WO2001098566A1 - Faisceau de fibres précurseur de fibres de carbone - Google Patents

Faisceau de fibres précurseur de fibres de carbone Download PDF

Info

Publication number
WO2001098566A1
WO2001098566A1 PCT/JP2001/005170 JP0105170W WO0198566A1 WO 2001098566 A1 WO2001098566 A1 WO 2001098566A1 JP 0105170 W JP0105170 W JP 0105170W WO 0198566 A1 WO0198566 A1 WO 0198566A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
fiber
weight
precursor
Prior art date
Application number
PCT/JP2001/005170
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Ikeda
Masakazu Hoshino
Takayoshi Yamamoto
Aritaka Shimotashiro
Toshihiro Makishima
Masashi Okamoto
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000190150A external-priority patent/JP4332285B2/ja
Priority claimed from JP2000201535A external-priority patent/JP3892212B2/ja
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to HU0301420A priority Critical patent/HU227286B1/hu
Priority to EP01941080A priority patent/EP1306470B1/en
Priority to KR10-2002-7017389A priority patent/KR100473126B1/ko
Priority to DE60133560T priority patent/DE60133560T2/de
Priority to MXPA02012862A priority patent/MXPA02012862A/es
Publication of WO2001098566A1 publication Critical patent/WO2001098566A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer

Definitions

  • the present invention relates to a carbon fiber precursor fiber bundle made of acrylonitrile-based polymer single fiber suitable for producing a carbon fiber bundle used as a reinforcing material of a fiber-reinforced composite material.
  • Carbon fiber, glass fiber, aramide fiber and the like are used for the fiber reinforced composite material.
  • carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, etc., and is used as a reinforcing material for fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications. Have been.
  • Such a fiber-reinforced composite material is produced, for example, as follows.
  • a precursor fiber bundle consisting of a single fiber of a polyacrylonitrile-based polymer is fired in an oxidizing gas such as air at a temperature of 200 to 300 in an oxidizing gas in a firing step (flame-proofing step).
  • a fiber bundle is obtained.
  • the flame-resistant fiber bundle is carbonized at a temperature of 300 to 200 ° C. in an inert atmosphere to obtain a carbon fiber bundle.
  • the carbon fiber bundle is processed into a woven fabric or the like as necessary, and then impregnated with a synthetic resin to form a fiber-reinforced composite material by molding into a predetermined shape.
  • Precursor fiber bundles used in the production of carbon fiber bundles are designed so that the fiber bundles are not separated during the firing process, so that the single fibers constituting the fiber bundle do not become entangled with adjacent fiber bundles or wrapped around rollers. , High convergence is required.
  • a carbon fiber bundle obtained from a precursor fiber bundle having a high bunching property has a problem that it is difficult for resin to be impregnated due to its high bunching property.
  • the carbon fiber woven fabric obtained by weaving the carbon fiber bundle must be a woven fabric having as few openings as possible so that voids of the resin do not occur when the resin is impregnated. For this purpose, some opening treatment is performed during or after weaving.
  • the carbon fiber bundle obtained from the precursor fiber bundle having high convergence has a problem that it is difficult to open the fiber due to its high convergence.
  • Precursor fiber bundles having both the bundle property of the precursor fiber bundle and the opening property of the carbon fiber bundle obtained from the precursor fiber bundle include an acrylonitrile-based polymer containing 95% by weight or more of acrylonitrile.
  • Acrylonitrile fiber bundles containing 2 to 15 fibers and having an iodine adsorption amount of 0.5 to 1.5% by weight per fiber weight of the fiber bundle are disclosed in JP-A-2000-1-1. 4 4 5 2 1
  • This precursor fiber bundle is prepared by mixing a spinning solution containing an acrylonitrile polymer in an organic solvent with an organic solvent solution having an organic solvent concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C.
  • the coagulated yarn is discharged into a coagulation bath to form a coagulated yarn.
  • the coagulated yarn is drawn from the first coagulation bath at a drawing speed of 0.8 times or less of the linear discharge speed of the undiluted spinning solution. It is obtained by performing stretching 1.1 to 3.0 times in a second coagulation bath composed of an organic solvent aqueous solution at 0 to 70% by weight and a temperature of 30 to 50 ° C.
  • the carbon fiber precursor fiber bundle has a good resin impregnating property and openability, a high strength, a bulky carbon fiber bundle can be obtained, and a high convergence property, and the firing process passage property is high. It is required to be good.
  • carbon fiber cloths are required to have good appearance and texture, in addition to the above functions, so that they are required to have covering properties.
  • the carbon fiber bundle In order to simultaneously satisfy such resin impregnating property, spreading property, and covering property when formed into a cloth, the carbon fiber bundle needs to have bulkiness (parky property). And resin impregnating property, spreading property and For the purpose of further improving the covering property, further improvement of the bulkiness of the carbon fiber bundle was required.
  • a first object of the present invention is to obtain a carbon fiber bundle having good resin impregnation property and spreadability, high strength, and bulky, high bunching property, and good sintering process passability. It is to provide a carbon fiber precursor fiber bundle.
  • a second object of the present invention is to provide a carbon fiber precursor capable of obtaining a carbon fiber bundle which has improved bulkiness and is excellent in resin impregnation, spreadability and covering property when formed into cloth. It is to provide a body fiber bundle. Disclosure of the invention
  • the carbon fiber precursor fiber bundle according to the first embodiment of the present invention is a carbon fiber precursor fiber bundle composed of a plurality of acrylonitrile-based polymer single fibers, and is a ratio of the major axis to the minor axis of the fiber cross section of the single fiber.
  • Major axis Z minor axis is 1.05 to 1.6
  • the amount of Si measured by ICP emission spectrometry is in the range of 500 to 400 ppm.
  • Such a carbon fiber precursor fiber bundle has a high sizing property and a good passability in the firing step, and a carbon fiber bundle obtained therefrom has a good resin impregnation property and a good spreadability and a high strength. It becomes bulky.
  • the single fiber strength of the carbon fiber precursor fiber bundle is desirably equal to or greater than 5.
  • OOC NZ dteX the generation of fluff due to breakage of a single yarn in the firing step is reduced, and the passability of the firing step is further improved.
  • the center line average roughness (R a) of the surface of the carbon fiber precursor single fiber is desirably 0.01 to 0.1 zm.
  • the maximum height (Ry) of the surface of the carbon fiber precursor single fiber is desirably 0.1 to 0.5 xm.
  • the convergence of the carbon fiber precursor fiber bundle and the passability of the firing process are further improved, and the carbon fiber bundle obtained therefrom is further improved in resin impregnation, fiber opening, and strength.
  • this carbon fiber precursor fiber bundle has a plurality of wrinkles extending in the longitudinal direction of the fiber bundle on the surface of the single fiber, and the interval (S) between local III peaks adjacent to each other is 0.2 to 1.0. ⁇ m is desirable.
  • the sizing property of the carbon fiber precursor fiber bundle and the permeability of the firing step are further improved, and the resin impregnation property, the fiber opening property, and the strength of the carbon fiber bundle obtained therefrom are further improved.
  • the moisture content of the carbon fiber precursor fiber bundle is desirably 15% by weight or less.
  • the number of single fibers constituting the carbon fiber precursor fiber bundle is desirably 1200 or less. Thereby, the spinning speed of the carbon fiber precursor fiber bundle can be increased. In addition, uniform confounding can be provided, and as a result, the permeability in the firing step is improved.
  • the carbon fiber precursor fiber bundle according to the second aspect of the present invention is a carbon fiber precursor fiber bundle composed of a plurality of acrylonitrile-based polymer single fibers, and has a liquid content HW calculated by the following method. But not less than 40% by weight and less than 60% by weight.
  • HW (% by weight) (WT -W O) / W 0 X 1 0 0
  • a carbon fiber bundle obtained from such a carbon fiber precursor fiber bundle has improved bulky properties, and is excellent in resin impregnation property, openability, and covering property when formed into a cloth.
  • the center line average roughness (R a) of the single fiber surface of the carbon fiber precursor fiber bundle is desirably 0.01 m or more.
  • the maximum height (Ry) of the surface of the single fiber of the carbon fiber precursor fiber bundle is desirably 0.1 m or more.
  • this carbon fiber precursor fiber bundle has a plurality of wrinkles extending in the longitudinal direction of the fiber bundle on the surface of the single fiber of the fiber bundle, and the interval (S) between local peaks is not less than 0.2 m and not more than 1.0 m. It is desirable to be below. Thereby, the carbon fiber precursor fiber bundle maintains the good passing property in the firing step, and the obtained carbon fiber bundle further improves the resin impregnation property, the fiber opening property, and the covering property when it is made into a cloth.
  • the moisture content of the carbon fiber precursor fiber bundle is desirably 15% by weight or less. This makes it easier for the single fibers of the carbon fiber precursor fiber bundle to be entangled, further improving the passing property in the firing step. I do.
  • the number of single fibers constituting the carbon fiber precursor fiber bundle is desirably 1200 or less.
  • the spinning speed can be increased.
  • uniform confounding can be provided, and as a result, the passability of the firing step is improved.
  • the degree of entanglement of the carbon fiber precursor fiber bundle is desirably in the range of 5 Zm to 20 Zm.
  • the carbon fiber precursor fiber bundle of the third aspect of the present invention is a carbon fiber precursor fiber bundle composed of a plurality of acrylonitrile-based polymer single fibers, and has a major axis and a minor axis of a fiber cross section of a single fiber.
  • the ratio (major axis Z minor axis) is 1.05 to 1.6, and the amount of Si measured by ICP emission analysis is in the range of 500 to 400 ppm.
  • the liquid content HW calculated by the above method is not less than 40% by weight and less than 60% by weight.
  • Such a carbon fiber precursor fiber bundle has a high sizing property and a good passability in the firing step, and a carbon fiber bundle obtained therefrom has a good resin impregnation property and a good spreadability and a high strength. It becomes bulky.
  • the carbon obtained from such a carbon fiber precursor fiber bundle The elementary fiber bundle has improved bulkiness, excellent resin impregnation, openability, and excellent covering properties when made into a cloth.
  • the method for producing a carbon fiber precursor fiber bundle of the present invention comprises the steps of: producing a spinning solution comprising an organic solvent solution of an acrylonitrile-based polymer containing 95% by weight or more of an acrylonitrile unit; It is discharged into a first coagulation bath composed of an organic solvent aqueous solution at a temperature of 30 to 50 ° C. at 8% by weight to form a coagulated yarn, and the coagulated yarn is discharged from the first coagulation bath into a linear spinning speed of a stock spinning solution.
  • FIG. 1 is a cross-sectional view of the surface of a single fiber of a carbon fiber precursor fiber bundle for explaining the center line average roughness (R a).
  • FIG. 2 is a cross-sectional view of the surface of a single fiber of the carbon fiber precursor fiber bundle for explaining the maximum height (Ry).
  • FIG. 3 is a cross-sectional view of the surface of a single fiber of a carbon fiber precursor fiber bundle for explaining the interval (S) between local peaks.
  • Carbon fiber precursor fiber bundle of the first embodiment Carbon fiber precursor fiber bundle of the first embodiment
  • the carbon fiber precursor fiber bundle of the present invention is a tow obtained by bundling a plurality of acrylonitrile-based polymer single fibers.
  • acrylonitrile-based polymer a polymer containing 95% by weight or more of an acrylonitrile unit is used as a material for the carbon fiber bundle obtained by firing the carbon fiber precursor fiber bundle. It is preferable in terms of degree of expression.
  • Acrylonitrile-based polymers are prepared by combining acrylonitrile and, if necessary, a monomer copolymerizable therewith, by redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, or emulsion polymerization using a dispersant. It can be obtained by polymerization.
  • Examples of monomers copolymerizable with acrylonitrile include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate.
  • acids such as (meth) acrylic acid, itaconic acid, crotonic acid and salts thereof; Acid imide, phenylmaleimi
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber of the acrylonitrile-based polymer is from 1.05 to 1.6, preferably from 1.1 to 1.3. And more preferably 1.15 to 1.25.
  • the precursor fiber bundle can be simultaneously passed through the firing step, and the carbon fiber bundle obtained from the resin impregnation property and the fiber opening property can be satisfied simultaneously.
  • the ratio of the major axis to the minor axis is less than 1.05, the voids between the single fibers decrease, the resin impregnating property and the opening property of the obtained carbon fiber bundle become poor, and the bulkiness becomes insufficient. If the ratio of major axis / minor axis exceeds 1.6, the convergence of the fiber bundle is reduced, and the permeability in the firing step is deteriorated. Also, the strand strength is significantly reduced.
  • the ratio of the major axis to the minor axis of the fiber cross section of the single fiber is determined as follows.
  • the Si amount of the carbon fiber precursor fiber bundle of the present invention is in the range of 500 to 4000 ppm, and preferably in the range of 1000 to 3000 ppm. When the Si amount is within this range, it is possible to simultaneously satisfy the passing property of the precursor fiber bundle in the baking step and the resin impregnation property and the fiber opening property of the carbon fiber bundle obtained therefrom. If the Si content is less than 50 O ppm, the sizing property of the fiber bundle is reduced, and the passing property in the firing step is deteriorated. Further, the strand strength of the obtained carbon fiber bundle is reduced. If the Si amount exceeds 4000 ppm, a large amount of silica is scattered during firing of the precursor fiber bundle, and firing stability is deteriorated. In addition, the obtained carbon fiber bundle becomes difficult to disperse, and the resin impregnation property and the fiber opening property deteriorate.
  • This Si amount is derived from the silicon-based oil used in producing the carbon fiber precursor fiber bundle.
  • the Si amount can be measured using an ICP emission spectrometer.
  • the single fiber strength of the acrylonitrile-based polymer in the present invention is preferably at least 5.0 c NZd tex, more preferably at least 6.5 cN / dtex, and even more preferably at least 7.0 cNZd te X. It is. If the single fiber strength is less than 5.0 cN / dtex, the generation of fluff due to breakage of single yarns in the firing step increases, and the firing property deteriorates.
  • the single fiber strength of the acrylonitrile polymer was measured using a single fiber automatic tensile strength and elongation measuring machine (Orientec UTM II-20), and the single fiber attached to the backing was attached to the chuck of the mouth cell. It is determined by performing a tensile test at a speed of 20. Omm per minute and measuring the strong elongation.
  • the carbon fiber precursor fiber bundle of the present invention preferably has wrinkles extending in the longitudinal direction of the fiber bundle on the surface of the single fiber. Due to the presence of such wrinkles, the carbon fiber precursor fiber bundle of the present invention has good bunching properties, and at the same time, the obtained carbon fiber bundle has good resin impregnation properties and openability. .
  • the depth of such wrinkles is defined by the following centerline average roughness (Ra), maximum height (Ry), and distance between local peaks (S).
  • the center line average roughness (Ra) of the surface of the single fiber of the carbon fiber precursor fiber bundle of the present invention is preferably 0.01 to 0.7 lm, more preferably 0.02 to 0.07 m. And more preferably 0.03 to 0.06 m. If the center line average roughness (Ra) is less than 0.01 m, the obtained carbon fiber bundle will have poor resin impregnation and spreadability, and the bulkiness will be insufficient. When the center line average roughness (Ra) exceeds 0.1 m, the surface area of the fiber bundle increases, and static electricity is easily generated, and the convergence of the fiber bundle decreases. Further, the strand strength of the obtained carbon fiber bundle decreases.
  • center line average roughness (Ra) is, as shown in Fig. 1, extracted from the roughness curve by the reference length L in the direction of the center line m, and from the center line m of the extracted portion to the measurement curve. The absolute value of the deviation is summed and averaged. Centerline average roughness (Ra) is measured by using a laser-microscope.
  • the maximum height (Ry) of the surface of the carbon fiber precursor fiber bundle of the present invention is preferably 0.1 to 0.5 xm, more preferably 0.15 to 0.4 xm, and still more preferably. Or 0.2 to 0.35 m. If the maximum height (Ry) is less than 0.1 m, the resulting carbon fiber bundle will have poor resin impregnation and spreadability, and will have insufficient bulk. If the maximum height (Ry) exceeds 0.5 m, the surface area of the fiber bundle increases and static electricity tends to be generated, which reduces the convergence of the fiber bundle. In addition, the strand strength of the obtained carbon fiber bundle decreases.
  • the maximum height (Ry) is, as shown in Fig. 2, a reference length L extracted from the roughness curve in the direction of the center line m, and the peak line, valley bottom line, and center line of the extracted portion are extracted. It is the sum of the distance from m, Rp and RV. Maximum height (Ry) is measured by using a laser-microscope.
  • the distance (S) between local peaks which is a parameter that defines the interval between these wrinkles, is preferably 0.2 to 1.0 Om, and more preferably 0.3 to 0.8 m. More preferably, it is 0.4 to 0.7 m. If the interval (S) between the local peaks is less than 0.2 m, the obtained carbon fiber bundle will have poor resin impregnation and openability, and will have insufficient bulk. When the distance (S) between the local peaks exceeds 1. O ⁇ m, the surface area of the fiber bundle increases and static electricity is easily generated, and the convergence of the fiber bundle decreases. In addition, the strand strength of the obtained carbon fiber bundle decreases.
  • the distance (S) between the local peaks is, as shown in Fig.
  • the local summit spacing (S) is measured by using a laser-microscope.
  • the moisture content of the carbon fiber precursor fiber bundle of the present invention is preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably 3 to 5% by weight. is there.
  • the moisture content exceeds 15% by weight, when the fiber bundles are entangled by blowing air, the single fibers are less likely to be entangled, and as a result, the fiber bundles are more easily separated and the passing property in the firing process is deteriorated. .
  • the moisture content is determined by the weight w of the fiber bundle in a wet state and the weight w Q after drying the fiber bundle with a hot-air dryer at 105 ° C for 2 hours.
  • w — w Q X 100 Zw. It is a numerical value obtained by:
  • the number of single fibers of the acrylonitrile-based polymer constituting the carbon fiber precursor fiber bundle of the present invention is preferably not more than 1200, more preferably not more than 600, More preferably, the number is 300 or less. If the number of single fibers exceeds 1,200, the tow handling and the tow rate increase, and the drying load increases, so that the spinning speed cannot be increased. In addition, it is difficult to provide uniform confounding, and as a result, the permeability in the firing step is deteriorated.
  • the degree of entanglement of the carbon fiber precursor fiber bundle of the present invention is preferably in the range of 5 to 20 pieces / m, more preferably in the range of 10 to 14 pieces Zm. If the degree of entangling is less than 5 pcs / m, the fiber bundles tend to be loosened, and the passing property in the firing step is deteriorated. When the degree of entanglement exceeds 20 / m, the resin impregnating property and the fiber opening property of the obtained carbon fiber bundle deteriorate.
  • the degree of entanglement of the carbon fiber precursor fiber bundle is a parameter indicating how many times one single fiber in the fiber bundle is entangled with the adjacent single fiber between 1 m.
  • the degree of confounding is measured by the hook drop method.
  • the carbon fiber precursor fiber bundle of the present invention comprises a plurality of acrylonitrile-based polymer single fibers. It is a toe that bundles.
  • the acrylonitrile-based polymer the same acrylonitrile-based polymer as that used for the carbon fiber precursor fiber bundle of the first embodiment can be used.
  • the liquid content of the carbon fiber precursor fiber bundle of the present invention is 40% by weight or more and less than 60% by weight, preferably 42% by weight or more and less than 55% by weight, and more preferably 44% by weight or less. % Or more and less than 53% by weight.
  • the liquid content is within this range, it is possible to simultaneously improve the bulkiness of the obtained carbon fiber bundle and pass the precursor fiber through the firing step.
  • the liquid content is less than 40% by weight, the bulkiness of the obtained carbon fiber bundle becomes insufficient, and the resin impregnation property, the opening property, and the covering property when formed into a cloth deteriorate.
  • the liquid content is 60% by weight or more, the sizing property of the fiber bundle is reduced, and the passability in the firing step is deteriorated.
  • the liquid content of the carbon fiber precursor fiber bundle is calculated as follows. First, the process oil adhering to the carbon fiber precursor fiber bundle is sufficiently washed off with 100 ml of boiling water or methyl ethyl ketone (MEK) at room temperature, and then dried using a dryer. Dry at 5 ° C for 2 hours to obtain a fiber bundle in a completely dried state. The absolute dry mass W0 of the fiber bundle at this time is measured.
  • MEK methyl ethyl ketone
  • the process oil agent is an oil agent used when producing a carbon fiber precursor fiber bundle
  • examples of the process oil agent include a silicone oil agent, an aromatic ester oil agent, and a polyether oil agent.
  • this fiber bundle is immersed in 2 O of distilled water under no tension for 1 hour or more to make the fiber bundle contain water.
  • the hydrated fiber bundle is compressed and dewatered using a nip roller device at a pressure of 200 kPa and a take-up speed of 1 Om / min. Measure the fiber bundle mass WT after pressing and dewatering.
  • the liquid content HW of the carbon fiber precursor fiber bundle is calculated from the absolute dry mass W 0 of the fiber bundle and the mass WT of the fiber bundle after pressing and dehydration using the following equation.
  • HW (% by weight) (WT -W 0) / 0 X I 0
  • the carbon fiber precursor fiber bundle of the present invention preferably has a plurality of wrinkles extending on the surface of the single fiber in the longitudinal direction of the fiber bundle. Due to the presence of such wrinkles, the carbon fiber bundle obtained from the carbon fiber precursor fiber bundle of the present invention has good bulky properties.
  • the depth of such wrinkles is defined by the following center line average roughness (Ra) and maximum height (Ry):
  • the center line average roughness (Ra) of the single fiber surface of the carbon fiber precursor fiber bundle of the present invention is preferably 0.01 m or more, more preferably 0.02 to 0.5 m, More preferably, it is 0.03 to 0.1 m.
  • the center line average roughness (Ra) is less than 0.01 zm, the bulkiness of the obtained carbon fiber bundle is insufficient, and the resin impregnation property, the opening property, and the covering property when formed into a cloth are deteriorated.
  • the center line average roughness (Ra) is too large, the surface area of the precursor fiber bundle increases, which tends to generate static electricity, lowering the convergence of the precursor fiber bundle and reducing the precursor fiber in the firing step. The body fiber bundle is likely to be separated, and the passing property in the firing step may be deteriorated. Further, the strand strength of the obtained carbon fiber bundle tends to decrease.
  • the maximum height (Ry) of the surface of the carbon fiber precursor fiber bundle of the present invention is preferably 0.1 m or more, more preferably 0.15 to 0.4 m, and still more preferably 0. 2 to 0.35 m. If the maximum height (Ry) is less than 0.1 / m, the bulkiness of the obtained carbon fiber bundle becomes insufficient, and the resin impregnating property, the opening property, and the covering property when crossed are deteriorated. On the other hand, if the maximum height (Ry) is too large, the surface area of the precursor fiber bundle increases, so that the static electricity is easily generated, and the convergence of the precursor fiber bundle is reduced. It is easy to disperse, and there is a possibility that the property of passing through the firing process may be deteriorated. Also, the strand strength of the obtained carbon fiber bundle tends to decrease.
  • the distance (S) between local peaks which is a parameter that defines the interval between these wrinkles, is preferably 0.2: 1.0 m, and more preferably 0.3 to 0.8 ⁇ m. Yes, and more preferably 0.4 to 0.7 m. If the distance (S) between the local peaks is less than 0.2 ⁇ m, the bulkiness of the obtained carbon fiber bundle is insufficient, and the resin impregnating property, the opening property, and the covering property when formed into a cloth are deteriorated. . On the other hand, if the distance (S) between the local peaks exceeds 1.0 m, the surface area of the precursor fiber bundle increases, so that static electricity is likely to be generated, and the convergence of the precursor fiber bundle is reduced.
  • the body fiber bundles are likely to be loosened, and the passing property of the firing process may be deteriorated. Also, the strand strength of the obtained carbon fiber bundle tends to decrease.
  • the moisture content of the carbon fiber precursor fiber bundle of the present invention is preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably 3 to 5% by weight. is there. If the water content exceeds 15% by weight, when the precursor fiber bundle is entangled by blowing air, it becomes difficult for the single fiber to be entangled. Passability deteriorates.
  • the number of single fibers of the acrylonitrile-based polymer constituting the carbon fiber precursor fiber bundle of the present invention is preferably not more than 1200, more preferably not more than 600, More preferably, the number is 300 or less. If the number of single fibers exceeds 1,200, the tow handling and the tow rate increase, and the drying load increases, so that the spinning speed cannot be increased. In addition, it is difficult to provide uniform confounding, and as a result, the permeability in the firing step is deteriorated.
  • the degree of entanglement of the carbon fiber precursor fiber bundle of the present invention is preferably in the range of 5 to 20 Zm, and more preferably in the range of 10 to 14 Zm. If the degree of entanglement is less than 5 pcs / m, the precursor fiber bundles are liable to disperse, and the passing property in the firing step becomes poor. If the degree of entanglement exceeds 20 m, the bulkiness of the obtained carbon fiber bundle becomes insufficient, and the resin impregnating property, the opening property and the covering property when formed into a cloth deteriorate.
  • the carbon fiber precursor fiber bundle of the third aspect of the present invention is a carbon fiber precursor fiber bundle composed of a plurality of acrylonitrile-based polymer single fibers, and has a major axis and a minor axis of a fiber cross section of a single fiber.
  • the ratio (major axis Z minor axis) is 1.05 to 1.6, and the Si amount measured by ICP emission analysis is in the range of 500 to 400 ppm.
  • the carbon fiber precursor fiber bundle has a liquid content HW calculated by the above method of 40% by weight or more and less than 60% by weight.
  • Such a carbon fiber precursor fiber bundle has the properties of the carbon fiber precursor fiber bundles of the first and second embodiments.
  • the carbon fiber precursor fiber bundle of the present invention can be manufactured as follows. . First, a spinning solution comprising an organic solvent solution of an acrylonitrile polymer was passed through a spinneret, and a first solution comprising an organic solvent aqueous solution having an organic solvent concentration of 45 to 68% by weight and a temperature of 30 to 50 ° C was obtained. The coagulated yarn is discharged into the coagulation bath to form a coagulated yarn, and the coagulated yarn is taken out of the first coagulation bath at a take-up speed of 0.8 times or less the discharge linear speed of the stock spinning solution.
  • the coagulated yarn is stretched 1.1 to 3.0 times in a second coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 45 to 68% by weight and a temperature of 30 to 50 ° C. I do. Subsequently, if necessary, the fiber bundle in the swollen state after drawing in the second coagulation bath is subjected to wet heat drawing at least three times.
  • the fiber bundle is subjected to an oiling treatment with a silicone oil agent, and then the fiber bundle is dried and further stretched 2.0 to 5.0 times by a steam stretching machine.
  • the moisture content of this fiber bundle is adjusted with Tytrol, and then the yarn is entangled by blowing air to obtain a carbon fiber precursor fiber bundle.
  • Examples of the organic solvent for the acrylonitrile-based polymer used in the spinning dope include dimethylacetoamide, dimethylsulfoxide, dimethylformamide and the like. Among them, dimethylacetamide is preferably used because it hardly deteriorates the properties due to hydrolysis of the solvent and gives good spinnability.
  • the concentration of the organic solvent in the first coagulation bath and the concentration of the organic solvent in the second coagulation bath are made the same, and the temperature of the first coagulation bath and the temperature of the second coagulation bath are made the same.
  • a spinning solution comprising a dimethylacetoamide solution of an acrylonitrile polymer, a first coagulation bath comprising an aqueous dimethylacetamide solution, and a dimethylacetoamide aqueous solution having the same temperature and composition as the first coagulation bath.
  • a first coagulation bath comprising an aqueous dimethylacetamide solution
  • a dimethylacetoamide aqueous solution having the same temperature and composition as the first coagulation bath.
  • a single fiber having a large ratio of the major axis to the minor axis of the fiber cross section can be obtained.
  • the first coagulation bath and the second coagulation By increasing the concentration of the organic solvent in the bath, a single fiber having a ratio of the major axis to the minor axis of the fiber cross section close to 1.0 can be obtained. That is, when the concentration of the organic solvent in the first coagulation bath and the concentration of the organic solvent in the second coagulation bath are out of the range of 45 to 68% by weight, the ratio of the major axis to the minor axis of the fiber cross section is 1.05 to 1.6. It becomes difficult to obtain fibers.
  • the spinneret for extruding the spinning solution is a single fiber of acrylonitrile-based polymer of about 1.0 denier (1.1 dT eX), which is the general thickness of acrylonitrile-based polymer single fiber.
  • the coagulated yarn pulled from the first coagulation bath has a concentration of an organic solvent in a liquid contained in the coagulation yarn that is higher than that of the organic solvent in the first coagulation bath. Therefore, only the surface of the coagulated yarn is in a semi-coagulated state, and the coagulated yarn has good stretchability in the second coagulation bath in the next step.
  • the coagulated yarn in a swollen state containing the coagulation liquid drawn from the first coagulation bath can be drawn in air, but the coagulation yarn is drawn into the second coagulation bath as in the above method.
  • the solidification of the coagulated yarn can be promoted, and the temperature control in the stretching step becomes easy.
  • the wet heat drawing after the drawing step in the second coagulation bath is for further enhancing the fiber orientation.
  • the wet heat drawing is performed by drawing the swollen fiber bundle in the swollen state after drawing in the second coagulation bath while washing it with water, or drawing in hot water. Above all, it is preferable to perform stretching in hot water from the viewpoint of high productivity. If the draw ratio in this wet heat drawing step is lower than 3 times, the fiber orientation will not be sufficiently improved.
  • the degree of swelling of the swollen fiber bundle before being dried after the wet heat stretching is set to 70% by weight or less. Power is preferable.
  • the fibers in which the swelling degree of the swollen fiber bundle after the wet heat stretching and before drying is 70% by weight or less means that the surface layer portion and the inside of the fiber are uniformly oriented.
  • the coagulation of the coagulated yarn in the first coagulation bath is reduced by lowering the "coagulation yarn take-up speed / linear discharge speed of the spinning dope from the nozzle" when producing the coagulated yarn in the first coagulation bath. After making it uniform, it is stretched in the second coagulation bath so that it can be uniformly oriented to the inside. Thereby, the degree of swelling of the swollen fiber bundle after wet heat stretching and before drying can be reduced to 70% by weight or less.
  • a general silicone oil agent for the oiling treatment of the fiber bundle after the wet heat drawing, a general silicone oil agent can be used. This silicone oil is used after being adjusted to a concentration of 1.0 to 2.5% by weight.
  • a sample was placed in a Teflon sealed container, and subjected to acid decomposition by heating with sulfuric acid and then with nitric acid, and then measured as a constant volume using an ICP emission spectrometer, IRIS-AP, manufactured by Jarel-Ash.
  • the process oil adhering to the carbon fiber precursor fiber bundle was dropped by thoroughly washing it in boiling water at 100 ° C, and this was dried in a dryer at 105 t: x for 2 hours, and then completely dried.
  • the fiber bundle was in the state.
  • the absolute dry weight W0 of the fiber bundle was measured.
  • the fiber bundle was immersed in distilled water at 20 ° C under no tension for 1 hour or more, so that the fiber bundle contained water.
  • the water-containing fiber bundle was squeezed and dewatered at a take-up speed of 1 OmZ while applying a pressure of 200 kPa using a nip roller device.
  • the fiber bundle weight WT after pressing and dewatering was measured. From the absolute dry weight W0 of the fiber bundle and the weight WT of the fiber bundle after pressing and dewatering, the liquid content HW of the carbon fiber precursor fiber bundle was calculated using the following equation.
  • HW (% by weight) (WT-WO) / W0 X 100
  • the monofilament affixed to the backing was attached to the chuck of the load cell, and a tensile test was performed at a speed of 20 Omm / min. The elongation was measured.
  • a fiber bundle of a carbon fiber precursor in a dry state was prepared, the fiber bundle was attached to the upper part of a hanging device, and a weight was attached to the lower lm from the upper grip portion and was suspended.
  • the weight load used was a gram number of 1Z5 of denier.
  • a hook was inserted at a point 1 cm below the upper grip of the fiber bundle so as to divide the fiber bundle into two, and the hook was lowered at a speed of 2 cm / S.
  • the descending distance L (mm) of the hook to the point where the hook stopped due to the entanglement of the fiber bundle was determined, and the degree of confounding was calculated by the following equation.
  • the hooks used here were needle-like with a diameter of 0.5 to 1.0 mm and had a smooth surface.
  • a fiber bundle of the carbon fiber precursor in a dry state is attached to a slide glass, and Ra, Ry, S are applied in a direction perpendicular to the fiber axis direction using a laser-microscope VL2000 manufactured by Lasertec Corporation. Was measured.
  • the evaluation method of the obtained acrylonitrile fiber bundle and carbon fiber bundle is as follows.
  • the width of the carbon fiber bundle when it was run on a metal roll at a running speed of 1 mZ under the tension of 0.06 gZ single fiber was measured and used as an index of the spreadability.
  • the opening ratio (the ratio of the portion where neither the warp nor the weft exist in the unit area of the cloth) is calculated using an image processing sensor 1 (CV-100: manufactured by KEYENCE CORPORATION). To determine the coverage.
  • This acrylonitrile polymer was dissolved in dimethylacetamide to prepare a 21% by weight spinning stock solution.
  • This spinning solution is discharged through a spinneret having a number of pores of 300,000 and a pore size of 75 izm into a first coagulation bath composed of an aqueous solution of dimethylacetamide having a concentration of 60% by weight and a temperature of 30 ° C.
  • the coagulated yarn was taken out of the first coagulation bath at a take-up speed of 0.8 times the linear speed of discharge of the spinning solution.
  • the coagulated yarn was subsequently led to a second coagulation bath consisting of an aqueous solution of dimethylacetamide having a concentration of 60% by mass and a temperature of 30 ° C., and was stretched 2.0 times in the bath.
  • the fiber bundle was stretched 4 times at the same time as washing with water, and an aminosilicon-based oil agent adjusted to 1.5% by weight was added thereto.
  • the fiber bundle was dried using a hot roll and stretched 2.0 times with a steam stretching machine. Thereafter, the moisture content of the fiber bundle was adjusted with evening styrene, and the fiber bundle contained 5% by weight of water per fiber.
  • the fiber bundle was entangled with air at an air pressure of 405 kPa, and wound up with an indica to obtain an acrylonitrile fiber bundle having a single fiber fineness of 1.1 dteX.
  • the cross-sectional shape, the Si content, the liquid content, the single fiber strength, the water content, the degree of entangling, and the wrinkle shape were measured.
  • the results are shown in Tables 1 and 2. '' Furthermore, the acrylonitrile fiber bundle is heated in air at 230 to 260 ° C with hot air circulation.
  • the carbon fiber bundle was obtained by performing electrolytic treatment with 0.4 AmInZm in an aqueous solution of ammonium bicarbonate.
  • the carbon fiber bundle was evaluated for resin impregnating properties, fiber opening properties, coverage, and strand strength. Table 3 shows the results.
  • An acrylonitrile fiber bundle with a single fiber fineness of 1. Idtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations of the first and second coagulation baths were changed to 50% by weight. .
  • Example 1 Except that the draw ratio in the second coagulation bath was changed to 2.5 times and the draw ratio by the steam drawing machine was changed to 1.6 times, the same as in Example 1 except that the single fiber fineness was 1. An acrylonitrile fiber bundle was obtained.
  • An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the stretching ratio in the second coagulation bath was changed to 1.2 times.
  • An acrylonitrile-based fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the moisture content of the fiber bundle adjusted with evening styrene was changed to 3% by weight.
  • the resin of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle is The impregnating property, the spreading property, the coverage and the strand strength were evaluated. Table 3 shows the results.
  • An acrylonitrile-based fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1, except that the concentration of the aminosilicone-based oil agent added to the fiber bundle was changed to 0.4% by weight.
  • An acrylonitrile-based fiber bundle having a single fiber fineness of 1. 1 dtex was obtained in the same manner as in Example 1, except that the air pressure during the entanglement treatment was changed to 290 kPa.
  • An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations of the first coagulation bath and the second coagulation bath were changed to 40% by mass.
  • Example 1 An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations of the first coagulation bath and the second coagulation bath were changed to 40% by mass.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.05 to 1.6, and the ICP Since the amount of Si measured by emission spectroscopy is in the range of 500 to 400 ppm, it has high convergence, good sintering process passability, and resin impregnation and spreadability. Good, high strength and bulky carbon fiber bundles can be obtained.
  • the liquid content HW calculated by the above-described method is 40% by weight or more and less than 60% by weight, so that bulkiness is improved and resin impregnation is improved. It is possible to obtain a carbon fiber bundle which is excellent in the property, the opening property and the covering property when formed into a cloth.
  • the carbon fiber precursor fiber bundle of the present invention has a ratio of the major axis to the minor axis (major axis / minor axis) of the single fiber cross section of 1.05 to 1.6, and is measured by ICP emission analysis.
  • the amount of Si to be obtained is in the range of 500 to 400 ppm, and the liquid content HW calculated by the above method is not less than 40% by weight and less than 60% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

明 細 書 炭素繊維前駆体繊維束およびその製造方法 技術分野
本発明は、 繊維強化複合材料の強化材として使用される炭素繊維束の製造に適 したァクリロニトリル系重合体の単繊維からなる炭素繊維前駆体繊維束に関する ものである。
本出願は日本国への特許出願 (特願 2 0 0 0 - 1 9 0 1 5 0および特願 2 0 0 0 - 2 0 1 5 3 5 ) に基づくものであり、 当該日本出願の記載内容は本明細書の 一部として取り込むものとする。 背景技術
繊維強化複合材料には、 炭素繊維、 ガラス繊維、 ァラミド繊維等が使用されて いる。 中でも、 炭素繊維は、 比強度、 比弾性率、 耐熱性、 耐薬品性等に優れ、 航 空機用途、 ゴルフシャフト、 釣り竿等のスポーツ用途、 一般産業用途の繊維強化 複合材料の強化材として使用されている。 このような繊維強化複合材料は、 例え ば、 以下のようにして製造される。
まず、 ポリアクリロニトリル系重合体の単繊維からなる前駆体繊維束を、 焼成 工程 (耐炎化工程) にて空気などの酸化性気体中、 2 0 0〜3 0 0 の温度で焼 成して耐炎繊維束を得る。 次いで、 炭素化工程にて、 不活性雰囲気中、 3 0 0〜 2 0 0 0 °Cの温度で耐炎繊維束を炭素化して炭素繊維束を得る。 そして、 この炭 素繊維束を、 必要に応じて織物等に加工した後、 これに合成樹脂を含浸させ、 所 定形状に成形することにより繊維強化複合材料を得る。
炭素繊維束の製造に用いられる前駆体繊維束には、 焼成工程において繊維束が ばらけて、 繊維束を構成する単繊維が隣接する繊維束に絡まったり、 ローラに巻 き付いたりしないように、 高い集束性が要求される。 しかしながら、 集束性の高 い前駆体繊維束から得られる炭素繊維束は、 その集束性の高さのため、 樹脂が含 浸しにくいという問題を有していた。 また、 炭素繊維束を製織して得られる炭素繊維織物は、 樹脂を含浸する際に、 樹脂のボイドが発生しないように、 できるだけ目開きの少ない織物とする必要が ある。 そのために、 製織中または製織後に何らかの開繊処理が施される。 しかし ながら、 集束性の高い前駆体繊維束から得られる炭素繊維束は、 その集束性の高 さのため、 開繊しにくいという問題を有していた。
前駆体繊維束の集束性およびこの前駆体繊維束から得られる炭素繊維束の開繊 性が両立された前駆体繊維束としては、 9 5重量%以上のアクリロニトリルを含 有するアクリロニトリル系重合体からなり、 トータルデニールが 3 0, 0 0 0以 上である繊維束であって、 該繊維束の表面には繊維束の長手方向に実質的に連続 する高さ 0 . 5〜1 . 0 mの皺が 2〜 1 5本存在しており、 かつ該繊維束の繊 維重量当たりのヨウ素吸着量が 0 . 5〜1 . 5重量%であるアクリロニトリル系 繊維束が、 特開 2 0 0 0— 1 4 4 5 2 1公報に提案されている。
この前駆体繊維束は、 ァクリロ二トリル系重合体の有機溶剤溶液からなる紡糸 溶液を、 有機溶剤濃度 5 0〜7 0重量%、 温度 3 0〜5 0 °Cの有機溶剤水溶液か らなる第 1凝固浴中に吐出させて凝固糸にし、 この凝固糸を第 1凝固浴中から紡 糸原液の吐出線速度の 0 . 8倍以下の引き取り速度で引き取り、 この凝固糸に有 機溶剤濃度 5 0〜 7 0重量%、 温度 3 0〜 5 0 °Cの有機溶剤水溶液からなる第 2 凝固浴中にて 1 . 1〜3 . 0倍の延伸を施すことによって得られる。
しかしながら、 この前駆体繊維束の集束性およびこの前駆体繊維束から得られ る炭素繊維束の開繊性は、 未だ不十分であった。 また、 炭素繊維織物には、 目空 きの少ない均一な織り目が要求されるため、 嵩高い炭素繊維束が必要とされてい た。
このように、 炭素繊維前駆体繊維束には、 樹脂含浸性、 開繊性が良好で、 強度 が高く、 嵩高な炭素繊維束を得ることができること、 および集束性が高く、 焼成 工程通過性が良好であることが要求されている。
また、 炭素繊維のクロスには、 上記の機能の他にも外観風合いの良さが求めら れることから、 カバーリング性が必要とされている。 このような樹脂含浸性、 開 繊性およびクロスにした際のカバーリング性を同時に満足するには、 炭素繊維束 には嵩高さ (パルキー性) が必要とされる。 そして、 樹脂含浸性、 開繊性および カバーリング性のさらなる向上を目的として、 炭素繊維束のバルキー性のさらな る向上が求められていた。
よって、 本発明の第 1の目的は、 樹脂含浸性、 開繊性が良好で、 強度が高く、 嵩高な炭素繊維束を得ることができ、 かつ集束性が高く、 焼成工程通過性が良好 な炭素繊維前駆体繊維束を提供することにある。 '
また、 本発明の第 2の目的は、 バルキー性が向上し、 樹脂含浸性、 開繊性およ びクロスにした際のカバ一リング性に優れた炭素繊維束を得ることができる炭素 繊維前駆体繊維束を提供することにある。 発明の開示
本発明の第 1の態様の炭素繊維前駆体繊維束は、 複数のァクリロニトリル系重 合体の単繊維からなる炭素繊維前駆体繊維束であつて、 単繊維の繊維断面の長径 と短径との比 (長径 Z短径) が、 1 . 0 5〜1 . 6であり、 I C P発光分析によ つて測定される S i量が、 5 0 0〜4 0 0 0 p p mの範囲であることを特徴とす る。 '
このような炭素繊維前駆体繊維束は、 集束性が高く、 焼成工程通過性が良好で あり、 また、 これから得られる炭素繊維束は、 樹脂含浸性、 開繊性が良好で、 強 度が高く、 嵩高となる。
また、 この炭素繊維前駆体繊維束における単繊維強度は、 5 . O O c NZ d t e X以上であることが望ましい。 これにより、 焼成工程での単糸切れによる毛羽 の発生がすくなくなり、 焼成工程通過性がさらに向上する。
また、 炭素繊維前駆体単繊維の表面の中心線平均粗さ (R a ) は、 0 . 0 1〜 0 . 1 zmであることが望ましい。 これにより、 炭素繊維前駆体繊維束の集束性 、 焼成工程通過性がさらに向上し、 また、 これから得られる炭素繊維束の樹脂含 浸性、 開繊性、 強度がさらに向上する。 '
また、 炭素繊維前駆体単繊維の表面の最大高さ (R y) は、 0 . 1〜0 . 5 x mであることが望ましい。 これにより、 炭素繊維前駆体繊維束の集束性、 焼成ェ 程通過性がさらに向上し、 また、 これから得られる炭素繊維束の樹脂含浸性、 開 繊性、 強度がさらに向上する。 また、 この炭素繊維前駆体繊維束は、 単繊維の表面に繊維束の長手方向に延び る複数の皺を有し、 となりあう局部 III頂の間隔 (S ) が、 0 . 2〜1 . O ^ mで あることが望ましい。 これにより、 炭素繊維前駆体繊維束の集束性、 焼成工程通 過性がさらに向上し、 また、 これから得られる炭素繊維束の樹脂含浸性、 開繊性 、 強度がさらに向上する。
また、 炭素繊維前駆体繊維束の水分率は、 1 5重量%以下であることが望まし レ^ これにより、 繊維束の単繊維が交絡しやすくなり、 焼成工程通過性がさらに 向上する。
また、 炭素繊維前駆体繊維束を構成する単繊維の数は、 1 2 0 0 0本以下であ ることが望ましい。 これにより、 炭素繊維前駆体繊維束の紡糸速度を上げること ができる。 また、 均一な交絡を与える事ができ、 その結果焼成工程での通過性が 向上する。
また、 炭素繊維前駆体繊維束の交絡度は、 5ケ Zm〜 2 0ケ/ mの範囲である ことが望ましい。 これにより、 炭素繊維前駆体繊維束の焼成工程通過性がさらに 向上し、 得られる炭素繊維束の樹脂含浸性および開繊性がさらに向上する。 本発明の第 2の態様の炭素繊維前駆体繊維束は、 複数のァクリロニトリル系重 合体の単繊維からなる炭素繊維前駆体繊維束であつて、 下記の方法によつて算出 された含液率 HWが、 4 0重量%以上 6 0重量%未満であることを特徴とする。
(含液率算出方法)
工程油剤を落とし、 かつ絶乾された状態の繊維束の絶乾質量 W 0と、 この繊維 束を 2 0 °Cの蒸留水中に無張力状態で 1時間以上浸漬し、 ついで 2 0 0 k P aの 圧力下で圧搾脱水した後の繊維束質量 WTとから、 次式を用いて含液率 HWを算 出する。
HW (重量%) = (WT -W O ) /W 0 X 1 0 0
このような炭素繊維前駆体繊維束から得られる炭素繊維束は、 バルキー性が向 上し、 樹脂含浸性、 開繊性およびクロスにした際のカバ一リング性に優れる。 また、 この炭素繊維前駆体繊維束の単繊維表面の中心線平均粗さ (R a ) は、 0 . 0 1 m以上であることが望ましい。 これにより、 炭素繊維束のバルキー性 がさらに向上し、 樹脂含浸性、 開繊性およびクロスにした際のカバ一リング性が さらによくなる。
また、 炭素繊維前駆体繊維束の単繊維表面の最大高さ (R y ) は、 0 . l m 以上であることが望ましい。 これにより、 炭素繊維束のバルキー性がさらに向上 し、 樹脂含浸性、 開繊性およびクロスにした際のカバーリング性がさらによくな る。
また、 この炭素繊維前駆体繊維束は、 繊維束の単繊維表面に繊維束の長手方向 に延びる複数の皺を有し、 局部山頂の間隔 (S ) が 0 . 2 m以上 1 . 0 m以 下であることが望ましい。 これにより、 炭素繊維前駆体繊維束が良好な焼成工程 通過性を維持しつつ、 得られる炭素繊維束の樹脂含浸性、 開繊性、 およびクロス にした際のカバ一リング性がさらに向上する。
また、 炭素繊維前駆体繊維束の水分率は、 1 5重量%以下であることが望まし レ これにより、 炭素繊維前駆体繊維束の単繊維が交絡しやすくなり、 焼成工程 通過性がさらに向上する。
また、 炭素繊維前駆体繊維束を構成する単繊維の数は、 1 2 0 0 0本以下であ ることが望ましい。 これにより、 紡糸速度を上げることができる。 また、 均一な 交絡を与えることができ、 その結果、 焼成工程通過性が向上する。
また、 炭素繊維前駆体繊維束の交絡度は、 5ケ Zm〜2 0ケ Zmの範囲である ことが望ましい。 これにより、 炭素繊維前駆体繊維束が良好な焼成工程通過性を 維持しつつ、 得られる炭素繊維束の樹脂含浸性、 開繊性およびクロスにした際の カバ一リング性がさらに向上する。
本発明の第 3の態様の炭素繊維前駆体繊維束は、 複数のァクリロ二トリル系重 合体の単繊維からなる炭素繊維前駆体繊維束であって、 単繊維の繊維断面の長径 と短径との比 (長径 Z短径) が、 1 . 0 5〜1 . 6であり、 I C P発光分析によ つて測定される S i量が、 5 0 0〜4 0 0 0 p p mの範囲であり、 上記の方法に よって算出された含液率 HWが、 4 0重量%以上 6 0重量%未満であることを特 徵とする。
このような炭素繊維前駆体繊維束は、 集束性が高く、 焼成工程通過性が良好で あり、 また、 これから得られる炭素繊維束は、 樹脂含浸性、 開繊性が良好で、 強 度が高く、 嵩高となる。 また、 このような炭素繊維前駆体繊維束から得られる炭 素繊維束は、 バルキ一性が向上し、 樹脂含浸性、 開繊性およびクロスにした際の カバーリング性に優れる。
また、 本発明の炭素繊維前駆体繊維束の製造方法は、 9 5重量%以上のァクリ ロニトリル単位を含有するァクリロニトリル系重合体の有機溶剤溶液からなる紡 糸溶液を、 有機溶剤濃度 4 5〜6 8重量%、 温度 3 0〜5 0 °Cの有機溶剤水溶液 からなる第 1凝固浴中に吐出させて凝固糸にするとともに、 この凝固糸を第 1凝 固浴中から紡糸原液の吐出線速度の 0 . 8倍以下の引き取り速度で引き取る工程 と、 この凝固糸に有機溶剤濃度 4 5〜6 8重量%、 温度 3 0〜5 0 °Cの有機溶剤 水溶液からなる第 2凝固浴中にて 1 . 1〜3 . 0倍の延伸を施す工程と、 この延 伸糸を乾燥した後に、 この延伸糸に 2 . 0〜5 . 0倍のスチーム延伸を施す工程 とを有することを特徴とする。
このような炭素繊維前駆体繊維束の製造方法によれば、 上述の特性に優れた炭 素繊維前駆体繊維束を容易に製造することが可能となる。 図面の簡単な説明
図 1は、 中心線平均粗さ (R a ) を説明するための炭素繊維前駆体繊維束の単 繊維の表面の断面図である。
図 2は、 最大高さ (R y) を説明するための炭素繊維前駆体繊維束の単繊維の 表面の断面図である。
図 3は、 局部山頂の間隔 (S ) を説明するための炭素繊維前駆体繊維束の単繊 維の表面の断面図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
(第 1の態様の炭素繊維前駆体繊維束)
本発明の炭素繊維前駆体繊維束は、 複数のァクリロ二トリル系重合体の単繊維 を束ねたトウである。
ァクリロ二トリル系重合体としては、 ァクリロ二トリル単位を 9 5重量%以上 含有する重合体が、 該炭素繊維前駆体繊維束を焼成して得られる炭素繊維束の強 度発現性の点で好ましい。 アクリロニトリル系重合体は、 アクリロニト ルと、 必要に応じてこれと共重合しうる単量体とを、 水溶液中におけるレドックス重合 、 不均一系における懸濁重合、 分散剤を使用した乳化重合などによって、 重合さ せて得ることができる。
アクリロニトリルと共重合しうる単量体としては、 例えば、 メチル (メタ) ァ クリレー卜、 ェチル (メタ) ァクリレー卜、 プロピル (メタ) ァクリレー卜、 ブ チル (メタ) ァクリレート、 へキシル (メタ) ァクリレート等の (メタ) ァクリ ル酸エステル類;塩化ビエル、 臭化ビニル、 塩ィヒビ二リデン等のハロゲン化ピニ ル類; (メタ) アクリル酸、 ィタコン酸、 クロトン酸等の酸類およびそれらの塩 類;マレイン酸イミド、 フエニルマレイミド、 (メタ) アクリルアミド、 スチレ ン、 α—メチルスチレン、 酢酸ビニル;スチレンスルホン酸ソ一ダ、 ァリルスル ホン酸ソーダ、 /3 _スチレンスルホン酸ソーダ、 メタァリルスルホン酸ソ一ダ等 のスルホン基を含む重合性不飽和単量体; 2一ビニルピリジン、 2ーメチル— 5 一ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられる。 本発明におけるァクリロニトリル系重合体の単繊維の繊維断面の長径と短径と の比 (長径 Ζ短径) は、 1 . 0 5〜1 . 6であり、 好ましくは、 1 . 1〜1 . 3 であり、 より好ましくは 1 . 1 5〜1 . 2 5である。 長径/短径比がこの範囲内 にあれば、 前駆体繊維束の焼成工程通過性と、 これから得られる炭素繊維束の樹 脂含浸性および開繊性とを同時に満足することができる。 長径 短径比が 1 . 0 5未満では、 単繊維間の空隙が減少し、 得られる炭素繊維束の樹脂含浸性および 開繊性が悪くなり、 嵩高さが不十分となる。 長径/短径比が 1 . 6を超えると、 繊維束の集束性が低下し、 焼成工程通過性が悪化する。 また、 ストランド強度が 著しく低下する。
ここで、 単繊維の繊維断面の長径と短径との比 (長径 Ζ短径) は、 以下のよう にして決定される。
内径 1; mmの塩化ビニル樹脂製のチューブ内に測定用のァクリロニ卜リル系重 合体の繊維を通した後、 これをナイフで輪切りにして試料を準備する。 ついで、 該試料をァクリロニトリル系重合体の繊維断面が上を向くようにして S EM試料 台に接着し、 さらに A uを約 1 0 nmの厚さにスパッタリングしてから、 P H I L I P S社製 X L 20走査型電子顕微鏡により、 加速電圧 7. 00 k V、 作動距 離 31mmの条件で繊維断面を観察し、 単繊維の繊維断面の長径および短径を測 定し、 長径 ÷短径で長径 Z短径の比率が決定される。
本発明の炭素繊維前駆体繊維束の S i量は、 500〜4000 p pmの範囲で あり、 好ましくは 1000〜3000 p pmの範囲である。 S i量がこの範囲内 にあれば、 前駆体繊維束の焼成工程通過性と、 これから得られる炭素繊維束の樹 脂含浸性および開繊性とを同時に満足することができる。 S i量が 50 O ppm 未満では、 繊維束の集束性が低下し、 焼成工程通過性が悪化する。 また、 得られ る炭素繊維束のストランド強度が低下する。 S i量が 4000 p pmを超えると 、 前駆体繊維束の焼成時にシリカが多く飛散し、 焼成安定性が悪くなる。 また、 得られる炭素繊維束がばらけにくくなり、 樹脂含浸性および開繊性が悪くなる。
この S i量は、 炭素繊維前駆体繊維束を製造する際に使用されるシリコン系油 剤に由来するものである。 ここで、 S i量は、 I CP発光分析装置を用いて測定 することができる。
本発明におけるアクリロニトリル系重合体の単繊強度は、 好ましくは 5. 0 c NZd t e x以上であり、 より好ましくは 6. 5 cN/d t e x以上であり、 さ らに好ましくは 7. 0 cNZd t e X以上である。 単繊強度が 5. 0 c N/d t e x未満では、 焼成工程での単糸切れによる毛羽の発生が多くなつて焼成工程通 過性が悪くなる。
. ここで、 アクリロニトリル系重合体の単繊強度は、 単繊維自動引張強伸度測定 機 (オリエンテック UTM II— 20) を使用し、 台紙に貼られた単繊維を口一 ドセルのチャックに装着し、 毎分 20. Ommの速度で引っ張り試験を行い強伸 度を測定することによって求められる。
本発明の炭素繊維前駆体繊維束は、 単繊維の表面に繊維束の長手方向に延びる 皺を有していることが好ましい。 このような皺の存在により、 本発明の炭素繊維 前駆体繊維束は、 良好な集束性を有すると同時に、 得られる炭素繊維束は、 良好 な樹脂含浸性と開繊性とを有するようになる。
このような皺の深さは、 以下の中心線平均粗さ (Ra) 、 最大高さ (Ry) お よび局部山頂の間隔 (S) によって規定される。 本発明の炭素繊維前駆体繊維束の単繊維の表面の中心線平均粗さ (Ra) は、 好ましくは 0. 01〜0. l mであり、 より好ましくは 0. 02〜0. 07 mであり、 さらに好ましくは 0. 03〜0. 06 mである。 中心線平均粗さ ( Ra) が 0. 01 m未満では、 得られる炭素繊維束の樹脂含浸性、 開繊性が悪 くなり、 嵩高さが不十分となる。 中心線平均粗さ (Ra) が 0. 1 mを超える と、 繊維束の表面積が増加して静電気が発生し易くなり、 繊維束の集束性を低下 させる。 また、 得られる炭素繊維束のストランド強度が低下する。
ここで、 中心線平均粗さ (Ra) とは、 図 1に示すように、 粗さ曲線からその 中心線 mの方向に基準長さ Lだけ抜き取り、 この抜取り部分の中心線 mから測定 曲線までの偏差の絶対値を合計し、 平均した値である。 中心線平均粗さ (Ra) は、 レーザ一顕微鏡を用いることによつて測定される。
本発明の炭素繊維前駆体繊維束の表面の最大高さ (Ry) は、 好ましくは 0. 1〜0. 5 xmであり、 より好ましくは 0. 15〜0. 4 xmであり、 さらに好 ましくは 0. 2〜0. 35 mである。 最大高さ (Ry) が 0. 1 m未満では 、 得られる炭素繊維束の樹脂含浸性、 開繊性が悪くなり、 嵩高さが不十分となる 。 最大高さ (Ry) が 0. 5 mを超えると、 繊維束の表面積が増加して静電気 が発生し易くなり、 繊維束の集束性を低下させる。 また、 得られる炭素繊維束の ストランド強度が低下する。
ここで、 最大高さ (Ry) とは、 図 2に示すように、 粗さ曲線からその中心線 mの方向に基準長さ Lだけ抜き取り、 この抜取り部分の山頂線および谷底線と中 心線 mとの間隔、 Rpおよび R Vの合計値である。 最大高さ (Ry) は、 レーザ 一顕微鏡を用いることによつて測定される。
また、 これら皺の間隔を規定するパラメ一夕である、 局部山頂の間隔 (S) は 、 好ましくは 0. 2〜1. O mであり、 より好ましくは 0. 3〜0. 8 mで あり、 さらに好ましくは 0. 4〜0. 7 mである。 局部山頂の間隔 (S) が 0 . 2^m未満では、 得られる炭素繊維束の樹脂含浸性および開繊性が悪くなり、 嵩高さが不十分となる。 局部山頂の間隔 (S) が 1. O ^mを超えると、 繊維束 の表面積が増加して静電気が発生し易くなり、 繊維束の集束性を低下させる。 ま た、 得られる炭素繊維束のストランド強度が低下する。 ここで、 局部山頂の間隔 (S ) とは、 図 3に示すように、 粗さ曲線からその中 心線 mの方向に基準長さ Lだけ抜き取り、 この抜取り部分の隣り合う局部山頂間 の間隔 S , 、 S 2 、 S 3 、 · · ·の平均値 Sである。 局部山頂の間隔 .(S ) は、 レーザ一顕微鏡を用いることによつて測定される。
また、 本発明の炭素繊維前駆体繊維束の水分率は、 好ましくは 1 5重量%以下 であり、 より好ましくは、 1 0重量%以下でぁり、 さらに好ましくは、 3〜5重 量%である。 水分率が 1 5重量%を超えると、 繊維束にエアを吹き付け交絡を施 した際に、 単繊維が交絡しにくくなり、 その結果、 繊維束がばらけやすくなつて 焼成工程通過性が悪くなる。
ここで、 水分率は、 ウエット状態にある繊維束の重量 wと、 これを 1 0 5 °C X 2時間の熱風乾燥機で乾燥した後の重量 wQ とにより、 水分率 (重量%) = (w — wQ ) X 1 0 0 Zw。 によって求めた数値である。
また、 本発明の炭素繊維前駆体繊維束を構成するァクリロニトリル系重合体の 単繊維の数は、 好ましくは、 1 2 0 0 0本以下であり、 より好ましくは 6 0 0 0 本以下であり、 さらに好ましくは 3 0 0 0本以下である。 単繊維の数が 1 2 0 0 0本を超えると、 トウハンドリングおよびトウポリュウームが増加し、 乾燥負荷 が増大することから、 紡糸速度を上げることができなくなる。 また、 均一な交絡 を与える事が困難となり、 その結果、 焼成工程での通過性が悪化する。
また、 本発明の炭素繊維前駆体繊維束の交絡度は、 好ましくは 5〜2 0ケ/ m の範囲であり、 より好ましくは 1 0〜1 4ケ Zmの範囲である。 交絡度が 5ケ/ m未満では、 繊維束がばらけやすくなり、 焼成工程通過性が悪くなる。 交絡度が 2 0ケ /mを超えると、 得られる炭素繊維束の樹脂含浸性および開繊性が悪くな る。
ここで、 炭素繊維前駆体繊維束の交絡度とは、 繊維束中の 1本の単繊維が隣接 する他の単繊維と l mの間に何回交絡しているかを示すパラメ一夕である。 交絡 度は、 フックドロップ法により測定される。
(第 2の態様の炭素繊維前駆体繊維束)
本発明の炭素繊維前駆体繊維束は、 複数のァクリロ二トリル系重合体の単繊維 を束ねたトウである。 アクリロニトリル系重合体としては、 第 1の態様の炭素繊 維前駆体繊維束に用いられたものと同じものを用いることができる。
本発明の炭素繊維前駆体繊維束の含液率は、 4 0重量%以上 6 0重量%未満で あり、 好ましくは、 4 2重量%以上 5 5重量%未満であり、 より好ましくは 4 4 重量%以上 5 3重量%未満である。 含液率がこの範囲内にあれば、 得られる炭素 繊維束のバルキ一性の向上と前駆体繊維の焼成工程通過性とを同時に満足するこ とができる。 含液率が 4 0重量%未満では、 得られる炭素繊維束のバルキ一性が 不十分となり、 樹脂含浸性、 開繊性およびクロスにした際のカバーリング性が悪 くなる。 含液率が 6 0重量%以上では、 繊維束の集束性が低下し焼成工程でのェ 程通過性が悪化する。
ここで、 炭素繊維前駆体繊維束の含液率は、 以下のようにして算出される。 まず、 炭素繊維前駆体繊維束に付着している工程油剤を、 1 0 0 の沸水、 も しくは室温下でメチルェチルケトン (M E K) で十分に洗い落とし、 これを乾燥 機を用いて 1 0 5 °Cで 2時間乾燥させて、 絶乾された状態の繊維束とする。 この 時の繊維束の絶乾質量 W 0を計測する。
ここで、 工程油剤とは、 炭素繊維前駆体繊維束を製造する際に使用される油剤 であり、 工程油剤としては、 シリコン系油剤、 芳香族エステル系油剤、 ポリエー テル系油剤等が挙げられる。
ついで、 この繊維束を 2 O の蒸留水中に無張力状態で 1時間以上浸漬して、 繊維束に水を含ませる。 この含水状態の繊維束を、 ニップローラ装置を用いて、 2 0 0 k P a圧力下で引き取り速度 1 O m/m i nで圧搾脱水する。 圧搾脱水し た後の繊維束質量 WTを計測する。
繊維束の絶乾質量 W 0と圧搾脱水した後の繊維束質量 WTとから、 次式を用い て炭素繊維前駆体繊維束の含液率 HWを算出する。
HW (重量%) = (WT -W 0 ) / 0 X I 0
本発明の炭素繊維前駆体繊維束は、 その単繊維表面に繊維束の長手方向に延び る複数の皺を有していることが好ましい。 このような皺の存在により、 本発明の 炭素繊維前駆体繊維束から得られる炭素繊維束は、 良好なバルキー性を有するよ うになる。 このような皺の深さは、 以下の中心線平均粗さ (Ra) および最大高さ (Ry ) によって規定される。
本発明の炭素繊維前駆体繊維束の単繊維表面の中心線平均粗さ (Ra) は、 好 ましくは 0. 01 m以上であり、 より好ましくは 0. 02〜0. 5 mであり 、 さらに好ましくは 0. 03〜0. 1 mである。 中心線平均粗さ (Ra) が 0 . 01 zm未満では、 得られる炭素繊維束のバルキー性が不十分となり、 樹脂含 浸性、 開繊性およびクロスにした際のカバーリング性が悪くなる。 一方、 中心線 平均粗さ (Ra) が大きくなりすぎると、 前駆体繊維束の表面積が増加して静電 気が発生し易くなり、 前駆体繊維束の集束性を低下させ、 焼成工程において前駆 体繊維束がばらけやすくなり、 焼成工程通過性が悪くなるおそれがある。 また、 得られる炭素繊維束のストランド強度が低下する傾向にある。
本発明の炭素繊維前駆体繊維束の表面の最大高さ (Ry) は、 好ましくは 0. 1 m以上であり、 より好ましくは 0. 15〜0. 4 mであり、 さらに好まし くは 0. 2〜0. 35 mである。 最大高さ (Ry) が 0. 1 / m未満では、 得 られる炭素繊維束のバルキ一性が不十分となり、 樹脂含浸性、 開繊性およびクロ スにした際のカバーリング性が悪くなる。 一方、 最大高さ (Ry) が大きくなり すぎると、 前駆体繊維束の表面積が増加して静電気が発生し易くなり、 前駆体繊 維束の集束性を低下させ、 焼成工程において前駆体繊維束がばらけやすくなり、 焼成工程通過性が悪くなるおそれがある。 また、 得られる炭素繊維束のストラン ド強度が低下する傾向にある。
また、 これら皺の間隔を規定するパラメ一夕である、 局部山頂の間隔 (S) は 、 好ましくは 0. 2 : I. 0 mであり、 より好ましくは 0. 3〜0. 8 ^mで あり、 さらに好ましくは 0. 4〜0. 7 mである。 局部山頂の間隔 (S) が 0 . 2^m未満では、 得られる炭素繊維束のバルキ一性が不十分となり、 樹脂含浸 性、 開繊性およびクロスにした際のカバ一リング性が悪くなる。 一方、 局部山頂 の間隔 (S) が 1. 0 mを超えると、 前駆体繊維束の表面積が増加して静電気 が発生し易くなり、 前駆体繊維束の集束性を低下させ、 焼成工程において前駆体 繊維束がばらけやすくなり、 焼成工程通過性が悪くなるおそれがある。 また、 得 られる炭素繊維束のストランド強度が低下する傾向にある。 また、 本発明の炭素繊維前駆体繊維束の水分率は、 好ましくは 1 5重量%以下 であり、 より好ましくは、 1 0重量%以下でぁり、 さらに好ましくは、 3〜5重 量%である。 水分率が 1 5重量%を超えると、 前駆体繊維束にエアを吹き付け交 絡を施した際に、 単繊維が交絡しにくくなり、 その結果、 前駆体繊維束がばらけ やすくなつて焼成工程通過性が悪くなる。
また、 本発明の炭素繊維前駆体繊維束を構成するァクリロニトリル系重合体の 単繊維の数は、 好ましくは、 1 2 0 0 0本以下であり、 より好ましくは 6 0 0 0 本以下であり、 さらに好ましくは 3 0 0 0本以下である。 単繊維の数が 1 2 0 0 0本を超えると、 トウハンドリングおよびトウポリュウームが増加し、 乾燥負荷 が増大することから、 紡糸速度を上げることができなくなる。 また、 均一な交絡 を与える事が困難となり、 その結果焼成工程での通過性が悪化する。
また、 本発明の炭素繊維前駆体繊維束の交絡度は、 好ましくは 5〜2 0ケ Zm の範囲であり、 より好ましくは 1 0〜1 4ケ /mの範囲である。 交絡度が 5ケ/ m未満では、 前駆体繊維束がばらけやすくなり、 焼成工程通過性が悪くなる。 交 絡度が 2 0ケ Zmを超えると、 得られる炭素繊維束のバルキ一性が不十分となり 、 樹脂含浸性、 開繊性およびクロスにした際のカバ一リング性が悪くなる。
(第 3の態様の炭素繊維前駆体繊維束)
本発明の第 3の態様の炭素繊維前駆体繊維束は、 複数のァクリロニ卜リル系重 合体の単繊維からなる炭素繊維前駆体繊維束であって、 単繊維の繊維断面の長径 と短径との比 (長径 Z短径) が、 1 . 0 5〜1 . 6であり、 I C P発光分析によ つて測定される S i量が、 5 0 0〜4 0 0 0 p p mの範囲であり、 上述の方法に よって算出された含液率 HWが、 4 0重量%以上 6 0重量%未満である炭素繊維 前駆体繊維束である。 このような炭素繊維前駆体繊維束は、 第 1および第 2の態 様の炭素繊維前駆体繊維束の性質を合わせ持つものとなる。
(炭素繊維前駆体繊維束の製造方法)
次に、 本発明の炭素繊維前駆体繊維束の製造方法について説明する。
本発明の炭素繊維前駆体繊維束は、 以下のようにして製造することができる。 . まず、 アクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、 紡糸口 金を通して、 有機溶剤の濃度 4 5〜 6 8重量%、 温度 3 0〜5 0 °Cの有機溶剤水 溶液からなる第 1凝固浴中に吐出させて凝固糸にするとともに、 該第 1凝固浴中 からこの凝固糸を、 紡糸原液の吐出線速度の 0 . 8倍以下の引取り速度で引き取 る。
ついで、 この凝固糸を、 有機溶剤の濃度 4 5〜6 8重量%、 温度 3 0〜5 0 °C の有機溶剤水溶液からなる第 2凝固浴中にて 1 . 1〜3 . 0倍に延伸する。 続いて、 必要に応じて、 第 2凝固浴中での延伸を終えた膨潤状態にある繊維束 に対して 3倍以上の湿熱延伸を行う。
ついで、 この繊維束に対してシリコン系油剤の添油処理を行った後、 この繊維 束を乾燥し、 さらにスチーム延伸機で 2 . 0〜5 . 0倍に延伸する。
この繊維束に対して、 夕ツチロールで水分率の調整を行い、 続いて、 この糸に エアーを吹き付けて交絡を施し、 炭素繊維前駆体繊維束を得る。
紡糸原液に使用するァクリロニトリル系重合体に対する有機溶剤としては、 例 えば、 ジメチルァセトアミド、 ジメチルスルホキシド、 ジメチルホルムアミド等 が挙げられる。 中でも、 ジメチルァセトアミドは、 溶剤の加水分解による性状の 悪化が少なく、 良好な紡糸性を与えるので、 好適に用いられる。
ここで、 第 1凝固浴と第 2凝固浴の有機溶剤の濃度を同じにする、 第 1凝固浴 と第 2凝固浴の温度を同じにする、 さらには紡糸原液の有機溶剤と第 1凝固浴に 用いる有機溶剤と第 2凝固浴に用いる有機溶剤とを同じものにする等の手段を採 ることにより、 第 1凝固浴および第 2凝固浴の調製が容易となり、 しかも溶剤回 収上でのメリットも生ずる。
また、 アクリロニトリル系重合体のジメチルァセトアミド溶液からなる紡糸原 液と、 ジメチルァセトアミド水溶液からなる第 1凝固浴と、 該第 1凝固浴と同じ 温度および組成成分のジメチルァセトアミド水溶液からなる第 2凝固浴とを使用 すると、 繊維断面の長径 Z短径比が 1 . 0 5〜1 . 6の単繊維の製造を容易に行 えるようになる。
また、 第 1凝固浴と第 2凝固浴の有機溶剤の濃度を低くすることによって、 繊 維断面の長径ノ短径比が大きい単繊維が得られる。 一方、 第 1凝固浴と第 2凝固 浴の有機溶剤の濃度を高くすることによって、 繊維断面の長径 Z短径比が 1 . 0 に近い単繊維が得られる。 すなわち、 第 1凝固浴と第 2凝固浴の有機溶剤の濃度 が 4 5〜6 8重量%の範囲をはずれると、 維断面の長径 Z短径比が 1 . 0 5〜1 . 6である単繊維が得られ難くなる。
紡糸原液を押し出すための紡糸口金には、 ァクリロニトリル系重合体の単繊維 の一般的な太さである、 1 . 0デニール (1 . 1 d T e X ) 程度のァクリロニト リル系重合体の単繊維を製造する際の孔径、 すなわち 1 5〜 1 0 0 mの孔径の ノズル孔を有する紡糸口金を使用できる。
「凝固糸の引取り速度 Zノズルからの紡糸原液の吐出線速度」 は、 0 . 8倍以 下とされることにより、 良好な紡糸性を維持することができる。
このような炭素繊維前駆体繊維束の製造方法においては、 第 1凝固浴から引き 上げた凝固糸は、 該凝固糸が含有する液体中の有機溶剤の濃度が、 該第 1凝固浴 における有機溶剤の濃度を超えているので、 凝固糸の表面だけが凝固した半凝固 状態にある凝固糸になり、 次工程の第 2凝固浴中での延伸性が良好な凝固糸にな る。
また、 第 1凝固浴から引き出した凝固液を含んだままの膨潤状態にある凝固糸 は、 空気中で延伸することも可能であるが、 この凝固糸を上記方法のように第 2 凝固浴中で延伸する手段を採ることにより、 凝固糸の凝固を促進させることがで き、 また、 延伸工程での温度制御も容易になる。
第 2凝固浴中での延伸倍率は、 1 . 1倍よりも低くすると、 均一に配向した繊 維が得られなくなり、 3 . 0倍よりも高くすると、 単繊維切れが発生し易くなり 、 紡糸安定性が低下し、 しかもその後の湿熱延伸工程での延伸性が悪化する。 第 2凝固浴中での延伸工程後の湿熱延伸は、 繊維の配向をさらに高めるための ものである。 この湿熱延伸は、 第 2凝固浴中での延伸を終えた膨潤状態にある膨 潤繊維束を水洗に付しながらの延伸、 あるいは熱水中での延伸によって行われる 。 中でも、 高生産性の観点から、 熱水中での延伸を行うのが好ましい。 なお、 こ の湿熱延伸工程での延伸倍率を 3倍よりも低くすると、 繊維の配向の向上が十分 でなくなる。
また、 湿熱延伸を施した後の乾燥前の膨潤繊維束の膨潤度を、 7 0重量%以下 にすること力好ましい。
つまり、 湿熱延伸を施した後の乾燥前の膨潤繊維束の膨潤度が 7 0重量%以下 にある繊維は、 表層部と繊維内部とが均一に配向していることを意味するもので ある。 第 1凝固浴中での凝固糸の製造の際の 「凝固糸の引取り速度/ノズルから の紡糸原液の吐出線速度」 を下げることによって、 第 1凝固浴中での凝固糸の凝 固を均一なものにした後、 これを第 2凝固浴中にて延伸することにより、 内部ま で均一に配向することができる。 これによつて、 湿熱延伸を施した後の乾燥前の 膨潤繊維束の膨潤度を 7 0重量%以下とすることができる。
一方、 第 1凝固浴中での凝固糸の製造の際の 「凝固糸の引取り速度 Zノズルか らの紡糸原液の吐出線速度」 を高くすると、 該第 1凝固浴中での凝固糸の凝固と 延伸とが同時に起こる。 そのため、 第 1凝固浴中での凝固糸の凝固が不均一にな る。 従って、 これを第 2凝固浴中で延伸する工程を採っても、 湿熱延伸を施した 後の乾燥前の膨潤繊維束は膨潤度の高いものになってしまい、 繊維内部まで均一 に配向した繊維にはならない。
乾燥前の膨潤状態にある繊維束の膨潤度は、 膨潤状態にある繊維束の付着液を 遠心分離機 (3 0 0 0 r p m、 1 5分) によって除去した後の重量 wと、 これを 1 0 5 °C X 2時間の熱風乾燥機で乾燥した後の重量 w。 とにより、 膨潤度 (重量 %) = (w— w。) X 1 0 0 ZwQ によって求めた数値である。
湿熱延伸を行った後の繊維束に対する添油処理には、 一般的なシリコン系油剤 を用いることができる。 このシリコン系油剤は、 1 . 0〜2 . 5重量%の濃度に 調製された後、 使用される。
スチーム延伸機による延伸倍率は、 2 . 0倍よりも低くすると、 繊維の配向の 向上が十分でなくなり、 5 . 0倍よりも高くすると、 単繊維切れが発生しやすく なり、 紡糸安定性が低下する。 実施例
以下、 本発明を実施例を示して詳しく説明する。
本実施例における各測定は、 以下の方法によって行った。
(断面形状) 内径 1 mmの塩化ビニル樹脂製のチューブ内に測定用のァクリロニトリル系重 合体の繊維を通した後、 これをナイフで輪切りにして試料を準備した。 ついで、 該試料をァクリロニトリル系重合体の繊維断面が上を向くようにして S EM試料 台に接着し、 さらに Auを約 10 nmの厚さにスパッタリングしてから、 PH I L I PS社製 X L20走査型電子顕微鏡により、 加速電圧 7. 00 k V、 作動距 離 31mmの条件で繊維断面を観察し、 単繊維の繊維断面の長径および短径を測 定し、 長径 ÷短径で長径/短径の比率を求めた。
(S i量)
まず、 試料をテフロン製密閉容器にとり、 硫酸、 次いで硝酸で加熱酸分解した 後、 定容として、 I CP発光分析装置としてジャ一レルアッシュ製 I R I S— A Pを用いて測定した。
(含液率)
まず、 炭素繊維前駆体繊維束に付着している工程油剤を、 100°Cの沸水中で 十分洗浄することにより落とし、 これを乾燥機中で 105t:x 2時間乾燥させて 、 絶乾された状態の繊維束とした。 この時の繊維束の絶乾重量 W0を計測した。 ついで、 この繊維束を 20°Cの蒸留水中に無張力状態で 1時間以上浸漬して、 繊 維束に水を含ませた。 この含水状態の繊維束を、 ニップローラ装置を用いて、 2 00 kP aの圧力をかけながら、 引き取り速度 1 OmZ分で圧搾脱水した。 圧搾 脱水した後の繊維束重量 WTを計測した。 繊維束の絶乾重量 W0と圧搾脱水した 後の繊維束重量 WTとから、 次式を用いて炭素繊維前駆体繊維束の含液率 HWを 算出した。
HW (重量%) = (WT-WO) /W0 X 100
(単繊維強度)
単繊維自動引張強伸度測定機 (オリエンテック UTM II— 20) を使用し、 台紙に貼られた単繊維をロードセルのチャックに装着し、 毎分 20. Ommの速 度で引っ張り試験を行い強伸度を測定した。
(交絡度)
乾燥状態にある炭素繊維前駆体の繊維束を用意し、 垂下装置の上部に該繊維束 を取り付け、 上部つかみ部から下方 lmにおもりを取り付けつり下げた。 ここで 用いるおもり荷重は、 デニ一ル数の 1Z5のグラム数とした。 該繊維束の上部つ かみから 1 cm下部の点に該繊維束を 2分割するようにフックを挿入し、 2 cm /Sの速度でフックを下降させた。 フックが該繊維束の絡みによって停止した点 までのフックの下降距離 L (mm) を求め、 次式によって交絡度を算出した。 尚 、 試験回数は N= 50とし、 その平均値の小数点 1桁まで求めた。
交絡度 =1000/L
ここで用いたフックは、 直径が 0. 5mm〜l. 0mmの針状で、 表面が滑ら かに仕上げ処理をしたものである。
(皺形状) '
乾燥状態にある炭素繊維前駆体の繊維束をスライドガラスに貼り付け、 レ一ザ —テック株式会社製のレーザ一顕微鏡 VL 2000を用い、 繊維軸方向に対して 垂直方向に R a、 Ry、 Sを測定した。
(水分率)
ゥエツト状態にある炭素繊維前駆体の繊維束の重量 wと、 これを 105 x 2 時間の熱風乾燥機で乾燥した後の重量 w。 とにより、 水分率 (重量%) = (w— w0 ) X 10 O/w0 によって測定した。
また、 得られたアクリロニトリル系繊維束および炭素繊維束の評価方法は、 以 下の通りである。
(樹脂含浸性)
炭素繊維束を約 20 cm切り取り、 グリシジルエーテル中に約 3 cm浸し 1 5 分間放置した。 グリシジルェ一テル中から取り出した後 3分間放置し、 下から 3 . 5 cmのところで切り落とし、 残った炭素繊維束の長さ、 重量を測定した。 炭 素繊維束の目付けから吸い上げたダリシジルエーテルの重量割合を算出し、 樹脂 含浸性の指標とした。
(開繊性)
炭素繊維束を 0. 06 gZ単繊維の張力下、 走行速度 1 mZ分で金属ロール上 を走行させた際の卜ゥ幅を測定し開繊性の指標とした。
(カバーリング性 (被覆率) )
炭素繊維束を経糸および緯糸に用いて製織し、 目付が 200 g/m2 の平織の クロスを製造した。 このクロスについて、 画像処理センサ一 (C V— 1 0 0 : ( 株) キーエンス製) を使用して開口率 (クロス単位面積内の経糸も緯糸も存在し ない部分の割合) を求め、 1 0 0から引いて被覆率を求めた。
(炭素繊維のストランド強度)
J I S R 7 6 0 1に準じて測定した。
[実施例 1 ]
アクリロニトリル、 アクリル酸メチルおよびメタクリル酸を、 過硫酸アンモニ ゥムー亜硫酸水素アンモニゥムおよび硫酸鉄の存在下、 水系懸濁重合により共重 合し、 アクリロニトリル単位/アクリル酸メチル単位 Zメタクリル酸単位 = 9 5 / 4 / 1 (重量比) からなるアクリロニトリル系重合体を得た。 このァクリロ二 トリル系重合体をジメチルァセトアミドに溶解し、 2 1重量%の紡糸原液を調製 した。
この紡糸原液を孔数 3 0 0 0、 孔径 7 5 iz mの紡糸口金を通して、 濃度 6 0重 量%、 温度 3 0 °Cのジメチルァセトアミド水溶液からなる第 1凝固浴中に吐出さ せて凝固糸にし、 第 1凝固浴中からこの凝固糸を、 紡糸原液の吐出線速度の 0 . 8倍の引取り速度で引き取った。 この凝固糸を引き続き濃度 6 0質量%、 温度 3 0 °Cのジメチルァセトアミド水溶液からなる第 2凝固浴に導き、 浴中にて 2 . 0 倍に延伸した。
ついで、 この繊維束に対して水洗と同時に 4倍の延伸を行い、 これに 1 . 5重 量%に調製したァミノシリコン系油剤を添油した。 この繊維束を熱ロールを用い て乾燥し、 スチーム延伸機にて 2 . 0倍に延伸した。 その後、 夕ツチロールにて 繊維束の水分率を調整し、 この繊維束に繊維当たり 5重量%の水分を含有させた 。 ついで、 この繊維束を、 エア圧 4 0 5 k P aのエアによって、 交絡処理し、 ヮ インダ一で巻き取ることにより、 単繊維繊度 1 . 1 d t e Xのアクリロニトリル 系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。 ' さらに、 アクリロニトリル系繊維束を空気中 2 3 0〜2 6 0 °Cの熱風循環式耐 炎化炉にて 50分間処理し耐炎化繊維束となし、 ついで耐炎繊維束を窒素雰囲気 中下で最高温度 780°Cにて 1. 5分間処理し、 さらに同雰囲気下で最高温度が 1300°Cの高温熱処理炉にて約 1. 5分処理した後、 重炭酸水素アンモニゥム 水溶液中で 0. 4 Am i nZmで電解処理を施し、 炭素繊維束を得た。 この炭素 繊維束の樹脂含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を 表 3に示す。
[実施例 2] .
第 1凝固浴および第 2凝固浴のジメチルァセトアミド濃度を 50重量%に変更 した以外は、 実施例 1と同様にして単繊維繊度 1. I d t e xのァクリロ二トリ ル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹月旨 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 3]
第 1凝固浴および第 2凝固浴のジメチルァセトアミド濃度を 65重量%に変更 した以外は、 実施例 1と同様にして単繊維繊度 1.' I d t exのァクリロ二トリ ル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 4]
第 2凝固浴中における延伸倍率を 2. 5倍に変更し、 スチーム延伸機による延 伸倍率を 1. 6倍に変更した以外は、 実施例 1と同様にして単繊維繊度 1. I d t e xのァクリロニトリル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 5 ]
第 2凝固浴中における延伸倍率を 1 . 2倍に変更した以外は、 実施例 1と同様 にして単繊維繊度 1 . l d t e xのァクリロ二トリル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 6 ]
夕ツチロールにて調整される繊維束の水分率を 1 0重量%に変更した以外は、 実施例 1と同様にして単繊維繊度 1 . I d t e xのアクリロニトリル系繊維束を 得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 7 ]
夕ツチロールにて調整される繊維束の水分率を 3重量%に変更した以外は、 実 施例 1と同様にして単繊維繊度 1 . 1 d t e xのアクリロニトリル系繊維束を得 た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 8]
繊維束に添油されるァミノシリコン系油剤の濃度を 0. 4重量%に変更した以 外は、 実施例 1と同様にして単繊維繊度 1. 1 d t e xのアクリロニトリル系繊 維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。 .
さらに、 .このァクリロ二トリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[実施例 93
交絡処理時のエア圧を 290 kP aに変更した以外は、 実施例 1と同様にして 単繊維繊度 1. l d t exのァクリロ二トリル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および 1皺形状を測定した。 結果を表 1および表 2に 示す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。
[比較例 1 ]
第 1凝固浴および第 2凝固浴のジメチルァセトアミド濃度を 70重量%に変更 した以外は、 実施例 1と同様にして、 単繊維の繊維断面の長径 Z短径比が 1. 0 2、 単繊維繊度 1. l d t exのァクリロ二トリル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。 単繊維の繊維断面の長径 Z短径比が 1. 05未満のァクリロ二トリル系繊維束 から得られた炭素繊維束は、 樹脂含浸性および開繊性に劣っていた。 [比較例 2 ]
第 1凝固浴および第 2凝固浴のジメチルァセトアミド濃度を 4 0質量%に変更 した以外は、 実施例 1と同様にして単繊維繊度 1 . 1 d t e xのァクリロ二トリ ル系繊維束を得た。
得られたアクリロニトリル系繊維束について、 断面形状、 S i量、 含液率、 単 繊維強度、 水分率、 交絡度および皺形状を測定した。 結果を表 1および表 2に示 す。
さらに、 このァクリロ二トリル系繊維束を焼成して得られた炭素繊維束の樹脂 含浸性、 開繊性、 被覆率およびストランド強度を評価した。 結果を表 3に示す。 単繊維の繊維断面の長径 短径比が 1 . 6を超えるァクリロ二トリル系繊維束 は集束性に劣り、 これから得られた炭素繊維束は、 ストランド強度が低かった。 表 1
断面形状 Si量 含液率 単繊維強度
(長径/短径) (ppm) (重量%) (cN/dtex)
1 1.32 2500 52.25 7.2
2 1.51 2650 58.18 6.8
実 3 1.23 2600 46.56 7.7
4 1.32 2550 49.56 7.5
施 5 1.32 2500 44.72 6.1
6 1.32 2500 54.43 7.3
例 7 1.32 2500 48.77 7.2
8 1.32 1600 51.34 7.3
9 1.32 2500 53.80 7.2
比 1 1.02 2600 30.29 7.3
早父
例 2 1.72 3400 64.85 4.8 表 2
Figure imgf000026_0001
表 3
炭素繊維束
樹脂含浸性 開繊性 被覆率 ストランド強度 焼成工程 (%) (mm) (%) (kg/mm2) 通過性
1 4.76 2.5 97.7 430 問題なし
2 5.10 2.7 98.2 400 問題なし
3 3.60 2.1 95.5 450 問題なし
4 4.50 2.4 96.8 410 問題なし 施 5 4.46 2.3 96.7 440 問題なし
6 4.88 2.9 98.7 430 問題なし 例 7 4.71 2.1 95.2 425 問題なし
8 4.66 2.8 99.1 430 問題なし
9 3.98 2.9 99.0 430 問 ΪΕΙなし 比 1 1.32 1.4 87.5 430 問題なし 較
例 2 7.22 3.2 99.8 350 不良 産業上の利用可能性
以上説明したように、 本発明の炭素繊維前駆体繊維束は、 単繊維の繊維断面の 長径と短径との比 (長径/短径) が、 1 . 0 5〜1 . 6であり、 I C P発光分析 によって測定される S i量が、 5 0 0〜4 0 0 0 p p mの範囲であるので、 集束 性が高く、 焼成工程通過性が良好であり、 しかも、 樹脂含浸性、 開繊性が良好で 、 強度が高く、 嵩高な炭素繊維束を得ることがでる。
また、 本発明の炭素繊維前駆体繊維束は、 上述の方法によって算出された含液 率 HWが、 4 0重量%以上 6 0重量%未満であるので、 バルキ一性が向上し、 樹 脂含浸性、 開繊性およびクロスにした際のカバ一リング性に優れた炭素繊維束を 得ることができる。
また、 本発明の炭素繊維前駆体繊維束は、 単繊維の繊維断面の長径と短径との 比 (長径ノ短径) が、 1 . 0 5〜1 . 6であり、 I C P発光分析によって測定さ れる S i量が、 5 0 0〜4 0 0 0 p p mの範囲であり、 上述の方法によって算出 された含液率 HWが、 4 0重量%以上 6 0重量%未満であるので、 集束性が高く 、 焼成工程通過性が良好であり、 しかも、 樹脂含浸性、 開繊性が良好で、 強度が 高く、 嵩高な炭素繊維束を得ることがでる。 また、 バルキ一性が向上し、 樹脂含 浸性、 開繊性およびクロスにした際のカバ一リング性に優れた炭素繊維束を得る ことができる。

Claims

請 求 の 範 囲 ■
1. 複数のァクリロ二トリル系重合体の単繊維からなる炭素繊維前駆体繊維束 であって、
単繊維の繊維断面の長径と短径との比 (長径/短径) 力 1. 05〜1. 6で あり、
Γ CP発光分析によって測定される S i量が、 500〜4000 p pmの範囲 であることを特徴とする炭素繊維前駆体繊維束。
2. 単繊維強度が、 5. 0 cNZd t e X以上であることを特徴とする請求項 1記載の炭素繊維前駆体繊維束。
3. 単繊維の表面の中心線平均粗さ (Ra) が、 0. 01〜0. 1 mである ことを特徴とする請求項 1記載の炭素繊維前駆体繊維束。
4. 単繊維の表面の最大高さ (Ry) が、 0. 1〜0. 5 /zmであることを特 徵とする請求項 1記載の炭素繊維前駆体繊維束。
5. 単繊維の表面に長手方向に延びる複数の皺を有し、 となりあう局部山頂の 間隔 (S) が、 0. 2〜1. O^mであることを特徴とする請求項 1記載の炭素 繊維前駆体繊維束。'
6. 繊維束の水分率が、 15重量%以下であることを特徴とする請求項 1記載 の炭素繊維前駆体繊維束。
7. 繊維束を構成する単繊維の数が、 12000本以下であることを特徴とす る請求項 1記載の炭素繊維前駆体繊維束。
8. 繊維束の交絡度が、 5ケ/ m〜20ケ Zmの範囲であることを特徵とする 請求項 1記載の炭素繊維前駆体繊維束。
9. 複数のァクリロ二トリル系重合体の単繊維からなる炭素繊維前駆体繊維束 であって、
下記の方法によって算出された含液率 HWが、 40重量%以上 60重量%未満 であることを特徴とする炭素繊維前駆体繊維束。
(含液率算出方法)
工程油剤を落とし、 かつ絶乾された状態の繊維束の絶乾質量 W0と、 この繊維 束を 20°Cの蒸留水中に無張力状態で 1時間以上浸漬し、 ついで 200 kP aの 圧力下で圧搾脱水した後の繊維束質量 WTとから、 次式を用いて含液率 HWを算 出する。
HW (重量%) = (WT-WO) /W0 X 100
10. 繊維束中の単繊維の表面の中心線平均粗さ (Ra) が、 0. 01 m以 上であることを特徴とする請求項 9記載の炭素繊維前駆体繊維束。
11. 繊維束中の単繊維の表面の最大高さ (Ry) が、 0. l im以上である ことを特徴とする請求項 9記載の炭素繊維前駆体繊維束。
12. 繊維束中の単繊維の表面に長手方向に延びる複数の皺を有し、 隣り合う 局部山頂の間隔 (S) が、 0. 2 m以上 1. 0 m以下であることを特徵とす る請求項 9記載の炭素繊維前駆体繊維束。
13. 繊維束の水分率が、 15重量%以下であることを特徴とする請求項 9記 載の炭素繊維前駆体繊維束。
14. 繊維束を構成する単繊維の数が、 12000本以下であることを特徴と する請求項 9記載の炭素繊維前駆体繊維束。
15. 繊維束の交絡度が、 5ケ Zm〜20ケ Zmの範囲であることを特徴とす る請求項 9記載の炭素繊維前駆体繊維束。
16. 単繊維の繊維断面の長径と短径との比 (長径/短径) が、 1. 05〜1 . 6であり、 I CP発光分析によって測定される S i量が、 500〜4000 p pmの範囲であることを特徴とする請求項 9記載の炭素繊維前駆体繊維束。
17. 95重量%以上のアクリロニトリル単位を含有するアクリロニトリル系 重合体の有機溶剤溶液からなる紡糸溶液を、 有機溶剤濃度 45〜68重量%、 温 度 30〜50°Cの有機溶剤水溶液からなる第 1凝固浴中に吐出させて凝固糸にす るとともに、 この凝固糸を第 1凝固浴中から紡糸原液の吐出線速度の 0. 8倍以 下の引き取り速度で引き取る工程と、
この凝固糸に有機溶剤濃度 45〜68重量%、 温度 30〜50°Cの有機溶剤水 溶液からなる第 2凝固浴中にて 1. 1〜3. 0倍の延伸を施す工程と、
この延伸糸を乾燥した後に、 この延伸糸に 2. 0〜5. 0倍のスチーム延伸を 施す工程とを有することを特徴とする炭素繊維前駆体繊維束の製造方法。
PCT/JP2001/005170 2000-06-23 2001-06-18 Faisceau de fibres précurseur de fibres de carbone WO2001098566A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
HU0301420A HU227286B1 (en) 2000-06-23 2001-06-18 Carbon fiber precursor fiber bundle and process for making it
EP01941080A EP1306470B1 (en) 2000-06-23 2001-06-18 Carbon fiber precursor fiber bundle
KR10-2002-7017389A KR100473126B1 (ko) 2000-06-23 2001-06-18 탄소 섬유 전구체 섬유 다발 및 그의 제조 방법
DE60133560T DE60133560T2 (de) 2000-06-23 2001-06-18 Kohlenstofffaserprecursorbündel
MXPA02012862A MXPA02012862A (es) 2000-06-23 2001-06-18 Haz de fibras precursoras de fibra de carbono.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-190150 2000-06-23
JP2000190150A JP4332285B2 (ja) 2000-06-23 2000-06-23 炭素繊維前駆体繊維束
JP2000201535A JP3892212B2 (ja) 2000-07-03 2000-07-03 炭素繊維前駆体繊維束
JP2000-201535 2000-07-03

Publications (1)

Publication Number Publication Date
WO2001098566A1 true WO2001098566A1 (fr) 2001-12-27

Family

ID=26594594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005170 WO2001098566A1 (fr) 2000-06-23 2001-06-18 Faisceau de fibres précurseur de fibres de carbone

Country Status (11)

Country Link
US (2) US6503624B2 (ja)
EP (1) EP1306470B1 (ja)
KR (1) KR100473126B1 (ja)
CN (2) CN1187484C (ja)
DE (1) DE60133560T2 (ja)
ES (1) ES2302736T3 (ja)
HU (1) HU227286B1 (ja)
MX (1) MXPA02012862A (ja)
PT (1) PT1306470E (ja)
TW (1) TW508380B (ja)
WO (1) WO2001098566A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US7754126B2 (en) 2005-06-17 2010-07-13 General Electric Company Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
WO2018151255A1 (ja) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1209261E (pt) * 1999-06-25 2007-01-31 Mitsubishi Rayon Co Fibra sintética à base de cianureto de vinilo e um processo de produção do mesmo
HU228482B1 (en) 2000-05-09 2013-03-28 Mitsubishi Rayon Co Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
EP2458084B1 (en) * 2003-07-31 2013-05-08 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, method for producing the same, and thermoplastic resin composition and molded article thereof
US7959783B2 (en) 2003-09-30 2011-06-14 The Boeing Company Electrochemical deposition process for composite structures
US7941903B2 (en) 2004-02-13 2011-05-17 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
KR101335140B1 (ko) * 2005-12-13 2013-12-03 도레이 카부시키가이샤 탄소 섬유, 탄소 섬유 제조용 폴리아크릴로니트릴계 전구체섬유의 제조 방법, 및 탄소 섬유의 제조 방법
TWI314169B (en) 2007-05-16 2009-09-01 Ind Tech Res Inst Activated carbon fibers and precursor material thereof
DE102009047514A1 (de) * 2009-12-04 2011-07-07 Sgl Carbon Se, 65203 Fasern zur Herstellung von Verbundwerkstoffen
KR101255455B1 (ko) * 2010-12-30 2013-04-17 주식회사 효성 탄소섬유용 아크릴 프리커서 섬유, 이의 제조방법 및 이로부터 제조된 탄소섬유
DE102011079506A1 (de) * 2011-07-20 2013-01-24 Sgl Carbon Se Ultradünne Fasern
TWI472483B (zh) 2012-10-30 2015-02-11 Ind Tech Res Inst 多孔性碳材材料及其製作方法、以及超級電容器
JP6040786B2 (ja) * 2013-01-25 2016-12-07 東レ株式会社 炭素繊維束
US10344403B2 (en) 2014-12-29 2019-07-09 Cytec Industries Inc. Densification of polyacrylonitrile fiber
WO2020091511A1 (ko) 2018-11-02 2020-05-07 주식회사 엘지화학 탄소섬유용 아크릴로니트릴계 공중합체의 제조방법
CN112585179B (zh) 2018-11-02 2022-09-13 株式会社Lg化学 用于碳纤维的丙烯腈类共聚物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214526A (ja) * 1982-06-09 1983-12-13 Toray Ind Inc 高強伸度炭素繊維束
GB2175576A (en) * 1985-03-27 1986-12-03 Toho Rayon Kk Carbon fiber and method for preparing the same
US5227237A (en) * 1989-09-05 1993-07-13 Toray Industries, Inc. Noncircular cross-section carbon fiber, process for producing the same and composite of the carbon fiber with resin
JP2000096354A (ja) * 1998-09-29 2000-04-04 Toray Ind Inc 炭素繊維束、およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156028A (ja) 1982-03-13 1983-09-16 Asahi Chem Ind Co Ltd 均一性に優れた高強度炭素繊維の製造方法
JPS58169518A (ja) 1982-03-31 1983-10-06 Asahi Chem Ind Co Ltd 均一性に優れた高強度炭素繊維の製造法
JPS62297265A (ja) * 1986-06-14 1987-12-24 大成建設株式会社 炭素繊維複合高強度耐火物
JP2892127B2 (ja) 1989-09-05 1999-05-17 東レ株式会社 非円形断面炭素繊維、その製造方法および炭素繊維複合材料
JP3185121B2 (ja) 1993-02-17 2001-07-09 ハンマーキャスター株式会社 自動旋回規制キャスター
US6120894A (en) * 1995-07-14 2000-09-19 Mitsubishi Chemical Corporation Short carbon fiber bundling mass, process for producing the same and fiber-reinforced resin composition
JP3808643B2 (ja) 1998-11-09 2006-08-16 三菱レイヨン株式会社 アクリロニトリル系繊維束及びその製造方法
JP3607676B2 (ja) 1999-06-15 2005-01-05 三菱レイヨン株式会社 太物炭素繊維前駆体アクリル系糸条、およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214526A (ja) * 1982-06-09 1983-12-13 Toray Ind Inc 高強伸度炭素繊維束
GB2175576A (en) * 1985-03-27 1986-12-03 Toho Rayon Kk Carbon fiber and method for preparing the same
US5227237A (en) * 1989-09-05 1993-07-13 Toray Industries, Inc. Noncircular cross-section carbon fiber, process for producing the same and composite of the carbon fiber with resin
JP2000096354A (ja) * 1998-09-29 2000-04-04 Toray Ind Inc 炭素繊維束、およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US7754126B2 (en) 2005-06-17 2010-07-13 General Electric Company Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
WO2018151255A1 (ja) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法
CN110300819A (zh) * 2017-02-16 2019-10-01 三菱化学株式会社 碳纤维前体丙烯腈系纤维、碳纤维及它们的制造方法
JPWO2018151255A1 (ja) * 2017-02-16 2019-11-07 三菱ケミカル株式会社 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法
JP2021059834A (ja) * 2017-02-16 2021-04-15 三菱ケミカル株式会社 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法
US11959197B2 (en) 2017-02-16 2024-04-16 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber, carbon fiber, and method for producing same

Also Published As

Publication number Publication date
CN1566420A (zh) 2005-01-19
PT1306470E (pt) 2008-05-13
EP1306470A1 (en) 2003-05-02
HUP0301420A2 (hu) 2003-08-28
HU227286B1 (en) 2011-01-28
EP1306470B1 (en) 2008-04-09
KR20030011916A (ko) 2003-02-11
MXPA02012862A (es) 2004-07-30
CN1187484C (zh) 2005-02-02
US20020041957A1 (en) 2002-04-11
ES2302736T3 (es) 2008-08-01
DE60133560D1 (de) 2008-05-21
US6569523B2 (en) 2003-05-27
US20030064221A1 (en) 2003-04-03
US6503624B2 (en) 2003-01-07
DE60133560T2 (de) 2009-05-28
KR100473126B1 (ko) 2005-03-10
CN1249280C (zh) 2006-04-05
HUP0301420A3 (en) 2005-11-28
EP1306470A4 (en) 2005-04-20
TW508380B (en) 2002-11-01
CN1441862A (zh) 2003-09-10

Similar Documents

Publication Publication Date Title
WO2001098566A1 (fr) Faisceau de fibres précurseur de fibres de carbone
JP5264150B2 (ja) 炭素繊維ストランド及びその製造方法
JP5100758B2 (ja) 炭素繊維ストランド及びその製造方法
JP5765420B2 (ja) 炭素繊維束および炭素繊維の製造方法
JP5720783B2 (ja) 炭素繊維束および炭素繊維束の製造方法
JP5313788B2 (ja) 炭素繊維前駆体繊維束およびその製造方法
JP2006299439A (ja) 炭素繊維およびその製造方法、並びにアクリロニトリル系前駆体繊維およびその製造方法
JP3892212B2 (ja) 炭素繊維前駆体繊維束
JP5741815B2 (ja) 炭素繊維前駆体アクリル繊維束および炭素繊維束
JP5473468B2 (ja) 炭素繊維前駆体繊維束およびその製造方法、ならびに炭素繊維束
JP4216873B2 (ja) 炭素繊維前駆体繊維束の製造方法
JP5313797B2 (ja) 炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束
JP4332285B2 (ja) 炭素繊維前駆体繊維束
HU228482B1 (en) Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
JP4624571B2 (ja) 炭素繊維前駆体糸条の製造方法
JP2013181264A (ja) 炭素繊維束
JP2004232155A (ja) 軽量化ポリアクリロニトリル系炭素繊維及びその製造方法
JP2004060069A (ja) ポリアクリロニトリル系炭素繊維、及びその製造方法
WO2001086040A1 (fr) Faisceau de fibres a base d'acrylonitrile pour precurseur de fibres de carbone et procede de preparation associe
JP4261075B2 (ja) 炭素繊維束
JP6232814B2 (ja) アクリル繊維の製造方法
JP7155577B2 (ja) 炭素繊維前駆体アクリル繊維炭素繊維
JP2004076208A (ja) 炭素繊維前駆体束の製造方法
JPH09273032A (ja) 炭素繊維前駆体糸条およびその製造方法ならびに炭素繊維の製造方法
JP2003147630A (ja) アクリル系異型断面繊維およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN HU KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/012862

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001941080

Country of ref document: EP

Ref document number: 1020027017389

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018126200

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027017389

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001941080

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027017389

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001941080

Country of ref document: EP