a liquid crystal display device using an OCB (Optically Compensated Birefringence) having a wide viewing angle and high-speed response.
  • the present invention relates to a method for driving a display device and a liquid crystal display device.
  • liquid crystal display devices are widely used as screen display devices for computer devices and the like, but their use in TV applications is expected to expand in the future.
  • TN cells which are widely used at present, have a narrow viewing angle and insufficient response speed, and there are significant issues with display performance when used as TV, such as reduced contrast due to parallax and blurred moving images. is there.
  • OCB cells have a wider viewing angle and faster response time than TN cells, and can be said to be more suitable for displaying natural moving images.
  • FIG. 14 is a block diagram showing a configuration of a conventional liquid crystal display device.
  • XI, X2, ⁇ , Xn are gate lines, Yl, l2, ⁇
  • Ym is a source line
  • 126 is a thin film transistor (hereinafter, referred to as TFT) as a switching element
  • TFT thin film transistor
  • the drain electrode of each TFT is in the pixel 106. It is connected to the pixel electrode.
  • Each pixel 106 is composed of a pixel electrode, a counter electrode which is a transparent electrode, and a liquid crystal sandwiched between both electrodes.
  • the opposing electrode is driven by the voltage (Vcom) supplied by the opposing driver 105.
  • the voltage Vcom supplied to the common electrode is a first reference voltage Vref1 and a second reference voltage Vref2, which are switched and supplied every horizontal period.
  • a source driver that outputs a voltage to be supplied to the pixel 106 to the source lines ⁇ 1, Y2, ⁇ , Ym, and 104 is a gate line XI, X2.
  • Xn are gate drivers for applying a voltage to turn on the TFT 126 or a voltage to turn off the TFT 126.
  • the gate driver 104 synchronizes with the supply of data to the source lines Y 1, Y 2,..., And Ym by the source driver 103 to the gate lines XI, X 2,.
  • An ON voltage is applied sequentially.
  • the phase of the voltage supplied from the source driver 103 has an opposite phase to the phase of the voltage Vcom supplied to the common electrode.
  • the difference between the voltage Vcom supplied to this counter electrode and the voltage applied to each pixel 106 via the source lines Yl, ⁇ 2, ..., Ym is the liquid crystal in the pixel 106. This voltage determines the transmittance of the pixel 106.
  • FIG. 15 shows the voltage Vcom supplied to the counter electrode, the source signal Vs which is the video signal (VI) supplied to the source driver 103, and the (n-1) and n lines , And (n + 1) lines, respectively, showing the waveforms and timing relationships of the gate signals Vg (n ⁇ 1), Vg (n), and .Vg (n + 1).
  • Such a driving method is the same whether the OC B cell is used or the TN cell is used.
  • the OCB cell requires a unique drive that the TN cell does not have at the start-up stage when video display is started.
  • the OCB cell is in a state where it is not possible to display the bend orientation (white display) (Fig. 16B) and the bend orientation (black display) (Fig. 16C), which are ready for image display. It has a splay orientation (Fig. 16A).
  • transition unique driving such as applying a high voltage for a certain period of time is required.
  • the drive relating to this transition is not directly related to the present invention, and will not be described further.
  • an object of the present invention is to provide a driving method of a liquid crystal display device and a liquid crystal display device capable of suppressing occurrence of reverse transition and displaying a good image by using an OCB cell. .
  • a method of driving a liquid crystal display device includes: a plurality of source lines to which pixel data is supplied; a plurality of gate lines to which a scanning signal is supplied; A pixel cell arranged in a matrix corresponding to the intersection of the gate line and a gate line; a source driver for driving the source line based on an input video signal; and a gate driver for driving the gate line.
  • a first period and a second period for writing pixel data corresponding to the video signal to the pixel cells are selectively provided, and a potential level applied to each pixel cell in the first period is provided.
  • the bell is set so that each pixel cell holds a potential Vsup higher than the second period.
  • the “signal for initializing the liquid crystal state” means a signal written to the liquid crystal in order to easily keep the state of the OCB liquid crystal to return to the splay state in the bend state.
  • a ratio of the first period to the one frame period be set to less than 20%.
  • the first period When a voltage lower than a predetermined level is applied to the pixel cell, it is determined that the first period needs to be provided in the next frame, and the first period is preferably provided in the next frame.
  • the potential V sup be variably set for each frame. ⁇ In this case, if it is determined that the first period needs to be provided, the potential V sup applied in the next frame is changed in the immediately preceding frame. If the level is set to be equal to or higher than the applied potential V sup, and it is determined that there is no need to provide the first period, the potential V sup applied in the next frame is changed to the potential V sup applied in the immediately preceding frame. It is preferable to set the following levels. Alternatively, it is preferable that the length of the first period is variably set for each frame.
  • the first period provided in the next frame is set to be longer than the first period provided in the immediately preceding frame.
  • the backlight is controlled using a backlight brightness control unit that controls the brightness of the backlight so that the backlight is lit brightly according to the length of the first period. .
  • the average luminance level of the video signal input in a predetermined number of past frames and the average luminance level of the video signal input in the current frame are calculated, and the length of the first period is calculated based on the calculation result. It is preferable to control the height.
  • the next frame Preferably, the first period is set to a predetermined length.
  • the first video signal is a moving image or a still image
  • the first video signal is detected.
  • the period is longer than a predetermined length and the input video signal is a still image, it is preferable that the first period is shorter than a predetermined length.
  • the driving method when the video signal, which is a digital signal, is converted into an analog signal in the source driver, a reference potential used for the conversion is converted into a reference potential of the source line and the gate line. It is preferable to switch in synchronization with the drive timing.
  • the source can be used in one or two times or less of a time that can be spent for scanning one scanning line in one frame. It is preferable to supply the pixel data to a line.
  • a voltage corresponding to pixel data for one screen to each pixel cell in a time of 1 Z2 or less in one frame period.
  • a liquid crystal display device comprises: a plurality of source lines to which pixel data is supplied; a plurality of gate lines to which a scanning signal is supplied; A pixel cell arranged in a matrix corresponding to the intersection of a single line, a source driver for driving the source line based on an input video signal, a gate driver for driving the gate line, and a backlight.
  • the pixel cell is a liquid crystal display device having a liquid crystal panel which is an OCB cell, and corresponds to a first period in which a signal for initializing a liquid crystal state is written to the pixel cell in one frame period and the video signal.
  • a second period for writing the pixel data into the pixel cells is selectively provided, and a potential Vsup in which the potential level applied to each pixel cell in the first period is higher than the second period is applied to each pixel. It is characterized by comprising means (drive control unit) for setting so as to be held by the unit cell.
  • the setting unit (drive control unit) variably sets the potential Vsup for each frame.
  • the setting unit (drive control unit) variably sets the length of the first period for each frame.
  • the liquid crystal display device includes a backlight brightness control unit (backlight control unit) for controlling the brightness of the backlight, and the backlight brightness control unit includes a length of the first period. It is preferable to control the backlight so that the backlight lights up brightly in accordance with the condition.
  • backlight control unit backlight control unit
  • the shortest V sup holding period and the minimum V sup potential that can suppress the reverse transition while suppressing the reverse transition can be suppressed. Can be easily set, and the effect of lowering the screen brightness due to the insertion of the V sup holding period is minimized, so that a good image can be displayed.
  • FIG. 1 is a block diagram showing a configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a timing diagram of a counter voltage Vcom, a source signal Vs, and a gate signal Vg for driving the liquid crystal display device shown in FIG. 1 for a certain input video signal.
  • FIG. 3 is a block diagram illustrating a configuration of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 4A is a timing chart of a vertical synchronizing signal after double-speed conversion for driving the liquid crystal display device shown in FIG. 3 with respect to a certain input video signal.
  • FIG. 4B is a timing chart of a video signal (V s) after double-speed conversion for driving the liquid crystal display device shown in FIG. 3 with respect to a certain input video signal.
  • FIG. 4C is a timing chart of a signal level detection signal (DS) for driving the liquid crystal display device shown in FIG. 3 for a certain input video signal.
  • V s video signal
  • DS signal level detection signal
  • FIG. 5 is a block diagram showing a configuration of the liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 6A is a timing chart of a vertical synchronizing signal after double-speed conversion for driving the liquid crystal display device shown in FIG. 5 with respect to a certain input video signal.
  • FIG. 6B is a timing chart of a video signal (V s) after double-speed conversion for driving the liquid crystal display device shown in FIG. 5 with respect to a certain input video signal.
  • FIG. 6C is an evening diagram of a V sup period defining signal (V sup PS) for driving the liquid crystal display device shown in FIG. 5 for a certain input video signal.
  • FIG. 7 is a block diagram illustrating a configuration of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 8A is a timing chart of a vertical synchronizing signal after double-speed conversion for driving the liquid crystal display device shown in FIG. 7 for a certain input video signal.
  • FIG. 8B is a timing chart of a video signal (V s) after double-speed conversion for driving the liquid crystal display device shown in FIG. 7 with respect to a certain input video signal.
  • FIG. 8C is a timing chart of a Vsup period defining signal (VsupPS) for driving the liquid crystal display device shown in FIG. 7 for a certain input video signal.
  • VsupPS Vsup period defining signal
  • FIG. 8D is a timing chart of a backlight luminance control signal B C ′ for driving the liquid crystal display device shown in FIG. 7 for a certain input video signal.
  • FIG. 9 is a block diagram illustrating a configuration of a liquid crystal display device according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a configuration of a liquid crystal display device according to a sixth embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a configuration of a liquid crystal display device according to a seventh embodiment of the present invention.
  • FIG. 12A is a diagram showing input / output characteristics of the source driver shown in FIG. 11 by switching to the reference potential V REF 1.
  • FIG. 12B is a diagram showing input / output characteristics of the source driver shown in FIG. 11 by switching to the reference potential V REF 2.
  • FIG. 12C is a diagram showing input / output characteristics of the source driver shown in FIG. 11 by switching to the reference potential V REF 3.
  • FIG. 12D is a diagram showing input / output characteristics of the source driver shown in FIG. 11 by switching to the reference potential V REF 4.
  • FIG. 13 is a block diagram illustrating a configuration of a liquid crystal display device according to an eighth embodiment of the present invention.
  • FIG. 14 is a block diagram showing a configuration of a conventional liquid crystal display device.
  • FIG. 15 is a timing chart of the counter voltage Vcom, the source signal Vs, and the gate signal Vg for driving the liquid crystal display device shown in FIG. 14 for a certain input video signal.
  • FIG. 16A is a schematic diagram showing a state where the OCB cell is in a splay alignment state.
  • FIG. 16B is a schematic diagram showing a state where the OCB cell is in a bend alignment (white display) state.
  • FIG. 16C is a schematic diagram showing a state where the ⁇ CB cell is in a bend alignment (black display) state.
  • FIG. 17 is a diagram showing a potential-transmittance curve of a general OCB cell. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device includes a line double-speed conversion unit 101 to which a video signal (VI) and a synchronization signal (SYNC) are input, a drive control unit 102, a source driver 103, a gate driver 104, a first To the fourth reference potential V refl to V ref 4 and output the opposing voltage Vcom, the opposing driver 105, the pixel cell 106, and the backlight to which the backlight luminance control signal (BC) is input
  • a control unit 107 and a pack light 108 are provided.
  • the pixel cell 106 includes a liquid crystal 116 and a switching element (TFT) 126.
  • TFT switching element
  • FIG. 2 is a timing diagram of a counter voltage Vcom, a source signal Vs, and a gate signal Vg for driving the liquid crystal display device shown in FIG. 1 for a certain input video signal.
  • the counter voltage Vcom is applied from the drain electrode (D) of the TFT 126 formed on the cell to the counter electrode commonly wired across the liquid crystal cell, and the source signal Vs is The potential sampled and held by the clock CLK supplied from the line double-speed conversion unit 101 to the source driver 103 and supplied from the drive control circuit 102 to V s is supplied to the source driver Y 103 through the source lines Y 1 to Ym. It is supplied to 26 source electrodes (S).
  • Gate signals Vg (n—1), Vg (n), and Vg (n + 1) are supplied to gate lines Xn—1, Xn, and Xn + 1, respectively. Is enough.
  • the video signal VI is converted into a double frequency in the line double-speed conversion unit 101 based on the synchronization signal S YNC, and the line double-speed video signal is supplied to the source driver 103 as a source signal Vs. Sent.
  • the video signal of twice the frequency twice instead of sending the video signal of twice the frequency twice, as shown in FIG.
  • the video signal of the double frequency, the state of the OCB liquid crystal that is going to return to the spray state A signal that is written to the liquid crystal to make it easier to stay in the bend state, a signal that initializes the liquid crystal state (hereinafter, referred to as an initialization signal, in the case of an OCB cell, for example, a high-level black signal), 2
  • An initialization signal is interposed between the image signal, the initialization signal, and so on, which are double the frequency.
  • the potential supplied to the liquid crystal cell depends on the counter voltage V com and the gate-on source. It is the potential difference from the potential V s, and it is the absolute value of this potential difference that affects the transmittance of the liquid crystal and the effect of preventing the reverse transition.
  • the source signal V s supplied to each cell is driven at a half cycle of one horizontal period (1H) such as a video signal, an initialization signal, a video signal, an initialization signal, and so on.
  • the gate electrode (G) is separately scanned by a gate signal at a timing of turning on the initialization signal and a timing of turning on the video signal. As a result, driving is performed as if the initialization signal and the video signal were individually scanned.
  • one frame period (IV) is divided into a reverse transition prevention drive period P1 (first period) and a video signal drive period P2 (second period).
  • applying the initialization signal potential to the cell for a certain period can prevent the reverse transition phenomenon that returns to the splay orientation, but writing the initialization signal also lowers the brightness. Therefore, the shorter the reverse transition prevention drive period P1 in which the initialization signal is written, the better.
  • the liquid crystal cell in the normally white mode has a higher response speed to black as it is driven at a higher potential. Therefore, the reference potential supplied to the counter electrode is changed from the conventional two types to four types, and the initial The reverse transition prevention drive period P1 is achieved by driving the VSU p potential, which is a potential having a higher absolute value of (Vcom ⁇ Vs) than when writing the video signal, than when writing the video signal.
  • the V sup holding period can be further shortened.
  • the four types of reference potentials V ref 1, V ref 2, V ref 3, and V ref 3 provided in the opposing driver 105 are synchronized with the driving of the source line and the gate line.
  • V ref 4 and driving the counter electrode the V sup holding period can be adjusted to an arbitrary length. This makes it easy to set the shortest V s Up retention period that can suppress reverse transition This makes it possible to minimize the effect of screen luminance reduction by inserting the V sup holding period.
  • the Vsup holding period is uniformly applied to all frames.
  • the reverse transition occurs only when a state in which a voltage higher than a predetermined level is not applied to the liquid crystal for a certain period of time continues. Therefore, the second embodiment of the present invention determines whether or not an input signal includes a signal of a predetermined level or higher, and provides a V sup holding period only when a signal of a predetermined level or higher is included. It was done.
  • FIG. 17 is a diagram showing a potential-transmittance curve of a general OCB cell.
  • 1701 is a potential-transmittance curve when a predetermined potential for preventing reverse transition is not introduced
  • 1702 is a potential when a predetermined potential for preventing reverse transition is introduced.
  • One transmittance curve, 1703 shows the critical potential V th at which the reverse transition from the bend orientation to the splay orientation occurs when the reverse transition is not prevented.
  • the splay alignment returns below V th, so that an appropriate transmittance cannot be obtained.Therefore, the ⁇ CB cell must be driven at a potential higher than V th. Does not provide sufficient brightness.
  • the transmittance decreases as the applied voltage increases, and the transmittance increases as the applied voltage decreases. That is, the higher the level of the displayed video signal, the lower the voltage applied to the pixel. Therefore, the expression “the input signal is above a predetermined level” means “the voltage applied to the pixel cell is below a predetermined level”. Is equivalent to the expression This is the same in the embodiment described later.
  • FIG. 3 is a block diagram illustrating a configuration of a liquid crystal display device according to a second embodiment of the present invention.
  • the liquid crystal display device has a line double speed conversion unit 101, an input signal level detection unit 309, a drive control unit 102, a source driver 103, a gate driver, a 104, a facing drive unit. 105, a pixel cell 106, a packed light control unit 107, and a backlight 108.
  • the drive control unit 102 of the liquid crystal display device according to the first embodiment is replaced with a drive control unit 302, and an input signal level detection unit is used.
  • This is a configuration to which 309 is further added.
  • Other configurations of the liquid crystal display device according to the second embodiment are the same as those of the liquid crystal display device according to the first embodiment, and the same reference numerals are given to the same components and description thereof is omitted. I do.
  • FIG. 4 is an evening timing chart of a control signal for driving the liquid crystal display device shown in FIG. 3 for a certain input video signal.
  • FIG. 4A shows a vertical synchronizing signal indicating the frame period after double-speed conversion by the line double-speed conversion unit 101
  • FIG. 4B shows a video signal (V s) after double-speed conversion similarly
  • FIG. 4C shows a signal level detection signal (DS) generated by the input signal level detection unit 309 according to a predetermined detection level (A).
  • the input signal level detector 309 determines whether or not the input video signal Vs includes a signal of a predetermined level A or more in frame units, and outputs a signal level detection signal DS.
  • the drive control unit 302 receives the signal level detection signal DS, and when a signal of a predetermined level A or more is included in the input video signal, In the next frame, a drive control signal for providing the V sup holding period is generated. Thereafter, the same processing as in the first embodiment is performed.
  • an input video signal includes a signal of a predetermined level or more in a frame unit, and when a signal of a predetermined level or more is included in the input signal, A V sup holding period is provided in the frame. This makes it possible to eliminate an unnecessary Vsup holding period, thereby suppressing a decrease in average luminance of the display screen caused by providing the Vsup holding period.
  • the control as to whether or not the Vsup holding period is provided in accordance with the level of the input video signal is performed.
  • the average luminance of the display screen changes between the frame where the Vsup holding period is provided and the frame where the Vsup holding period is not provided.
  • the third embodiment of the present invention is intended to reduce the sense of visual discomfort due to the luminance change.
  • FIG. 5 is a block diagram illustrating a configuration of a liquid crystal display device according to a third embodiment of the present invention.
  • the liquid crystal display device has a line double speed conversion unit 101, an input signal level detection unit 509, a drive control unit 502, a source driver 103, a gate driver 104, and a counter drive.
  • the backlight unit includes a unit 105, a pixel cell 106, a backlight control unit 107, and a backlight 108.
  • the drive control unit 102 of the liquid crystal display device according to the second embodiment is replaced with the drive control unit 502, and the input signal level is changed.
  • Other configurations of the liquid crystal display device according to the third embodiment are the same as those of the liquid crystal display device according to the second embodiment, and the same reference numerals are given to the same components and description thereof will be omitted. I do.
  • FIG. 6 is an evening timing diagram of a control signal for driving a liquid crystal display device with respect to a certain input video signal.
  • FIG. 6A shows a vertical synchronizing signal indicating a frame cycle after double-speed conversion by the line double-speed conversion unit 101
  • FIG. 6B shows a video signal (V s) after double-speed conversion similarly
  • FIG. 6C shows a V sup period defining signal generated by the input signal level detecting section 509 according to the predetermined detection level A.
  • the input signal level detection section 509 determines whether or not the input video signal Vs includes a signal of a predetermined level A or more in frame units, and outputs a V sup period specifying signal (V sup PS). .
  • the Vsup period defining signal VsupPS is a signal that defines the length of the Vsup period in the frame. In FIG. 6, it is shown as having a five-step length switching accuracy.
  • the input signal level detection unit 509 determines that the length of the V sup period provided for the next frame is equal to the V sup period of the current frame.
  • a V sup period defining signal V sup PS that is longer than the length by at least one step is generated.
  • a V sup period defining signal V sup PS is set so that the length of the V sup period provided in the next frame is shortened by at most one step.
  • the drive control unit 502 receives the Vsup period defining signal VsupPS, and generates a control signal so that a Vsup period corresponding to the value is provided.
  • the input video signal includes a signal of a predetermined level or more in frame units, and the length of the V sup period is determined based on the determination result. Change continuously between. This allows It is possible to eliminate the unnecessary V sup holding period while suppressing the change in the average brightness of the display screen due to the change in the V sup period between frames, and to reduce the average brightness of the display screen caused by providing the V sup holding period. The decline can be suppressed.
  • FIG. 6C shows that the V sup period defining signal V sup PS can be selected in five steps, the more the gradation, the longer the V sup period between frames. This is preferable because a change in luminance can be suppressed.
  • the relationship between the gradation of the V sup period defining signal V sup PS and the actual length of the corresponding V sup period may be linear, or the gradation of the V sup period defining signal V sup PS in the current frame. It may be a non-linear relationship that depends on the relationship.
  • the control is performed such that the length of the Vsup holding period is continuously changed between frames in accordance with the level of the input video signal. At this time, the average brightness of the display screen changes, albeit continuously, with the change in the length of the Vsup holding period.
  • the fourth embodiment of the present invention suppresses this luminance change.
  • FIG. 7 is a block diagram illustrating a configuration of a liquid crystal display device according to a fourth embodiment of the present invention.
  • the liquid crystal display device has a line double speed conversion unit 101, an input signal level detection unit 509, a drive control unit 502, a source driver 103, a gate driver 104, and a counter drive. It includes a unit 105, a pixel cell 106, a backlight control unit 707, a backlight 108, and an input signal level detection unit 509.
  • the liquid crystal display device according to the fourth embodiment has a configuration in which a backlight control unit 707 is newly added to the liquid crystal display device according to the third embodiment.
  • a backlight control unit 707 is newly added to the liquid crystal display device according to the third embodiment.
  • other configurations of the liquid crystal display device according to the fourth embodiment Are the same as the respective components of the liquid crystal display device according to the third embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the method of controlling the backlight brightness is a process that has been performed conventionally, and a detailed description thereof will be omitted.
  • FIG. 8 is an evening timing chart of a control signal for driving a liquid crystal display device with respect to a certain input video signal.
  • V s) and the V sup period defining signal V sup PS generated by the input signal level detection unit 509 according to the predetermined detection level A are all the same as the signals in the third embodiment.
  • the pack write control unit 707 receives the V sup period defining signal V sup PS from the input signal level detecting unit 509 and receives the V sup period defining signal V su PS
  • a backlight brightness control signal BC 'for lighting the backlight 108 is generated to a brightness that offsets the change in the average brightness of the display screen caused by the change in the sup period.
  • the backlight luminance control signal BC ′ is determined according to the V sup period defining signal V sup PS, and when the V sup period is long, that is, when the average luminance of the display screen is low, the backlight luminance control signal BC ′ is When the luminance is high and the Vsup period is short, that is, when the average luminance of the display screen is high, the pack light 108 is controlled so that the pack light luminance becomes dark.
  • the effect of suppressing the reverse transition is maintained by controlling the length of the V sup period and the brightness of the pack light in conjunction with each other. In this state, it is possible to suppress a change in the average luminance of the display screen due to the presence or absence of the Vs 11 p period.
  • the reverse transition occurs when a state in which a voltage of a predetermined level or more is not applied to a certain pixel for a certain period of time or more continues, and in one frame in the second to fourth embodiments.
  • the control of providing the V sup holding period when the input video signal includes a signal of a predetermined level A or more satisfies the sufficient condition for suppressing the reverse transition.
  • a frame in which a Vsup period needs to be provided is determined in more detail.
  • FIG. 9 is a block diagram illustrating a configuration of a liquid crystal display device according to a fifth embodiment of the present invention.
  • the liquid crystal display device includes a line double speed conversion unit 101, a drive control unit 902, a source driver 103, a gate driver 104, a counter drive unit 105, and a pixel cell 106.
  • the liquid crystal display device according to the fifth embodiment is different from the liquid crystal display device according to the third embodiment in that the drive control unit 602 is replaced with a drive control unit 90 and a new input signal is provided.
  • This is a configuration to which a motion detection unit 909 is added.
  • the other configurations of the liquid crystal display device according to the fifth embodiment are the same as the respective configurations of the liquid crystal display device according to the second embodiment described above. Omitted.
  • the input signal motion detector 909 receives the video signal (VI) and the synchronization signal (SYNC) input to the liquid crystal display device and determines whether the input video signal is a moving image or a still image. I do.
  • the input signal motion detection unit 909 has a memory that can hold the video signal for one frame, compares the video signal of one frame before written to each pixel with the current input video signal, and Considering the effects of noise included in the signal, the pixels whose difference is equal to or less than a predetermined level are judged to be pixels that do not move with respect to the previous frame (hereinafter referred to as still pixels). When the number of still pixels is equal to or less than a predetermined number, it is determined that the input video signal is a moving image.
  • the input signal motion detection section 909 outputs the above determination result to the drive control section 902 as a motion detection signal (MD).
  • the drive control unit 902 provides a V sup period only when the input signal motion detection unit 909 determines that the input video signal is a still image based on the motion detection signal MD.
  • the input image is frozen.
  • the input signal motion detection unit 909 has described that the V sup period is provided only when the input video signal is determined to be a still image. Control may be performed so that the V sup period is lengthened when it is determined, and the V sup period is shortened when it is determined that the video is a moving image. Alternatively, control may be performed so that the potential of Vsup is increased when it is determined that the image is a still image, and the potential of Vsup is decreased when it is determined that the image is a moving image. Further, the determination of a still image and a moving image is performed using only one frame of data, but this may be determined using data of a plurality of frames.
  • the video signal and the synchronizing signal input to the liquid crystal display device were used as the input of the input signal motion detection unit 909, but the line double speed conversion unit 109 May be used as the line double-speed video signal (V s) and the synchronization signal.
  • V s line double-speed video signal
  • the present inventors have found that, when the Vsup period is lengthened, the average luminance of the display screen decreases, but the effect of suppressing the reverse transition is high. Therefore, in the sixth embodiment of the present invention, even if the V sup period is longer than the preceding and succeeding frames, the change in the average luminance at the boundary of the frame where the characteristics of the input video greatly changes is caused. The visual effect is judged to be small, and control is performed to provide a relatively long V sup period.
  • FIG. 10 is a block diagram illustrating a configuration of a liquid crystal display device according to a sixth embodiment of the present invention.
  • the liquid crystal display device has a line double speed conversion unit 101, a drive control unit 1002, a source driver 103, a gate driver 104, a counter drive unit 105, and a pixel cell 106.
  • the liquid crystal display device according to the sixth embodiment is different from the liquid crystal display device according to the third embodiment in that the drive control unit 602 is replaced with a drive control unit 1002, and a new scene is provided.
  • This is a configuration to which a change detection unit 109 is added.
  • Other configurations of the liquid crystal display device according to the sixth embodiment are the same as those of the liquid crystal display device according to the second embodiment, and the same configurations are denoted by the same reference numerals. Is omitted.
  • the scene change detection unit 1109 detects when the characteristics of the input video signal have changed significantly, but with a relatively simple configuration described below, a certain level of detection accuracy can be achieved.
  • the present inventors have confirmed from experiments that they can be obtained.
  • the scene change detection unit 1009 receives the video signal input to the present liquid crystal display device as an input, holds the APL (hereinafter, referred to as AP Lpre) one frame before, and at the end of one frame, the APL ( APLnow) is calculated. When the absolute value of the difference between AP Lpre and AP Lnow is equal to or greater than a predetermined level, it is determined that the feature of the video has changed significantly.
  • the scene change detection unit 1009 determines that the characteristics of the image have changed significantly, it activates the scene change detection signal (SCD) for the next one frame.
  • the drive control unit 1002 makes the Vsup holding period longer by a predetermined time in a frame in which the scene change detection signal SCD is in an active state than in other frames.
  • the change in the average luminance of the display screen due to the length of the V sup period can be visually recognized by increasing the V sup period at the boundary of the frame where the characteristics of the input video change greatly. It is possible to increase the effect of suppressing the reverse metastasis while suppressing the above effects.
  • the scene change detection unit 1009 calculates the APL of one entire frame, and uses this to detect the characteristic change of the video. By dividing the data, calculating the APL for each area, and comparing the plurality of APLs between frames, it is possible to improve the detection accuracy of the characteristic change.
  • control may be performed so that the potential of Vsup is higher in a frame in which the scene change detection signal SCD is in an active state than in other frames.
  • the input video signal and the synchronizing signal are used as inputs to the scene change detection unit 1009, but the line output from the line double speed conversion unit 101 is used.
  • a double-speed video signal (Vs) and a synchronization signal may be used.
  • the source driver 103 is driven at twice the speed by doubling the speed.
  • the transfer rate is twice as fast as normal, and when driving a high pixel panel, high performance is required for transfer and signal processing.
  • a Vsup period is provided while the transfer speed remains the same.
  • FIG. 11 is a block diagram illustrating a configuration of a liquid crystal display device according to a seventh embodiment of the present invention.
  • the liquid crystal display device includes a line double speed conversion unit 101, a drive control unit 1102, a reference potential switching unit 110, a source driver 1103, a gate driver 104, and a facing drive unit. 105, a pixel cell 106, a backlight control unit 107, and a backlight 108.
  • the digital data Vs input to the source driver 1103 is transferred to an internal shift register composed of a plurality of flip-flops 110103-1, and the transfer for all pixels is performed.
  • the D / A conversion section 1103-2-2 is enabled by the DZA enable signal (DZAEN) from the drive control section 1102.
  • the drive control unit 1102 outputs a switching signal (SP) to the reference switching unit 110, and the reference potential switching unit 11010 outputs a reference signal having the input / output characteristics shown in FIG. 12A.
  • Allens potential VREF 1 potential (potential (A): black level to potential (E): white level) Is selected and output to the DZA converter 1 1 0 3—2.
  • the D / A converter 1 1 10 3-2 shows the input digital data for each pixel based on the reference potential VREF 1 input from the reference potential switch 1 1 1 0 as shown in Fig. 12A. Converts to gamma corrected source potential Y1 to Ym for each pixel.
  • the reference potential VREF 2 (potential (A): white level to potential (E)) is set so that the input / output characteristics are completely opposite to those of FIG. 12A. : Black level), so-called source inversion can be realized.
  • the reference potential VREF is switched to the reference potential VREF 3 (potential (A) to potential (E): black level) for the initialization signal during the initialization signal writing period. No matter what data is transferred to the shift register inside the source driver 1103, the potential after DZA conversion becomes an initialization signal.
  • the reference potential VREF is set to the reference potential VREF4 (potential (A) to potential (E): black level) for the inverted initialization signal during the initialization signal writing period.
  • the potential after DZA conversion becomes an inverted initialization signal, regardless of what data is transferred to the shift register inside the source driver 1103.
  • the transfer of the initialization signal is unnecessary, and the transfer speed of the source driver can be maintained at the conventional speed, and both the video signal and the initialization signal can be driven to the liquid crystal cell. it can.
  • the eighth embodiment of the present invention is based on whether an image is a moving image or a still image.
  • FIG. 13 is a block diagram illustrating a configuration of a liquid crystal display device according to an eighth embodiment of the present invention.
  • the liquid crystal display device has a line double speed conversion unit 101, a drive control unit 1302, a source driver 103, a gate driver 104, a counter drive unit 105, and a pixel cell 106.
  • the input signal motion detection unit 909 detects whether the input video signal is a moving image or a still image, and if it is determined that the input video signal is a moving image, the V sup holding period is long, and the input signal is determined to be a still image.
  • the drive control circuit 132 generates a control signal so as to shorten the V sup holding period.
  • the purpose is only to prevent the reversal phenomenon. Therefore, when the input video signal is determined to be a moving image, the V sup holding period is not provided or is short, and the V sup holding period is short. When it is determined, the control is performed so as to lengthen the V su P holding period. However, in the present embodiment, the above-described control is performed in order to achieve both the prevention of the reversal phenomenon and the improvement in the visibility of the moving image. is there.
  • the V sup holding period is changed depending on whether the input video signal is a moving image or a still image, thereby preventing reverse transition and minimizing luminance reduction in the case of a still image.
  • the visibility of the moving picture can be improved by extending the period of the initialization signal closer to impulse-type display driving such as CRT.
  • the shortest V sup holding period and the minimum V su P potential capable of suppressing the reverse transition can be easily set while suppressing the reverse transition. Screen by inserting retention period It is possible to display good images by minimizing the effect of the brightness drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

明 細 書
OC Bセルを用いた液晶表示装置およびその駆動方法 技術分野
本発明は、 ァクティブマトリックス型液晶表示装置の駆動方法および 液晶表示装置に係り、 特に、 広視野角、 高速応答性を有する O C B (Optically Compensated Birefringence) Ϊ佼晶モ一トを禾 Ij用した液晶表 示装置の駆動方法および液晶表示装置に関する。 背景技術
周知のとおり、 液晶表示装置は、 コンピュータ装置等の画面表示デバ イスとして数多く使用されているが、 今後は TV用途での使用拡大も見 込まれている。 しかしながら、 現在広く使用されている TN型セルは視 野角が狭く、 応答速度も不充分で、 視差によるコントラストの低下や、 動画像のボケなど、 TVとして使用する際の表示性能には大きな課題が ある。
近年、 かかる TN型セルに代わり、 〇CBセルに関する研究が進んで いる。 OCBセルは、 TN型セルに比べ、 広視野角、 高速応答という特 性を持ち、 自然動画表示により適した液晶セルであるといえる。
以下、 従来の液晶表示装置の駆動方法および液晶表示装置について説 明する。
図 14は、 従来の液晶表示装置の構成を示すブロック図である。
図 14において、 X I、 X 2、 ··'、 Xnはゲート線、 Y l、 Υ 2、 ·'·、
Ymはソース線、 1 26はスィツチング素子としての薄膜トランジスタ (以下、 TFTという) で、 各 T F Tのドレイン電極は画素 1 0 6内の 画素電極に接続されている。 それぞれの画素 1 0 6は、 画素電極と、 透 明電極である対向電極と、 それら両方の電極により挟持された液晶で構 成される。 対向電極は対向駆動部 1 0 5が供給する電圧 (V c om) に よって駆動される。 対向電極に供給される電圧 V c omは第 1基準電圧 V r e f 1、 第 2基準電圧 V r e f 2の 2種類で、 これを 1水平期間ご とに切り替えて供給する。
1 0 3はソース線丫 1、 Y 2、 ·'·、 Ymに画素 1 0 6に供給する電圧 を出力する I C (以下、 ソースドライバという) であり、 1 04はゲー ト線 X I、 X 2、 ···、 Xnに TFT 1 2 6をオン状態にする電圧、 また はオフ状態にする電圧を印加するためのゲートドライバである。 ゲート ドライバ 1 04は、 ソースドライバ 1 0 3によるソース線 Y 1、 Y 2、 ···、 Ymへのデータの供給と同期して、 ゲート線 X I、 X 2、 ···、 Xn に対して順次オン電圧を印加する。 ソースドライバ 1 0 3から供給され る電圧の位相は、 対向電極に供給される電圧 V c omの位相とは逆相の 関係となる。 この対向電極に供給される電圧 V c omと、 ソース線 Y l、 Υ 2、 ···、 Ymを介して各画素 1 0 6に印加された電圧の差が、 画素 1 0 6内の液晶の両端にかかる電圧で、 この電圧が画素 1 0 6の透過率を 決定する。
なお、 図 1 5に、 対向電極に供給される電圧 V c om、 ソースドライ バ 1 0 3に供給される映像信号 (V I ) であるソース信号 V s、 および (n - 1 ) ライン、 nライン、 (n+ 1 ) ラインにそれぞれ印加される ゲート信号 Vg (n— 1) 、 V g (n) 、 .Vg (n+ 1 ) の波形および タイミング関係を示す。
こうした駆動方法は、 OC Bセルを用いた場合も、 TN型セルを用い た場合も同様である。 ただし、 OCBセルは、 映像表示を開始する起動 段階において T N型セルにはない独特の駆動が必要となる。 図 1 6に示すように、 O C Bセルは、 画像表示が可能な状態にあたる ベンド配向 (白表示) (図 1 6 B ) 、 ベンド配向 (黒表示) (図 1 6 C ) と、 表示できない状態にあたるスプレイ配向 (図 1 6 A) をもつ。 この スプレイ配向状態からベンド配向状態に移行する (以下、 転移という) ためには、 一定時間高電圧を印加するなどの独特の駆動が必要となる。 ただし、 この転移に係る駆動に関しては本発明とは直接関係しないので、 これ以上の説明は行わない。
しかしながら、 この O C Bセルは、 前記の独特な駆動によりいつたん ベンド配向に転移しても、 所定のレベル以上の電圧が一定時間以上印加 されない状態が続くと、ベンド配向が維持できずスプレイ配向に戻る(以 下、 この現象を逆転移と呼ぶ) という問題があった。 発明の開示
それ故、 本発明の目的は、 O C Bセルを用いて、 逆転移の発生を抑圧 するとともに、 良好な映像を表示することが可能な液晶表示装置の駆動 方法および液晶表示装置を提供することにある。
前記の目的を達成するため、 本発明に係る液晶表示装置の駆動方法は ·、 画素データが供給される複数のソース線と、 走査信号が供給される複数 のゲ一ト線と、 前記ソース線と前記ゲ一ト線の交点に対応してマトリク ス状に配置された画素セルと、 入力された映像信号に基づき前記ソース 線を駆動するソースドライバと、 前記ゲート線を駆動するゲートドライ バと、 バックライトとからなり、 前記画素セルは〇 C Bセルである液晶 パネルを有する液晶表示装置を駆動する方法であって、 1フレーム期間 に、 液晶の状態を初期化する信号を前記画素セルに書き込む第 1期間と 前記映像信号に対応した画素データを前記画素セルに書き込む第 2期間 を選択的に設け、 前記第 1期間において各画素セルに印加される電位レ ベルが前記第 2期間よりも高い電位 V s u pを各画素セルが保持するよ うに設定したことを特徴とする。 なお、 「液晶の状態を初期化する信号」 とは、 スプレイ状態に戻ろうとする O C B液晶の状態をベンド状態にと どまりやすくするために液晶に書き込む信号を意味する。
本発明に係る駆動方法においては、 前記第 1期間が前記 1フレーム期 間に占める割合を 2 0 %未満に設定することが好ましい。
また、 前記画素セルに所定レベル以下の電圧が印加された場合、 次の フレームでは前記第 1期間を設ける必要があると判断し、 前記第 1期間 を次のフレームにおいて設けることが好ましい。
さらには、 現在のフレームを含め、 過去所定のフレーム数連続して同 一の前記画素セルに所定レベル以下の電圧が印加された場合、 次のフレ ームでは前記第 1期間を設ける必要があると判断し、 前記第 1期間を次 のフレームにおいて設けることが好ましい。
また、 前記電位 V s u pをフレーム毎に可変設定することが好ましい < この場合、 前記第 1期間を設ける必要があると判断した場合、 次のフ レームで印加する電位 V s u pを、 直前のフレームで印加した電位 V s u p以上のレベルに設定し、 一方、 前記第 1期間を設ける必要がないと 判断した塲合、 次のフレームで印加する電位 V s u pを、 直前のフレー ムで印加した電位 V s u p以下のレベルに設定することが好ましい。 または、 前記第 1期間の長さをフレーム毎に可変設定することが好ま しい。
この場合、 前記第 1期間を設ける必要があると判断した場合、 次のフ レームに設ける第 1期間を、 直前のフレームに設けた第 1期間以上の長 さに設定し、 一方、 前記第 1期間を設ける必要がないと判断した場合、 次のフレームに設ける第 1期間を、 直前のフレームに設けた第 1期間以 下の長さに設定することが好ましい。 また、 前記第 1期間を設けるフレームでは、 前記第 1期間を設けない フレームよりも前記バックライトが明るく点灯するように、 前記バック ライトの明るさを制御するバックライト輝度制御手段を用いて、 前記バ ックライトを制御することが好ましい。
また、 前記第 1期間の長さに応じて前記バックライトが明るく点灯す るように、 前記バックライトの明るさを制御するバックライト輝度制御 手段を用いて、 前記バックライトを制御することが好ましい。
また、 過去所定数のフレームにおいて入力された映像信号の平均輝度 レベルと、 現在のフレームにおいて入力される映像信号の平均輝度レべ ルとを演算し、 前記演算結果により、 前記第 1期間の長さを制御するこ とが好ましい。
この場合、 過去所定の数のフレームにおいて入力された映像信号の平 均輝度レベルと、 現在のフレームにおいて入力される映像信号の平均輝 度レベルとの差が所定レベルよりも大きい場合、 次のフレームにおいて 前記第 1期間を所定の長さに設定することが好ましい。
また、 本発明に係る駆動方法においては、 入力された映像信号が動画 像または静止画像であるかを検出し、 検出した結果、 入力された映像信. 号が動画像である場合、 前記第 1期間を所定の長さよりも長くし、 入力 された映像信号が静止画像である場合、 前記第 1期間を所定の長さより も短くすることが好ましい。
また、 本発明に係る駆動方法においては、 ディジタル信号である前記 映像信号を、 前記ソースドライバ内でアナログ信号に変換する際に、 変 換に使用する基準電位を、 前記ソース線および前記ゲート線の駆動タイ ミングと同期して切り換えることが好ましい。
また、 本発明に係る駆動方法においては、 1フレームにおいて 1走査 線の走査に費やすことができる時間の 1ノ 2以下の時間で、 前記ソース 線への前記画素データの供給を行うことが好ましい。
または、 1フレーム期間の 1 Z 2以下の時間で、 1画面分の画素デー 夕に対応する電圧を各々の画素セルに印加することが好ましい。
前記の目的を達成するため、 本発明に係る液晶表示装置は、 画素デー 夕が供給される複数のソース線と、 走査信号が供給される複数のゲ一卜 線と、 前記ソース線と前記ゲ一ト線の交点に対応してマトリクス状に配 置された画素セルと、 入力された映像信号に基づき前記ソース線を駆動 するソースドライバと、 前記ゲート線を駆動するゲートドライバと、 バ ックライトとからなり、 前記画素セルは O C Bセルである液晶パネルを 有する液晶表示装置であって、 1フレーム期間に、 液晶の状態を初期化 する信号を前記画素セルに書き込む第 1期間と前記映像信号に対応した 画素データを前記画素セルに書き込む第 2期間を選択的に設け、 前記第 1期間において各画素セルに印加される電位レベルが前記第 2期間より も高い電位 V s u pを各画素セルが保持するように設定する手段 (駆動 制御部) を備えたことを特徴とする。
本発明に係る液晶表示装置において、 前記設定手段 (駆動制御部) は, 前記電位 V s u pをフレーム毎に可変設定することが好ましい。
または、 前記設定手段 (駆動制御部) は、 前記第 1期間の長さをフレ —ム毎に可変設定することが好ましい。
また、 本発明に係る液晶表示装置は、 前記バックライ トの明るさを制 御するバックライト輝度制御手段 (バックライト制御部) を備え、 前記 バックライト輝度制御手段は、 前記第 1期間の長さに応じて前記バック ライトが明るく点灯するように前記バックライ トを制御することが好ま しい。
上記の方法および構成によれば、 逆転移の発生を抑圧するとともに、 逆転移を抑圧し得る最短の V s u p保持期間および最小の V s u p電位 を容易に設定でき、 V s u p保持期間を挿入することによる画面輝度低 下の影響を極力小さくして、 良好な映像を表示することが可能になる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態に係る液晶表示装置の構成を示すプロ ック図である。
図 2は、 ある入力映像信号に対して図 1に示す液晶表示装置を駆動す るための対向電圧 V c o m、 ソース信号 V s及びゲート信号 V gのタイ ミング図である。
図 3は、 本発明の第 2実施形態に係る液晶表示装置の構成を示すプロ ック図である。
図 4 Aは、 ある入力映像信号に対して図 3に示す液晶表示装置を駆動 するための倍速変換後の垂直同期信号のタイミング図である。
図 4 Bは、 ある入力映像信号に対して図 3に示す液晶表示装置を駆動 するための倍速変換後の映像信号 (V s ) のタイミング図である。 図 4 Cは、 ある入力映像信号に対して図 3に示す液晶表示装置を駆動 するための信号レベル検出信号 (D S ) のタイミング図である。
図 5は、 本発明の第 3実施形態に係る液晶表示装置の構成を示すプロ ック図である。
図 6 Aは、 ある入力映像信号に対して図 5に示す液晶表示装置を駆動 するための倍速変換後の垂直同期信号のタイミング図である。
図 6 Bは、 ある入力映像信号に対して図 5に示す液晶表示装置を駆動 するための倍速変換後の映像信号 (V s ) のタイミング図である。 図 6 Cは、 ある入力映像信号に対して図 5に示す液晶表示装置を駆動 するための V s u p期間規定信号 (V s u p P S ) の夕イミング図であ る。 図 7は、 本発明の第 4実施形態に係る液晶表示装置の構成を示すプロ ック図である。
図 8 Aは、 ある入力映像信号に対して図 7に示す液晶表示装置を駆動 するための倍速変換後の垂直同期信号のタイミング図である。
図 8 Bは、 ある入力映像信号に対して図 7に示す液晶表示装置を駆動 するための倍速変換後の映像信号 (V s ) のタイミング図である。
図 8 Cは、 ある入力映像信号に対して図 7に示す液晶表示装置を駆動 するための V s u p期間規定信号 (V s u p P S ) のタイミング図であ る。
図 8 Dは、 ある入力映像信号に対して図 7に示す液晶表示装置を駆動 するためのバックライト輝度制御信号 B C ' のタイミング図である。 図 9は、 本発明の第 5実施形態に係る液晶表示装置の構成を示すプロ ック図である。
図 1 0は、 本発明の第 6実施形態に係る液晶表示装置の構成を示すブ ロック図である。
図 1 1は、 本発明の第 7実施形態に係る液晶表示装置の構成を示すブ 口ック図である。
図 1 2 Aは、 リファレンス電位 V R E F 1への切り換えによる図 1 1 に示すソースドライバの入出力特性を示す図である。
図 1 2 Bは、 リファレンス電位 V R E F 2への切り換えによる図 1 1 に示すソースドライバの入出力特性を示す図である。
図 1 2 Cは、 リファレンス電位 V R E F 3への切り換えによる図 1 1 に示すソースドライバの入出力特性を示す図である。
図 1 2 Dは、 リファレンス電位 V R E F 4への切り換えによる図 1 1 に示すソースドライバの入出力特性を示す図である。
図 1 3は、 本発明の第 8実施形態に係る液晶表示装置の構成を示すブ 口ック図である。
図 14は、 従来の液晶表示装置の構成を示すブロック図である。
図 1 5は、 ある入力映像信号に対して図 14に示す液晶表示装置を駆 動するための対向電圧 V c om、 ソース信号 V s及びゲート信号 V gの タイミング図である。
図 1 6 Aは、 OCBセルがスプレイ配向状態にある様子を示す模式図 である。
図 1 6 Bは、 OCBセルがベンド配向 (白表示) 状態にある様子を示 す模式図である。
図 1 6 Cは、 〇CBセルがベンド配向 (黒表示) 状態にある様子を示 す模式図である。
図 1 7は、 一般的な OCBセルの電位一透過率曲線を示す図である。 発明を実施するための最良の形態
以下、 本発明の好適な実施形態について、 図面を参照して説明する。 (第 1実施形態)
図 1は、 本発明の第 1実施形態に係る液晶表示装置の構成を示すプロ ック図である。 図 1において、 液晶表示装置は、 映像信号 (V I ) と同 期信号 (SYNC) が入力されるライン倍速変換部 10 1、 駆動制御部 1 02、 ソースドライバ 1 03、 ゲートドライバ 1 04、 第 1〜第 4基 準電位 V r e f l〜V r e f 4を入力として対向電圧 V c omを出力す る対向駆動部 1 0 5、 画素セル 1 06、 バックライト輝度制御信号 (B C) が入力されるバックライト制御部 1 0 7、 およびパックライト 1 0 8を備える。 また、 画素セル 106は、 液晶 1 1 6とスイッチング素子- (TFT) 1 26を備える。
以下、 本発明の第 1実施形態における液晶表示装置の駆動方法につい て、 図 2をさらに参照して説明する。
図 2は、 ある入力映像信号に対して図 1に示す液晶表示装置を駆動す るための対向電圧 V c om、 ソ一ス信号 V s及びゲート信号 V gのタイ ミング図である。
図 2において、 対向電圧 V c omが、 セル上に形成された T F T 1 2 6のドレイン電極 (D) から液晶セルを挟んで共通に配線された対向電 極に与えられ、 ソース信号 V sが、 ライン倍速変換部 1 0 1からソース ドライバ 1 03に供給され、 V sを駆動制御回路 1 02から供給される クロック C LKでサンプルホールドした電位が、 ソース線 Y 1〜Ymを 通じて TF T 1 26のソース電極 (S) に供給される。
通常、 ソース · ドレイン間には突き抜けと呼ばれる電圧降下が起き、 それを V c om側で補正するのが一般的であるが、 説明の簡略化のため 省略する。
ゲート信号 Vg (n— 1)、 Vg (n)、 Vg (n+ 1) がそれぞれ、 ゲ —ト線 Xn— 1、 Xn、 Xn+ 1に供給され、 模式的には o n電位と o f f 電位の 2値で充分である。
先ず、 映像信号 V Iが、 同期信号 S YNCを基にライン倍速変換部 1 0 1において 2倍の周波数に変換され、 このライン倍速映像信号は、 ソ —ス信号 V sとしてソースドライバ 1 0 3に送られる。 但し、 本実施形 態においては、 2倍の周波数の映像信号を 2度送るのではなく、 図 2に 示すように、 2倍の周波数の映像信号、 スプレイ状態に戻ろうとする O CB液晶の状態をベンド状態にとどまりやすくするために液晶に書き込 む信号である、液晶の状態を初期化する信号(以下、初期化信号と呼び、 OCBセルの場合、 例えば、 高レベルの黒信号)、 2倍の周波数の映像信 号、初期化信号、…というように、間に初期化信号を挟んだ形態とする。 液晶セルに供給される電位は、 対向電圧 V c omとゲートオン時のソー ス電位 V sとの電位差であり、 液晶の透過率および逆転移防止効果に影 響するのはこの電位差の絶対値である。
各セルに供給されるソース信号 V sは、 映像信号、 初期化信号、 映像 信号、 初期化信号、 …というように 1水平期間 (1H) の半分の周期で 駆動されており、 TFT 1 26のゲート電極 (G) は、 ゲート信号によ り、 図 2に示すように、 初期化信号時にオンするタイミングと映像信号 時にオンするタイミングとで別々に走査される。 これにより、 あたかも 初期化信号と映像信号を個別に走査しているような駆動となる。
このように、 各セルに注目すると、 1フレーム期間 (I V) が逆転移 防止駆動期間 P 1 (第 1期間) と映像信号駆動期間 P 2 (第 2期間) と に分かれていることが判る。
先にも述べたように、 初期化信号電位を一定期間セルに与えることに よってスプレイ配向に戻ってしまう逆転移現象を防ぐことができるが、 初期化信号を書き込むことで輝度も低下してしまうため、 この初期化信 号を書き込む逆転移防止駆動期間 P 1は短いほどよい。
一般に、 ノ一マリホワイトのモードの液晶セルは高電位で駆動するほ ど黒への応答速度が速くなるため、 従って、 対向電極に供給する基準電 位を従来の 2種類から 4種類として、 初期化信号を書き込む時には映像 信号を書き込む時よりも、 (V c om— V s )の絶対値が高い電位である V S U p電位を書き込むように駆動することで、 逆転移防止駆動期間 P 1である V s u p保持期間をより短くすることが可能となる。
以上のように、 本実施形態によれば、 ソース線、 ゲート線の駆動と同 期して、 対向駆動部 1 0 5に設けた 4種類の基準電位 V r e f 1、 V r e f 2、 V r e f 3、 V r e f 4を切り替え、 対向電極を駆動すること により、 V s u p保持期間を任意の長さに調整することが可能となる。 これにより、 逆転移を抑圧し得る最短の V s U p保持期間を容易に設定 でき、 V s u p保持期間を挿入することによる画面輝度低下の影響を極 力小さくすることが可能となる。
本発明者らの実験では、 上記 V s u p保持期間が入力信号における 1 フレーム期間に占める割合は 2 0 %未満で逆転移現象が抑圧できること を確認している。
(第 2実施形態)
上記第 1実施形態においては、 V s u p保持期間をすベてのフレーム に対して一様に揷入した。 しかしながら、 逆転移が生じるのは、 液晶に 所定のレベル以上の電圧が一定時間以上印加されない状態が続く場合の みである。 そこで、 本発明の第 2実施形態は、 入力信号に所定のレベル 以上の信号が含まれるか否かを判定し、 所定のレベル以上の信号が含ま れる場合のみ、 V s u p保持期間を設けるようにしたものである。
ここで、 「入力信号が所定のレベル以上」 という表現について説明す る。図 1 7は、一般的な O C Bセルの電位一透過率曲線を示す図である。 図 1 7において、 1 7 0 1は逆転移防止のための所定電位を揷入しない 場合の電位—透過率曲線、 1 7 0 2は逆転移防止のための所定電位を揷 入した場合の電位一透過率曲線、 1 7 0 3は、 逆転移防止を行わない場 合、 ベンド配向からスプレイ配向への逆転移が起きる臨界電位 V t hを 示す。 逆転移防止を行わない場合、 V t h以下ではスプレイ配向に戻つ てしまうため適切な透過率が得られず、 従って V t h以上の電位で〇C Bセルを駆動しなければならないが、 その場合には十分な輝度が得られ ない。 なお、 図 1 7に示す通り、 O C Bセルの場合、 印加される電圧が 大きいほど透過率は小さくなり、 印加される電圧が小さいほど透過率は 大きくなる。 すなわち、 表示される映像信号のレベルが大きいほど、 画 素に印加される電圧は小さくなる。 よって、 「入力信号が所定のレベル 以上」 という表現は、 「画素セルに印加される電圧が所定のレベル以下」 という表現と同等である。 このことは、 後述する実施形態においても同 様である。
図 3は、 本発明の第 2実施形態に係る液晶表示装置の構成を示すプロ ック図である。 図 3において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 入力信号レベル検出部 3 0 9、 駆動制御部 1 0 2、 ソースドライバ 1 0 3、 ゲートドライノ、 1 0 4、 対向駆動部 1 0 5、 画素セル 1 0 6、 パックライト制御部 1 0 7、 およびバックライト 1 0 8を備える。
図 3に示すように、 第 2実施形態に係る液晶表示装置では、 上記第 1 実施形態に係る液晶表示装置の駆動制御部 1 0 2を駆動制御部 3 0 2に 代え、 入力信号レベル検出部 3 0 9をさらに加えた構成である。 なお、 第 2実施形態に係る液晶表示装置のその他の構成は、 上記第 1実施形態 に係る液晶表示装置の各構成と同様であり、 当該構成については同一の 参照番号を付して説明を省略する。
以下、 本発明の第 2実施形態における液晶表示装置の駆動方法につい て、 図 4をさらに参照して説明する。
図 4は、 ある入力映像信号に対して図 3に示す液晶表示装置を駆動す るための制御信号の夕イミング図である。
図 4 Aはライン倍速変換部 1 0 1によって、 倍速変換された後のフレ —ム周期を示す垂直同期信号を示し、 図 4 Bは同様に倍速変換された後 の映像信号 (V s ) を示し、 図 4 Cは所定の検出レベル (A) に応じて 入力信号レベル検出部 3 0 9が生成する信号レベル検出信号 (D S ) を 示す。
入力信号レベル検出部 3 0 9は、 フレーム単位で入力映像信号 V sに 所定のレベル A以上の信号が含まれるか否かを判定し、 信号レベル検出 信号 D Sを出力する。 駆動制御部 3 0 2は、 この信号レベル検出信号 D Sを入力し、所定のレベル A以上の信号が入力映像信号に含まれる場合、 次のフレームにおいて V s u p保持期間を設けるための駆動制御信号を 生成する。 以後、 第 1実施形態と同様の処理が行われる。
以上のように、 本実施形態によれば、 フレーム単位で入力映像信号に 所定のレベル以上の信号が含まれるか否かを判定し、 所定のレベル以上 の信号が入力信号に含まれる場合、 次のフレームにおいて V s u p保持 期間を設ける。 これにより、 不要な V s u p保持期間をなくすことが可 能となり、 V s u p保持期間を設けることにより生じる表示画面の平均 輝度の低下を抑圧できる。
(第 3実施形態)
上記第 2実施形態においては、 入力映像信号のレベルに適応して V s u p保持期間を設けるか否かの制御を行った。 このとき、 V s u p保持 期間を設けるフレームと設けないフレームとの間で表示画面の平均輝度 が変化する。 本発明の第 3実施形態は、 この輝度変化による視覚上の違 和感を低減するようにしたものである。
図 5は、 本発明の第 3の実施形態に係る液晶表示装置の構成を示すブ ロック図である。 図 5において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 入力信号レベル検出部 5 0 9、 駆動制御部 5 0 2、 ソースドライ バ 1 0 3、ゲ一トドライバ 1 0 4、対向駆動部 1 0 5、画素セル 1 0 6、 バックライト制御部 1 0 7、 およびバックライト 1 0 8とを備える。 図 5に示すように、 第 3実施形態に係る液晶表示装置は、 上記第 2実 施形態に係る液晶表示装置の駆動制御部 1 0 2を駆動制御部 5 0 2に代 え、 入力信号レベル検出部 3 0 9を入力信号レベル検出部 5 0 9に代え た構成である。 なお、 第 3実施形態に係る液晶表示装置のその他の構成 は、 上記第 2実施形態に係る液晶表示装置の各構成と同様であり、 当該 構成については同一の参照番号を付して説明を省略する。
以下、 本発明の第 3実施形態における液晶表示装置の駆動方法につい て、 図 6をさらに参照して説明する。
図 6は、 ある入力映像信号に対して液晶表示装置を駆動するための制 御信号の夕イミング図である。
図 6 Aはライン倍速変換部 1 0 1によって倍速変換された後のフレー ム周期を示す垂直同期信号を示し、 図 6 Bは同様に倍速変換された後の 映像信号 (V s ) を示し、 図 6 Cは所定の検出レベル Aに応じて入力信 号レベル検出部 5 0 9が生成する V s u p期間規定信号を示す。
入力信号レベル検出部 5 0 9は、 フレーム単位で入力映像信号 V sに 所定のレベル A以上の信号が含まれるか否かを判定し、 V s u p期間規 定信号 (V s u p P S ) を出力する。 V s u p期間規定信号 V s u p P Sは、 そのフレームでの V s u p期間の長さを規定する信号である。 図 6においては、 5段階の長さの切り替え精度をもつものとして示してい る。
入力信号レベル検出部 5 0 9は、 現フレームの入力映像信号に所定の レベル A以上の信号が含まれるとき、 次のフレームに設ける V s u p期 間の長さが、 現フレームの V s u p期間の長さよりも高々 1段階だけ長 くなるような V s u p期間規定信号 V s u p P Sを生成する。 また、 現 フレームの入力映像信号に所定のレベル以上の信号が含まれないとき、 次のフレームに設ける V s u p期間の長さが高々 1段階だけ短くなるよ うな V s u p期間規定信号 V s u p P Sを生成する。
駆動制御部 5 0 2は、 この V s u p期間規定信号 V s u p P Sを入力 し、 その値に応じた V s u p期間が設けられるように制御信号を生成す る。
以上のように、 本実施形態によれば、 フレーム単位で入力映像信号に 所定のレベル以上の信号が含まれるか否かを判定し、 その判定結果に基 づいて V s u p期間の長さをフレーム間で連続的に変える。これにより、 フレーム間での V s u p期間の変化による表示画面の平均輝度の変化を 抑圧しつつ、 不要な V s u p保持期間をなくすことが可能となり、 V s u p保持期間を設けることにより生じる表示画面の平均輝度の低下を抑 圧できる。
なお、 図 6 Cでは、 V s u p期間規定信号 V s u p P Sを 5段階に選 択可能であるように示したが、 より階調性を持たせればそれだけフレー ム間での V s u p期間の長短による輝度変化を抑圧でき好ましい。また、 V s u p周期規定信号 V s u p P Sの階調と、 それに対応した V s u p 期間の実際の長さの関係は線形でも良いし、 現フレームでの V s u p期 間規定信号 V s u p P Sの階調に依存して決まる非線型な関係としても よい。
(第 4実施形態)
上記第 3実施形態においては、 入力映像信号のレベルに適応して V s u p保持期間の長さをフレーム間で連続的に変化させる制御を行った。 このとき、 V s u p保持期間の長さの変化に伴って連続的ではあるもの の表示画面の平均輝度が変化する。 本発明の第 4実施形態は、 この輝度 変化を抑圧するようにしたものである。
図 7は、 本発明の第 4の実施形態に係る液晶表示装置の構成を示すブ ロック図である。 図 7において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 入力信号レベル検出部 5 0 9、 駆動制御部 5 0 2、 ソースドライ ノ 1 0 3、ゲ一トドライバ 1 0 4、対向駆動部 1 0 5、画素セル 1 0 6、 バックライト制御部 7 0 7、 バックライト 1 0 8、 入力信号レベル検出 部 5 0 9を備える。
図 7に示すように、 第 4実施形態に係る液晶表示装置は、 上記第 3実 施形態に係る液晶表示装置に、 新たにバックライト制御部 7 0 7を加え た構成である。 なお、 第 4実施形態に係る液晶表示装置のその他の構成 は、 上記第 3実施形態に係る液晶表示装置の各構成と同様であり、 当該 構成については同一の参照番号を付して説明を省略する。 また、 バック ライト輝度の制御方法に関しては、 従来から行われている処理であるの で、 ここでの詳しい説明は省略する。
以下、 本発明の第 4実施形態における液晶表示装置の駆動方法につい て、 図 8をさらに参照して説明する。
図 8は、 ある入力映像信号に対して液晶表示装置を駆動するための制 御信号の夕イミング図である。
図 8 A、 図 8 B、 および図 8 Cにそれぞれ示す、 ライン倍速変換部 1 0 1によって倍速変換された後のフレーム周期を示す垂直同期信号、 同 様に倍速変換された後の映像信号(V s ) ,および所定の検出レベル Aに 応じて入力信号レベル検出部 5 0 9が生成する V s u p期間規定信号 V s u p P Sは、 すべて第 3実施形態における信号と同様である。
図 8 Dに示すように、 パックライト制御部 7 0 7は、 入力信号レベル 検出部 5 0 9からの V s u p期間規定信号 V s u p P Sを入力し、 V s u p期間規定信号 V s u P Sで決まる V s u p期間の変化によって生 じる表示画面の平均輝度の変化を相殺する明るさにパックライト 1 0 8 を点灯するためのバックライト輝度制御信号 B C ' を生成する。
図 8から明らかなように、 バックライト輝度制御信号 B C ' は、 V s u p期間規定信号 V s u p P Sに対応して決まり、 V s u p期間が長い、 すなわち表示画面の平均輝度が低くなるときには、 パックライ ト輝度が 明るく、 逆に、 V s u p期間が短い、 すなわち表示画面の平均輝度が高 くなるときには、 パックライト輝度が暗くなるようにパックライト 1 0 8を制御する。
以上のように、 本実施形態によれば、 V s u p期間の長さとパックラ ィトの明るさを連動して制御することにより、 逆転移の抑圧効果を維持 したまま、 V s 11 p期間の有無による表示画面の平均輝度の変化を抑圧 することが可能となる。
(第 5実施形態)
以前にも述べたとおり、 逆転移が生じるのは、 ある画素に一定時間以 上、 所定のレベル以上の電圧が印加されない状態が続くときであり、 第 2から第 4実施形態における、 1フレームの入力映像信号に所定のレべ ル A以上の信号が含まれる場合に V s u p保持期間を設けるという制御 は、 逆転移抑圧のための十分条件を満たしていることになる。 本発明の 第 5実施形態は、 V s u p期間を設ける必要があるフレームをより詳細 に判定するものである。
図 9は、 本発明の第 5実施形態に係る液晶表示装置の構成を示すプロ ック図である。 図 9において、 液晶表示装置は、 ライン倍速変換部 1 0 1、駆動制御部 9 0 2、ソースドライバ 1 0 3、ゲ一トドライバ 1 0 4、 対向駆動部 1 0 5、 画素セル 1 0 6、 ノ ックライト制御部 1 0 7、 ノ ツ クライト 1 0 8、 および入力信号動き検出部 9 0 9を備える。
図 9に示すように、 第 5実施形態に係る液晶表示装置は、 上記第 3実 施形態に係る液晶表示装置の駆動制御部 6 0 2を駆動制御部 9 0 に代 え、 新たに入力信号動き検出部 9 0 9を加えた構成である。 なお、 第 5 実施形態に係る液晶表示装置のその他の構成は、 上記第 2実施形態に係 る液晶表示装置の各構成と同様であり、 当該構成については同一の参照 番号を付して説明を省略する。
入力信号動き検出部 9 0 9は、液晶表示装置に入力される映像信号(V I ) 及び同期信号 (S Y N C ) を入力として、 入力された映像信号が動 画であるか静止画であるかを判定する。 入力信号動き検出部 9 0 9は、 1フレーム分の映像信号を保持できるメモリを持ち、 各画素に書き込ま れる 1フレーム前の映像信号と現在の入力映像信号とを比較し、 映像信 号に含まれるノイズの影響も考慮し、 その差が所定のレベル以下の画素 は、 前フレームに対して動きのない画素 (以下、 静止画素という) であ ると判断する。 この静止画素の数が所定の数以下のとき、 入力映像信号 は動画像であると判定する。 ただし、 所定のレベル以下の静止画素が所 定の数以上であった場合は、 入力映像信号は静止画であると判定する。 入力信号動き検出部 9 0 9は、 上記判定結果を動き検出信号 (M D ) と して駆動制御部 9 0 2に出力する。 駆動制御部 9 0 2は、 動き検出信号 M Dに基づき、 入力信号動き検出部 9 0 9により入力映像信号が静止画 であると判定された場合にのみ V s u p期間を設ける。
以上のように、 本実施形態によれば、 1フレーム前に保持した映像信 号と、 現在のフレームの映像信号との差が所定のレベル以下である画素 の数が多いとき、 入力画像を静止画と判定し、 V s u p期間を設けるこ とで、 逆転移が生じる可能性のないフレームにおいては、 V s u p期間 を設けないことで、 不要な表示画面の平均輝度の低下を抑圧することが できる。
なお、 本実施形態では、 入力信号動き検出部 9 0 9により、 入力映像 信号が静止画であると判定された場合にのみ V s u p期間を設ける、 と して説明したが、 静止画であると判定された場合には V s u p期間を長 くし、 動画であると判定された場合には V s u p期間を短くするように 制御してもよい。 あるいは、 静止画であると判定された場合には V s u pの電位を高く、 動画であると判定された場合には V s u pの電位を低 くするように制御してもよい。 また、 静止画と動画の判定を 1フレーム のデータのみを用いて行ったが、 これを複数のフレームのデータを使用 して判定してもよい。
さらに、 入力信号動き検出部 9 0 9の入力として、 液晶表示装置に入 力された映像信号および同期信号を用いたが、 ライン倍速変換部 1 0 1 の出力するライン倍速映像信号(V s )および同期信号を用いてもよい。 (第 6実施形態)
V s u p期間を長くすると、 表示画面の平均輝度が低下するものの、 逆転移の抑圧効果が高いことが、 本発明者らの評価で明らかになつてい る。 よって、 本発明の第 6実施形態は、 入力される映像の特徴が大きく 変化するフレームの境界では、 V s u p期間をその前後のフレームと比 ベて長くしても、 それによる平均輝度の変化が視覚上与える影響は小さ いと判断し、 比較的長い V s u p期間を設けるように制御するものであ る。
図 1 0は、 本発明の第 6実施形態に係る液晶表示装置の構成を示すブ ロック図である。 図 1 0において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 駆動制御部 1 0 0 2、 ソースドライバ 1 0 3、 ゲートドライバ 1 0 4、 対向駆動部 1 0 5、 画素セル 1 0 6、 ノ ックライト制御部 1 0 7、 バックライト 1 0 8、 およびシーンチェンジ検出部 1 0 0 9を備え る。
図 1 0に示すように、 第 6実施形態に係る液晶表示装置は、 上記第 3 実施形態に係る液晶表示装置の駆動制御部 6 0 2を駆動制御部 1 0 0 2 に代え、 新たにシーンチェンジ検出部 1 0 0 9を加えた構成である。 な お、 第 6実施形態に係る液晶表示装置のその他の構成は、 上記第 2実施 形態に係る液晶表示装置の各構成と同様であり、 当該構成については同 一の参照番号を付して説明を省略する。
シーンチェンジ検出部 1 0 0 9は、 入力される映像信号の特徴が大き く変化したとき、 それを検出するものであるが、 以下のような比較的簡 便な構成により、 ある程度の検出精度が得られることを本発明者らは実 験から確認している。
すなわち、 検出は各フレームの表示データの平均輝度レベル (以下、 APLという) に注目して行う。 AP Lの検出は従来から行われている 処理であるので、 ここでは詳しい説明は省略する。 シーンチェンジ検出 部 1 009は、 本液晶表示装置に入力される映像信号を入力として、 1 フレーム前の APL (以下、 AP Lpreという) を保持するとともに、 1フレームの終わりにそのフレームの AP L (以下、 APLnowという) の算出を行う。そして、 A P Lpreと A P Lnowの差分の絶対値が所定の レベル以上であるとき、 映像の特徴が大きく変化したと判断する。
シ一ンチェンジ検出部 1 009は、 映像の特徴が大きく変化したと判 断したとき、 次の 1フレームの間はシーンチェンジ検出信号 (S CD) をアクティブ状態にする。 駆動制御部 1 00 2は、 シーンチェンジ検出 信号 S CDがアクティブ状態のフレームでは、その他のフレームよりも、 V s u p保持期間を所定の時間だけ長くする。
以上のように、 本実施形態によれば、 入力される映像の特徴が大きく 変化するフレームの境界では V s u p期間を長くすることで、 V s u p 期間の長短による表示画面の平均輝度の変化が視覚上与える影響を抑圧 しつつ、 逆転移の抑圧効果を高めることが可能となる。
なお、 本実施形態では、 シーンチェンジ検出部 1 00 9は、 1フレ一 ム全体の A P Lを算出し、 これを用いて映像の特徴変化を検出するもの としたが、 1画面を複数の領域に分割し、 その各々の領域毎に AP Lを 算出し、 この複数の APLをフレーム間で各々比較することにより、 特 徵変化の検出精度を向上させることができる。
また、 シーンチェンジ検出信号 S CDがァクティブ状態のフレームで は、 その他のフレームよりも、 V s u pの電位を高くするように制御し てもよい。
さらに、 シーンチェンジ検出部 1 00 9の入力として、 入力映像信号 および同期信号を用いたが、 ライン倍速変換部 1 0 1の出力するライン 倍速映像信号 (V s) および同期信号を用いてもよい。
(第 7実施形態)
上記第 1〜第 6実施形態においては、 倍速化によってソースドライバ 1 03を 2倍の速度で駆動した。 すなわち、 通常の 2倍の転送速度が必 要であり、 高画素パネルの駆動時には、 転送および信号処理により高い 性能が必要となる。
実際に、 高画素パネルにおいては、 ソースドライバ 1 0 3への転送バ ス巾を倍にするなどの公知の技術を用いて、 転送速度を下げる工夫がな されているのが一般的であり、 単純にクロックを 2倍にすることは高画 素パネルにおいては望ましくない。
本発明の第 7実施形態においては、 この転送速度を従来のままとしつ つ、 V s u p期間を設けるようにしたものである。
図 1 1は、 本発明の第 7実施形態に係る液晶表示装置の構成を示すブ ロック図である。 図 1 1において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 駆動制御部 1 1 02、 リファレンス電位切替部 1 1 10、 ソ一 スドライバ 1 1 0 3、 ゲートドライバ 1 04、 対向駆動部 1 0 5、 画素 セル 1 06、 バックライト制御部 1 0 7、 およびバックライト 1 0 8を 備える。
図 1 1に示すように、 ソースドライバ 1 1 03に入力されたディジタ ルデー夕 V sは、 複数のフリップフロップ 1 1 0 3— 1からなる内部シ フトレジスタに転送され、 全画素分の転送が完了した後、 駆動制御部 1 1 02からの DZAイネ一ブル信号 (DZAEN) により、 D/A変換 部 1 1 03— 2がィネーブル状態にされる。 また、 駆動制御部 1 1 02 は切換え信号 (S P) をリファレンス切替部 1 1 1 0に出力して、 リフ アレンス電位切替部 1 1 1 0は、 図 1 2 Aに示す入出力特性となるリフ アレンス電位 VREF 1 (電位 (A):黒レベル〜電位 (E):白レベル) を選択して DZA変換部 1 1 0 3— 2に出力する。 D/A変換部 1 1 0 3— 2は、 リファレンス電位切替部 1 1 1 0から入力されたリファレン ス電位 VRE F 1を基に、 画素毎の入力ディジタルデ一夕が図 1 2 Aに 示すガンマ補正された、 画素毎のソース電位 Y 1〜Ymに変換する。
また、 リファレンス電位 VREFを、 図 1 2 Bに示すように、 図 1 2 Aとは全く逆の入出力特性となるように、 リファレンス電位 VREF 2 (電位 (A) : 白レベル〜電位 (E) :黒レベル) に切り替えることで、 いわゆるソース反転を実現することができる。
また、 リファレンス電位 VREFを、 図 1 2 Cに示すように、 初期化 信号書き込み期間において、 初期化信号用のリファレンス電位 VREF 3 (電位 (A) 〜電位 (E):黒レベル) に切り替えることで、 ソ一スド ライバ 1 1 03内部のシフトレジスタに如何なるデータが転送されてい ても、 DZA変換後の電位は初期化信号となる。
さらに、 リファレンス電位 VRE Fを、 図 1 2 Dに示すように、 初期 化信号書き込み期間において、 反転初期化信号用のリファレンス電位 V REF 4 (電位 (A) 〜電位 (E):黒レベル) に切り替えることで、 ソ ースドライバ 1 10 3内部のシフトレジス夕に如何なるデ一夕が転送さ れていても、 DZA変換後の電位は反転初期化信号となる。
以上のように、 本実施形態によれば、 初期化信号の転送は不要となり ソースドライバの転送速度は従来のままで、 映像信号 ·初期化信号の両 者を液晶セルに駆動可能とすることができる。
(第 8実施形態)
例えば、 特開平 9一 32 57 1 5号公報に開示されているように、 液 晶のようなホールド型の表示素子では、 人の視覚積分特性が動画視認性 を劣化させることは周知である。
よって、 本発明の第 8実施形態は、 画像が動画か静止画かによつて V s u p保持期間を変化させることで、 逆転移を防止しつつ、 静止画の場 合には輝度低下を最小限に抑え、 動画の場合には動画視認性を向上させ た液晶表示装置を提供するものである。
図 1 3は、 本発明の第 8実施形態に係る液晶表示装置の構成を示すブ ロック図である。 図 1 3において、 液晶表示装置は、 ライン倍速変換部 1 0 1、 駆動制御部 1 3 0 2、 ソースドライバ 1 0 3、 ゲートドライバ 1 0 4、 対向駆動部 1 0 5、 画素セル 1 0 6、 バックライト制御部 1 0 7、 バックライト 1 0 8、 および入力信号動き検出部 9 0 9を備える。 図 1 3に示すように、 入力信号動き検出部 9 0 9において、 入力映像 信号が動画か静止画かを検出し、 動画と判定した場合には V s u p保持 期間を長く、 静止画と判定した場合には V s u p保持期間を短くするよ うに、 駆動制御回路 1 3 0 2は制御信号を生成する。
なお、 前述した第 5の実施形態では、 逆転現象の防止のみを目的とし ているため、 入力映像信号が動画であると判定された場合には V s u p 保持期間を設けないあるいは短く、 静止画と判定された場合には V s u P保持期間を長くするように制御したが、 本実施形態では、 逆転現象の 防止と動画視認性の向上とを両立させるため、 上記のような制御を行う ものである。
以上のように、 本実施形態によれば、 入力映像信号が動画か静止画か によって V s u p保持期間を変化させることで、 逆転移を防止しつつ、 静止画の場合には輝度低下を最小限に抑え、 動画の場合には初期化信号 の期間をより長くして、 C R Tなどのインパルス型表示駆動に近づける ことで動画視認性を向上させることができる。
以上説明したように、 本発明によれば、 逆転移の発生を抑圧するとと もに、 逆転移を抑圧し得る最短の V s u p保持期間および最小の V s u P電位を容易に設定でき、 V s u p保持期間を挿入することによる画面 輝度低下の影響を極力小さくして、 良好な映像を表示することが可能 i なる。

Claims

請求の範囲
1 . 画素データが供給される複数のソース線と、 走査信号が供給さ れる複数のゲ一ト線と、 前記ソ一ス線と前記ゲ一ト線の交点に対応して マトリクス状に配置された画素セルと、 入力された映像信号に基づき前 記ソース線を駆動するソースドライバと、 前記ゲート線を駆動するゲ一 トドライバと、 ノ ックライトとからなり、 前記画素セルは O C Bセルで ある液晶パネルを有する液晶表示装置を駆動する方法であって、
1フレーム期間に、 液晶の状態を初期化する信号を前記画素セルに書 き込む第 1期間と前記映像信号に対応した画素データを前記画素セルに 書き込む第 2期間を選択的に設け、 前記第 1期間において各画素セルに 印加される電位レベルが前記第 2期間よりも高い電位 V s u pを各画素 セルが保持するように設定したことを特徴とする液晶表示装置の駆動方 法。
2 . 前記第 1期間が 1フレーム期間に占める割合を 2 0 %未満に設 定したことを特徴とする請求項 1記載の液晶表示装置の駆動方法。
3 . 前記画素セルに所定レベル以下の電圧が印加された場合、 次の フレームでは前記第 1期間を設ける必要があると判断し、 前記第 1期間 を次のフレームにおいて設けることを特徴とする請求項 1記載の液晶表 示装置の駆動方法。
4 . 現在のフレームを含め、 過去所定のフレーム数連続して同一の 前記画素セルに所定レベル以下の電圧が印加された場合、 次のフレーム では前記第 1期間を設ける必要があると判断し、 前記第 1期間を次のフ レームにおいて設けること特徴とする請求項 1記載の液晶表示装置の駆 動方法。
5 . 前記電位 V s u pをフレーム毎に可変設定することを特徴とす る請求項 1記載の液晶表示装置の駆動方法。
6 . 前記第 1期間を設ける必要があると判断した場合、 次のフレー ムで印加する電位 V s u pを、 直前のフレームで印加した電位 V s u p 以上のレベルに設定し、 一方、 前記第 1期間を設ける必要がないと判断 した場合、 次のフレームで印加する電位 V s u pを、 直前のフレームで 印加した電位 V s u p '以下のレベルに設定することを特徴とする請求項 3または 4記載の液晶表示装置の駆動方法。
7 . 前記第 1期間の長さをフレーム毎に可変設定することを特徴と する請求項 1記載の液晶表示装置の駆動方法。
8 . 前記第 1期間を設ける必要があると判断した場合、 次のフレー ムに設ける第 1期間を、 直前のフレームに設けた第 1期間以上の長さに 設定し、 一方、 前記第 1期間を設ける必要がないと判断した場合、 次の フレームに設ける第 1期間を、 直前のフレームに設けた第 1期間以下の 長さに設定することを特徴とする請求項 3または 4記載の液晶表示装置 の駆動方法。
9 . 前記第 1期間を設けるフレームでは、 前記第 1期間を設けない フレームよりも前記バックライトが明るく点灯するように、 前記バック ライトの明るさを制御するバックライ ト輝度制御手段を用いて、 前記バ ックライトを制御することを特徴とする請求項 1記載の液晶表示装置の 駆動方法。
1 0 . 前記第 1期間の長さに応じて前記バックライトが明るく点灯 するように、 前記バックライトの明るさを制御するバックライト輝度制 御手段を用いて、 前記バックライトを制御することを特徴とする請求項
1記載の液晶表示装置の駆動方法。
1 1 . 過去所定数のフレームにおいて入力された映像信号の平均輝 度レベルと、 現在のフレームにおいて入力される映像信号の平均輝度レ ベルとを演算し、 前記演算結果により、 前記第 1期間の長さを制御する こと特徴とする請求項 1記載の液晶表示装置の駆動方法。
1 2 . 過去所定の数のフレームにおいて入力された映像信号の平均 輝度レベルと、 現在のフレームにおいて入力される映像信号の平均輝度 レベルとの差が所定レベルよりも大きい場合、 次のフレームにおいて前 記第 1期間を所定の長さに設定すること特徴とする請求項 1 1記載の液 晶表示装置の駆動方法。
1 3 . 入力された映像信号が動画像または静止画像であるかを検出 し、 検出した結果、 入力された映像信号が動画像である場合、 前記第 1 期間を所定の長さよりも長くし、 入力された映像信号が静止画像である 場合、 前記第 1期間を所定の長さよりも短くすること特徴とする請求項 1記載の液晶表示装置の駆動方法。
1 4 . ディジタル信号である前記映像信号を、 前記ソースドライバ 内でアナログ信号に変換する際に、 変換に使用する基準電位を、 前記ソ —ス線および前記ゲート線の駆動タイミングと同期して切り換えること を特徴とする請求項 1記載の液晶表示装置の駆動方法。
1 5 . 1フレームにおいて 1走査線の走査に費やすことができる時 間の 1 Z 2以下の時間で、 前記ソース線への前記画素データの供給を行 うことを特徴とする請求項 1記載の液晶表示装置の駆動方法。
1 6 . 1フレーム期間の 1ノ 2以下の時間で、 1画面分の画素デー 夕に対応する電圧を各々の画素セルに印加することを特徴とする請求項
1記載の液晶表示装置の駆動方法。
1 7 . 画素データが供給される複数のソース線と、 走査信号が供給 される複数のゲ一ト線と、 前記ソース線と前記ゲート線の交点に対応し てマトリクス状に配置された画素セルと、 入力された映像信号に基づき 前記ソース線を駆動するソースドライバと、 前記ゲート線を駆動するゲ —トドライバと、 ノ ックライトとからなり、 前記画素セルは O C Bセル である液晶パネルを有する液晶表示装置であって、
1フレーム期間に、 液晶の状態を初期化する信号を前記画素セルに書 き込む第 1期間と前記映像信号に対応した画素データを前記画素セルに 書き込む第 2期間を選択的に設け、 前記第 1期間において各画素セルに 印加される電位レベルが前記第 2期間よりも高い電位 V s u を各画素 セルが保持するように設定する手段を備えたことを特徴とする液晶表示
1 8 . 前記設定手段は、 前記電位 V s u pをフレーム毎に可変設定 することを特徴とする請求項 1 7記載の液晶表示装置。
1 9 . 前記設定手段は、 前記第 1期間の長さをフレーム毎に可変設 定することを特徴とする請求項 1 7記載の液晶表示装置。
2 0 . 前記液晶表示装置は、 前記バックライトの明るさを制御する バックライト輝度制御手段を備え、 前記バックライト輝度制御手段は、 前記第 1期間の長さに応じて前記バックライトが明るく点灯するように 前記バックライトを制御することを特徴とする請求項 1 7記載の液晶表
PCT/JP2001/005949 2000-07-14 2001-07-09 Affichage a cristaux liquides comprenant une cellule ocb et son procede de commande WO2002006885A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/088,329 US7095396B2 (en) 2000-07-14 2001-07-09 Liquid crystal display device using OCB cell and driving method thereof
KR1020027003351A KR20020070962A (ko) 2000-07-14 2001-07-09 오씨비 셀을 이용한 액정 표시장치 및 그 구동방법
EP01947935A EP1302807A4 (en) 2000-07-14 2001-07-09 Liquid crystal display with OCB cell and its driving method
CA002384992A CA2384992C (en) 2000-07-14 2001-07-09 Liquid crystal display device using ocb cell and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-214827 2000-07-14
JP2000214827A JP4746735B2 (ja) 2000-07-14 2000-07-14 液晶表示装置の駆動方法

Publications (1)

Publication Number Publication Date
WO2002006885A1 true WO2002006885A1 (fr) 2002-01-24

Family

ID=18710341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005949 WO2002006885A1 (fr) 2000-07-14 2001-07-09 Affichage a cristaux liquides comprenant une cellule ocb et son procede de commande

Country Status (7)

Country Link
US (1) US7095396B2 (ja)
EP (1) EP1302807A4 (ja)
JP (1) JP4746735B2 (ja)
KR (1) KR20020070962A (ja)
CN (1) CN1392963A (ja)
CA (1) CA2384992C (ja)
WO (1) WO2002006885A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291265C (zh) 2001-05-31 2006-12-20 松下电器产业株式会社 液晶显示元件的驱动方法及使用该驱动方法的液晶显示装置
KR100610954B1 (ko) 2002-01-21 2006-08-10 마츠시타 덴끼 산교 가부시키가이샤 표시 장치 및 표시 장치의 구동 방법
KR100526704B1 (ko) * 2002-07-12 2005-11-08 주식회사 디엠케이 액정 디스플레이 장치의 끌림 현상 방지 방법
KR100889234B1 (ko) * 2002-12-16 2009-03-16 엘지디스플레이 주식회사 액정표시장치의 데이터 구동 장치 및 방법
US7714819B2 (en) * 2003-01-08 2010-05-11 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display
JP4493274B2 (ja) 2003-01-29 2010-06-30 富士通株式会社 表示装置及び表示方法
KR100945577B1 (ko) * 2003-03-11 2010-03-08 삼성전자주식회사 액정 표시 장치의 구동 장치 및 그 방법
KR100552906B1 (ko) * 2003-07-04 2006-02-22 엘지.필립스 엘시디 주식회사 액정표시장치의 데이터 구동 장치 및 방법
JP3861860B2 (ja) * 2003-07-18 2006-12-27 セイコーエプソン株式会社 電源回路、表示ドライバ及び電圧供給方法
JPWO2005081053A1 (ja) * 2004-02-20 2007-10-25 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
JP4528774B2 (ja) * 2004-02-20 2010-08-18 東芝モバイルディスプレイ株式会社 液晶表示装置
JP5008110B2 (ja) * 2004-03-25 2012-08-22 株式会社ジャパンディスプレイイースト 表示装置
US20060007207A1 (en) * 2004-04-01 2006-01-12 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device and method of driving liquid crystal display device
TWI280557B (en) * 2004-04-01 2007-05-01 Toshiba Matsushita Display Tec Liquid crystal display device and method of driving liquid crystal display device
JP5209839B2 (ja) 2004-07-30 2013-06-12 株式会社ジャパンディスプレイイースト 表示装置
KR100602359B1 (ko) * 2004-09-01 2006-07-14 매그나칩 반도체 유한회사 멀티-채널 쉬프트레지스터를 구비하는 소스드라이버
JP2008515020A (ja) * 2004-09-30 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液晶表示装置を制御する方法及びそのためのコンピュータプログラム
US20070035502A1 (en) * 2005-08-10 2007-02-15 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device, method for controlling display data for liquid crystal display device, and recording media
JP2007072162A (ja) * 2005-09-07 2007-03-22 Mitsubishi Electric Corp 表示装置
JP2007179010A (ja) 2005-11-30 2007-07-12 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置および液晶表示装置の駆動方法
US20070132709A1 (en) * 2005-12-12 2007-06-14 Toshiba Matsushita Display Technology Co., Ltd Liquid crystal display device and method for driving the same
JP5003066B2 (ja) * 2006-09-06 2012-08-15 セイコーエプソン株式会社 電気光学装置、及びこれを備えた電子機器
US8674916B2 (en) * 2006-11-15 2014-03-18 Au Optronics Corp. Driving method for reducing image sticking
TWI342537B (en) * 2006-12-11 2011-05-21 Chimei Innolux Corp Liquid crystal display device and driving method thereof
JP4985020B2 (ja) * 2007-03-27 2012-07-25 セイコーエプソン株式会社 液晶装置、その駆動方法および電子機器
KR101469040B1 (ko) * 2008-01-02 2014-12-05 삼성디스플레이 주식회사 액정표시장치 및 이의 구동방법
JP5813353B2 (ja) * 2011-04-05 2015-11-17 京セラ株式会社 携帯端末、表示装置、輝度制御方法及び輝度制御プログラム
JP2016218168A (ja) * 2015-05-18 2016-12-22 キヤノン株式会社 駆動装置、表示装置および電子機器
US10037723B2 (en) * 2016-09-15 2018-07-31 L3 Communications Corp. Fault-tolerant LCD display
US20230377532A1 (en) * 2020-12-10 2023-11-23 Snap Inc. Dual-voltage pixel circuitry for liquid crystal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128227A (ja) * 1984-11-27 1986-06-16 Seiko Epson Corp 液晶電気光学装置の駆動方法
US5627560A (en) 1994-06-09 1997-05-06 U.S. Philips Corporation Display device
JPH09138421A (ja) * 1995-11-13 1997-05-27 Sharp Corp アクティブマトリクス型液晶画像表示装置
US6069620A (en) 1995-12-22 2000-05-30 International Business Machines Corporation Driving method of liquid crystal display device
JP2000347634A (ja) * 1999-03-26 2000-12-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
EP1107223A2 (en) 1999-12-07 2001-06-13 Sharp Kabushiki Kaisha A method of driving a liquid crystal display device and a liquid crystal display device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380700B1 (ko) 1994-08-23 2003-07-22 코닌클리케 필립스 일렉트로닉스 엔.브이. 디스플레이디바이스
JP2643100B2 (ja) * 1994-12-26 1997-08-20 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置の駆動方法及び装置
JP3199978B2 (ja) * 1995-03-31 2001-08-20 シャープ株式会社 液晶表示装置
JP3827756B2 (ja) 1995-09-22 2006-09-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lcd駆動装置
US6256006B1 (en) * 1996-02-01 2001-07-03 Asahi Kogaku Kogyo Kabushiki Kaisha Liquid crystal display with temperature detection to control data renewal
TW375696B (en) * 1996-06-06 1999-12-01 Toshiba Corp Display device
JPH09325715A (ja) 1996-06-06 1997-12-16 Nippon Hoso Kyokai <Nhk> 画像ディスプレイ
US6084562A (en) * 1997-04-02 2000-07-04 Kabushiki Kaisha Toshiba Flat-panel display device and display method
JPH10282472A (ja) * 1997-04-02 1998-10-23 Sharp Corp 強誘電性液晶表示素子の駆動方法および駆動回路
JP3229250B2 (ja) 1997-09-12 2001-11-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶表示装置における画像表示方法及び液晶表示装置
US6268839B1 (en) * 1998-05-12 2001-07-31 Kent State University Drive schemes for gray scale bistable cholesteric reflective displays
US6456266B1 (en) * 1998-06-30 2002-09-24 Canon Kabushiki Kaisha Liquid crystal display apparatus
JP3432747B2 (ja) * 1998-07-14 2003-08-04 シャープ株式会社 液晶表示装置の駆動装置および駆動方法
KR100366933B1 (ko) * 1999-03-10 2003-01-09 샤프 가부시키가이샤 액정표시장치 및 그의 구동 방법
US7145536B1 (en) 1999-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP3886698B2 (ja) * 1999-03-31 2007-02-28 株式会社半導体エネルギー研究所 液晶表示装置、液晶表示装置の駆動方法、ディスプレイ、プロジェクター、ゴーグル型ディスプレイ、携帯情報端末及びコンピュータ
JP2000321556A (ja) 1999-05-14 2000-11-24 Sanyo Electric Co Ltd 液晶の配向状態転移方法及び液晶表示装置の駆動方法
JP3565324B2 (ja) * 2000-04-10 2004-09-15 シャープ株式会社 液晶表示装置の駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128227A (ja) * 1984-11-27 1986-06-16 Seiko Epson Corp 液晶電気光学装置の駆動方法
US5627560A (en) 1994-06-09 1997-05-06 U.S. Philips Corporation Display device
JPH09138421A (ja) * 1995-11-13 1997-05-27 Sharp Corp アクティブマトリクス型液晶画像表示装置
US6069620A (en) 1995-12-22 2000-05-30 International Business Machines Corporation Driving method of liquid crystal display device
JP2000347634A (ja) * 1999-03-26 2000-12-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
EP1107223A2 (en) 1999-12-07 2001-06-13 Sharp Kabushiki Kaisha A method of driving a liquid crystal display device and a liquid crystal display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1302807A4 *

Also Published As

Publication number Publication date
EP1302807A4 (en) 2005-10-05
CN1392963A (zh) 2003-01-22
KR20020070962A (ko) 2002-09-11
CA2384992A1 (en) 2002-01-24
CA2384992C (en) 2005-11-29
US20020149549A1 (en) 2002-10-17
JP4746735B2 (ja) 2011-08-10
EP1302807A1 (en) 2003-04-16
US7095396B2 (en) 2006-08-22
JP2002031790A (ja) 2002-01-31

Similar Documents

Publication Publication Date Title
WO2002006885A1 (fr) Affichage a cristaux liquides comprenant une cellule ocb et son procede de commande
US8952879B2 (en) Hold type image display system
US7932884B2 (en) Liquid crystal display and driving method thereof
KR101310379B1 (ko) 액정표시장치와 그 구동방법
US8605024B2 (en) Liquid crystal display device
JP2004272270A (ja) 液晶表示装置の駆動装置及びその方法
JP2007011363A (ja) 液晶表示装置及びその駆動方法
US20090219237A1 (en) Electro-optical device, driving method thereof, and electronic apparatus
JP2007148369A (ja) 表示制御回路、表示制御方法及び表示回路
JP2002149127A (ja) 液晶表示装置及びその駆動制御方法
US20070195045A1 (en) Liquid crystal display device
JP2008197349A (ja) 電気光学装置、処理回路、処理方法および電子機器
KR101332062B1 (ko) 선택적 프리-차징 기능을 가지는 액정 표시 장치
KR101399237B1 (ko) 액정표시장치 및 그의 구동방법
JP2001159883A (ja) 電気光学装置の駆動方法、駆動回路および電気光学装置ならびに電子機器
KR101386569B1 (ko) 액정표시장치의 응답속도 개선 장치 및 방법
JP2003295843A (ja) 液晶表示装置及びその駆動方法
KR101321173B1 (ko) 액정표시장치 및 그의 구동방법
KR20040053428A (ko) 액정표시장치 및 그 구동방법
JP3443059B2 (ja) 残像消去方法および該残像消去方法を用いた表示装置
KR20080111315A (ko) 액정표시장치와 그 구동방법
JP2003131265A (ja) 液晶表示装置の駆動方法
JP2006048074A (ja) 液晶表示装置
KR101213924B1 (ko) 액정표시장치 및 그의 구동방법
KR101174163B1 (ko) 액정표시장치 및 그의 구동방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027003351

Country of ref document: KR

Ref document number: 10088329

Country of ref document: US

Ref document number: 2384992

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001947935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018027571

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027003351

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001947935

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027003351

Country of ref document: KR