WO2002003447A1 - Dispositif et procede de formation de bosse - Google Patents

Dispositif et procede de formation de bosse Download PDF

Info

Publication number
WO2002003447A1
WO2002003447A1 PCT/JP2001/005609 JP0105609W WO0203447A1 WO 2002003447 A1 WO2002003447 A1 WO 2002003447A1 JP 0105609 W JP0105609 W JP 0105609W WO 0203447 A1 WO0203447 A1 WO 0203447A1
Authority
WO
WIPO (PCT)
Prior art keywords
bump
bonding
formation
temperature
heating
Prior art date
Application number
PCT/JP2001/005609
Other languages
English (en)
French (fr)
Inventor
Shoriki Narita
Kouichi Yoshida
Masahiko Ikeya
Takaharu Mae
Shinji Kanayama
Makoto Imanishi
Kazushi Higashi
Kenji Fukumoto
Hiroshi Wada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP01945693A priority Critical patent/EP1313139A4/en
Priority to KR1020027018034A priority patent/KR100554882B1/ko
Priority to US10/332,026 priority patent/US6910613B2/en
Publication of WO2002003447A1 publication Critical patent/WO2002003447A1/ja
Priority to US11/114,084 priority patent/US7350684B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67138Apparatus for wiring semiconductor or solid state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4921Contact or terminal manufacturing by assembling plural parts with bonding

Definitions

  • the present invention includes a bump strength improving device for improving a bonding strength between the above-mentioned electrode and the above-mentioned bump, for example, for a bump-formed component having a bump formed on an electrode of a semiconductor wafer or a semiconductor chip.
  • the present invention relates to a bump forming apparatus and a bump forming method executed by the bump forming apparatus. More specifically, the present invention relates to a bump forming apparatus capable of stabilizing a bonding state between the electrode section and the bump when forming a bump on an electrode section of a semiconductor substrate, as compared with a conventional bump forming apparatus.
  • the present invention relates to a bump forming method executed by the method described above, a recording medium on which a program capable of executing the bump forming method is recorded, and a bump-formed semiconductor substrate on which bumps are formed. Background art
  • Such a bump forming apparatus includes a carry-in device for taking out the pre-bump-formed wafer from the first storage container for storing the semiconductor wafer before the bump is formed, and a second storage device for storing the bump-formed wafer after the bump is formed.
  • a container and a bonding stage for mounting the wafer before bump formation and heating the semiconductor wafer to about 150 ° C.
  • An unloading device for storing a wafer in the second storage container, and a transfer device for transferring the wafer from the loading device to the bonding stage and from the bonding stage to the unloading device are provided.
  • the bonding between the electrode portions and the bumps on the piezoelectric substrate or the semiconductor substrate on which the minute bumps are formed may be incomplete. That is, as shown in FIG. 45, the S AW filter 10 has a pair of comb-shaped input circuits 12 and output circuits 13 on a piezoelectric substrate 11. The vibration generated by the input side circuit 12 is propagated to the output side circuit 13, and an output based on the propagated vibration is output from the output side circuit 13.
  • S AW Surface Acoustic Wave
  • the SAW filter 10 allows only a signal of a specific frequency to pass. Due to the structure and function of the S AW filter 10, the comb-shaped input-side circuit 12 and the output-side circuit 13 of the circuit forming portion and the electrode portions of these circuits 12 and 13 are formed.
  • the film thickness is about 200 OA, for example, compared to the film thickness of the electrode portion formed on a normal semiconductor substrate made of Si is about 500 to 700 A. And thin. Accordingly, it is considered that the bonding between the bump and the electrode portion may be incomplete because the layer of the metal material forming the electrode portion, for example, the layer made of aluminum particles is thin.
  • the diameter 16 b of the pedestal portion 16 a of the bump 16 formed on the electrode portion 15 is about 4 ° to 48 °.
  • the pedestal diameter is about 80 // m in the normal case, but the size of the bump 16 itself is smaller than that in the normal case. Therefore, the bonding area between the bump 16 and the electrode portion 15 is small, and the bonding is often incomplete.
  • an electrode of a semiconductor chip cut out from a semiconductor wafer and an electrode portion on a circuit board are opposed to each other without using a wire.
  • the semiconductor wafer and the semiconductor chip are heated while the bumps made of gold or the like are formed on the electrode 51 of the semiconductor wafer or the semiconductor chip as shown in FIG. 5 2 is formed.
  • the semiconductor chip itself is also miniaturized, and the heat-resistant temperature of the semiconductor chip tends to decrease. Therefore, there is a demand for a reduction in the heating temperature during bump formation.
  • the present invention has been made to solve the above-described problems, and is a bump capable of improving the bonding strength between a bump formed on an electrode portion and an electrode as compared with the related art.
  • An object of the present invention is to provide a pump forming apparatus and a bump forming method, and more specifically, to the following.
  • the present invention provides a bump forming apparatus, a bump forming method executed by the bump forming apparatus, which can stabilize a bonding state between an electrode portion and a bump and can improve a bonding strength as compared with the related art.
  • a first object is to provide a computer-readable recording medium on which a program capable of executing a bump forming method is recorded, and a bump-formed semiconductor substrate on which bumps are formed.
  • the present invention provides a method of manufacturing a semiconductor device, comprising: reducing the bonding strength between a bump formed on an electrode of a semiconductor component and the electrode;
  • a second object is to provide a bump strength improving device and method, and a bump forming device capable of improving the quality as compared with the conventional one. Disclosure of the invention
  • the bump forming apparatus includes: a bump forming device for forming a bump on an electrode portion on a semiconductor substrate; A bump forming apparatus having a bump forming head for forming the bump,
  • a preheat apparatus for executing a pre-formation bonding promotion temperature control for promoting bonding between the electrode portion and the bump during bump formation on the semiconductor substrate before forming the bump on the electrode portion.
  • the pre-formation bonding promotion temperature control of the preheating device is performed by heating the semiconductor substrate to a pre-formation bonding promotion temperature (T 1) that is equal to or higher than the bump bonding temperature and equal to or less than the damage prevention temperature (TB) of the semiconductor substrate. May be.
  • the pre-formation bonding promotion temperature control of the preheating device further includes maintaining the semiconductor substrate at the pre-formation bonding promotion temperature (tl) at the pre-formation bonding promotion temperature, and elapsing the pre-formation bonding promotion time Later, it may be set to the above bump bonding temperature.
  • the temperature control for promoting bonding before formation of the preheating device may further include setting the temperature for promoting bonding before forming and the time for promoting bonding before forming based on the material of the electrode portion and the bumps. .
  • the pre-formation bonding promotion temperature control of the preheating device further includes setting the pre-formation bonding promotion temperature and the pre-formation bonding promotion time based on the thickness of the electrode portion and the diameter of the pedestal portion of the bump. May be.
  • the pre-formation bonding promoting temperature may be a temperature obtained by adding 30 to 60 ° C. to the bump bonding temperature.
  • the time for promoting the bonding before the formation can be 10 minutes to 30 minutes.
  • the semiconductor substrate is further provided with a post-heat device that performs post-formation bonding promotion temperature control for promoting bonding between the bumps and the electrode portions and the bumps. It may be configured as follows.
  • the post-formation bonding promotion temperature control of the post-heater is performed by heating the semiconductor substrate to a post-formation bonding promotion temperature (T 3) that is equal to or higher than the bump bonding temperature and equal to or lower than the damage prevention temperature of the semiconductor substrate. Good.
  • the post-formation bonding promotion temperature control of the post-heat device further includes maintaining the semiconductor substrate at the post-formation bonding promotion temperature (t 3) at the post-formation bonding promotion temperature, After a lapse of time, the temperature may be lowered.
  • the apparatus further comprises a control device for controlling the preheating device and the boast heating device by associating the pre-formation bonding promotion temperature control by the preheating device and the post-formation bonding promotion temperature control by the boast heating device with each other.
  • a control device for controlling the preheating device and the boast heating device by associating the pre-formation bonding promotion temperature control by the preheating device and the post-formation bonding promotion temperature control by the boast heating device with each other.
  • the method for forming a bump includes the steps of: forming the electrode portion on the semiconductor substrate at a bump bonding temperature (T 2) when forming a bump on the electrode portion on the semiconductor substrate; A bump forming method for forming the bumps on the semiconductor substrate before the bumps are formed on the electrode portions, wherein the bonding between the electrode portions and the bumps is promoted on the semiconductor substrate at the time of forming the bumps. Execute temperature control.
  • the temperature control for bonding promotion before the formation may be such that the bump The semiconductor substrate is heated to a bonding promoting temperature (T 1) before forming the semiconductor substrate at a bonding temperature equal to or higher than the bonding temperature and equal to or lower than the damage prevention temperature (TB) of the semiconductor substrate.
  • T 1 bonding promoting temperature
  • the semiconductor substrate may be maintained at the time (t 1), and the bump bonding temperature may be set after the elapse of the pre-formation bonding promoting time.
  • a post-formation bonding promoting temperature control for promoting the bonding between the electrode portion and the bump after the bump formation is performed on the semiconductor substrate. May be performed.
  • the post-formation bonding promotion temperature control includes heating the semiconductor substrate to a post-formation bonding promotion temperature (T 3) that is equal to or higher than the bump bonding temperature and equal to or lower than the damage prevention temperature of the semiconductor substrate.
  • the semiconductor substrate may be maintained at the post-formation bonding promotion time (t 3) at the post-formation bonding promotion temperature, and the temperature may be lowered after the post-formation bonding promotion time has elapsed.
  • the temperature control for promoting bonding before forming and the temperature control for promoting bonding after forming may be controlled in association with each other.
  • the recording medium is provided on the electrode portion on the semiconductor substrate at a temperature (T 2) for bump bonding when forming a bump on the electrode portion.
  • T 2 a temperature for bump bonding when forming a bump on the electrode portion.
  • a computer-readable recording medium recording a program for executing a bump forming method for forming
  • the semiconductor substrate was recorded with a process of performing a pre-formation bonding promotion temperature control for promoting the bonding between the electrode portions and the bumps during the formation of the bumps.
  • the bumps were formed on the semiconductor substrate according to the fourth aspect of the present invention by the bump forming apparatus according to the first aspect.
  • the semiconductor substrate has a bonding strength between the bump formed on the electrode portion and the electrode portion, the bump having a strength to be broken at a pedestal portion of the bump.
  • the bump having a base portion of the bump formed on the electrode portion having a diameter of approximately 90 ⁇ has a breaking force of approximately 680 to 80 OmN per bump. I do.
  • the pre-heating apparatus is provided, and before the formation of the bump on the electrode portion, the temperature control for bonding promotion before formation is performed on the semiconductor substrate. I did it. Therefore, before the bump is formed, the metal particles in the electrode portion can be changed to an appropriate state, and the bonding state between the electrode portion and the bump can be improved as compared with the conventional case. Therefore, the bonding strength between the electrode portion and the bump can be improved to such an extent that the bonding portion between the electrode portion and the bump breaks at the pedestal portion of the bump, not at the bonding interface portion.
  • the temperature control for promoting bonding before formation is performed by heating the electrode portion to a temperature for promoting bonding before forming, and further maintaining the temperature for promoting bonding before forming at the temperature for promoting bonding before forming. Done.
  • the metal crystal in the electrode portion it is possible to optimize the metal crystal in the electrode portion and to obtain a complete bonding state of the bump.
  • the most suitable bonding state corresponding to various bumps is set. Can be obtained.
  • the bonding promoting temperature before formation a temperature obtained by adding 30 to 60 ° C. to the temperature for bump bonding can improve the tact time of the bump forming operation. Also, the bonding promoting time before formation at this time is preferably 10 to 30 minutes.
  • a post-heating device may be provided in addition to the preheating device, and after the bump is formed on the electrode portion, the temperature control for bonding promotion after the formation on the semiconductor substrate may be executed.
  • the bonding promotion temperature control after the formation By performing the bonding promotion temperature control after the formation, the bonding strength between the bump formed on the electrode portion and the electrode portion can be further improved as compared with the case where only the preheating operation is performed.
  • a control device can be provided.
  • the above-mentioned temperature control for promoting bonding before formation and the temperature control for promoting bonding after formation can be controlled in association with each other, and the type and size of the semiconductor substrate and the material of the electrode portion can be controlled.
  • the bump Based on the thickness and size, the material and size of the bump, etc., the bump can be more easily bonded to the electrode part, and the bonding strength between the pump and the electrode part can be further improved.
  • the program for executing at least the above-described pre-formation bonding promotion temperature control is recorded, so that the pre-formation bonding promotion can be easily performed on a plurality of bump forming apparatuses. Temperature control can be executed.
  • the semiconductor substrate of the above-described fourth aspect it is possible to form a bump on an electrode portion by a bump forming apparatus having at least a preheating apparatus for performing the above-described pre-formation promoting temperature control. It is possible to provide a semiconductor substrate in which the bonding strength between the bump and the electrode portion is improved as compared with the related art. Therefore, even when such a semiconductor substrate is flip-chip mounted, the bump does not come off the electrode portion at the junction interface between the bump and the electrode portion, and the reliability of flip-chip mounting can be improved.
  • the present invention is configured as follows to achieve the second object.
  • the bump strength improving apparatus is a device for improving the strength of a bump in which a bump is formed on an electrode of a semiconductor component, in comparison with the bonding strength between the electrode and the bump when the bump is formed.
  • a controller that controls the heating device to perform heating control based on the bonding strength improvement conditions.
  • the bonding strength improvement condition is a condition in which the heating time and the heating temperature for obtaining the desired bonding strength and the heating temperature are variables.
  • the control device is configured to determine the material of the semiconductor component, the size of the semiconductor component, For at least one of the material of the electrode, the size of the electrode, the material of the bump, and the size of the bump, the information is formed from information on a relationship between a heating temperature and a heating time required to reach the desired bonding strength. There is a bonding strength improvement condition, and the heating control of the heating device can be performed based on the bonding strength improvement condition.
  • the bonding strength improvement conditions of the control device are as follows: the material and size of the semiconductor component, the material and size of the electrode, and the material and size of the bumps are at least one thread, or a combination of each set. May be relational information between the heating temperature and the heating time required to reach the desired bonding strength.
  • the semiconductor component may be a chip component cut from a semiconductor wafer.
  • the heating device may include a plurality of heat treatment units each for mounting at least one of the chip components.
  • the control device can independently perform the temperature control according to the elapsed time after the formation of the pump in each of the chip components provided in each of the heat processing units.
  • the heating device may be a bonding stage for forming a bump on the semiconductor component, a bump leveling stage for equalizing the bump height of the bump-formed component, or a bump-formed component for storing the bump-formed component. It can be provided in any of the parts.
  • the control device When the semiconductor component is a semiconductor wafer, the control device performs the bonding strength improvement condition on the basis of the bump formation time (TE-TS) required to form almost all bumps on the semiconductor wafer. , And the heating control of the heating device can be performed under the determined bonding strength improvement conditions.
  • TE-TS bump formation time
  • the above-mentioned bonding strength improvement condition is the first heating time to obtain the above-mentioned bonding strength target value (P 0). (TB) to heat the semiconductor wafer.
  • the above-mentioned bonding strength improvement condition is the second heating obtained by subtracting the above-mentioned appropriate heating time from the above-mentioned bump formation time.
  • the semiconductor wafer can be heated for a time (TA).
  • the heating device has a plurality of heat treatment units corresponding to the order of bump formation on the semiconductor wafer on which the semiconductor wafer is placed, and the control device independently performs each of the heat treatment units with respect to the heat treatment units.
  • the temperature can be controlled according to the elapsed time after the bump is formed on the semiconductor wafer corresponding to the portion.
  • a bump forming apparatus includes: a bump strength improving apparatus according to the fifth aspect; a bump forming unit that mounts and heats a semiconductor component to form a bump on an electrode of the semiconductor component; With.
  • the control device provided in the bump strength improving device further controls the temperature of the bump forming unit so as not to cause damage to the semiconductor component when forming the bump in the bump forming unit. Heating control can be performed on the heating device based on the bonding strength improving condition at a temperature exceeding the undamaged temperature.
  • a method for improving bump strength according to a seventh aspect of the present invention comprises: loading a bump-formed component having a bump formed on an electrode of a semiconductor component;
  • the heating control is performed on the bump-formed component based on a bonding strength improvement condition for improving the bonding strength compared to the bonding strength between the electrode and the bump at the time of bump formation.
  • the bonding strength improvement condition is a condition in which the heating time and the heating temperature for obtaining the desired bonding strength are variables, and the material of the semiconductor component, the size of the semiconductor component, the material of the electrode, At least one of the size of the electrode, the material of the bump, and the size of the bump is a condition consisting of information on the relationship between the heating temperature and the heating time for achieving the desired bonding strength, and the relationship information.
  • the heating control can be performed based on the above.
  • the bonding strength improvement conditions are as follows: at least one set of the material and size of the semiconductor component, the material and size of the electrode, and the material and size of the bump, or the combination of each set; Is a condition consisting of information on the relationship between the heating temperature and the calorie heating time to reach the heating temperature, and the heating control can be performed based on the relationship information.
  • the temperature of the bump forming portion where the pump is formed is controlled to a non-damage temperature at which the semiconductor component is not damaged
  • heating control based on the bonding strength improving condition at a temperature exceeding the undamaged temperature can be performed.
  • the above-mentioned bonding strength improvement condition is obtained, and the above-mentioned heating control is performed under the obtained bonding strength improvement condition Can be.
  • the above-mentioned bonding strength improvement condition is the first heating time to obtain the above-mentioned bonding strength target value (P 0).
  • (TB) can be calorific heat.
  • the above-mentioned bonding strength improvement condition is the second heating obtained by subtracting the above-mentioned appropriate heating time from the above-mentioned bump formation time. Heating by time (YA) is easier.
  • the heating device and the control device are provided.
  • the semiconductor component is heated under the bonding strength improving condition for improving the bonding strength. Therefore, when the bumps are formed, even if the bonding strength at each bump of the semiconductor component is not uniform in the semiconductor component, it can be made substantially uniform by performing the heating under the bonding strength improvement conditions. . Therefore, the quality of the semiconductor component can be improved as compared with the related art. It is also useful for securing the bonding strength of weak heat resistant components.
  • the bonding strength improving condition is a condition using the heating time and the heating temperature as variables, and can be changed depending on, for example, the material and size of the semiconductor component. Therefore, for example, if the temperature for forming a bump is relatively high during the formation of the bump, the temperature for forming the bump is set to a relatively low temperature for a semiconductor component that is physically damaged due to its material. By heating the semiconductor component at a relatively low temperature for a long time even under the above-described bonding strength improvement conditions, the bonding strength can be made substantially uniform, and the quality of the semiconductor component can be improved as compared with the related art.
  • heating device by configuring the heating device so that a plurality of semiconductor components can be placed thereon, heating under the above-described bonding strength improvement conditions and other operations can be performed in parallel, thereby improving tact time. it can.
  • the time from the start to the end of the bump formation is longer than when the semiconductor component is a semiconductor chip.
  • Improvement of bonding strength by heating after bump formation The above-described bonding improvement condition can be determined based on the relationship with the appropriate heating time at which good is obtained. By determining the bonding improvement conditions in this way, the bonding strength of all the bumps on the semiconductor wafer can be made substantially uniform, and the quality of the bumped semiconductor wafer can be improved as compared with the conventional case.
  • FIG. 1 is a perspective view showing an overall configuration of a bump forming apparatus according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a detailed structure of a main part of the bump forming apparatus shown in FIG. 1,
  • FIG. 3 is a view showing the structure of the bump bonding apparatus shown in FIG. 1
  • FIG. 4 is a view showing the contact between the bump bonding apparatus and the charge generating semiconductor substrate in the pre-heating apparatus, the post-heating apparatus, and the bonding stage shown in FIGS. It is a diagram of a state where silver plating has been applied to the surface,
  • FIG. 5 is a perspective view showing details of the configuration of the carry-in device shown in FIGS. 1 and 2, and FIG. 6 is a diagram for explaining the operation in step 8 shown in FIG.
  • FIG. 4 is a diagram showing a state in which the wafer after bump formation held by the loading device is arranged above the unloading device,
  • FIG. 7 is a perspective view showing details of the configuration of the orientation flat aligner shown in FIGS. 1 and 2.
  • FIG. 8 is a perspective view showing the details of the configuration of the transfer device shown in FIGS. 1 and 2
  • FIG. 9 is a modified example of the loading-side transfer device and the unloading-side transfer device shown in FIGS. 1 and 2.
  • FIG. 8 is a perspective view showing the details of the configuration of the transfer device shown in FIGS. 1 and 2
  • FIG. 9 is a modified example of the loading-side transfer device and the unloading-side transfer device shown in FIGS. 1 and 2.
  • FIG. 9 is a modified example of the loading-side transfer device and the unloading-side transfer device shown in FIGS. 1 and 2.
  • FIG. 10 is a diagram showing details of the configuration of a contact member for static elimination of the wafer holding unit shown in FIG. 8;
  • FIG. 11 is a perspective view of a preheating device and a boast heating device
  • FIG. 12 is a diagram for explaining the operation of the pre-heating device and the post-heating device shown in FIG. FIG.
  • FIG. 13 is a diagram for explaining the operation of the pre-heating device and the post-heating device shown in FIG. 11,
  • FIG. 14 is a perspective view of an aluminum plate and a heater plate frame of the pre-heating device and the post-heating device shown in FIG. 11,
  • FIG. 15 is a diagram showing the metal particles on the surface in the vicinity of the bump formation location before performing the temperature control for bonding promotion before formation.
  • FIG. 16 is a diagram showing the metal particles on the surface in the vicinity of the bump formation location after performing the temperature control for bonding promotion before formation.
  • FIG. 17 is a flowchart showing the operation of the bump forming apparatus shown in FIG. 1.
  • FIG. 18 is a view for explaining the operation in step 2 shown in FIG. It is a diagram showing a state where is raised,
  • FIG. 19 is a diagram for explaining the operation in step 2 shown in FIG. 17 and is a diagram showing a state immediately before the wafer is held by the loading-side transfer device,
  • FIG. 20 is a diagram for explaining the operation in step 2 shown in FIG. 17 and is a diagram showing a state immediately after the wafer is held by the loading-side transfer device,
  • FIG. 21 is a diagram for explaining the operation in step 2 shown in FIG. 17 and is a diagram showing a state where the wafer is held by the loading-side transfer device;
  • FIG. 22 is a flowchart of a preheating operation in the preheating apparatus provided in the bump forming apparatus shown in FIG.
  • FIG. 23 is a flowchart for explaining the transfer operation from the preheating device to the bump bonding device in Step 5 shown in FIG. 17, and shows the operation when the panel heater frame and the aluminum plate are separated.
  • FIG. 24 is a flowchart for explaining the operation in step 3 shown in FIG. 17, and is a diagram showing a state in which the wafer before bump formation is transported above the preheating apparatus.
  • FIG. 5 is an enlarged view of a portion III shown in FIG. 26,
  • FIG. 26 is a graph showing the temperature change of the semiconductor substrate in the bonding promotion temperature control before formation and the bonding promotion temperature control after formation performed in the bump forming apparatus shown in FIG.
  • FIG. 27 is a view for explaining the operation in step 3 shown in FIG. 17 and is a view showing a state where the wafer before bump formation is placed on an aluminum plate,
  • FIG. 28 is a diagram for explaining the operation in step 3 shown in FIG. 17 and is a diagram showing a state in which the holding of the wafer before bump formation by the wafer holding unit is released.
  • FIG. 17 is a view for explaining the operation in step 3 shown in FIG. 17, showing a state in which the aluminum plate on which the wafer before bump formation is placed is lowered
  • FIG. 30 is a view showing the state formed in the electrode portion.
  • FIG. 5 is a diagram for explaining a method for measuring the shearing force of a bump
  • FIG. 31 is a graph showing a change in the temperature of the semiconductor substrate in the bonding promotion temperature control before formation and the bonding promotion temperature control after formation performed in the bump forming apparatus shown in FIG. It is a graph showing a modification
  • FIG. 32 is a flowchart for explaining the transfer operation of the wafer before bump formation to the bump bonding stage in step 5 shown in FIG. 17, and FIG. 33 is an operation in step 5 shown in FIG.
  • FIG. 7 is a diagram for explaining a state in which a wafer before bump formation is arranged above a bonding stage;
  • FIG. 34 is a diagram for explaining the operation in step 5 shown in FIG. 17 and is a diagram showing a state immediately before holding the wafer at the bonding stage.
  • FIG. 35 is a view for explaining the operation in step 5 shown in FIG. 17 and is a view showing a state where the wafer is held by the bonding stage and the loading side transfer device releases the holding of the wafer.
  • FIG. 36 is a diagram for explaining the operation in step 5 shown in FIG. 17 and is a diagram showing a state where the wafer is held on the bonding stage.
  • FIG. 37 is a flowchart of the post-heating operation in the post-heating apparatus provided in the bump forming apparatus shown in FIG.
  • FIG. 38 is a diagram for explaining a correlation between the bonding promoting temperature after formation and the holding time of the temperature in the post-heating operation.
  • FIG. 39 is an enlarged view of the portion IV shown in FIG. 26,
  • FIG. 40 is a diagram for explaining the operation in step 8 shown in FIG.
  • FIG. 41 is a diagram showing a state in which the holding unit of the unloading device is brought into contact with the wafer after bump formation.
  • FIG. 41 is a diagram for explaining the operation in step 8 shown in FIG.
  • FIG. 42 is a diagram illustrating the state immediately after the holding of the wafer by the holding device is released.
  • FIG. 42 is a diagram for explaining the operation in step 8 shown in FIG.
  • FIG. 4 is a diagram showing a state immediately after mounting the wafer on a holding table
  • FIG. 43 is a view for explaining the operation in step 8 shown in FIG. 17 and is a view showing a state where the wafer after the bump formation is placed on a holding table;
  • FIG. 44 is a diagram showing a state where ions are applied to the wafer by the ion generator when the wafer is transferred from the unloading-side transfer device shown in FIG. 1 to the unloading device after bump formation.
  • FIG. 45 is a perspective view showing the structure of the SAW filter.
  • FIG. 46 is a diagram showing a state in which bumps are formed on the electrode portions.
  • FIG. 47 is a perspective view of a bump forming apparatus according to a second embodiment of the present invention.
  • FIG. 48 is an enlarged perspective view of the semiconductor chip transfer device shown in FIG. 47
  • FIG. 49 is an enlarged perspective view of the bonding stage shown in FIG.
  • FIG. 50 is an enlarged perspective view of the bump forming portion shown in FIG. 47.
  • FIG. 51 is an enlarged perspective view of the leveling device shown in FIG.
  • Figure 52 is a graph showing the relationship between the bonding time between the bump and the electrode and the heating time for each heating temperature.
  • FIG. 53 is a graph showing the relationship between the bump forming temperature and the bonding strength of the bump.
  • FIG. 54 is a graph showing the relationship between the heating time and the heating temperature for the above bonding strength.
  • FIG. 55 is a perspective view of a modification of the repeller device shown in FIG. 47
  • FIG. 56 is a perspective view of a modification of the finished product storage device shown in FIG. 47
  • FIG. FIG. 48 is a layout view of a modification of the bump forming apparatus shown in FIG.
  • FIG. 58 is a view showing a modification of the bump forming apparatus shown in FIG. 47, in which the heating stage is divided into a plurality of sections to enable temperature control for each section. Yes,
  • FIG. 59 is a diagram showing the bump formation order when the processing target is a semiconductor wafer.
  • FIG. 60 is a graph for explaining an example of a method of obtaining a bonding strength improvement condition when a processing target is a semiconductor wafer, and is a graph showing a relationship between the bonding strength and a heating time after bump formation. ,
  • FIG. 61 is a flowchart showing how to obtain the above-mentioned bonding strength improvement conditions with reference to FIG. 60.
  • FIG. 62 shows a modification of the bump forming apparatus shown in FIG. 47, in which when a processing target is a semiconductor wafer, the heating stage is divided into a plurality of sections to enable temperature control for each section. It is a diagram showing a heating stage,
  • FIG. 63 is a view showing a shape of a bump formed on an electrode.
  • a bump forming apparatus according to an embodiment of the present invention, a bump forming method executed by the bump forming apparatus, a recording medium readable by a computer recording a program for executing the bump forming method, and the bump forming method
  • the semiconductor substrate on which the bumps are formed by the apparatus will be described below with reference to the drawings. In each figure, the same components are denoted by the same reference numerals.
  • the bump forming apparatus 101 of the present embodiment shown in FIGS. 1 and 2 is used for processing a wafer-shaped piezoelectric substrate (hereinafter, referred to as a “piezoelectric substrate wafer”) for forming the SAW filter. It is suitable, and the following description also exemplifies a case where bumps 16 are formed on the electrode portions 15 of the circuit portion formed on the piezoelectric substrate wafer as shown in FIG.
  • the electrode portion 15 formed on the piezoelectric substrate wafer has aluminum as its main component, and its thickness 15a is about 200 OA.
  • the bumps 16 formed on the electrode portions 15 are made of gold and have a diameter of about 90 to 120 im in the diameter of the pedestal portion 16a.
  • the present embodiment does not limit the processing target to such a piezoelectric substrate wafer. That is, the substrate to be processed is a substrate in which the bonding state between the electrode portion and the bump formed on the electrode portion is unstable and the bonding strength is weaker than a normal value.
  • the substrate to be processed is a substrate in which the bonding state between the electrode portion and the bump formed on the electrode portion is unstable and the bonding strength is weaker than a normal value.
  • Semiconductor wafers and semiconductor chips on which the so-called minute bumps are formed are to be processed.
  • the thin electrode portion 15 refers to an electrode portion having a thickness of about 250 OA or less and a thickness of, for example, about 180 to 220 OA.
  • the above-mentioned minute bump refers to a bump having a size of about 50 ⁇ m or less
  • the material of the base material constituting the semiconductor wafer and the semiconductor chip is made of a compound semiconductor such as LiTaO3 or LiNbO3 when forming the SAW filter, as well as quartz or Sb. i, etc., and are not particularly limited.
  • the bump forming apparatus 101 includes a first storage container 205 in which the piezoelectric substrate wafer 201 before bump formation is stored in a layer and a piezoelectric substrate wafer 202 after bump formation in a layer. It is a so-called double-magazine type having both the second storage container 206 to be stored, but is not limited to this type. The piezoelectric substrate wafer 201 before bump formation and the bump formation are not limited to this type. A so-called single-magazine type in which the rear piezoelectric substrate wafer 202 is stored in one storage container may be used.
  • the bump forming apparatus 101 is roughly divided into one bonding stage 110, one bump forming head 120, a transport device 130, and a loading side and a loading side.
  • the provided transfer device 140, the storage containers 205, 206 are provided respectively, and the lifting device 150 for raising and lowering the storage containers 205, 206 respectively, and the preheating device 16.
  • a post-heat device 170, and a control device 180 As described in detail below, the bump forming apparatus 101 of the present embodiment is characterized in that the temperature of the substrate is controlled by the preheating apparatus 160 before the bumps are formed on the electrode portions. Therefore, the most basic components are the bump forming head 120 for forming a bump and the preheating device 160.
  • each of the above components will be described.
  • the bonding stage 110 places the piezoelectric substrate wafer before bump formation (hereinafter simply referred to as “wafer before bump formation”) 201 and forms the wafer on the wafer 201 before bump formation.
  • the bump bonding temperature required for forming the bump is a temperature required for bonding the electrode portion 15 and the bump 16 with the designed strength, and the bump 16 is formed.
  • the temperature is set in accordance with the material of the wafer or substrate to be manufactured and the strength in the above design. In the case of the present embodiment, it is about 150 ° C.
  • the wafer 201 before the bump formation is adsorbed on the wafer mounting table 111 on which the wafer 201 before the bump formation is mounted, and An inlet / outlet 1 13 for ejecting gas is opened, and the inlet / outlet 1 13 functions as a suction device 114 controlled by a control device 180 and a gas supply device.
  • a blow device 1 15 which is an example of the operation is connected.
  • the gas is air.
  • the wafer mounting table 1 1 1 of the bonding stage 110 is used to transfer the heating position in contact with the heater 1 12 side and the semiconductor substrate such as the wafer 201 before bump formation. Can be moved up and down with the lifting device between the transfer positions. As shown in FIG.
  • a metal plating in this embodiment, a silver plating 261 is applied to the contact surface of the wafer mounting table 111 with the wafer 201 before bump formation.
  • a silver plating 261 is applied to the contact surface of the wafer mounting table 111 with the wafer 201 before bump formation.
  • the bump forming head 120 is placed on the bonding stage 110 and the bump 16 is formed on the electrode portion 15 of the wafer before bump formation 201 maintained at the bump bonding temperature.
  • a wire supply unit 121 for supplying a gold wire used as a material for the bump 16 the above-described gold wire is melted to form a ball and the ball is melted.
  • It has a bump producing section for pressing the ball against the electrode portion 15, an ultrasonic generating section for applying ultrasonic waves to the bump 16 at the time of pressing.
  • the bump forming head 120 thus configured has, for example, a ball screw structure and a flat shape.
  • the X and Y tables 122 which are movable in the X and Y directions perpendicular to each other on the surface, are mounted on the X and Y tables 122.
  • the table is moved in the X and Y directions by the X and Y tables 122 so that 16 can be formed.
  • the loading device 131 is a device for taking out the wafer before bump formation 201 from the first storage container 205
  • the unloading device 132 is a bumper.
  • This is a device that transports and stores the formed piezoelectric substrate wafer (hereinafter simply referred to as “wafer after bump formation”) 202 to the second storage container 206.
  • the carry-in device 13 1 includes a holder 1311 for holding the wafer before bump formation 201 by suction operation, and a holder 1311 along the X direction. And a moving device 1 3 1 2 for the loading device to be moved.
  • the driving unit 1313 included in the loading device moving device 1312 is connected to the control device 180 to control the operation. Therefore, the holder 1 3 1 1 is moved along the X direction by the operation of the driving unit 1 3 1 3, and the loading device 1 3 1 is moved from the first storage container 2 5 Take out one.
  • the unloading device 13 2 has the same structure as the loading device 13 1, and operates in the same manner. In other words, as shown in FIG.
  • the unloading device 132 includes a holding table 1321 that holds the wafer 202 by the suction operation after the bumps are formed, and a holding table 1312, A moving device 1 32 for the unloading device that moves along the X direction to store the wafer 202 after the bump formation in the second storage container 206, and a back surface 2 of the wafer 202 after the bump formation.
  • Holder 1 3 2 3 that holds wafer 2 0 2 after it is attracted to 0 2 b and bumps are formed, and bumps are placed below holder 1 3 2 1 and held by holder 1 3 2 1
  • a driving unit 1324 for moving the holding unit 1323 in the thickness direction of the rear wafer 202.
  • the operation of the moving device 1 3 2 2 and the driving unit 1 3 2 4 for the unloading device is controlled by a control device 180.
  • an orientation flat aligning device for orienting the orientation flat of the pre-bump-formed wafer 201 taken out of the first storage container 205 by the import device 131 in the installation location of the import device 131 is used. 1 3 3 is provided. As shown in FIG. 7, the orientation flat aligning device 1 33 is moved in the Y direction by a driving section 133 2. The holding plate 1 3 3 1 for holding the wafer before bump formation 201 and the wafer 201 before bump formation can be moved in the thickness direction, and the wafer 201 before bump formation can be held and held.
  • Holder 1 3 3 3 rotatable in the circumferential direction of pre-bump formation wafer 201 in order to perform orientation flat of pre-bump formation wafer 201 1, and drive unit 1 of holder 1 3 3 3 3 3 and 4 are provided.
  • the operation of 3 3 4 is controlled by the control device 180.
  • the transfer device 140 includes a carry-in transfer device 141 and a carry-out transfer device 142 in the bump forming device 101.
  • the loading-side transfer device 1 4 1 1 sandwiches the wafer before bump formation 2 1 held by the holding table 1 3 1 1 of the loading device 1 3 1 and transports it to the pre-heating device 1 60, The transfer from the preheating device 160 to the bonding stage 110 is performed.
  • the unloading-side transfer device 144 holds the wafer 202 after the bump formation held on the bonding stage 110 and transports it to the post-heater 170 and the post-heater 1 From 70, transfer to the holding table 1 32 1 of the above unloading device 1 32 is performed.
  • the wafer holding unit 1441 which holds the substrate 201 and removes the charge on the front and back surfaces of the wafer 201 before bump formation, and the wafer holding unit 1441, which is driven for the above-described holding operation
  • the driving unit 1412 having an air cylinder, and the entire wafer holding unit 1411 and the driving unit 1412 are moved in the X direction.
  • a ball screw mechanism is used.
  • a moving device 1 4 1 3 to be configured.
  • the driving unit 1412 and the moving device 1413 are connected to a control device 180, and their operations are controlled.
  • the unloading-side transfer device 14 like the transfer-side transfer device 14 1, also includes a wafer holding unit 14 2 1, a driving unit 1 4 2 2, and a moving device 1 4 2 3, The operation of the drive unit 1442 and the moving device 1442 is controlled by the control device 180.
  • 1 is a first holding member 14 14 and a second holding member 14 15 that are movable in the X direction by the driving unit 14
  • the static elimination units # 1 4 16 arranged are arranged in parallel with each other.
  • the first holding member 14 14, the second holding member 14 15, and the static elimination member 14 16 are made of iron or other conductive material. Made from materials.
  • the wafer holding unit 1421 also includes a first holding member 1424 and a second holding member 1425, and a static elimination member 1426 sandwiched therebetween and arranged in parallel with each other. Have been.
  • the first holding member 1424, the second holding member 1425, and the charge removing member 1426 are all made of iron or another conductive material. Since the wafer holders 141 1 and 142 1 have the same structure, the wafer holder 141 1 will be described below as an example.
  • Each of the first holding member 1414 and the second holding member 1415 has an L-shaped holding claw 141 7 made of iron or a conductive resin material for holding the wafer 201 before bump formation as shown in the figure. Two are provided.
  • the first holding member 1414, the second holding member 1415, and the holding claws 14 17 are made of iron or a conductive material because the back surface 201 b of the wafer 201 before bump formation to be held is charged. This is to enable grounding.
  • the static elimination member 1416 is provided with a wafer 20 1 c so as to be able to contact the peripheral portion 201 c of the front surface 2 O la of the pre-bump forming wafer 201 held by the wafer holding portion 14 11.
  • a contact member 141 61 for static elimination is provided to protrude in the thickness direction of the wafer 201 at two locations along the diameter direction of 1.
  • the static elimination contact member 1 416 1 is slidably penetrated and attached to the static elimination member 14 16 as shown in FIG. 10, and a spring 14 16 2 is provided in the axial direction of the static elimination contact member 14 16 1. It is energized by
  • a conductive resin 14163 is provided as a cushioning material at the wafer contact end of the contact member 14 16 for static elimination.
  • the charge removing contact member 14161 grounds the charge on the surface 201a. Further, before the wafer 201 before bump formation is held by the holding claws 141 7, the contact member 141 61 for static elimination is at the same level as the holding claws 141 7 in the thickness direction of the wafer 201 before bump formation. Or beyond the holding claw 141 7 It is protruding. With this configuration, when the wafer holding unit 1411 is to hold the pre-bump formation 0: 201, before the holding claws 1417 are in contact with the pre-bump formation wafer 201, the contact for static elimination is made.
  • the member 14 16 1 can be brought into contact with the surface 20 la of the wafer 201 before bump formation. Therefore, first, the surface 201a can be neutralized. Also, a configuration in which a ground wire is directly connected to the contact member for static elimination 14 16 1 may be adopted.
  • the preheating device 160 is a device that executes one of the characteristic operations in the bump forming device 101 of the present embodiment. That is, before the bump 16 is formed on the electrode portion 15 of the wafer before bump formation 201, the preheating device 160, before forming the bump 16 on the electrode portion 15 of the wafer before bump formation 201, contacts the above-mentioned electrode portion when the bump is formed.
  • This is a device for performing pre-formation bonding promotion temperature control for promoting bonding between the bumps 15 and the bumps 16, and is roughly divided into a pre-heating unit that heats the wafers before bump formation 201, And a controller for performing the above-described pre-formation bonding promotion temperature control.
  • the control unit corresponds to the control device 180.
  • the preheating unit is configured as follows.
  • a 6 mm-thick aluminum plate 1 in this embodiment as a heat diffusion member is provided on a panel heater frame 162 having a panel heater 161 as a heat source. 6 3 is placed.
  • a metal plating in this embodiment, a silver plating 261 is applied to the wafer mounting surface 1663a of the aluminum plate 163.
  • the temperature raising operation by the panel heater 161 is controlled by the controller 180 while measuring the temperature of the aluminum plate 163 with reference to temperature information from a temperature sensor 166 such as a thermocouple.
  • the material of the heat diffusion member 163 is not limited to the above-described aluminum, and is a material having a good thermal conductivity and not causing a chemical reaction with the wafer 201 before bump formation. For example, duralumin may be used.
  • the carry-in side transfer device 14 1 and the carry-out side transfer device 14 2 each hold the wafer holding unit 14 11 1, the ueno, and the holding unit 14 21.
  • the preheater 160 mounts the panel heater frame 162 having the panel heater 161 and the aluminum plate 16 so that the wafer 201 before bump formation is placed on the aluminum plate 163.
  • An elevating mechanism is provided for raising and lowering 3 in the above-described thickness direction between the lowering position 1667 shown in FIG. 12 and the raising position 1668 shown in FIG.
  • the elevating mechanism includes an air cylinder 1601 as a driving source for performing the elevating operation in the thickness direction, and a T-shaped support member 160 raised and lowered by the air cylinder 1601. 2 and two support rods 1603 standing upright on the support member 1602 and supporting the panel heater frame 162 and the aluminum plate 163.
  • the air cylinder 1601 is operated by a cylinder driving device 164, the operation of which is controlled by a control device 180.
  • the panel heater frame 162 and the aluminum plate 163 are separated from each other by the lifting and lowering operation by the air cylinder 1601, as described later, so that the cooling of the aluminum plate 163 is promoted.
  • the cylinder driving device 1604 and the air cylinder 1601 have a function as a separating device.
  • the support bar 1603 penetrates the panel heater frame 162, and its tip is inserted into the aluminum plate 163.
  • the panel heater frame 16 2 can slide in the axial direction of the support bar 16 03, and the aluminum plate 16 at the tip of the support bar 16 03. 3 is fixed to the support bar 16 03.
  • the panel heater frame 162 is pressed against the arm / remdium plate 1663 by a spring 1605 which is an example of the urging means. Therefore, when the air cylinder 1601 operates, the panel heater frame 162 and the aluminum plate 1663 move up and down integrally from the descending position 1667 as shown in FIG.
  • the panel heater frame 162 After the panel heater frame 162 comes into contact with the stopper ⁇ "1606 provided at the contact position, as shown in Fig. 13, the panel heater frame 16 Since the ascent is stopped, only the aluminum plate 16 3 rises, and the panel heater frame 16 2 and the aluminum plate 16 3 are separated from each other, and the aluminum plate 16 3 rises to the elevation position 16 8
  • the gap between the panel heater frame 162 and the azolemmium plate 163 when the separation is completed is about 2 to 4 mm.
  • the above stopper 1 6 0 6 is provided Only the aluminum plate 16 3 descends to the contact position, and the panel heater frame 16 2 and the aluminum plate 16 3 descend integrally from the contact position to the descending position 16 7.
  • the temperature of the aluminum plate 163 needs to be lowered to about 40 ° C when the next new wafer before bump formation 201 is mounted, but as described above, the panel heater
  • the cooling rate of the aluminum plate 16 3 can be improved compared to the conventional case, and the tact time can be reduced.
  • the use of the above separation structure can improve the cooling rate, so that the Becomes effective.
  • the panel heater frame 16 2 and the aluminum plate 16 3 may be combined, and the panel heater frame 16 2 will drop to about 40 ° C. Because there is no need to wait, the temperature difference in the panel heater frame 16 2 becomes smaller than before. Therefore, since the load on the panel heater 161 can be reduced, the life of the panel heater 161 can be extended as compared with the conventional case.
  • the panel heater frame 16 2 and the aluminum plate 16 3 are configured to be separable, but as a simple type, the panel heater frame 16 2 and the aluminum plate 16 6 It is also possible to configure so as to always ascend and descend integrally without separating from. Also, as described above, the panel heater frame 162 and the aluminum
  • a groove 1607 and an air inlet / outlet 1608 are formed.
  • Air port 1 As shown in FIG. 14, the nozzle 608 communicates with the blow suction passage 169 formed in the aluminum plate 163. 01 Air is blown out when separating wafer 201 before bump formation from wafer mounting surface 16 3 a when transporting 01, or when removing the charge on the back surface of wafer 201 before bump formation. This is a hole for air suction when the pre-bump-forming wafer 201 is sucked and held on the wafer mounting surface 163a, which is not basically performed in the present embodiment.
  • the blow suction passage 1609 is connected to a blow suction device 1611 controlled by a control device 180 via a connecting pipe 1610 as shown in FIG. Is done.
  • air is used as the gas to be jetted as described above, but another gas may be used.
  • the blow suction device 1611 functions as a gas supply device for performing a warp correcting operation and a static elimination operation of the wafer before bump formation 201 by supplying gas.
  • a refrigerant passage 1612 for cooling the aluminum plate 163 is formed in the anode plate 163.
  • room temperature air is used as the refrigerant, but other gases, water, or the like may be used.
  • the refrigerant passage 16 12 is connected to the cooling air supply device 16 13 controlled by the control device 180 via the connecting pipe 16 14 as shown in FIG. .
  • the cooling air supplied to the refrigerant passage 16 16 flows through the refrigerant passage 16 12 according to the arrow shown in the figure, and is exhausted through the connecting pipe 16 15.
  • the electrode portion 15 in the circuit portion 20 formed on the semiconductor substrate is formed, for example, by vapor deposition using a metal such as aluminum which forms the electrode portion 15 on the circuit portion 20 with a desired film thickness. It is formed up to.
  • the metal at the time of forming the electrode portion 15 is a state in which aluminum particles are deposited, and the aluminum particles have a diameter of 0.05.
  • the electrode portion 15 is in a fragile state due to imperfections of coarse particles.
  • the bump 16 is formed on the electrode portion 15, the molten metal ball to be the bump 16 is pressed against the electrode portion 15 while being ultrasonically oscillated. It is considered that the above ultrasonic vibrations and the like act on 5, causing phenomena such as collapse of the metal of coarse particles, and as a result, stable bonding between the electrode portion 15 and the bump 16 cannot be achieved.
  • aluminum is used for the electrode portion 15 and the film thickness 22 is thin, the above-mentioned unstable bonding occurs remarkably.
  • the heating before the formation of the bump 16 on the pre-bump forming wafer 201 on which the electrode portion 15 is formed is performed by the above-described pre-forming bonding promotion temperature control.
  • the bonding pre-forming temperature control is performed for the pre-bump forming wafer 201 at a temperature equal to or higher than the bump bonding temperature. This is a control for heating the wafer before bump formation 201 to a bonding-promoting temperature lower than the damage prevention temperature or lower.
  • FIG. 15 is a diagram created based on an electron micrograph showing a state before the execution of the pre-formation bonding promotion temperature control on the substrate surface in the vicinity of the bump formation location, and FIG.
  • the figure was prepared based on an electron micrograph of the vicinity after performing the temperature control for bonding promotion before formation in the vicinity, and the original electron micrograph was a magnification of 100,000 times in both cases. It is.
  • the particles indicated by reference numeral 21 are aluminum particles forming the electrode portion 15, and the particles 21 shown in FIG. 16 are smaller than the particles 21 shown in FIG. Pre-forming temperature to promote bonding It can be seen that the fineness of the aluminum particles was advanced by executing the degree control.
  • the post-heat apparatus 170 is also an apparatus that performs one of the characteristic operations in the bump forming apparatus 101 of the present embodiment. That is, the post-heater 170 forms the bumps 16 on the electrode portions 15 of the wafer 201 before bump formation, and then forms the electrode portions 15 and the bumps 1 on the wafers 202 after bump formation.
  • This is a device for performing post-formation bonding promotion temperature control for promoting the bonding with 6, and is roughly divided into a post-heating unit for heating the wafer 202 after bump formation, and the post-formation bonding to the post-heating unit.
  • a control unit for performing temperature control for acceleration In the present embodiment, the control unit corresponds to the control device 180.
  • the post-heating unit is configured as follows.
  • the panel heater frame and the aluminum plate are separated from each other.
  • the reference numerals for both the preheating device 160 and the postheating device 170 are shown.
  • the operation of the panel heater 17 1 is controlled by the controller 180 in order to control the temperature of the wafer 202 after the bumps are formed.
  • a metal plating as shown in FIG. 4 and a silver plating 261 in the present embodiment are applied to the wafer mounting surface 173a of the aluminum plate 173. ing.
  • the silver plating By applying the silver plating, the thermal conductivity between the aluminum plate 173 and the wafer 202 after the bump is formed is improved, and the static electricity removing effect of the wafer 202 after the bump is formed is also increased. .
  • the above-described post-formation bonding promotion temperature control is performed by heating the post-bump formation wafer 202 to a post-formation bonding promotion temperature equal to or higher than the bump bonding temperature and equal to or lower than the bump formation wafer damage prevention temperature. Further, in the present embodiment, the wafer 202 is maintained after the bump formation at the post-formation bonding promotion time at the post-formation bonding promotion temperature, and is substantially at room temperature after the post-formation bonding promotion time has elapsed. After the bumps are formed, the temperature of the wafer 202 is controlled.
  • Such a post-formation bonding promotion temperature control does not optimize the metal particles of the electrode portion 15 like the pre-formation bonding promotion temperature control performed in the preheating device 160, but instead of the bump 1.
  • This is a control for promoting the diffusion of both materials at the joint interface between the electrode part 6 and the electrode part 15.
  • a program for performing the above-described pre-formation bonding promotion temperature control and post-formation bonding promotion temperature control is stored in the storage device 181 provided in the control device 180.
  • the present invention is not limited to this.
  • the above program may be supplied from a recording medium such as a CD-ROM, a floppy disk, or the like to a control device 180 via a reading device 183.
  • it may be configured to supply the data via a communication line.
  • the temperature control for promoting the bonding before forming and the temperature control for promoting the bonding after forming can be independently executed. Further, for example, when the time for promoting the bonding before forming is extended, the time for promoting the bonding after forming is reduced.
  • the control unit 180 can control both controls in association with each other, for example, by shortening the control.
  • the elevating device 150 includes a first elevating device 15 1 on which the first storage container 205 is placed, and a second elevating device 1 on which the second storage container 206 is mounted. 5 and 2.
  • the first lifting / lowering device 151 raises / lowers the first storage container 205 so that the wafer before bump formation 201 is located at a position where it can be taken out by the loading device 1331.
  • the second lifting / lowering device 152 is configured to store the bump-formed wafer 202 held by the unloading device 132 in the second storage container 206 at a predetermined position.
  • the storage container 206 is raised and lowered.
  • the operation of the bump forming apparatus 101 of the present embodiment having the above-described configuration, that is, a bump forming method will be described below.
  • the operation of each component described above is controlled by the control device 180 so that bumps are formed on the wafer 201 before bump formation, and the wafer 202 after bump formation is stored in the second storage container 206. A series of operations are performed.
  • the control device 180 controls the pre-bonding promoting temperature control on the pre-bump-forming wafer 201 by the pre-heating device 160, and further, the pre-heating device 160 It is also possible to control the static elimination blow operation and the warpage correction blow operation for the wafer 201 before the bump formation, which can be executed by the above.
  • control device 180 controls the post-forming device 170 to control the temperature of the post-forming wafer 202 after the formation of the bump in the post-heating device 170 to promote the bonding. It is also possible to control the charge elimination blow operation and the warp correction blow operation for the wafer 202 after the bump formation, which can be performed at 0.
  • step 10 enable the wafer before bump formation
  • a bump is formed on the substrate 201, and the wafer 202 is stored in the second storage container 206 after the bump is formed.
  • the first storage device 205 is used to carry out the first storage so that the wafer before bump formation 201 can be taken out of the first storage container 205 by the carry-in device 131.
  • the container 205 moves up and down, and thereafter, the wafer before bump formation 201 is taken out of the first storage container 205 by the carry-in device 131.
  • the wafer 201 before bump formation held by the carry-in device 13 1 is oriented in the orientation flat by the orientation flat aligning device 13 3.
  • step 2 the wafer before bump formation 201 held on the holding table 1311 of the carry-in device 13 1 is clamped by the carry-in transfer device 141. The operation will be described in detail with reference to FIGS.
  • the holding section 1 33 3 of the orientation flat aligning apparatus 1 33 rises, and the wafer before bump formation 201 is sucked and held from the holding table 1 31 1 and rises.
  • the wafer holding unit 14 11 is placed above the wafer before bump formation 20 1, and the first holding member 14 14 and the second holding member 14 5 moves in the opening direction along the X direction.
  • the holding portion 133 3 3 is lifted, so that the leading end of the charge removing contact member 14 16 1 of the wafer holding portion 14 11 It contacts the surface 201a of the wafer 201. Therefore, even if the surface 201a is charged immediately before the contact with the contact member for static elimination 14161, the contact with the contact member for static elimination 1416 removes the charge.
  • the first holding member 1414 and the second holding member 1415 move in the closing direction along the X direction by the drive unit 1412.
  • the holding table 1311 descends, and the wafer 201 before bump formation is held by the holding claws 1417 of the wafer holding section 1411. You. At this time, the pre-bump-forming wafer 201 is pressed against the holding claws 14 17 by the urging force of the springs 14 16 2 provided on the charge removing contact member 14 16 1.
  • the pressing force is such that the wafer 201 before the bump formation by the wafer holding portion 141 does not cause a problem such as dropping when the wafer 201 is transferred, and may cause the wafer 201 before the bump formation to be deformed. Not.
  • the wafer holding section 14 11 is moved above the pre-heating apparatus 16 0 by the moving apparatus 14 13 while holding the wafer 20 1 before bump formation. Conveyed and arranged. Then, in the next step 4, a preheating operation is performed on the wafer before bump formation 201 by the preheating device 160 in the preheating apparatus 160 by the preheating bonding promotion temperature control.
  • the preheater 160 has a structure in which the panel heater frame 162 and the anode plate 163 can be separated. Therefore, when the aluminum plate 163 is at a temperature equal to or higher than room temperature, before the bump-forming wafer 201 is conveyed above the preheating device 160, that is, before the step 3 is executed, Steps 5 10 to 5 15 shown in FIG. 22 are executed to cool the aluminum plate 16 3. See Figure 23 for steps 5 10 to 5 15 And will be described later.
  • step 3 above as shown in FIG. 24, the wafer holding section 144 1 1 1 is moved by the moving apparatus 1 4 1 3 to the pre-heating apparatus while the wafer 201 before bump formation is held. It is transported and placed above 160. Then, the above step 4 is started.
  • FIG. 22 shows the detailed operation by the temperature control for promoting the pre-formation bonding in Step 4, and FIGS.
  • step 401 shown in FIG. 22 the wafer 20 before bump formation is moved by the moving device 14 13 above the aluminum plate 16 3 at the preheating start temperature T 0 of about 40 ° C.
  • T 0 the preheating start temperature
  • the wafer before bump formation 201 is gradually heated by the radiant heat from the anolem plate 163.
  • the pre-bump forming wafer 201 is not immediately brought into contact with the anorem medium plate 163, but is first held in the air and heated, thereby applying thermal stress to the pre-bump forming wafer 201 at room temperature.
  • physical damage to the wafer 201 before bump formation and destruction of the formed circuit can be prevented.
  • the heating time in the step 401 is about 1 to 3 minutes, and the wafer before bump formation at about 27 ° C. as the room temperature is heated up as shown in FIG. Heated to around 40 ° C in the curve.
  • the heating time and the temperature of the wafer 201 before bump formation are not limited to the above examples.
  • the type, material and size of the wafer 201 before bump formation, and The material and size of the electrode portion 15 and the bump 16 are changed based on the thickness of the electrode portion 15, the diameter of the pedestal portion 16a of the bump 16 and the like.
  • FIG. 25 is an enlarged view of the portion III shown in FIG.
  • the aluminum plate 163 is raised again to the raised position 168.
  • the holding claws 14 17 provided on the wafer holding portion 14 11 enter the escape grooves 16 07 formed in the aluminum plate 16 3 as shown in FIG. Therefore, the wafer 201 before bump formation held by the wafer holding section 141 1 is placed on the aluminum plate 163.
  • the loading / unloading transfer device 14 1 and the unloading transfer device 14 2 are provided with an elevating mechanism. Therefore, it is necessary to move the aluminum plate 163 up and down in order to carry in the wafer 201 before bump formation into the preheater 160 and to perform the mounting operation on the aluminum plate 163.
  • next step 4003 as shown in FIG. 28, the first holding member 1414 and the second holding member 1415 of the loading-side transfer device 141 are opened, and the next step 400 is performed.
  • step 4 as shown in Fig. 29, the aluminum film plate 163 is lowered to the above-mentioned lowering position 1667.
  • the next step 405 as shown in FIG. 26, the aluminum plate 163 is heated by energizing the panel heater 161, and the aluminum plate 163 and the wafer 20 The wafer before bump formation 201 is heated from the temperature in the vicinity of the preheating start temperature TO to the pre-formation bonding promotion temperature T1 in a state in which the wafer 2 is in contact with 1.
  • the pre-formation bonding promoting temperature T1 is a temperature not lower than the bump bonding temperature T2 and not higher than the damage prevention temperature TB of the pre-bump formation wafer 201 as an example of the semiconductor substrate.
  • the damage prevention temperature TB is a temperature at which the wafer before bump formation 201 causes physical damage or circuit breakage, which may hinder the wafer before bump formation 201.
  • the temperature is about 0 ° C.
  • the reason why the bonding promotion temperature T1 before formation is set to be equal to or higher than the bump bonding temperature T2 is that even if heating is performed at a temperature lower than the bump bonding temperature T2, only the oxidation of the surface of the electrode portion 15 proceeds. This is because it is not possible to expect the above-described optimization of making the metal particles of the electrode portion 15 fine, and thus it is impossible to improve the bonding state of the bump 16.
  • the bump bonding temperature T 2 is 150 ° C.
  • the damage prevention temperature TB is about 300 ° C. It is set to 10 ° C.
  • the temperature rising gradient up to the pre-formation bonding promoting temperature T1 is 30 ° C./min.
  • the temperature T2 for bump bonding, the temperature T1 for promoting bonding before formation, and the temperature rise gradient are not limited to the above-mentioned values.
  • the bump is raised to the bonding promoting temperature T1 of about 210 ° C before forming.
  • the pre-formation bonding promotion time t 1 is maintained. Providing such a holding time promotes the optimization of metal particles such as miniaturizing the metal particles of the electrode portion 15.
  • the bonding promoting time t1 before formation is set to about 10 minutes.
  • the bonding promoting time t1 before formation is not limited to this value.
  • the type, material and size of the wafer 201 before bump formation, the electrode portion 15 and the bump 16 It is changed based on the materials and sizes of the electrodes, especially the film thickness of the electrode portion 15, the diameter of the pedestal portion 16a of the bump 16 and the like.
  • the temperature of the preheater 160 is measured by the temperature sensor 166 provided on the aluminum plate 163 as described above. 1 and the wafer before bump formation 201 is thin, so that the temperature of the aluminum plate 163 and the temperature of the wafer before bump formation 201 can be regarded as the same.
  • the temperature of the pre-bump-forming wafer 201 is started when the pre-formation bonding promoting time t1 has elapsed. That is, the energization to the panel heater 16 1 is controlled to cool the aluminum plate 16 3, and the bumps are formed from the above-mentioned bonding promoting temperature T 1 of about 210 ° C. before forming to the above-mentioned bump bonding temperature T 2. Unformed wafer
  • the reason for setting the target temperature for cooling to the temperature T 2 for bump bonding is that the bump 16 is formed next at the temperature T 2 for bump bonding.
  • the temperature decrease gradient is the same as the temperature increase gradient.
  • the temperature drop gradient is not limited to the above value.
  • the type, material and size of the wafer 201 before bump formation, and each material and size of the electrode portion 15 and the bump 16 are particularly The temperature gradient may be changed based on the film thickness of the electrode portion 15, the diameter of the pedestal portion 16a of the bump 16 and the like, and the temperature rising gradient and the temperature falling gradient may be different.
  • the wafer before bump formation 201 generates electric charges based on a temperature change
  • the probability of occurrence of damage to the wafer before bump formation 201 increases when the temperature drop gradient is large. Therefore, in such a case, it is preferable to make the temperature drop gradient gentler than the temperature rise gradient.
  • the preheating operation ends.
  • the present embodiment In order to reduce the temperature difference between the temperature of the aluminum plate 163 and the wafer before bump formation 201, for example, for 0 to 1 minute, the wafer before bump formation 201 and the aluminum plate 163 are connected to each other. Is kept in contact. By performing such an operation, for example, even if the wafer 201 before bump formation is sensitive to temperature change, there is no problem, and the wafer is moved to the bonding stage 110 at the bump bonding temperature T2 of about 150 ° C. Is possible.
  • step 5 After the preheating operation is performed on the wafer before bump formation 201 by the above-described temperature control for bonding promotion before formation, the operation of step 5 is performed on the wafer before bump formation 201. On the other hand, for the preheating device 160, the temperature lowering operation to the preheating start temperature T0 is performed.
  • the metal particles having a large particle size in the electrode portion 15 change to a state where the particles are refined, and the electrode portion Strength of 15 is improved. Therefore, when the bump 16 is formed, the bonding strength between the electrode portion 15 and the bump 16 can be improved.
  • FIG. 1 After forming a gold bump 16 having a diameter of about 90 / xm of the pedestal portion 16a on each electrode portion 15 of the wafer subjected to the preheating operation, FIG. As shown in FIG. 0, a shear measuring member 17 was applied to the pedestal portion 16a at a position 3 ⁇ m from the surface of the electrode portion 15 to measure the shearing state.
  • the bump formation itself can hardly be achieved, and even if the bump is formed, the shearing force is, for example, 240 to 50 O Since the shear force was low and the variation was large, it was not practical.
  • the temperature T 1 for promoting bonding before formation is a temperature equal to or higher than the temperature T 2 for bump bonding, and in the above embodiment, the temperature T 2 for bump bonding is set to 150 ° C. From about 60 ° C added to the temperature T 2 for bump bonding. It is 210 ° C.
  • the bonding promoting temperature T1 before formation is related to the bump bonding temperature ⁇ 2. For example, if the bump bonding temperature ⁇ 2 is approximately 210 ° C., add approximately 30 to 40 ° C. It is preferably about 240 to 250 ° C. Therefore, the temperature T1 for promoting bonding before formation is preferably a value obtained by adding 30 to 60 ° C to the temperature T2 for bump bonding.
  • the temperature T 1 must be set excessively high before bonding since the temperature lowering rate must be slower than the temperature raising rate so as not to damage the wafer 201 before bump formation. Then, it takes time to lower the temperature to the bump bonding temperature T 2. Therefore, in consideration of the tact time, the optimum value of the bonding promoting temperature T1 before formation is a value obtained by adding about 60 ° C. to the bump bonding temperature T2. In the above-described embodiment, the bonding-promoting temperature T1 before formation is set to a temperature higher than the bump-bonding temperature T2. However, if the tact is ignored, as shown in FIG. The temperature may be the same as the temperature T2.
  • the above-described bonding promotion time t1 before formation is set to 10 minutes in the above-described embodiment, it needs to be changed according to the bonding promotion temperature T1 before formation.
  • the time t for promoting bonding before formation is set from about 1 second to about 10 minutes.
  • the pre-formation bonding promotion time t1 is set to about 1 second. This is because, if a time longer than about 1 second is set, the reaction of the metal crystal of the electrode portion 15 will be excessive, and it will be difficult to respond in the event of a trouble. .
  • an electric charge may be generated in the wafer before bump formation 201 due to a temperature change of the wafer before bump formation 201 due to the preheating operation described above. Since the wafer before bump formation 201 is placed on the aluminum plate 163, the charge is grounded via the aluminum plate 163 and the charge can be removed.
  • Step 5 is executed after the above-described preheating operation.
  • Step 5 First, as shown in FIG. 23, the transfer operation of the wafer before bump formation 201 is performed from the preheating device 160 to the bonding stage 110.
  • step 501 of FIG. 23 the first holding member 14 14 and the second holding member 14 15 move in the opening direction by the operation of the drive unit 14 12 of the loading side transfer device 14 1 I do.
  • step 502 the aluminum plate 163 of the preheater 166 is moved from the lower position 167 to the upper position 168.
  • the holding claws 14 17 provided on the first holding member 14 14 and the second holding member 14 15 enter the respective escape grooves 16 07 of the aluminum plate 16 3.
  • the first holding member 144 and the second holding member 144 are closed.
  • the blow suction device 1611 is operated to blow air from the air inlet / outlet 1608 of the aluminum plate 1663, and the aluminum film plate 163 and the wafer before bump formation 20 Separate from 1.
  • the temperature of the air to be jetted is such that the temperature of the preheated pre-bump wafer 201 can be prevented from lowering as much as possible, for example, about 160 ° C.
  • the aluminum plate 163 is lowered in step 505, and the wafer 201 before bump formation is moved to the first holding member 144 and the second holding member 145.
  • step 506 the operation of the above-mentioned professional suction device 1611 is stopped to terminate the blowing operation, and in step 507, the heated wafer before bump formation 201 is held.
  • the wafer holding section 14 11 is moved above the bonding stage 110. Thereafter, the operation shifts to the mounting operation on the bonding stage 110 described later.
  • the preheating apparatus plate 160 of the preheater 160 heated to about 150 ° C. is heated again to the preheating start temperature T 0 before the next wafer before bump formation 201 is mounted. It is necessary to cool down. Therefore, in step 510 shown in FIG. 23, the cooling air supply device 1613 is operated to supply cooling air to the refrigerant passage 1612 in the aluminum plate 163.
  • the aluminum plate 16 3 is moved from the lower position 16 7 to the upper position 16 8 by operating the air cylinder 16 1 of the pre-heater 16 0.
  • the panel heater frame 16 2 is separated from the aluminum plate 16 3, and the temperature of the aluminum plate 16 3 is cooled down to about 40 ° C. In this embodiment, the cooling of the aluminum plate 163 is performed. Although the temperature is set at about 40 ° C., the temperature is not limited to this.
  • step 513 the operation of the cooling air supply device 163 is stopped in step 513 to terminate the supply of cooling air.
  • step 514 the arm plate 16 3 is lowered, and in step 5 15, the wafer holding section 14 1 1 of the loading-side transfer device 14 1 is placed above the transfer device 13 0. return.
  • step 507 shown in FIG. 32 as shown in FIG.
  • the wafer before bump formation 201 held by the wafer holding unit 1 4 1 1 is carried into the bonding stage 110.
  • the bonding stage 110 is rotated to adjust the carry-in angle of the wafer 201 before bump formation to the bonding stage 110.
  • the wafer mounting table 1 1 1 is raised in the thickness direction of the wafer 201 before bump formation, and the back surface 201 of the wafer 201 before bump formation is formed. b, and push up the wafer 201 a little further.
  • the holding claws 1 4 1 7 of the wafer holding section 1 4 1 1 enter the relief grooves 1 1 6 formed on the wafer mounting table 1 1 1. .
  • the contact member for static elimination 14 1 6 2 which is in contact with the surface 2 0 1 a of the wafer 2 1 before bump formation is pressed against the biasing force of the spring 14 2 Pushed up while maintaining contact with O la.
  • the first holding member 14 14 and the second holding member 14 14 are operated by the operation of the drive unit 14 12 of the loading side transfer device 14 1. 5 opens Then, the holding of the wafer before bump formation 201 by the wafer holding unit 144 1 1 is released.
  • the blow device 1 15 is operated, and the air inlet / outlet 1 1 3 opened in the wafer mounting table 1 1 1 is approximately 160 ° C.
  • a degree of the above-described warp correcting hot air is blown to the wafer 201 before bump formation.
  • the wafer before bump formation 201 rises from the wafer mounting table 111 by about 0.5 mm, but the first holding member 14 around the wafer before bump formation 201 is about 0.5 mm. Since the holding claws 14 17 of the 14 and the second holding members 14 15 are present, the lifted wafers 201 before bump formation do not fall off the wafer mounting table 1 1 1.
  • step 535 the operation of the blowing device 115 is stopped in step 535, and the blowing of the hot air for correcting warpage is terminated.
  • step 536 the suction device 1 14 is operated to start suction from the air inlet / outlet 1 13 to suck the wafer 201 before bump formation onto the wafer mounting table 1 1 1.
  • step 537 it is detected that the above-mentioned suction has been performed.
  • step 538 as shown in FIG. 36, the wafer mounting table 1 1 1 holds the pre-bump-formed wafer 201. And descend to the original position.
  • the warp correction operation ends. After that, the wafer holding unit 1411 of the loading-side transfer device 1411 moves above the transfer device 130.
  • the bump forming head 1 20 bumps the electrode portion 15 into the electrode portion 15 of the circuit on the wafer before bump formation 21 mounted on the bonding stage 110. 6 is formed.
  • the temperature of the wafer before bump formation 201 at the time of bump formation is set to 150 ° C. as described above.
  • Step 6 the wafer 2 after the bump formation with the first holding member 144 2 4 and the second holding member 144 2 5 in the wafer holding portion 144 2 1 of the unloading side transfer device 144 2 0 2 is held, and the moving device 1 4 2 3 of the unloading side transfer device 1 4 2 3 drives the ueno and the holding portion 1 4 2 1 in the X direction, and as shown in FIG.
  • the wafer 202 is placed above the 170.
  • step 7 the wafer is placed on the post-heater 170, and the boss including the temperature control for bonding promotion after the formation is performed. A tote operation is performed.
  • step 601 the anore-membrane plate 173 of the bottom heat device 170 is heated to the above-mentioned 150 ° C. which is the above-mentioned bump bonding temperature T 2.
  • step 6 the wafer 202 after the bump formation held in the wafer holding section 1442 is carried in above the post-heater 170.
  • step 701 which constitutes step 7, the heated aluminum plate 173 is raised from the lowered position 167 to the raised position 168. Due to the ascent operation, the wafer 202 after the bump is formed is brought into contact with and mounted on the anode plate 173. At this time, each of the holding claws 1 4 1 7 provided on the first holding member 1 4 2 4 and the second holding member 1 4 2 5 in the wafer holding section 1 4 2 1 of the unloading side transfer device 1 4 2 Then, it enters the escape groove 1707 formed in the aluminum plate 173. Then, in the next step 720, the first holding member 1442 and the second holding member 1442 of the wafer holding portion 1442 of the unloading-side transfer device 142 are opened, and after the bumps are formed. The holding of the wafer 202 is released. In the next step 703, the aluminum plate 173 on which the wafer 202 after the bump formation is placed is lowered from the raised position 168 to the lowered position 167.
  • the next step 704 by heating the aluminum plate 173 by energizing the panel heater 161, the aluminum plate 173 and the wafer 207 after the bumps are formed are formed.
  • the wafer 202 is heated from the bump bonding temperature T2 to the bonding promotion temperature T3 after the bump formation.
  • the post-formation bonding promoting temperature T3 is a temperature equal to or higher than the bump bonding temperature T2 and equal to or lower than the damage prevention temperature TB of the bump-formed wafer 202 as an example of the semiconductor substrate.
  • the damage prevention temperature TB is, as described above, that the wafer 202 after the bump formation physically damages or the circuit breaks down, and the wafer 202 after the bump formation forms the wafer 202 after the bump formation.
  • This is a temperature that causes trouble, specifically, the above-mentioned temperature for bump bonding T 2 + about 150 ° C.
  • the post-formation bonding promoting temperature T3 is set to about 210 ° C., which is the same as the above-described pre-formation bonding promotion temperature T1, but it can be, of course, changed.
  • the temperature rising gradient from the above-mentioned temperature T2 for bump bonding to the above-mentioned temperature T3 for promoting bonding after formation is 30 ° C./min as in the case of the above-mentioned preheating operation.
  • the temperature rise gradient is not limited to the above-described value.
  • the type, material, size, etc. of the wafer 202 after bump formation, and each material and the electrode portion 15 and the bump 16 The size is changed based on the thickness of the electrode portion 15, the diameter of the pedestal portion 16 a of the bump 16, and the like.
  • the post-formation bonding promoting time t3 is set to about 10 minutes.
  • the post-formation bonding promotion temperature T3 is maintained for 10 minutes as described above, but the post-formation bonding promotion temperature T3 and the holding time at this temperature are different from each other. As shown in FIG. 8, there is a correlation, and there is a region 185 where the bonding strength between the bump 16 and the electrode portion 15 can be improved. That is, as described above, the post-heating operation is an operation for promoting metal diffusion between the bump 16 and the electrode portion 15, so that the bonding promoting temperature T 3 after the formation is changed to the bump bonding temperature T 2. When set to a slightly higher temperature, a relatively long holding time is required.
  • FIG. 38 is a diagram showing the concept of the correlation and the area 185.
  • the bonding-promoting time t3 after the formation is not limited to the above value.
  • the electrode section The size of the thickness 15a of the minute 15 and the size of the pedestal portion 16a of the bump 16 are important factors for setting the above-mentioned bonding promotion temperature T3 after the formation and the above-mentioned bonding promotion time t3 after the formation. is there.
  • the above-mentioned bump bonding temperature T 2 is about 270 ° C.
  • Temperature T3 is set at about 300 ° C.
  • the temperature of the wafer 202 after the bump formation is started when the post-formation bonding promoting time t3 has elapsed. That is, the energization to the panel heater 17 1 is controlled to cool the aluminum plate 17 3, and after forming the above-mentioned about 210 ° C., and after forming the bump from the bonding promoting temperature T 3 to about 40 ° C. Lower the temperature of wafer 202.
  • the temperature decreasing gradient is set to 30 ° C./min, which is the same as the temperature increasing gradient.
  • the temperature drop gradient is not limited to this value.
  • the temperature gradient may be changed based on the film thickness of the portion 15 and the diameter of the pedestal portion 16a of the bump 16 or the temperature rising gradient may be different from the temperature decreasing gradient.
  • the wafer holding section 1442 of the unloading side transfer device 142 is placed above the post heat device 170, and then the aluminum plate of the post heat device 170 is placed. Raise 1 7 3 from the lower position 1 6 7 to the upper position 1 6 8, and after forming bumps on the first holding member 14 2 4 and the second holding member 1 4 2 5 in the above wafer holding section 14 2 1
  • the wafer 202 is held.
  • the blow suction device 1711 is operated to blow air for blowing from the air inlet / outlet hole 170 of the aluminum plate 173, and the wafer 202 after the bump is formed is blown out. Float from aluminum plate 1 7 3.
  • FIG. 39 is an enlarged view of the portion indicated by IV in FIG.
  • the reason why the wafer 202 is cooled after the bumps are formed above the post-heater 170 as described above is that the temperature is about 40 ° C. to room temperature. If the temperature is dropped to about 27 ° C.
  • the wafer 202 may be damaged after the bumps are formed, so that the damage is prevented.
  • the cooling time in the air is set to 0 to about 2 minutes, and the wafer 202 becomes about 37 ° C. after bump formation by the air cooling.
  • the above cooling time can be changed depending on the type, material and the like of the wafer 202 after the bumps are formed.
  • the wafer holding unit 1 4 2 1 Is moved in the X direction to remove it from above the post-heater 170, and after the bumps are formed, the wafer 202 is cooled naturally. After the bumps are formed by the natural cooling, the wafer 202 is cooled to the room temperature.
  • Step 8 the operation of Step 8 is executed for the wafer 202 after bump formation.
  • the panel heater 171 was energized to prepare for receiving the wafer 202, and the aluminum plate 1773 was heated to the above-mentioned bump bonding temperature T2. The temperature is raised.
  • the bonding promotion temperature T3 after the formation is set to a temperature exceeding the bump bonding temperature T2.
  • the same as the bump bonding temperature T2. Temperature can also be used.
  • the bonding strength between the bump 16 and the electrode portion 15 can be improved as described above. Furthermore, by performing the preheating operation and performing the postheating operation as in the present embodiment, a synergistic effect between the two can be obtained. Specifically, for example, when a gold bump 16 having a bump pedestal diameter of approximately 90 ⁇ m is formed on an electrode portion 15 made of aluminum and having a thickness of about 2000 A, the above preheating is performed. The average shear strength per bump when performing only the operation is about 680 mN, and the variation is about 200 mN. On the other hand, by executing the above post-heat operation, the shear strength per bump can be improved to about 80 OmN on average, and the variation can be reduced to about 140 mN. .
  • the post-formation bonding promotion temperature T 3 the formation bonding temperature, and the like are particularly determined based on the number of circuit portions formed on the wafer, and thus the number of bumps formed.
  • the post-joining promotion time t 3 may be determined.
  • the control for promoting the pre-forming bonding in the preheating operation and the control for promoting the post-forming bonding in the postheating operation are controlled in association with each other.
  • Such associated control can be executed by the control device 180.
  • the pre-formation bonding promotion time t1 in the pre-formation bonding promotion control is long
  • the post-formation bonding promotion time t3 in the post-formation bonding promotion control is used.
  • the above-described pre-formation bonding promotion time t1 is shortened compared to the above-mentioned pre-formation bonding promotion time t1, It is made longer than the service time t1.
  • the above-mentioned bonding promotion control before formation and the above-mentioned bonding promotion control after formation can be controlled so as to complement each other.
  • step 8 After the end of the above-described post heat operation, the process proceeds to step 8 and the following operation is performed.
  • the wafer holding section 14 2 1 of the unloading side transfer device 14 2 holding the wafer 20 2 after the bumps are formed is moved out of the unloading device 1 3 along the X direction by driving the moving device 1 4 2 3.
  • Move up 2 Figure 6 shows the state after the movement.
  • the driving unit 1 3 2 4 of the unloading device 1 3 2 operates, and as shown in FIG. 40, the holding unit 1 3 2 3 contacts the back surface 202 b of the wafer 202 after the bumps are formed. Then, after the reinforced bump is formed, the wafer 202 is lifted so as to float about 1 mm from the holding claws 14 17 of the wafer holding portion 14 21. After the ascent, the holding section 1323 holds the wafer 202 after the bump formation by the suction operation.
  • the holding portions 1 3 2 3 hold the wafers 202 after the bumps are formed, as shown in FIG. 41, the first holding members 14 2 4 and the second holding members 14 of the wafer holding portions 14 21 2 5 It is opened by the drive unit 142 and the holding of the wafer 202 is released after the bumps are formed. After the release of the holding, as shown in FIGS. 42 and 43, the holding section 13 23 descends, and after the bumps are formed, the wafer 202 is placed on the holding table 13 21. After the mounting, the holding table 1321 holds the wafer 202 after bump formation by a suction operation in the present embodiment.
  • the holding table 1 32 1 holding the wafer 202 after the bump formation is moved in the X direction by the operation of the unloading device moving device 1 32 2, and the wafer 202 after the bump formation is moved.
  • the second storage container 206 side To the second storage container 206 side.
  • the back surface 202 b of the wafer 202 after bump formation is negatively charged, and the front surface 202 a is positively charged.
  • the ion generator 190-0-1 disposed on the back side 202b generates positive ions
  • the ion generator 190-2 disposed on the front side 202a generates negative ions.
  • Each of the ion generators 190-1 and 190-2 are connected to a controller 180 and controlled in operation.
  • Fig. 44 shows the ion-improving device 190-1-1 when the wafer holder 1442, which holds the wafer 202 after bump formation, is placed above the unloading device 132.
  • FIG. 19 shows the state where ions are applied to the wafer 202 after the bump formation from 190-2, but during the transfer operation as described above, that is, FIG. 40 to FIG. During each operation up to this point, the wafer is actuated on the wafer 202 after bump formation.
  • the charge amount can be further reduced as follows, as compared with a case where the ion generator 190 is not provided.
  • the following charge amount values are examples.
  • the charge amount of the surface 202 a of the wafer 202 after bump formation is about +18 V
  • the back surface 202 b is about 110 V as described above.
  • the charge amount on the front surface 202 a becomes approximately +22 V, and 202 b can be about +22 volts. Therefore, the above-described temperature rise control and temperature drop control in the present embodiment are performed, and further, the ion is applied to at least the rear surface 202 b by the ion generator 190 to thereby charge the rear surface 202 b. The amount can be further reduced.
  • a blower 191 may be provided on the side of 202 b for more efficiently moving the generated ions to the back surface 202 b.
  • the operation of the blower 191 is controlled by the controller 180.
  • an electrostatic sensor 25 1 is provided, and the charge amount of both surfaces including at least the back surface 202 b, and preferably the front surface 202 a is added to the electrostatic sensor 25 1.
  • the controller 180 may control the amount of ions generated by the ion generator 190 and the amount of air blown by the blower 191 based on the measured charge amount. .
  • the ion generator 19 is used. It may be configured so that ions by zero act.
  • the ion by the ion generator 190 acts also in the preheating operation.
  • the holding table 1321 stores the wafer 202 in the second storage container 206 after the bumps are formed.
  • the bumps 16 are sequentially formed on the respective wafers before bump formation 201, and are stored in the second storage containers 206, respectively.
  • the temperature control for bonding promotion before forming is performed by the preheating operation, and although both the post-formation bonding promotion temperature control and the post-heating operation are performed, the above-mentioned pre-formation bonding promotion temperature control may be performed at a minimum.
  • the bumps 16 and the electrode portions 15, which had to be incompletely connected in the past can also have the metal crystal on the surface portions of the electrode portions 15. This is because the metal particles can be made more appropriate, that is, the metal particles can be made finer, and the bonding state can be completed.
  • the temperature control for bonding promotion before forming is performed by the pre-heater 160 in order to reduce the force.
  • the metal crystal state in the electrode portion 15 is improved as compared with the conventional case, and the bump 16 cannot be formed conventionally, or the desired bonding strength cannot be obtained even though the bump can be formed.
  • Such a semiconductor substrate can also be bump-formed, and its bonding strength can be improved to such an extent that it can be sheared at the pedestal portion 16a of the bump 16.
  • a bump strength improving apparatus a method executed by the bump strength improving apparatus, and a bump forming apparatus including the bump strength improving apparatus according to a second embodiment of the present invention will be described below with reference to the drawings. explain.
  • the same components are denoted by the same reference numerals.
  • FIG. 47 shows the bump forming apparatus 301 including the bump strength improving apparatus as an example of the second embodiment.
  • a semiconductor component to be processed is a semiconductor chip obtained by cutting each electronic circuit formed on a semiconductor wafer, and a bump 52 on an electrode 51 of the semiconductor chip. Is formed.
  • the above semiconductor components are not limited to the above semiconductor chips.
  • the semiconductor wafer may be used.
  • a bump forming apparatus that forms the bumps 52 on the electrodes 51 of the semiconductor wafer is configured.
  • the bump forming apparatus 301 includes a semiconductor chip supplying apparatus 311, a semiconductor chip transporting apparatus 3 1 2, a bump forming section 3 1 3, a leveling apparatus 3 1 4, and a finished product collecting apparatus 3 1 5 And a bonding stage 316 and a control device 317.
  • the semiconductor chip supply device 311 is a device for supplying the semiconductor chip to the semiconductor chip transport device 3112, and has a storage tray section 3111 and a tray transport device 3112.
  • the storage tray 311 can store a tray for storing the semiconductor chips in a layered manner as shown in the figure.
  • the tray transfer device 3 1 1 2 is a device that transfers the storage tray section 3 11 1 between the loading position and the unloading position along the X direction shown in the figure, and in the second embodiment, drives a ball screw. It has a feed mechanism driven by a motor 3 1 1 3 to perform a moving operation.
  • the loading position is a position where the storage tray section 3 1 1 1 can be loaded into the tray transport apparatus 3 1 1 2, and the unloading position is a storage tray section 3 1 2 in the semiconductor chip transport apparatus 3 1 2. This is the position where the semiconductor chip contained in the unit can be taken out.
  • the operation of the tray transfer device 3 11 12 is connected to the control device 3 17 and controlled.
  • the semiconductor chip transfer device 3 1 2 takes out the semiconductor chip from the semiconductor chip supply device 3 1 1, places it on the bonding stage 3 1 6, and furthermore, a bump-formed semiconductor chip 6 1 Is transported from the above-mentioned bonding stage 3 16 to the finished product storage device 3 15 via a leveling device 3 14 described below.
  • the X-direction moving mechanism 3 1 2 1 1 includes a feed mechanism that performs a moving operation by driving a ball screw with a drive motor 3 2 1 4.
  • the direction moving mechanism 3 1 2 1 2 is attached.
  • the Y-direction moving mechanism 31212 has a feed mechanism driven by a drive motor 31215, and the tip holding section 31213 is attached to the feed mechanism.
  • the tip holder 3 1 2 1 3 In the second embodiment, the semiconductor chip is held by the suction operation of the suction device 31216.
  • the operation of the drive motor 31214, the Y-direction moving mechanism 31212, the drive motor 31215, and the suction device 31216 is controlled by a control device 317.
  • Such a chip transport mechanism 3121 operates as follows.
  • the X-direction moving mechanism 311211 and the Y-direction moving mechanism 31212 are driven to dispose the chip holding portion 31213 at the take-out position, and the chip holding portion 31213 takes out and holds the semiconductor chip from the semiconductor chip supply device 311. .
  • the X-direction moving mechanism 3121 1 and the Y-direction moving mechanism 31212 are driven again to move the chip holding portion 31213 holding the semiconductor chip to the bonding stage 316, and the semiconductor chip is connected to the bonding stage. Place on 316.
  • the bumps 52 are formed on the electrodes 51 of the semiconductor chip, the semiconductor chip 61 on which bumps have been formed is held by the chip holding portion 31 213.
  • the X-direction moving mechanism 3121 1 and the Y-direction movement are again performed.
  • the bump-formed semiconductor chip 61 is mounted on the bonding stage 316 and on the leveling stage 3141 of the leveling device 314. Further, after the bump heights are adjusted by the leveling device 314, the bump-formed semiconductor chip 61 is held by the chip holding portion 31213, and after the holding, the X-direction moving mechanism 312 11 and the Y-direction moving mechanism are again applied. 31212 is moved to the finished product storage device 315 from above the leveling stage 3141.
  • the chip setting mechanism 3122 is a device for setting the position of the semiconductor chip mounted on the bonding stage 316, and moves the position setting member 31221 and the position setting member 31221 in the X and Y directions. And a member moving mechanism 31222.
  • the bonding stage 316 is a stage for holding the semiconductor chip placed and whose position is adjusted by suction and heating the semiconductor chip to a bump forming temperature. And a heating device 3162 for heating.
  • the suction device 3161 and the heating device 3162 for heating are connected to a control device 317, and the operation of each is controlled.
  • the bonding stage 3 16 has a space in which two semiconductor chips 60 can be placed, and the bonding stage 3 16 is alternately arranged in the two spaces. By mounting the semiconductor chip 60, the tact time can be improved.
  • the size of the bonding stage 3 16 is not limited to a size capable of mounting two semiconductor chips 60, and may be a size capable of mounting three or more semiconductor chips. If the improvement of the tact time is not considered, the size may be such that one semiconductor chip 60 can be mounted.
  • the heating device 3 16 2 includes a bump-formed semiconductor chip 6 1 corresponding to a bump-formed component in which the bump 52 is formed on the electrode 51 of the semiconductor chip 60.
  • heating is also performed under the bonding strength improving condition for improving the bonding strength between the electrode 51 and the bump 52.
  • the bonding strength improving space 3 16 3 corresponding to the heat-treated portion, in which heating is performed under the above bonding strength improving conditions in the bonding stage 3 16, is indicated by a mesh pattern.
  • the position is not limited to this position. For example, it can be provided at a position shown by a dotted line in FIG.
  • the bonding strength improving space 3 163 has a size capable of mounting the two bumped semiconductor chips 61, but is not limited thereto. The size may be such that three or more or one bump-formed semiconductor chip 61 can be placed.
  • the bump forming unit 3 13 is a device for forming a bump 52 on an electrode 51 of a semiconductor chip 60 held on the bonding stage 3 16, and a bump forming head 3 1 3 1 and an X, Y table 3 1 3 2.
  • the bump is formed by one bump forming unit 3 13.
  • the above-mentioned bump-forming head 3 1 3 1 is formed by supplying a gold wire to be the bump 52 and melting the tip of the gold wire to form a bump 52.
  • a gold wire supply unit for forming a molten ball called a pressing ball, and a pressing vibrating unit for applying ultrasonic vibration while pressing the molten pole onto the electrode 51 when forming a bump on the electrode 51.
  • X, Y tape 3 1 3 2 moves the bump forming head 3 1 3 1 in the X direction, for example, a first driving source 3 1 3 2 1 composed of a motor, and a bump forming head 3 1 3 1 is moved in the Y direction, for example, a second drive source 3 1 3 2 2 composed of a motor is provided, and is driven by the first drive source 3 1 3 2 1 and the second drive source 3 1 3 2 2
  • the bump forming head 311 31 is moved in the X and Y directions, thereby disposing the above-mentioned molten pole on a desired electrode 51 of the semiconductor chip 60.
  • the first driving source 3 1 3 2 1, the second driving source 3 1 3 2 2, and the pressing vibrating unit 3 1 3 1 1 are connected to the control device 3 17, and as described above, The operation of the controller 317 is controlled so that the above-mentioned melting pole is arranged on the electrode 51 and the bump 52 is formed on the electrode 51.
  • the leveling device 3 14 is a device for aligning the heights of the bumps 52 formed on the electrodes 51 of the semiconductor chip 60 in the bump forming section 3 13, as shown in FIG. 51. Thus, it has a leveling stage 314, a press device 314, and a pump height inspection device 314.
  • the above-mentioned repelling stage 3 1 4 1 places a bump-formed semiconductor chip 6 1 and holds it by suction, and also has a moving mechanism 3 1 having a driving source 3 4 It is movable in the Y direction by 4 1 1.
  • the press device 3 1 4 2 has a pressing plate 3 1 4 2 1 that contacts all the bumps 5 2 formed on the bumped semiconductor chip 6 1, and is held on the stage 3 1 4 By moving the pressing plate 3 1 4 2 1 in the thickness direction of the bump-formed semiconductor chip 6 1, each bump 52 is pressed, and the bump-formed semiconductor chip
  • the bump height inspection device 3 1 4 3 is a device for inspecting the height of the bump 5 2 processed by the press device 3 1 4 2, and is, for example, a drive source 3 1 4 3 2 composed of a motor. It is attached to a moving mechanism 3 1 4 3 1 having a movable in the X direction.
  • Each of the drive sources 3 1 4 1 2 and 3 1 4 3 2, the press device 3 1 4 2, and the bump height inspection device 3 1 4 3 are connected to the control device 3 17 to control the operation. .
  • the finished product storage device 3 15 stores the bump-formed semiconductor chip 6 1, and stores the bump-formed semiconductor chip 6 1 in the same manner as the semiconductor chip supply device 3 11 described above. Conveying the storage tray 3 1 5 1 and the storage tray 3 1 5 1 And a tray transfer device. The operation of the finished product storage device 3 15 is controlled by the control device 3 17.
  • a bump strength improving device including the above-described control device 317 is provided as one of the characteristic components.
  • the bump strength improving device will be described in detail below.
  • FIG. 52 shows a bumped semiconductor chip in which a gold bump 52 is formed on an aluminum electrode 51 of a semiconductor chip formed of a Si semiconductor substrate or of a Si semiconductor wafer.
  • the graph shows the relationship between the shearing force at the bonding interface between the electrode 51 and the bump 52 and the elapsed time after the formation of the bump when heated at 0 ° C. and 100 ° C., respectively.
  • the above-described shear force that is, the electrode 51 is maintained by keeping the bumped semiconductor chip or the bumped semiconductor wafer at an appropriate temperature for an appropriate time. It can be seen that the bonding strength between the metal and the bump 52 can be increased.
  • This phenomenon is caused by maintaining the temperature of the bumped semiconductor chip or the bumped semiconductor wafer at an appropriate temperature, so that the material diffusion between the aluminum of the electrode 51 and the gold of the bump 52 progresses at the bonding interface. It is thought that this increases the bonding strength.
  • the above-mentioned semiconductor chip has been conventionally heated. From the result of FIG. Even if the temperature is relatively low, the bonding strength can be improved by heating the bumped semiconductor chip after the bump formation at a temperature higher than the bump formation temperature. Understand.
  • FIG. 52 shows the relationship between the temperature at the time of bump formation of the semiconductor chip or the semiconductor wafer at the time of bump formation and the shearing force.
  • a relatively high temperature that is, about 100 to about 250 ° C. as judged from FIG.
  • excessive heating may cause deterioration of the above-mentioned shear force.
  • the bonding strength improvement conditions for improving the bonding strength so as to increase the bonding strength include the temperature and the time for heating the bumped semiconductor chip or the bumped semiconductor wafer. Is a condition that uses
  • a heating time of about 3 hours soil a hour is preferable, and when heating at 200 ° C., for example, heating time of about 1 hour soil ⁇ time is preferable.
  • a heating time of about 1 minute soil ⁇ seconds is preferable.
  • an example of the a time is about 1 hour
  • an example of the J3 minute is about 15 minutes
  • an example of the ⁇ seconds is about 20 seconds.
  • the increase in the bonding strength is considered to be due to the promotion of the diffusion between the material of the electrode 51 and the material of the bump 52. Therefore, such conditions for improving the bonding strength depend on the material of the electrode 51 and the electrode. 51, the material of the bump 52, the size of the bump 52, the semiconductor chip ⁇ the material of the semiconductor substrate constituting the semiconductor wafer, and at least one of the size of the semiconductor substrate; Preferably, at least one set of the material and size of the electrode 51, the material and size of the bump 52, and the material and size of the semiconductor substrate forming the semiconductor chip or the semiconductor wafer, or each of these sets Is determined by the combination of
  • a Si semiconductor substrate is a square semiconductor chip with a side of 6 mm, and the electrode 51 is made of aluminum and has a size of 100 ⁇ m on a side.
  • the thickness is 1 ⁇ m
  • the bump 52 is made of gold
  • the dimension D shown in Fig. 63 is ⁇ 80 m
  • the dimension H which is the height of the pedestal, is 20 m.
  • the bumps 52 are sequentially formed on them, so that all the electrodes are formed after the bumps 52 are formed first. Time elapses before the bumps 52 are formed on 51.
  • semiconductor chips and semiconductor wafers are heated during bump formation. Since the bonding strength is improved by heating after bump formation, for example, there is a difference between the bonding strength of the first formed bump 52 and the bonding strength of the last formed bump 52. Occurs. Therefore, there is a problem that the bonding strength of each bump 52 in one chip is not uniform. The problem is further exacerbated when the bumps 52 are formed on all the electrodes 51 on the semiconductor wafer.
  • both the temperature at the time of forming the bump and the subsequent heating temperature may be controlled relatively coarsely, but G a As, L i T a ⁇ 3, and L i N b
  • a compound semiconductor substrate such as O 3 or a quartz substrate
  • heating after bump formation can be performed at a temperature exceeding the bump formation temperature. Therefore, heating after bump formation can be performed at a temperature exceeding the undamaged temperature.
  • the second embodiment is performed by utilizing the fact that the above-described bonding strength can be increased by the heating temperature and the heating time after the bump is formed.
  • the bump strength improving device for improving the non-uniformity of the bonding strength and improving the quality of the semiconductor component as compared with the conventional one is provided.
  • the bump strength improving apparatus includes the control device 3 17 and a heating stage provided in a bonding stage 3 16 having the bonding strength improving space 3 16 3.
  • the control device 317 controls the heating device to perform heating control based on the bonding strength improvement conditions.
  • the heating device 3 16 2 can be heated when forming bumps. This is advantageous in that it can be used for both heating and heating after bump formation.
  • the heating device 3162 includes a heater and a heater power supply unit.
  • the heating device 3 16 2 and the bonding strength improving space 3 16 3, which is a portion controlled by the heating device 3 16 2, are connected to the bonding stage 3 1
  • the configuration provided in 6 is not limited.
  • the stage 4 1 4 1 of the leveling device 4 14 corresponding to the leveling stage 3 1 4 1 of the leveling device 3 1 4 is connected to the space 3 1 for improving the bonding strength.
  • the stage 4 1 4 1 is provided with the heating device 3 1 6 2, and one or a plurality of bump-formed semiconductors placed on the stage 4 1 4 1 to align the height of the bumps 5 2
  • the component may be configured to perform heating control based on the above-described bonding strength improvement conditions. By adopting such a configuration, it is possible to perform heating control based on the above-described bonding strength improvement conditions in parallel with the height alignment operation of the bumps 52, and therefore, it is possible to improve tact.
  • the heating device 3 1 6 2 is placed on the storage tray 4 1 5 1 of the finished product storage device 4 15 corresponding to the storage tray 3 15 1 of the finished product storage device 3 15. It is also possible to provide a configuration in which heating control is performed on one or a plurality of bump-formed semiconductor components under the above-mentioned bonding strength improvement conditions. More specifically, as the heating device 3 16 2, for example, a heater is provided on the side surface of the housing constituting the storage tray 4 151, or the tray transport device for moving the storage tray 3 151 A heater is provided in the storage tray, and the heating of the heater is controlled to heat the bump-formed semiconductor component stored in the storage tray 415 or the storage tray 315 under the bonding strength improving conditions. Perform control.
  • the inside of the storage tray 4151 and the inside of the storage tray 3151 correspond to the space 316 for improving the bonding strength.
  • the bonding strength is improved while the bump-formed semiconductor component is stored in the storage tray 415, which is also advantageous in terms of tact.
  • a new heating stage 480 is provided in the bump forming apparatus, and one or a plurality of bumped semiconductor components are placed on the heating stage 480, and It is also possible to adopt a configuration in which heating control is performed on the used semiconductor component based on the above-described bonding strength improvement condition.
  • the heating control performed by the control device 3 17 on the heating device 3 16 2 based on the bonding strength improving condition will be described.
  • the above-mentioned bonding strength improvement conditions are based on the material and size of the electrode 51, the material and size of the bump 52, and the semiconductor chip and the semiconductor wafer.
  • the temperature and time for heating the bumped semiconductor chip / bumped semiconductor wafer corresponding to the bumped semiconductor component are determined for each of the material and size of the semiconductor substrate to be formed or for a combination thereof. It is a condition to be a variable.
  • the heating temperature and the time are controlled in advance in the storage unit 3171 of the control device 3117 based on the bonding strength improving conditions described above with reference to FIGS. 52 to 54. It stores a program for improving the bonding strength.
  • the program may not be stored in the storage unit 3171 in advance, and may be read from a recording medium such as a CD-ROM in which the above-described bonding strength improvement program is recorded and stored. Alternatively, the information may be stored via a communication line.
  • the bonding strength improvement program for example, in the case of a semiconductor chip or a semiconductor wafer made of a Si semiconductor substrate, heating of the semiconductor chip or the semiconductor wafer during the formation of the bump 52 on the bonding stage 3 16 The temperature was about 200 ° C. After the bumps were formed, the temperature for improving the bonding strength of the bumped semiconductor chip mounted on the bonding strength improving space 3166 3 ⁇ Approximately 250 ° C and the heating time is 30 minutes. As described above, when the material of the semiconductor substrate is Si, the temperature at the time of forming the bump and the temperature for improving the bonding strength can be controlled relatively coarsely, and the temperature for improving the bonding strength is lower than the temperature at the time of forming the bump. It can be high, low, or at the same temperature.
  • the temperature for forming a bump at the time of forming a bump is 150 ° C.
  • the temperature for improving the bonding strength after forming the bump is 200 ° C.
  • the heating at the temperature for improving the bonding strength is performed.
  • the time is one hour.
  • the control device 317 can also perform the following operation control. As described above, in the bonding strength improving space 3163, a plurality of the bump-formed semiconductor chips and the bump-formed semiconductor wafers are arranged, and as described above, the heating time after the bump formation elapses. The joining strength is improved. Therefore, for example, the above-described heating stage 480 will be described as an example with reference to FIG. 58.
  • a space 3163 for improving the bonding strength in the heating stage 480 is divided into a plurality of sections in advance, and a heating device 3162 is provided for each section.
  • the joint strength improvement space 31 63 is divided into five sections 4801— :! Heating device 3162 for each section 4801-1 to 4801-5 so that heating can be controlled separately for each section 4801-1 to 4801-5 as a heat treatment section.
  • — 1 to 31 2-5 are arranged, and temperature measurement sensors 4802-1 to 4802-5, which are thermocouples, for example, measure the temperature of each section 4801-1 to 4801-5.
  • the heating devices 3162-1 to 3162-5 and the temperature measurement sensors 4802-1 to 4802-5 are connected to the control device 317.
  • control device 317 determines, for each of the sections 4801-1 through 4801-5, the elapsed time after the mounting of the bumped semiconductor chip or the bumped semiconductor wafer and the heating temperature, respectively. Control is performed under the above-mentioned bonding strength improvement conditions so that the above-mentioned bonding strength between the bump-formed semiconductor chip and the bump-formed semiconductor wafer placed in the section 4801-1-4801-5 becomes an appropriate value or more.
  • the first circuit part 71-1 to the last circuit part in the circuit part to be each semiconductor chip 60 the first circuit part 71-1 to the last circuit part in the circuit part to be each semiconductor chip 60.
  • the control device 317 It is preferable to perform such operation control. That is, in the case of the semiconductor wafer 70 in particular, it takes a relatively long time after the bump 52 is formed on the circuit portion 71-1 and the formation of the bump 52 on the circuit portion 71-n is completed. The heating time after formation differs for each circuit part 71.
  • the change in the bonding strength is specifically For example, as shown in Figure 52, conceptually As shown in the bonding strength curve 390 shown in FIG. 60, after the bumps are formed, the heating temperature increases until a certain time elapses, but decreases after the peak value. That is, when the heating after the bump formation is performed more than necessary, the above-described bonding strength is deteriorated. Therefore, heating of the circuit portion 71 on which bumps were initially formed after the bump formation is short or unnecessary, and the circuit portion 71 on which bump formation was performed in the later stage is the same as that of the above-mentioned initial stage.
  • Heating for a longer time is possible compared to.
  • the bonding strength of the bumps 52 is different in each circuit part 71, the bonding strength of the bumps 52 is improved in all the circuit parts 71 of the semiconductor wafer 70, and the power strength is increased.
  • the control device 317 starts forming bumps 52 on the semiconductor wafer 70 first in step (indicated by “S” in the figure) 801. Then, the start time TS at the time of completion and the end time TE when the formation of the bumps 52 on all the electrodes 51 are completed are measured and stored. In the next step 802, the wafer transfer device corresponding to the semiconductor chip transfer device 312 uses the bonding stage 316 force to change the bonding strength improvement space 31 in the heating stage 480, for example. A bump-formed semiconductor wafer 70 is placed on 63.
  • step 803 the control device 317 determines the above-described bonding strength improvement condition based on the total bump formation time (TE-TS), which is the time obtained by subtracting the start time TS from the end time TE.
  • TE-TS total bump formation time
  • the heating of the above-mentioned heating device 3 16 2 is controlled based on the obtained and the obtained bonding strength improvement conditions. That is, as shown by the bonding strength curve 390, the change in the bonding strength is known in advance, and the maximum bonding strength value P2 obtained by heating after bump formation is known.
  • the controller 317 sets the bonding strength curve 3900 Is determined from T4 and time T1, which are the times at which the minimum bonding strength value P1 passes, that is, the appropriate heating time T during which the bonding strength can be improved by heating after bump formation.
  • the control device 317 determines whether or not the heating time T exceeds the total bump forming time (TE-TS), which is the actual time required for forming all the bumps.
  • Steps 804 and 805 are executed.
  • the control unit 317 obtains the above-mentioned bonding strength improvement condition that can obtain the above-mentioned target value P0 of the bonding strength. Specifically, a time TB during which the bonding strength equal to or greater than the target value P0 is obtained is determined based on the bonding strength curve 390, and a first heating time TOB corresponding to the time TB is determined.
  • step 805 the control device 317 controls the heating of the heating device 316 in the above-mentioned first heating time T 0 B under the above-mentioned bonding strength improvement conditions. And heating is performed after the bumps are formed on the bumped semiconductor wafer 70.
  • the heating temperature at this time is determined by the controller 317 based on the material of the semiconductor substrate, the material and size of the electrode 51, the material and size of the bump 52, and the like, as described above.
  • step 803 if the appropriate heating time T is equal to or less than the total bump forming time (TE-TS) in step 803, in other words, the longest heating after the bump is formed, the first bump is formed.
  • the controller 317 obtains a time TA corresponding to the above-mentioned bonding strength improvement condition, which is obtained by subtracting the appropriate heating time T from the total bump formation time (TE-TS), and the control device 317 obtains the time TA. Find the corresponding second heating time TOA.
  • step 807 the control device 317 controls the heating of the heating device 316 under the above-mentioned bonding strength improvement conditions, specifically, the second heating time TOA, and performs the bump formation. After the bump formation of the used semiconductor wafer 72, heating is performed. The heating temperature at this time is also determined by the control device 317 based on the material of the semiconductor substrate, the material and size of the electrode 51, the material and size of the bump 52, and the like, as described above.
  • step 808 the semiconductor wafer 72 with bumps formed from the bonding strength improving space 316 in the heating stage 480 is transferred to the repeller in the next step by the wafer transfer device. It is transported to the stage of 3.14.
  • the above-mentioned bonding strength improvement condition was obtained based on the above-mentioned total bump formation time (TE-TS). However, even if it was not based on the formation time of all the bumps 52, almost all of the bumps 52 could be formed.
  • the bonding strength improvement condition may be determined based on the forming time. Here, almost all bumps 52 correspond to bumps 52 that are about 80% or more of all bumps.
  • a semiconductor wafer is taken as an example of a semiconductor component to be processed.
  • the bonding strength improvement condition is also determined based on the total bump formation time (TE-TS).
  • the control method described above can also be applied.
  • the control operation of Steps 801 to 808 described above is an operation for uniformly heating the entire bump-formed semiconductor wafer 72, and has been described with reference to FIG.
  • the bump-formed semiconductor wafer 72 can also be heated according to the heating control method.
  • a first group of circuit portions 71 including a circuit portion 71-1 in which a bump 52 is first formed is arranged in a section 4801-1-1.
  • a circuit part 71 of the second group in which the bumps 52 are formed is disposed at a time later than the first group, and the next section 480 01-3 is arranged.
  • the third group of circuit portions 71 on which the bumps 52 are formed are disposed at a later time than the second group, and the next section 480 01-14 has a lower position than the third group.
  • the fourth group of circuit portions 71 on which the bumps 52 are formed later in time are arranged, and the next section 480 1-5 includes the circuit portion 7 1—n on which the last bumps 52 are formed.
  • a fifth group of circuit portions 71 including.
  • the heating time after the bump formation by the heating for forming the bumps on the other circuit portions 71 in the bump-formed semiconductor wafer 72 is relatively long.
  • Heating device 3 1 6 2-1 provided in section 4 8 0 1-1 where one group of circuit parts 7 1 is arranged is not heated or is heated for a relatively short time Alternatively, heating can be performed at a lower heating temperature than in the other sections 480 1.
  • the heating temperature can be sequentially set higher, or the heating time can be set longer, or the heating temperature can be set higher and the heating time can be set longer.
  • the bonding strength of the bumps 52 can be improved and made uniform.
  • the operation from the loading of the semiconductor component to the storage of the bump-formed part in the finished product storage apparatus 315 will be described.
  • the above operation is controlled by the controller 317.
  • the semiconductor component takes the above-mentioned semiconductor chip as an example.
  • the semiconductor chip 60 is held by the chip holding unit 3 1 2 1 3 provided in the semiconductor chip transfer device 3 1 2, and the chip holding unit 3 1 2 13 is moved by the X-direction moving mechanism 3 1 2 1 1 and the Y-direction moving mechanism 3 1 2 1 2 provided in the semiconductor chip transfer device 3 1 2, and the semiconductor chip 60 is moved on the bonding stage 3 1 6 Placed on
  • the semiconductor chip 60 placed on the bonding stage 3 16 is heated to the bump forming temperature, and the bumps 5 2 are formed on the electrodes 51 of the semiconductor chip 60 by the bump forming section 3 13. It is formed.
  • the bump-formed semiconductor chip 6 1 on which the bumps 5 2 are formed is placed on the bonding strength improving space 3 16 3 of the bonding stage 3 16 by the chip holding section 3 1 2 13. As described above, the heating after the bump formation is performed under the conditions for improving the bonding strength by the control device 317 as described above.
  • the bumped semiconductor chip 61 is again held by the chip holding portion 3112, and placed on the leveling stage 3114 of the leveling device 3114. Is done.
  • the mounted bumped semiconductor chip 61 is made uniform in bump height by the leveling device 314.
  • the bump-formed semiconductor chip 6 1 having the uniform bump height is again held by the chip holding section 3 1 2 13 and transported to the storage tray 3 15 1 of the finished product storage device 3 15. Is stored.
  • a plurality of bumped semiconductor chips 61 can be placed on the bonding stage 3 16 and the bonding strength improving space 3 16 3.
  • the bumps are already formed when bumps are formed in 3 16
  • the bonding strength has already been improved before transferring the semiconductor chip 6 1 to the bonding strength improving space 3 16 3 or starting heating under the bonding strength improving conditions, or almost simultaneously.
  • the pump-formed semiconductor chip 61 heated under the conditions can be transferred to the leveling device 314. By this operation, the tact can be improved.
  • the bump strength improving device is provided in the bump forming device 301 as an example.
  • the present invention is not limited to this. Even if the bump strength improving device having the above-mentioned bonding stage 3 16 having the above-mentioned control device 3 17 and the above-mentioned heating device 3 16 2 can be configured separately and independently. Good.
  • the bump-formed semiconductor chip 61 and the bump-formed semiconductor wafer 72 on which the bumps 52 are already formed are carried into the independent bump strength improving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

明 細 書 バンプ形成装置及び方法 技術分野
本発明は、 例えば半導体ウェハや、 半導体チップの電極上にバンプを形成した バンプ形成済部品に対して、 上記電極と上記バンプとの接合強度の改善を図るた めのバンプ強度改善装置を備えたバンプ形成装置、 及ぴ該バンプ形成装置にて実 行されるバンプ形成方法に関する。 さらに詳しくは、 本発明は、 半導体基板にお ける電極部分にバンプを形成するとき上記電極部分と上記バンプとの接合状態を 従来に比べて安定させることが可能なバンプ形成装置、 該バンプ形成装置にて実 行されるバンプ形成方法、 該バンプ形成方法を実行可能なプログラムを記録した 記録媒体、 及びバンプが形成されたバンプ形成済半導体基板に関する。 背景技術
近年、 例えば携帯電話のように電子部品が取り付けられる機器が非常に小型化 するのに伴い上記電子部品も小型化している。 よって、 半導体ウェハ上に形成さ れた個々の回路形成部分を上記半導体ウェハから切り出すことなく上記半導体ゥ ェハ上のそれぞれの上記回路形成部分における電極部分にバンプを形成するバン プ形成装置が存在する。 このようなバンプ形成装置には、 バンプ形成前の半導体 ウェハを収納する第 1収納容器から上記バンプ形成前ウェハを取り出す搬入装置 と、 上記バンプが形成されたバンプ形成後ウェハを収納する第 2収納容器と、 上 記バンプ形成前ゥェハを載置して上記電極部分とノ ンプとの接合のために上記半 導体ウェハを通常 1 5 0 °C程度まで加熱するボンディングステージと、 上記バン プ形成後ウェハを上記第 2収納容器へ収納する搬出装置と、 上記搬入装置から上 記ボンディングステージへ、 及び上記ボンディングステージから上記搬出装置へ 上記ゥェハの移載を行う移載装置とが備わる。
一方、 例えば、 上記携帯電話等に使用される S AW (Surface Acoustic Wave) フィルタが形成される圧電基板や、 いわゆる微小バンプが形成された半導 体基板では、 上記圧電基板や上記微小バンプ形成半導体基板における各電極部分 とバンプとの接合が不完全となってしまう場合がある。 即ち、 図 4 5に示すよう に、 上記 S AWフィルタ 1 0は、 圧電基板 1 1上に、 それぞれくし歯形状にてな る入力側回路 1 2と出力側回路 1 3とが対をなして形成され、 入力側回路 1 2に て発生させた振動が出力側回路 1 3に伝搬し、 伝搬した振動に基づいた出力が出 力側回路 1 3から出力される機能をなす。 このような動作により S AWフィルタ 1 0は、 特定周波数の信号のみを通過させる。 このような S AWフィルタ 1 0の 構造及び機能に起因して、 くし歯状の上記入力側回路 1 2及び出力側回路 1 3の 回路形成部分及びこれらの回路 1 2、 1 3の電極部分における膜厚は、 約 2 0 0 O Aであり、 例えば S iにてなる通常の半導体基板上に形成される電極部分の膜 厚が約 5 0 0 0〜7 0 0 0 A程度であるのに比べて薄い。 よって上記電極部分を 形成する金属材料の粒子、 例えばアルミニウム粒子にてなる層が薄いので、 バン プと電極部分との接合が不完全となる場合があると考えられる。
又、 図 4 6に示すように、 上記微小バンプ形成半導体基板 1 4において、 電極 部分 1 5に形成したバンプ 1 6の台座部分 1 6 aの直径 1 6 bは、 約 4◦〜 4 8
/z mであり、 通常の場合上記台座径は約 8 0 // mであるのに対して、 バンプ 1 6 そのものの大きさが通常の場合に比べて小さい。 よってバンプ 1 6と電極部分 1 5との接合面積は小さく、 接合が不完全になることが多い。
又、 電子機器における近年の小型ィ匕を支える手法の一つとして、 例えば、 半導 体ウェハより切り分けた半導体チップの電極と、 回路基板上の電極部とを対向さ せてワイヤを用いることなく接続する手法がある。 該手法を採るため、 上記半導 体ウェハ及び上記半導体チップは加熱されながら、 図 6 3に示すように、 上記半 導体ウェハの、 又は上記半導体チップの電極 5 1上に金等にてなるバンプ 5 2が 形成される。
又、 上記小型化に伴い上記半導体チップ自体も微小化しており、 上記半導体チ ップの耐熱温度は低下傾向にある。 したがつてバンプ形成時における上記加熱温 度の低減が要求されている。
本発明は上述したような問題点を解決するためになされたもので、 電極部分に 形成されるバンプと電極との接合強度を従来に比べて向上させることができるバ ンプ形成装置及びバンプ形成方法を提供することを目的とし、 より具体的には以 下のことを目的とする。
即ち、 本発明は、 電極部分とバンプとの接合状態の安定が図れて接合強度が従 来に比べて向上可能な、 バンプ形成装置、 該バンプ形成装置にて実行されるバン プ形成方法、 該バンプ形成方法を実行可能なプログラムを記録したコンピュータ 読み取り可能な記録媒体、 及びバンプが形成されたバンプ形成済半導体基板を提 供することを第 1の目的とする。
さらに又、 本発明は、 バンプ形成時における上記加熱温度の低減を図った場合 においても、 半導体部品の電極上に形成されたバンプと上記電極との接合強度を 低下させることなく、 上記半導体部品の品質を従来に比べて向上可能な、 バンプ 強度改善装置及び方法、 並びにバンプ形成装置を提供することを第 2の目的とす る。 発明の開示
本発明は、 上記第 1の目的を達成するため、 以下のように構成している。 本発明の第 1態様によれば、 バンプ形成装置は、 半導体基板上の電極部分にバ ンプを形成するときのバンプボンディング用温度 (T 2 ) にある上記半導体基板 に対して、 上記電極部分へ上記バンプを形成するバンプ形成へッドを有するバン プ形成装置であって、
上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御 を実行するプリヒート装置を備えた。
上記プリヒート装置の上記形成前接合促進用温度制御は、 上記バンプボンディ ング用温度以上で上記半導体基板の損傷防止温度 (T B ) 以下の形成前接合促進 用温度 (T 1 ) まで上記半導体基板を加熱してもよい。
上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記形成前 接合促進用温度で形成前接合促進用時間 (t l ) にて上記半導体基板を維持し、 上記形成前接合促進用時間経過後、 上記バンプボンディング温度に設定してもよ 上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記電極部 分及び上記バンプの材質に基づいて上記形成前接合促進用温度及び上記形成前接 合促進用時間を設定してもよい。
上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記電極部 分の厚み及び上記バンプの台座部分の直径に基づいて上記形成前接合促進用温度 及び上記形成前接合促進用時間を設定してもよい。
上記形成前接合促進用温度は、 上記バンプボンディング用温度に 3 0 ~ 6 0 °C を加えた温度とすることができる。
上記形成前接合促進用時間は 1 0分〜 3 0分とすることができる。
上記電極部分への上記バンプの形成後、 上記半導体基板に対して、 バンプ形成 後の上記電極部分と上記バンプとの接合を促進させる形成後接合促進用温度制御 を実行するポストヒート装置をさらに備えるように構成してもよい。
上記ポストヒート装置の上記形成後接合促進用温度制御は、 上記バンプボンデ イング用温度以上で上記半導体基板の損傷防止温度以下の形成後接合促進用温度 (T 3 ) まで上記半導体基板を加熱してもよい。
上記ポストヒート装置の上記形成後接合促進用温度制御は、 さらに、 上記形成 後接合促進用温度で形成後接合促進用時間 (t 3 ) にて上記半導体基板を維持し、 上記形成後接合促進用時間経過後、 降温してもよい。
上記プリヒート装置による上記形成前接合促進用温度制御、 及び上記ボストヒ ト装置による形成後接合促進用温度制御を互いに関連付けて上記プリヒート装 置及び上記ボストヒート装置を制御する制御装置をさらに備えるように構成して あよい。
又、 本発明の第 2態様によれば、 バンプ形成方法は、 半導体基板上の電極部分 にバンプを形成するときのバンプボンディング用温度 (T 2 ) にある上記半導体 基板に対して、 上記電極部分へ上記バンプを形成するバンプ形成方法であって、 上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御 を実行する。
上記バンプ形成方法において、 上記形成前接合促進用温度制御は、 上記バンプ ボンディング用温度以上で上記半導体基板の損傷防止温度 (T B ) 以下の形成前 接合促進用温度 (T 1 ) まで上記半導体基板を加熱し、 さらに、 上記形成前接合 促進用温度で形成前接合促進用時間 (t 1 ) にて上記半導体基板を維持し、 上記 形成前接合促進用時間経過後、 上記バンプボンディング温度に設定するようにし てもよい。
上記バンプ形成方法において、 さらに、 上記電極部分への上記バンプの形成後、 上記半導体基板に対して、 バンプ形成後の上記電極部分と上記バンプとの接合を 促進させる形成後接合促進用温度制御を実行してもよい。
上記バンプ形成方法において上記形成後接合促進用温度制御は、 上記バンプポ ンディング用温度以上で上記半導体基板の損傷防止温度以下の形成後接合促進用 温度 (T 3 ) まで上記半導体基板を加熱し、 さらに、 上記形成後接合促進用温度 で形成後接合促進用時間 (t 3 ) にて上記半導体基板を維持し、 上記形成後接合 促進用時間経過後、 降温するようにしてもよい。
上記バンプ形成方法において、 上記形成前接合促進用温度制御及び上記形成後 接合促進用温度制御を互いに関連付けて制御してもよい。
本発明の第 3態様によれば、 記録媒体は、 半導体基板上の電極部分にバンプを 形成するときのバンプボンディング用温度 (T 2 ) にある上記半導体基板に対し て、 上記電極部分へ上記バンプを形成するバンプ形成方法を実行するためのプロ グラムを記録した、 コンピュータ読み取り可能な記録媒体であって、
上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御 を実行する処理を記録した。
又、 本発明の第 4態様における半導体基板は、 上記第 1態様のバンプ形成装置 ' にてバンプ形成がなされた。
又、 上記半導体基板は、 電極部分上に形成されたバンプと上記電極部分との接 合強度について、 上記バンプは、 当該バンプの台座部分にて破断する強度を有す る。
又、 上記半導体基板は、 電極部分に形成されたバンプの台座部分の直径がほぼ 9 0 μ ΐηの上記バンプは、 1バンプ当たりほぼ 6 8 0〜8 0 O mNの破断力を有 する。
上述した第 1態様のバンプ形成装置、 及び第 2態様のバンプ形成方法によれば、 プリヒート装置を備え、 電極部分へのバンプ形成前に、 半導体基板に対して形成 前接合促進用温度制御を実行するようにした。 よって、 バンプ形成前に、 電極部 分の金属粒子を適切な状態に変化させることができ、 現象的には、 従前に比べて 電極部分とバンプとの接合状態の改善を図ることができる。 したがって電極部分 とバンプとの接合強度を、 電極部分とバンプとの接合界面部分での破断ではなく バンプの台座部分にて破断する程度に向上させることができる。
上記形成前接合促進用温度制御は、 具体的には、 電極部分を形成前接合促進用 温度まで加熱し、 さらに該形成前接合促進用温度にて形成前接合促進用時間、 維 持することでなされる。 このように構成することで、 電極部分における金属結晶 の適正化を図ることができバンプの完全な接合状態を得ることができる。 又、 こ れらの形成前接合促進用温度及び形成前接合促進用時間を、 電極部分及びバンプ の材質や、 サイズに基づいて設定することで、 各種のバンプに対応して最も適切 な接合状態を得ることができる。
上記形成前接合促進用温度の一例としては、 バンプボンディング用温度に 3 0 〜6 0 °Cを加えた温度とすることで、 バンプ形成動作のタクトの向上を図ること ができる。 又、 このときの形成前接合促進用時間としては、 1 0〜3 0分が好ま しい。
上記プリヒート装置に加えてさらにボストヒート装置を備え、 電極部分へのバ ンプ形成後に、 半導体基板に対して形成後接合促進用温度制御を実行するように してもよい。 該形成後接合促進用温度制御を実行することで、 電極部分に形成さ れたバンプと電極部分との接合強度を、 プリヒート動作のみを実行する場合に比 ベてさらに向上させることができる。
さらに又、 制御装置を設けることもできる。 該制御装置を設けることで、 上記 形成前接合促進用温度制御、 及び上記形成後接合促進用温度制御を互いに関連付 けて制御を行うことができ、 半導体基板の種類及びサイズ、 電極部分の材質、 厚 み及びサイズ、 バンプの材質及びサイズ、 等に基づいて、 電極部分にバンプがよ り接合し易いように、 そしてパンプと電極部分との接合強度がより向上するよう に、 細かな形成前接合促進用温度制御、 及び上記形成後接合促進用温度制御を実 行することが可能となる。
又、 上述の第 3態様の記録媒体によれば、 上述した少なくとも上記形成前接合 促進用温度制御を実行するプログラムを記録することで、 複数のバンプ形成装置 に対して容易に上記形成前接合促進用温度制御を実行させることができる。
又、 上述の第4態様の半導体基板によれば、 上記形成前接合促進用温度制御を 実行するプリヒート装置を少なくとも備えたバンプ形成装置にてバンプが電極部 分に形成されること力、ら、 バンプと電極部分との接合強度が従来に比べて向上し た半導体基板を提供することができる。 よって、 このような半導体基板をフリツ プチップ実装した場合においても、 バンプと電極部分との接合界面部分でバンプ が電極部分から外れることはなく、 フリップチップ実装の信頼性を向上させるこ ともできる。
又、 本発明は、 上記第 2の目的を達成するため、 以下のように構成している。 本発明の第 5態様のバンプ強度改善装置は、 半導体部品の電極上にバンプが形 成されたバンプ形成済部品に対してバンプ形成時の上記電極と上記バンプとの接 合強度に比して該接合強度の改善を図る接合強度改善条件にて加熱を行う加熱装 置と、
上記接合強度改善条件による加熱制御を上記加熱装置に行う制御装置と、 を備えた。
上記接合強度改善条件は、 所望の上記接合強度を得るための加熱時間及ぴ該加 熱温度を変数とした条件であり、 上記制御装置は、 上記半導体部品の材質、 上記 半導体部品の大きさ、 上記電極の材質、 上記電極の大きさ、 上記バンプの材質、 及び上記バンプの大きさの少なくとも一つについて、 上記所望接合強度に達する ための加熱温度と該加熱時間との関係情報にてなる上記接合強度改善条件を有し、 該接合強度改善条件に基づいて上記加熱装置の加熱制御を行うことができる。 上記制御装置が有する上記接合強度改善条件は、 上記半導体部品の材質及び大 きさ、 上記電極の材質及び大きさ、 並びに上記バンプの材質及び大きさの少なく とも一糸且について、 又は各組の組合せについて、 上記所望接合強度に達するため の加熱温度と該加熱時間との関係情報であってもよい。 上記半導体部品は、 半導体ウェハから切.り分けたチップ部品でであってもよい。 上記加熱装置は、 それぞれが少なくとも一つの上記チップ部品を載置する複数 の加熱処理部を有することができる。
上記制御装置は、 上記加熱処理部に対してそれぞれ独立して、 各加熱処理部に 備わるそれぞれの上記チップ部品におけるパンプ形成後経過時間に応じた温度管 理を行うことができる。
上記加熱装置は、 上記半導体部品上にバンプを形成するボンディングステージ、 又は上記バンプ形成済部品におけるバンプ高さを揃えるためのバンプレべリング ステージ、 又は上記バンプ形成済部品を収納するバンプ形成済部品収納部のいず れかに設けることができる。
上記半導体部品が半導体ウェハであるとき、 上記制御装置は、 上記半導体ゥェ ハ上へのほぼすベてのバンプ形成に要したバンプ形成時間 (T E— T S ) に基づ いて上記接合強度改善条件を求め、 求めた接合強度改善条件にて上記加熱装置の 加熱制御を行うことができる。
上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上記バン プ形成時間を超えるとき、 上記接合強度改善条件は、 上記接合強度の目標値 ( P 0 ) を得る第 1加熱時間 (T B) による上記半導体ウェハの加熱を行うことがで さる。
上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上記バン プ形成時間以下であるとき、 上記接合強度改善条件は、 上記バンプ形成時間から 上記加熱適切時間を差し引いた第 2加熱時間 (T A) による上記半導体ウェハの 加熱を行うことができる。
上記加熱装置は、 上記半導体ウェハを载置し上記半導体ウェハにおけるバンプ 形成順に対応した複数の加熱処理部を有し、 上記制御装置は、 上記加熱処理部に 対してそれぞれ独立して、 各加熱処理部に対応する上記半導体ウェハにおけるバ ンプ形成後経過時間に応じた温度管理を行うことができる。
本発明の第 6態様のバンプ形成装置は、 上記第 5態様のパンプ強度改善装置と、 半導体部品を載置しかつ加熱して上記半導体部品の電極上にバンプを形成する バンプ形成部と、 を備えた。
上記バンプ強度改善装置に備わる制御装置は、 さらに、 上記バンプ形成部にお けるバンプ形成時に上記半導体部品に損傷を生じさせない非損傷温度に上記バン プ形成部を温度制御し、 バンプ形成後、 上記加熱装置に対して上記非損傷温度を 超える温度による接合強度改善条件による加熱制御を行うことができる。
本発明の第 7態様のバンプ強度改善方法は、 半導体部品の電極上にバンプが形 成されたバンプ形成済部品を搬入し、
上記バンプ形成済部品に対して、 バンプ形成時の上記電極と上記バンプとの接 合強度に比して該接合強度の改善を図る接合強度改善条件に基づいて加熱制御を 行う。
上記接合強度改善条件は、 所望の上記接合強度を得るための加熱時間及び該加 熱温度を変数とした条件であり、 上記半導体部品の材質、 上記半導体部品の大き さ、 上記電極の材質、 上記電極の大きさ、 上記バンプの材質、 及び上記バンプの 大きさの少なくとも一つについて、 上記所望接合強度に達するための加熱温度と 該加熱時間との関係情報にてなる条件であり、 該関係情報に基づいて上記加熱制 御が行うことができる。
上記接合強度改善条件は、 上記半導体部品の材質及び大きさ、 上記電極の材質 及び大きさ、 並びに上記バンプの材質及び大きさの少なくとも一組について、 又 は各組の組み合わせについて、 上記所望接合強度に達するための加熱温度と該カロ 熱時間との関係情報にてなる条件であり、 該関係情報に基づいて上記加熱制御が 行うことができる。
上記バンプ形成済部品の搬入前にて、 上記半導体部品の上記電極上に上記バン プを形成し、
該バンプ形成時には、 上記半導体部品に損傷を生じさせない非損傷温度に、 上 記パンプが形成されるバンプ形成部を温度制御し、
上記バンプ形成後、 上記非損傷温度を超える温度による上記接合強度改善条件 による加熱制御を行うことができる。
ほぼ全てのバンプ形成に要したバンプ形成時間 (T E— T S ) に基づいて上記 接合強度改善条件を求め、 求めた接合強度改善条件にて上記加熱制御を行うこと ができる。
上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上記バン プ形成時間を超えるとき、 上記接合強度改善条件は、 上記接合強度の目標値 ( P 0 ) を得る第 1加熱時間 (T B ) によるカロ熱を行うことができる。
上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上記バン プ形成時間以下であるとき、 上記接合強度改善条件は、 上記バンプ形成時間から 上記加熱適切時間を差し引いた第 2加熱時間 (YA) による加熱を行うことがで さる。
上述した、 本発明の第 5態様のバンプ強度改善装置、 及び第 6態様のバンプ強 度改善方法、 並びに第 7態様のバンプ形成装置によれば、 加熱装置及び制御装置 を備え、 バンプ形成後において、 上記接合強度の改善を図る接合強度改善条件に て半導体部品の加熱を行うようにした。 よって、 バンプ形成時には、 上記半導体 部品の各バンプにおける接合強度が当該半導体部品におレ、て不均一であつても、 上記接合強度改善条件による加熱を行うことで、 ほぼ均一化することができる。 よって、 上記半導体部品の品質を従来に比べて向上することができる。 又、 弱耐 熱部品の接合強度確保にも有益である。
上記接合強度改善条件は、 加熱時間及び加熱温度を変数とした条件であり、 例 えば半導体部品の材質及び大きさ等によって変化可能である。 よって、 例えばバ ンプ形成時におけるバンプ形成用温度を比較的高温とすると、 材質上、 物理的に 損傷が発生する半導体部品に対しては、 上記バンプ形成用温度を比較的低い温度 に設定し、 上記接合強度改善条件においても比較的低温で長い時間にわたり上記 半導体部品を加熱することで、 上記接合強度をほぼ均一化し、 上記半導体部品の 品質を従来に比べて向上することができる。
又、 上記加熱装置には、 複数の半導体部品を載置可能に構成することで、 上記 接合強度改善条件による加熱と、 他の動作とを並行処理することができ、 タクト の向上を図ることができる。
又、 処理対象である上記半導体部品が半導体ウェハであるときには、 半導体チ ップである場合に比べて、 バンプ形成開始から終了までの時間が長いので、 上記 バンプ形成開始から終了までの時間と、 バンプ形成後の加熱により接合強度の改 善が得られる加熱適切時間との関係に基づいて上記接合改善条件を定めることが できる。 このように上記接合改善条件を定めることで、 上記半導体ウェハ上の全 バンプの上記接合強度をほぼ均一化し、 バンプ形成済みの半導体ウェハの品質を 従来に比べて向上することができる。 図面の簡単な説明
本発明のこれらと他の目的と特徴は、 添付された図面についての好ましい実施 形態に関連した次の記述から明らかになる。 この図面においては、
図 1は、 本発明における第 1実施形態におけるバンプ形成装置の全体構成を示 す斜視図であり、
図 2は、 図 1に示すバンプ形成装置の主要部分の詳細な構造を示す斜視図であ り、
図 3は、 図 1に示すバンプボンディング装置の構造を示す図であり、 図 4は、 図 1及び図 2に示すプリヒート装置、 ポストヒート装置、 及びボンデ イングステージにおいて、 電荷発生半導体基板との接触面に銀メツキを施した状 態の図であり、
図 5は、 図 1及び図 2に示す搬入装置の構成の詳細を示す斜視図であり、 図 6は、 図 1 7に示すステップ 8における動作を説明するための図であって、 搬出側移載装置にて保持されたバンプ形成後ウェハを搬出装置の上方に配置した 状態を示す図であり、
図 7は、 図 1及び図 2に示すォリフラ合わせ装置の構成の詳細を示す斜視図で あり、
図 8は、 図 1及び図 2に示す移載装置の構成の詳細を示す斜視図であり、 図 9は、 図 1及び図 2に示す搬入側移載装置及び搬出側移載装置の変形例を示 す図であり、
図 1 0は、 図 8に示すウェハ保持部の除電用接触部材の構成の詳細を示す図で あり、
図 1 1は、 プリヒート装置及びボストヒート装置の斜視図であり、
図 1 2は、 図 1 1に示すプリヒート装置及ぴポストヒート装置の動作説明用の 図であり、
図 1 3は、 図 1 1に示すプリヒート装置及ぴポストヒート装置の動作説明用の 図であり、
図 1 4は、 図 1 1に示すプリヒート装置及びポストヒート装置のアルミニウム 板及びヒータープレート枠の斜視図であり、
図 1 5は、 バンプ形成場所近傍部分の表面における、 形成前接合促進用温度制 御を実行する前の状態での金属粒子を示す図であり、
図 1 6は、 バンプ形成場所近傍部分の表面における、 形成前接合促進用温度制 御を実行した後の状態での金属粒子を示す図であり、
図 1 7は、 図 1に示すバンプ形成装置の動作を示すフローチヤ一トであり、 図 1 8は、 図 1 7に示すステップ 2における動作を説明するための図であり、 搬入装置にてウェハを上昇させている状態を示す図であり、
図 1 9は、 図 1 7に示すステップ 2における動作を説明するための図であって、 搬入側移載装置にてウェハを保持する直前の状態を示す図であり、
図 2 0は、 図 1 7に示すステップ 2における動作を説明するための図であって、 搬入側移載装置にてウェハを保持した直後の状態を示す図であり、
図 2 1は、 図 1 7に示すステップ 2における動作を説明するための図であって、 搬入側移載装置にてウェハを保持した状態を示す図であり、
図 2 2は、 図 1に示すバンプ形成装置に備わるプリヒート装置におけるプリヒ ート動作のフローチャートであり、
図 2 3は、 図 1 7に示すステップ 5における、 プリヒート装置からバンプボン ディング装置への移載動作を説明するためのフローチャートであって、 パネルヒ ータ枠及びアルミニウム板を分離する場合の動作を示すフローチャートであり、 図 2 4は、 図 1 7に示すステップ 3における動作を説明するための図であって、 プリヒート装置の上方へバンプ形成前ウェハを搬送させた状態を示す図であり、 図 2 5は、 図 2 6に示す III部分の拡大図であり、
図 2 6は、 図 1に示すバンプ形成装置にて実行される、 形成前接合促進用温度 制御及び形成後接合促進用温度制御における半導体基板の温度変ィヒを示すグラフ であり、 図 2 7は、 図 1 7に示すステップ 3における動作を説明するための図であって、 バンプ形成前ウェハをアルミニウム板上へ載置した状態を示す図であり、
図 2 8は、 図 1 7に示すステップ 3における動作を説明するための図であって、 ウェハ保持部によるバンプ形成前ウェハの保持を解除した状態を示す図であり、 図 2 9は、 図 1 7に示すステップ 3における動作を説明するための図であって、 バンプ形成前ウェハを載置したアルミユウム板を下降させた状態を示す図であり、 図 3 0は、 電極部分に形成されたバンプのせん断力の測定方法を説明するため の図であり、
図 3 1は、 図 1に示すバンプ形成装置にて実行される、 形成前接合促進用温度 制御及び形成後接合促進用温度制御における半導体基板の温度変化を示すグラフ であって、 図 2 6の変形例を示すグラフであり、
図 3 2は、 図 1 7に示すステップ 5における、 バンプボンディングステージへ のバンプ形成前ウェハの移載動作を説明するためのフローチャートであり、 図 3 3は、 図 1 7に示すステップ 5における動作を説明するための図であって、 バンプ形成前ウェハをボンディングステージの上方に配置した状態を示す図であ り、
図 3 4は、 図 1 7に示すステップ 5における動作を説明するための図であって、 ボンディングステージにてウェハを保持する直前の状態を示す図であり、
図 3 5は、 図 1 7に示すステップ 5における動作を説明するための図であって、 ボンディングステージにてウェハを保持し搬入側移載装置がウェハの保持を解除 した状態を示す図であり、
図 3 6は、 図 1 7に示すステップ 5における動作を説明するための図であって、 ボンディングステージにてウェハを保持した状態を示す図であり、
図 3 7は、 図 1に示すバンプ形成装置に備わるポストヒート装置におけるボス トヒート動作のフローチャートであり、
図 3 8は、 上記ポストヒート動作において、 形成後接合促進用温度と該温度の 保持時間との間における相関関係を説明するための図であり、
図 3 9は、 図 2 6に示す IV部分の拡大図であり、
図 4 0は、 図 1 7に示すステップ 8における動作を説明するための図であって、 搬出装置の保持部をバンプ形成後ウェハに接触させた状態を示す図であり、 図 4 1は、 図 1 7に示すステップ 8における動作を説明するための図であって、 搬出側移載装置によるウェハの保持を解除した直後の状態を示す図であり、 図 4 2は、 図 1 7に示すステップ 8における動作を説明するための図であって、 搬出装置の保持部に保持されたバンプ形成後ウェハを保持台に載置する直前の状 態を示す図であり、
図 4 3は、 図 1 7に示すステップ 8における動作を説明するための図であって、 上記バンプ形成後ウェハを保持台に載置した状態を示す図であり、
図 4 4は、 図 1に示す搬出側移载装置から搬出装置へバンプ形成後ウェハを移 載するときに、 イオン発生装置にてイオンをウェハに作用させる状態を示す図で あり、
図 4 5は、 S AWフィルタの構造を示す斜視図であり、
図 4 6は、 電極部分にバンプが形成されている状態を示す図であり、
図 4 7は、 本発明の第 2実施形態のバンプ形成装置の斜視図であり、
図 4 8は、 図 4 7に示す半導体チップ搬送装置を拡大した斜視図であり、 図 4 9は、 図 4 7に示すボンディングステージの拡大斜視図であり、
図 5 0は、 図 4 7に示すバンプ形成部の拡大斜視図であり、
図 5 1は、 図 4 7に示すレベリング装置の拡大斜視図であり、
図 5 2は、 バンプと電極との接合強度について、 加熱時間との関係を加熱温度 毎に示したグラフであり、
図 5 3は、 バンプ形成用温度とバンプの接合強度との関係を示すグラフであり、 図 5 4は、 上記接合強度について、 加熱時間と加熱温度との関係を示すグラフ であり、
図 5 5は、 図 4 7に示すレペリング装置の変形例における斜視図であり、 図 5 6は、 図 4 7に示す完成品収納装置の変形例における斜視図であり、 図 5 7は、 図 4 7に示すバンプ形成装置の変形例であって加熱ステージを設け た場合の配置図であり、
図 5 8は、 図 4 7に示すバンプ形成装置の変形例であって加熱ステージを複数 の区画に分割して各区画毎の温度制御を可能にする上記加熱ステージを示す図で あり、
図 5 9は、 処理対象が半導体ウェハであるときの、 バンプ形成順を示す図であ り、
図 6 0は、 処理対象が半導体ウェハであるとき、 接合強度改善条件を求め方の 一例を説明するためのグラフであって、 接合強度とバンプ形成後加熱時間との関 係を示すグラフであり、
図 6 1は、 図 6 0を参照した上記接合強度改善条件の求め方を示すフローチヤ ートであり、
図 6 2は、 図 4 7に示すバンプ形成装置の変形例であって、 処理対象が半導体 ウェハであるとき、 加熱ステージを複数の区画に分割して各区画毎の温度制御を 可能にする上記加熱ステージを示す図であり、
図 6 3は、 電極上に形成されるバンプの形状を示す図である。 発明を実施するための最良の形態
(第 1実施形態)
以下、 図面を参照して本発明における第 1実施形態を詳細に説明する。
本発明の実施形態であるバンプ形成装置、 該バンプ形成装置にて実行されるバ ンプ形成方法、 該バンプ形成方法を実行するためのプログラムを記録したコンビ ユータ読み取り可能な記録媒体、 及び上記バンプ形成装置にてバンプが形成され た半導体基板について、 図を参照しながら以下に説明する。 尚、 各図において同 じ構成部分については同じ符号を付している。
又、 図 1及び図 2に示す、 本実施形態のバンプ形成装置 1 0 1は、 上記 S AW フィルタを形成するウェハ状の圧電基板 (以下、 「圧電基板ウェハ」 と記す) を 処理するのに適しており、 以下の説明でも、 図 4 6に示すように、 上記圧電基板 ウェハ上に形成されている回路部分の電極部分 1 5にバンプ 1 6を形成する場合 を例に採る。 又、 当該圧電基板ウェハに形成されている電極部分 1 5はアルミ二 ゥムを主成分としており、 その厚み 1 5 aは約 2 0 0 O A程度である。 又、 この ような電極部分 1 5上に形成されるバンプ 1 6は、 金にてなり、 上記台座部分 1 6 aの直径で約 9 0〜 1 2 0 i mのものである。 しかしながら、 本実施形態は、 処理対象をこのような圧電基板ウェハに限定す るものではない。 即ち、 電極部分と該電極部分上に形成されるバンプとの接合状 態が不安定で通常値に比して接合強度の弱い基板が処理対象となる。 具体的には、 上述したように例えば上記電極部分の厚み 1 5 aが約 2 0 0 0 A程度であり通常 の厚みに比して薄い電極部分 1 5を有する半導体ウェハ及び半導体チップや、 上 述のいわゆる微小バンプが形成される半導体ウェハ及び半導体チップ等が上記処 理対象となる。 尚、 上記薄い電極部分 1 5とは、 寸法的には約 2 5 0 O A以下で 例えば 1 8 0 0〜2 2 0 O A程度の厚みを有する電極部分をいう。 又、 上記微小 バンプとは、 寸法的には上記台座部分 1 6 aにて約 5 0 μ m以下で例えば 4 0〜 4 8 ^u m程度の大きさを有するバンプをいう。
又、 上記半導体ウェハ及び半導体チップを構成する基材部分の材質は、 上記 S AWフィルタを形成するときの L i T a O 3や L i N b O 3等の化合物半導体の 他、 水晶や S i等であり、 特に限定されるものではない。
又、 上記バンプ形成装置 1 0 1は、 バンプ形成前の圧電基板ウェハ 2 0 1を層 状に収納した第 1収納容器 2 0 5と、 バンプ形成後の圧電基板ウェハ 2 0 2を層 状に収納する第 2収納容器 2 0 6との両方を備えた、 いわゆる両マガジンタイプ であるが、 該タイプに限定されるものではなく、 上記バンプ形成前圧電基板ゥェ ハ 2 0 1及び上記バンプ形成後圧電基板ウェハ 2 0 2を一つの収納容器に収納す るいわゆる片マガジンタイプを構成することもできる。
上記バンプ形成装置 1 0 1は、 大別して、 一つのボンディングステージ 1 1 0 と、 一つのバンプ形成へッド 1 2 0と、 搬送装置 1 3 0と、 搬入側と搬出側にそ れぞれ設けた移載装置 1 4 0と、 上記収納容器 2 0 5 , 2 0 6についてそれぞれ 設けられそれぞれの収納容器 2 0 5, 2 0 6を昇降させる昇降装置 1 5 0と、 プ リヒート装置 1 6 0と、 ポストヒート装置 1 7 0と、 制御装置 1 8 0とを備える。 尚、 本実施形態のバンプ形成装置 1 0 1では、 以下に詳しく説明するように、 上 記電極部分へのバンプ形成前に、 上記プリヒート装置 1 6 0にて基板の温度制御 を行うことが特徴の一つであることから、 最も基本的な構成部分は、 バンプを形 成するための上記バンプ形成へッド 1 2 0及ぴ上記プリヒート装置 1 6 0である。 以下に、 上述の各構成部分について説明する。 上記ボンディングステージ 1 1 0は、 上記バンプ形成前の圧電基板ウェハ (以 下、 単に 「バンプ形成前ウェハ」 と記す) 2 0 1を載置するとともに、 該バンプ 形成前ウェハ 2 0 1上に形成されている回路における電極部分 1 5上にバンプ 1 6を形成するときの当該バンプ形成前ウェハ 2 0 1の温度であってバンプ形成に 必要な温度であるバンプボンディング用温度にバンプ形成前ウェハ 2 0 1を設定 する。 尚、 上述の、 バンプ形成に必要なバンプボンディング用温度とは、 上記電 極部分 1 5とバンプ 1 6とを設計上の強度にて接合するために必要な温度であり、 バンプ 1 6が形成されるウェハや基板の材質や上記設計上の強度に応じて設定さ れる温度であり、 本実施形態の場合、 約 1 5 0 °Cである。
ボンディングステージ 1 1 0では、 バンプ形成前ウェハ 2 0 1が載置されるゥ ェハ载置台 1 1 1に、 図 3に示すように、 バンプ形成前ウェハ 2 0 1を吸着する ための、 及び気体を噴出するための出入孔 1 1 3を開口させており、 該出入孔 1 1 3には、 制御装置 1 8 0にて動作制御される吸引装置 1 1 4、 及び気体供給装 置として機能する一例であるブロー装置 1 1 5が接続されている。 尚、 本実施形 態では、 上記気体は空気である。 又、 ボンディングステージ 1 1 0のウェハ載置 台 1 1 1は、 ヒータ 1 1 2側に接触している加熱位置と、 上記バンプ形成前ゥェ ハ 2 0 1等の半導体基板を移載するための移載位置との間を、 昇降装置にて昇降 可能である。 又、 ウェハ載置台 1 1 1におけるバンプ形成前ウェハ 2 0 1との接 触面には、 図 4に示すように金属メツキ、 本実施形態では銀メツキ 2 6 1を施し ている。 銀メツキを施すことで、 ウェハ載置台 1 1 1とバンプ形成前ウェハ 2 0 1との間の熱伝導率が良くなり、 又、 バンプ形成前ウェハ 2 0 1の除電効果も高 くなる。
上記バンプ形成へッド 1 2 0は、 上記ボンディングステージ 1 1 0に載置され 上記バンプボンディング用温度に維持されたバンプ形成前ウェハ 2 0 1の上記電 極部分 1 5にバンプ 1 6を形成するための公知の装置であり、 図 1に示すように バンプ 1 6の材料となる金線を供給するワイヤ供給部 1 2 1の他、 上記金線を溶 融してボールを形成し該溶融ボールを上記電極部分 1 5に押圧するバンプ作製部、 上記押圧時にバンプ 1 6に超音波を作用させる超音波発生部等を備える。 又、 こ のように構成されるバンプ形成へッド 1 2 0は、 例えばボールねじ構造を有し平 面上で互いに直交する X, Y方向に移動可能な X, Yテーブル 1 2 2上に設置さ れており、 固定されている上記バンプ形成前ウェハ 2 0 1の各上記電極部分 1 5 にバンプ 1 6を形成可能なように上記 X, Yテーブル 1 2 2によって上記 X, Y 方向に移動される。
当該バンプ形成装置 1 0 1では、 上記搬送装置 1 3 0として 2種類、 設けられ ている。 その一つである搬入装置 1 3 1は、 上記第 1収納容器 2 0 5から上記バ ンプ形成前ウェハ 2 0 1を取り出す装置であり、 他の一つである搬出装置 1 3 2 は、 バンプ形成後の圧電基板ウェハ (以下、 単に 「バンプ形成後ウェハ」 と記 す) 2 0 2を上記第 2収納容器 2 0 6へ搬送し収納する装置である。 図 5に示す ように、 搬入装置 1 3 1には、 バンプ形成前ウェハ 2 0 1を吸着動作にて保持す る保持台 1 3 1 1と、 該保持台 1 3 1 1を X方向に沿って移動させる搬入装置用 移動装置 1 3 1 2とが備わる。 搬入装置用移動装置 1 3 1 2に含まれる駆動部 1 3 1 3は、 制御装置 1 8 0に接続され動作制御される。 よって、 上記駆動部 1 3 1 3が動作することで保持台 1 3 1 1が X方向に沿って移動し、 搬入装置 1 3 1 は、 第 1収納容器 2 0 5からバンプ形成前ウェハ 2 0 1を取り出してくる。 搬出装置 1 3 2も搬入装置 1 3 1と同様の構造を有し、 同様に動作することか ら、 略説する。 つまり搬出装置 1 3 2は、 図 6に示すように、 バンプ形成後ゥェ ハ 2 0 2を本実施形態では吸着動作により保持する保持台 1 3 2 1と、 該保持台 1 3 2 1を X方向に沿って移動させ、 第 2収納容器 2 0 6へ上記バンプ形成後ゥ ェハ 2 0 2を収納させる搬出装置用移動装置 1 3 2 2と、 バンプ形成後ウェハ 2 0 2の裏面 2 0 2 bに吸着しバンプ形成後ウェハ 2 0 2を保持する保持部 1 3 2 3と、 上記保持台 1 3 2 1の下方に配置され保持台 1 3 2 1に保持されているバ ンプ形成後ウェハ 2 0 2の厚み方向へ保持部 1 3 2 3を移動させる駆動部 1 3 2 4とを備える。 上記搬出装置用移動装置 1 3 2 2及び駆動部 1 3 2 4は、 制御装 置 1 8 0にて動作制御される。
又、 搬入装置 1 3 1の設置箇所には、 第 1収納容器 2 0 5から搬入装置 1 3 1 にて取り出したバンプ形成前ウェハ 2 0 1のオリエンテーションフラットを所定 方向に配向させる、 オリフラ合わせ装置 1 3 3が設けられている。 該オリフラ合 わせ装置 1 3 3には、 図 7に示すように、 駆動部 1 3 3 2にて Y方向に移動して バンプ形成前ウェハ 2 0 1を挟持する挟持板 1 3 3 1と、 バンプ形成前ウェハ 2 0 1の厚み方向に移動可能であり、 かつバンプ形成前ウェハ 2 0 1を保持可能で あり、 かつ保持したバンプ形成前ウェハ 2 0 1のオリエンテーションフラットの 配向を行うためにバンプ形成前ウェハ 2 0 1の周方向に回転可能な保持部 1 3 3 3と、 該保持部 1 3 3 3の駆動部 1 3 3 4とが備わる。 上記駆動部 1 3 3 2、 1
3 3 4は、 制御装置 1 8 0にて動作制御される。
移载装置 1 4 0は、 当該バンプ形成装置 1 0 1では、 搬入側移载装置 1 4 1と 搬出側移载装置 1 4 2とを備える。 搬入側移載装置 1 4 1は、 上記搬入装置 1 3 1の保持台 1 3 1 1に保持された上記バンプ形成前ウェハ 2 0 1を挟持し、 プリ ヒート装置 1 6 0への搬送と、 プリヒート装置 1 6 0からボンディングステージ 1 1 0への搬送を行う。 一方、 搬出側移載装置 1 4 2は、 ボンディングステージ 1 1 0上に保持されている上記バンプ形成後ウェハ 2 0 2を挟持し、 ポストヒー ト装置 1 7 0への搬送と、 ポストヒート装置 1 7 0から上記搬出装置 1 3 2の保 持台 1 3 2 1への搬送とを行う。
このような搬入側移載装置 1 4 1は、 図 2に示すように、 バンプ形成前ウェハ
2 0 1を挟持しかつバンプ形成前ウェハ 2 0 1の表面及び裏面の帯電を除去する ウェハ保持部 1 4 1 1と、 上記挟持動作のためにウェハ保持部 1 4 1 1を駆動す る、 本実施形態ではエアーシリンダを有する駆動部 1 4 1 2と、 これらウェハ保 持部 1 4 1 1及び駆動部 1 4 1 2の全体を X方向に移動させる、 本実施形態では ボールねじ機構にて構成される移動装置 1 4 1 3とを備える。 上記駆動部 1 4 1 2及び移動装置 1 4 1 3は、 制御装置 1 8 0に接続され、 動作制御される。 搬出側移载装置 1 4 2も、 上記搬入側移載装置 1 4 1と同様に、 ウェハ保持部 1 4 2 1と、 駆動部 1 4 2 2と、 移動装置 1 4 2 3とを備え、 駆動部 1 4 2 2及 び移動装置 1 4 2 3は制御装置 1 8 0にて動作制御される。
上記ウェハ保持部 1 4 1 1、 1 4 2 1について説明する。 ウェハ保持部 1 4 1
1は、 図 8に示すように、 上記駆動部 1 4 1 2にて X方向に可動な、 第 1保持部 材 1 4 1 4及び第 2保持部材 1 4 1 5と、 これらに挟まれて配置される除電用部 # 1 4 1 6とが互いに平行に配列されている。 これら第 1保持部材 1 4 1 4、 第 2保持部材 1 4 1 5、 及び除電用部材 1 4 1 6は、 ともに鉄又はその他の導電性 材料から作製されている。 ウェハ保持部 1421も、 ウェハ保持部 14 1 1と同 様に、 第 1保持部材 1424及ぴ第 2保持部材 1425と、 これらに挟まれて配 置される除電用部材 1426とが互いに平行に配列されている。 これら第 1保持 部材 1424、 第 2保持部材 1425、 及び除電用部材 1426は、 ともに鉄又 はその他の導電性材料から作製されている。 尚、 ウェハ保持部 141 1、 142 1は同じ構造にてなるので、 以下には代表してウェハ保持部 141 1を例に説明 する。
第 1保持部材 1414及び第 2保持部材 141 5には、 鉄や導電性樹脂材にて 作製され、 図示するようにバンプ形成前ウェハ 20 1を保持するための L字形の 保持爪 141 7がそれぞれ 2個ずつ設けられている。 尚、 第 1保持部材 1414 及び第 2保持部材 141 5並びに保持爪 14 1 7を鉄又は導電性材料にて作製す るのは、 保持するバンプ形成前ウェハ 20 1の裏面 20 1 bの帯電をアース可能 にするためである。
又、 好ましくは第 1保持部材 1414及び第 2保持部材 141 5並びに保持爪 14 1 7の外面全面に、 図 9に示すように絶縁材料にてコーティングを施すのが 好ましい。
除電用部材 1416には、 当該ウェハ保持部 14 1 1にて保持されるバンプ形 成前ウェハ 20 1の表面 2 O l aにおける周縁部分 20 1 cに接触可能なように、 本実施形態ではウェハ 20 1の直径方向に沿った 2箇所にてウェハ 20 1の厚み 方向に突出して除電用接触部材 141 61が設けられている。 除電用接触部材 1 41 6 1は、 図 10に示すように除電用部材 14 1 6に対して摺動可能に貫通し て取り付けられ、 除電用接触部材 14 16 1の軸方向にスプリング 14 16 2に て付勢されている。 又、 除電用接触部材 14 1 6 1におけるウェハ接触端部には、 緩衝材として導電性樹脂 141 63が設けられている。
このような除電用接触部材 1416 1は、 上記導電性樹脂 14163がバンプ 形成前ウェハ 20 1の表面 201 aに接触することで、 該表面 201 aにおける 帯電をアースする。 又、 保持爪 141 7にてバンプ形成前ウェハ 20 1が保持さ れる前の状態では、 除電用接触部材 141 6 1は、 バンプ形成前ウェハ 20 1の 厚み方向において、 保持爪 141 7と同レベルもしくは保持爪 141 7を超えて 突出している。 該構成により、 当該ウェハ保持部 1 4 1 1がバンプ形成前ゥ: 2 0 1を保持しょうとするとき、 保持爪 1 4 1 7がバンプ形成前ウェハ 2 0 1に 接触する前に除電用接触部材 1 4 1 6 1がバンプ形成前ウェハ 2 0 1の表面 2 0 l aに接触可能となる。 よって、 まず、 上記表面 2 0 1 aの除電を行うことがで きる。 又、 除電用接触部材 1 4 1 6 1に直接、 アース線を接続する構成を採るこ ともできる。
上記プリヒート装置 1 6 0は、 本実施形態のバンプ形成装置 1 0 1において特 徴的な動作の一つを実行する装置である。 即ち、 プリヒート装置 1 6 0は、 バン プ形成前ウェハ 2 0 1の電極部分 1 5へバンプ 1 6を形成する前に、 バンプ形成 前ウェハ 2 0 1に対して、 バンプ形成時における上記電極部分 1 5とバンプ 1 6 との接合を促進させる形成前接合促進用温度制御を実行する装置であり、 大別し て、 バンプ形成前ウェハ 2 0 1を加熱する前加熱部と、 該前加熱部に対して上記 形成前接合促進用温度制御を行なう制御部とを備える。 尚、 本実施形態では、 上 記制御部は制御装置 1 8 0に相当する。
上記前加熱部は、 以下のように構成される。
図 1 1〜図 1 3に示すように、 熱源としてのパネルヒータ 1 6 1を有するパネ ルヒータ枠 1 6 2上に熱拡散部材としての、 本実施形態では 6 mm厚のアルミ二 ゥム板 1 6 3を載置している。 アルミニウム板 1 6 3のウェハ載置面 1 6 3 aに は、 図 4に示すように金属メツキ、 本実施形態では銀メツキ 2 6 1を施している。 銀メツキを施すことで、 アルミニウム板 1 6 3とバンプ形成前ウェハ 2 0 1との 間の熱伝導率が良くなり、 又、 バンプ形成前ウェハ 2 0 1の除電効果も高くなる。 パネノレヒータ 1 6 1による昇温動作は、 アルミニウム板 1 6 3の温度を測定する 例えば熱電対のような温度センサ 1 6 6からの温度情報を参照しながら制御装置 1 8 0にて制御される。 尚、 上記熱拡散部材 1 6 3の材質は、 上述のアルミ-ゥ ムに限定されるものではなく、 熱伝導率が良好な材質でバンプ形成前ウェハ 2 0 1と化学的反応を起こさない材質、 例えばジュラルミン等でもよい。
本実施形態では、 上記搬入側移载装置 1 4 1及び搬出側移載装置 1 4 2は、 い ずれもウェハ保持部 1 4 1 1及びウエノ、保持部 1 4 2 1を、 これらが保持してい るバンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2の厚み方向へ移動さ せる機構を設けていない。 よって、 プリヒート装置 1 6 0は、 バンプ形成前ゥェ ハ 2 0 1を上記アルミエゥム板 1 6 3上に載置するため、 パネルヒータ 1 6 1を 有するパネルヒータ枠 1 6 2及びアルミニウム板 1 6 3を上記厚み方向へ図 1 2 に示す下降位置 1 6 7と図 1 3に示す上昇位置 1 6 8との間にて昇降させる昇降 機構を備える。 該昇降機構は、 上記厚み方向への昇降動作をするための駆動源と してのエアーシリンダ 1 6 0 1と、 該エアーシリンダ 1 6 0 1にて昇降される T 字形の支持部材 1 6 0 2と、 該支持部材 1 6 0 2に立設されパネルヒータ枠 1 6 2及びアルミエゥム板 1 6 3を支持する 2本の支持棒 1 6 0 3とを備える。 尚、 上記エアーシリンダ 1 6 0 1は、 制御装置 1 8 0にて動作制御されるシリンダ駆 動装置 1 6 0 4にて動作される。 又、 本実施形態では、 後述するようにェアーシ リンダ 1 6 0 1による昇降動作により、 パネルヒータ枠 1 6 2とアルミニウム板 1 6 3とは分離しアルミニウム板 1 6 3の冷却を促進させることから、 上記シリ ンダ駆動装置 1 6 0 4及び上記エアーシリンダ 1 6 0 1は分離装置としての機能 を有する。
本実施形態では、 図示するように支持棒 1 6 0 3はパネルヒータ枠 1 6 2を貫 通し、 その先端部がアルミエゥム板 1 6 3に揷入されている。 支持棒 1 6 0 3力 S 貫通された状態においてパネルヒータ枠 1 6 2は支持棒 1 6 0 3の軸方向に滑動 可能であり、 支持棒 1 6 0 3の先端部にてアルミニウム板 1 6 3は支持棒 1 6 0 3に固定される。 さらに、 パネルヒータ枠 1 6 2は付勢手段の一例であるスプリ ング 1 6 0 5にてァ^ /レミ二ゥム板 1 6 3へ押圧されている。 よって、 エアーシリ ンダ 1 6 0 1が動作することで、 図 1 2に示すように下降位置 1 6 7からパネル ヒータ枠 1 6 2とアルミエゥム板 1 6 3とは一体的に昇降するが、 上昇時、 接触 位置に設けられているストッパ^" 1 6 0 6にパネルヒータ枠 1 6 2が当接した後 は、 図 1 3に示すようにストッパー 1 6 0 6にてパネルヒータ枠 1 6 2の上昇が 停止されるので、 アルミニウム板 1 6 3のみが上昇し、 パネルヒータ枠 1 6 2と アルミニウム板 1 6 3との分離が行われる。 そしてアルミニウム板 1 6 3が上昇 位置 1 6 8まで上昇する。 本実施形態では、 分離完了時におけるパネルヒータ枠 1 6 2とァゾレミユウム板 1 6 3との隙間は、 約 2〜4 mmである。 該分離後にお ける降下時には、 上記上昇位置 1 6 8から上記ストッパー 1 6 0 6を設けている 上記接触位盧まではアルミニゥム板 1 6 3のみが下降し、 上記接触位置からはパ ネルヒータ枠 1 6 2とアルミニウム板 1 6 3とが一体的に上記下降位置 1 6 7ま で下降する。
詳細後述のプリヒート後、 次の新たなバンプ形成前ウェハ 2 0 1を載置するに 当たりアルミニウム板 1 6 3の温度を約 4 0 °Cまで下げる必要があるが、 上述の ように、 パネルヒータ枠 1 6 2とアルミニウム板 1 6 3とを分離可能な構造にす ることで、 従来に比べてアルミニウム板 1 6 3の冷却速度を向上させることがで き、 タクトの短縮を図ることができる。 又、 量産前に行う試作段階のときや、 同 種類のウェハについて 1, 2枚程度しかバンプ形成を行わないときに、 上記分離 構造を採ることで上記冷却速度の向上を図れるのでタクト上、 特に有効となる。 さらに、 アルミニウム板 1 6 3の温度が下がった時点でパネルヒータ枠 1 6 2 とアルミニウム板 1 6 3とを合体させればよく、 パネルヒータ枠 1 6 2が上記約 4 0 °Cまで下がるのを待つ必要はないことから、 パネルヒータ枠 1 6 2における 温度差は従来に比べて小さくなる。 したがって、 パネルヒーター 1 6 1の負荷を 低減できることから、 従来に比べてパネルヒーター 1 6 1の寿命を長くすること もできる。
尚、 上述のように本実施形態ではパネルヒータ枠 1 6 2とアルミニウム板 1 6 3とは分離可能な構造としたが、 簡易型としてパネルヒータ枠 1 6 2とアルミ二 ゥム板 1 6 3とは分離せず常に一体にて昇降するように構成することもできる。 又、 上述のように 2本の支持棒 1 6 0 3にてパネルヒータ枠 1 6 2及びアルミ
-ゥム板 1 6 3を支持しているので、 パネルヒータ枠 1 6 2からの熱が支持部材 1 6 0 2ゃェアーシリンダ 1 6 0 1等へ伝わりにくい。 よって、 パネノレヒータ枠 1 6 2からの熱は、 ほとんどアルミニウム板 1 6 3へ伝導させることができるの で、 アルミニウム板 1 6 3における温度分布をほぼ均一にすることができ、 バン プ形成前ウェハ 2 0 1の全体を均一に加熱することができる。 さらに又、 連続運 転しても、 支持部材 1 6 0 2等が熱を帯びることもない。
アルミニウム板 1 6 3のウェハ載置面 1 6 3 aには、 バンプ形成前ウェハ 2 0 1の移载時に上記ウェハ保持部 1 4 1 1に備わる保持爪 1 4 1 7が進入するため の逃がし溝 1 6 0 7、 及び空気出入孔 1 6 0 8が形成されている。 空気出入孔 1 6 0 8は、 図 1 4に示すように、 アルミニウム板 1 6 3内に形成されたブロー吸 引用通路 1 6 0 9に連通しており、 後述の動作説明でも述べるが、 バンプ形成前 ウェハ 2 0 1を搬送するときにバンプ形成前ウェハ 2 0 1とウェハ載置面 1 6 3 aとを分離させたり、 バンプ形成前ウェハ 2 0 1の裏面の帯電を除去したりする ときに空気を噴出するための孔であり、 又は本実施形態では基本的には行わない がバンプ形成前ウェハ 2 0 1をウェハ載置面 1 6 3 aに吸着保持させるときの空 気吸引用の孔である。 尚、 上記ブロー吸引用通路 1 6 0 9は、 図 1 1に示すよう に、 制御装置 1 8 0にて動作制御されるブロー吸引装置 1 6 1 1に連結管 1 6 1 0を介して接続される。 又、 本実施形態では、 噴出する気体として上述のように 空気を用いているが、 他の気体を用いても良い。 又、 上記ブロー吸引装置 1 6 1 1は、 気体供給によりバンプ形成前ウェハ 2 0 1の反り矯正動作及び除電動作を 行なう場合の気体供給装置としての機能を果たす。
さらにァノレミニゥム板 1 6 3内には、 アルミニウム板 1 6 3を冷却するための 冷媒用通路 1 6 1 2が形成されている。 本実施形態では、 冷媒として常温の空気 を使用するが、 他の気体や水等を使用してもよい。 冷媒用通路 1 6 1 2は、 図 1 1に示すように、 制御装置 1 8 0にて動作制御される冷却空気供給装置 1 6 1 3 に連結管 1 6 1 4を介して接続されている。 尚、 冷媒用通路 1 6 1 2に供給され た冷却用空気は、 図示する矢印に従って該冷媒用通路 1 6 1 2を流れ、 連結管 1 6 1 5を通って排気される。
このような構成を有するプリヒート装置 1 6 0において、 上記制御装置 1 8 0 の制御にて実行される上記形成前接合促進用温度制御について説明する。
従来技術の問題点として上述したように、 電極部分 1 5の膜厚が通常のものに 比して薄い場合、 上記微小バンプの場合や、 電極部分 1 5の材質が特にアルミ- ゥムの場合には、 バンプ 1 6の接合状態が不安定となり必要な接合強度が得られ ない場合がある。 この原因は以下のように考えられる。 即ち、 半導体基板に形成 された回路部分 2 0における電極部分 1 5は、 例えば蒸着法にて、 電極部分 1 5 を形成する金属例えばアルミ二ゥムが上記回路部分 2 0上に所望の膜厚まで形成 される。 しかしながら、 電極部分 1 5の形成時における上記金属は、 アルミユウ ムの粒子が堆積している状態であるが、 そのアルミニウム粒子が直径で 0 . 0 5 〜0 . 3 μ ηι程度と大きいため、 特に、 上記膜厚が上述のように通常に比して薄 い場合、 例えば上述のように約 2 0 0 0 A (= 0. 2 Ai m) である場合には、 上 述のように粒子が粗い状態の不完全さに起因して電極部分 1 5が脆い状態と考え られる。 一方、 電極部分 1 5上へバンプ 1 6を形成するときには、 バンプ 1 6と なる溶融状態の金属ボールを超音波振動させながら電極部分 1 5へ押圧すること 力、ら、 脆い状態の電極部分 1 5に上記超音波振動等が作用し、 粗い粒子の金属が 崩れる等の現象が生じ、 結果的に、 電極部分 1 5とバンプ 1 6との安定した接合 ができないと考えられる。 特に、 電極部分 1 5にアルミニウムを使用し、 膜厚 2 2が薄い場合に、 上記不安定な接合が顕著に生じる。
そこで本実施形態では、 電極部分 1 5が形成されている上記バンプ形成前ゥェ ハ 2 0 1に対して、 バンプ 1 6の形成を行なう前に、 上記形成前接合促進用温度 制御による加熱を行なう。 具体的には後述の、 当該バンプ形成装置 1 0 1のバン プ形成動作説明にて述べるが、 上記形成前接合促進用温度制御は、 上記バンプボ ンディング用温度以上でバンプ形成前ウェハ 2 0 1の損傷防止温度以下の形成前 接合促進用温度まで上記バンプ形成前ウェハ 2 0 1を加熱する制御であり、 さら に本実施形態では、 上記形成前接合促進用温度で形成前接合促進用時間にてバン プ形成前ウェハ 2 0 1を維持し、 上記形成前接合促進用時間経過後、 上記バンプ ボンディング温度にバンプ形成前ウェハ 2 0 1を設定する制御である。
このような形成前接合促進用温度制御を実行することで、 現象的には、 従前に 比べて電極部分 1 5とバンプ 1 6との接合状態の改善を図ることができる。 これ は、 上述のように粒径の大きい金属粒子が、 例えば粒径で約 2 Z 3〜: L Z 3程度 に金属粒子が微細化された状態に変化し電極部分 1 5の強度が向上したものと考 えられる。 尚、 図 1 5は、 バンプ形成場所の近傍部分における基板表面における、 形成前接合促進用温度制御を実行する前の状態を写した電子顕微鏡写真に基づい て作成した図であり、 図 1 6は、 上記近傍部分における形成前接合促進用温度制 御を実行した後の状態での電子顕微鏡写真に基づいて作成した図であり、 元にな る上記電子顕微鏡写真は両者ともに倍率は 1 0万倍である。 又、 符号 2 1にて示 すものが電極部分 1 5を形成するアルミ二ゥムの粒子であり、 図 1 5に示す粒子 2 1よりも図 1 6に示す粒子 2 1の方が小さくなつており、 形成前接合促進用温 度制御の実行によりアルミニウム粒子が微細化が進んだことがわかる。
次に、 上記ボストヒート装置 1 7 0について説明するが、 該ポストヒート装置 1 7 0も、 本実施形態のバンプ形成装置 1 0 1において特徴的な動作の一つを実 行する装置である。 即ち、 ポストヒート装置 1 7 0は、 バンプ形成前ウェハ 2 0 1の電極部分 1 5へバンプ 1 6を形成した後に、 バンプ形成後ウェハ 2 0 2に対 して上記電極部分 1 5とバンプ 1 6との接合を促進させる形成後接合促進用温度 制御を実行する装置であり、 大別して、 バンプ形成後ウェハ 2 0 2を加熱する後 加熱部と、 該後加熱部に対して上記形成後接合促進用温度制御を行なう制御部と を備える。 尚、 本実施形態では、 上記制御部は制御装置 1 8 0に相当する。
上記後加熱部は、 以下のように構成される。
構造的には上述のプリヒート装置 1 6 0と同様の構造を有し、 本実施形態では パネルヒータ枠とアルミニウム板とは分離する構造である。 つまり、 上述したプ リヒート装置 1 6 0の各構成部分に対応して、 ボストヒート装置 1 7 0において も、 パネルヒータ 1 7 1、 パネルヒータ枠 1 7 2、 アルミエゥム板 1 7 3、 温度 センサ 1 7 6、 エアーシリンダ 1 7 0 1、 支持部材 1 7 0 2、 支持棒 1 7 0 3、 シリンダ駆動装置 1 7 0 4、 スプリング 1 7 0 5、 ストッパー 1 7 0 6、 逃がし 溝 1 7 0 7、 空気出入孔 1 7 0 8、 ブロー吸引用通路 1 7 0 9、 連結管 1 7 1 0、 ブロー吸引装置 1 7 1 1、 冷媒用通路 1 7 1 2、 冷却空気供給装置 1 7 1 3、 連 結管 1 7 1 4、 1 7 1 5を有する。 よって、 図 1 1〜図 1 4には、 プリヒート装 置 1 6 0及びポストヒート装置 1 7 0の両者における符号を記している。 但し、 パネルヒータ 1 7 1は、 バンプ形成後ウェハ 2 0 2の温度を制御するために制御 装置 1 8 0にて動作制御される。 尚、 アルミニウム板 1 7 3のウェハ載置面 1 7 3 aには、 アルミニウム板 1 6 3の場合と同様に、 図 4に示すように金属メツキ、 本実施形態では銀メツキ 2 6 1を施している。 銀メツキを施すことで、 アルミ二 ゥム板 1 7 3とバンプ形成後ウェハ 2 0 2との間の熱伝導率が良くなり、 又、 バ ンプ形成後ウェハ 2 0 2の除電効果も高くなる。
このような構成を有するボストヒート装置 1 7 0において、 上記制御装置 1 8 0の制御にて実行される上記形成後接合促進用温度制御について説明する。
詳しくは、 後述の、 当該バンプ形成装置 1 0 1のバンプ形成動作説明にて述べ るが、 上記形成後接合促進用温度制御は、 上記バンプボンディング用温度以上で バンプ形成後ウェハ 2 0 2の損傷防止温度以下の形成後接合促進用温度まで上記 バンプ形成後ウェハ 2 0 2を加熱する制御であり、 さらに本実施形態では、 上記 形成後接合促進用温度で形成後接合促進用時間にてバンプ形成後ウェハ 2 0 2を 維持し、 上記形成後接合促進用時間経過後、 ほぼ室温までバンプ形成後ウェハ 2 0 2を降温する制御である。
このような形成後接合促進用温度制御は、 プリヒート装置 1 6 0にて実行され る形成前接合促進用温度制御のような電極部分 1 5の金属粒子の適正化を行なう ものではなく、 バンプ 1 6と電極部分 1 5との接合界面部分における両材料の拡 散を促進させるための制御である。 該形成後接合促進用温度制御が行なわれるこ とで、 上述の金属拡散により、 電極部分 1 5上に形成されたバンプ 1 6と、 電極 部分 1 5との接合状態が改善され、 電極部分 1 5とバンプ 1 6とがより強固に接 合可能となる。
本実施形態では、 上述の形成前接合促進用温度制御、 及び形成後接合促進用温 度制御を行なうためのプログラムを、 制御装置 1 8 0に備わる記憶装置 1 8 1に 格納している。 しかしながらこれに限らず、 上記プログラムを記録した、 例えば C D - R OM、 フロッピーディスク等の記録媒体 1 8 2力 ら読取装置 1 8 3を介 して制御装置 1 8 0へ上記プログラムを供給するようにしてもよく、 さらに又、 通信線を介して供給するように構成することもできる。
又、 形成前接合促進用温度制御及び形成後接合促進用温度制御をそれぞれ単独 で実行することもできるし、 さらに、 例えば上記形成前接合促進用時間を長くし たときには形成後接合促進用時間を短くする等、 上記制御装置 1 8 0にて、 両制 御を関連付けて制御することもできる。
次に、 上記昇降装置 1 5 0は、 上記第 1収納容器 2 0 5を載置する第 1昇降装 置 1 5 1と、 上記第 2収納容器 2 0 6を載置する第 2昇降装置 1 5 2とを備える。 第 1昇降装置 1 5 1は、 上記バンプ形成前ウェハ 2 0 1が上記搬入装置 1 3 1に よって取り出し可能な位置に配置されるように、 上記第 1収納容器 2 0 5を昇降 する。 第 2昇降装置 1 5 2は、 上記搬出装置 1 3 2にて保持されているバンプ形 成後ウェハ 2 0 2を第 2収納容器 2 0 6内の所定位置へ収納可能なように、 第 2 収納容器 2 0 6を昇降する。
以上説明したような構成を有する本実施形態のバンプ形成装置 1 0 1における 動作、 即ちバンプ形成方法について以下に説明する。 上述した各構成部分は制御 装置 1 8 0にて動作制御がなされることで、 バンプ形成前ウェハ 2 0 1にバンプ が形成され、 そしてバンプ形成後ウェハ 2 0 2が第 2収納容器 2 0 6へ収納され る、 という一連の動作が実行される。 又、 上述のように制御装置 1 8 0は、 プリ ヒート装置 1 6 0にてバンプ形成前ウェハ 2 0 1に対して形成前接合促進用温度 制御を行ない、 さらには、 プリヒート装置 1 6 0にて実行可能なバンプ形成前ゥ ェハ 2 0 1に対する除電用ブロー動作や反り矯正用ブロー動作を制御することも できる。 又、 上述のように制御装置 1 8 0は、 ポストヒート装置 1 7 0にてバン プ形成後ウェハ 2 0 2に対して形成後接合促進用温度制御を行ない、 さらには、 ポストヒート装置 1 7 0にて実行可能なバンプ形成後ウェハ 2 0 2に対する除電 用ブロー動作や反り矯正用ブロー動作を制御することもできる。
本実施形態のバンプ形成装置 1 0 1では、 図 1 7に示すステップ (図内では 「S」 にて示す) 1からステップ 1 0までの各工程により、 バンプ形成前ウエノ、
2 0 1にバンプが形成され、 バンプ形成後ウェハ 2 0 2が第 2収納容器 2 0 6へ 収納される。
即ち、 ステップ 1では、 第 1収納容器 2 0 5からバンプ形成前ウェハ 2 0 1が 搬入装置 1 3 1によって取り出し可能な位置に配置されるように、 第 1昇降装置 1 5 1により第 1収納容器 2 0 5が昇降し、 その後、 バンプ形成前ウェハ 2 0 1 が搬入装置 1 3 1によって第 1収納容器 2 0 5から取り出される。 さらに、 搬入 装置 1 3 1にて保持されたバンプ形成前ウェハ 2 0 1は、 オリフラ合わせ装置 1 3 3にてオリエンテーションフラットの配向が行われる。
オリエンテーションフラットの配向終了後、 ステップ 2では、 搬入装置 1 3 1 の保持台 1 3 1 1に保持されているバンプ形成前ウェハ 2 0 1が搬入側移載装置 1 4 1にて挟持される。 該動作について図 1 8〜図 2 1を参照して詳しく説明す る。
図 1 8に示すように、 上記配向後、 オリフラ合わせ装置 1 3 3の保持部 1 3 3 3が上昇し保持台 1 3 1 1からバンプ形成前ウェハ 2 0 1を吸着保持し上昇する。 一方、 ウェハ保持部 1 4 1 1がバンプ形成前ウェハ 2 0 1の上方に配置され、 力、 つ駆動部 1 4 1 2にて第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5が X方向 に沿って開く方向に移動する。 次に、 図 1 9に示すように、 保持部 1 3 3 3が上 昇し、 それによりまず、 ウェハ保持部 1 4 1 1の除電用接触部材 1 4 1 6 1の先 端がバンプ形成前ウェハ 2 0 1の表面 2 0 1 aに接触する。 よって、 除電用接触 部材 1 4 1 6 1の接触直前において上記表面 2 0 1 aが帯電していたとしても、 除電用接触部材 1 4 1 6 1の接触により除電が行われる。
そして、 図 2 0に示すように、 駆動部 1 4 1 2にて第 1保持部材 1 4 1 4及び 第 2保持部材 1 4 1 5が X方向に沿って閉じる方向に移動する。
次に、 図 2 1に示すように、 上記保持台 1 3 1 1が下降し、 バンプ形成前ゥェ ハ 2 0 1はウェハ保持部 1 4 1 1の保持爪 1 4 1 7にて保持される。 このとき、 除電用接触部材 1 4 1 6 1部分に設けたスプリング 1 4 1 6 2による付勢力によ りバンプ形成前ウェハ 2 0 1は保持爪 1 4 1 7へ押圧される。 尚、 該押圧力は、 ウェハ保持部 1 4 1 1によるバンプ形成前ウェハ 2 0 1の搬送時に落下等の不具 合を生じさせない程度であり、 バンプ形成前ウェハ 2 0 1に変形を生じさせるも のではない。
又、 バンプ形成前ウェハ 2 0 1の裏面 2 0 1 bと保持爪 1 4 1 7とが接触する ことで、 上記裏面 2 0 1 bにおける電荷の一部はアースされる。
次のステップ 3では、 図 2に示すように、 バンプ形成前ウェハ 2 0 1を保持し た状態にてウェハ保持部 1 4 1 1が移動装置 1 4 1 3にてプリヒート装置 1 6 0 の上方に搬送され配置される。 そして次のステップ 4では、 バンプ形成前ウェハ 2 0 1に対してプリヒート装置 1 6 0にて、 上記形成前接合促進用温度制御によ るプリヒート動作が行なわれる。
一方、 図 1 1に示すように本実施形態では、 プリヒート装置 1 6 0はパネルヒ ータ枠 1 6 2とァノレミニゥム板 1 6 3とは分離可能な構造である。 よって、 アル ミエゥム板 1 6 3が常温以上の温度にあるときには、 バンプ形成前ウェハ 2 0 1 がプリヒート装置 1 6 0の上方に搬送されてくる前に、 即ちステップ 3が実行さ れる前に、 図 2 2に示すステップ 5 1 0〜 5 1 5が実行されアルミニウム板 1 6 3の冷却が行われる。 これらステップ 5 1 0〜 5 1 5については、 図 2 3を参照 して後述する。
アルミニウム板 1 6 3がプリヒート開始温度、 本実施形態では約 4 0 °Cまで冷 却された時点でアルミニゥム板 1 6 3は上記下降位置 1 6 7まで下がる。 そして、 次の上記ステップ 3にて、 図 2 4に示すように、 バンプ形成前ウェハ 2 0 1を保 持した状態にてウェハ保持部 1 4 1 1が移動装置 1 4 1 3にてプリヒート装置 1 6 0の上方に搬送され配置される。 そして上記ステップ 4が開始される。 ステツ プ 4における上記形成前接合促進用温度制御による詳しい動作を図 2 2に、 ステ ップ 4 0 1〜4 0 8に示す。
図 2 2に示すステップ 4 0 1では、 上記プリヒート開始温度 T 0である約 4 0 °Cにてなるアルミニウム板 1 6 3の上方に、 移動装置 1 4 1 3にてバンプ形成 前ウェハ 2 0 1が配置されることで、 バンプ形成前ウェハ 2 0 1はァノレミ-ゥム 板 1 6 3からの放射熱により緩やかに加熱される。 このようにバンプ形成前ゥェ ノヽ 2 0 1を直ちにァノレミエゥム板 1 6 3に接触させず、 まず空中に保持して加熱 することで、 室温にあるバンプ形成前ウェハ 2 0 1に熱ストレスを与えるのを防 止でき、 バンプ形成前ウェハ 2 0 1の物理的損傷や形成されている回路の破壊の 発生を防止することができる。 本実施形態では、 該ステップ 4 0 1の加熱時間は 約 1〜 3分であり、 上記室温としての約 2 7 °Cのバンプ形成前ウェハ 2 0 1は、 図 2 5に示すような昇温曲線にて 4 0 °C前後まで加熱される。 尚、 上記加熱時間、 及ぴバンプ形成前ウェハ 2 0 1の昇温温度は、 上述の例に限定されるものではな く、 例えばバンプ形成前ウェハ 2 0 1の種類、 材質及びサイズ等、 並びに電極部 分 1 5及ぴバンプ 1 6の各材質及びサイズ特に電極部分 1 5の膜厚、 バンプ 1 6 の台座部分 1 6 aの直径等に基づき変更される。 又、 上記図 2 5は、 図 2 6に示 す III部分の拡大図である。
次のステップ 4 0 2では、 再度、 アルミニウム板 1 6 3を上昇位置 1 6 8まで 上昇させる。 このとき、 ウェハ保持部 1 4 1 1に備わる保持爪 1 4 1 7は、 図 2 7に示すように、 アルミニウム板 1 6 3に形成されている上記逃がし溝 1 6 0 7 内に進入する。 よって、 ウェハ保持部 1 4 1 1に保持されているバンプ形成前ゥ ェハ 2 0 1は、 アルミニウム板 1 6 3上に載置される。 尚、 上述したように本実 施形態では搬入側移载装置 1 4 1及び搬出側移載装置 1 4 2には昇降機構を設け ていないので、 プリヒート装置 1 6 0へのバンプ形成前ウェハ 2 0 1の搬入動作 及びアルミニウム板 1 6 3への載置動作を行うために、 アルミニウム板 1 6 3の 昇降を行う必要がある。
次のステップ 4 0 3では、 図 2 8に示すように、 搬入側移載装置 1 4 1の第 1 保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を開き、 次のステップ 4 0 4にて、 図 2 9に示すように、 アルミエゥム板 1 6 3を上記下降位置 1 6 7まで下げる。 次のステップ 4 0 5では、 図 2 6に示すように、 パネルヒータ 1 6 1への通電 によりアルミニウム板 1 6 3を昇温していき、 アルミニウム板 1 6 3とバンプ形 成前ウェハ 2 0 1とが接触した状態にて、 バンプ形成前ウェハ 2 0 1を上記プリ ヒート開始温度 T O付近の温度から形成前接合促進用温度 T 1まで加熱する。 該 形成前接合促進用温度 T 1は、 バンプボンディング用温度 T 2以上で、 半導体基 板の一例としての当該バンプ形成前ウェハ 2 0 1の損傷防止温度 T B以下の温度 である。 尚、 損傷防止温度 T Bとは、 当該バンプ形成前ウェハ 2 0 1が物理的損 傷を生じたり、 回路破壌を生じたりして、 当該バンプ形成前ウェハ 2 0 1に支障 を来す温度であり、 具体的には、 上記バンプボンディング用温度 T 2 +約 1 5
0 °C程度の温度である。 上記形成前接合促進用温度 T 1をバンプボンディング用 温度 T 2以上とする理由は、 バンプボンディング用温度 T 2未満にて加熱したと しても、 電極部分 1 5の表面の酸化が進行するだけで、 上述したような電極部分 1 5の金属粒子を微細化するような適正化等が望めず、 よってバンプ 1 6の接合 状態の改善を図ることができないからである。
本実施形態では、 上記バンプボンディング用温度 T 2は 1 5 0 °Cであり、 上記 損傷防止温度 T Bは約 3 0 0 °Cであることから、 上記形成前接合促進用温度 T 1 を約 2 1 0 °Cに設定している。 又、 上記形成前接合促進用温度 T 1までの昇温勾 配は、 本実施形態では、 3 0 °C/分としている。 勿論、 これらのバンプボンディ ング用温度 T 2、 形成前接合促進用温度 T 1、 及び昇温勾配は、 上述の値に限定 されるものではなく、 例えばバンプ形成前ウェハ 2 0 1の種類、 材質及びサイズ 等、 並びに電極部分 1 5及びバンプ 1 6の各材質、 サイズ特に電極部分 1 5の膜 厚、 バンプ 1 6の台座部分 1 6 aの直径等に基づき変更される。
次のステップ 4 0 6では、 上記約 2 1 0 °Cの形成前接合促進用温度 T 1にバン プ形成前ウェハ 2 0 1がほぼ到達したところで、 上記約 2 1 0 °Cの形成前接合促 進用温度 T 1を形成前接合促進用時間 t 1維持する。 このような保持時間を設け ることで、 電極部分 1 5の金属粒子を微細化するような金属粒子の適正化の促進 を図っている。 本実施形態では、 上記形成前接合促進用時間 t 1を約 1 0分とし ている。 勿論、 該形成前接合促進用時間 t 1は、 この値に限定されるものではな く、 例えばバンプ形成前ウェハ 2 0 1の種類、 材質及びサイズ等、 並びに電極部 分 1 5及びバンプ 1 6の各材質及びサイズ特に電極部分 1 5の膜厚、 バンプ 1 6 の台座部分 1 6 aの直径等に基づき変更される。
尚、 プリヒート装置 1 6 0の温度測定は、 上述のようにアルミニウム板 1 6 3 に設けた温度センサ 1 6 6にて行なわれているが、 ァノレミニゥム板 1 6 3とバン プ形成前ウェハ 2 0 1とは接触しており、 又、 バンプ形成前ウェハ 2 0 1は薄い ので、 アルミニウム板 1 6 3の温度とバンプ形成前ウェハ 2 0 1の温度とは同一 とみなせる。
次のステップ 4 0 7では、 上記形成前接合促進用時間 t 1が経過した時点でバ ンプ形成前ウェハ 2 0 1の降温を開始する。 即ち、 パネルヒータ 1 6 1への通電 を制御してアルミニウム板 1 6 3の冷却を行ない、 上記約 2 1 0 °Cの形成前接合 促進用温度 T 1から上記バンプボンディング用温度 T 2までバンプ形成前ウェハ
2 0 1の温度を下げる。 ここで、 降温目標温度をバンプボンディング用温度 T 2 とする理由は、 次にバンプボンディング用温度 T 2にてバンプ 1 6の形成を実行 するからである。 本実施形態では、 上記降温勾配は、 上記昇温勾配と同じである
3 0 °CZ分に設定している。 勿論、 該降温勾配は、 上記値に限定されるものでは なく、 例えばバンプ形成前ウェハ 2 0 1の種類、 材質及ぴサイズ等、 並びに電極 部分 1 5及びバンプ 1 6の各材質及ぴサイズ特に電極部分 1 5の膜厚、 バンプ 1 6の台座部分 1 6 aの直径等に基づき変更され、 又、 上記昇温勾配と降温勾配と を異ならせても良い。 但し、 バンプ形成前ウェハ 2 0 1が温度変化に基づき電荷 を生じるようなウェハである場合には、 降温勾配が大きいとバンプ形成前ウェハ 2 0 1に損傷が生じる確率が高くなる。 よってこのような場合には、 昇温勾配よ りも降温勾配を緩くするのが好ましい。
次のステップ 4 0 8では、 プリヒート動作を終了する。 このとき、 本実施形態 では、 アルミニウム板 1 6 3の温度とバンプ形成前ウェハ 2 0 1との温度差を低 減可能なように例えば 0〜 1分の間、 バンプ形成前ウェハ 2 0 1とアルミニウム 板 1 6 3とを接触状態に維持しておく。 このような操作を行なうことで、 例えば 温度変化に敏感なバンプ形成前ウェハ 2 0 1の場合でも問題無く、 約 1 5 0 °Cで あるバンプボンディング用温度 T 2のボンディングステージ 1 1 0へ移載が可能 である。
このようにしてバンプ形成前ウェハ 2 0 1に対して上記形成前接合促進用温度 制御によるプリヒート動作が行なわれた後、 バンプ形成前ウェハ 2 0 1について はステップ 5の動作が行なわれる。 一方、 プリヒート装置 1 6 0については、 上 記プリヒート開始温度 T 0への降温動作が行なわれる。
このような形成前接合促進用温度制御によるプリヒート動作が行なわれること で、 上述のように、 電極部分 1 5において粒径が大きく粗い金属粒子が、 粒子の 微細化された状態に変化し電極部分 1 5の強度が向上する。 よって、 バンプ 1 6 が形成されたときには、 電極部分 1 5とバンプ 1 6との接合強度を向上させるこ とができる。 具体的には、 上記プリヒート動作を行なったウェハの各電極部分 1 5上に、 台座部分 1 6 aの直径で 9 0 /x m程度にてなる、 金バンプ 1 6を形成し た後、 図 3 0に示すように、 台座部分 1 6 aで電極部分 1 5の表面から 3 μ mの 所にせん断測定用部材 1 7を当てて、 せん断状態を測定した。 その結果、 4 0個 程度の電極部分 1 5に形成した全ての金バンプ 1 6が台座部分 1 6 aに破断面を 形成して破断する、 いわゆる金中破断を起こした。 即ち、 電極部分 1 5とバンプ 1 6との接合界面部分にて破断することなく、 従来に比べて強固な接合がなされ ることがわかった。 又、 せん断力のバラツキも約 2 0 O mN以下となった。
尚、 上述したような本実施形態のプリヒート動作を行なわない従来にあっては、 バンプ形成自体がほとんど達成できず、 バンプ形成がなされたものでもそのせん 断力は例えば 2 4 0〜 5 0 O mN程度であり、 せん断力も低くそのバラツキも大 きいため、 実用に耐えるものではなかった。
又、 上記形成前接合促進用温度 T 1は、 上記バンプボンディング用温度 T 2以 上の温度であり、 上記実施形態では、 バンプボンディング用温度 T 2を 1 5 0 °C に設定していることから、 バンプボンディング用温度 T 2に約 6 0 °Cを加えた約 2 1 0 °Cとしている。 形成前接合促進用温度 T 1は、 上記バンプボンディング用 温度 Τ 2と関係するので、 例えばバンプボンディング用温度 Τ 2が約 2 1 0 °Cで あれば、 約 3 0〜4 0 °Cを加えるのが好ましく、 約 2 4 0〜2 5 0 °Cとなる。 よ つて、 形成前接合促進用温度 T 1は、 上記バンプボンディング用温度 T 2に 3 0 〜6 0 °Cを加えた値が好ましい。 又、 バンプ形成前ウェハ 2 0 1に損傷を生じさ せないように昇温速度に比べて降温速度を緩やかにする必要があることから、 過 剰に形成前接合促進用温度 T 1を高く設定するとバンプボンディング用温度 T 2 までの降温に時間を要する。 よって、 タクトを考慮すると、 形成前接合促進用温 度 T 1の最適値は、 バンプボンディング用温度 T 2に約 6 0 °Cを加えた値である。 尚、 上述の実施形態では、 上記形成前接合促進用温度 T 1は、 上記バンプボン デイング用温度 T 2を超える温度としたが、 タクトを無視すれば図 3 1に示すよ うに、 上記バンプボンディング用温度 T 2と同じ温度とすることもできる。
又、 上記形成前接合促進用時間 t 1は、 上述の実施形態では 1 0分としたが、 形成前接合促進用温度 T 1に応じて変化させる必要があり、 形成前接合促進用温 度 T 1がバンプボンディング用温度 T 2に上記 3 0〜 6 0 °Cを加えた範囲のとき には、 約 1 0〜3 0分とするのが好ましい。 よって、 上記損傷防止温度 T B以下 において、 形成前接合促進用温度 T 1がバンプボンディング用温度 T 2に 6 0 °C を超える温度を加えた温度に設定されるときには、 形成前接合促進用時間 t 1は、 約 1秒〜約 1 0分に設定される。 例えば、 形成前接合促進用温度 T 1をほぼ上記 損傷防止温度に設定したときには、 形成前接合促進用時間 t 1は、 約 1秒に設定 される。 なぜならば、 約 1秒を超える時間を設定したときには、 電極部分 1 5の 金属結晶の反応が過剰になるからであり、 又、 万一トラブルが発生したときの対 応が困難となるからである。
又、 バンプ形成前ウェハ 2 0 1の種類によっては、 上述のプリヒート動作によ るバンプ形成前ウェハ 2 0 1の温度変化により、 バンプ形成前ウェハ 2 0 1に電 荷が発生する場合がある。 し力 し、 バンプ形成前ウェハ 2 0 1はアルミニウム板 1 6 3に載置されているので、 電荷はアルミニウム板 1 6 3を介してアースされ 除電可能である。
上述のプリヒート動作の次に、 ステップ 5が実行される。 ステップ 5では、 ま ず図 2 3に示すように、 プリヒート装置 1 6 0からボンディングステージ 1 1 0 へバンプ形成前ウェハ 2 0 1の移載動作が行われる。
図 2 3のステップ 5 0 1では、 搬入側移载装置 1 4 1の駆動部 1 4 1 2の動作 により第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5が開く方向に移動する。 次のステップ 5 0 2ではプリヒート装置 1 6 0のアルミニウム板 1 6 3を下降位 置 1 6 7から上昇位置 1 6 8まで移動させる。 このとき第 1保持部材 1 4 1 4及 び第 2保持部材 1 4 1 5に備わる各保持爪 1 4 1 7はアルミニウム板 1 6 3の各 逃がし溝 1 6 0 7に進入する。 そして次のステップ 5 0 3にて第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を閉じる。 次のステップ 5 0 4では、 ブロー吸引 装置 1 6 1 1を動作させてアルミニウム板 1 6 3の空気出入孔 1 6 0 8から空気 を噴出し、 アルミエゥム板 1 6 3とバンプ形成前ウェハ 2 0 1とを分離させる。 尚、 噴出させる空気の温度は、 プリヒートされたバンプ形成前ウェハ 2 0 1の温 度低下を極力防止可能な程度の温度、 例えば約 1 6 0 °C前後である。 そしてこの ようなブロー動作中に、 ステップ 5 0 5にてアルミニウム板 1 6 3を下降させ、 バンプ形成前ウェハ 2 0 1を第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を 有するウェハ保持部 1 4 1 1に保持させる。 次のステップ 5 0 6では上記プロ一 吸引装置 1 6 1 1の動作を停止しブロー動作を終了し、 ステップ 5 0 7にて、 昇 温されたバンプ形成前ウェハ 2 0 1を保持している上記ウェハ保持部 1 4 1 1を ボンディングステージ 1 1 0の上方へ移動させる。 以後、 後述する、 ボンディン グステージ 1 1 0への載置動作に移行する。
一方、 約 1 5 0 °Cまで昇'温されたプリヒート装置 1 6 0のァノレミニゥム板 1 6 3は、 次のバンプ形成前ウェハ 2 0 1を載置する前に再び上記プリヒート開始温 度 T 0まで降温させる必要がある。 そこで、 図 2 3に示すステップ 5 1 0におい て、 冷却空気供給装置 1 6 1 3を動作させアルミニウム板 1 6 3内の冷媒用通路 1 6 1 2に冷却用空気を供給する。 さらに次のステップ 5 1 1及びステップ 5 1 2では、 プリヒート装置 1 6 0のエアーシリンダ 1 6 0 1を動作させて上記下降 位置 1 6 7から上記上昇位置 1 6 8までアルミニウム板 1 6 3を上昇させ、 パネ ルヒータ枠 1 6 2とアルミニウム板 1 6 3とを分離させてアルミニウム板 1 6 3 の温度を約 4 0 °Cまで冷やす。 尚、 本実施形態ではアルミニゥム板 1 6 3の冷却 温度を上記約 4 0 °Cに設定しているが、 該温度に限定するものではない。
上述のようにパネルヒータ枠 1 6 2とアルミニウム板 1 6 3とを分離させるこ とでアルミニウム板 1 6 3を効率的に冷却することができる。 アルミニウム板 1 6 3の温度が約 4 0 °Cまで冷えた後、 ステップ 5 1 3にて冷却空気供給装置 1 6 1 3の動作を停止し冷却用空気の供給を終了する。 そしてステップ 5 1 4にてァ ルミェゥム板 1 6 3を下降させ、 ステップ 5 1 5にて搬入側移載装置 1 4 1のゥ ェハ保持部 1 4 1 1を搬送装置 1 3 0の上方に戻す。
次に、 プリヒート装置 1 6 0からボンディングステージ 1 1 0へのバンプ形成 前ウェハ 2 0 1の移載動作について説明する。 尚、 バンプ形成前ウェハ 2 0 1の 温度とボンディングステージ 1 1 0の温度との差に起因して、 バンプ形成前ゥェ ハ 2 0 1の材質によっては反りが生じる場合がある。 よって、 該反り矯正用の動 作として、 ボンディングステージ 1 1 0上に载置されたバンプ形成前ウェハ 2 0 1に対して熱風吹き付け動作が行なわれる場合もある。 以下には、 上記熱風吹き 付け動作を行なう場合を例に採り説明する。
図 3 2に示すステップ 5 0 7では、 図 3 3に示すように、 搬入側移载装置 1 4
1のウェハ保持部 1 4 1 1に保持されているバンプ形成前ウェハ 2 0 1がボンデ イングステージ 1 1 0上に搬入される。 次のステップ 5 3 1では、 ボンディング ステージ 1 1 0へのバンプ形成前ウェハ 2 0 1の搬入角度調整のためボンディン グステージ 1 1 0の回転が行われる。 次のステップ 5 3 2では、 図 3 4に示すよ うにウェハ載置台 1 1 1がバンプ形成前ウェハ 2 0 1の厚み方向に上昇して、 ノ ンプ形成前ウェハ 2 0 1の裏面 2 0 1 bに接触し、 さらに若干ウェハ 2 0 1を押 し上げる。 尚、 ウェハ载置台 1 1 1が上昇したとき、 上記ウェハ保持部 1 4 1 1 の各保持爪 1 4 1 7はウェハ载置台 1 1 1に形成されている逃がし溝 1 1 6に進 入する。
該押し上げのとき、 バンプ形成前ウェハ 2 0 1の表面 2 0 1 aに接触している 除電用接触部材 1 4 1 6 2は、 スプリング 1 4 1 6 2の付勢力に逆らいながら上 記表面 2 O l aに接触した状態を維持したまま押し上げられる。
次のステップ 5 3 3では、 図 3 5に示すように、 搬入側移載装置 1 4 1の駆動 部 1 4 1 2の動作により第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5が開く 方向に移動し、 ウェハ保持部 1 4 1 1によるバンプ形成前ウェハ 2 0 1の保持が 解除される。
この状態にて、 次のステップ 5 3 4にて、 ブロー装置 1 1 5を動作させて、 ゥ ェハ載置台 1 1 1に開口されている空気出入孔 1 1 3から約 1 6 0 °C程度の上記 反り矯正用熱風をバンプ形成前ウェハ 2 0 1 へ吹き付ける。 該ブロー動作により、 約 0. 5 mm程、 バンプ形成前ウェハ 2 0 1はウェハ載置台 1 1 1より浮き上が るが、 バンプ形成前ウェハ 2 0 1の周囲には第 1保持部材 1 4 1 4及び第 2保持 部材 1 4 1 5の保持爪 1 4 1 7が存在するので、 浮き上がったバンプ形成前ゥェ ハ 2 0 1がウェハ载置台 1 1 1上から脱落することはない。
上記熱風吹き付け時間の経過後、 ステップ 5 3 5にてブロー装置 1 1 5の動作 を停止し反り矯正用熱風の吹き付けを終了する。 そしてステップ 5 3 6では、 吸 引装置 1 1 4を動作させて上記空気出入孔 1 1 3から吸引を開始しバンプ形成前 ウェハ 2 0 1をウェハ載置台 1 1 1上へ吸着する。 ステップ 5 3 7にて上記吸着 が行われたことを検出し、 ステップ 5 3 8にて、 図 3 6に示すようにウェハ載置 台 1 1 1がバンプ形成前ウェハ 2 0 1を保持した状態のまま、 元の位置まで下降 する。
以上の動作にて上記反り矯正動作は終了する。 その後、 搬入側移載装置 1 4 1 のウェハ保持部 1 4 1 1が上記搬送装置 1 3 0の上方へ移動する。
以上説明したような反り矯正用動作後、 ボンディングステージ 1 1 0上に載置 されているバンプ形成前ウェハ 2 0 1上の回路における電極部分 1 5へバンプ形 成ヘッド 1 2 0にてバンプ 1 6が形成される。 本実施形態では、 バンプ形成時に おけるバンプ形成前ウェハ 2 0 1の温度は、 上述のように 1 5 0 °Cになるように 設定されている。
上記バンプ形成後、 ステップ 6では、 搬出側移載装置 1 4 2のゥェハ保持部 1 4 2 1における第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5にてバンプ形成 後ウェハ 2 0 2を保持し、 搬出側移載装置 1 4 2の移動装置 1 4 2 3の駆動にて ウエノ、保持部 1 4 2 1が X方向に移動し、 図 2に示すように、 ポストヒート装置 1 7 0の上方にバンプ形成後ウェハ 2 0 2が配置され、 その後、 ステップ 7にて、 ポストヒート装置 1 7 0に載置され、 上記形成後接合促進用温度制御を含むボス トヒート動作が実行される。 これらのさらに詳しい動作について図 3 7を参照し て以下に説明する。
ステップ 6 0 1ではボストヒート装置 1 7 0のァノレミ-ゥム板 1 7 3を、 上記 バンプボンディング用温度 T 2である上記 1 5 0 °Cに加熱する。 次に、 ステップ 6へ移行し、 ゥェハ保持部 1 4 2 1に保持されているバンプ形成後ウェハ 2 0 2 をポストヒート装置 1 7 0の上方に搬入する。
次に、 ステップ 7を構成しているステップ 7 0 1では、 上記加熱されたアルミ 二ゥム板 1 7 3を下降位置 1 6 7から上昇位置 1 6 8へ上昇させる。 該上昇動作 により、 上記バンプ形成後ウェハ 2 0 2はァノレミニゥム板 1 7 3に接触し載置さ れる。 尚、 このとき、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1における第 1保持部材 1 4 2 4及ぴ第 2保持部材 1 4 2 5に備わる各保持爪 1 4 1 7は、 ァ ルミ二ゥム板 1 7 3に形成されている逃がし溝 1 7 0 7に進入する。 そして次の ステップ 7 0 2にて、 搬出側移载装置 1 4 2のウェハ保持部 1 4 2 1における第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5を開き、 バンプ形成後ウェハ 2 0 2の保持を解除する。 次のステップ 7 0 3では、 上記バンプ形成後ウェハ 2 0 2 を載置しているアルミニウム板 1 7 3を、 上昇位置 1 6 8から下降位置 1 6 7へ 下降させる。
次のステップ 7 0 4では、 図 2 6に示すように、 パネルヒータ 1 6 1への通電 によりアルミニウム板 1 7 3を昇温することで、 アルミニウム板 1 7 3とバンプ 形成後ウェハ 2 0 2とが接触した状態にて、 バンプ形成後ウェハ 2 0 2を上記バ ンプボンディング用温度 T 2から形成後接合促進用温度 T 3まで加熱する。 該形 成後接合促進用温度 T 3は、 バンプボンディング用温度 T 2以上で、 半導体基板 の一例としての当該バンプ形成後ウェハ 2 0 2の損傷防止温度 T B以下の温度で ある。 尚、 損傷防止温度 T Bとは、 上述したように、 当該バンプ形成後ウェハ 2 0 2が物理的損傷を生じたり、 回路破壌を生じたりして、 当該バンプ形成後ゥェ ハ 2 0 2に支障を来す温度であり、 具体的には、 上記バンプボンディング用温度 T 2 +約 1 5 0 °C程度の温度である。
本実施形態では、 上記形成後接合促進用温度 T 3は、 上述した形成前接合促進 用温度 T 1と同じ約 2 1 0 °Cに設定しているが、 勿論、 異ならせることもできる。 又、 上記バンプボンディング用温度 T 2から上記形成後接合促進用温度 T 3まで の昇温勾配は、 本実施形態では、 上述のプリヒート動作の場合と同様に 3 0 °C/ 分としている。 勿論、 該昇温勾配は、 上述の値に限定されるものではなく、 例え ばバンプ形成後ウェハ 2 0 2の種類、 材質及びサイズ等、 並びに電極部分 1 5及 ぴバンプ 1 6の各材質及びサイズ特に電極部分 1 5の膜厚、 バンプ 1 6の台座部 分 1 6 aの直径等に基づき変更される。
次のステップ 7 0 5では、 上記約 2 1 0 °Cの形成後接合促進用温度 T 3にバン プ形成後ウェハ 2 0 2がほぼ到達したところで、 上記約 2 1 0 °Cの形成後接合促 進用温度 T 3を形成後接合促進用時間 t 3維持する。 このような保持時間を設け ることで、 電極部分 1 5上に形成されたバンプ 1 6と電極部分 1 5とにおける両 金属間での拡散がより効果的に行なわれバンプ 1 6と電極部分 1 5との接合状態 をより向上させることができる。 本実施形態では、 上記形成後接合促進用時間 t 3を約 1 0分としている。
本実施形態では、 上述のように上記形成後接合促進用温度 T 3を 1 0分間維持 しているが、 形成後接合促進用温度 T 3と該温度の保持時間との間には、 図 3 8 に示すように相関関係があり、 バンプ 1 6と電極部分 1 5との接合強度を向上可 能な領域 1 8 5が存在する。 即ち、 上述のようにポストヒート動作は、 バンプ 1 6と電極部分 1 5との金属拡散を促進させるための動作であることから、 形成後 接合促進用温度 T 3を上記バンプボンディング用温度 T 2よりわずかに高い温度 に設定したときには、 比較的長い保持時間を要し、 逆に、 形成後接合促進用温度 T 3を上記バンプボンディング用'温度 T 2よりもかなり高い温度に設定したとき には、 比較的短い保持時間で済む。 伹し、 過剰に形成後接合促進用温度 T 3を高 く設定したときには、 バンプ 1 6と電極部分 1 5との反応が過剰に進みバンプ 1 6と電極部分 1 5との接合強度は逆に弱くなつてしまう。 よって、 バンプ 1 6と 電極部分 1 5との接合強度を向上可能な上記領域 1 8 5が存在する。
尚、 図 3 8は、 上記相関関係及び領域 1 8 5の概念を示した図である。
勿論、 上記該形成後接合促進用時間 t 3は、 上述の値に限定されるものではな く、 例えばバンプ形成後ウェハ 2 0 2の種類、 材質及びサイズ等、 並びに電極部 分 1 5及ぴバンプ 1 6の各材質及びサイズ等に基づき変更される。 特に、 電極部 分 1 5の厚み 1 5 a、 バンプ 1 6の台座部分 1 6 aの大きさが上記形成後接合促 進用温度 T 3及び上記該形成後接合促進用時間 t 3の設定に重要な要素である。 例えば上記微小バンプが形成される、 基材が S iにてなる半導体基板の場合に あっては、 一例として、 上記バンプボンディング用温度 T 2は約 2 7 0 °C、 上記 形成後接合促進用温度 T 3は約 3 0 0 °Cに設定される。
次のステップ 7 0 6では、 上記形成後接合促進用時間 t 3が経過した時点でバ ンプ形成後ウェハ 2 0 2の降温を開始する。 即ち、 パネルヒータ 1 7 1への通電 を制御してアルミニウム板 1 7 3の冷却を行ない、 上記約 2 1 0 °Cの形成後接合 促進用温度 T 3から約 4 0 °Cまでバンプ形成後ウェハ 2 0 2の温度を下げる。 本 実施形態では、 降温勾配は、 上記昇温勾配と同じである 3 0 °C /分に設定してい る。 勿論、 該降温勾配は、 この値に限定されるものではなく、 例えばバンプ形成 後ウェハ 2 0 2の種類、 材質及びサイズ等、 並びに電極部分 1 5及ぴバンプ 1 6 の各材質及びサイズ特に電極部分 1 5の膜厚、 バンプ 1 6の台座部分 1 6 aの直 径等に基づき変更され、 又、 上記昇温勾配と降温勾配とを異ならせても良い。 次のステップ 7 0 7では、 搬出側移载装置 1 4 2のウェハ保持部 1 4 2 1をポ ストヒート装置 1 7 0の上方に配置した後、 ポストヒート装置 1 7 0のアルミ- ゥム板 1 7 3を下降位置 1 6 7から上昇位置 1 6 8へ上昇させ、 上記ウェハ保持 部 1 4 2 1における第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5にてバンプ 形成後ウェハ 2 0 2を保持させる。 尚、 該保持動作の際、 ブロー吸引装置 1 7 1 1を動作させてアルミニウム板 1 7 3の空気出入孔 1 7 0 8からブロー用空気を 噴出させて、 上記バンプ形成後ウェハ 2 0 2をアルミエゥム板 1 7 3から浮上さ せる。
上記保持後、 アルミニウム板 1 7 3を上昇位置 1 6 8力、ら下降位置 1 6 7へ降 下させる。 一方、 バンプ形成後ウェハ 2 0 2を保持している搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1は、 そのままボストヒート装置 1 7 0の上方に配置す る。 よって、 バンプ形成後ウェハ 2 0 2は、 図 3 9に示すように、 ポストヒート 装置 1 7 0の上方、 即ち空中で徐々に冷却される。 尚、 上記図 3 9は、 図 2 6に て IVにて示した部分の拡大図である。 このようにポストヒート装置 1 7 0の上方 にてバンプ形成後ウェハ 2 0 2の冷却を行なう理由は、 上記約 4 0 °Cから室温で ある約 2 7 °Cへ一気に降温したときには、 バンプ形成後ウェハ 2 0 2に損傷が生 じる可能性があるので、 該損傷を防止するためである。 本実施形態では、 上記空 中での冷却時間は、 0〜約 2分に設定しており、 該空中冷却によりバンプ形成後 ウェハ 2 0 2は約 3 7 °Cになる。 勿論、 上記冷却時間は、 バンプ形成後ウェハ 2 0 2の種類、 材質等にて変更可能である。
次のステップ 7 0 8では、 上記空中での冷却時間が経過した時点で、 バンプ形 成後ウェハ 2 0 2を保持した状態にて搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1を X方向に移動させてポストヒート装置 1 7 0の上方から外し、 バンプ形成 後ウェハ 2 0 2の自然冷却を行なう。 該自然冷却によりバンプ形成後ウェハ 2 0 2を上記室温まで冷やす。
該ステップ 7 0 8の終了後、 バンプ形成後ウェハ 2 0 2についてはステップ 8 の動作が実行される。 一方、 ポストヒート装置 1 7 0については次のバンプ形成 後ウェハ 2 0 2の受け入れ準備のため、 パネルヒータ 1 7 1へ通電を開始しアル ミニゥム板 1 7 3が上記バンプボンディング用温度 T 2まで昇温される。
尚、 上述の実施形態では、 上記形成後接合促進用温度 T 3は、 上記バンプボン ディング用温度 T 2を超える温度としたが、 図 3 1に示すように、 上記バンプボ ンディング用温度 T 2と同じ温度とすることもできる。
上述したボストヒート動作を実行することで、 上述したようにバンプ 1 6と電 極部分 1 5との接合強度を向上させることができる。 さらに又、 本実施形態のよ うに、 上記プリヒート動作を実行しかつポストヒート動作を行なうことで、 両者 の相乗効果が得られる。 具体的には、 例えば、 アルミニウムにてなる厚み約 2 0 0 0 Aの電極部分 1 5に、 バンプ台座径がほぼ 9 0 μ mの金バンプ 1 6が形成さ れている場合において、 上記プリヒート動作のみを実行したときにおける 1バン プ当たりのせん断強度は、 平均約 6 8 0 mNであり、 そのパラツキが約 2 0 0 m Nである。 これに対し、 さらに上記ポストヒート動作をも実行することで、 1バ ンプ当たりのせん断強度は、 平均約 8 0 O mNに向上でき、 そのバラツキも約 1 4 0 mN程度に低減することができる。
又、 特にウェハ上の各電極部分 1 5にバンプ 1 6を形成するような場合には、 バンプ形成数が多い。 よって初期段階でバンプボンディングされたバンプ 1 6に ついては、 残りのバンプ 1 6がボンディング終了するまでの時間、 バンプボンデ ィング用温度 T 2に維持されること力 ら、 上記ボストヒート動作に類似した作用 が生じることになる。 よって、 上記ポストヒート動作における上記形成後接合促 進用制御では、 特にウェハに形成された回路部分の数、 ひいてはバンプ形成数に 基づいて、 上記形成後接合促進用温度 T 3や、 上記該形成後接合促進用時間 t 3 を決定するようにしてもよい。
又、 上記プリヒート動作及びボストヒート動作の両方を実行する場合には、 上 記プリヒート動作における上記形成前接合促進用制御と、 上記ポストヒート動作 における上記形成後接合促進用制御とを関連付けて制御することができる。 この ような関連付けた制御は、 制御装置 1 8 0にて実行可能である。 上記関連付けた 制御の一例として、 上記形成前接合促進用制御における上記形成前接合促進用時 間 t 1を長く取ったときには、 上記形成後接合促進用制御における上記形成後接 合促進用時間 t 3を上記形成前接合促進用時間 t 1に比して短くしたり、 逆に、 上記形成前接合促進用時間 t 1を短くしたときには、 上記形成後接合促進用時間 t 3を上記形成前接合促進用時間 t 1に比して長くしたりする。 このように、 電 極部分 1 5とバンプ 1 6との接合状態を向上させるために、 上記形成前接合促進 用制御及び上記形成後接合促進用制御において、 互いに補うように制御すること ができる。
以上説明したボストヒート動作の終了後、 ステップ 8へ移行し以下の動作が実 行される。 バンプ形成後ウェハ 2 0 2を保持している搬出側移載装置 1 4 2のゥ ェハ保持部 1 4 2 1は、 移動装置 1 4 2 3の駆動により X方向に沿って搬出装置 1 3 2の上方へ移動する。 移動後の状態を図 6に示している。
上記移動後、 搬出装置 1 3 2の駆動部 1 3 2 4が動作し、 図 4 0に示すように、 保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2の裏面 2 0 2 bに接触し、 力つバン プ形成後ウェハ 2 0 2がウェハ保持部 1 4 2 1の保持爪 1 4 1 7力、ら約 1 mm程浮 き上がるように上昇する。 該上昇後、 保持部 1 3 2 3は吸着動作によりバンプ形 成後ウェハ 2 0 2を保持する。
保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2を保持した後、 図 4 1に示すよう に、 ウェハ保持部 1 4 2 1の第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5が 駆動部 1 4 2 2により開き、 バンプ形成後ウェハ 2 0 2の保持を解除する。 上記保持解除後、 図 4 2及び図 4 3に示すように、 上記保持部 1 3 2 3が下降 しバンプ形成後ウェハ 2 0 2を保持台 1 3 2 1上に載置する。 該載置後、 保持台 1 3 2 1は、 本実施形態では吸着動作によりバンプ形成後ウェハ 2 0 2を保持す る。
次のステップ 9では、 バンプ形成後ウェハ 2 0 2を保持した上記保持台 1 3 2 1が搬出装置用移動装置 1 3 2 2の動作により X方向に移動しバンプ形成後ゥェ ハ 2 0 2を第 2収納容器 2 0 6側へ搬送する。
又、 本実施形態にて処理対象としている圧電基板ウェハのように、 半導体基板 の種類によっては該基板の温度変化に伴い電荷を発生し、 該電荷に起因して焦電 破壌等が発生する場合もある。 よって、 第 2収納容器 2 0 6への収納前にはバン プ形成後ウェハ 2 0 2の帯電量を減少させておく必要があることから、 図 4 4に 示すように、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1から搬出装置 1 3 2 へのバンプ形成後ウェハ 2 0 2の受け渡し動作の間、 バンプ形成後ウェハ 2 0 2 の少なくとも裏面 2 0 2 b側、 好ましくはさらに表面 2 0 2 a側をも加えた両面 側に、 イオン発生装置 1 9 0を設けるのが好ましい。 上記受け渡しのとき、 バン プ形成後ウェハ 2 0 2の裏面 2 0 2 bには負電荷が、 表面 2 0 2 aには正電荷が それぞれ帯電しているので、 各電荷を中和するため、 裏面 2 0 2 b側に配置され たイオン発生装置 1 9 0— 1は正イオンを、 表面 2 0 2 a側に配置されたイオン 発生装置 1 9 0 - 2は負ィオンを発生する。 各イオン発生装置 1 9 0— 1、 1 9 0— 2は、 制御装置 1 8 0に接続され動作制御される。 尚、 図 4 4は、 バンプ形 成後ウェハ 2 0 2を保持したウェハ保持部 1 4 2 1が搬出装置 1 3 2の上方に配 置されたときに、 イオン努生装置 1 9 0— 1、 1 9 0— 2からイオンをバンプ形 成後ウェハ 2 0 2に作用させている状態を図示しているが、 上述のように受け渡 し動作の間、 つまり図 4 0から図 4 3に至るまでの各動作の間、 バンプ形成後ゥ ェハ 2 0 2にィ才ンを作用させる。
このようにイオン発生装置 1 9 0を設けることで、 設けない場合に比べて、 以 下のように帯電量をより低減させることができる。 尚、 下記の帯電量値は一例で ある。 本実施形態における上述の温度上昇制御や温度降下制御を行わなレヽ場合に おいて、 ウェハ保持部 i 4 2 1が搬出装置 1 3 2の上方に配置されたとき、 バン プ形成後ウェハ 2 0 2の表面 2 0 2 aの帯電量は約 + 1 8 Vであり、 裏面 2 0 2 bは上述のように約一 1 0 0 0 Vである。 このようなバンプ开成後ウェハ 2 0 2 の表裏両面にイオン発生装置 1 9 0にてイオンを 4分間作用させることで、 表面 2 0 2 aの帯電量は約 + 2 2 Vになり、 裏面 2 0 2 bは約 + 2 2 Vにすることが できる。 よって、 本実施形態における上述の温度上昇制御や温度降下制御を行い、 さらにィオン発生装置 1 9 0にて少なくとも上記裏面 2 0 2 bにィオンを作用さ せることで、 裏面 2 0 2 bの帯電量をより低減することができる。
さらに又、 イオン発生装置 1 9 0— 1、 1 9 0— 2から発生したイオンを、 よ り効率的に少なくとも上記裏面 2 0 2 bに作用させるため、 図 4 4に示すように、 少なくとも裏面 2 0 2 b側には、 発生したイオンを裏面 2 0 2 bへより効率的に 移動させるための送風装置 1 9 1を設けてもよい。 尚、 送風装置 1 9 1は制御装 置 1 8 0にて動作制御される。
又、 図 4 4に示すように、 静電センサ 2 5 1を設け、 少なくとも裏面 2 0 2 b、 好ましくはさらに表面 2 0 2 aをも加えた両面の帯電量を静電センサ 2 5 1にて 測定しながら、 測定された帯電量に基づき制御装置 1 8 0にて上記イオン発生装 置 1 9 0のイオン発生量や、 送風装置 1 9 1の送風量を制御するようにしてもよ い。
さらに、 ウェハ保持部 1 4 2 1から搬出装置 1 3 2へのバンプ形成後ウェハ 2 0 2の受け渡し動作前の、 上記ボストヒート動作においてもより効率的に除電を 行うため、 上記イオン発生装置 1 9 0によるイオンを作用させるように構成して あよい。
さらには、 上記プリヒート動作においても上記イオン発生装置 1 9 0によるィ オンを作用させるように構成しても良い。
そして、 次のステップ 1 0では、 保持台 1 3 2 1はバンプ形成後ウェハ 2 0 2 を第 2収納容器 2 0 6へ収納する。
以上説明した工程により、 順次、 各バンプ形成前ウェハ 2 0 1に対してバンプ 1 6が形成され、 それぞれ第 2収納容器 2 0 6へ収納されていく。
上述した本実施形態では、 プリヒート動作にて形成前接合促進用温度制御、 及 びポストヒート動作にて形成後接合促進用温度制御の両方を実行したが、 最低限、 上記形成前接合促進用温度制御を行なえば良い。 該形成前接合促進用温度制御を 実行することで、 従来、 接合が不完全とならざるを得なかったバンプ 1 6及び電 極部分 1 5についても、 電極部分 1 5の表面部分における金属結晶の適正化、 つ まり金属粒子を微細化して適正化することができ、 接合状態を完全にすることが できるからである。
本実施形態のバンプ形成装置 1 0 1にて製造されるバンプ形成済の半導体基板 では、 最低限、 プリヒ ト装置 1 6 0にて上記形成前接合促進用温度制御が実行 されること力、ら、 上述したように、 電極部分 1 5における金属結晶状態が従来に 比べて改善され、 従来ではバンプ 1 6の形成が不可能であった、 若しくはバンプ 形成は可能でも所望の接合強度が得られなかったような半導体基板に対してもバ ンプ形成が可能となり、 かつその接合強度を、 ノ ンプ 1 6の台座部分 1 6 aにて せん断する程度まで向上させることができる。 したがって、 バンプ 1 6と電極部 分 1 5とがこのような接合強度を有する半導体チップについて、 フリップチップ 実装を行なった場合、 従来発生したような、 バンプ 1 6と電極部分 1 5との接合 界面部分でバンプ 1 6が電極部分 1 5から外れるという不具合の発生は無くなる。 よって、 フリップチップ実装を行なうときの信頼性を従来に比べて向上させるこ ともできる。
(第 2実施形態)
以下、 図面を参照して本発明における第 2実施形態を詳細に説明する。
本発明の第 2実施形態である、 バンプ強度改善装置、 及び該バンプ強度改善装 置にて実行される方法、 並びに上記バンプ強度改善装置を備えたバンプ形成装置 について、 図を参照しながら以下に説明する。 尚、 各図において同じ構成部分に ついては同じ符号を付している。
· 図 4 7は、 本第 2実施形態の一例である上記バンプ強度改善装置を備えた上記 バンプ形成装置 3 0 1を示している。 該バンプ形成装置 3 0 1では、 処理対象で ある半導体部品は、 半導体ゥェハ上に形成された各電子回路を切り分けて得られ る半導体チップであり、 該半導体チップの電極 5 1上にバンプ 5 2が形成される。 しかしながら上記半導体部品は上記半導体チップに限定されるものではなく、 上 記半導体ウェハであってもよく、 この場合、 半導体ウェハの電極 5 1上にバンプ 5 2を形成するバンプ形成装置が構成される。
上記バンプ形成装置 3 0 1は、 半導体チップ供給装置 3 1 1と、 半導体チップ 搬送装置 3 1 2と、 バンプ形成部 3 1 3と、 レベリング装置 3 1 4と、 完成品収 鈉装置 3 1 5と、 ボンディングステージ 3 1 6と、 制御装置 3 1 7と、 を備える。 上記半導体チップ供給装置 3 1 1は、 上記半導体チップを上記半導体チップ搬 送装置 3 1 2へ供給する装置であり、 収納トレィ部 3 1 1 1と、 トレイ搬送装置 3 1 1 2とを有する。 上記収納トレィ部 3 1 1 1は、 上記半導体チップを収納す るトレイを図示するように層状に収納可能である。 トレイ搬送装置 3 1 1 2は、 上記収納トレィ部 3 1 1 1を図示する X方向に沿って装荷位置と取出位置との間 にて搬送する装置であり、 本第 2実施形態ではボールネジを駆動モータ 3 1 1 3 にて駆動して移動動作を行う送り機構を有する。 尚、 上記装荷位置は、 トレィ搬 送装置 3 1 1 2に収納トレィ部 3 1 1 1を装荷可能な位置であり、 上記取出位置 は上記半導体チップ搬送装置 3 1 2にて収納トレィ部 3 1 1 1から収納されてい る半導体チップを取り出し可能な位置である。 尚、 トレイ搬送装置 3 1 1 2は、 制御装置 3 1 7に接続され動作制御される。
上記半導体チップ搬送装置 3 1 2は、 上記半導体チップ供給装置 3 1 1から上 記半導体チップを取り出して上記ボンディングステージ 3 1 6上に載置し、 さら に、 後述するバンプ形成済半導体チップ 6 1を上記ボンディングステージ 3 1 6 上から後述のレべリング装置 3 1 4を介して完成品収納装置 3 1 5まで搬送する 装置であり、 チップ搬送機構 3 1 2 1と、 チップ規正機構 3 1 2 2とを有する。 上記チップ搬送機構 3 1 2 1は、 図 4 8に示すように、 上記 X方向への搬送を 行う X方向移動機構 3 1 2 1 1と、 上記 X方向に直交する Y方向への搬送を行う Y方向移動機構 3 1 2 1 2と、 チップ保持部 3 1 2 1 3とを有する。
上記 X方向移動機構 3 1 2 1 1は、 本第 2実施形態ではボールネジを駆動モー タ 3 1 2 1 4にて駆動して移動動作を行う送り機構を有し、 該送り機構には上記 Y方向移動機構 3 1 2 1 2が取り付けられている。 上記 Y方向移動機構 3 1 2 1 2は、 駆動モータ 3 1 2 1 5にて駆動する送り機構を有し、 該送り機構には上記 チップ保持部 3 1 2 1 3が取り付けられている。 該チップ保持部 3 1 2 1 3は、 本第 2実施形態では吸引装置 31216による吸着動作にて上記半導体チップを 保持する。 上記駆動モータ 31214、 上記 Y方向移動機構 31212、 上記駆 動モータ 31215、 及び上記吸引装置 31216は、 制御装置 317にて動作 制御される。 このようなチップ搬送機構 3121は以下のように動作する。
即ち、 X方向移動機構 31211及び Y方向移動機構 31212を駆動しチッ プ保持部 31213を上記取出位置に配置させて、 チップ保持部 31213にて 上記半導体チップ供給装置 311から上記半導体チップを取り出し保持する。 該 保持後、 再び X方向移動機構 3121 1及び Y方向移動機構 31212を駆動し て、 上記半導体チップを保持しているチップ保持部 31213を上記ボンディン グステージ 316まで移動させ、 上記半導体チップを上記ボンディングステージ 316上に載置する。 上記半導体チップの電極 51上にバンプ 52が形成された 後、 再ぴチップ保持部 31 213にてバンプ形成済半導体チップ 61を保持し、 該保持後、 再び X方向移動機構 3121 1及び Y方向移動機構 31212を駆動 して、 上記ボンディングステージ 316上から上記レべリング装置 314のレべ リングステージ 3141上にバンプ形成済半導体チップ 61を載置する。 さらに、 レべリング装置 314にてバンプ高さを揃えた後、 チップ保持部 31213にて バンプ形成済半導体チップ 61を保持し、 該保持後、 再び X方向移動機構 312 11及ぴ Y方向移動機構 31212を馬区動して、 レベリングステージ 3141上 から完成品収納装置 315へ搬送する。
上記チップ規正機構 3122は、 上記ボンディングステージ 316上に載置さ れた半導体チップの位置規正を行う装置であり、 位置規正用部材 31221と、 該位置規正用部材 31221を X, Y方向に移動させる部材移動機構 31222 とを有する。
上記ボンディングステージ 316は、 載置され位置規正された上記半導体チッ プを、 本第 2実施形態では吸着により保持するとともにバンプ形成用温度に加熱 するステージであり、 該ボンディングステージ 316には上記吸着用の吸引装置 3161及び上記加熱用の加熱装置 3162が接続されている。 尚、 吸引装置 3 161及び上記加熱用の加熱装置 3162は、 制御装置 317に接続されそれぞ れ動作制御がなされる。 又、 本第 2実施形態では、 上記ボンディングステージ 3 1 6は、 図 4 9に示す ように、 2つの半導体チップ 6 0を載置可能なスペースを有し、 該 2つのスぺー スに交互に半導体チップ 6 0を載置することでタクトの向上を図ることができる。 尚、 ボンディングステージ 3 1 6の大きさは、 半導体チップ 6 0を 2つ載置可能 な大きさに限定されるものではなく、 3つ以上載置可能な大きさであってもよく、 一方、 タクト向上を考慮しなければ 1つの半導体チップ 6 0を载置可能な大きさ でもよい。
さらに、 本第 2実施形態では、 上記加熱装置 3 1 6 2は、 半導体チップ 6 0の 電極 5 1上にバンプ 5 2が形成された、 バンプ形成済部品に相当するバンプ形成 済半導体チップ 6 1に対して電極 5 1とバンプ 5 2との接合強度の改善を図る接 合強度改善条件による加熱をも行う。 該接合強度改善条件による加熱の詳細につ いては後述する。 又、 本第 2実施形態では、 ボンディングステージ 3 1 6におい て上記接合強度改善条件による加熱が行なわれる、 加熱処理部に相当する接合強 度改善用スペース 3 1 6 3は、 網目模様にて示した場所であるが、 この位置に限 定されるものではなく、 例えば図 4 9に点線にて示すような場所に設けることも できるし、 さらには後述のようにボンディングステージ 3 1 6以外の構成部分に 設けることもできる。 又、 接合強度改善用スペース 3 1 6 3は、 本第 2実施形態 では、 2つのバンプ形成済半導体チップ 6 1を載置可能な大きさを有するが、 こ れに限定されるものではなく、 3つ以上又は 1つのバンプ形成済半導体チップ 6 1を载置可能な大きさでもよい。
上記バンプ形成部 3 1 3は、 上記ボンディングステージ 3 1 6上に保持されて いる半導体チップ 6 0の電極 5 1にバンプ 5 2を形成する装置であり、 バンプ形 成用へッド 3 1 3 1と、 X , Yテーブル 3 1 3 2とを有する。 尚、 本第 2実施形 態では、 1台のバンプ形成部 3 1 3にてバンプ形成を行う。 上記バンプ形成用へ ッド 3 1 3 1は、 図 5 0に示すように、 バンプ 5 2となる金線を供給すると伴に 該金線先端部分を溶融させてバンプ 5 2となる、 イニシャルボールと呼ばれる溶 融ボールを形成する金線供給部と、 電極 5 1上へのバンプ形成時に上記溶融ポー ルを上記電極 5 1上へ押圧すると伴に超音波振動を付与する押圧振動部 3 1 3 1 1とを有し、 上記 X, Yテーブル 3 1 3 2に取り付けられている。 X, Yテープ ル 3 1 3 2は、 バンプ形成用へッド 3 1 3 1を X方向に移動させる、 例えばモー タにてなる第 1駆動源 3 1 3 2 1と、 バンプ形成用へッド 3 1 3 1を Y方向に移 動させる、 例えばモータにてなる第 2駆動源 3 1 3 2 2とを有し、 第 1駆動源 3 1 3 2 1及び第 2駆動源、 3 1 3 2 2による駆動によりバンプ形成用へッド 3 1 3 1を X, Y方向に移動させ、 半導体チップ 6 0の所望の電極 5 1上に上記溶融ポ ールを配置する。
上記第 1駆動源 3 1 3 2 1、 第 2駆動源 3 1 3 2 2、 及び押圧振動部 3 1 3 1 1は制御装置 3 1 7に接続され、 上述のように半導体チップ 6 0の所望の電極 5 1上に上記溶融ポールを配置して、 かつ電極 5 1上にバンプ 5 2を形成するよう に、 制御装置 3 1 7にて動作制御される。
上記レベリング装置 3 1 4は、 上記バンプ形成部 3 1 3にて上記半導体チップ 6 0の電極 5 1上に形成されたバンプ 5 2の高さを揃えるための装置であり、 図 5 1に示すように、 レベリングステージ 3 1 4 1と、 プレス装置 3 1 4 2と、 ノ ンプ高さ検査装置 3 1 4 3とを有する。 上記レペリングステージ 3 1 4 1は、 バ ンプ形成済半導体チップ 6 1を載置して吸着により保持するとともに、 例えばモ ータにてなる駆動源 3 1 4 1 2を有する移動機構 3 1 4 1 1により Y方向に可動 である。 上記プレス装置 3 1 4 2は、 バンプ形成済半導体チップ 6 1上に形成さ れている全てのバンプ 5 2に接触する押圧板 3 1 4 2 1を有し、 ステージ 3 1 4 上に保持されているバンプ形成済半導体チップ 6 1の厚み方向に上記押圧板 3 1 4 2 1を移動させることで各バンプ 5 2を押圧して、 バンプ形成済半導体チップ
6 1の例えばバンプ形成面からのバンプ 5 2の高さを揃える。 バンプ高さ検查装 置 3 1 4 3は、 上記プレス装置 3 1 4 2にて処理されたバンプ 5 2の高さを検査 する装置であり、 例えばモータにてなる駆動源 3 1 4 3 2を有する移動機構 3 1 4 3 1に取り付けられて X方向に可動である。 尚、 上記駆動源 3 1 4 1 2、 3 1 4 3 2、 プレス装置 3 1 4 2、 及びバンプ高さ検査装置 3 1 4 3のそれぞれは、 制御装置 3 1 7に接続され動作制御される。
上記完成品収納装置 3 1 5は、 上記バンプ形成済半導体チップ 6 1を収納する 装置であり、 上述の半導体チップ供給装置 3 1 1と同様に、 上記バンプ形成済半 導体チップ 6 1を収納する収納トレイ 3 1 5 1と、 該収納トレイ 3 1 5 1を搬送 するトレイ搬送装置とを有する。 尚、 完成品収納装置 3 1 5は制御装置 3 1 7に て動作制御される。
以上説明したようなバンプ形成装置 3 0 1では、 特徴的な構成部分の一つとし て、 さらに、 上述の制御装置 3 1 7を含むバンプ強度改善装置が設けられている。 該バンプ強度改善装置について以下に詳しく説明する。
図 5 2は、 S i半導体基板にてなる半導体チップの、 又は S i半導体ウェハの、 アルミニウムの電極 5 1上に金にてなるバンプ 5 2を形成したバンプ形成済半導 体チップについて、 5 0 °C及び 1 0 0 °Cにてそれぞれ加熱した場合、 電極 5 1と バンプ 5 2との接合界面におけるせん断力とバンプ形成後の経過時間との関係を 示している。 該図 5 2から明らかなように、 バンプ形成後、 適切な温度にてバン プ形成済半導体チップ又はバンプ形成済半導体ウェハを適切な時間にて保温する ことで、 上記せん断力、 即ち電極 5 1とバンプ 5 2との接合強度を増加させるこ とができることがわかる。 該現象は、 適切な温度にてバンプ形成済半導体チップ 又はバンプ形成済半導体ウェハを保温することで、 上記接合界面部分において電 極 5 1のアルミニウムとバンプ 5 2の金との材料拡散が進行し、 それにより上記 接合強度が増すものと考えられる。
又、 例えば半導体チップの電極 5 1上にバンプ 5 2を形成する場合には、 従来 カ ら上記半導体チップの加熱を行なっているが、 図 5 2の結果から、 バンプ形成 時における半導体チップの加熱温度は比較的低温なバンプ形成時温度であっても、 バンプ形成後、 上記バンプ形成時温度を超える温度にてバンプ形成済半導体チッ プを加熱することで上記接合強度を向上させることができることがわかる。
さらに図 5 2から判るように、 必要以上に上記バンプ形成済半導体チップ又は バンプ形成済半導体ウェハを加熱すると、 逆に上記接合強度は劣化してくる。 こ れは、 電極 5 1のアルミニウムが熱劣化してくることに起因すると考えられる。 又、 図 5 3は、 バンプ形成時における上記半導体チップ又は上記半導体ウェハ のバンプ形成時温度と、 上記せん断力との関係を示しており、 この図 5 3から判 るように、 上記せん断力を向上させるためには比較的高温、 つまり図 5 3から判 断すると約 1 0 0〜約 2 5 0 °C程度にてパンピングするのが好ましい。 又、 図 5 2を参照して上述したように、 必要以上の加熱は上記せん断力の劣化を招くこと 力 ら、 例えば図 5 4に示すような、 加熱温度と加熱時間との関係が存在する。 よって、 バンプ 5 2の形成後、 上記接合強度を増加させるように接合強度の改 善を図る接合強度改善条件としては、 上記バンプ形成済半導体チップ又はバンプ 形成済半導体ゥェハを加熱する温度及ぴ時間を変数とする条件と言える。
尚、 図 5 4において、 例えば上記バンプ形成済半導体チップについて、 1 0
0 °Cにて加熱するときには一例として約 3時間土 a時間の加熱時間が好ましく、 2 0 0 °Cにて加熱するときには一例として約 1時間土 β分の加熱時間が好まし く、 3 0 0 °Cにて加熱するときには一例として約 1分土 γ秒の加熱時間が好ま しい。 ここで、 上記 a時間の一例としては約 1時間であり、 上記 J3分の一例とし ては約 1 5分であり、 上記 γ秒の一例としては約 2 0秒である。
上述のように上記接合強度の増加は、 電極 5 1の材料とバンプ 5 2の材料との 拡散の促進に起因すると考えられるため、 このような接合強度改善条件は、 電極 5 1の材質、 電極 5 1の大きさ、 バンプ 5 2の材質、 バンプ 5 2の大きさ、 上記 半導体チップゃ上記半導体ウェハを構成する半導体基板の材質、 及び該半導体基 板の大きさの少なくとも一つについて決定され、 好ましくは、 電極 5 1の材質及 び大きさ、 バンプ 5 2の材質及び大きさ、 並びに上記半導体チップや上記半導体 ウェハを構成する半導体基板の材質及び大きさの少なくとも一組について、 又は これら各組の組合せによつて決定される。
上記接合強度改善条件の一例として、 S i半導体基板の一辺 6 mmの正方形状 の半導体チップであり、 電極 5 1は、 アルミニウムにてなり一つの大きさが一辺 1 0 0 μ mの正方形であり厚みが 1 β mであり、 バンプ 5 2は、 金にてなり図 6 3に示す D寸法が φ 8 0 m、 台座高さである H寸法が 2 0 mである。 このよ うな半導体チップに対して、 バンプ形成後、 2 0 0 °Cで 1時間の加熱を行なった。 この結果、 上記せん断力は、 バンプ形成時では 5 0 O mNであったのが加熱処理 後で 8 0 O mNと向上した。
上記半導体チップにおいても、 1チップ当たり例えば 1 0 0個前後の電極 5 1 が存在しそれらに順次バンプ 5 2が形成されていくことから、 1番目にバンプ 5 2が形成されてから全ての電極 5 1にバンプ 5 2が形成されるまでには時間が経 過する。 上述のように、 バンプ形成時には半導体チップや半導体ウェハは加熱さ れており、 バンプ形成後の加熱により上記接合強度は向上することから、 例えば 1番目に形成されたバンプ 5 2の接合強度と、 最後に形成されたバンプ 5 2の接 合強度とでは差異が生じる。 よって、 1チップ内における各バンプ 5 2の接合強 度は不均一であるという問題がある。 該問題は、 半導体ウェハ上の全ての電極 5 1にバンプ 5 2を形成するときにはさらに大きくなる。
又、 S i半導体基板の場合には、 バンプ形成時の温度及びその後の加熱温度は、 ともに比較的粗い温度管理でも良いが、 G a A s、 L i T a〇3、 及び L i N b O 3のような化合物半導体基板の場合や水晶基板の場合には、 S i基板の場合に おける温度にてバンプ形成を行なったときには反り等による基板損傷発生の可能 性が高い。 よってバンプ形成時には、 上記損傷が発生しない非損傷温度にて、 具 体的には S i基板の場合よりも低い温度にて半導体チップや半導体ウェハの加熱 を行ない、 かつバンプ形成後の加熱温度も比較的低温で行う必要がある。 尚、 S i半導体基板の場合には、 バンプ形成用温度を超える温度にてバンプ形成後の加 熱を行うことができる。 よって、 上記非損傷温度を超える温度にてバンプ形成後 の加熱を行うことができる。
そこで、 図 5 2〜図 5 4を参照して説明したようにバンプ形成後の加熱温度及 び加熱時間にて上記接合強度を増すことが可能であることを利用して、 本第 2実 施形態では、 上記接合強度の不均一さを改善し半導体部品の品質を従来に比べて 向上させる上記バンプ強度改善装置を備えている。
該バンプ強度改善装置は、 本第 2実施形態のバンプ形成装置 3 0 1では、 上記 制御装置 3 1 7と、 上記接合強度改善用スペース 3 1 6 3を有するボンディング ステージ 3 1 6に備えた加熱装置 3 1 6 2とによって構成される。 制御装置 3 1 7は、 上記接合強度改善条件による加熱制御を上記加熱装置に行う。 本第 2実施 形態のように、 ボンディングステージ 3 1 6に加熱装置 3 1 6 2及び接合強度改 善用スペース 3 1 6 3を設けることで、 加熱装置 3 1 6 2をバンプ形成する際の 加熱用と、 バンプ形成後の加熱用との両方に兼用できる点で有益である。 本第 2 実施形態では、 加熱装置 3 1 6 2は、 ヒータと該ヒータ電力供給部とから構成さ れる。
しかしながら、 上記接合強度の向上のため、 バンプ形成後のバンプ形成済半導 体部品を加熱すればよいことから、 加熱装置 3 1 6 2及び該加熱装置 3 1 6 2に て加熱制御される部分である接合強度改善用スペース 3 1 6 3は、 上記ボンディ ングステージ 3 1 6に設ける形態に限定されるものではない。 例えば図 5 5に示 すように、 上記レべリング装置 3 1 4のレべリングステージ 3 1 4 1に相当する レベリング装置 4 1 4におけるステージ 4 1 4 1を上記接合強度改善用スペース 3 1 6 3とし、 上記ステージ 4 1 4 1に上記加熱装置 3 1 6 2を備え、 バンプ 5 2の高さ揃えのためにステージ 4 1 4 1上に载置された一若しくは複数のバンプ 形成済半導体部品に対して上記接合強度改善条件による加熱制御を行うように構 成することもできる。 このような構成を採ることで、 バンプ 5 2の高さ揃え動作 と並行して、 上記接合強度改善条件による加熱制御を行うことができることから、 タクトの向上を図ることができる。
又、 図 5 6に示すように、 上記完成品収納装置 3 1 5の収納トレイ 3 1 5 1に 相当する完成品収納装置 4 1 5の収納トレイ 4 1 5 1に上記加熱装置 3 1 6 2を 備え、 一若しくは複数のバンプ形成済半導体部品に対して上記接合強度改善条件 による加熱制御を行うように構成することもできる。 より具体的に説明すると、 上記加熱装置 3 1 6 2として、 例えば、 収納トレィ 4 1 5 1を構成する筐体側面 にヒータを設けたり、 又は収納トレィ 3 1 5 1を移動させる上記トレィ搬送装置 にヒータを設け、 該ヒータの加熱を制御して該収納トレイ 4 1 5 1又は収納トレ ィ 3 1 5 1内に収納される上記バンプ形成済半導体部品に対して上記接合強度改 善条件による加熱制御を行う。 この場合、 上記収納トレィ 4 1 5 1の内部、 及び 収納トレィ 3 1 5 1の内部が上記接合強度改善用スペース 3 1 6 3に相当する。 又、 この場合、 上記バンプ形成済半導体部品を収納トレイ 4 1 5 1に収納してい る間に接合強度の改善が図られるため、 タクト面からも有利である。
さらに又、 図 5 7に示すように、 バンプ形成装置に新たに加熱ステージ 4 8 0 を設け、 該加熱ステージ 4 8 0上に一若しくは複数のバンプ形成済半導体部品を 載置し、 該バンプ形成済半導体部品に対して上記接合強度改善条件による加熱制 御を行うように構成することもできる。
上記制御装置 3 1 7が上記加熱装置 3 1 6 2に対して実行する上記接合強度改 善条件による加熱制御について説明する。 図 5 2〜図 5 4を参照して上述したように、 上記接合強度改善条件は、 電極 5 1の材質及び大きさ、 バンプ 5 2の材質及び大きさ、 並びに上記半導体チップや 上記半導体ウェハを構成する半導体基板の材質及び大きさのそれぞれについて、 又はこれらの組合せによつて決定され、 バンプ形成済半導体部品に相当するバン プ形成済半導体チップゃバンプ形成済半導体ゥェハを加熱する温度及び時間を変 数とする条件である。 よって、 本第 2実施形態では制御装置 3 1 7の記憶部 3 1 7 1に、 予め、 図 5 2〜図 5 4を参照して上述した上記接合強度改善条件による 上記加熱温度及び時間を制御する接合強度改善用プログラムを格納している。 尚、 該プログラムは、 記憶部 3 1 7 1に予め格納しなくてもよく、 上記接合強度改善 用プログラムを記録した C D— R OM等の記録媒体から読み出して格納するよう にしてもよく、 又、 通信線を介して格納するようにしてもよい。
上記接合強度改善用プログラムの一例として、 例えば S i半導体基板にてなる 半導体チップや半導体ウェハの場合、 上記ボンディングステージ 3 1 6上でのバ ンプ 5 2の形成時における半導体チップや半導体ウェハの加熱温度は、 約 2 0 0 °Cとし、 バンプ形成後、 上記接合強度改善用スペース 3 1 6 3に載置したバン プ形成済半導体チップゃバンプ形成済半導体ウェハの接合強度改善用の温度は、 約 2 5 0 °Cとし、 加熱時間は 3 0分とする。 上述のように半導体基板の材質が S iであるときには、 バンプ形成時温度、 及び接合強度改善用の温度は比較的粗く 制御でき、 上記接合強度改善用の温度はバンプ形成時温度に比べて、 高くても、 低くても、 又は同温でもかまわない。
一方、 上述の化合物半導体基板にてなる半導体チップや半導体ウェハや、 物理 的な損傷を受けやすい半導体チップや半導体ウェハの場合には、 バンプ形成時温 度を約 2 5 0 °C以上とすると割れ等の損傷が生じる可能性があるので、 バンプ形 成時温度、 及び接合強度改善用温度ともに、 S i半導体基板にてなる場合に比べ て低い、 上記非損傷温度とする。 よって、 接合強度改善用温度による加熱時間は、 S i半導体基板の場合に比べて長くなる。 具体例としては、 バンプ形成時におけ るバンプ形成用温度は、 1 5 0 °Cであり、 バンプ形成後における接合強度改善用 温度は、 2 0 0 °Cであり、 接合強度改善用温度による加熱時間は、 1時間である。 さらに又、 上記制御装置 3 1 7は次のような動作制御を行うこともできる。 上述のように上記接合強度改善用スペース 3163には、 上記バンプ形成済半 導体チップやバンプ形成済半導体ウェハが複数個配置され、 又、 上述のようにバ ンプ形成後の加熱時間の経過により上記接合強度は向上する。 よって、 例えば上 記加熱ステージ 480を例に採り図 58を参照して説明するが、 加熱ステージ 4 80における接合強度改善用スペース 3163を予め複数に区画し、 各区画毎に 加熱装置 3162を設ける。 図 58に示す例では、 接合強度改善用スペース 31 63を 5つに区画 4801—:!〜 4801— 5に分害 ijし、 それぞれの区画 480 1ー1〜4801— 5を加熱処理部として別個に加熱制御可能なように、 各区画 4801— 1〜4801— 5毎に、 加熱装置 3162— 1〜31 2— 5を配置 するとともに、 各区画 4801— 1〜4801— 5毎の温度測定を行う、 例えば 熱電対である温度測定センサ 4802— 1〜4802— 5を設けている。 加熱装 置 3162— 1〜 3162— 5及び温度測定センサ 4802— 1〜 4802— 5 は、 制御装置 317に接続されている。
このような構成において、 制御装置 317は、 各区画 4801— 1〜4801 -5毎に、 上記バンプ形成済半導体チップやバンプ形成済半導体ウェハの載置後 の経過時間と加熱温度とを、 それぞれの区画 4801-1-4801- 5に載置 されたバンプ形成済半導体チップゃバンプ形成済半導体ウェハにおける上記接合 強度が適切値以上となるように、 上記接合強度改善条件にて制御する。
さらに又、 図 59に示すように、 個々の半導体チップ 60に切り分ける前の半 導体ウェハ 70に対して、 各半導体チップ 60となる回路部分で 1番目の回路部 分 71—1から最後の回路部分 71— nまで、 矢印にて示す順にて、 全ての回路 部分 Ί 1の電極 51に、 1台のバンプ形成部 313にてバンプ 52を形成するよ うな場合、 上記制御装置 317は、 特に次のような動作制御を行うのが好ましい。 即ち、 特に半導体ウェハ 70の場合、 上記回路部分 71-1にバンプ 52が形 成された後、 上記回路部分 71— nにバンプ 52が形成終了するまで比較的長時 間を要することから、 バンプ形成後の加熱時間が各回路部分 71によって異なる。 該半導体ウェハ 70にバンプ 52が形成された後のバンプ形成後半導体チップ及 ぴバンプ形成後半導体ウェハに対して加熱を行なった場合、 上述の説明でも述べ たが上記接合強度の変化は、 具体的には例えば図 52に示すように、 概念的には 図 6 0に示す接合強度曲線 3 9 0のように、 バンプ形成後、 ある時間までは加熱 時間の経過とともに増していくが、 ピーク値を過ぎると低下するという経過をた どる。 つまり、 必要以上にバンプ形成後の加熱を行なったときには上記接合強度 は劣化してしまう。 よって、 初期にバンプ形成が行なわれた回路部分 7 1に対す るバンプ形成後の加熱は、 短時間若しくは不要であり、 後期にバンプ形成が行な われた回路部分 7 1については上記初期のものに比べて長い時間の加熱が可能で ある。 このように、 バンプ 5 2の上記接合強度は、 それぞれの回路部分 7 1で異 なることから、 半導体ウェハ 7 0の全ての回路部分 7 1において、 バンプ 5 2の 接合強度を向上させ、 力つできるだけ均一化するためには、 制御装置 3 1 7によ る以下に説明するような加熱制御が必要となる。
つまり、 図 6 1に示すように、 制御装置 3 1 7は、 ステップ (図内では 「S」 にて示す) 8 0 1にて、 半導体ウェハ 7 0上に最初にバンプ 5 2を形成し始めた ときの開始時刻 T Sと、 全ての電極 5 1にバンプ 5 2を形成し終わったときの終 了時刻 T Eとを計測し記憶する。 次のステップ 8 0 2では、 上記半導体チップ搬 送装置 3 1 2に対応したウェハ用の搬送装置にて、 ボンディングステージ 3 1 6 力 ら例えば上記加熱ステージ 4 8 0における接合強度改善用スペース 3 1 6 3に バンプ形成済半導体ウェハ 7 0を載置する。
次に、 ステップ 8 0 3にて制御装置 3 1 7は、 上記終了時刻 T Eから上記開始 時刻 T Sを差し引いた時間である全バンプ形成時間 (T E— T S ) に基づいて上 記接合強度改善条件を求め、 求めた接合強度改善条件にて上記加熱装置 3 1 6 2 の加熱制御を行う。 即ち、 上記接合強度曲線 3 9 0にて示されるように予め上記 接合強度の変化が判つており、 さらにバンプ形成後の加熱により得られる最大接 合強度値 P 2が判つており、 又、 バンプ形成後の加熱によつて得たい最低の接合 強度値である最低接合強度値 P 1を設定したとき、 ステップ 8 0 3において、 ま ず、 制御装置 3 1 7は、 上記接合強度曲線 3 9 0が上記最低接合強度値 P 1を通 過する時刻である T 4及ぴ時刻 T 1から求まる時間、 つまりバンプ形成後におけ る加熱にて上記接合強度の改善が得られる加熱適切時間 Tを求める。 次に、 制御 装置 3 1 7は、 全てのバンプ形成に要した実際の時間である上記全バンプ形成時 間 (T E— T S ) を、 上記加熱適切時間 Tが超える力否かを判断する。 上記加熱適切時間 Tが上記全バンプ形成時間 (T E— T S ) を超えるとき、 換 言すると、 バンプ形成後最も長く加熱が行なわれている 1番目にバンプ形成を行 なった上記回路部分 7 1 - 1について、 さらに加熱を続行しても上記接合強度の 劣化が始まらず上記接合強度の向上が確実であるとき、 ステップ 8 0 4及びステ ップ 8 0 5が実行される。 ステップ 8 0 4では、 上記接合強度の目標値 P 0を得 ることができる上記接合強度改善条件を制御装置 3 1 7は求める。 具体的には、 上記接合強度曲線 3 9 0に基づいて上記目標値 P 0以上の接合強度が得られる時 間 T Bを求め、 該時間 T Bに対応する第 1加熱時間 T O Bを求める。 そしてステ ップ 8 0 5にて、 制御装置 3 1 7は、 上記接合強度改善条件にて、 具体的には上 記第 1加熱時間 T 0 Bにて上記加熱装置 3 1 6 2の加熱制御を行ない上記バンプ 形成済半導体ウェハ 7 0のバンプ形成後加熱を行う。 このときの加熱温度は、 上 述のように、 半導体基板の材質や、 電極 5 1の材質及びサイズや、 バンプ 5 2の 材質及びサイズ等に基づいて、 制御装置 3 1 7によって決定される。
—方、 ステップ 8 0 3にて上記加熱適切時間 Tが上記全バンプ形成時間 (T E - T S ) 以下であるとき、 換言すると、 バンプ形成後最も長く加熱が行なわれて いる 1番目にバンプ形成を行なった上記回路部分 7 1 - 1について、 これ以上、 加熱を続行すると上記接合強度が上記最低接合強度値 P 1未満となってしまうと き、 ステップ 8 0 6及びステップ 8 0 7が実行される。 ステップ 8 0 6では、 上 記接合強度改善条件に相当する、 上記全バンプ形成時間 (T E— T S ) から上記 加熱適切時間 Tを差し引いた時間 T Aを制御装置 3 1 7は求め、 該時間 T Aに対 応する第 2加熱時間 T O Aを求める。 そしてステップ 8 0 7にて、 制御装置 3 1 7は、 上記接合強度改善条件にて、 具体的には上記第 2加熱時間 T O Aにて上記 加熱装置 3 1 6 2の加熱制御を行ない上記バンプ形成済半導体ウェハ 7 2のバン プ形成後加熱を行う。 このときの加熱温度も、 上述のように、 半導体基板の材質 や、 電極 5 1の材質及びサイズや、 バンプ 5 2の材質及びサイズ等に基づいて、 制御装置 3 1 7によって決定される。
次に、 ステップ 8 0 8では、 ウェハ用の上記搬送装置にて、 上記加熱ステージ 4 8 0における接合強度改善用スペース 3 1 6 3からバンプ形成済半導体ウェハ 7 2を、 次工程の上記レペリング装置 3 1 4のステージ上へ搬送する。 上述の説明では、 上記全バンプ形成時間 (T E— T S ) に基づいて上記接合強 度改善条件を求めたが、 全てのバンプ 5 2の形成時間に基づかなくとも、 ほぼ全 てのバンプ 5 2の形成時間に基づいて上記接合強度改善条件を求めてもよい。 こ こで、 ほぼ全てのバンプ 5 2とは、 全バンプの約 8割以上のバンプ 5 2が相当す る。
又、 上述の説明では、 処理対象としての半導体部品に半導体ウェハを例に採つ たが、 上記半導体チップに対しても上記全バンプ形成時間 (T E— T S ) に基づ いて上記接合強度改善条件を求める、 上述の制御方法を適用することもできる。 又、 上述したステップ 8 0 1〜ステップ 8 0 8の制御動作は、 バンプ形成済半 導体ウェハ 7 2の全体を一様に加熱する場合の動作であるが、 図 5 8を参照して 説明した加熱制御方法に準じてバンプ形成済半導体ウェハ 7 2を加熱することも できる。
例えば図 6 2に図示するように、 区画 4 8 0 1 - 1には、 最初にバンプ 5 2が 形成された回路部分 7 1— 1を含む第 1群の回路部分 7 1が配置され、 次の区画 4 8 0 1— 2には、 上記第 1群よりも時間的に遅くバンプ 5 2が形成された第 2 群の回路部分 7 1が配置され、 次の区画 4 8 0 1 - 3には、 上記第 2群よりも時 間的に遅くバンプ 5 2が形成された第 3群の回路部分 7 1が配置され、 次の区画 4 8 0 1一 4には、 上記第 3群よりも時間的に遅くバンプ 5 2が形成された第 4 群の回路部分 7 1が配置され、 次の区画 4 8 0 1 - 5には、 最後にバンプ 5 2が 形成された回路部分 7 1— nを含む第 5群の回路部分 7 1が配置される。
よって、 制御装置 3 1 7の制御により、 バンプ形成済半導体ウェハ 7 2内にお いて、 他の回路部分 7 1へのバンプ形成のための加熱によるバンプ形成後の加熱 時間が比較的長い上記第 1群の回路部分 7 1が配置されている区画 4 8 0 1— 1 に設けられている加熱装置 3 1 6 2— 1に対しては加熱を行なわない、 若しくは 比較的短時間の加熱を行う、 若しくは加熱温度を他の区画 4 8 0 1に比べて低く して加熱を行うことができる。 以下、 区画 4 8 0 1— 2〜区画 4 8 0 1— 5の加 熱装置 3 1 6 2— 2〜加熱装置 3 1 6 2— 5に対して、 制御装置 3 1 7は、 バン プ形成後経過時間に応じた温度管理を行うことが可能である。 具体的には、 区画 4 8 0 1—2〜区画 4 8 0 1—5の加熱装置 3 1 6 2— 2〜加熱装置 3 1 6 2 - 5に対して、 順次、 加熱温度を高く設定したり、 若しくは加熱時間を長く設定し たり、 又は加熱温度を高く力つ加熱時間を長く設定したりすることができる。 このようにバンプ形成済半導体ウェハ 7 2において、 バンプ形成後経過時間に 応じて区画された各領域をそれぞれ独立して加熱制御することでも、 バンプ形成 済半導体ウェハ 7 2の全ての回路部分 7 1においてバンプ 5 2の接合強度を向上 させ、 かつ均一化することができる。
以上のように構成されるバンプ形成装置 3 0 1において、 半導体部品が搬入さ れバンプ形成済部品が完成品収納装置 3 1 5に収納されるまでの動作について説 明する。 尚、 上記動作は制御装置 3 1 7にて制御される。 又、 上記半導体部品は 上記半導体チップを例に採る。
半導体チップ供給装置 3 1 1の収納トレイ 3 1 1 1から、 半導体チップ搬送装 置 3 1 2に備わるチップ保持部 3 1 2 1 3によって半導体チップ 6 0が保持され、 該チップ保持部 3 1 2 1 3が半導体チップ搬送装置 3 1 2に備わる X方向移動機 構 3 1 2 1 1及ぴ Y方向移動機構 3 1 2 1 2にて移動されて、 半導体チップ 6 0 はボンディングステージ 3 1 6上に載置される。
ボンディングステージ 3 1 6上に載置された半導体チップ 6 0は、 バンプ形成 用温度に加熱されながら、 半導体チップ 6 0の各電極 5 1に対してバンプ形成部 3 1 3にてバンプ 5 2が形成される。
バンプ 5 2が形成されたバンプ形成済半導体チップ 6 1は、 上記チップ保持部 3 1 2 1 3にて、 当該ボンディングステージ 3 1 6に備わる接合強度改善用スぺ ース 3 1 6 3上に配置され、 上述したように、 制御装置 3 1 7による接合強度改 善条件にてバンプ形成後の加熱が行なわれる。
該バンプ形成後の加熱が終了後、 バンプ形成済半導体チップ 6 1は、 再びチッ プ保持部 3 1 2 1 3にて保持され、 レベリング装置 3 1 4のレベリングステージ 3 1 4 1上に載置される。 載置されたバンプ形成済半導体チップ 6 1に対してレ ベリング装置 3 1 4にてバンプ高さが均一化される。
バンプ高さが均一化されたバンプ形成済半導体チップ 6 1は、 再びチップ保持 部 3 1 2 1 3にて保持され、 搬送されて、 完成品収納装置 3 1 5の収納トレィ 3 1 5 1に収納される。 尚、 上述したように本第 2実施形態では、 ボンディングステージ 3 1 6及び接 合強度改善用スペース 3 1 6 3には複数のバンプ形成済半導体チップ 6 1が載置 可能であるので、 ボンディングステージ 3 1 6でのバンプ形成時にバンプ形成済 半導体チップ 6 1を接合強度改善用スペース 3 1 6 3へ移送したり、 接合強度改 善条件による加熱を開始する前、 若しくはほぼ同時に、 既に接合強度改善条件に よる加熱がなされたパンプ形成済半導体チップ 6 1をレベリング装置 3 1 4へ移 送したりすることができる。 該動作により、 タクトの改善を図ることができる。 上述した第 2実施形態は、 バンプ形成装置 3 0 1に上記バンプ強度改善装置を 備えた場合を例に採っている。 しかしながらこれに限定されるものではなく、 上 記制御装置 3 1 7及び上記加熱装置 3 1 6 2を有する例えば上記ボンデイングス テージ 3 1 6を有するバンプ強度改善装置を別個独立して構成してもよい。 又、 このように構成した場合、 上記独立したバンプ強度改善装置には、 既にバンプ 5 2が形成されたバンプ形成済半導体チップ 6 1やバンプ形成済半導体ウェハ 7 2 を搬入することになる。
明細書、 請求の範囲、 図面、 要約書を含む 2 0 0 0年 7月 4日に出願された日 本特許出願第 2 0 0 0— 2 0 2 7 0 0号、 及ぴ 2 0 0 0年 5月 2 3日に出願され た日本特許出願第 2 0 0 0 - 1 5 1 2 8 7号に開示されたものの総ては、 参考と してここに総て取り込まれるものである。
本発明は、 添付図面を参照しながら好ましい実施形態に関連して充分に記載さ れているが、 この技術の熟練した人々にとつては種々の変形や修正は明白である。 そのような変形や修正は、 添付した請求の範囲による本発明の範囲から外れない 限りにおいて、 その中に含まれると理解されるべきである。

Claims

請 求 の 範 囲
1. 半導体基板 (201) 上の電極部分 (15) にバンプ (16) を形成する ときのバンプボンディング用温度 (T2) にある上記半導体基板に対して、 上記 電極部分へ上記バンプを形成するバンプ形成ヘッド (120) を有するバンプ形 成装置であって、
上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御' を実行するプリヒート装置 (160) を備えたバンプ形成装置。
2. 上記プリヒート装置の上記形成前接合促進用温度制御は、 上記バンプボン デイング用温度以上で上記半導体基板の損傷防止温度 (TB) 以下の形成前接合 促進用温度 (T1) まで上記半導体基板を加熱する、 請求項 1記載のバンプ形成
3. 上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記形 成前接合促進用温度で形成前接合促進用時間 (t l) にて上記半導体基板を維持 し、 上記形成前接合促進用時間経過後、 上記バンプボンディング温度に設定する、 請求項 2記載のバンプ形成装置。
4. 上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記電 極部分及び上記バンプの材質に基づいて上記形成前接合促進用温度及ぴ上記形成 前接合促進用時間を設定する、 請求項 3記載のバンプ形成装置。
5. 上記プリヒート装置の上記形成前接合促進用温度制御は、 さらに、 上記電 極部分の厚み (15 a) 及び上記バンプの台座部分 (16 a) の直径に基づいて 上記形成前接合促進用温度及び上記形成前接合促進用時間を設定する、 請求項 3 記載のバンプ形成装置。
6. 上記形成前接合促進用温度は、 上記バンプボンディング用温度に 30〜 6 0°Cを加えた温度である、 請求項 2記載のバンプ形成装置。
7, 上記形成前接合促進用時間は 10分〜 30分である、 請求項 6記載のパン プ形成装置。
8. 上記電極部分への上記バンプの形成後、 上記半導体基板に対して、 バンプ 形成後の上記電極部分と上記バンプとの接合を促進させる形成後接合促進用温度 制御を実行するポストヒート装置 (170) をさらに備えた、 請求項 1記载のバ ンプ形成装置。
9. 上記ボストヒート装置の上記形成後接合促進用温度制御は、 上記バンプポ ンデイング用温度以上で上記半導体基板の損傷防止温度以下の形成後接合促進用 温度 (T3) まで上記半導体基板を加熱する、 請求項 8記載のバンプ形成装置。
10. 上記ボストヒート装置の上記形成後接合促進用温度制御は、 さらに、 上 記形成後接合促進用温度で形成後接合促進用時間 (t 3) にて上記半導体基板を 維持し、 上記形成後接合促進用時間経過後、 降温する、 請求項 9記載のバンプ形
1 1. 上記プリヒート装置による上記形成前接合促進用温度制御、 及び上記ポ ストヒート装置による形成後接合促進用温度制御を互いに関連付けて上記プリヒ ート装置及び上記ポストヒート装置を制御する制御装置 (180) をさらに備え た、 請求項 8記載のバンプ形成装置。
12. 半導体基板 (201) 上の電極部分 (15) にバンプ (16) を形成す るときのバンプボンディング用温度 (T2) にある上記半導体基板に対して、 上 記電極部分へ上記バンプを形成するバンプ形成方法であつて、
上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御 を実行するバンプ形成方法。
13. 上記形成前接合促進用温度制御は、 上記バンプボンディング用温度以上 で上記半導体基板の損傷防止温度 (TB) 以下の形成前接合促進用温度 (T1) まで上記半導体基板を加熱し、 さらに、 上記形成前接合促進用温度で形成前接合 促進用時間 (t 1) にて上記半導体基板を維持し、 上記形成前接合促進用時間経 過後、 上記バンプボンディング温度に設定する、 請求項 12記載のバンプ形成方 法。
14. さらに、 上記電極部分への上記バンプの形成後、 上記半導体基板に対し て、 パンプ形成後の上記電極部分と上記バンプとの接合を促進させる形成後接合 促進用温度制御を実行する、 請求項 12記載のバンプ形成方法。
15. 上記形成後接合促進用温度制御は、 上記バンプボンディング用温度以上 で上記半導体基板の損傷防止温度以下の形成後接合促進用温度 (T3) まで上記 半導体基板を加熱し、 さらに、 上記形成後接合促進用温度で形成後接合促進用時 間 (t 3) にて上記半導体基板を維持し、 上記形成後接合促進用時間経過後、 降 温する、 請求項 14記載のバンプ形成方法。
16. 上記形成前接合促進用温度制御及び上記形成後接合促進用温度制御を互 いに関連付けて制御する、 請求項 14記載のバンプ形成方法。
17. 半導体基板 (201) 上の電極部分 (15) にバンプ (16) を形成す るときのバンプボンディング用温度 (T2) にある上記半導体基板に対して、 上 記電極部分へ上記バンプを形成するバンプ形成方法を実行するためのプログラム を記録した、 コンピュータ読み取り可能な記録媒体であって、
上記電極部分へのバンプ形成前に上記半導体基板に対して、 バンプ形成時にお ける上記電極部分と上記バンプとの接合を促進させる形成前接合促進用温度制御 を実行する処理を記録した、 コンピュータ読み取り可能な記録媒体。
18. 上記形成前接合促進用温度制御は、 上記バンプボンディング用温度以上 で上記半導体基板の損傷防止温度 (TB) 以下の形成前接合促進用温度 (T1) まで上記半導体基板を加熱し、 さらに、 上記形成前接合促進用 で形成前接合 促進用時間 (t 1) にて上記半導体基板を維持し、 上記形成前接合促進用時間経 過後、 上記バンプボンディング温度に設定する、 請求項 17記載のコンピュータ 読み取り可能な記録媒体。
19. さらに、 上記電極部分への上記バンプの形成後、 上記半導体基板に対し て、 バンプ形成後の上記電極部分と上記バンプとの接合を促進させる形成後接合 促進用温度制御を実行する処理を記録した、 請求項 17記載のコンピュータ読み 取り可能な記録媒体。
20. 上記形成後接合促進用温度制御は、 上記バンプボンディング用温度以上 で上記半導体基板の損傷防止温度以下の形成後接合促進用温度 (T3) まで上記 半導体基板を加熱し、 さらに、 上記形成後接合促進用温度で形成後接合促進用時 間 (t 3) にて上記半導体基板を維持し、 上記形成後接合促進用時間経過後、 降 温する、 請求項 19記載のコンピュータ読み取り可能な記録媒体。
21. 上記形成前接合促進用温度制御及び上記形成後接合促進用温度制御を互 いに関連付けて制御する処理をさらに記録した、 請求項 19記載のコンピュータ 読み取り可能な記録媒体。
22. 請求項 1記載のバンプ形成装置にてバンプ形成がなされた半導体基板。
23. 電極部分 (15) 上に形成されたバンプ ( 16 ) と上記電極部分との接 合強度について、 上記バンプは、 当該バンプの台座部分 (16 a) にて破断する 強度を有する半導体基板。
24. 電極部分 (15) 上に形成されたバンプ (16) の台座部分 (16 a) の直径がほぼ 90 μπιの上記バンプは、 1バンプ当たりほぼ 680〜80 OmN の破断力を有する半導体基板。
25. 半導体部品 (60、 70) の電極 (51) 上にバンプ (52) が形成さ れたバンプ形成済部品 (61、 72) に対してバンプ形成時の上記電極と上記バ ンプとの接合強度に比して該接合強度の改善を図る接合強度改善条件にて加熱を 行う加熱装置 (3162) と、
上記接合強度改善条件による加熱制御を上記加熱装置に行う制御装置 (31
7) と、
を備えたバンプ強度改善装置。
26. 上記接合強度改善条件は、 所望の上記接合強度を得るための加熱時間及 ぴ該加熱温度を変数とした条件であり、 上記制御装置は、 上記半導体部品の材質、 上記半導体部品の大きさ、 上記電極の材質、 上記電極の大きさ、 上記バンプの材 質、 及び上記バンプの大きさの少なくとも一つについて、 上記所望接合強度に達 するための加熱温度と該加熱時間との関係情報にてなる上記接合強度改善条件を 有し、 該接合強度改善条件に基づいて上記加熱装置の力 U熱制御を行う、 請求項 2 5記載のバンプ強度改善装置。
27. 上記制御装置が有する上記接合強度改善条件は、 上記半導体部品の材質 及び大きさ、 上記電極の材質及び大きさ、 並びに上記バンプの材質及び大きさの 少なくとも一組について、 又は各組の組合せについて、 上記所望接合強度に達す るための加熱温度と該加熱時間との関係情報である、 請求項 26記載のバンプ強
28. 上記半導体部品は、 半導体ウェハから切り分けたチップ部品である、 請 求項 25記載のバンプ強度改善装置。
29. 上記加熱装置は、 それぞれが少なくとも一つの上記チップ部品を载置す る複数の加熱処理部 (4801) を有する、 請求項 28記載のバンプ強度改善装 置。
30. 上記制御装置は、 上記加熱処理部に対してそれぞれ独立して、 各加熱処 理部に備わるそれぞれの上記チップ部品におけるバンプ形成後経過時間に応じた 温度管理を行う、 請求項 29記載のバンプ強度改善装置。
31. 上記加熱装置は、 上記半導体部品上にバンプを形成するボンディングス テージ (316) 、 又は上記バンプ形成済部品におけるバンプ高さを揃えるため のバンプレべリングステージ (314) 、 又は上記バンプ形成済部品を収納する バンプ形成済部品収納部 (315) のいずれかに設けられる、 請求項 25記載の バンプ強度改善装置。
32. 上記半導体部品が半導体ウェハであるとき、 上記制御装置は、 上記半導 体ウェハ上へのほぼすベてのバンプ形成に要したバンプ形成時間 (TE— TS) に基づいて上記接合強度改善条件を求め、 求めた接合強度改善条件にて上記加熱 装置の加熱制御を行う、 請求項 25記載のバンプ強度改善装置。
33. 上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上 記パンプ形成時間を超えるとき、 上記接合強度改善条件は、 上記接合強度の目標 値 (PO) を得る第 1加熱時間 (TB) による上記半導体ウェハの加熱である、 請求項 32記載のバンプ強度改善装置。
34. 上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上 記バンプ形成時間以下であるとき、 上記接合強度改善条件は、 上記バンプ形成時 間から上記加熱適切時間を差し引いた第 2加熱時間 (TA) による上記半導体ゥ ェハの加熱である、 請求項 32記載のバンプ強度改善装置。
35. 上記加熱装置は、 上記半導体ウェハを載置し上記半導体ウェハにおける バンプ形成順に対応した複数の加熱処理部 (4801) を有し、 上記制御装置は、 上記加熱処理部に対してそれぞれ独立して、 各加熱処理部に対応する上記半導体 ウェハにおけるバンプ形成後経過時間に応じた温度管理を行う、 請求項 32記載 のバンプ強度改善装置。
3 6 . 請求項 2 5に記載されたバンプ強度改善装置 (3 1 7、 3 1 6 2 ) と、 半導体部品 (6 0、 7 0 ) を載置し力、つ加熱して上記半導体部品の電極 (5 1 ) 上にバンプ ( 5 2 ) を形成するバンプ形成部 ( 3 1 3 ) と、
を備えたバンプ形成装置。
3 7 . 上記バンプ強度改善装置に備わる制御装置 (3 1 7 ) は、 さらに、 上記 バンプ形成部におけるバンプ形成時に上記半導体部品に損傷を生じさせない非損 傷温度に上記バンプ形成部を温度制御し、 バンプ形成後、 上記加熱装置に対して 上記非損傷温度を超える温度による接合強度改善条件による加熱制御を行う、 請 求項 3 6記載のバンプ形成装置。
3 8 . 半導体部品 (6 0、 7 0 ) の電極 (5 1 ) 上にバンプ (5 2 ) が形成さ れたバンプ形成済部品 (6 1、 7 2 ) を搬入し、
上記バンプ形成済部品に対して、 バンプ形成時の上記電極と上記バンプとの接 合強度に比して該接合強度の改善を図る接合強度改善条件に基づいて加熱制御を 行う、
バンプ強度改善方法。
3 9 . 上記接合強度改善条件は、 所望の上記接合強度を得るための加熱時間及 び該加熱温度を変数とした条件であり、 上記半導体部品の材質、 上記半導体部品 の大きさ、 上記電極の材質、 上記電極の大きさ、 上記バンプの材質、 及び上記バ ンプの大きさの少なくとも一つについて、 上記所望接合強度に達するための加熱 温度と該加熱時間との関係情報にてなる条件であり、 該関係情報に基づいて上記 加熱制御が行われる、 請求項 3 8記載のバンプ強度改善方法。
4 0 . 上記接合強度改善条件は、 上記半導体部品の材質及び大きさ、 上記電極 の材質及び大きさ、 並びに上記バンプの材質及び大きさの少なくとも一組につい て、 又は各組の組み合わせについて、 上記所望接合強度に達するための力 ϋ熱温度 と該加熱時間との関係情報にてなる条件であり、 該関係情報に基づいて上記加熱 制御が行われる、 請求項 3 9記載のバンプ強度改善方法。
4 1 . 上記バンプ形成済部品の搬入前にて、 上記半導体部品の上記電極上に上 記バンプを形成し、 該バンプ形成時には、 上記半導体部品に損傷を生じさせない非損傷温度に、 上 記バンプが形成されるバンプ形成部を温度制御し、
上記バンプ形成後、 上記非損傷温度を超える温度による上記接合強度改善条件 による加熱制御を行う、 請求項 3 8記載のバンプ強度改善方法。
4 2 . ほぼ全てのバンプ形成に要したバンプ形成時間 (T E— T S ) に基づい て上記接合強度改善条件を求め、 求めた接合強度改善条件にて上記加熱制御を行 う、 請求項 3 8記載のバンプ強度改善方法。
4 3 . 上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上 記バンプ形成時間を超えるとき、 上記接合強度改善条件は、 上記接合強度の目標 値 (P O ) を得る第 1加熱時間 (T B ) による加熱である、 請求項 4 2記載のバ ンプ強度改善方法。
4 4 . 上記加熱による上記接合強度の改善が得られる加熱適切時間 (T) が上 記バンプ形成時間以下であるとき、 上記接合強度改善条件は、 上記バンプ形成時 間から上記加熱適切時間を差し引いた第 2加熱時間 (YA) による加熱である、 請求項 4 2記載のバンプ強度改善方法。
PCT/JP2001/005609 2000-07-04 2001-06-29 Dispositif et procede de formation de bosse WO2002003447A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01945693A EP1313139A4 (en) 2000-07-04 2001-06-29 BURST TRAINING DEVICE AND METHOD
KR1020027018034A KR100554882B1 (ko) 2000-07-04 2001-06-29 범프 형성장치 및 방법
US10/332,026 US6910613B2 (en) 2000-07-04 2001-06-29 Device and method for forming bump
US11/114,084 US7350684B2 (en) 2000-07-04 2005-04-26 Apparatus and method for forming bump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-202700 2000-07-04
JP2000202700A JP4456234B2 (ja) 2000-07-04 2000-07-04 バンプ形成方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10332026 A-371-Of-International 2001-06-29
US11/114,084 Division US7350684B2 (en) 2000-07-04 2005-04-26 Apparatus and method for forming bump

Publications (1)

Publication Number Publication Date
WO2002003447A1 true WO2002003447A1 (fr) 2002-01-10

Family

ID=18700192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005609 WO2002003447A1 (fr) 2000-07-04 2001-06-29 Dispositif et procede de formation de bosse

Country Status (6)

Country Link
US (2) US6910613B2 (ja)
EP (1) EP1313139A4 (ja)
JP (1) JP4456234B2 (ja)
KR (1) KR100554882B1 (ja)
CN (2) CN1222026C (ja)
WO (1) WO2002003447A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456234B2 (ja) * 2000-07-04 2010-04-28 パナソニック株式会社 バンプ形成方法
JP4615117B2 (ja) * 2000-11-21 2011-01-19 パナソニック株式会社 半導体ウエハへのバンプ形成方法及びバンプ形成装置
JP4130167B2 (ja) * 2003-10-06 2008-08-06 日東電工株式会社 半導体ウエハの剥離方法
US7431192B2 (en) 2005-01-04 2008-10-07 Kulicke And Soffa Industries, Inc. Wire bonding apparatus
KR100808106B1 (ko) 2006-05-16 2008-02-29 오태성 반도체 칩 또는 반도체 칩 웨이퍼에 형성한 박막히터를이용한 솔더범프 형성방법과 그 장치
KR100808108B1 (ko) 2006-06-25 2008-02-29 오태성 반도체 칩에 형성한 박막히터를 이용한 반도체 칩의 플립칩실장 방법과 탈착 방법
JP2008016668A (ja) * 2006-07-06 2008-01-24 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP4810393B2 (ja) * 2006-10-27 2011-11-09 富士通株式会社 光モジュール製造方法及び製造装置
JP5120917B2 (ja) * 2006-11-30 2013-01-16 独立行政法人産業技術総合研究所 半導体装置及びその製造方法
JP5218097B2 (ja) * 2009-01-27 2013-06-26 千住金属工業株式会社 自動はんだ付け装置及び搬送装置
JP5091296B2 (ja) * 2010-10-18 2012-12-05 東京エレクトロン株式会社 接合装置
CN102110634B (zh) * 2010-11-22 2012-04-11 沈阳芯源微电子设备有限公司 可旋转加热的吸附装置
KR102020001B1 (ko) 2011-10-21 2019-09-09 루미리즈 홀딩 비.브이. 슬롯을 낸 기판들을 사용한 저 뒤틀림의 웨이퍼 접합
CN109623078B (zh) * 2019-01-20 2023-09-12 巨力自动化设备(浙江)有限公司 三项端子焊接机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176535A (ja) * 1993-12-18 1995-07-14 Sony Corp 半導体装置の製造方法
JPH0845937A (ja) * 1994-07-28 1996-02-16 Nec Corp ボールバンプ形成方法
JPH1167821A (ja) * 1997-08-08 1999-03-09 Sharp Corp フリップチップ実装構造

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950536A (ja) * 1982-09-16 1984-03-23 Toshiba Corp ワイヤボンデイング装置
US4909429A (en) * 1987-03-30 1990-03-20 Westinghouse Electric Corp. Method and apparatus for solder deposition
US5014111A (en) * 1987-12-08 1991-05-07 Matsushita Electric Industrial Co., Ltd. Electrical contact bump and a package provided with the same
US5259545A (en) * 1991-12-20 1993-11-09 Vlsi Technology, Inc. Apparatus for bonding a semiconductor die to a package using a gold/silicon preform and cooling the die and package through a monotonically decreasing temperature sequence
US5607609A (en) * 1993-10-25 1997-03-04 Fujitsu Ltd. Process and apparatus for soldering electronic components to printed circuit board, and assembly of electronic components and printed circuit board obtained by way of soldering
JP2664878B2 (ja) * 1994-01-31 1997-10-22 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体チップパッケージおよびその製造方法
JP3800251B2 (ja) * 1995-10-02 2006-07-26 ソニー株式会社 半田付け装置および半田付け方法
DE69637838D1 (de) * 1995-10-13 2009-04-02 Nordson Corp System und Verfahren zur Beschichtung der Unterseite von Flip-Chips
JP3330037B2 (ja) * 1996-11-29 2002-09-30 富士通株式会社 チップ部品の接合方法および装置
US6053398A (en) * 1996-12-06 2000-04-25 The Furukawa Electric Co., Ltd. Solder bump forming method, solder bump forming apparatus, head unit for use therein and soldering method using the head unit
JP3348639B2 (ja) * 1997-10-20 2002-11-20 富士通株式会社 リフロー炉内のハンダバンプの温度制御方法
JP3514361B2 (ja) * 1998-02-27 2004-03-31 Tdk株式会社 チップ素子及びチップ素子の製造方法
JP4190611B2 (ja) * 1998-03-13 2008-12-03 パナソニック株式会社 部品装着方法、及び部品装着装置
DE69936057T2 (de) * 1998-06-19 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren und anordnung zur herstellung von höckern
US6059170A (en) * 1998-06-24 2000-05-09 International Business Machines Corporation Method and apparatus for insulating moisture sensitive PBGA's
US6742701B2 (en) * 1998-09-17 2004-06-01 Kabushiki Kaisha Tamura Seisakusho Bump forming method, presoldering treatment method, soldering method, bump forming apparatus, presoldering treatment device and soldering apparatus
US6600137B1 (en) * 1998-10-13 2003-07-29 Matsushita Electric Industrial Co., Ltd. Heating device and heating method
JP3066963B1 (ja) * 1999-03-31 2000-07-17 インターナショナル・ビジネス・マシーンズ・コーポレ−ション はんだバンプの成形方法及び成形装置
JP4275806B2 (ja) * 1999-06-01 2009-06-10 株式会社ルネサステクノロジ 半導体素子の実装方法
EP1202336B1 (en) * 1999-07-02 2007-11-28 Matsushita Electric Industrial Co., Ltd. Electric charge generating semiconductor substrate bump forming device, method of removing electric charge from electric charge generating semiconductor substrate, device for removing electric charge from electric charge generating semiconductor substrate, and electric charge generating semiconductor substrate
JP4371497B2 (ja) * 1999-10-19 2009-11-25 パナソニック株式会社 バンプボンディング用加熱装置
US6537400B1 (en) * 2000-03-06 2003-03-25 Micron Technology, Inc. Automated method of attaching flip chip devices to a substrate
JP4456234B2 (ja) * 2000-07-04 2010-04-28 パナソニック株式会社 バンプ形成方法
US6547121B2 (en) * 2000-06-28 2003-04-15 Advanced Micro Devices, Inc. Mechanical clamper for heated substrates at die attach
JP4615117B2 (ja) * 2000-11-21 2011-01-19 パナソニック株式会社 半導体ウエハへのバンプ形成方法及びバンプ形成装置
JP2002157582A (ja) * 2000-11-21 2002-05-31 Matsushita Electric Ind Co Ltd 半導体ウエハ上のic傾き補正方法、及びic傾き補正装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176535A (ja) * 1993-12-18 1995-07-14 Sony Corp 半導体装置の製造方法
JPH0845937A (ja) * 1994-07-28 1996-02-16 Nec Corp ボールバンプ形成方法
JPH1167821A (ja) * 1997-08-08 1999-03-09 Sharp Corp フリップチップ実装構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1313139A4 *

Also Published As

Publication number Publication date
US20050191838A1 (en) 2005-09-01
EP1313139A4 (en) 2006-01-18
CN100383915C (zh) 2008-04-23
JP2002026051A (ja) 2002-01-25
EP1313139A1 (en) 2003-05-21
JP4456234B2 (ja) 2010-04-28
CN1838380A (zh) 2006-09-27
CN1440568A (zh) 2003-09-03
CN1222026C (zh) 2005-10-05
US7350684B2 (en) 2008-04-01
US6910613B2 (en) 2005-06-28
KR100554882B1 (ko) 2006-02-24
KR20030019474A (ko) 2003-03-06
US20040102030A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US7350684B2 (en) Apparatus and method for forming bump
WO2005122237A1 (ja) 部品実装方法及び部品実装装置
WO2003094222A1 (fr) Procede de collage et dispositif de collage
KR100446262B1 (ko) 전하발생 반도체 기판용 범프 형성장치, 전하발생 반도체기판의 제전방법, 전하발생 반도체 기판용 제전장치, 및 전하발생 반도체 기판
JP5688277B2 (ja) 加熱装置と加熱方法
EP1137061B1 (en) Operating method and device
CN1155068C (zh) 凸点形成方法以及形成装置
JP4624295B2 (ja) リフロー装置及び方法
JP3857949B2 (ja) 電子部品実装装置
JP3916553B2 (ja) 熱接着フィルム貼付方法およびその装置
JP4570210B2 (ja) 電荷発生基板用バンプ形成装置
JP2004241685A (ja) ペレット搬送装置、ペレットボンディング方法およびペレットボンディング装置
JP3655787B2 (ja) 電荷発生基板用バンプ形成装置及び電荷発生基板の除電方法
JP4088628B2 (ja) バンプ形成装置
TW530357B (en) Apparatus and method for forming bumps
JP2003282632A (ja) 電子部品実装方法及び装置
JP3024047B2 (ja) バンプ接合装置
JP2006013345A (ja) 半導体ウェハの剥離方法、半導体ウェハの剥離装置及び半導体ウェハ吸着ステージ
JP2002231745A (ja) バンプボンディング装置
JP2020047798A (ja) 実装装置および実装方法
JP2010050120A (ja) 基板搬出装置
JP2006042235A (ja) 圧電振動片マウント装置の制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027018034

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10332026

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001945693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018123872

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027018034

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001945693

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027018034

Country of ref document: KR