WO2001091898A1 - Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten - Google Patents

Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten Download PDF

Info

Publication number
WO2001091898A1
WO2001091898A1 PCT/EP2001/005818 EP0105818W WO0191898A1 WO 2001091898 A1 WO2001091898 A1 WO 2001091898A1 EP 0105818 W EP0105818 W EP 0105818W WO 0191898 A1 WO0191898 A1 WO 0191898A1
Authority
WO
WIPO (PCT)
Prior art keywords
educt
streams
main
mixing
stream
Prior art date
Application number
PCT/EP2001/005818
Other languages
English (en)
French (fr)
Inventor
Andreas Wölfert
Ulrich Penzel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP01945178A priority Critical patent/EP1289649B1/de
Priority to JP2001587903A priority patent/JP4959092B2/ja
Priority to AU2001267470A priority patent/AU2001267470A1/en
Priority to DE50112295T priority patent/DE50112295D1/de
Priority to HU0301844A priority patent/HU229267B1/hu
Priority to US10/296,595 priority patent/US6867324B2/en
Publication of WO2001091898A1 publication Critical patent/WO2001091898A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/244Concentric tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/915Reverse flow, i.e. flow changing substantially 180° in direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow

Definitions

  • the invention relates to a method and a device for the continuous production of organic mono- or polyisocyanates by reacting the mono- or polyamines corresponding to the mono- or polyisocyanates with phosgene at elevated temperature, it being possible for the amines or the phosgene to be dissolved in organic solvent ,
  • DE 2 153 268 relates to a continuous pre-phosgenation process for the production of organic isocyanates.
  • a turbulent phosgene solution and diamine solution are continuously mixed in a driven centrifugal pump.
  • the phosgene solution is introduced into the centrifugal pump through the suction port of the multistage centrifugal pump and the amine solution into the additional side access in the middle between the first and second centrifugal pumps, before the pre-phosgenation mixture is conveyed through the multistage centrifugal pump into a downstream hot phosgenation stage.
  • EP 0 291 891 B1 relates to a process for the preparation of isocyanates. Solutions and suspensions of primary amines and their salts are mixed and reacted with phosgene solutions, the two substances being introduced into a mixing zone which has at least one rotor disk. The resulting preliminary product is carried out again, the further conversion of the primary products formed is carried out with heating. When mixing is carried out, the phosgene solution is fed axially to the rotor disk and the dissolved amine is sprayed parallel to the stream, but at a distance from the stream of the phosgene solution against the rotor disk.
  • a process for the continuous production of mono- or polyisocyanates is known from EP 0 322 647 B1, in which, in order to produce the starting mixtures, the amine component, which is optionally dissolved in an inert solvent, and the phosgene solution are brought together in a nozzle by the one of the two components in the latter Nozzle is constricted and the other component in this constriction is fed from the side to the flow of the first component in a plurality of partial flows through a corresponding number of bores distributed over the circumference of the constriction.
  • the total length of the constriction is chosen to include a partial length in which the reaction of the free amine is essentially complete.
  • the disadvantage of this arrangement is that the slightest solid buildup in individual holes can lead to a lower flow through them.
  • the first component is introduced under pressure in the form of a fan-shaped spray jet into an essentially cylindrical mixing chamber flowing in the longitudinal axis thereof.
  • the second component is simultaneously introduced under pressure in the form of at least two fan-shaped spray jets into the spray jet of the first component, in its flow area.
  • the resulting mixture of the two liquid components is then passed from the mixing chamber into a downstream reaction zone.
  • the process appears unsatisfactory.
  • SU 519 129 shows a production process for the production of isocyanates.
  • a production process for isocyanates is presented, in which phosgene is supplied in gaseous form to the bottom of a reactor at temperatures between 100 ° C. and 180 ° C., which meets an amine salt which is supplied in the upper region of the reactor. The amine salt is fed to the upper region of the reactor at temperatures between 40 ° C. and 100 ° C.
  • a venturi mixing device is known from US Pat. No. 3,507,626. This mixing device is specially designed for mixing phosgene with amine so that isocyanates can be prepared and comprises a first and a second inlet and an outlet.
  • a first line section comprises a venturi section with a converging section, a constriction and a diverging section.
  • a second section is coaxially received in the first line section and acts as the first inlet.
  • the second line section comprises a bevel which leads to the converging section corresponds.
  • the second line section opens into a mixing chamber which extends around the venturi section of the first line section. The mixing device ensures mixing and prevents clogging by the formation of by-products.
  • DE-AS 17 92 660 B2 relates to a method and a device for mixing and reacting an amine with phosgene to form an isocyanate.
  • amine and phosgene are coarxially guided to one another and mixed with one another, the two streams of amine and phosgene being ring-shaped or conical, intersecting at an acute angle to a crossing mixing point and immediately before, at and after this crossing point the entry be accelerated into a further reaction space, so that backflow of isocyanate into the amine stream is avoided.
  • This section redirects the amine stream entering the cylindrical member at an angle away from the outer surface of the profile section and adjacent to the reaction area at an angle across the passageway.
  • the amine stream flowing through the passage which is narrowed through the end portion of the cylindrical member, cuts the phosgene flowing in from the reaction area at an angle.
  • EP 0 830 894 AI relates to a mixer reactor and a process for carrying out reactions, in particular the phosgenation of primary amines.
  • this mixer reactor it is provided to prevent the blockage of nozzles arranged rotationally symmetrically to the mixing chamber by assigning a pin which can be displaced in the direction of the nozzle axis. Moving parts of reactors converting phosgene represent potential leakage points and should therefore be avoided if possible.
  • the object of the invention is to provide a process for the phosgenation of amines which requires less solvent and less phosgene excess and in which fewer by-products are formed.
  • This object is achieved in that in a process for mixing educt streams in a mixer for the phosgenation of amines, in which the reaction product is discharged in a closed manner and the educt streams can contain organic solvents, main streams and / or partial streams of the educts meet according to the countercurrent principle.
  • the countercurrent principle is preserved when the educt streams are mixed at feed angles which are greater than 90 °, so that the educt jets each have an axially directed velocity component.
  • the main educt streams can be supplied encased by educt substreams of the other component to be mixed, so that, for example, a slight excess of phosgene can be set which helps to avoid deposits in the area of the derivatives of the reaction product from the mixing zone of the feed channels.
  • both the main stream of the first starting material is encased by a partial stream of the second starting material and the main stream of the second starting material can be encased by a partial stream of the first starting material.
  • the reaction product can be discharged from the mixing zone within the feed channels on the one hand by a radial discharge or else by a discharge inclined at a certain angle.
  • the main streams of two educts can be directed towards one another in a targeted manner, so that the respective impulse can be completely converted into mixing energy.
  • the feed channels receiving the main streams of the starting materials can each be surrounded by an annular gap.
  • the openings of the annular gaps can open positioned opposite one another in the area of the derivation of the reaction product.
  • Fig. 7 shows the countercurrent mixture with a generally inclined discharge for the reaction product.
  • FIG. 1 shows the schematic arrangement of a Y mixer 13.
  • a first feed stream 1 and a second feed stream 2 are fed in at a feed angle 4 which is greater than 90 °.
  • the resulting reaction product 3 is discharged closed in a spatial direction extending into the lower region of the mixer configuration 13 shown.
  • FIG. 2 shows the countercurrent mixture of two reactant streams with the reaction product being discharged essentially in the axial direction.
  • a main stream 2.1 of the second educt flows in within a feed channel 6, while the main stream 1.1 of the first educt 1 flows in opposite directions in the flow direction of the main stream 2.1 in a feed channel.
  • the two feed channels 6 and 7 are, for example, symmetrical about an axis of symmetry 10.
  • a discharge 5 branches off, which is delimited by a boundary wall 6.1 on the one hand and by a partition 7.1 is separated from the feed channel 7 of the first educt main stream 1.1.
  • the discharge line 5 extends essentially in the axial direction parallel to the feed channels 6 and 7 shown for the respective educt main streams 1.1 and 2.1 and derives the reaction product 3 formed from the mixing of the two educt main streams 1.1 and 2.1.
  • the feed angle 4 of the two educt main streams 2.1 and 1.1 of the first and second educt is approximately 180 °, so that the flow control used here causes the impulses to achieve a maximum mixing intensity and the impingement of the two jets Generation of maximum mixing energy can be used.
  • On the partition 7.1, which the feed channel 7 of the first educt main stream 1.1 from the derivative 5 of the Reaction product 3 separates, are marked with the letters A and B, the critical points for the deposition of reaction components.
  • 3 shows the countercurrent mixture when one of the reactant streams is divided into a main stream and a partial stream.
  • the main stream 1.1 of the first reactants flows into a feed channel 1, which, however, to the discharge line 5, through which the reaction product 3 leaves the mixing zone, not through a partition 7.1 according to FIG. 2, but through one Annular gap 8 is separated.
  • a partial stream 2.2 of the second educt flows through the annular gap 8, so that a phosgene, in the present case a surplus of phosgene, can be set in the region of the annular gap opening 9 of the annular gap 8.
  • the feed channels 6 and 7 for the main stream 1.1 of the first educt and the main stream 2.1 of the second educt are symmetrical to an axis of symmetry 10.
  • other cross sections can of course also be realized in these.
  • FIG. 4 shows the countercurrent mixture with an annular gap encasing a feed channel with a shortened inner cylinder.
  • annular gap 8 between the discharge line 5 for the reaction product 3 and the feed channel 7 for the main stream 1.1 of the first educt, approximately comparable to the embodiment variant according to FIG. 3 a partial stream 2.2 of the second educt of the mixing zone of the two main streams 1.1 and 2.1 of the educts 1 and 2 is fed to the annular gap 8, so that a phosgene, in the present case an excess of phosgene, is present in the mixing zone.
  • elements which generate swirl can be installed in the feed channels 6 for the main stream 2.1 of the second educt and in the feed channel 7 for the main stream 1.1 of the first educt.
  • the mixing energy released when the swirl is reduced in the mixing zone can be used to accelerate the mixing process.
  • a swirl-generating element for example, a twisted band or spiral would be let into the respective feed channels 6 and 7 for the main streams 2.1 and 1.1 of the two starting materials.
  • the feed channels 6 and 7 for the main streams 2.1 and 1.1 of the two starting materials 1 and 2 are each rotationally symmetrical to an axis of symmetry 10.
  • the feed channel 6 for the main stream 2.1 of the second product has a larger diameter 16, compared to the feed channel 7 for the main stream 1.1 of the first educt.
  • the two feed channels 6 and 7 open into a two common radial derivative, which is arranged exactly vertically compared to the axis of symmetry 10 of the feed channels 6 and 7 and allows the reaction product to be discharged vertically.
  • the derivation 5 through which the reaction product 3 leaves the mixing zone is separated by an annular gap 8 in the embodiment variant according to FIG. 6.
  • the annular gap 8 is delimited in each case by an outer tube 11 and an inner tube 12 which, in the embodiment variant shown, open into the annular gap opening, both the outer tube and the inner tube being of the same length and leading a partial flow 2.2 of the second starting material of the mixing zone.
  • the outer wall of the feed channel 6 is also designed as a further annular gap 17.
  • the annular gap consists of an outer tube 18 and an inner tube 19 and opens into the annular gap opening 9 of the first annular gap 8 opposite with in the annular gap opening 20 in the mixing zone of the two main streams 2.1 of the second reactant and 1.1 of the first reactant fed to one another.
  • the outer tube 18 of the further annular gap 17 merges into the boundary wall 6.1 of the derivative 5 for the reaction product 3, it being possible for the transitions to be made with rounded edges which favor the flow.
  • a main stream 2.1 of a second educt is fed to a mixing zone through a feed channel 6, which is also fed through the outer wall 15 through the outer wall 15, a main stream 1.1 of the first educt being fed through the feed channel 6.
  • further transitional forms between an axial derivative according to the reaction products 3 as shown in FIGS. 2 and 3 and the radially oriented derivative 14 according to FIG. 5 are conceivable.
  • mixing can take place with particularly effective use of the kinetic energy of the fluid streams.
  • the type of mixing results in particularly intensive contact between the educts, since the energy inherent in the educt jets can be completely converted into mixing energy.
  • the resulting high mixture intentions push the by-product formation largely back and allow by means of the method according to the invention and the device proposed according to the invention for mixing two streams the advantages of high operational safety, the avoidance of moving parts and the achievement of high yields. Large excesses of phosgene and high proportions of solvents in which the phosgene or the amines to be reacted have to be dissolved can be avoided, which is advantageous for later processing of the starting materials of the reaction product.
  • TDA 2,4-toluenediamine
  • ODB o-dichlorobenzene
  • 8100 kg / h of a 65% phosgene solution in a T-mixer were injected.
  • the inlet diameters of the T mixer were chosen so that the mean entry velocity of the phosgene and amine solution jets was about 10 m / s. After clear phosgenation and preparation by distillation, the yield was 96.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Vermischung von Edukströmmen in einem Mischer (13) zur Phosgenierung von Aminen, bei dem das Reaktionsprodukt (3) geschlossen abgeführt und die Eduktströme (1, 2) organische Lösungsmittel enthalten. Die Hauptströme (1.1, 2.1) und/oder Teilströme (1.2, 2.2) der Edukte (1, 2) treffen nach dem Gegenstromprinzip aufeinander.

Description

Verfahren und Vorrichtung zur kontinuierlichen Herstellung von organischen Mono- oder Polyisocyanaten
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur kontinuierlichen Herstellung von organischen Mono- oder Polyisocyanaten durch Umsetzen der den Mono- oder Polyisocyanaten entsprechenden Mono- oder Polyaminen mit Phosgen bei erhöhter Temperatur, wobei die Amine oder das Phosgen in orgamschem Lösungsmittel gelöst vorliegen können.
DE 2 153 268 bezieht sich auf ein kontinuierliches Vorphosgenisierungsverfahren für die Herstellung von organischen Isocyanaten. Eine in Turbulenz befindliche Phosgenlösung und Diaminlösung werden kontinuierlich in einer angetriebenen Kreiselpumpe gemischt. Die Phosgenlösung wird durch den Saugstutzen der mehrstufigen Kreiselpumpe und die Aminlösung in den in der Mitte zwischen dem ersten und zweiten Kreisel zusätzlich angebrachten seitlichen Zugang in die Kreiselpumpe eingegeben, bevor das Vorphosgenisierungsgemisch durch die mehrstufige Kreiselpumpe in eine nachgeschaltete Heißphosgenisierungsstufe gefördert wird.
EP 0 291 891 Bl betrifft ein Verfahren zur Herstellung von Isocyanaten. Es werden Lösungen und Suspensionen primärer Amine und deren Salze mit Phosgenlösungen vermischt und umgesetzt, wobei die beiden Stoffe in eine Mischzone eingebracht werden, die mindestens eine Rotorscheibe aufweist. Das entstandene Vorprodukt wird wieder ausgeführt, die weitere Umsetzung der entstandenen Primärprodukte erfolgt unter Erhitzen. Bei der Durchführung des Vermischens wird die Phosgenlösung axial zur Rotorscheibe zugeführt und das gelöste Amin parallel zum Strom, aber mit Abstand vom Strom der Phosgenlösung gegen die Rotorscheibe verdüst.
Bei den Mischungsverfahren mit bewegten Teilen, zu denen die oben skizzierten Lösungen zu zählen sind, stellen die Lagerungsstellen der bewegten Teile wegen der hohen Toxizität des Phosgens eine potentielle Gefahrenquelle dar, da durch diese Phosgen bei Leckagen entweichen kann. Daher wurde nach Verfahrensweisen gesucht, die Vermischung von Mono- oder Polyaminen ohne bewegte Teile zu erreichen. Aus EP 0 322 647 Bl ist ein Verfahren zur kontinuierlichen Herstellung von Mono- oder Polyisocyanaten bekannt, bei dem zur Herstellung der Ausgangsgemische die gegebenenfalls in einem inerten Lösungsmittel gelöste Aminkomponente und die Phosgenlösung in einer Düse zusanmiengeführt werden, indem die eine der beiden Komponenten in dieser Düse eingeschnürt wird und die andere Komponente in diese Einschnürung dem Strom der ersten Komponente in mehreren Teilströmen durch eine entsprechende Anzahl von über den Umfang der Einschnürung verteilten Bohrungen von der Seite her zugeführt wird. Die Gesamtlänge der Einschnürung ist so gewählt, daß sie eine Teillänge umfaßt, in welcher die Reaktion des freien Amins im Wesentlichen abgeschlossen ist. Der Nachteil bei dieser Anordnung ist darin zu erblicken, daß geringste Feststoffanlagerungen in einzelnen Löchern zu einem geringeren Durchfluß durch diese führen können.
Aus DE-OS 29 50 216 AI ist ein Verfahren und eine Vorrichtung zum innigen Vermischen zweier Flüssigkomponenten bekannt geworden. Die erste Komponente wird unter Druck in Form eines fächerförmigen Spritzstrahles in eine im Wesentlichen zylindrische Mischkammer in deren Längsachse strömend eingeführt. Senkrecht dazu wird gleichzeitig die zweite Komponente unter Druck in Form von mindestens zwei fächerförmigen Spritzstrahlen in den Spritzstrahl der ersten Komponente, in deren Strömungsbereich eingeführt. Anschließend wird das entstehende Gemisch der beiden flüssigen Komponenten aus der Mischkammer in eine nachgeschaltete Reaktionszone geführt. Aufgrund der hohen Vordrücke, die für das Verfahren notwendig sind, erscheint das Verfahren j edoch unbefriedigend.
SU 519 129 zeigt ein Produktionsverfahren für die Isocyanatherstellung. Es wird ein Produktionsverfahren für Isocyanate vorgestellt, wobei Phosgen gasförmig am Boden eines Reaktors bei Temperaturen zwischen 100°C und 180°C zugeführt wird, welches auf ein Aminsalz trifft, das im oberen Bereich des Reaktors zugeführt wird. Das Aminsalz wird bei Temperaturen zwischen 40°C und 100°C dem oberen Bereich des Reaktors zugeführt. Aus US 3,507,626 ist eine Venturimischeinrichtung bekannt. Diese Mischeinrichtung ist speziell zum Mischen von Phosgen mit Amin ausgelegt, sodass sich Isocyanate herstellen lassen und umfasst einen ersten und einen zweiten Einlass sowie einen Auslass. Ein erster Leitungsabschnitt umfasst eine Venturisektion mit einem konvergierenden Abschnitt, einer Engstelle und einem divergierenden Abschnitt. Ein zweiter Abschnitt ist koaxial im ersten Leitungsabschnitt aufgenommen und fungiert als erster Einlass. Der zweite Leitungsabschnitt umfasst eine Anschrägung, welche zum konvergierenden Abschnitt korrespondiert. Der zweite Leitungsabschnitt mündet in eine Mischkammer, die sich um die Venturi-Sektion des ersten Leitungsabschnittes erstreckt. Die Mischeinrichtung sichert das Mischen und verhindert das Verstopfen durch die Bildung von Nebenprodukten.
DE- AS 17 92 660 B2 bezieht sich auf ein Verfahren und eine Vorrichtung zum Mischen und Umsetzen eines Amins mit Phosgen zu einem Isocyanat. Gemäß dieses Verfahrens werden Amin und Phosgen koarxial zueinander geführt und miteinander gemischt, wobei die beiden Strömen von Amin und Phosgen ring- bzw. kegelförmig ausgebildet sind, sich an einer spitzwinklig einer Kreuzungs-Mischungsstelle schneiden und unmittelbar vor, an und nach dieser Kreuzungsstelle der Eintritt in einen weiteren Reaktionsraum beschleunigt werden, sodass eine Rückströmung von Isocyanat in den Aminstrom vermieden wird. Dies wird gemäß DE- AS 17 92 660 B2 durch eine Vorrichtung ermöglicht, bei der im hohlen Schaftabschnitt eines T-formigen Gehäuses ein Einlass für das Phosgen und im hohlen Querbalkenabschnitt des Gehäuses ein Durchgang für das Amin vorgesehen ist, in dem ein zylindrisches Glied angeordnet ist, welches das eine Ende dieses Durchgang verschließt und im anderen Ende dieses Durchgangs einen Reaktionsbereich festlegt. Das zylindrische Glied weist an seinem, den Durchgang verschließenden Ende einen Einlass für Amin in das Gehäuse auf, wobei dieses eine Einrichtung zur Einstellung der Strömungsgefündigkeit des Amins umfasst, deren dem Reaktionsbereich zugewandtes Ende einen Abschnitt mit sich verringernden Profil aufweist, der von dem Reaktionsbereich zugewandten Endabschnitt des zylindrischen Glieds einen vorbestimmten Abstand besitzt. Dieser Abschnitt lenkt den in das zylindrische Glied eintretenden Aminstrom in einem Winkel von der Außenfläche des Profilabschnittes weg und neben dem Reaktionsbereich unter einem Winkel quer über dem Durchgang gerichteten Strom um. Der Aminstrom, welcher durch den Durchgang strömt, der durch den Endabschnitt des zylindrischen Glieds verengt ist, schneidet das aus dem Reaktionsbereich einströmende Phosgen unter einem Winkel.
EP 0 830 894 AI bezieht sich auf einen Mischer-Reaktor und ein Verfahren zur Durchführung von Reaktionen, insbesondere die Phosgenisierung von primären Aminen. Bei diesem Mischer-Reaktor ist vorgesehen, die Verstopfung von rotationssymmetrisch zur Mischkammer angeordneten Düsen dadurch zu verhindern, daß ein in Richtung der Düsenachse verschiebbarer Bolzen zugeordnet ist. Bewegliche Teile an Phosgen umsetzenden Reaktoren stellen jedoch potentielle Leckagestellen dar und sind daher möglichst zu vermeiden. Angesichts der aufgezeigten Lösungen aus dem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Phosgenisierung von Aminen anzugeben, welches weniger Lösungsmitteleinsatz und weniger Phosgenüberschuß benötigt und bei dem weniger Nebenprodukte entstehen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei einem Verfahren zur Vermischung von Eduktströmen in einem Mischer zur Phosgenisierung von Aminen, bei dem das Reaktionsprodukt geschlossen abgeführt wird und die Eduktstrome organische Lösungsmittel enthalten können, Hauptströme und/oder Teilströme der Edukte nach dem Gegenstromprinzip aufeinandertreffen.
In völliger Abkehr von dem in der Fachwelt vorherrschenden Meinung, entsteht bei dem direkten Aufeinanderzuführen der Eduktstrahlen die geringste Nebenkomponentenbildung. Durch die gewählte Strömungsführung der in flüssiger Phase vorliegenden Edukte Amin und Phosgen kann eine maximale Vermischungsintensität erreicht werden, da der Impuls der beiden aufeinander treffenden Strahlen der Flüssigphasen der Edukte vollständig in Vermischungsenergie umsetzbar ist und von außen keine weitere Energiezufuhr mehr erforderlich ist. Der Effekt der schnellen Vermischung durch Maximierung der Vermischungsintensität überwiegt den Effekt der Rückvermischung, die als Ursache für die Nebenproduktbildung angesehen wird, bei weitem, so daß der Bildung unerwünschter Nebenprodukte beim Aufeinandertreffen der beiden Komponenten weitestgehend.die Basis entzogen ist.
In Weiterführung des der Erfindung zugrundeliegenden Gedankens ist das Gegenstromprinzip bei der Mischung der Eduktstrome bei Zuführwinkeln, die größer als 90° betragen, bewahrt, so daß den Eduktstrahlen eine axial gerichtete Geschwindigkeitskomponente jeweils innewohnt. Die Edukthauptströme lassen sich von Eduktteilströmen der jeweils anderen zu mischenden Komponente ummantelt zuführen, so daß sich beispielsweise ein leichter Phosgenüberschuß einstellen läßt, der Ablagerungen im Bereich der Ableitungen des Reaktionsproduktes aus der Mischzone der Zuführkanäle vermeiden hilft.
Es ist denkbar, daß sowohl der Hauptstrom des ersten Eduktes von einem Teilstrom des zweiten Eduktes ummantelt ist als auch der Hauptstrom des zweiten Eduktes von einem Teilstrom des ersten Eduktes ummantelt sein kann. Durch gezielte Vorwahl des Impulsverhältnisses der Impulse von Aminstrahlen als erstem Eduktstrom zu Phosgenstrahlen als zweitem Eduktstrom auf >1 liegend, lassen sich Ablagerungen an der Innenseite der Eirtführkanäle vermeiden, unabhängig davon, ob das Edukt im Unterschuß oder im Überschuß vorliegt.
Die Ableitung des Reaktionsproduktes aus der Mischzone innerhalb der Zuführkanäle kann einerseits durch eine radiale Ableitung erfolgen oder auch durch einen in einen bestimmten Winkel geneigte Ableitung vonstatten gehen.
Mittels der erfindungsgemäß weiterhin vorgeschlagenen Vorrichtung zum Mischen zweier Eduktstrome in ihrer jeweils flüssigen Phase lassen sich die Hauptströme zweier Edukte gezielt aufeinander zuleiten, so daß der jeweilige Impuls vollständig in Vermischungs- energie umsetzbar ist. In bevorzugter Ausgestaltung der Vorrichtung können die die Hauptströme der Edukte aufnehmenden Zuführkanäle von einem Ringspalt jeweils umgeben sein. Die Öffnungen der Ringspalte können einander gegenüberliegend positioniert im Bereich der Ableitung des Reaktionsproduktes münden. Durch Optimierung der Ringspaltöffnungen durch Verkürzungen einer die Ringspaltmündung begrenzenden Fläche läßt sich das Anlagern von Edukten an den Eduktströmen jeweils zugewandten Flächen der Zuführkanäle wirksam vermeiden.
Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.
Es zeigt:
Fig. 1 die schematisch dargestellte Konfiguration eines Y-Mischers,
Fig. 2 die Gegenstrommischung bei axialer Ableitung des entstehenden Reaktionsproduktes,
Fig. 3 die Gegenstrommischung bei Aufteilung eines Eduktstromes in Haupt- und Teileduktstrom,
Fig. 4 die Gegenstrommischung mit einem einen Zuführkanal ummantelnden Ringspalt mit verkürztem innerem Zylinder, Fig. 5 die Gegenstrommischung mit radialer Ableitung des entstehenden Reaktionsproduktes,
Fig. 6 die Ummantelung beider Edukthauptströme mit Eduktteilströmen der jeweils anderen Komponente und
Fig. 7 die Gegenstrommischung mit allgemein geneigter Ableitung für das Reaktionsprodukt.
Aus der Darstellung gemäß Fig. 1 geht die schematische Anordnung eines Y-Mischers 13 hervor. Unter einem Zuführwinkel 4, der größer als 90° ist, werden ein erster Eduktstrom 1 und ein zweiter Eduktstrom 2 zugeführt. Das entstehende Reaktionsprodukt 3 wird geschlossen in eine Raumrichtung sich in den unteren Bereich der dargestellten Mischerkonfiguration 13 erstreckend abgeführt.
Fig. 2 zeigt die Gegenstrommischung zweier Eduktstrome mit im Wesentlichen in axialer Richtung verlaufender Ableitung des Reaktionsproduktes.
In der in Fig. 2 dargestellten Ausfuhrungsvariante strömt ein Hauptstrom 2.1 des zweiten Eduktes innerhalb eines Zuführkanals 6 ein, während der Strömungsrichtung des Hauptstroms 2.1 entgegengesetzt der Hauptstrom 1.1 des ersten Eduktes 1 in einem Zuführkanal direkt entgegenströmt. Die beiden Zuführkanäle 6 und 7 sind in der dargestellten Ausführungsvariante beispielsweise symmetrisch zu einer Symmetrieachse 10. In der Mischzone der beiden Hauptströme 2.1 und 1.1 der Edukte 1 bzw. 2 zweigt eine Ableitung 5 ab, die durch eine Begrenzungswand 6.1 einerseits und durch eine Trennwand 7.1 zum Zuführkanal 7 des ersten Edukthauptstroms 1.1 getrennt ist. Die Ableitung 5 erstreckt sich im Wesentlichen in axialer Richtung parallel zu den dargestellten Zuführkanälen 6 und 7 für die jeweiligen Edukthauptströme 1.1 bzw. 2.1 und leitet das aus der Vermischung der beiden Edukthauptströme 1.1 und 2.1 gebildete Reaktionsprodukt 3 ab. In der in Fig. 2 dargestellten Ausfiihrungsvariante beträgt der Zuführwinkel 4 der beiden Edukthauptströme 2.1 bzw. 1.1 des ersten bzw. zweiten Eduktes etwa 180°, so daß durch die hier verwendete Strömungsführung durch Aufeinandertreffen der beiden Strahlen deren Impuls zur Erzielung einer maximalen Vermischungsintensität und der Erzeugung maximaler Vermischungsenergie genutzt werden kann. An der Trennwandung 7.1, die den Zuführkanal 7 des ersten Edukthauptstromes 1.1 von der Ableitung 5 des Reaktionsproduktes 3 trennt, sind mit den Buchstaben A und B, die für die Ablagerung von Reaktionskomponenten kritischen Stellen markiert.
Aus der Darstellung gemäß Fig. 3 geht die Gegenstrommischung bei Aufteilung eines der Eduktstrome in einen Haupt- und einen Teilstrom hervor.
Gemäß dieser Ausführungsvarianten einer Mischeinrichtung zur Mischung zweier Eduktstrome strömt der Hauptstrom 1.1 der ersten Eduktes in einen Zuführkanal 1, der jedoch zu der Ableitung 5, durch welche das Reaktionsprodukt 3 die Mischzone verläßt, nicht durch eine Trennwandung 7.1 gemäß Fig. 2, sondern durch einen Ringspalt 8 abgetrennt ist. Durch den Ringspalt 8 strömt ein Teilstrom 2.2 des zweiten Eduktes, so daß sich im Bereich der Ringspaltöffnung 9 des Ringspaltes 8 ein Phosgen, im vorliegenden Fall ein Phosgenüberschuß, einstellen läßt. Durch die Einstellung des Phosgenüberschusses im Bereich der Abzweigung der Ableitung 5 von den Zuführkanälen 6 und 7 läßt sich ein Aufbau von Ablagerungen an der mit A bezeichneten Stelle des Ringspaltes A, d.h. einer Begrenzungwand der Ableitung 5 vermeiden. Es hat sich herausgestellt, daß -sich durch eine Erhöhung des Impulses des Hauptstromes 1.1 des ersten Eduktstromes im Vergleich zum Impuls des Hauptstromes 2.1 des zweiten Eduktes an der Stelle B, d.h. daß sich an der Innenseite des Zuführkanales 7 der Aufbau von Ablagerungen vermeiden läßt. Die Vemieidung von Ablagerungen an der an mit B bezeichneten Stelle des Zuführkanales 7 kann durch die Erhöhung des Impulses des Hauptstromes 1.1 des ersten; Eduktes unabhängig davon erfolgen, ob diese Komponente im Überschuß oder im Unterschuß vorliegt.
Auch in der in Fig. 3 gezeigten Ausführungsvariante sind die Zuführkanäle 6 bzw. 7 für den Hauptstrom 1.1 des ersten Eduktes sowie den Hauptstrom 2.1 des zweiten Eduktes symmetrische zu einer Symmetrieachse 10 ausgebildet. Neben einer rotationssymmetrischen Ausbildung der Zuführkanäle lassen sich in diesen selbstverständlich auch andere Querschnitte realisieren.
Fig. 4 zeigt die Gegenstrommischung mit einem einen Zuführkanal ummantelnden Ringspalt mit verkürztem inneren Zylinder.
In der in Fig. 4 dargestellten Ausführungsvariante befindet sich - etwa vergleichbar zur Ausführungsvariante gemäß Fig. 3 - zwischen der Ableitung 5 für das Reaktionsprodukt 3 und den Zuführkanal 7 für den Hauptstrom 1.1 des ersten Eduktes ein Ringspalt 8. Durch den Ringspalt 8 wird ein Teilstrom 2.2 des zweiten Eduktes der Mischzone der beiden Hauptströme 1.1 bzw. 2.1 der Edukte 1 und 2 zugeführt, so daß in der Mischzone ein Phosgen, im vorliegenden Fall ein Phosgenüberschuß, vorliegt. Durch die Einstellung des Phosgenüberschusses durch die Zufuhr eines Phosgenteilstromes 2.2 via Ringspalt 8 lassen sich Ablagerungen, markiert mit A, im Bereich der Ableitung 5 vermeiden, während durch die verkürzte Ausführung der der Symmetrieachse 10 zugewandten Fläche des Zuführkanales 7 Ablagerungen an der mit B bezeichneten Stelle im Bereich der Ringspaltöffhung 9 wirksam verhindert werden können. In der Ausführungsvariante gemäß Fig. 4 ist die die Ableitung begrenzende Wandung 6.1 nur schematisch wiedergegeben. Zur Optimierung der Strömungsverhältnisse kann der Übergang des Zuführkanales 6 in die Ableitung und die sich daran anschließende Ableitung mit gut gerundeten, die Strömung möglichst wenig behindernden Kanten ausgeführt werden.
Es soll nicht unerwähnt bleiben, daß in die Zuführkanäle 6 für den Hauptstrom 2.1 des zweiten Eduktes sowie in den Zuführkanal 7 für den Hauptstrom 1.1 des ersten Eduktes Drall erzeugende Elemente eingebaut werden können. Während der Vermischung kann die beim Abbau des Dralls in der Mischzone frei werdende Mischenergie zur Beschleunigung des Vermischungsvorganges verwendet werden. Als ein Drall erzeugendes Element wäre beispielsweise ein tordiertes Band oder Spirale in die jeweiligen Zuführkanäle 6 und 7 für die Hauptströme 2.1 bzw. 1.1 der beiden Edukte einzulassen.
In der Darstellung gemäß Fig. 4 ist die Gegenstrommischung zweier Eduktstrome mit radialer Ableitung des Reaktionsproduktes dargestellt.
In der in Fig. 5 dargestellten Ausführungsvariante sind die Zuführkanäle 6 bzw. 7 für die Hauptströme 2.1 und 1.1 der beiden Edukte 1 bzw. 2 jeweils rotationssymmetrisch zu einer Symmetrieachse 10 ausgebildet. In der in Fig. 5 dargestellten Konfiguration weist der Zuführkanal 6 für den Hauptstrom 2.1 des zweiten Produktes einen größeren Durchmesser 16 auf, verglichen mit dem Zuführkanal 7 für den Hauptstrom 1.1 des ersten Eduktes. Die beiden Zuführkanäle 6 bzw. 7 münden in eine beiden gemeinsamen radialen Ableitung, die verglichen zur Symmetrieachse 10 der Zuführkanäle 6 bzw. 7 exakt senkrecht angeordnet ist und einen senkrechten Austrag des Reaktionsproduktes erlaubt.
In der Darstellung gemäß Fig. 6 ist eine Gegenstrommischung zweier Eduktstr me unter Ummantelung beider Edukthauptströme mit Eduktteilströmungen der jeweils anderen Komponente wiedergegeben. Analog zu den im Zusammenhang mit Fig. 3 und mit Fig. 4 beschriebenen Ausführungsvarianten wird die Ableitung 5, durch welche das Reaktionsprodukt 3 die Mischzone verläßt, in der Ausführungsvariante gemäß Fig. 6 durch einen Ringspalt 8 getrennt. Der Ringspalt 8 wird jeweils durch ein Außenrohr 11 sowie ein Innenrohr 12 begrenzt, welche in der dargestellten Ausführungsvariante in die Ringspaltöffnung münden, wobei sowohl Außenrohr als auch Innenrohr gleich lang ausgebildet sind und einen Teilstrom 2.2 des zweiten Eduktes der Mischzone zu leiten. In der Ausfuhrungsvariante gemäß Fig. 6 ist darüber hinaus die Außenwandung des Zufuhrkanals 6 als weiterer Ringspalt 17 ausgebildet. Der Ringspalt besteht aus einem Außenrohr 18 und einem Innenrohr 19 und mündet in die Ringspaltöffnung 9 des ersten Ringspaltes 8 gegenüberliegend mit in der Ringspaltöffnung 20 in der Mischzone der beiden aufeinander zugefuhrten Hauptströme 2.1 des zweiten Eduktes und 1.1 des ersten Eduktes. Das Außenrohr 18 des weiteren Ringspaltes 17 geht in die Begrenzungswand 6.1 der Ableitung 5 für das Reaktionsprodukt 3 über, wobei die Übergänge mit die Strömungs erhältnisse begünstigenden gerundeten Kanten ausgeführt sein können.
In der Ausführungsvariante gemäß Fig. 7 ist eine Gegenstrommischung mit einer um einen Winkel geneigten Ableitung für das Reaktionsprodukt dargestellt.
Auch in dieser Ausführungsvariante gemäß Fig. 7 wird durch einen Zuführkanal 6 ein Hauptstrom 2.1 eines zweiten Eduktes einer Mischzone zugeleitet, der ebenfalls durch den Zuführkanal 6 begrenzt durch die Außenwandung 15 ein Hauptstrom 1.1 des ersten Eduktes zugeleitet wird. Im Bereich der Mischzone zweigt eine Ableitung 5 für das Reaktionsprodukt 3 ab, welcher unter einem Winkel von = 30° in Bezug auf die Symmetrieachse 10 angeordnet sein kann. Neben der in Fig. 7 dargestellten Neigung der Ableitung 5 sind weitere Übergangsformen zwischen einer axialen Ableitung gemäß der Reaktionsprodukte 3 gemäß der Darstellung in den Figuren 2 und 3 und der radial orientierten Ableitung 14 gemäß Fig. 5 denkbar.
Mit den in den vorbeschriebenen Ausführungsvarianten dargestellten Mischerkonfigurationen kann eine Vermischung unter besonders effektiver Ausnutzung der kinetischen Energie der Fluidströme erfolgen. Durch die Art der Vermischung kommt es zu besonders intensivem Kontakt zwischen Edukten, da die den Eduktstrahlen innewohnende Energie vollständig in Vermischungsenergie umgesetzt werden kann. Die resultierenden hohen Mischungsintesitäten drängen die Nebenproduktbildung weitestgehend zurück und erlauben mittels des erfindungsgemäßen Verfahrens und der erfmdungsgemäß vorgeschlagenen Vorrichtung zum Mischen zweier Ströme die Vorteile einer hohen Betriebssicherheit, die Vermeidung bewegter Teile sowie das Erzielen hoher Ausbeuten. Hohe Phosgenüberschüsse sowie hohe Lösungsmittelanteile, in welchen das Phosgen bzw. die umzusetzenden Amine gelöst werden müssen, lassen sich vermeiden, was einer späteren Aufarbeitung der Edukte des Reaktionsproduktes günstig ist. Als Ausführungsbeispiel sei genannt, daß 420 kg/h 2,4 Toluylendiamin (TDA) als Lösung in 2450 kg/h o-Dichlorbenzol (ODB) vorgemischt werden und zusammen mit 8100 kg/h einer 65%-igen Phosgenlösung in einem T-Mischer eingedüst wurden. Die Eintrittsdurchmesser des T-Mischers wurden so gewählt, daß sich eine mittlere Eintrittsgeschwindigkeit der Phosgen- und Aminlösungsstrahlen von etwa 10 m/s ergab. Nach Klarphosgenieren und destillativer Aufbereitung ergab sich eine Ausbeute von 96,4 %.
Bei gleichen Mengenströmen und Eintrittsgeschwindigkeiten und Verwendung eines Y- Mischers 13 mit einem Zuführwinkel 4 zwischen den beiden Zuführungen von etwa 120° ergab sich nach Klarphosgenieren und destillativer Aufbereitung eine Ausbeute von 95,3 %. Ebenfalls bei gleichen JVIengenströmen und Eintrittsgeschwindigkeiten , und Verwendung eines Gegenstrommischers mit radialer Ableitung 14 des Reaktionsproduktes 3 ergab sich nach Klarphosgenieren und destillativer Aufbereitung eine Ausbeute von 97,4 %.
Bezugszeichenliste
1 erster Eduktstrom 9 Ringspaltöffnung
1.1 Hauptstrom 10 Symmetrieachse
1.2 Teilstrom 11 Außenrohr
2 zweiter Eduktstrom 12 Innenrohr
2.1 Hauptstrom 12.1 verkürztes Innenrohr
2.2 Teilstrom 13 Y-Mischerkonfiguration
3 Reaktionsprodukt 14 radiale Ableitung
4 Zuführwinkel 15 Außenwand Eduktkanal 7
5 Ableitung 16 Außenwand Eduktkanal 5
6 Zuführkanal Edukt 2 17 weiterer Ringspalt
6.1 Begrenzungswand 18 Außenrohr
7 Zuführkanal Edukt 1 19 Innenrohr
7.1 Trennwandung 20 Ringspaltöffnung
8 Ringspalt '

Claims

Patentansprüche
1. Verfahren zur Vermischung von Eduktströmen in füssiger Phase in einem Mischer (13) zur Phosgenisierung von Aminen, bei dem das Reaktionsprodukt (3) geschlossen abgeführt wird und die Eduktstrome (1, 2) organische Lösungsmittel enthalten können, dadurch gekennzeichnet, daß Hauptströme (1.1, 2.1) und/oder Teilströme (1.2, 2.2) der Edukte (1, 2) nach dem Gegenstromprinzip unter einem Zuführwinkel (4) von α > 90° aufeinandertreffen und der Impuls eines der Hauptströme (1.1, 2.1) den des anderen der Hauptströme (1.1, 2.1) übersteigt.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Edukthauptströme (1.1, 2.1) von Eduktteilströmen (1.2, 2.2) ummantelt, zugeführt werden.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß der Hauptstrom (1.1) des ersten Eduktes von einem Teilstrom (2.2) des zweiten Eduktes ummantelt ist.
4. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß der Hauptstrom (2.1) des zweiten Eduktes von einem Teilstrom (1.2) des ersten Eduktes ummantelt ist.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis der Impulse des Hauptstromes (1.1) des ersten Eduktes zu dem des Hauptstromes (2.1) des zweiten Eduktes > 1 ist
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Ableiten des Reaktionsproduktes (13) durch eine radiale Ableitung (14) erfolgt.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Ableiten des Reaktionsproduktes (3) durch eine axiale Ableitung (5) erfolgt.
8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Ableitung (5) in einem Winkelbereich zwischen 0 und 90° bezogen auf eine Symmetrieachse (10) orientiert ist.
9. Vorrichtung zum Mischen zweier Eduktstrome (1, 2), die einer Mischkonfiguration (13) zugeführt werden, dadurch gekennzeichnet, daß Hauptströme (2.1, 1.1) der
Edukte (1, 2) in aufeinander gerichteten Zuführkanälen (6, 7) gefordert werden, von denen eine Ableitung (5, 14) abzweigt.
10. Vorrichtung zum Mischen gemäß Anspruch 9, dadurch gekennzeichnet, daß mindestens einer der Zuführkanäle (6, 7) von einem Ringspalt (8, 17) umgeben ist.
11. Vorrichtung zum Mischen gemäß Anspruch 10, dadurch gekennzeichnet, daß die Öffnung (9, 20) der Ringspalte (8, 17) im Bereich der Ableitung (5) münden.
12. Vorrichtung zum Mischen gemäß Anspruch 9, dadurch gekennzeichnet, daß die Ringspalte (8, 17) im Bereich der Mündung (9, 20) eine verkürzte Wandung (12.1) aufweisen soll.
PCT/EP2001/005818 2000-05-26 2001-05-21 Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten WO2001091898A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP01945178A EP1289649B1 (de) 2000-05-26 2001-05-21 Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten
JP2001587903A JP4959092B2 (ja) 2000-05-26 2001-05-21 有機モノイソシアネートまたはポリイソシアネートの連続製造法およびそのための装置
AU2001267470A AU2001267470A1 (en) 2000-05-26 2001-05-21 Method and device for the continuous production of organic mono or polyisocyanates
DE50112295T DE50112295D1 (de) 2000-05-26 2001-05-21 Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten
HU0301844A HU229267B1 (en) 2000-05-26 2001-05-21 Method and device for the continuous production of organic mono or polyisocyanates
US10/296,595 US6867324B2 (en) 2000-05-26 2001-05-21 Method and device for the continuous production of organic mono or polyisocyanates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10026142A DE10026142A1 (de) 2000-05-26 2000-05-26 Verfahren und Vorrichtung zur kontinuierlichen Herstellung von organischen Mono- oder Polyisocyanaten
DE10026142.6 2000-05-26

Publications (1)

Publication Number Publication Date
WO2001091898A1 true WO2001091898A1 (de) 2001-12-06

Family

ID=7643675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005818 WO2001091898A1 (de) 2000-05-26 2001-05-21 Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten

Country Status (12)

Country Link
US (1) US6867324B2 (de)
EP (1) EP1289649B1 (de)
JP (1) JP4959092B2 (de)
KR (1) KR100809167B1 (de)
CN (1) CN1216681C (de)
AT (1) ATE358532T1 (de)
AU (1) AU2001267470A1 (de)
DE (2) DE10026142A1 (de)
ES (1) ES2282264T3 (de)
HU (1) HU229267B1 (de)
PT (1) PT1289649E (de)
WO (1) WO2001091898A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897806B2 (en) 2004-11-03 2011-03-01 Basf Aktiengesellschaft Method for producing polyisocyanates
US8212069B2 (en) 2006-10-26 2012-07-03 Ralf Boehling Process for preparing isocyanates

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002453A (ja) * 2006-05-22 2008-01-10 Nidec Sankyo Corp ミキシングポンプ装置および燃料電池
EP2044009B1 (de) 2006-07-13 2015-02-25 Basf Se Verfahren zur herstellung von isocyanaten
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
WO2009033000A1 (en) * 2007-09-07 2009-03-12 Concord Materials Technologies Llc. Method of dynamic mixing of fluids
US9708185B2 (en) 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
DE102008063728A1 (de) * 2008-12-18 2010-06-24 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
CN101708438B (zh) * 2009-12-04 2011-12-28 天津大学 一种混合器及制备有机异氰酸酯的方法
JP5934702B2 (ja) * 2010-06-14 2016-06-15 ダウ グローバル テクノロジーズ エルエルシー 静的反応性ジェットミキサ、および、アミン−ホスゲン混合プロセスの間に混合する方法
EP3009185B1 (de) * 2010-09-28 2017-08-16 Dow Global Technologies LLC Statischer mischer mit reaktiver strömung und querstromobstruktionen und mischverfahren
KR102081402B1 (ko) * 2011-11-29 2020-02-25 바스프 에스이 기상 중 상응하는 아민의 포스겐화에 의한 이소시아네이트의 제조 방법
CN108325492B (zh) * 2018-03-14 2023-12-19 湖北丽康源化工有限公司 一种制备h酸的硝化工艺及装置
WO2021252715A1 (en) * 2020-06-10 2021-12-16 The Johns Hopkins University Axisymmetric confined impinging jet mixer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB448489A (en) * 1935-10-10 1936-06-09 Concordia Elektrizitaets Ag A device for producing foam for fire extinguishing purposes
DE3630097A1 (de) * 1986-09-04 1988-03-17 Gerhard Ing Grad Moskau Verfahren und vorrichtung zur verbrennung, vergasung oder entgasung von abwaessern oder waessrigen schlaemmen
EP0271684A2 (de) * 1986-11-04 1988-06-22 Ube Cycon, Ltd. Agglomerationsverfahren für einen Polymerlatex
EP0372483A1 (de) * 1988-12-05 1990-06-13 Albemarle Corporation Verfahren zur Herstellung von Aluminoxanen
DD300168A7 (de) * 1988-12-21 1992-05-27 Schwarzheide Synthesewerk Veb Verfahren und Vorrichtung zur kontinuierlichen Umsetzung von Diaminodiphenylmethan/Polyamin-Gemischen mit Phosgen zu Polyisocyanaten
WO1997021535A1 (en) * 1995-12-11 1997-06-19 SCA Mölnlycke AB A method of welding or cutting material ultrasonically
US5763697A (en) * 1995-10-22 1998-06-09 Josef Meissner Gmbh & Co. Process for the nitration of aromatic compounds

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1146872B (de) * 1959-01-29 1963-04-11 Bayer Ag Verfahren zur Herstellung von organischen Isocyanaten
US3507626A (en) * 1965-10-15 1970-04-21 Mobay Chemical Corp Venturi mixer
GB1238669A (de) * 1968-03-12 1971-07-07
FR2127146A5 (de) 1971-02-25 1972-10-13 Brev Etudes Sibe
US3947484A (en) 1971-10-26 1976-03-30 Bayer Aktiengesellschaft Continuous prephosgenation process for the production of organic isocyanates
CA1137076A (en) * 1978-12-13 1982-12-07 John R. Bauer Fluid spray mixer - reactor system
US4289732A (en) * 1978-12-13 1981-09-15 The Upjohn Company Apparatus for intimately admixing two chemically reactive liquid components
JPS5748954A (en) * 1980-09-10 1982-03-20 Mitsui Toatsu Chem Inc Preparation of organic isocyanates
JPH0822375B2 (ja) * 1987-04-30 1996-03-06 ノードソン株式会社 液体の衝突式混合吐出又は噴出方法とその装置
JPS63286585A (ja) 1987-05-16 1988-11-24 Nippon Parkerizing Co Ltd チタンまたはその合金の化成処理液ならびに該化成処理液でのチタンまたはその合金の表面処理方法
DE3717057A1 (de) * 1987-05-21 1988-12-01 Bayer Ag Verfahren zur herstellung von isocyanaten
DE3744001C1 (de) 1987-12-24 1989-06-08 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Mono- oder Polyisocyanaten
JPH02152532A (ja) * 1988-12-02 1990-06-12 Minoru Nakamura 液体混合装置
JPH0676538B2 (ja) * 1989-05-30 1994-09-28 旭化成工業株式会社 ポリオキシメチレン組成物
DE19638567A1 (de) 1996-09-20 1998-03-26 Bayer Ag Mischer-Reaktor und Verfahren zur Durchführung von Reaktionen, insbesondere die Phosgenierung von primären Aminen
JP3681561B2 (ja) * 1997-12-26 2005-08-10 日本碍子株式会社 物質の均一混合方法及び混合装置
DE19817691A1 (de) * 1998-04-21 1999-10-28 Basf Ag Verfahren zur Herstellung von Mischungen aus Diphenylmehandiisocyanaten und Polyphenylen-polymethylen-polyisocyanaten mit vermindertem Gehalt an chlorierten Nebenprodukten und verminderter Jodfarbzahl

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB448489A (en) * 1935-10-10 1936-06-09 Concordia Elektrizitaets Ag A device for producing foam for fire extinguishing purposes
DE3630097A1 (de) * 1986-09-04 1988-03-17 Gerhard Ing Grad Moskau Verfahren und vorrichtung zur verbrennung, vergasung oder entgasung von abwaessern oder waessrigen schlaemmen
EP0271684A2 (de) * 1986-11-04 1988-06-22 Ube Cycon, Ltd. Agglomerationsverfahren für einen Polymerlatex
EP0372483A1 (de) * 1988-12-05 1990-06-13 Albemarle Corporation Verfahren zur Herstellung von Aluminoxanen
DD300168A7 (de) * 1988-12-21 1992-05-27 Schwarzheide Synthesewerk Veb Verfahren und Vorrichtung zur kontinuierlichen Umsetzung von Diaminodiphenylmethan/Polyamin-Gemischen mit Phosgen zu Polyisocyanaten
US5763697A (en) * 1995-10-22 1998-06-09 Josef Meissner Gmbh & Co. Process for the nitration of aromatic compounds
WO1997021535A1 (en) * 1995-12-11 1997-06-19 SCA Mölnlycke AB A method of welding or cutting material ultrasonically

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897806B2 (en) 2004-11-03 2011-03-01 Basf Aktiengesellschaft Method for producing polyisocyanates
US8212069B2 (en) 2006-10-26 2012-07-03 Ralf Boehling Process for preparing isocyanates
EP2084128B1 (de) * 2006-10-26 2014-05-14 Basf Se Verfahren zur herstellung von isocyanaten
US8772535B2 (en) 2006-10-26 2014-07-08 Basf Se Process for preparing isocyanates

Also Published As

Publication number Publication date
JP2003535064A (ja) 2003-11-25
DE10026142A1 (de) 2001-12-13
HUP0301844A3 (en) 2007-10-29
US20030166965A1 (en) 2003-09-04
DE50112295D1 (de) 2007-05-16
KR20030022132A (ko) 2003-03-15
EP1289649A1 (de) 2003-03-12
US6867324B2 (en) 2005-03-15
HU229267B1 (en) 2013-10-28
PT1289649E (pt) 2007-05-31
JP4959092B2 (ja) 2012-06-20
ES2282264T3 (es) 2007-10-16
HUP0301844A2 (hu) 2003-09-29
CN1434743A (zh) 2003-08-06
EP1289649B1 (de) 2007-04-04
CN1216681C (zh) 2005-08-31
AU2001267470A1 (en) 2001-12-11
KR100809167B1 (ko) 2008-02-29
ATE358532T1 (de) 2007-04-15

Similar Documents

Publication Publication Date Title
EP1296753B1 (de) Verfahren und vorrichtung zur verringerung von nebenprodukten bei der vermischung von eduktströmen
EP1289649B1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen mono-oder polyisocyanaten
DE2950216C2 (de)
EP2091912B1 (de) Verfahren zur herstellung von isocyanaten
DE69115047T2 (de) Zerstäubungsdüse.
EP0830894B1 (de) Mischer-Reaktor und Verfahren zur Durchführung von Reaktionen, insbesondere die Phosgenierung von primären Aminen
DE69629276T2 (de) Flachstrahldüse
EP1986788B1 (de) Zweistoffdüse mit kreisförmig angeordneten sekundärluftdüsen
EP1924552B1 (de) Verfahren und vorrichtung zur herstellung von isocyanaten
DE1792660C3 (de) Verfahren und Vorrichtung zum Mischen und Umsetzen eines Amins mit Phosgen zu einem Isocyanat
EP3042724B1 (de) Verfahren zum erzeugen eines sprühstrahls und zweistoffdüse
EP2188248A1 (de) Verfahren zur herstellung von isocyanaten
WO2011023302A1 (de) Verfahren und vorrichtung zur herstellung eines sprühauftrags aus reaktivkunststoff
WO2008055904A1 (de) Verfahren zur herstellung von isocyanaten
DE2319173B2 (de) Dünnfilm-Gleichstrom-Reaktor
WO1999033554A1 (de) Vorrichtung zum mischen und anschliessendem versprühen von flüssigkeiten
EP1694430B1 (de) Verfahren und vorrichtung zum eindüsen von sauerstoff in einen synthesereaktor
DD300168A7 (de) Verfahren und Vorrichtung zur kontinuierlichen Umsetzung von Diaminodiphenylmethan/Polyamin-Gemischen mit Phosgen zu Polyisocyanaten
DE3233744A1 (de) Verfahren zum mischen von trockengemisch und wasser beim trockenspritzen und mischrohr fuer das trockenspritzverfahren
EP2907582B1 (de) Verfahren und Düse zum Mischen und Versprühen von medizinischen Fluiden
DE68909040T2 (de) Verfahren und Einrichtung zur Vernebelung von Flüssigkeiten für den Kontakt mit fluidisierten Teilchen.
EP3187257A1 (de) Kavitationsreaktoreinrichtung zum behandeln von fliessfähigen substanzen
DD142358A1 (de) Verfahren und vorrichtung zum thermischen spritzen von oberflaechenschichten
DD147106A5 (de) Verfahren zur herstellung von suspensionen von cyanurchlorid
DE2209441B2 (de) Kornschälvorrichtu ng

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 018099327

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027015867

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10296595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001945178

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001945178

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027015867

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001945178

Country of ref document: EP