WO2001072417A1 - Agent desulfurant pour hydrocarbures derives de petrole, procede de fabrication d'hydrogene pour pile a combustible et procede de fabrication d'agent desulfurant a base de nickel - Google Patents

Agent desulfurant pour hydrocarbures derives de petrole, procede de fabrication d'hydrogene pour pile a combustible et procede de fabrication d'agent desulfurant a base de nickel Download PDF

Info

Publication number
WO2001072417A1
WO2001072417A1 PCT/JP2001/002861 JP0102861W WO0172417A1 WO 2001072417 A1 WO2001072417 A1 WO 2001072417A1 JP 0102861 W JP0102861 W JP 0102861W WO 0172417 A1 WO0172417 A1 WO 0172417A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurizing agent
carrier
nickel
weight
aqueous solution
Prior art date
Application number
PCT/JP2001/002861
Other languages
English (en)
French (fr)
Inventor
Hisashi Katsuno
Satoshi Matsuda
Kazuhito Saito
Masahiro Yoshinaka
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000096490A external-priority patent/JP4388665B2/ja
Priority claimed from JP2000096487A external-priority patent/JP4531917B2/ja
Priority claimed from JP2000214146A external-priority patent/JP4580071B2/ja
Priority claimed from JP2000214145A external-priority patent/JP4580070B2/ja
Priority claimed from JP2000214147A external-priority patent/JP4531939B2/ja
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to DK01917783.1T priority Critical patent/DK1270069T3/da
Priority to EP01917783A priority patent/EP1270069B1/en
Priority to AU2001244705A priority patent/AU2001244705A1/en
Priority to US10/221,199 priority patent/US7268097B2/en
Publication of WO2001072417A1 publication Critical patent/WO2001072417A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/515Specific contaminant removal
    • Y10S502/517Sulfur or sulfur compound removal

Definitions

  • the present invention relates to a desulfurizing agent for petroleum hydrocarbons, a method for producing hydrogen for fuel cells, and a method for producing a Nigel-type desulfurizing agent. More specifically, the present invention relates to a long-life desulfurizing agent capable of effectively removing sulfur content in petroleum hydrocarbons to a low concentration, and a petroleum hydrocarbon desulfurized using the desulfurization agent. To a method for producing hydrogen for fuel cells by steam reforming, and a method for efficiently producing a Nigel desulfurizing agent having the above-mentioned excellent performance. Background art
  • Known types of fuel cells include a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type, depending on the type of electrolyte used.
  • hydrogen sources include liquefied natural gas consisting mainly of methanol and methane, city gas containing this natural gas as a main component, synthetic liquid fuel using natural gas as a raw material, and petroleum-based fuel. LPG, naphtha, kerosene The use of petroleum hydrocarbons, such as, has been studied.
  • petroleum hydrocarbons have a problem in that they have a higher sulfur content than methanol and natural gas fuels.
  • a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming in the presence of a reforming catalyst.
  • the reforming catalyst is poisoned by the sulfur content in the hydrocarbons. Therefore, from the viewpoint of the life of the catalyst, the hydrocarbon is subjected to a desulfurization treatment to obtain a sulfur content. It is usually important to reduce this to below 0.2 ppm by weight.
  • hydrodesulfurization catalysts such as Co—Mo / alumina and Ni-M0 / alumina and Zn0
  • a method of hydrodesulfurization using a hydrogen sulfide adsorbent such as this at a pressure of normal pressure to 5 MPa at a temperature of 200 to 400 ° C is known.
  • hydrodesulfurization is performed under severe conditions to remove the sulfur content into hydrogen sulfide, and it is difficult to reduce the sulfur content to 0.2 ppm by weight or less. Not applicable to petroleum hydrocarbons.
  • Nigel is a desulfurizing agent that adsorbs and removes sulfur in petroleum hydrocarbons under mild conditions without hydrorefining treatment and can reduce the sulfur content to 0.2 ppm by weight or less.
  • Nigel-copper adsorbents are known [Japanese Patent Publication No. 6-6562, No. 7-111, No. 4; No. 7-11, No. 7-114] Gazette, Japanese Patent Laid-Open No. 1 — 1 8 8 4 No. 2-2 75701 No. 1; No. 2-2 0 4 3 0 1 No. 1; No. 5-7 0 7 8 0; No. 6-8 0 9 7 No. 2, JP-A-6-9-11173, JP-A-6-2 870 (Japanese) (Japanese), JP-A-6-315 628 (Japanese) Nickel-copper-based adsorbent)]).
  • nickel-based or nickel-copper-based adsorbents are advantageous for use as desulfurizing agents for petroleum hydrocarbons for fuel cells, but all have a long life as desulfurizing agents. It is not yet practically practical, and it is not clear how to design adsorbents suitable for petroleum hydrocarbon desulfurization. In particular, the nickel-copper-based sorbent was still insufficient for desulfurizing sulfur efficiently. Disclosure of the invention
  • a first object of the present invention is to remove sulfur components from petroleum hydrocarbons to 0.2 ppm by weight or less efficiently and to be industrially advantageous with a long life.
  • An object of the present invention is to provide a desulfurizing agent used for petroleum hydrocarbons.
  • a second object is to provide a method for producing hydrogen for a fuel cell by subjecting a petroleum hydrocarbon desulfurized using this desulfurizing agent to steam reforming.
  • a third purpose is to efficiently remove sulfur from petroleum hydrocarbons to an extremely low concentration and to have a long service life and industrially advantageous nickel or nickel for petroleum hydrocarbons.
  • An object of the present invention is to provide a method for producing a nickel-copper desulfurizing agent.
  • a supported desulfurizing agent or a desulfurizing agent having a hydrogen adsorption amount of a specific value or more can be suitable for the first purpose as a desulfurizing agent for petroleum hydrocarbons.
  • hydrogen for fuel cells could be obtained efficiently and the second object could be achieved by subjecting petroleum hydrocarbons desulfurized with these desulfurizing agents to steam reforming.
  • the third object can be achieved by mixing an acidic aqueous solution or an acidic dispersion containing a Nigel source and an aluminum source with a basic aqueous solution containing a gay source, and calcining the resulting solid, or
  • the third object can be achieved by mixing an acidic aqueous solution or acidic dispersion containing a copper source and a carrier with a basic aqueous solution containing an inorganic base and baking the resulting solid. And found.
  • the present invention has been completed based on such findings.
  • a silica-alumina desulfurizing agent for petroleum hydrocarbons that supports at least nickel on an alumina carrier, and has a pore ratio surface area of 3 nm or less and a pore area of 100 m 2 / g or more.
  • a desulfurizing agent for petroleum hydrocarbons hereinafter referred to as desulfurizing agent II
  • silica-alumina carrier with (A) nickel, (B) copper, () alkali metal, alkaline earth metal, transition metal, noble metal and rare metal Ni-Cu-based desulfurizing agent (hereinafter referred to as desulfurizing agent ⁇ ) supporting at least one selected from earth elements
  • a desulfurizing agent for petroleum hydrocarbons characterized in that at least nickel is supported on a silica-alumina carrier and the hydrogen adsorption amount is 0.4 millimol Z or more (hereinafter referred to as desulfurizing agent IV). ),
  • a method for producing hydrogen for a fuel cell comprising: desulfurizing a petroleum hydrocarbon using the desulfurizing agent I, II, ffl or IV, and then contacting the desulfurized hydrocarbon with a steam reforming catalyst.
  • a method for producing a desulfurizing agent comprising nickel and copper supported on a silica-alumina carrier comprising: an acidic aqueous solution or an acidic aqueous dispersion having a pH of 2 or less containing a nickel source, a copper source and a carrier;
  • a method for producing a nickel-copper-based desulfurizing agent characterized by mixing a basic aqueous solution containing a base and calcining the resulting solid hereinafter referred to as Production Method II-a).
  • a method for producing a desulfurizing agent comprising nickel and copper supported on a silica-alumina carrier comprising: a nickel source, a copper source and an acidic aqueous solution or a dispersion of acidic water having a pH of 2 or less, the carrier comprising:
  • a method for producing a nickel-copper desulfurizing agent which comprises mixing a basic aqueous solution containing an inorganic base and a carrier and then calcining the resulting solid (hereinafter referred to as Production Method II-b). It provides BEST MODE FOR CARRYING OUT THE INVENTION
  • the desulfurizing agent I of the present invention is a desulfurizing agent obtained by supporting nickel on a silica-based alumina carrier having a Si / A1 molar ratio of 10 or less.
  • the silica / alumina carrier in the desulfurizing agent I has a Si / A1 molar ratio of more than 10, no satisfactory desulfurization performance can be obtained.
  • Preferred Sino A 1 molar ratios are selected in the range of 0.1 to 8.
  • the supported amount is less than 40% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. In consideration of desulfurization performance, mechanical strength, and the like, the more preferable amount of nickel metal supported is in the range of 50 to 70% by weight.
  • the desulfurizing agent for petroleum hydrocarbons II of the present invention has a metal component supported on a carrier, and has a pore specific surface area of 3 nm or less and a pore specific surface area of 100 m 2 / g or more. Is used.
  • a pore having a pore diameter of 3 nm or less and a pore specific surface area of 10 Om 2 / g or more If this pore specific surface area is less than 10 O m 2 / g, it is a desulfurization active ingredient. The dispersibility of the metal becomes insufficient, and sufficient desulfurization performance may not be obtained.
  • the upper limit of the pore specific surface area is not particularly limited. However, it is difficult to produce a large pore specific surface area. 0 0 ⁇ 2 5 0 m 2 / g range verses preferred, in particular 1 2 0 ⁇ 2 2 0 m 2 / g range is not to prefer.
  • the pore specific surface area and BET value of the pore diameter of 3 nm or less are values measured by the following method.
  • a porous carrier is preferable, and a porous inorganic oxide is particularly preferable.
  • examples of such materials include silica, alumina, silica alumina, titania, zirconia, magnesium, zinc oxide, clay, clay, and diatomaceous earth. These may be used alone or in combination of two or more. Of these, silica-alumina is particularly preferred.
  • the metal component to be supported on these carriers Nigel or copper or both are particularly preferable. If necessary, a small amount of other metals such as cobalt, iron, manganese, and chromium may be mixed.
  • the amount of nickel carried is preferably 40% by weight or more as nickel metal based on the total amount of the desulfurizing agent. If the supported amount is less than 40% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in mechanical strength and desulfurization performance of the desulfurizing agent. Desulfurization performance and mechanical Considering the strength, etc., the more preferable loading amount of this metallic nickel is
  • the supported amount of copper is preferably 5 to 50% by weight, more preferably 10 to 35% by weight, based on the total amount of the desulfurizing agent as metallic copper. If the supported amount is less than 5% by weight, the sulfur adsorption rate may decrease, and if it exceeds 50% by weight, the sulfur adsorption capacity may decrease.
  • Two Ggeru the case of copper to responsible lifting is 6 0-9 0 weight 0 6 at the total amount of carried metal conversion based on the desulfurizing agent the total amount, further 6 0-8 0% by weight preferred arbitrariness.
  • the method for supporting the metal component on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, or a kneading method can be employed.
  • a preferable desulfurizing agent of the present invention which is a desulfurizing agent comprising nickel-nickel or nickel-copper supported on a silica-alumina carrier, can be produced, for example, by the following coprecipitation method.
  • an acidic aqueous solution or an acidic aqueous dispersion containing a nickel source and an aluminum source, and if necessary, a copper source, and a basic aqueous solution containing a gay element source and an inorganic base are prepared.
  • the Nigger source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, and hydrates thereof.
  • the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate and hydrates thereof.
  • aluminum sources include aluminum nitrate, pseudo-boehmite, boehmite alumina, alumina hydrates such as noyrite and jibsite, and alumina.
  • the source of gay element used in the basic aqueous solution may be any one that is soluble in an aqueous alkali solution and can be used as a viscous force by firing.
  • examples thereof include orthokeic acid, metasilicic acid, sodium salts and potassium salts thereof, and water glass.
  • examples of the inorganic base include carbonates and hydroxides of alkali metals.
  • the produced solid is thoroughly washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and thoroughly washed, and then the solid is subjected to a known method. Dry at a temperature of about 0 to 150 ° C.
  • the dried product thus obtained was calcined, preferably at a temperature in the range of 200 to 400 ° C., so that the metal component was supported on the silica alumina carrier.
  • a desulfurizing agent is obtained.
  • the type and amount of raw materials to be used, reaction conditions, calcination conditions, and the like are selected so that the carrier having the above-described pore distribution is formed and the amount of supported metal is a desired value.
  • the Ni—Cu-based desulfurizing agent III of the present invention comprises: (A) nickel, (B) copper and (C) an alkali metal, an alkaline earth metal, a transition metal, a noble metal and a rare earth element. At least one kind selected from among them is supported.
  • the amount of nickel supported and the amount of copper supported are preferably in the range of 40 to 80% by weight as metallic nickel and 5 to 50% by weight as metallic copper, based on the total amount of the desulfurizing agent. If the amount of Nigel or the amount of copper supported is less than the above range, sufficient desulfurization performance may not be exhibited.
  • the more preferable loading amount of nickel is 5 The range is 0 to 70% by weight 0 / o, and the more preferable loading of copper is in the range of 10 to 35% by weight.
  • At least one selected from an alkali metal, an alkaline earth metal, a transition metal, a noble metal and a rare earth element is supported as the third metal.
  • alkali metals include calcium and sodium
  • alkaline earth metals include calcium and magnesium
  • transition metals include manganese and zinc.
  • Platinum, gold, silver, palladium, ruthenium, rhodium and the like are preferred as noble metals
  • lanthanum and cerium are preferred as rare earth elements.
  • the loading amount of each of the above-mentioned alkali metal, alkaline earth metal, transition metal, noble metal and rare earth element is 1 to 10% by weight in the case of alkali metal, and Preferably, the content is 1 to 10% by weight for similar metals, 2 to 10% by weight for transition metals, 0.1 to 5% by weight for noble metals, and 3 to 10% by weight for rare earth elements. . If the above-mentioned third metal load is out of the above range, sufficient desulfurization performance may not be obtained.
  • a carrier for supporting these metal components at least one selected from silica, alumina, silica-alumina, titania, zirconia, zeolite, magnesium, diatomaceous earth, clay, clay or zinc oxide Among them, a silica alumina carrier is preferred.
  • a silica alumina carrier having a Si / A1 molar ratio of 10 or less is preferred from the viewpoint of desulfurization performance and the like. Is preferred.
  • the desulfurizing agent of the present invention has a total metal content of 70 to 90% by weight and a carrier of 30 to 10% by weight in view of desulfurizing performance and mechanical strength of the desulfurizing agent. It is preferably in the range of%.
  • the method for producing the Ni-Cu-based desulfurizing agent III of the present invention is not particularly limited as long as it has the above properties, and is not particularly limited. In addition, the desired Ni-Cu-based desulfurizing agent III can be efficiently produced.
  • an acidic aqueous solution or aqueous dispersion having a pH of 2 or less containing a Nigel source, a copper source, and an aluminum source, and a basic aqueous solution containing a gay element source and an inorganic base are prepared.
  • the former is an acidic aqueous solution or water
  • the Nigger source used for the liquid dispersion is, for example, Nigel chloride, Nigel nitrate, Nigel sulfate, Nickel acetate, Nickel carbonate and hydrates thereof. Examples thereof include copper chloride, copper nitrate, copper sulfate, copper acetate and hydrates thereof. These nickel and copper sources may be used alone or in combination of two or more.
  • the aluminum source examples include aluminum hydrates such as pseudo-boehmite, boehmite alumina, bayerite, and jibsite, and alumina. Of these, pseudo-boehmite, boehmite alumina and a-alumina are preferred. These can be used in the form of powder or sol. Also, this aluminum source may be used alone or in combination of two or more.
  • the aqueous solution or aqueous dispersion containing the nickel source and the aluminum source be adjusted to pH 2 or less with an acid such as hydrochloric acid, sulfuric acid, or nitric acid. When the pH exceeds 2, it is difficult to obtain a desulfurizing agent having desired performance.
  • the concentration of the solid content in the aqueous solution or aqueous dispersion is not particularly limited, but is preferably about 5 to 20% by weight.
  • the gay source used for the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica by firing.
  • Acids, metasilicic acids and their Examples include a sodium salt, a calcium salt, and water glass. These may be used alone or in combination of two or more, and water glass, which is a kind of sodium gayate hydrate, is particularly preferable.
  • the amount of the gay element used is selected so that the molar ratio of the silicon atom in the silicon source to the aluminum atom in the aluminum source (Sino A 1 molar ratio) is usually 10 or less. I prefer to do that.
  • the inorganic base carbonates and hydroxides of alkali metal are preferred, such as sodium carbonate, sodium carbonate, sodium hydroxide, and sodium hydroxide. And the like. These may be used alone or in combination of two or more. Particularly, sodium carbonate alone or a combination of sodium carbonate and sodium hydroxide is preferable.
  • the amount of the inorganic base used is such that, in the following step, when the acidic aqueous solution or aqueous dispersion having a pH of 2 or less and the basic aqueous solution are mixed, the mixed solution becomes substantially neutral to base.
  • the inorganic base may be used in its entirety in the preparation of the basic aqueous solution, or may be partially mixed with the acidic aqueous solution or aqueous dispersion and the basic aqueous solution. It may be added later.
  • the acidic aqueous solution or aqueous dispersion having a pH of 2 or less and the basic aqueous solution thus prepared are heated to about 50 to 90 ° C., respectively, and then mixed. This mixing is preferably performed as soon as possible. After mixing, if necessary, after adding an aqueous solution containing an inorganic base heated to 50 to 90 ° C, the mixed solution is heated to a temperature of about 50 to 90 ° C for about 0.5 to 3 hours. Stir to complete the reaction.
  • the formed solid is sufficiently washed and then subjected to solid-liquid separation, or the formed solid is subjected to solid-liquid separation and thoroughly washed, and then
  • the solid is dried at a temperature of about 80 to 150 t by a known method.
  • the dried product obtained in this manner is preferably calcined at a temperature in the range of 200 to 400 ° C. so that nickel and copper are supported on the carrier. Agent is obtained. If the firing temperature is out of the above range, it is difficult to obtain a Ni—Cu desulfurizing agent having desired performance.
  • the alkali metal, alkaline earth metal, transition metal, noble metal and rare earth are used as the Nigel source and the copper source as an Al metal source, an Al earth metal source, a transition metal source, a noble metal source or a rare earth element source.
  • the reaction may be carried out by being contained in an acidic aqueous solution or aqueous dispersion having a pH of 2 or less containing an aluminum source and an aluminum source.
  • these solutions may be supported on a carrier as an impregnation liquid, and can be appropriately selected according to each metal.
  • the abundance of the third component source may be appropriately selected so as to satisfy the amount supported on the carrier.
  • the desulfurizing agent IV for petroleum hydrocarbons of the present invention has a metal component supported on a carrier, and has a hydrogen adsorption amount of 0.4 mmol / g or more. If the amount of hydrogen adsorption is less than 0.4 mimoruno g, sufficient desulfurization performance is not exhibited, and the object of the present invention cannot be achieved. There is no particular upper limit on the amount of hydrogen adsorbed. However, it is difficult to manufacture large hydrogen adsorbents.Therefore, from the viewpoint of desulfurization performance and production, etc. The preferred range is 0.6 to 0.8 mm. A range of lmol / g is preferred.
  • the hydrogen adsorption amount is a value measured by the method described below.
  • 100 mg of the desulfurizing agent is filled into a quartz test tube.
  • the temperature was raised to 120 ° C in a helium stream under normal pressure and maintained for 1 hour.Then, the gas was replaced with hydrogen gas, the temperature was further raised, and the temperature was maintained at 380 ° C for 1 hour.
  • the adsorbed hydrogen is removed at 300 ° C, and hydrogen adsorption measurement is performed at 20 ° C. The hydrogen adsorption amount was calculated from the pressure change of the introduced hydrogen.
  • a porous carrier is preferable, and a porous inorganic oxide is particularly preferable.
  • Such materials include, for example, silica, alumina, silica alumina, titania, zirconia, magnesium, zinc oxide, clay, clay and diatomaceous earth. These may be used alone or in combination of two or more. Of these, silica alumina is particularly preferred.
  • Nigel is particularly suitable as a metal component supported on these carriers. If necessary, a small amount of other metals such as copper, cobalt, iron, manganese, and chromium may be mixed with the nickel.
  • the amount of nickel carried is preferably 40% by weight or more as nickel metal based on the total amount of the desulfurizing agent. If the supported amount is less than 40% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. In consideration of desulfurization performance, mechanical strength, and the like, the more preferable amount of nickel metal supported is in the range of 50 to 70% by weight.
  • the desulfurizing agent which is a preferred desulfurizing agent of the present invention and is obtained by supporting a nigel on an alumina carrier, can be produced, for example, by a coprecipitation method as described below.
  • an acidic aqueous solution or aqueous dispersion containing a nickel source and an aluminum source and a basic aqueous solution containing a gay element source and an inorganic base are prepared.
  • the Nigger source used for the former acidic aqueous solution or acidic aqueous dispersion include Nigel chloride, nickel nitrate, nickel sulfate and hydrates thereof.
  • aluminum sources include aluminum hydrates such as aluminum nitrate, pseudo-boehmite, boehmite alumina, bayerite, and jibsite, and alumina.
  • the gay source used for the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica by firing.
  • examples of the inorganic base include carbonates and hydroxides of alkali metals.
  • the produced solid is sufficiently washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and washed sufficiently, and then the solid is subjected to a known method. Dry at a temperature of about 0 to 150 ° C.
  • the dried product obtained in this manner is preferably added to 200
  • a desulfurizing agent in which nickel is supported on a silica carrier is obtained.
  • the type and amount of raw materials to be used, reaction conditions, calcination conditions, and the like are selected so that a carrier having the above-mentioned hydrogen adsorption amount is formed and the Nigel carrying amount becomes a desired value.
  • the desulfurizing agents I to IV of the present invention described above are used as desulfurizing agents for petroleum hydrocarbons, preferably for kerosene.
  • petroleum hydrocarbons it is preferable to apply to JIS No. 1 kerosene having a sulfur content of 80 ppm by weight or less.
  • This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by distilling crude oil at normal pressure.
  • the crude kerosene usually has a high sulfur content, so it does not become JIS No. 1 kerosene as it is, and it is necessary to reduce the sulfur content.
  • desulfurization treatment by a hydrorefining method generally practiced in industry is preferable.
  • the desulfurization catalyst is usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc. at an appropriate ratio, with alumina as the main component in the form of metals, oxides, sulfides, etc.
  • a carrier supported on a carrier is used.
  • the reaction conditions are, for example, the reaction temperature 2 5 0 ⁇ 4 0 0 ° C, pressure 2 to 1 0 MP a ⁇ G, a hydrogen / oil molar ratio 2 to 1 0, a liquid hourly space velocity (LHSV) such as 1 ⁇ 5 h 1 Is used.
  • LHSV liquid hourly space velocity
  • hydrogen is supplied in advance to a desulfurization tower filled with the desulfurizing agent I to 1V of the present invention, and the desulfurizing agent is reduced at a temperature of about 150 to 400 ° C.
  • a petroleum hydrocarbon preferably kerosene No. 1
  • a petroleum hydrocarbon is passed through the desulfurization tower in an upward or downward flow, at a temperature of about 130 to 230 ° C and a pressure of about normal pressure to about IMPaG. , LHSV 10 h 1 or less Desulfurize under conditions.
  • a small amount of hydrogen may coexist.
  • the method for producing hydrogen for a fuel cell of the present invention is a method for producing hydrogen by bringing the petroleum hydrocarbon desulfurized in this way into contact with a steam reforming catalyst.
  • the steam reforming catalyst used in the method of the present invention is not particularly limited, and an arbitrary one may be appropriately selected from known catalysts conventionally known as steam reforming catalysts for hydrocarbon oils. Can be used.
  • a steam reforming catalyst for example, one obtained by supporting a noble metal such as nigel, zirconium, or ruthenium, rhodium, or platinum on a suitable carrier can be exemplified.
  • a noble metal such as nigel, zirconium, or ruthenium, rhodium, or platinum
  • One of the above-mentioned supported metals may be supported, or two or more may be supported in combination.
  • those supporting ruthenium hereinafter referred to as ruthenium-based catalyst
  • ruthenium-based catalyst are preferable, and have a large effect of suppressing carbon deposition during the steam reforming reaction.
  • the amount of supported ruthenium is preferably in the range of 0.05 to 20% by weight based on the carrier. If the supported amount is less than 0.05% by weight, the steam reforming activity may not be sufficiently exerted. On the other hand, if the supported amount exceeds 20% by weight, the effect of improving the catalytic activity may be increased for the supported amount. Not permissible, but rather economically disadvantageous. And consider such catalytic activity and economy, good Ri preferred correct loading of the ruthenium than zero. 0 5 to 1 5 weight 0/0 der, especially 0.1 to 2 wt% of the range of preferred arbitrariness.
  • the supported amount of zirconium in the carrier reference as a Z r ⁇ 2, usually 0.5 to 2 0% by weight, 0 and rather is preferred. 5 to 1 5% by weight, More preferably, it is selected in the range of 1 to 15% by weight.
  • the amount of cobalt supported is such that the atomic ratio of cobalt to ruthenium is usually 0.1 to 1 to 30, preferably 0.1 to 30.
  • the loading amount of the magnesium is usually 0.5 to 20% by weight, preferably 0.5 to 15% by weight, based on the carrier, as Mg0. 0/0, good Ri preferred properly is selected in the range of 1 to 5 weight 0/0.
  • an inorganic oxide is preferable, and specific examples thereof include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred.
  • the steam reforming catalyst used in the present invention is a catalyst in which ruthenium is supported on zirconia.
  • the Jill Konia is may be the single Jirukonia (Z r ⁇ 2), may be stabilized Jirukonia including stabilizing components such as magnesia.
  • the stabilized zirconia those containing magnesia, yttria, celia and the like are preferable.
  • cobalt and / or magnesium are further added to an alumina support.
  • a supported catalyst can be mentioned.
  • the alumina ⁇ -alumina, which has excellent heat resistance and mechanical strength, is preferred.
  • the ratio S / C (molar ratio) between steam and carbon derived from petroleum hydrocarbon is usually 1.5 to 10, preferably 1.5 to 5 , More preferably in the range of 2-4. If the S / C molar ratio is less than 1.5, the amount of generated hydrogen may decrease. If the S / C molar ratio exceeds 10 the excess steam is required, heat loss is large, and the efficiency of hydrogen production is reduced. Not so desirable.
  • the inlet temperature of the steam reforming catalyst layer is at 63 ° C. or lower, and more preferably at 600 ° C. or lower. If the inlet temperature exceeds 630 ° C, thermal decomposition of petroleum hydrocarbons is promoted, and carbon is deposited on the catalyst or reaction tube wall via the generated radial fuel, which may make operation difficult .
  • the catalyst layer outlet temperature is not particularly limited, but is preferably in a range of 600 to 800.degree. If the outlet temperature of the catalyst layer is less than 65 ° C, the amount of hydrogen generated may not be sufficient.If the temperature exceeds 800 ° C, the reactor may require heat-resistant materials, and it is economical. Not preferred.
  • the reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to IMPa, and the LHSV is usually 0.1 to 10 Oh— ', preferably 0.ZSO. h- 1 .
  • the desulfurizing agent in which nickel is supported on a silica alumina carrier is produced by the following method.
  • an acidic aqueous solution or dispersion having a pH of 2 or less containing a Nigel source and an aluminum source, and a basic aqueous solution containing a gay element source and an inorganic base are prepared.
  • Nickel sources used for the former acidic aqueous solution or acidic dispersion include nitrates, chlorides, sulfates, acetates, carbonates and the like.Specifically, nickel chloride, nickel nitrate, nickel sulfate , Nickel acetate, nickel carbonate and hydrates thereof. These may be used alone or in combination of two or more.
  • the amount of the nickel sources are nickel content in the resulting desulfurizing agent, usually 4 0 wt 0/0 above, preferred properly is chosen to be in the range of 5 0-7 0 wt%. If the Niggel content is less than 40% by weight, it is difficult to obtain a desulfurizing agent having desired performance such as a decrease in the amount of sulfur adsorbed and a shortened desulfurization life.
  • the aluminum source examples include simulated base mite, boehmite alumina, alumina hydrate such as noyalite and jibsite, and alumina. Of these, pseudo-boehmite, boehmite alumina and iron alumina are preferred. These can be used in the form of powder or sol. Also, this aluminum source may be used alone or in combination of two or more.
  • the pH of the acidic aqueous solution or dispersion containing the Nigger source and aluminum source is not particularly limited as long as it is soluble in an aqueous alkali solution and becomes silica by firing. Examples include togaic acid, metasilicic acid and their sodium and potassium salts, and water glass.
  • the amount of the gay element used is such that the molar ratio (Si / A1 molar ratio) of the gay atom in the gay source to the aluminum atom in the aluminum source is usually 10 or less, Preferably, it is selected to be in the range of 0.1 to 8. If the Si / A1 molar ratio exceeds 10, desulfurization with desired performance such as reduction of Nigger oxide becomes difficult and the amount of sulfur adsorbed decreases, shortening the life of the desulfurizing agent. Agent is difficult to obtain.
  • the inorganic base carbonates and hydroxides of alkali metals are preferred, and examples thereof include sodium carbonate, sodium carbonate, sodium hydroxide, and sodium hydroxide. Is mentioned. These may be used alone or in combination of two or more. In the present invention, particularly, sodium carbonate alone or a mixture of sodium carbonate and sodium hydroxide is preferred. Combinations are preferred.
  • the amount of the inorganic base to be used is such that when the acidic aqueous solution or the acidic dispersion having a pH of 2 or less and the basic aqueous solution are mixed in the next step, the mixed solution becomes substantially neutral to basic.
  • the entire amount of the inorganic base may be used for preparing the basic aqueous solution, or a part of the inorganic base may be added after mixing the acidic aqueous solution or the acidic dispersion and the basic aqueous solution in the next step. Good.
  • the acidic aqueous solution or acidic dispersion having a pH of 2 or less and the basic aqueous solution prepared as described above are each treated at about 50 to 90 ° C. After heating, mix both. This mixing is preferably performed as soon as possible. After mixing, if necessary, after adding an aqueous solution containing an inorganic base heated to 50 to 90 ° C, the mixed solution is heated to a temperature of about 50 to 90 ° C for about 0.5 to 3 hours. Stir to complete the reaction. Next, the produced solid is thoroughly washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation, and then thoroughly washed, and then the solid is subjected to a known method.
  • the dried product obtained in this manner is preferably calcined at a temperature in the range of 200 to 400 ° C., preferably 250 to 400 ° C., to reduce the silica content.
  • a desulfurizing agent in which Nigel is supported on an alumina carrier is obtained. If the sintering temperature is outside the above range, a Nigel type desulfurizing agent having desired performance, such as a decrease in the surface area of the desulfurizing agent and a reduction in the amount of sulfur adsorbed due to agglomeration of nickel, shortening the life of the desulfurizing agent, can be obtained. Hateful.
  • Nigel type desulfurizing agent obtained by the method of the present invention has a Si / A1 mole ratio of usually 10 or less, preferably 0.1 to 8, on a silica-alumina support.
  • Nigel is usually carried in a proportion of at least 40% by weight, preferably 50 to 70% by weight, based on the weight, and has a low sulfur content of petroleum hydrocarbon (0.2%). (By weight ppm or less), and its desulfurization performance can be maintained over a long period of time.
  • the desulfurizing agent having nickel and copper supported on a carrier in the production method II-a or II_b of the present invention is produced by the following method First, an acidic aqueous solution or dispersion containing a Nigel source, a copper source and a carrier, and a basic aqueous solution containing an inorganic base are prepared.
  • Nigger sources used for the former acidic aqueous solution or acidic dispersion include, for example, nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate and hydrates thereof. These may be used alone or in combination of two or more.
  • the amount of the nickel source is a metal nickel content in the resulting desulfurizing agent, preferable properly 4 0-8 0 weight 0 / o, yo Ri favored properly 5 0 - 7 in the range of 0 wt% Is chosen to be If the nickel content is less than 40% by weight, sufficient desulfurization performance may not be exhibited. If the nickel content exceeds 80% by weight, the mechanical strength and desulfurization performance of the desulfurizing agent may be reduced.
  • copper sources include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. These may be used alone or in combination of two or more.
  • the amount of the copper source is copper metal content in the resulting desulfurizing agent, preferable properly 5 to 5 0 wt%, is properly preferred Ri good in the range of 1 0-3 5 weight 0/0 Is chosen. If the copper content is less than 5% by weight, the sulfur adsorption rate will be low, and if it exceeds 50% by weight, a desulfurizing agent with the desired performance, such as a reduced sulfur adsorption rate, will be obtained. I'm sorry.
  • a porous carrier is preferred, and a porous inorganic oxide is particularly preferred.
  • examples of such materials include silica, alumina, silica monoalumina, titania, zirconia, magnesia, diatomaceous earth, clay, clay, and zinc oxide. These alone Or two or more of them may be used in combination. Among them, silica-alumina is particularly preferred in the present invention.
  • Such a carrier is contained in an acidic aqueous solution or an acidic dispersion, but can be further contained in a basic aqueous solution if necessary. For example, when the carrier is silica alumina, an acidic aqueous solution or dispersion containing the aluminum source and an abasic aqueous solution containing the silica power source may be used.
  • the acidic aqueous solution or dispersion containing the Nigger source, the copper source and the carrier must be adjusted to pH 2 or less, preferably 1.5 or less, with an acid such as hydrochloric acid, sulfuric acid, or nitric acid. . If this pH exceeds 2, the dispersibility of Nigel and copper decreases.
  • the inorganic base used in the basic aqueous solution is preferably an alkali metal carbonate or hydroxide.
  • the inorganic base include sodium carbonate, potassium carbonate, and sodium hydroxide. And potassium hydroxide. These may be used alone or in combination of two or more.
  • sodium carbonate or sodium hydroxide may be used alone as such an inorganic base.
  • a combination of sodium carbonate and sodium hydroxide is preferable.
  • the amount of the inorganic base to be used is selected so that when the basic aqueous solution is mixed with the acidic aqueous solution or acidic dispersion having a pH of 2 or less in the next step, the mixed solution becomes substantially neutral to basic. Is advantageous.
  • the acidic aqueous solution or acidic dispersion having a pH of 2 or less and the basic aqueous solution thus prepared are heated to about 50 to 90 ° C., respectively, and then mixed. This mixing is preferably done as quickly as possible.
  • the resulting mixture is kept at a temperature of about 50 to 90 and stirred for about 0.5 to 3 hours to complete the reaction.
  • the produced solid is sufficiently washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and washed sufficiently, and then the solid is subjected to a known method. Dry at a temperature of about 0 to 150 ° C.
  • the dried product obtained in this manner is preferably calcined at a temperature in the range of 200 to 400 ° C, more preferably 300 to 370 ° C.
  • a desulfurizing agent in which Nigel and copper are supported on a carrier can be obtained. If the sintering temperature is outside the above range, it may be difficult to obtain a nickel-copper desulfurizing agent having desired performance such as low dispersibility of nickel and copper.
  • the amount of supported nickel on the support based on the desulfurizing agent the total amount, and the metallic nickel 4 0-8 0% by weight, in the range of more 5 0-7 0 by weight 0/0 I like it. If less Ri good 4 0 wt 0/0 nickel content, there is a possibility that sufficient desulfurization performance is not exhibited. On the other hand, when the content exceeds 80% by weight, it is difficult to obtain a desulfurizing agent having desired properties such as a decrease in mechanical strength and desulfurizing performance of the desulfurizing agent.
  • the amount of copper supported is preferably in the range of 5 to 50% by weight, more preferably 10 to 35% by weight, as metallic copper, based on the total amount of the desulfurizing agent. If the copper content is less than 5% by weight, the sulfur adsorption rate decreases, and if it exceeds 50% by weight, a desulfurizing agent having desired performance such as a decrease in sulfur adsorption capacity can be obtained. Peg.
  • the total amount of Nigel and copper supported on the carrier is 60 to 90% by weight, and more preferably 60 to 80% by weight in terms of metal, based on the total amount of the desulfurizing agent. It is preferable. If the amount is less than 60% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, when the content exceeds 90% by weight, it is difficult to obtain a desulfurizing agent having desired properties such as a decrease in mechanical strength and desulfurizing performance of the desulfurizing agent.
  • a nickel-copper component is supported on a carrier, but if necessary, other metals such as cobalt, iron, manganese, and chromium may be mixed.
  • Nigel nitrate (62.3 g) is dissolved in water (500 milliliters), aluminum nitrate (1.3 g) is added thereto, and a 1 mol / liter nitric acid aqueous solution (20 milliliters) is dissolved. The solution was adjusted to pH 1 by adding a bottle to prepare solution (A).
  • Table 1 shows the BET value (specific surface area of nitrogen adsorption), the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance of this desulfurizing agent.
  • the desulfurization performance of the desulfurizing agent was evaluated according to the following method. Desulfurization performance>
  • Example 1 63% by weight of Nigel was loaded on the silica-alumina carrier in the same manner as in Example 1, except that the two liquids (A) and (B) were mixed for 1 hour instead of being mixed instantaneously. The obtained desulfurizing agent was obtained.
  • Table 1 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • Example 1 Thereafter, the same operation as in Example 1 was carried out to obtain a desulfurizing agent in which 63% by weight of Nigel was carried on a silica-alumina carrier.
  • Table 1 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • solution (B) 33.1 g of sodium carbonate was dissolved in 500 milliliters of water to prepare solution (B).
  • Example 1 Thereafter, the same operation as in Example 1 was performed to obtain a desulfurizing agent in which nickel was carried on a diatomaceous earth carrier at 67% by weight.
  • Table 1 shows the BET value, the specific surface area of the pores having a diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1.
  • solution (A) 62.3 g of nickel nitrate was dissolved in 500 milliliters of water, and 4.0 g of silica-alumina was added thereto to prepare solution (A). On the other hand, 25.0 g of sodium hydroxide was dissolved in 500 milliliters of water, B) A liquid was prepared.
  • Example 1 shows the same operation as in Example 1 to obtain a desulfurizing agent in which nigel was carried on a silica-alumina carrier at 63% by weight.
  • Table 1 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • Example 3 15 milliliters of the desulfurizing agent obtained in Example 3 was filled in a stainless steel reaction tube having an inner diameter of 17 mm. Then, the temperature was raised to 120 ° C in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour.After that, the temperature was further raised and the temperature was maintained at 380 ° C for 1 hour. Was activated.
  • the temperature of the reaction tube was maintained at 150 ° C., and the JIS No. 1 kerosene having a sulfur content of 65 wt ppm was passed through the reaction tube at LHSV 2 h 1 under normal pressure.
  • steam reforming was performed downstream using a reformer filled with 30 milliliters of a ruthenium-based reforming catalyst (ruthenium loading: 0.5% by weight).
  • the reforming conditions are as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio 2.5, LHSV: 1. Oh- ', inlet temperature: 500 ° C, outlet temperature: 750 ° C.
  • the analysis is by gas chromatography.
  • Example 4 kerosene was subjected to desulfurization treatment and steam reforming treatment in the same manner as in Example 4, except that the desulfurizing agent obtained in Comparative Example 1 was used.
  • Table 2 shows the BET value (specific surface area of nitrogen adsorption), the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • Example 5 nickel nitrate (5.60 g) and copper nitrate (5.2 g) were used instead of nickel nitrate (49.8 g) and copper nitrate (10.3 g), and further, pseudo-boehmite (0.9 g) was used. .
  • Aarumina 0 instead of 6 except for using the g, silica in the same manner as in example 5 -.
  • Table 2 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • Table 1 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • solution (B) 105 g of sodium carbonate was dissolved in 2000 milliliters of water to prepare solution (B).
  • the solution (A) and the solution (B) were gradually mixed with stirring.
  • the pH of the mixture reached 7
  • the addition of the sodium carbonate solution was terminated, and the mixture was stirred for 1 hour.
  • the obtained precipitate cake is washed with ammonium bicarbonate, and then the solid is dried all day and night in a 110 ° C drier and further calcined at 400 ° C for 1 hour.
  • a desulfurizing agent having a Nigger amount of 21% by weight and a copper amount of 22% by weight was obtained.
  • Table 2 shows the BET value (specific surface area of nitrogen adsorption), the specific surface area of pores having a diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent. Comparative Example 5
  • a solution (A) 50.0 g of nickel nitrate and 9.5 g of copper nitrate were dissolved in 500 milliliters of water, and 4.0 g of silica-alumina was added thereto to prepare a solution (A).
  • 25.0 g of sodium hydroxide was dissolved in 500 milliliters of water to prepare solution (B).
  • the above solution (A) and solution (B) are each heated to 80 ° C, and then mixed for 1 hour, while maintaining the temperature of the mixed solution at 80 ° C for 1 hour. Stirred for hours. Thereafter, the product was thoroughly washed with 60 liters of distilled water, filtered, and then the solid was dried in a blow dryer at 120 ° C for 12 hours.
  • Table 2 shows the BET value, the specific surface area of the pore diameter of 3 nm or less, and the desulfurization performance evaluated in the same manner as in Example 1 of this desulfurizing agent.
  • Example 5 15 milliliters of the desulfurizing agent obtained in Example 5 was filled in a stainless steel reaction tube having an inner diameter of 17 mm. Then, under normal pressure and in a stream of hydrogen, After the temperature was raised to 20 ° C and maintained for 1 hour, the desulfurizing agent was activated by further raising the temperature and maintaining the temperature at 380 ° C for 1 hour.
  • the temperature of the reaction tube was maintained at 1 5 0 ° C, a JIS 1 No. kerosene the sulfur concentration 6 5 by weight ppm, normal pressure, is passed through the reaction tube at LHSV 2 h 1, is La
  • the steam reforming treatment was performed downstream using a reformer filled with 20 milliliters of a ruthenium-based reforming catalyst (load of ruthenium 0.5 weight 0 / o).
  • the reforming conditions are as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio 2.5. LHSV: 1.5 h— Inlet temperature: 500 ° (: outlet temperature ': 75 °) C.
  • the conversion at the outlet of the reformer after 230 hours had passed was 100%.
  • the sulfur content of the desulfurized kerosene during this reaction period was less than 0.2 wt ppm.
  • Example 8 kerosene desulfurization and steam reforming were performed in the same manner as in Example 8, except that the desulfurizing agent obtained in Comparative Example 4 was used.
  • the conversion rate at the outlet of the reformer was less than 100% after 80 hours, and oil droplets were confirmed at the outlet of the reformer after 120 hours.
  • the sulfur content in the desulfurized kerosene after 70 hours and 90 hours had passed was 4 wt ppm and 13 wt ppm, respectively.
  • Table 3 shows the desulfurization performance of this desulfurizing agent.
  • the desulfurization performance of the desulfurizing agent was evaluated according to the following method.
  • the temperature of the reaction tube is maintained at 150 ° C., and the supply of JIS No. 1 kerosene having a sulfur concentration of 65 wt ppm to the reaction tube under normal pressure is started under LHSV 10 h ′. Analyze the sulfur content in the treated kerosene after 5 hours, and evaluate the desulfurization performance.
  • Example 9 Thereafter, the same operation as in Example 9 was carried out, and the silica-alumina carrier (Si / A1 molar ratio: 5) was converted to Ni 60.2 weight 0 based on the total amount of the desulfurizing agent. / 0, C ul O. 2 weight 0/0 and manganese 5.3 wt 0/0 was obtained desulfurizing agent carried.
  • Table 3 shows the desulfurization performance of this desulfurizing agent evaluated in the same manner as in Example 9.
  • Example 11 Example 1 was repeated except that magnesium hydroxide hydroxide (Mg045% by weight) was added in place of 5 g of the carbonic acid rim, and the mixture was sintered at 300 ° C for 1 hour.
  • a silica-alumina carrier (S i / A 1 molar ratio: 5) was used. N 157.1 wt%, Cu 18.5 wt%, and Mg As a result, a desulfurizing agent loaded with 3.9% by weight was obtained.
  • Table 3 shows the desulfurization performance of this desulfurizing agent evaluated in the same manner as in Example 9.
  • solution (A) and solution (B) were prepared. Next, both liquids were heated to 80 ° C, respectively, and the two were instantaneously mixed. The mixture was stirred for 1 hour while maintaining the temperature of the mixed liquid at 80 ° C. Thereafter, the product was sufficiently washed with 60 liters of distilled water, filtered, and then the solid was dried with a 120 ° C blower for 12 hours. Next, a solution prepared by dissolving 1 g of chloroplatinic acid in 10 milliliters of water was impregnated with the above dried product, and dried with a blow dryer at 120 ° C.
  • silica one alumina support (S i / a 1 molar ratio 5), N i 5 7 based on the desulfurizing agent the total amount. 1 weight 0/0, C u 1 8 . 5 wt% And a desulfurizing agent loaded with 2.0% by weight of Pt.
  • Table 3 shows the desulfurization performance of this desulfurizing agent evaluated in the same manner as in Example 9.
  • the solution (B) was prepared in the same manner as in Example 11, and the same operation was carried out to desulfurize the silica-alumina carrier (Si / A 1 molar ratio: 5).
  • N i 5 1. 8% by weight, based on the agent the total amount, was C u 1 8. 5 by weight 0/0 and L a 7. desulfurizing agent 1% by weight was supported to obtain.
  • solution (A) To 1 liter of water was added 58 g of copper nitrate, 69.8 g of nigel nitrate, 116.6 g of zinc nitrate and 60 g of aluminum nitrate, and dissolved to prepare solution (A).
  • Example 9 15 milliliters of the desulfurizing agent obtained in Example 9 was filled in a stainless steel reaction tube having an inner diameter of 17 mm. Then, the temperature was raised to 120 ° C in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour.After that, the temperature was further raised, and the temperature was maintained at 380 ° C for 1 hour. The agent was activated.
  • the temperature of the reaction tube was maintained at 1 5 0 ° C, a JIS 1 No. kerosene the sulfur concentration 6 5 by weight ppm, normal pressure, is passed through the reaction tube at LHSV 2 h 1, is La
  • the steam reforming treatment was performed downstream by a reformer filled with 20 milliliters of a ruthenium-based reforming catalyst (ruthenium loading: 0.5% by weight).
  • the reforming conditions were as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio: 2.5, LHSV: 1.5 h- ', inlet temperature: 500. outlet temperature: 750 t. .
  • Example 15 kerosene was subjected to desulfurization treatment and steam reforming treatment in the same manner as in Example 15 except that the desulfurizing agent obtained in Comparative Example 7 was used.
  • the conversion at the outlet of the reformer was less than 100% after 8.0 hours, and oil droplets were confirmed at the outlet of the reformer after 120 hours.
  • solution (B) 33.1 g of sodium carbonate was dissolved in 500 milliliters of water to prepare solution (B).
  • Example 16 Thereafter, the same operation as in Example 16 was carried out to obtain a desulfurizing agent in which 60% by weight of niggel was carried on a silicon carrier.
  • the hydrogen adsorption amount of this desulfurizing agent was 0.550 mmol / g, and the sulfur content in kerosene after desulfurization for 50 hours obtained in the same manner as in Example 1 was 0.2 wt ppm.
  • solution (B) 33.1 g of sodium carbonate was dissolved in 500 milliliters of water to prepare solution (B).
  • Example 16 Thereafter, the same operation as in Example 16 was carried out to obtain a desulfurizing agent in which nigel was carried on a diatomaceous earth carrier at 67% by weight.
  • the hydrogen adsorption amount of this desulfurizing agent was 0.32 mmol / g, and the sulfur content in kerosene after desulfurization for 50 hours obtained in the same manner as in Example 1 was 15.2 ppm. .
  • Example 16 15 milliliters of the desulfurizing agent obtained in Example 16 was filled in a stainless steel reaction tube having an inner diameter of 17 mm. Then, the temperature was raised to 120 ° C in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour. The desulfurizing agent was activated by holding for 1 hour at.
  • the temperature of the reaction tube was maintained at 150 ° C., and the JIS No. 1 kerosene having a sulfur content of 65 wt ppm was passed through the reaction tube at normal pressure and LHSV 3 h ′.
  • ruthenium-based reforming catalyst downstream ruthenium content 0.5 wt 0/0
  • Ri ruthenium content 0.5 wt 0/0
  • the reforming conditions are as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio
  • Example 18 kerosene was subjected to desulfurization treatment and steam reforming treatment in the same manner as in Example 18 except that the desulfurizing agent obtained in Comparative Example 9 was used.
  • the conversion rate at the outlet of the reformer was less than 100% after 24 hours, and oil droplets were confirmed at the outlet of the reformer after 30 hours.
  • solution (A) 50.9 g of chloride gel was dissolved in 500 milliliters of water, and 0.6 g of pseudoboehmite was added thereto.Then, an aqueous solution of nitric acid having a concentration of 1 mol / liter was added. Milliliter was added to adjust the pH to 1 to prepare solution (A).
  • the product was sufficiently washed with 60 liters of distilled water, filtered, and then the solid was dried in a blow dryer at 120 ° C for 12 hours, and further dried for 30 hours.
  • 0 ° Ri by the 1 hour calcination treatment child in C, and is S i / a to 1 molar ratio of about 5 silica on one alumina support, 6 3 weight 0/0 supported nickel are based on the total weight desulfurization An agent was manufactured.
  • Example 19 was repeated in the same manner as in Example 19, except that 33.1 g of sodium carbonate was used for preparing the solution (B) and no aqueous sodium hydroxide solution was added.
  • Example 19 0.4 g of boehmite alumina was used in place of 0.6 g of pseudo-boehmite in the preparation of the solution (A), and water glass (Si concentration 29%) was used in the preparation of the solution (B). except that weight 0 / 0.) using 1 2 5 g, in the same manner as the actual Example 1 9, silica force of S i / a 1 molar ratio of about 8 -. on alumina carrier, the total weight Based on this, a desulfurizing agent carrying 63% by weight of nickel was produced.
  • Example 19 a silica / lumina carrier having a Si / A1 molar ratio of about 5 was obtained in the same manner as in Example 19 except that the calcination treatment was performed at 250 ° C. for 1 hour. At 63% by weight of nickel based on the total weight A desulfurizing agent was manufactured.
  • Example 1 except for using the pseudo Bemai preparative alumina sol instead of 0. 6 g (alumina concentration 2 0 weight 0/0) 2. 9 g in the preparation of solution (A), similarly to Example 1 9 In this way, a desulfurizing agent in which 63% by weight of Nigel was supported on a silica-alumina support having a S i / A 1 molar ratio of about 5 based on the total weight was produced.
  • Solution (A) was prepared in the same manner as in Comparative Example 11. Meanwhile, after the water 5 0 0 ml were dissolved hydroxide Na Application Benefits um 1 7. 1 g, water glass 1 3. 8 g of (S i concentration 2 9 weight 0/0) was added, After preparing solution (B), the above solution (A) and solution (B) were each heated to 80 ° C, and then both were instantaneously mixed and stirred for 1 hour while maintaining at 80 t. did. Thereafter, the product was thoroughly washed with 60 liters of distilled water, filtered, and then the solid was dried in a blow dryer at 120 ° C. for 12 hours. A desulfurizing agent in which Nigel is carried by 63% by weight, based on the total weight, on a silica-alumina carrier with a Si / Al molar ratio of about 20 by baking at 0 t for 1 hour was manufactured.
  • solution (A) 62.3 g of nickel nitrate was dissolved in 500 milliliters of water, and 4 g of a carrier (diatomaceous earth) was added thereto to prepare solution (A).
  • solution (B) 33.1 g of sodium carbonate was dissolved in 500 milliliters of water to prepare solution (B).
  • the sulfur content in the treated kerosene at the time when 50 hours had elapsed was analyzed, and the desulfurization performance was compared.
  • Table 4 shows the results along with the types of raw materials.
  • the distillation properties of JIS No. 1 kerosene are the same as in Example 1.
  • Desulfurization agent evaluated firing temperature S i / A 1 N i supported amount S concentration C) [molar ratio] (wt 0/0) (amount ppm)
  • Example 24 nickel nitrate (5.60 g) and copper nitrate (5.2 g) were used instead of nickel nitrate (49.8 g) and copper nitrate (10.3 g), and pseudo-boehmite (0.9) was added.
  • instead of g -.
  • alumina carrier (S i / a 1 ratio 5) in Niggeru 7 2 1 wt 0 / 0, copper obtain a 1 1. 2 weight 0/0 supported desulfurizing agent. ''
  • Example 24 instead of 49.8 g of nickel nitrate and 10.3 g of copper nitrate, 62.2 g of nickel nitrate and 5 to 7 g of copper nitrate were used to reduce pseudo-boehmite to 0.
  • Use 0.9 g instead of 0.9 g use 70 g instead of 33.1 g sodium carbonate, and use 2.5 g silica instead of 11.7 g water glass.
  • the obtained desulfurizing agent was obtained.
  • Example 26 silica carrier was replaced with silica 4.0 g in the same manner as in Example 16 except that 0.9 g of pseudo-boehmite was replaced with 4.0 g of silica.
  • a desulfurizing agent carrying 30.2% by weight of nickel and 50.8% by weight of copper was obtained.
  • the solution (A) and the solution (B) were gradually mixed with stirring.
  • the pH of the mixture reached 7
  • the addition of the sodium carbonate solution was terminated, and the mixture was stirred for 1 hour.
  • the obtained precipitation cake is weighted.
  • the solids were dried all day and night with a 11 ° C dryer and calcined at 400 ° C for 1 hour to reduce the nickel content to 21%.
  • a desulfurizing agent having a content of 22% by weight and a copper content of 22% by weight was obtained.
  • Example 24 15 milliliters of the desulfurizing agent obtained in Example 24 was filled in a stainless steel reaction tube having an inner diameter of 17 mm. Then, the temperature was increased to 12'0 ° C in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour. The desulfurizing agent was activated.
  • the temperature of the reaction tube was maintained at 1 5 0 ° C, a JIS 1 No. kerosene the sulfur concentration 6 5 by weight ppm, normal pressure, is passed through the reaction tube at LHSV 2 h 1, is La
  • the steam reforming process was performed downstream of a reformer filled with ruthenium-based reforming catalyst (ruthenium loading: 0.5% by weight) and 20 milliliters. '
  • the reforming conditions were as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio 2.5, LHSV: 1.5 h— 1 , inlet temperature: 500 ° (:, outlet temperature: 750) ° C.
  • Example 28 kerosene desulfurization treatment and steam treatment were performed in the same manner as in Example 28, except that the desulfurizing agent obtained in Comparative Example 15 was used. A reforming treatment was performed.
  • the conversion rate at the outlet of the reformer was less than 100% after 80 hours, and oil droplets were confirmed at the outlet of the reformer after 120 hours.
  • the sulfur content in the desulfurized kerosene at the lapse of 80 hours and 120 hours was 10 weight ppm and 18 weight ppm, respectively.
  • the desulfurizing agent of the present invention can efficiently adsorb and remove sulfur in petroleum hydrocarbons to 0.2 wt ppm or less and has a long life.
  • hydrogen for fuel cells can be produced effectively.
  • Nigel-copper-based desulfurizing agent having excellent desulfurization performance can be efficiently produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

明細 石油系炭化水素用脱硫剤、 燃料電池用水素の製造方法及びニッゲル 系脱硫剤の製造方法 技術分野
本発明は、 石油系炭化水素用脱硫剤、 燃料電池用水素の製造方法 及び二ッゲル系脱硫剤の製造方法に関する。 さ らに詳しく は、 本発 明は、 石油系炭化水素中の硫黄分を低濃度まで効果的に除去し得る 寿命の長い脱硫剤及び上記脱硫剤を用いて脱硫処理された石油系炭 化水素を水蒸気改質処理して、 燃料電池用水素を製造する方法、 並 びに前記の優れた性能を有するニッゲル系脱硫剤を効率よく製造す る方法に関するものである。 背景技術
近年、 環境問題から新エネルギー技術が脚光を浴びており、 こ の新エネルギー技術の一つと して燃料電池が注目されている。 この 燃料電池は、 水素と酸素を電気化学的に反応させるこ とによ り、 化 学エネルギーを電気エネルギーに変換するものであって、 エネルギ 一の利用効率が高いという特徴を有しており、 民生用、 産業用ある いは自動車用などとして、 実用化研究が積極的になされている。
この燃料電池には、 使用する電解質の種類に応じて、 リ ン酸型、 溶融炭酸塩型、 固体酸化物型、 固体高分子型などのタイプが知られ ている。 一方、 水素源と しては、 メ タノール、 メ タンを主体とする 液化天然ガス、 この天然ガスを主成分とする都市ガス、 天然ガスを 原料とする合成液体燃料、 さ らには石油系の L P G、 ナフサ、 灯油 などの石油系炭化水素の使用が研究されている。
燃料電池を民生用や自動車用などに利用する場合、 上記石油系炭 化水素、 特に灯油は、 保管及び取扱いが容易である上、 ガソ リ ンス 夕 ン ドゃ販売店など、 供給システムが整備されているこ とから、 水 素源と して有利である。
しかしながら、 石油系炭化水素は、 メ タノールや天然ガス系のも のに比べて、 硫黄分の含有量が多いという問題がある。 この石油系 炭化水素を用いて水素を製造する場合、 一般に、 該炭化水素を、 改 質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用い られる。 このよ うな改質処理においては、 上記改質触媒は、 炭化水 素中の硫黄分によ り被毒を受けるため、 触媒寿命の点から、 該炭化 水素に脱硫処理を施し、 硫黄分含有量を、 通常 0 . 2重量 p p m以 下にすることが肝要である。
石油系炭化水素の脱硫方法と しては、 これまで多くの研究がなさ れており、 例えば C o — M o /アルミナや N i 一 M 0 /アルミ ナな どの水素化脱硫触媒と Z n 0などの硫化水素吸着剤を用い、 常圧〜 5 M P aの圧力下、 2 0 0 〜 4 0 0 °Cの温度で水素化脱硫する方法 が知られている。 この方法は、 厳しい条件下で水素化脱硫を行い、 硫黄分を硫化水素にして除去する方法であり、 しかも硫黄分を 0 . 2重量 p p m以下にすることは困難であるため、 燃料電池用の石油 系炭化水素には適用しにく い。
一方、 石油系炭化水素中の硫黄分を、 水素化精製処理を行う こ と なく 、 温和な条件で吸着除去し、 硫黄分を 0 . 2重量 p p m以下に し得る脱硫剤と して、 二ッゲル系あるいはニッゲル—銅系吸着剤が 知られている 〔特公平 6 — 6 5 6 0 2号公報、 同平 7 — 1 1 5 8 4 2号公報、 同平 7 — 1 1 5 8 4 3号公報、 特開平 1 — 1 8 8 4 0 5 号公報、 同平 2 — 2 7 5 7 0 1号公報、 同平 2 — 2 0 4 3 0 1号公 報、 同平 5 — 7 0 7 8 0号公報、 同平 6 — 8 0 9 7 2号公報、 同平 6 - 9 1 1 7 3号公報、 同 6 — 2 2 8 5 7 0号公報 (以上、 ニッケ ル系吸着剤) 、 特開平 6 — 3 1 5 6 2 8号公報 (ニッケルー銅系吸 着剤) 〕 。
これらのニッケル系あるいはニッケル—銅系吸着剤は、 燃料電池 用の石油系炭化水素に対して、 脱硫剤と して適用するのに有利であ るが、 いずれも脱硫剤と しての寿命の面で実用的なレベルに達して いない上、 石油系炭化水素脱硫用に適した吸着剤の設計条件につい ては、 明らかでないのが実状である。 特に、 上記ニッケル—銅系吸 着剤では、 硫黄を効率よく脱硫するには未だ不十分であつた。 発明の開示
このような状況下で、 本発明の第 1 の目的は、 石油系炭化水素中 の硫黄分を 0 . 2重量 p p m以下まで効率よ く 除去することができ 、 かつ寿命の長い工業的に有利な石油系炭化水素用と して用いられ る脱硫剤を提供するこ とにある。 また、 第 2 の目的は、 この脱硫剤 を用いて脱硫処理された石油系炭化水素を水蒸気改質処理し、 燃料 電池用水素を製造する方法を提供するこ とにある。 さ らに第 3 の目 的は、 石油系炭化水素中の硫黄分を極めて低濃度まで効率よく除去 することができ、 かつ寿命の長い工業的に有利な石油系炭化水素用 のニッケル系又は二ッケル一銅系脱硫剤を製造する方法を提供する ことにある.
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果 、 特定の組成のシリ カ一アルミナ担体にニッケルを担持した脱硫剤 、 金属成分を担体に担持してなり、 かつ特定の細孔分布を有する脱 硫剤、 シリ カ一アルミナ担体にニッケルと銅を担持させた触媒に、 更にアル力 リ金属、 アル力 リ土類金属、 遷移金属、 貴金属及び希土 類元素の中から選ばれる少なく とも一種を担'持させた脱硫剤、 ある いは水素吸着量が特定の値以上である脱硫剤が、 石油炭化水素用の 脱硫剤として第 1 の目的に適合し得ることを見出した。 また、 これ らの脱硫剤を用いて脱硫処理した石油系炭化水素を水蒸気改質処理 するこ とによ り、 燃料電池用水素が効率よく得られ、 第 2 の目的を 達成し得ることを見出した。
さ らに、 ニッゲル源及びアルミ二ゥム源を含む酸性水溶液又は酸 性分散液とゲイ素源を含む塩基性水溶液とを混合し、 生成した固形 分を焼成することによ り、 あるいはニッゲル源、 銅源及び担体を含 む酸性水溶液又は酸性分散液と無機塩基を含む塩基性水溶液とを混 合し、 生成した固形物を焼成するこ とによ り、 第 3 の目的を達成し 得るこ とを見出した。
本発明は、 かかる知見に基づいて完成したのもである。
すなはち、 本発明は、
( 1 ) シリ 力一アルミナ担体に少なく ともニッゲルを担持した脱硫 剤であって、 上記シリカ一アルミナ担体における S i / A 1 モル比 が 1 0以下であることを特徴とする脱硫剤 (以下, 脱硫剤 I と称す
( 2 ) シリカ一アルミナ担体上に少なく ともニッケルを担持してな る石油系炭化水素用脱硫剤であって、 細孔直径 3 nm以下の細孔比表 面積が 1 0 0 m 2 / g以上であることを特徴とする石油系炭化水素 用脱硫剤 (以下、 脱硫剤 II と称す。 )
( 3 ) シリカ一アルミナ担体に、 (A ) ニッケルと、 ( B ) 銅と、 ( ) アルカ リ金属、 アル力 リ土類金属、 遷移金属、 貴金属及び希 土類元素の中から選ばれる少なく とも一種とを担持してなる N i一 C u系脱硫剤 (以下、 脱硫剤 ΙΠと称す。 ) 、
( 4 ) シリカ一アルミナ担体上に少なく ともニッケルが担持されて なり、 かつ水素吸着量が 0 . 4 ミ リモル Z 以上であることを特徴 とする石油系炭化水素用脱硫剤 (以下、 脱硫剤 IVと称す。 ) 、
( 5 ) 上記脱硫剤 I 、 II、 ffl又は IVを用いて石油系炭化水素を脱硫 処理したのち、 水蒸気改質触媒と接触させることを特徴とする燃料 電池用水素の製造方法、
( 6 ) シ リ カ一アルミ ナ担体上にニッケルを担持してなる脱硫剤を 製造するに当たり、 ニッゲル源及びアルミニゥム源を含む p H 2以 下の酸性水溶液または酸性分散液と、 ゲイ素源及び無機塩基を含む 塩基性水溶液とを混合したのち、 生成した固形物を取り出し、 焼成 するこ とを特徴とするニッゲル系脱硫剤の製造方法 (以下、 製造方 法 I と称す。 ) 、
( 7 ) シリカ—アルミナ担体上にニッケル及び銅を担持してなる脱 硫剤を製造する方法において、 ニッケル源、 銅源及び担体を含む p H 2以下の酸性水溶液または酸性水分散液と、 無機塩基を含む塩基 性水溶液とを混合したのち、 生成した固形物を焼成するこ とを特徴 とするニッケルー銅系脱硫剤の製造方法 (以下、 製造方法 II— a と 称す。 ) 、
( 8 ) シリ カ—アルミナ担体上にニッゲル及び銅を担持してなる脱 硫剤を製造する方法において、 ニッケル源、 銅源及び担体を含む p H 2以下の酸性水溶液または酸性水分散液と、 無機塩基及び担体を 含む塩基性水溶液とを混合したのち、 生成した固形物を焼成するこ とを特徴とするニッケル一銅系脱硫剤の製造方法 (以下、 製造方法 II - b と称す。 ) 、 を提供する ものである。 発明を実施するための最良の形態
本発明の脱硫剤 I は、 S i / A 1 モル比が 1 0以下のシリ力一ァ ルミナ担体にニッケルを担持してなる脱硫剤である。
この脱硫剤 I におけるシ リ カ一アルミナ担体の S i / A 1 モル比 が 1 0 を超えると充分に満足し得る脱硫性能を有するものが得られ ない。 好ま しい S i ノ A 1 モル比は 0. 1〜 8の範囲で選定される。 また、 ニッケルにの担持量は、 金属ニッケルと して、 脱硫剤全重量 に基づき、 通常 4 0重量0 /0以上が好ま しい。
この担持量が 4 0重量%未満では充分な脱硫性能が発揮されない おそれがある。 また、 担持量があま り多すぎると担体の割合が少な く なつて、 脱硫剤の機械的強度や脱硫性能が低下する原因となる。 脱硫性能及び機械的強度などを考慮する と'、 この金属ニッケルのよ り好ま しい担持量は、 5 0 ~ 7 0重量%の範囲である。
上記脱硫剤 I の製造方法については、 後で詳細に説明する。
本発明の石油系炭化水素用脱硫剤 IIは、 担体上に金属成分を担持 させたものであって、 細孔直径 3 n m以下の細孔比表面積が 1 0 0 m 2 / g以上であるものが用いられる。
本発明者らの研究によると、 脱硫剤の全表面積と、 脱硫性能とは ある程度の相関性を示すと考えられるが、 細孔直径 3 n m以下の細 孔が有する表面積と脱硫性能との間には明確な相関性が存在するこ とが確認された。
本発明においては、 脱硫剤 II と して、 細孔直径 3 n m以下の細孔 比表面積が 1 0 O m 2 / g以上のものを用いることが必要である。 この細孔比表面積が 1 0 O m 2 / g未満では、 脱硫活性成分である 金属の分散性が不十分となり、 十分な脱硫性能を出せないおそれが ある。 この細孔比表面積の上限については特に制限はないが、 あま り大きなものは製造が困難であるので、 脱硫性能及び製造面などか ら、 細孔直径 3 n m以下の細孔比表面積は、 1 0 0 〜 2 5 0 m 2 / gの範囲が好ま しく、 特に 1 2 0 〜 2 2 0 m 2 / gの範囲が好ま し い。
なお、 前記細孔直径 3 n m以下の細孔比表面積及び B E T値は、 以下に示す方法により測定した値である。
① B E T比表面積は N 2 吸着法によ り測定した。
② 細孔直径 3 ri m以下の細孔比表面積は、 N 2 吸着等温線を B J H法によ り解析し、 計算した。
本発明においては、 該担体として、 多孔質担体が好ま しく 、 特に 多孔質の無機酸化物が好ま しい。 このようなものと しては、 例えば シ リ カ、 アルミナ、 シ リ カ一アルミ ナ、 チタニア、 ジルコユア、 マ グネシァ、 酸化亜鉛、 白土、 粘土及び珪藻土などを挙げることがで きる。 これらは単独で用いてもよく、 二種以上を組み合わせて用い てもよい。 これらの中で、 特にシリカ一アルミナが好適である。
これらの担体上に担持させる金属成分と しては、 特にニッゲル又 は銅あるいはその両方が好適である。 また、 これらに必要に応じ、 コバル ト、 鉄、 マンガン、 クロムなどの他の金属を少量混在させて もよい。 1 本発明においては、 ニッケルの担持量は、 脱硫剤全量に基づき、 金属ニッケルと して 4 0重量%以上が好ま しい。 この担持量が 4 0 重量%未満では充分な脱硫性能が発揮されないおそれがある。 また 、 担持量があま り多すぎると担体の割合が少なく なつて、 脱硫剤の 機械的強度や脱硫性能が低下する原因となる。 脱硫性能及び機械的 強度などを考慮する と、 この金属ニッケルのよ り好ま しい担持量は
、 5 0〜 7 0重量0 /0の範囲である。 また、 ニッケルに加え更に銅を 担持する場合は、 銅の担持量は金属銅と して脱硫剤全量に基づき、 5〜 5 0重量%、 更に 1 0〜 3 5重量%が好ま しい。 この担持量が 5重量%未満では硫黄吸着速度が低く なる場合があ り、 5 0重量% を超える と硫黄吸着容量が低く なる場合がある。 二ッゲルと銅を担 持する場合は、 その合計担持量は脱硫剤全量に基づき金属換算で 6 0〜 9 0重量06、 更に 6 0〜 8 0重量%が好ま しい。
該担体に金属成分を担持させる方法については特に制限はな く 、 含浸法、 共沈法、 混練法などの公知の任意の方法を採用するこ とが できる。
本発明の好ま しい脱硫剤である、 シ リ カ—アルミナ担体上にニッ ゲルあるいはニッケルー銅を担持させてなる脱硫剤は、 例えば以下 に示すよ うな共沈法によって製造するこ とができる。
この共沈法においては、 まずニッケル源及びアルミニウム源、 必 要に応じ銅源を含む酸性水溶液又は酸性水性分散液と、 ゲイ素源及 び無機塩基を含む塩基性水溶液を調製する。 前者の酸性水溶液又は 酸性水分散液に用いられるニッゲル源と しては、 例えば塩化ニッケ ル、 硝酸ニッケル、 硫酸ニッケル、 酢酸ニッケル及びこれらの水和 物などが挙げられる。 また銅源と しては、 例えば塩化銅、 硝酸銅、 硫酸銅、 酢酸銅及びこれらの水和物などが挙げられる。 更にアルミ ニゥム源と しては、 硝酸アルミニウム、 擬べ一マイ ト、 ベ一マイ ト アルミナ、 ノ ィャライ ト、 ジブサイ トなどのアルミナ水和物や、 ァ —アルミナなどが挙げられる。
一方、 塩基性水溶液に用いられるゲイ素源と しては、 アルカ リ水 溶液に可溶であって、 焼成によ り シ リ 力になる ものであればよ く 、 特に制限されず、 例えばオルトケィ酸、 メ タケイ酸及びそれらのナ ト リ ウム塩やカ リ ウム塩、 水ガラスなどが挙げられる。 また、 無機 塩基と しては、 アルカ リ金属の炭酸塩や水酸化物などが挙げられる 次に、 このようにして調製した酸性の水溶液又は水分散液と塩基 性水溶液を、 それぞれ 5 0 〜 9 0 °C程度に加温して、 両者を混合し 、 さ らに 5 0 〜 9 0 °C程度の温度に保持して反応を完結させる。 次に、 生成した固形物を充分に洗浄したのち固液分離するか、 あ るいは生成した固形物を固液分離したのち充分に洗浄し、 次いで、 この固形物を公知の方法によ り 8 0〜 1 5 0 °C程度の温度で乾燥処 理する。 このようにして得られた乾燥処理物を、 好ま しく は 2 0 0 - 4 0 0 °Cの範囲の温度において焼成することによ り、 シリ カ一ァ ルミナ担体上に金属成分が担持された脱硫剤が得られる。 この際、 前述の細孔分布を有する担体が形成され、 かつ金属担持量が所望の 値になるように、 使用する原料の種類や量、 反応条件、 焼成条件な どを選択する。
本発明の N i — C u系脱硫剤 IIIは.、 担体に、 (A ) ニッケル、 ( B ) 銅及び ( C ) アルカ リ金属、 アルカ リ土類金属、 遷移金属、 貴 金属及び希土類元素の中から選ばれる少なく とも一種が担持された ものである。 ニッケル担持量及び銅担持量は、 脱硫剤全量に基づき 、 それぞれ金属ニッケルと して 4 0 〜 8 0重量%及び金属銅と して 5 〜 5 0重量%の範囲が好ま しい。 ニッゲル担持量あるいは銅担持 量が上記範囲よ り少ないと充分な脱硫性能が発揮されないおそれが あり、 一方上記範囲を超えると担体の割合が少なく なつて、 脱硫剤 の機械的強度や脱硫性能が低下する原因となる。 脱硫性能及び機械 的強度などを考慮すると、 このニッケルのよ り好ま しい担持量は 5 0 〜 7 0重量0 /oの範囲であり、 銅のよ り好ま しい担持量は、 1 0 〜 3 5重量%の範囲である。
本発明の脱硫剤 ΙΠにおいては、 第三の金属と して、 アルカ リ金属 、 アルカ リ土類金属、 遷移金属、 貴金属及び希土類元素の中から選 ばれる少な く と も一種を担持させる。
ここで、 アルカ リ金属と しては、 カ リ ウムやナ ト リ ウムなどが、 アルカ リ土類金属と しては、 カルシウムやマグネシウムなどが、 遷 移金属と しては、 マ ンガンや亜鉛などが、 貴金属と しては、 白金、 金、 銀、 パラ ジウム、 ルテニウム、 ロジウムなどが、 希土類元素と しては、 ラ ンタ ンやセ リ ウムなどが好ま しく挙げられる。
上記アル力 リ金属、 アルカ リ土類金属、 遷移金属、 貴金属及び希 土類元素の各々の担体への担持量と しては、 アルカ リ金属の場合 1 〜 1 0重量%、 アル力 リ土類金属の場合 1 〜 1 0重量%、 遷移金属 の場合 2 〜 1 0重量%、 貴金属の場合 0 . 1 〜 5重量%、 希土類元 素の場合 3 〜 1 0重量%であることが好ま しい。 上記第三の金属担 持量が上記範囲を逸脱する場合は、 十分な脱硫性能が得られない場 合がある。
これらの金属成分を担持する担体と しては、 シ リ カ、 アルミ ナ、 シ リ カ一アルミ ナ、 チタニア、 ジルコユア、 ゼォライ ト、 マグネシ ァ、 珪藻土、 白土、 粘土又は酸化亜鉛から選ばれる少なく と も一種 が挙げられ、 このう ち、 シ リ カ一アルミ ナ担体が好ま しく 、 特に、 脱硫性能などの点から、 S i / A 1 モル比が 1 0以下のシ リ カ—ァ ルミ ナ担体が好ま しい。
また、 本発明の脱硫剤 ΙΠにおいては、 脱硫性能及び脱硫剤の機械 的強度などの点から、 担持した総金属含有量が 7 0 〜 9 0重量%で 、 かつ担体が 3 0 〜 I 0重量%の範囲にあるのが好ま しい。 本発明の N i 一 C u系脱硫剤 IIIの製造方法と しては、 上記の性状 を有する ものが得られる方法であればよ く 、 特に制限はないが、 以 下に示す方法によ り、 所望の N i 一 C u系脱硫剤 IIIを効率よ く製造 するこ とができる。
まず、 二ッゲル源、 銅源及びアルミニゥム源を含む p H 2以下の 酸性の水溶液又は水分散液と、 ゲイ素源及び無機塩基を含む塩基性 水溶液を調製する。 前者の酸性の水溶液又は水分.散液に用いられる 二ッゲル源と しては、 例えば塩化ニッゲル、 硝酸ニッゲル、 硫酸二 ッゲル、 酢酸ニッケル、 炭酸ニッケル及びこれらの水和物などが、 銅源と しては、 例えば塩化銅、 硝酸銅、 硫酸銅、 酢酸銅及びこれら の水和物などが挙げられる。 これらのニッケル源や銅源は、 それぞ れ単独で用いても、 二種以上を組み合わせて用いてもよい。
また、 アルミ ニウム源と しては、 擬べ一マイ ト、 ベ一マイ トアル ミ ナ、 バイャライ ト、 ジブサイ トなどのアルミ ナ水和物や、 ァ ―ァ ルミナなどが挙げられる。 これらの中で擬べ一マイ ト、 ベ一マイ ト アルミ ナ及びァ —アルミ ナが好適である。 これらは粉体状、 あるい はゾルの形態で用いるこ とができる。 また、 このアルミ ニウム源は 一種用いてもよ く 、 二種以上を組み合わせて用いてもよい。
上記ニッケル源及びアルミ ニゥム源を含む水溶液又は水分散液は 、 塩酸、 硫酸、 硝酸などの酸によって、 p H 2以下に調整するこ と が肝要である。 この p Hが 2 を超える と所望の性能をもつ脱硫剤が 得られにく い。 この水溶液又は水分散液における固形分濃度どして は特に制限はないが、 5 〜 2 0重量%程度が適当である。
一方、 塩基性水溶液に用いられるゲイ素源と しては、 アルカ リ水 溶液に可溶であって、 焼成によ り シ リ カになる ものであればよ く 、 特に制限されず、 例えばオルトゲイ酸、 メ タケイ酸、 及びそれらの ナ ト リ ウム塩やカ リ ウム塩、 水ガラスなどが挙げられる。 これらは 一種用いてもよ く 、 二種以上を組み合わせて用いてもよいが、 特に ゲイ酸ナ ト リ ウム水和物の一種である水ガラスが好適である。 この ゲイ素源の使用量は、 該ケィ素源中のゲイ素原子と前記アルミニゥ ム源中のアルミニウム原子のモル比 ( S i ノ A 1 モル比) が、 通常 1 0以下になるように選定することが好ま しい。
また、 無機塩基と しては、 アル力 リ金属の炭酸塩や水酸化物など が好ま しく、 例えば炭酸ナ ト リ ウム、 炭酸力 リ ゥム、 水酸化ナ ト リ ゥム、 水酸化力 リ ウムなどが挙げられる。 これらは単独で用いても よく、 二種以上を組み合わせて用いてよいが、 特に炭酸ナ ト リ ウム 単独又は炭酸ナ ト リ ウムと水酸化ナ ト リ ウムとの組合わせが好適で ある。 この無機塩基の使用量は、 次の工程において、 前記 p H 2以 下の酸性の水溶液又は水分散液と、 この塩基性水溶液を混合した場 合、 混合液が実質上中性から塩基になるように選ぶのが有利である また、 この無機塩基は、 全量を該塩基性水溶液の調製に用いても よいし、 あるいは一部を、 上記酸性の水溶液又は水分散液と塩基性 水溶液との混合後に加えてもよい。
本発明においては、 このよう にして調製した p H 2以下の酸性水 溶液又は水分散液と塩基性水溶液を、 それぞれ 5 0 〜 9 0 °C程度に 加温したのち、 両者を混合する。 この混合は、 できるだけす早く行 うのが好ま しい。 混合後、 必要に応じ、 5 0 〜 9 0 °Cに加温された 無機塩基を含む水溶液を加えたのち、 混合液を 5 0 〜 9 0 °C程度の 温度において 0 . 5 〜 3時間程度撹拌し、 反応を完結させる。
次に、 生成した固形物を充分に洗浄したのち固液分離するか、 あ るいは生成した固形物を固液分離したのち充分に洗浄し、 次いで、 この固形物を公知の方法によ り 8 0 〜 1 5 0 t程度の温度で乾燥処 理する。 このよ うにして得られた乾燥処理物を、 好ま しく は 2 0 0 〜 4 0 0 °Cの範囲の温度において焼成するこ とによ り、 担体上に二 ッケル及び銅が担持された脱硫剤が得られる。 焼成温度が上記範囲 を逸脱すると所望の性能をもつ N i — C u系脱硫剤が得られにく い また、 上記アルカ リ金属、 アル力 リ土類金属、 遷移金属、 貴金属 及び希土類元素の第 3成分を担持させる方法と しては、 これらを、 アル力 リ金属源、 アル力 リ土類金属源、 遷移金属源、 貴金属源ある いは希土類元素源と して、 上記ニッゲル源、 銅源及びアルミニゥム 源を含む p H 2以下の酸性の水溶液又は水分散液に含有させて反応 させてもよいし、 また、 粉体と して上記焼成時に存在させて反応さ せてもよ く 、 更に、 これらの溶液を含浸液と して担体に担持させて もよく、 各金属に応じて適宜選択することができる。 これらの方法 においては、 上記第 3成分源の存在量は、 前記担体への担持量を満 足するような量を適宜選択すればよい。 アルカ リ金属源、 アル力 リ土類金属源、 遷移金属源、 貴金属源あるいは希土類元素源と して は、 その炭酸塩、 塩化物、 硝酸塩、 硫酸塩、 酢酸塩等をその担持方 法に応じて適宜選択して用いるこ とができる。
本発明の石油系炭化水素用脱硫剤 IVは、 担体上に金属成分を担持 させたものであって、 水素吸着量が 0 . 4 ミ リモル/ g以上である 。 この水素吸着量が 0 . 4 ミ リモルノ g未満のものでは、 充分な脱 硫性能が発揮されず、 本発明の目的が達せられない。 この水素吸着 量の上限については特に制限はないが、 あま り大きなものは製造が 困難であるので、 脱硫性能及び製造面などから、 水素吸着量は 0 . 4 〜 0 . 9 ミ リモル/ gの範囲が好ま しく、 特に 0 . 6 〜 0 . 8 ミ リモル/ gの範囲が好ま しい。
なお、 前記水素吸着量は、 以下に示す方法によ り測定した値であ る。
脱硫剤 1 0 0 m gを石英製試験管に充填する。 常圧下、 ヘリ ウム 気流中にて 1 2 0 °Cに昇温し、 1 時間保持した後ヘリ ゥムガスを水 素ガスに置換し、 更に昇温し、 3 8 0 °Cで 1 時間保持して、 脱硫剤 を活性化する。 次に、 真空下 ( 0 . 4 F a ) 、 3 0 0 °Cで吸着して いる水素を除去し、 2 0 °Cにて水素吸着測定を行う。 導入した水素 の圧力変化から水素吸着量を算出した。
本発明においては、 該担体と して、 多孔質担体が好ま しく 、 特に 多孔質の無機酸化物が好ま しい。 このよ うなものとしては、 例えば シ リ カ、 アルミナ、 シ リ カ一アルミ ナ、 チタニア、 ジルコユア、 マ グネシァ、 酸化亜鉛、 白土、 粘土及び珪藻土などを挙げるこ とがで きる。 これらは単独で用いてもよ く 、 二種以上を組み合わせて用い てもよい。 これらの中で特にシリ カーアルミナが好適である。
これらの担体上に担持させる金属成分と しては、 特にニッゲルが 好適である。 また、 このニッケルに必要に応じ、 銅、 コバルト、 鉄 、 マンガン、 クロムなどの他の金属を少量混在させてもよい。
本発明においては、 ニッケルの担持量は、 脱硫剤全量に基づき、 金属ニッケルと して 4 0重量%以上が好ま しい。 この担持量が 4 0 重量%未満では充分な脱硫性能が発揮されないおそれがある。 また 、 担持量があま り多すぎると担体の割合が少なく なつて、 脱硫剤の 機械的強度や脱硫性能が低下する原因となる。 脱硫性能及び機械的 強度などを考慮すると、 この金属ニッケルのよ り好ま しい担持量は 、 5 0〜 7 0重量%の範囲である。
該担体に金属成分を担持させる方法については特に制限はなく 、 含浸法、 共沈法、 混練法などの公知の任意の方法を採用するこ とが できる。
本発明の好ま しい脱硫剤である、 アルミ ナ—シ リ 力担体上に二ッ ゲルを担持させてなる脱硫剤は、 例えば以下に示すような共沈法に よって製造するこ とができる。
この共沈法においては、 まずニッケル源及びアルミニウム源を含 む酸性水溶 又は酸性水性分散液と、 ゲイ素源及び無機塩基を含む 塩基性水溶液を調製する。 前者の酸性水溶液又は酸性水分散液に用 いられるニッゲル源と しては、 例えば塩化ニッゲル、 硝酸ニッケル 、 硫酸ニッケル及びこれらの水和物などが挙げられる。 また、 アル ミニゥム源と しては硝酸アルミニウム、 擬べ一マイ ト、 ベーマイ ト アルミナ、 バイャライ ト、 ジブサイ トなどのアルミナ水和物や、 ァ —アルミナなどが挙げられる。
一方、 塩基性水溶液に用いられるゲイ素源と しては、 アルカ リ水 溶液に可溶であって、 焼成によ り シ リ カになる ものであればよ く 、 特に制限されず、 例えばオルトゲイ酸、 メ タケイ酸及びそれらのナ ト リ ウム塩やカ リ ウム塩、 水ガラスなどが挙げられる。 また、 無機 塩基と しては、 アル力 リ金属の炭酸塩や水酸化物などが挙げられる 次に、 このよう にして調製した酸性の水溶液又は水分散液と塩基 性水溶液を、 それぞれ 5 0 〜 9 0 °C程度に加温して、 両者を混合し 、 さ らに 5 0 〜 9 0 °C程度の温度に保持して反応を完結させる。 次に、 生成した固形物を充分に洗浄したのち固液分離するか、 あ るいは生成した固形物を固液分離したのち充分に洗浄し、 次いで、 この固形物を公知の方法によ り 8 0 〜 1 5 0 °C程度の温度で乾燥処 理する。 このよう にして得られた乾燥処理物を、 好ま しく は 2 0 0 〜 4 0 0 °Cの範囲の温度において焼成することによ り、 シ リ カ一了 ルミナ担体上にニッケルが担持された脱硫剤が得られる。 この際、 前述の水素吸着量を有する担体が形成され、 かつニッゲル担持量が 所望の値になるように、 使用する原料の種類や量、 反応条件、 焼成 条件などを選択する。
前述の本発明の脱硫剤 I 〜IVは、 石油系炭化水素、 好ま しく は灯 油の脱硫剤と して用いられる。 石油系炭化水素の中でも硫黄分含有 量が 8 0重量 p p m以下の J I. S 1 号灯油に適甩するのが好ま しい 。 この J I S 1 号灯油は、 原油を常圧蒸留して得た粗灯油を脱硫す るこ とによ り得られる。 該粗灯油は、 通常硫黄分が多く 、 そのまま では J I S 1 号灯油とはならず、 硫黄分を低減させる必要がある。 この硫黄分を低減させる方法としては、 一般に工業的に実施されて いる水素化精製法で脱硫処理するのが好ま しい。 この場合、 脱硫触 媒と して、 通常ニッケル、 コバルト、 モ リ ブデン、 タ ングステンな どの遷移金属を適当な割合で混合したものを金属、 酸化物、 硫化物 などの形態でアルミナを主成分とする担体に担持させたものが用い られる。 反応条件は、 例えば反応温度 2 5 0 〜 4 0 0 °C、 圧力 2 〜 1 0 M P a · G、 水素/油モル比 2 〜 1 0、 液時空間速度 ( L H S V ) 1 〜 5 h 1などの条件が用いられる。
本発明の脱硫剤 I 〜1Vを用いて、 石油系炭化水素を脱硫処理する 方法と しては、 例えば以下に示す方法を用いることができる。
まず、 該本発明の脱硫剤 I 〜1Vが充填された脱硫塔に、 予め水素 を供給し、 1 5 0 〜 4 0 0 °C程度の温度において、 該脱硫剤の還元 処理を行う。 次に、 石油系炭化水素、 好ま しく は灯油 1 号を、 脱硫 塔中を上向き又は下向きの流れで通過させ、 温度 1 3 0 〜 2 3 0 °C 程度、 圧力常圧〜 I M P a · G程度、 L H S V 1 0 h 1以下程度の 条件で脱硫処理する。 この際、 必要によ り、 少量の水素を共存させ てもよい。 脱硫条件を上記範囲で適当に選択するこ とによ り、 硫黄 分 0 . 2重量 p p m以下の石油系炭化水素を得る こ とができる。 本発明の燃料電池用水素の製造方法は、 このよ う にして脱硫処理 した石油系炭化水素を、 水蒸気改質触媒と接触させるこ とによ り、 水素を製造する方法である。
本発明の方法において用いられる水蒸気改質触媒と しては特に制 限はなく 、 従来炭化水素油の水蒸気改質触媒と して知られている公 知のものの中から、 任意のものを適宜選択して用いる こ とができる 。 このような水蒸気改質触媒と しては、 例えば適当な担体に、 ニッ ゲルやジルコニウム、 あるいはルテニウム、 ロジウム、 白金などの 貴金属を担持したものを挙げるこ とができる。 上記担持金属は一種 担持させてもよ く 、 二種以上を組み合わせて担持させてもよい。 こ れらの触媒の中で、 ルテニウムを担持させたもの (以下、 ルテユウ ム系触媒と称す。 ) が好ま しく 、 水蒸気改質反応中の炭素析出を抑 制する効果が大きい。
このルテニウム系触媒の場合、 ルテニウムの担持量は、 担体基準 で 0 . 0 5 〜 2 0重量%の範囲が好ま しい。 この担持量が 0 . 0 5 重量%未満では水蒸気改質活性が充分に発揮されないおそれがあ り 、 一方 2 0重量%を超える とその担持量の割には触媒活性の向上効 果があま り認められず、 むしろ経済的に不利となる。 触媒活性及び 経済性などを考慮する と、 このルテニウムのよ り好ま しい担持量は 0 . 0 5 〜 1 5重量0 /0であ り、 特に 0 . 1 〜 2重量%の範囲が好ま しい。
このルテニウムを担持する場合、 所望によ り、 他の金属と組み合 わせて担持するこ とができる。 該他の金属と しては、 例えばジルコ 二ゥム、 コバル ト、 マグネシウムなどが挙げられる。 ルテニウムと ジルコニウムを組み合わせて担持する場合、 ジルコニウムの担持量 は、 Z r ◦ 2 と して担体基準で、 通常 0 . 5 〜 2 0重量%、 好ま し く は 0 . 5 〜 1 5重量%、 よ り好ま しく は 1 〜 1 5重量%の範囲で 選定される。 また、 ルテニウムとコバル ト を組み合わせて担持する 場合、 コバル トの担持量は、 ルテニウムに対するコバル トの原子比 が、 通常 0 . ◦ 1 〜 3 0 、 好ま しく は 0 . 1 〜 3 0、 よ り好ま しく は 0 . 1 〜 1 ◦ になるよう に選定される。 さ らに、 ルテニウムとマ グネシゥムを組み合わせて担持する場合、 マグネシゥムの担持量は 、 M g 0と して担体基準で通常 0 . 5〜 2 0重量%、 好ま しく は 0 . 5〜 1 5重量0 /0、 よ り好ま しく は 1 〜 1 5重量0 /0の範囲で選定さ れる。
一方、 担体と しては、 無機酸化物が好ま しく 、 具体的にはアルミ ナ、 シ リ カ、 ジルコユア、 マグネシア及びこれらの混合物などが挙 げられる。 これらの中で、 特にアルミナ及びジルコニァが好適であ る。
本発明で用いられる水蒸気改質触媒の好ま しい態様の一つと して 、 ルテニウムをジルコユアに担持した触媒が挙げられる。 このジル コニァは、 単体のジルコニァ ( Z r 〇 2 ) でもよいし、 マグネシア のような安定化成分を含む安定化ジルコニァでもよい。 この安定化 ジルコニァと しては、 マグネシア、 イ ッ ト リ ア、 セリ アなどを含む ものが好適である。
本発明で用いられる水蒸気改質触媒の好ま しい態様のもう一つと しては、 ルテニウムとジルコニウム、 又はルテニウムとジルコニゥ ムの他に、 さ らにコバル ト及び/又はマグネシウムとをアルミ ナ担 体に担持した触媒を挙げるこ とができる。 該アルミ ナと しては、 特 に耐熱性と機械的強度に優れる α—アルミ ナが好ま しい。
水蒸気改質処理における反応条件と しては、 水蒸気と石油系炭化 水素に由来する炭素との比 S /C (モル比) は、 通常 1. 5〜 1 0、 好ま しく は 1. 5〜 5、 よ り好ま し く は 2〜 4の範囲で選定される。 S / Cモル比が 1. 5未満では水素の生成量が低下するおそれがあ り 、 また 1 0 を超えると過剰の水蒸気を必要と し、 熱ロスが大き く 、 水素製造の効率が低下するので好ま しく ない。
また、 水蒸気改質触媒層の入口温度を 6 3 0 °C以下、 さ らには 6 0 0 °C以下に保って水蒸気改質を行うのが好ま しい。 入口温度が 6 3 0 °Cを超える と石油系炭化水素の熱分解が促進され、 生成したラ ジ力ル経由で触媒あるいは反応管壁に炭素が析出して、 運転が困難 になる場合がある。 なお、 触媒層出口温度は特に制限はないが、 6 5 0〜 8 0 0.°Cの範囲が好ま しい。 触媒層出口温度が 6 5 0 °C未満 では水素の生成量が充分ではないおそれがあ り、 8 0 0 °Cを超える と反応装置は耐熱材料を必要とする場合があ り、 経済的に好ま しく ない。
反応圧力は、 通常常圧〜 3 M P a、 好ま しく は常圧〜 I M P aの 範囲であ り、 また、 L H S Vは、 通常 0. 1 〜 1 0 O h— '、 好ま し く は 0. Z S O h -1の範囲である。
上記水素の製造方法においては、 上記水蒸気改質によ り得られる C〇が水素生成に悪影響を及ぼすため、 これを反応によ り C 02 と して C◦を除く こ とが好ま しい。
このよう にして、 燃料電池用水素を効率よ く製造するこ とができ る。
次に、 本発明のニッケル系脱硫剤の製造方法 (製造方法 I ) 及び ニッケル一銅系脱硫剤の製造方法 (製造方法 II一 a、 II一 b ) につ いて説明する。
本発明の製造方法 I における、 シ リ カ一アルミ ナ担体上にニッケ ルを担持してなる脱硫剤は以下に示す方法によって製造される。
まず、 ニッゲル源及びアルミニゥム源を含む p H 2以下の酸性水 溶液又は酸性分散液と、 ゲイ素源及び無機塩基を含む塩基性水溶液 を調製する。 前者の酸性水溶液又は酸性分散液に用いられるニッケ ル源と しては、 硝酸塩、 塩化物、 硫酸塩、 酢酸塩、 炭酸塩などが挙 げられ、 具体的には塩化ニッケル、 硝酸ニッケル、 硫酸ニッケル、 酢酸二ッケル、 炭酸二ッケル及びこれらの水和物などが挙げられる 。 これらは単独で用いてもよ く、 二種以上を組み合わせて用いても よい。 これらのニッケル源の使用量は、 得られる脱硫剤中のニッケ ル含有量が、 通常 4 0重量0 /0以上、 好ま しく は 5 0〜 7 0重量%の 範囲になるよう に選ばれる。 ニッゲル含有量が 4 0重量%ょ り少な い場合は、 硫黄吸'着量が少なく な り脱硫寿命が短く なるなど所望の 性能をもつ脱硫剤が得られにく い。
また、 アルミニウム源と しては、 擬べ一マイ ト、 ベーマイ トアル ミナ、 ノ ィャライ ト、 ジブサイ トなどのアルミ ナ水和物や、 ァ ーァ ルミ ナなどが挙げられる。 これらの中で擬ベーマイ ト、 ベ一マイ ト アルミナ及びァ ーアルミ ナが好適である。 これらは粉体状、 あるい はゾルの形態で用いるこ とができる。 また、 このアルミ ニウム源は 一種用いてもよ く 、 二種以上を組み合わせて用いてもよい。
上記ニッゲル源及びアルミ 二ゥム源を含む酸性水溶液又は酸性分 散液は、 塩酸、 硫酸、 硝酸などの酸によって、 p H 2以下、 好ま し く は 1. 5以下に調整する こ とが必要である。 この p Hが 2 を超える と脱硫剤の表面積が減少し、 硫黄吸着量が少な く なるこ とによ り脱 硫寿命が短く なるなど所望の性能をもつ脱硫剤が得られない。 一方、 塩基性水溶液に用いられるゲイ素源と しては、 アルカ リ水 溶液に可溶であって、 焼成によ り シ リ カになるものであればよ く 、 特に制限されないが、 例えばオル トゲイ酸、 メ タケイ酸及びそれら のナ ト リ ゥム塩や力 リ ゥム塩、 水ガラスなどが挙げられる。 これら は一種用いてもよ く 、 二種以上を組み合わせて用いてもよいが、 特 にゲイ酸ナ 卜 リ ゥム水和物の一種である水ガラスが好適である。 こ のゲイ素源の使用量は、 該ケィ素源中のゲイ素原子と前記アルミ 二 ゥム源中のアルミニウム原子のモル比 ( S i / A 1 モル比) が、 通 常 1 0以下、 好ま しく は 0 . 1 〜 8の範囲になるよう に選定される 。 S i / A 1 モル比が 1 0 を超える とニッゲル酸化物が還元されに く く な り、 硫黄吸着量が少な く なるこ とから脱硫剤の寿命が短く な るなど所望の性能をもつ脱硫剤が得られにく い。
また、 無機塩基と しては、 アルカ リ金属の炭酸塩や水酸化物など が好ま しく 、 例えば炭酸ナ ト リ ウム、 炭酸力 リ ウム、 水酸化ナ ト リ ゥム、 水酸化力 リ ウムなどが挙げられる。 これらは単独で用いても よ く 、 二種以上を組み合わせて用いてよいが、 本発明においては、 特に炭酸ナ ト リ ゥム単独又は炭酸ナ ト リ ゥムと水酸化ナ ト リ ウムと の組合わせが好適である。 この無機塩基の使用量は、 次の工程にお いて、 前記 p H 2以下の酸性水溶液又は酸性分散液と、 この塩基性 水溶液を混合した場合、 混合液が実質上中性から塩基性になるよう に選ぶのが有利である。 また、 この無機塩基は、 全量を該塩基性水 溶液の調製に用いてもよいし、 あるいは一部を、 次の工程における 上記酸性水溶液又は酸性分散液と塩基性水溶液との混合後に加えて もよい。
本発明においては、 このよう にして調製した p H 2以下の酸性水 溶液又は酸性分散液と塩基性水溶液を、 それぞれ 5 0 〜 9 0 °C程度 に加温したのち、 両者を混合する。 この混合は、 できるだけす早く 行うのが好ま しい。 混合後、 必要に応じ、 5 0 〜 9 0 °Cに加温され た無機塩基を含む水溶液を加えたのち、 混合液を 5 0 〜 9 0 °C程度 の温度において 0 . 5 〜 3時間程度撹拌し、 反応を完結させる。 次に、 生成した固形物を充分に洗浄したのち固液分離するか、 あ るいは生成した固形物を固液分離したのち.充分に洗浄し、 次いで、 この固形物を公知の方法によ り 8 0 〜 1 5 0 °C程度の温度で乾燥処 理する。 このよう にして得られた乾燥処理物を、 好ま しく は 2 0 0 〜 4 3 0 °C . 好ま しく は 2 5 0 - 4 0 0 °Cの範囲の温度において焼 成することにより、 シリカ一アルミナ担体上にニッゲルが担持され た脱硫剤が得られる。 焼成温度が上記範囲を逸脱すると脱硫剤の表 面積が減少したりニッケルの凝集によ り硫黄吸着量が少なく なり脱 硫剤の寿命が短く なるなど所望の性能をもつニッゲル系脱硫剤が得 られにく い。
本発明の方法によ り得られたニッゲル系脱硫剤は、 S i / A 1 モ ル比が通常 1 0以下、 好ま しく は 0 . 1 〜 8のシ リ カ一アルミナ担 体上に、 全重量に基づき、 ニッゲルが通常 4 0重量%以上、 好ま し く は 5 0 〜 7 0重量%の割合で担持されたものであって、 石油系炭 化水素の硫黄分を低濃度 ( 0 . 2重量 p p m以下) まで吸着除去す るこ とができ、 しかも長期間にわたって、 その脱硫性能を保持する こ とができる。
このようにして得られたニッケル系脱硫剤の用途及び該脱硫剤を 用いた脱硫方法や燃料電池用水素の製造方法については、 前述の本 発明の脱硫剤 I 〜IVにおいて説明した通りある。
本発明の製造方法 II— a、 II _ bにおける、 担体上にニッケル及 び銅を担持してなる脱硫剤は、 以下に示す方法によつて製造される まずニッゲル源、 銅源及び担体を含む酸性水溶液又は酸性分散液 と、 無機塩基を含む塩基性水溶液を調製する。 前者の酸性水溶液又 は酸性分散液に用いられるニッゲル源と しては、 例えば塩化ニッケ ル、 硝酸ニッケル、 硫酸ニッケル、 酢酸ニッケル、 炭酸ニッケル及 びこれらの水和物などが挙げられる。 これらは単独で用いてもよ く 、 二種以上を組み合わせて用いてもよい。
これらのニッケル源の使用量は、 得られる脱硫剤中の金属ニッケ ル含有量が、 好ま しく は 4 0 〜 8 0重量0 /o、 よ り好ま しく は 5 0 - 7 0重量%の範囲になるよう に選ばれる。 ニッケル含有量が 4 0重 量%よ り少ない場合は、 充分な脱硫性能が発揮されないおそれがあ り、 また 8 0重量%を超える場合は脱硫剤の機械的強度や脱硫性能 が低下する原因となるなど所望の性能をもつ脱硫剤が得られにく い また、 銅源と しては、 例えば塩化銅、 硝酸銅、 硫酸銅、 酢酸銅及 びこれらの水和物などが挙げられる。 これらは単独で用いてもよ く 、 二種以上を組み合わせて用いてもよい。 これらの銅源の使用量は 、 得られる脱硫剤中の金属銅含有量が、 好ま しく は 5 〜 5 0重量% 、 よ り好ま しく は 1 0 〜 3 5重量0 /0の範囲になるよ う に選ばれる。 銅の含有量が 5重量%よ り少ない場合は、 硫黄の吸着速度が低く な り、 また 5 0重量%を超える場合は硫黄の吸着量が低下するなど所 望の性能をもつ脱硫剤が得られにぐい。
担体と しては、 多孔質担体が好ま しく 、 特に多孔質の無機酸化物 が好ま しい。 このよ う なものと しては、 例えばシ リ カ、 アルミ ナ、 シ リ カ一アルミナ、 チタニア、 ジルコニァ、 マグネシア、 珪藻土、 白土、 粘土及び酸化亜鉛などを挙げることができる。 これらは単独 で用いてもよ く 、 二種以上を組み合わせて用いてもよい。 これらの 中で、 本発明においては特にシ リ カ一アルミナが好適である。 この よ うな担体は、 酸性水溶液又は酸性分散液に含まれるが、 必要に応 じ更に塩基性水溶液にも含むこ とができる。 例えば、 担体がシ リ カ 一アルミ ナである場合には、 そのアルミニウム源を含む酸性水溶液 又は酸性分散液と、 シ リ 力源を含む無塩基性水溶液を用いるこ とが ある。
上記ニッゲル源、 銅源及び担体を含む酸性水溶液又は酸性分散液 は、 塩酸、 硫酸、 硝酸などの酸によって、 p H 2以下、 好ま しく は 1. 5以下に調整するこ とが.必要である。 この p Hが 2 を超える と二 ッゲル及び銅の分散性が低下する。
一方、 塩基性水溶液に用いられる無機塩基と しては、 アルカ リ金 属の炭酸塩や水酸化物などが好ま しく 、 例えば、 炭酸ナ ト リ ウム、 炭酸カ リ ウム、 水酸化ナ ト リ ウム、 水酸化カ リ ウムなどが挙げられ る。 これらは単独で用いてもよ く 、 二種以上を組み合わせて用いて もよいが、 本発明においては、 このよ うな無機塩基と して炭酸ナ ト リ ウムあるいは水酸化ナ ト リ ゥムの単独又は炭酸ナ ト リ ウムと水酸 化ナ ト リ ウムとの組合せが好適である。 この無機塩基の使用量は、 次の工程において前記 P H 2以下の酸性水溶液又は酸性分散液と、 この塩基性水溶液を混合した場合、 混合液が実質上中性から塩基性 になるよう に選ぶのが有利である。
本発明においては、 このよう にして調製した p H 2以下の酸性水 溶液又は酸性分散液と塩基性水溶液を、 それぞれ 5 0 〜 9 0 °C程度 に加温したのち、 両者を混合する。 この混合はできるだけ素早く行 う こ とが好ま しい。 さ らに得られた混合液を 5 0 〜 9 0 程度の温 度に保持し 0. 5 〜 3時間程度攪拌し、 反応を完結させる。 次に、 生成した固形物を充分に洗浄したのち固液分離するか、 あ るいは生成した固形物を固液分離したのち充分に洗浄し、 次いで、 この固形物を公知の方法によ り 8 0 ~ 1 5 0 °C程度の温度で乾燥処 理する。 このよ うにして得られた乾燥処理物を、 好ま しく は 2 0 0 〜 4 0 0 °C、 更に好ま しく は 3 0 0 〜 3 7 0 °Cの範囲の温度におい て焼成するこ とによ り、 担体上にニッゲル及び銅が担持された脱硫 剤が得られる。 焼成温度が上記範囲を逸脱する と、 ニッケル及び銅 の分散性が低く なるなど所望の性能をもつニッケルー銅系脱硫剤が 得られにく い場合がある。
本発明においては、 担体上のニッケルの担持量は、 脱硫剤全量に 基づき、 金属ニッケルと して 4 0 〜 8 0重量%、 更に 5 0 〜 7 0重 量0 /0の範囲であることが好ま しい。 ニッケル含有量が 4 0重量0 /0よ り少ない場合は、 充分な脱硫性能が発揮されないおそれがある。 ま た 8 0重量%を超える場合は脱硫剤の機械的強度や脱硫性能が低下 する原因となるなど所望の性能をもつ脱硫剤が得られにく い。
また、 銅の担持量は脱硫剤全量に基づき、 金属銅と して 5 ~ 5 0 重量%、 更に 1 0 〜 3 5重量%の範囲であることが好ま しい。 銅含 有量が 5重量%よ り少ない場合は硫黄の吸着速度が低く なり、 また 5 0重量%を超える場合は硫黄の吸着容量が低下するなど所望の性 能をもつ脱硫剤が得られにく い。
本発明においては、 担体上に担持される二ッゲル及び銅の担持量 の合計は、 脱硫剤全量に基づき、 金属換算で 6 0 〜 9 0重量%、 更 に 6 0〜 8 0重量%であることが好ま しい。 この量が 6 0重量%ょ り少ない場合は、 充分な脱硫性能が発揮されないおそれがある。 ま た 9 0重量%を超える場合は、 脱硫剤の機械的強度や脱硫性能が低 下する原因となるなど所望の性能をもつ脱硫剤が得られにく い。 本発明においては、 担体上にニッケルー銅成分を担持させるが、 必要に応じ、 コバルト、 鉄、 マンガン、 クロムなどの他の金属を混 在させてもよい。
このよう にして得られたニッゲル一銅系脱硫剤の用途、 及び該脱 硫剤を用いた脱硫方法や燃料電池用水素の製造方法については、 前 述の本発明の脱硫剤 I 〜IVにおいて説明した通りである。
次に、 本発明を実施例によ り、 さ らに具体的に説明するが、 本発 明は、 これらの例によってなんら限定されるものではない。
実施例 1
水 5 0 0 ミ リ リ ッ トルに硝酸ニッゲル 6 2 . 3 g を溶解し、 これ に硝酸アルミ ニウム 1 . 3 gを加えたのち、 1 モル/リ ッ トル濃度 の硝酸水溶液 2 0 ミ リ リ ツ トルを加え、 p H 1 に調整し、 ( A ) 液 を調製した。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 し、 これに水ガラス 1 1 . 7 g ( S i 濃度 2 9重量0 /0 ) を加え、 ( B ) 液を調製した。
次に、 上記 ( A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 混合液の温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分 に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間焼成処理するこ とによ り 、 シリ カ—アルミナ担体にニッゲルが 6 3重量%担持された脱硫剤 を得た。
この脱硫剤の B E T値 (窒素吸着比表面積) 、 細孔直径 3 n m以 下の比表面積及び脱硫性能を第 1表に示す。
なお、 脱硫剤の脱硫性能は、 下記の方法に従って評価した。 ぐ脱硫性能〉
脱硫剤 1 5 ミ リ リ ツ トルを、 内径 1 7 m mのステンレス鋼製反応 管に充填する。 次いで、 常圧下、 水素気流中にて 1 2 0 °Cに昇温し 、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持する こ とによ り、 脱硫剤を活性化する。
次に、 反応管の温度を 1 5 0 Cに保持し、 硫黄分濃度 6 5重量 p p mの J I S 1 号灯油を、 常圧下、 L H S V 3 h で反応管に供給 開始する。 5 0時間経過した時点における処理灯油中の硫黄分濃度 を分析し、 脱硫性能を評価する。
なお、 使用する J I S 1 号灯油の蒸留性状は以下のとおりである 初留温度 : 1 5 2 °C
1 0 %留出温度 : 1 6 9 °C
3 0 %留出温度 : 1 8 4 °C
5 0 %留出温度 : 2 0 3 °C
7 0 %留出温度 : 2 2 4 °C
9 0 %留出温度 : 2 5 4 °C
終点 : 2 7 6 °C
実施例 2
実施例 1 において、 ( A ) 、 ( B ) 両液を瞬時で混合する代わり に、 1 時間かけて混合した以外は、 実施例 1 と同様にしてシリ カー アルミナ担体にニッゲルが 6 3重量%担持された脱硫剤を得た。
この脱硫剤の B E T値、 細孔直径 3 n m以下の比表面積及び実施 例 1 と同様に評価した脱硫性能を第 1表に示す。
実施例 3
水 5 0 0 ミ リ リ ッ トルに塩化ニッゲル 5 0 . 9 gを溶解し、 これ に担体 (アル,ミナ) 0 . 6 gを加えたのち、 1 モル/リ ッ トル濃度 の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整し、 ( A) 液 を調製した。
一方、 水 5 0. 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 したの、 水ガラス 1 1 . 7 g ( 5 1 濃度 2 9重量%) を加え、 ( B ) 液を調製した。
以下、 実施例 1 と同様な操作を行い、 シ リ カ一アルミナ担体に二 ッゲルが 6 3重量%担持された脱硫剤を得た。 この脱硫剤の B E T 値、 細孔直径 3 n m以下の比表面積及び実施例 1 と同様に評価した脱 硫性能を第 1表に示す。
なお、 上記実施例 1 〜 3 においては、 2時間経過した時点におけ る脱硫処理灯油中の硫黄分はいずれも 0. 2重量 p p m未満であった 比較例 1
水 5 0 0 ミ リ リ ツ トルに硝酸ニッケル 6 2 . 3 gを溶解し、 これ に担体 (珪藻土) 4 g.を加え、 (A) 液を調製した。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 し、 ( B ) 液を調製した。
以下、 実施例 1 と同様な操作を行い、 珪藻土担体にニッケルが 6 7重量%担持された脱硫剤を得た。 この脱硫剤の B E T値、 細孔直 径 3 n m以下の比表面積及び実施例 1 と同様に評価した脱硫性能を 第 1表に示す。
比較例 2
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 6 2 . 3 g を溶解し、 これ にシリカ—アルミナ 4 . 0 gを加え、 ( A ) 液を調製した。 一方、 水 5 0 0 ミ リ リ ッ トルに水酸化ナ ト リ ウム 2 5 . 0 gを溶解し、 ( B ) 液を調製した。
次に、 上記 (A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を 1 時間かけて混合し、 その混合液の温度を 8 0 °Cに保持 したまま 1 時間撹拌した。 以下、 実施例 1 と同様な操作を行い、 シリ カ—アルミナ担体にニッゲルが 6 3重量%担持された脱硫剤を 得た。 この脱硫剤の B E T値、 細孔直径 3 n m以下の比表面積及び 実施例 1 と同様に評価した脱硫性能を第 1表に示す。
第 1表
Figure imgf000031_0001
実施例 4
実施例 3 で得た脱硫剤 1 5 ミ リ リ ッ トルを、 内径 1 7 m mのステ ンレス鋼製反応管に充填した。 次いで、 常圧下、 水素気流中にて 1 2 0 °Cに昇温し、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持することによ り、 脱硫剤を活性化した。
次に、 反応管の温度を 1 5 0 °Cに保持し、 前記硫黄分濃度 6 5重 量 p p mの J I S 1 号灯油を、 常圧-下、 L H S V 2 h 1で反応管 を通過させ、 さ らに、 下流にルテニウム系改質触媒 (ルテニウム担 持量 0 . 5重量%) 3 0 ミ リ リ ッ トルが充填された改質器によ り、 水蒸気改質処理した。 改質処理条件は、 圧力 : 大気圧、 水蒸気/炭素 ( S / C ) モル比 2 . 5、 L H S V : 1 . O h - '、 入り口温度 : 5 0 0 °C、 出口温度 : 7 5 0 °Cである。
その結果、 2 0 0時間経過後の改質器出口での転化率は 1 0 0 % であった。 また、 この反応期間中の脱硫処理灯油の硫黄分は 0 . 2 重量 p p m未満であった。 なお、 転化率は、 式
転化率 (%) = 1 0 0 X B /A
〔ただし、 Aは時間当たりの供給灯油中の全炭素量 (モル流量) で 、 A = C 0 + C 0 + C H + 2 X C 2 留分 + 3 X C 3 留分 + 4 x C 留分 + 5 X C 5 留分であり、 Bは時間当たりの改質器出口ガス 中の全炭素量 (モル流量) で B = C O + C 02 + C H 4 である。 〕 によって算出した値である。 なお、 分析はガスクロマ ト グラフィー 法による。
比較例 3
実施例 4において、 脱硫剤として、 比較例 1 で得たものを用いた 以外は、 実施例 4 と同様にして、 灯油の脱硫処理及び水蒸気改質処 理を行った。
その結果、 7 0時間経過後、 改質器出口の転化率は 1 0 0 %を下 回り、 9 0時間経過後に改質器出口で油滴が確認された。 なお、 7 0時間及び 9 0時間経過した時点における脱硫処理灯油中の硫黄分 は、 それぞれ 1 . 5重量 p p m及び 8 . 0重量 p p mであった。 実施例 5
水 5 0 0 ミ リ リ ッ トルに硝酸ニッゲル 4 9 . 8 g及び硝酸銅 1 0 . 3 gを溶解し、 これに擬ベーマイ ト 0 . 9 gを 卩えたのち、 1 モ ル /リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に 調整し、 (A) 液を調製した。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 し、 これに水ガラス 1 1 . 7 g ( S i 濃度 2 9重量%) を加え、 ( B ) 液を調製した。
次に、 上記 (A) 液と ( B ) 液を、 それぞれ 8 O tに加熱したの ち、 両者を瞬時に混合し、 混合液の温度を 8 0 tに保持したまま 1 時間撹拌した。 その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分 に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間焼成処理することによ り 、 シリカ—アルミナ担体 ( S i / A 1 比 = 5 ) にニッケルが 6 1 重 量%、 銅が 1 9 . 8重量%担持された脱硫剤を得た。
この脱硫剤の B E T値 (窒素吸着比表面積) 、 細孔直径 3 n m以 下の比表面積及び実施例 1 と同様に評価した脱硫性能を第 2表に示 す。
実施例 6
実施例 5 において、 硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gに代えて、 硝酸ニッケル 5 6 . O g及び硝酸銅 5 . 2 gを用い、 更に、 擬ベーマイ ト 0 . 9 gに代えてァアルミナ 0 . 6 gを用いた 以外は、 実施例 5 と同様にしてシリカ—アルミナ担体 ( S i /A 1 比 = 5 ) にニッケルが 7 2 . 1重量0 /0、 銅が 1 1 . 2重量0 /0担持さ れた脱硫剤を得た。
この脱硫剤の B E T値、 細孔直径 3 n m以下の比表面積及び実施 例 1 と同様に評価した脱硫性能を第 2表に示す。
実施例 7
実施例 5 において、 硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gに代えて、 硝酸ニッケル 6 2 . 2 g及び硝酸銅 5 1 . 7 gを用い 、 擬ベーマイ トを 0 . 9 gに代えて 0 . 8 g用い、 更に炭酸ナ ト リ ゥムを 3 3 . 1 gに代えて 7 0 g用い、 なおかつ水ガラス 1 1 . 7 gに代えてシリカ 1 . 5 gを用いた以外は、 実施例 5 と同様にして シ リ カ—アルミナ担体 ( S i / A 1 比 = 8 ) にニッケルが 3 0 . 2 重量%、 銅が 5 0 . 8重量%担持された脱硫剤を得た。
この脱硫剤の B E T値、 細孔直径 3 n m以下の比表面積及び実施 例 1 と同様に評価した脱硫性能を第 1表に示す。
なお、 上記実施例 5 〜 7においては、 5 0時間経過した時点にお ける脱硫処理灯油中の硫黄分はいずれも 0. 2重量 p p m未満であつ た。
比較例 4
水 1 0 0 0 ミ リ リ ッ トルに硝酸銅 5 8 g、 硝酸ニッケル 6 9 . 8 g、 硝酸亜鉛 1 1 6 . 6 g及び硝酸アルミニウム 6 0 gを溶解し、 ( A ) 液を調製した。
一方、 水 2 0 0 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 1 0 5 gを溶解 して、 ( B ) 液を調製した。
次に、 上記 (A) 液と ( B ) 液を攪拌しながら、'徐々に混合した 。 混合液の p Hが 7になった時点で炭酸ナ ト リ ゥム溶液の添加を終 了し、 そのまま 1 時間撹拌した。 その後、 得られた沈殿ケーキを重 炭酸アンモニゥムを用いて洗浄したのち、 固形物を 1 1 0 °C乾燥機 にて一昼夜乾燥し、 さ らに 4 0 0 °Cで 1 時間焼成処理するこ とによ り、 ニッゲル量が 2 1 重量%、 銅量が 2 2重量%である脱硫剤を得 た。
この脱硫剤の B E T値 (窒素吸着比表面積) 、 細孔直径 3 n m以 下の比表面積及び実施例 1 と同様に評価した脱硫性能を第 2表に示 す。 比較例 5
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 5 0 . 0 g及び硝酸銅 9 . 5 gを溶解し、 これにシリカ一アルミナ 4 . 0 g を加え、 ( A ) 液 を調製した。 一方、 水 5 0 0 ミ リ リ ッ トルに水酸化ナ ト リ ウム 2 5 . 0 gを溶解し、 ( B ) 液を調製した。 次に、 上記 (A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したのち、 両者を 1 時間かけて混 合し、 混合液の.温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その 後、 蒸留水 6 0 リ ツ トルを用いて生成物を充分に洗浄したのち、 ろ 過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間焼成処理するこ とによ り、 シ リ カ一アルミ ナ 担体 ( S i / A 1 比 = 8 ) にニッケルが 5 5 . 9重量%、 銅が 1 8 • 2重量%担持された脱硫剤を得た。
この脱硫剤の B E T値、 細孔直径 3 n m以下の比表面積及び実施 例 1 と同様に評価した脱硫性能を第 2表に示す。
第 2表
Figure imgf000035_0001
実施例 8
実施例 5 で得た脱硫剤 1 5 ミ リ リ ッ トルを、 内径 1 7 m mのステ ンレス鋼製反応管に充填した。 次いで、 常圧下、 水素気流中にて 1 2 0 °Cに昇温し、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持するこ とによ り、 脱硫剤を活性化した。
次に、 反応管の温度を 1 5 0 °Cに保持し、 前記硫黄分濃度 6 5重 量 p p mの J I S 1 号灯油を、 常圧下、 L H S V 2 h 1で反応管 を通過させ、 さ らに、 下流にルテニウム系改質触媒 (ルテニウム担 持量 0 . 5重量0 /o) 2 0 ミ リ リ ッ トルが充填された改質器によ り、 水蒸気改質処理した。
改質処理条件は、 圧力 : 大気圧、 水蒸気/炭素 ( S /C ) モル比 2 . 5. L H S V : 1 . 5 h— 入り口温度 : 5 0 0 ° (:、 出口温度 ': 7 5 0 °Cである。
その結果、 2 3 0時間経過後の改質器出口での転化率は 1 0 0 % であった。 また、 この反応期間中の脱硫処理灯油の硫黄分は 0 . 2 重量 p p m未満であった。
比較例 6 '
実施例 8 において、 脱硫剤と して、 比較例 4 で得たものを用いた 以外は、 実施例 8 と同様にして、 灯油の脱硫処理及び水蒸気改質処 理を行った。
その結果、 8 0時間経過後、 改質器出口の転化率は 1 0 0 %を下 回り、 1 2 0時間経過後に改質器出口で油滴が確認された。 なお、 7 0時間及び 9 0時間経過した時点における脱硫処理灯油中の硫黄 分は、 それぞれ 4重量 p p m及び 1 3重量 p p mであった。
実施例 9
水 5 0 0 ミ リ リ ツ トルに硝酸ニッケル 8 7 . 1 g及び硝酸銅 2 0 . 7 g及び硝酸亜鉛 6 . 4 gを加え、 溶解し、 これに擬ベーマイ ト 1 . 8 gを加えたのち、 1 モル/リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整し、 ( A) 液を調製した。 一方、 水 5 0 0 ミ リ リ ッ 卜ルに炭酸ナ ト リ ウム 7 0 . 0 gを溶解 したのち、 水ガラス 2 3. 4 g ( S i 濃度 2 9重量0 /0) を加え、 ( B ) 液を調製した。
次に、 上記 ( A) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 混合液の温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分 に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間燒成処理するこ とによ り 、 シ リ カ—アルミ ナ担体 ( S i /A 1 モル比 5 ) に、 脱硫剤全量に 基づき、 N i 5 1 . 0重量%、 C u l 9. 8重量%及び Z n 4 . 9 重量%が担持された脱硫剤を得た。
'この脱硫剤の脱硫性能を第 3表に示す。
なお、 脱硫剤の脱硫性能は、 下記の方法に従って評価した。
ぐ脱硫性能〉
脱硫剤 1 5 ミ リ リ ッ トルを、 内径 1 7 m mのステンレス綱製反応 管に充填する。 次いで、 常圧下、 水素気流中にて 1 1 0 °Cに昇温し 、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持する こ とによ り、 脱硫剤を活性化する。
次に、 反応管の温度を 1 5 0 °Cに保持し、 硫黄分濃度 6 5重量 p p mの J I S 1号灯油を、 常圧下、 L H S V 1 0 h 'で反応管に供 給開始する。 5時間経過した時点における処理灯油中の硫黄分濃度 を分析し、 脱硫性能を評価する。
なお、 使用する J I S 1 号灯油の蒸留性状は実施例 1 と同じであ る。
実施例 1 0
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 4 6. 7 g、 硝酸銅 6. 5 g及び硝酸マンガン 3 . . 6 gを加え、 溶解し、 これに擬ベーマイ ト 0 . 9 gを加えたのち、 1 モル/リ ッ トル濃度の硝酸水溶液 1 0 ミ リ リ ツ トルを加え、 p H 1 に調整し、 ( A ) 液を調製した。
一方、 水 5 0 0 ミ リ リ ツ小ルに炭酸ナ ト リ ウム 3 5 . 0 gを溶解 したのち、 水ガラス 1 1 . 7 g ( S i 濃度 2 9重量% ) を加え、 ( B ) 液を調製した。
以下、 実施例 9 と同様な操作を行う こ とによ り、 シ リ カ一アルミ ナ担体 ( S i / A 1 モル比 5 ) に、 脱硫剤全量に基づき、 N i 6 0 . 2重量0 /0、 C u l O . 2重量0 /0及びマンガン 5 . 3重量0 /0が担持 された脱硫剤を得た。
この脱硫剤の実施例 9 と同様に評価した脱硫性能を第 3表に示す 実施例 1 1
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gを溶解し、 これに擬べ一マイ ト 0 . 9 gを加えたのち、 1 モ ル /リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に 調整し、 (A ) 液を調製した。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ウム 3 3 . 1 g を溶解 したのち、 水ガラス 1 し 7 g ( S i 濃度 2 9重量0 /o ) を加え、 ( B ) 液を調製した。 - 次いで両液をそれぞれ 8 0 °Cに加熱したのち、 両者を瞬時に混合 し、 混合液の温度を 8 0 tに保持したまま 1 時間撹拌した。 そめ後 、 蒸留水 6 0 リ ツ トルを用いて生成物を充分に洗浄したのち、 ろ過 し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥した。 次 に、 このものに炭酸カ リ ウム 5 g を加えたのち、 3 0 0 °Cで 1 時間 燒成するこ とによ り、 シ リ カ—アルミナ担体 ( S i Z A l モル比 5 ) に、 脱硫剤全量に基づき N i 5 7 . 1重量%、 C u 1 8 . 5重量 %及び K 3 . 2重量%が担持された脱硫剤が得られた。
この脱硫剤の実施例 9 と同様に評価した脱硫性能を第 3表に示す 実施例 1 2
実施例 1 1 において、 炭酸力 リ ゥム 5 gの代わりに、 炭酸水酸化 マグネシウム (M g 0 4 5重量%) を加え、 3 0 0 °Cで 1 時間燒 成した以外は、 実施例 1 1 と同様にして、 シリカ—アルミナ担体 ( S i / A 1 モル比 5 ) に、 脱硫剤全量に基つ'き N 1 5 7 . 1 重量% 、 C u 1 8 . 5重量%及び M g 3 . 9重量%が担持された脱硫剤を 得た。
この脱硫剤の実施例 9 と同様に評価した脱硫性能を第 3表に示す 実施例 1 3
実施例 1 3 と同様にして、 (A ) 液及び ( B ) 液を調製した。 次 いで両液をそれぞれ 8 0 °Cに加熱したのち、 両者を瞬時に混合し、 混合液の温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その後、 蒸 留水 6 0 リ ッ トルを用いて生成物を充分に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風機にて 1 2時間乾燥した。 次に、 塩化 白金酸 1 gを水 1 0 ミ リ リ ッ トルに溶解した溶液を、 上記乾燥物に 含浸させ、 これを 1 2 0 °Cの送風乾燥機で乾燥したのち、 3 0 0 で 1 時間燒成することによ り、 シリカ一アルミナ担体 ( S i / A 1 モル比 5 ) に、 脱硫剤全量に基づき N i 5 7 . 1 重量0 /0、 C u 1 8 . 5重量%及び P t 2 . 0重量%が担持された脱硫剤を得た。
この脱硫剤の実施例 9 と同様に評価した脱硫性能を第 3表に示す 実施例 1 4
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 4 4 . 8 g、 硝酸銅 1 0 . 3 g及び硝酸ラ ンタ ン 8 . 5 gを加え、 溶解し、 これに擬べ一マイ ト 0 . 9 gを加えたのち、 1 モル/リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整し、 (A ) 液を調製した。
以下、 実施例 1 1 と同様にして ( B ) 液を調製したのち、 同様な 操作を行う こ とによ り、 シ リ カ—アルミ ナ担体 ( S i / A 1 モル比 5 ) に、 脱硫剤全量に基づき N i 5 1 . 8重量%、 C u 1 8 . 5重 量0 /0及び L a 7 . 1 重量%が担持された脱硫剤が得られた。
この脱硫剤の実施例 9 と同様に評価した脱硫性能を第 3表に示す 比較例 7
水 1 リ ッ トルに硝酸銅 5 8 g、 硝酸ニッゲル 6 9 . 8 g、 硝酸亜 鉛 1 1 6 . 6 g及び硝酸アルミニゥム 6 0 gを加え、 溶解して (A ) 液を調製した。
一方、 水 2 リ ツ トルに炭酸ナ ト リ ウム 1 0 5 g を溶解して ( B ) 液を調製した。
次に、 上記 (A ) 液に ( B ) 液を撹拌しながら徐々に添加し、 p Hが 7になった時点で ( B ) 液の添加を終了し、 そのまま 1 時間撹 拌した。 得られた沈殿ケーキを、 炭酸水素アンモニゥム水溶液によ り洗浄したのち、 生成物を 1 1 0 °C乾燥機にて一昼夜乾燥し、 その 後、 4 0 0 tにて 1 時間燒成する.ことによ り、 脱硫剤全量に基づき 、 Z n 0 4 6重量%と A 1 2 0 3 1 1重量%からなる担体に、 N i 2 1重量%及び C u 2 2重量%が担持された脱硫剤が得られた。 この脱硫剤の実施例 1 9 と同様に評価した脱硫性能を第 3表に示 す。 第 3表
Figure imgf000041_0001
実施例 1 5
実施例 9 で得た脱硫剤 1 5 ミ リ リ ッ トルを、 内径 1 7 mmのステ ンレス鋼製反応管に充填した。 次いで、 常圧下、 水素気流中にて 1 2 0 °Cに昇温し、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持するこ とによ り、 脱硫剤を活性化した。
次に、 反応管の温度を 1 5 0 °Cに保持し、 前記硫黄分濃度 6 5重 量 p p mの J I S 1号灯油を、 常圧下、 L H S V 2 h 1で反応管を 通過させ、 さ らに、 下流にルテニウム系改質触媒 (ルテニウム担持 量 0 . 5重量%) 2 0 ミ リ リ ッ トルが充填された改質器によ り、 水 蒸気改質処理した。
改質処理条件は、 圧力 : 大気圧、 水蒸気/炭素 ( S /C ) モル比 2 . 5、 L H S V : 1 . 5 h - '、 入口温度 : 5 0 0 . 出口温度 : 7 5 0 tである。
その結果、 1 5 0時間経過後の改質器出口での転化率は 1 0 0 % であった。
なお、 転化率は、 実施例 4 と同様にして算出した。
比較例 8
実施例 1 5 において、 脱硫剤と して、 比較例 7で得たものを用い た以外は、 実施例 1 5 と同様にして、 灯油の脱硫処理及び水蒸気改 質処理を行った。
その結果、 8. 0時間経過後、 改質器出口の転化率は 1 0 0 %を下 回り、 . 1 2 0時間経過後に改質器出口で油滴が確認された。
実施例 1 6
水 5 0 0 ミ リ リ ッ トルに塩化ニッケル 5 0 . 9 gを溶解し、 これ に担体アルミナ (擬ベーマイ ト) 0 . 6 gを加えたのち、 1 モル/ リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整 し、 (A ) 液を調製した。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 したのち、 水ガラス 1 1 . 7 g ( S i ◦ 2 濃度 2 9重量0 /0 ) を加え 、 ( B ) 液を調製した。
次に、 上記 ( A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 混合液の温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分 に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間焼成処理することによ り 、 シリカ一アルミナ担体上にニッゲルが 6 3重量%担持された脱硫 剤を得た。
この脱硫剤の水素吸着量は 0 . 7 5 ミ リ モル/ gであ り、 実施例 1 と同様にして求めた 5 0時間脱硫後の灯油中の硫黄分は 0 . 2重 : p p mであった。 実施例 1 7
水 5 0 0 ミ リ リ ッ トル硝酸ニッケル 6 2 . 3 gを溶解し、 これに 担体 (シ リ カ粉末) 4 gを加えたのち、 1 モルノリ ッ トル濃度の硝 酸水溶液 2 0 ミ リ リ ッ トル加え、 p H 1 に調整し、 ( A ) 液を調製 した。
一方、 水 5 0 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 し、 ( B ) 液を調製した。
以下、 実施例 1 6 と同様な操作を行い、 シリ 力担体上にニッゲル が 6 0重量%担持された脱硫剤を得た。
この脱硫剤の水素吸着量は 0 . 5 0 ミ リモル/ gであり、 実施例 1 と同様にして求めた 5 0時間脱硫後の灯油中の硫黄分は 0 . 2重 量 p p mであった。
比較例 9
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 6 2 . 3 g を溶解し、 これ に担体 (珪藻土) 4 gを加え、 (A ) 液を調製した。
一方、 水 5 0 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解 し、 ( B ) 液を調製した。
以下、 実施例 1 6 と同様な操作を行い、 珪藻土担体上にニッゲル が 6 7重量%担持された脱硫剤を得た。
この脱硫剤の水素吸着量は 0 . 3 2 ミ リモル/ gであり、 実施例 1 と同様にして求めた 5 0時間脱硫後の灯油中の硫黄分は 1 5 . 2 皇量 p p mであった。
実施例 1 8
実施例 1 6 で得た脱硫剤 1 5 ミ リ リ ツ トルを、 内径 1 7 m mのス テンレス鋼製反応管に充填した。 次いで、 常圧下、 水素気流中にて 1 2 0 °Cに昇温し、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °C で 1 時間保持するこ とによ り、 脱硫剤を活性化した。
次に、 反応管の温度を 1 5 0 °Cに保持し、 前記硫黄分濃度 6 5重 量 p p mの J I S 1 号灯油を、 常圧下、 L H S V 3 h 'で反応管を 通過させ、 さ らに、 下流にルテニウム系改質触媒 (ルテニウム担持 量 0. 5重量0 /0) 3 0 ミ リ リ ツ トルが充填された改質器によ り、 水 蒸気改質処理した。
改質処理条件は、 圧力 : 大気圧、 水蒸気/炭素 ( S /C ) モル比
2.. 5、 L H S V : 1 . 5 h— 1、 入り口温度 : 5 0 0 °C、 出口温度
: 7 5 0 °Cである。
その結果、 1 5 0時間経過後の改質器出口での転化率は 1 0 0 % であった。
なお、 転化率は、 実施例 4 と同様にして算出した。
比較例 1 0
実施例 1 8において、 脱硫剤と して、 比較例 9で得たものを用い た以外は、 実施例 1 8 と同様にして、 灯油の脱硫処理及び水蒸気改 質処理を行った。
その結果、 2 4時間経過後、 改質器出口の転化率は 1 0 0 %を下 回り、 3 0時間経過後に改質器出口で油滴が確認された。
実施例 1 9
水 5 0 0 ミ リ リ ツ トルに塩化 ッゲル 5 0. 9 gを溶解し、 これ に擬ベ一マイ ト 0. 6 gを加えたのち、 1 モル/リ ッ トル濃度の硝 酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整し、 ( A) 液を調 製した。
一方、 水 500 ミ リ リ ッ トルに炭酸ナ ト リ ウム 2 2. 7 gを溶解 したのち、 水ガラス 1 1 . 7 g ( S i 濃度 2 9重量0 /0) を加え、 ( B ) 液を調製した。 次に、 上記 (A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 これに、 水 5 0 ミ リ リ ッ トルに水酸化ナ ト リ ウム 7 . 8 gを溶解して 8 0 ΐに加熱した溶液を加え、 8 0 °C に保持しながら 1 時間撹拌した。
その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分に洗浄したの ち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥 し、 さ らに 3 0 0 °Cで 1 時間焼成処理するこ とによ り、 S i / A 1 モル比が約 5のシリカ一アルミナ担体上に、 全重量に基づきニッケ ルが 6 3重量0 /0担持された脱硫剤を製造した。
実施例 2 0
実施例 1 9 において、 ( B ) 液の調製に炭酸ナ ト リ ウム 3 3 . 1 gを用い、 かつ水酸化ナ ト リ ウム水溶液を加えなかったこと以外は 、 実施例 1 9 と同様にして、 S i / A 1 モル比が約 5のシリ カ—ァ ルミナ担体上に、 全重量に基づきニッケルが 6 3重量%担持された 脱硫剤を製造した。
実施例 2 1
実施例 1 9 において、 ( A ) 液の調製に擬ベーマイ ト 0 . 6 g の 代わりにべ一マイ トアルミナ 0 . 4 gを用い、 かつ ( B ) 液の調製 に水ガラス ( S i 濃度 2 9重量0/ 0. ) 1 2 . 5 gを用いた以外は、 実 施例 1 9 と同様にして、 S i / A 1 モル比が約 8のシリ 力—アルミ ナ担体上に、 全重量に基づきニッケルが 6 3重量%担持された脱硫 剤を製造した。
実施例 2 2
実施例 1 9 において、 焼成処理を 2 5 0 °Cで 1 時間行った以外は 、 実施例 1 9 と同様にして、 S i / A 1 モル比が約 5 のシ リ カ—ァ ルミナ担体上に、 全重量に基づきニッケルが 6 3重量%担持された 脱硫剤を製造した。
実施例 2 3
実施例 1 9 において、 (A) 液の調製で擬ベーマイ ト 0. 6 gの 代わりにアルミナゾル (アルミナ濃度 2 0重量0 /0) 2. 9 gを用い た以外は、 実施例 1 9 と同様にして、 S i /A 1 モル比が約 5のシ リカ—アルミナ担体上に、 全重量に基づきニッゲルが 6 3重量%担 持された脱硫剤を製造した。
比較例 1 1
水 5 0 0 ミ リ リ ッ トルに塩化ニッケル 5 0 . 9 gを溶解し、 これ にアルミナゾル (アルミナ濃度 1 0重量%) 0. 8 gを加え (A) 液を調製した。 この時の ( A ) 液の p Hは 5であった。
一方、 水 5 0 0 ミ リ リ ッ トルに炭酸水素ナ ト リ ウム 1 8 gを溶解 したのち、 水ガラス 1 3 . 2 g ( S i 濃度 2 9重量0 /0) を加え、 ( B ) 液を調製した。
次に、 上記 ( A) 液と ( B ) 液を、 それぞれ 8 0 tに加熱したの ち、 両者を瞬時に混合し、 8 0 °Cに保持しながら 1 時間撹拌した。 その後、 蒸留水 6 0 リ ツ トルを用いて生成物を充分に洗浄したの ち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥 し、 さ らに 3 0 0 °Cで 1 時間焼成処理することによ り、 S i /A l モル比が約 2 0のシリカ—アルミナ担体上に、 全重量に基づきニッ ゲルが 6 3重量%担持された脱硫剤を製造した。
比較例 1 1
水 5 0 0 ミ リ リ ッ トルに塩化ニッケル 5 0 . 9 gを溶解し ( A ) 液を調製した。 この時の ( A ) 液の p Hは 5であった。
一方、 水 5 0 0 ミ リ リ ツ トルに水酸化ナ ト リ ウム 1 7. 1 g溶解 したのち、 水ガラス 1 3 . 8 § ( 3 1 濃度 2 9重量%) を加ぇ、 ( B ) 液を調製した。
以下、 比較例 1 1 と同様な操作を行い、 シリ力担体上に、 全重量 に基づきニッゲルが 6 3重量%担持された脱硫剤を製造した。
比較例 1 3
比較例 1 1 と同様にして ( A) 液を調製した。 一方、 水 5 0 0 ミ リ リ ッ トルに水酸化ナ ト リ ウム 1 7. 1 gを溶解したのち、 水ガラ ス 1 3 . 8 g ( S i 濃度 2 9重量0 /0) を加え、 ( B ) 液を調製した 次に、 上記 ( A) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 8 0 tに保持しながら 1 時間撹拌した。 その後、 蒸留水 6 0 リ ツ トルを用いて生成物を充分に洗浄したの ち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥 し、 さ らに 4 5 0 tで 1 時間焼成処理するこ とによ り、 S i /A l モル比が約 2 0のシリ カ一アルミナ担体上に、 全重量に基づきニッ ゲルが 6 3重量%担持された脱硫剤を製造した。
比較例 1 4
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 6 2. 3 gを溶解し、 これ に担体 (珪藻土) 4 gを加え、 (A) 液を調製した。
—方、 水 5 0 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 3 3. 1 gを溶解 し、 ( B ) 液を調製した。
次に、 上記 (A) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 8 0 tに保持しながら 1 時間撹拌した。 その後、 蒸留水 6 0 リ ツ トルを用いて生成物を充分に洗浄したの ち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて 1 2時間乾燥 し、 さ らに 3 0 0 °Cで 1 時間焼成処理するこ とによ り、 珪藻土担体 上に、 全重量に基づきニッケルが 6 7重量%担持された脱硫剤を製 造した。
試験例
実施例 1 9 〜 2 3及び比較例 1 1 〜 1 4 で得られた脱硫剤それぞ れ 1 5 ミ リ リ ッ トルを、 内径 1 7 m mのステン レス鋼製反応管に充 填した。 次いで、 常圧下、 水素気流中にて 1 2 0 tに昇温し、 1 時 間保持したのち、 さ らに昇温し、 3 8 0 °Cで 1 時間保持するこ とに より、 脱硫剤をそれぞれ活性化した。
次に、 温度を 1 5 0 °Cに保持し、 硫黄分濃度 6 5重量 p p mの J I S 1 号灯油を、 常圧下、 L H S V 3 h — 'でそれぞれの反応管に供 給開始した。
5 0時間経過した時点における処理灯油中の硫黄分濃度をそれぞ れ分析し、 脱硫性能を比較した。
その結果を、 原料の種類などと共に、 第 4表に示す。 なお、 J I S 1 号灯油の蒸留性状は、 実施例 1 と同じである。
第 4.表一 1
Figure imgf000049_0001
第 4表一 2
脱 硫 剤 評 価 焼成温度 S i / A 1 N i 担持量 S分濃度 C ) 〔モル比〕 (重量0 /0) ( 量 ppm)
19 3 0 0 5 6 3 0.2 未満
20 3 0 0 5 6 3 0.2 未満 施 21 3 0 0 8 6 3 0.2 未満 例
22 2 5 0 5 6 3 0.2 未満
23 3 0 0 5 6 3 0.2 未満
11 3 0 0 2 0 6 3 18.0
12 3 0 0 6 3 17.7
13 4 5 0 2 0 6 3 19.4
14 3 0 0 6 7 15.2 第 4表から分かるように、 実施例の脱硫剤は、 いずれも比較例の 脱硫剤に比べて脱硫性能に優れている。
実施例 2 4
水 5 0 0 ミ リ リ ッ トルに硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gを溶解し、 これに擬べ一マイ ト (担体) 0 . 9 g を加えたの ち、 1 モル リ ッ トル濃度の硝酸水溶液 2 0 ミ リ リ ッ トルを加え、 p H 1 に調整し、 (A) 液を調製した。 一方、 水 5 0 0 ミ リ リ ツ トルに炭酸ナ ト リ ウム 3 3 . 1 gを溶解し、 これに水ガラス 1 1 .
7 g ( S i 02 濃度 2 9重量0 /0) を加え、 ( B ) 液を調製した。 次に、 上記 ( A ) 液と ( B ) 液を、 それぞれ 8 0 °Cに加熱したの ち、 両者を瞬時に混合し、 混合液の温度を 8 0 °Cに保持したまま 1 時間撹拌した。 その後、 蒸留水 6 0 リ ッ トルを用いて生成物を充分 に洗浄したのち、 ろ過し、 次いで固形物を 1 2 0 °C送風乾燥機にて
1 2時間乾燥し、 さ らに 3 0 0 °Cで 1 時間焼成処理するこ とによ り 、 シ リ カ—アルミナ担体 ( S i Z A 1 比 = 5 ) にニッケルが 6 1 重 量%、 銅が 1 9 . 8重量%担持された脱硫剤を得た。
この脱硫剤を用い、 実施例 9 と同様にして行った脱硫試験におい て、 5時間後の灯油中の硫黄分は 2重量 p p mであつた。
実施例 2 5
実施例 2 4 において、 硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gに代えて、 硝酸ニッケル 5 6 . O g及び硝酸銅 5 . 2 gを用い 、 更に、 擬ベーマイ ト 0 . 9 gに代えてァ —アルミナ 0 . 6 gを用 いた以外は、 実施例 1 4 と同様にしてシ リ カ—アルミナ担体 ( S i /A 1 比 = 5 ) にニッゲルが 7 2 . 1重量0 /0、 銅が 1 1 . 2重量0 /0 担持された脱硫剤を得た。 ' '
この脱硫剤を用い、 実施例 9 と同様にして行った脱硫試験におい て、 5時間後の灯油中の硫黄分は 5重量 p p mであった。 ' 実施例 2 6
実施例 2 4 において、 硝酸ニッケル 4 9 . 8 g及び硝酸銅 1 0 . 3 gに代えて、 硝酸ニッケル 6 2 . 2 g及び硝酸銅 5 し 7 gを用 い、 擬べ一マイ トを 0 . 9 gに代えて 0 . 8 g用い、 更に炭酸ナ ト リ ウムを 3 3 . 1 gに代えて 7 0 g用い、 なおかつ水ガラス 1 1 . 7 gに代えてシリ カ 2 . 5 gを用いた以外は、 実施例 2 4 と同様に してシ リ カ一アルミ ナ担体 ( S i / A 1 比 = 8 ) に ッゲルが 3 0 . 2重量%、 銅が 5 0 . 8重量%担持された脱硫剤を得た。
この脱硫剤を用い、 実施例 9 と同様にして行った脱硫試験におい て、 5時間後の灯油中の硫黄分は 8重量 p p mであつた。
実施例 2 7
実施例 2 6 において、 擬べ一マイ ト 0 · 9 gに代えてシリ カ 4 . 0 gに代え、 また、 水ガラスを用いなかったこと以外は、 実施例 1 6 と同様にしてシリカ担体にニッケルが 3 0 . 2重量%、 銅が 5 0 . 8重量%担持された脱硫剤を得た。
この脱硫剤を用い、 実施例 9 と同様にして行った脱硫試験におい て、 5時間後の灯油中の硫黄分は 8重量 p p mであった。
比較例 1 5
水 1 0 0 0 ミ リ リ ッ トルに硝酸銅 5 8 g、 硝酸ニッケル 6 9 . 8 g、 硝酸亜鉛 1 1 6 . 6 g及び硝酸アルミニゥム 6 0 gを溶解し、 (A) 液を調製した。 一方、 水 2 0 0 0 ミ リ リ ッ トルに炭酸ナ ト リ ゥム 1 0 5 gを溶解して、 ( B ) 液を調製した。
次に、 上記 (A) 液と ( B ) 液を攪拌しながら、 徐々に混合した 。 混合液の p Hが 7になった時点で炭酸ナ ト リ ゥム溶液の添加を終 了し、 そのまま 1 時間撹袢した。 その後、 得られた沈殿ケーキを重 炭酸アンモニゥムを用いて洗浄したのち、 固形物を 1 1 o °c乾燥機 にて一昼夜乾燥し、 さ らに 4 0 0 °Cで 1 時間焼成処理するこ とによ り、 ニッケル量が 2 1重量%、 銅量が 2 2重量%である脱硫剤を得 た。
この脱硫剤を用い、 実施例 9 と同様にして行った脱硫試験におい て、 5時間後の灯油中の硫黄分は 5 0重量 p p mであった。
実施例 2 8
実施例 2 4 で得た脱硫剤 1 5 ミ リ リ ッ トルを、 内径 1 7 mmのス テン レス鋼製反応管に充填した。 次いで、 常圧下、 水素気流中にて 1 2'0 °Cに昇温し、 1 時間保持したのち、 さ らに昇温し、 3 8 0 °C で 1 時間保持するこ とによ り、 脱硫剤を活性化した。
次に、 反応管の温度を 1 5 0 °Cに保持し、 前記硫黄分濃度 6 5重 量 p p mの J I S 1 号灯油を、 常圧下、 L H S V 2 h 1で反応管 を通過させ、 さ らに、 下流にルテニウム系改質触媒 (ルテニウム担 持量 0. 5重量%) 2 0 ミ リ リ ッ トルが充填された改質器によ り、 水蒸気改質処理した。 '
改質処理条件は、 圧力 : 大気圧、 水蒸気/炭素 ( S /C ) モル比 2. 5、 L H S V : 1 . 5 h— 1、 入り口温度 : 5 0 0 ° (:、 出口温度 : 7 5 0 °Cである。
その結果、 1 5 0時間経過後の改質器出口での転化率は 1 0 0 % であった。 また、 この反応期間中の脱硫処理灯油の硫黄分は 0. 2 重量 p p m未満であった。 なお、 転化率は、 実施例 4 と同様にし て算出した。
比較例 1 6
実施例 2 8において、 脱硫剤と して、 比較例 1 5で得たものを用 いた以外は、 実施例 2 8 と同様にして、 灯油の脱硫処理及び水蒸気 改質処理を行った。
その結果、 8 0時間経過後、 改質器出口の転化率は 1 0 0 %を下 回り、 1 2 0時間経過後に改質器出口で油滴が確認された。 なお、 8 0時間及び 1 2 0時間経過した時点における脱硫処理灯油中の硫 黄分は、 それぞれ 1 0重量 p p m及び 1 8重量 p p mであった。 産業上の利用可能性
本発明の脱硫剤は、 石油系炭化水素中の硫黄分を 0 . 2重量 p p m以下まで効率よく 吸着除去することができ、 かつ寿命も長い。 ま た、 この脱硫剤を用いて脱硫処理された石油系炭化水素を水蒸気改 質処理する こ とによ り、 燃料電池用水素を効果的に製造するこ とが できる。
さ らに、 本発明の方法によれば、 脱硫性能に優れるニッケル系脱 硫剤ゃニッゲル- 銅系脱硫剤を効率よく製造するこ とができる。

Claims

請求の範囲
1 . シリカ—アルミナ担体に少なく ともニッゲルを担持した脱硫剤 であって、 上記シリ カ—アルミナ担体における S i / A 1 モル比が 1 0以下であるこ とを特徴とする石油炭化水素用脱硫剤。
2 . 担体の細孔直径 3 n m以下の細孔比表面積が 1 0 0 m 2 / g以 上であるこ とを特徴とする請求の範囲第 1 項記載の石油系炭化水素 用脱硫剤。
3 . 担体上に更に銅を担持して成る請求の範囲第 1項記載の石油系 炭化水素用脱硫剤。
4 . 石油系炭化水素が灯油である請求の範囲第 1項記載の石油系炭 化水素用脱硫剤。
5 . 担体に、 ( A ) ニッケルと、 ( B ) 銅と、 ( C ) アルカ リ金属 、 アル力 リ土類金属、 遷移金属、 貴金属及び希土類元素の中から選 ばれる少なく とも一種とを担持してなる請求の範囲第 1項記載の石 油系炭化水素用脱硫剤。
6 . アルカ リ金属が力 リ ゥム又はナ ト リ ゥムあるいはその両方であ る請求の範囲第 5項記載の石油系炭化水素用脱硫剤。
7 . アル力 リ土類金属がカルシウム又はマグネシウムあるいはその 両方である請求の範囲第 5項記載の石油系炭化水素用脱硫剤。
8 . 遷移金属がマンガン又は亜鉛あるいはその両方である請求の範 囲第 5項記載の石油系炭化水素用脱硫剤。
9 . 貴金属が白金、 金、 銀、 ノ、。ラジウム、 ルテニウム及びロジウム の中から選ばれる少なく とも一種である請求の範囲第 5項記載の石 油系炭化水素用脱硫剤。
10. 希土類元素がランタン又はセリ ウムあるいはその両方である請 求の範囲第 5項記載の石油系炭化水素用脱硫剤。
1 1 . シリカ一アルミナ担体上に少なく ともエッケルが担持されてな り、 かつ水素吸着量が 0 . 4 ミ リモル/ g以上であることを特徴と する請求の範囲第 1項記載の石油系炭化水素用脱硫剤。
12. 担体上にニッゲルを、 金属ニッケルと して 4 0重量%以上担持 してなることを特徴とする請求の範囲第 1 項、 第 5項又は第 1 1項 に記載の石油系炭化水素用脱硫剤。
13. 請求の範囲第 1項、 第 2項、 第 5項又は第 1 1 項に記載の脱硫 剤を用いて石油系炭化水素を脱硫処理したのち、 水蒸気改質触媒と 接触させるこ とを特徴とする燃料電池用水素の製造方法。
14. 水蒸気改質触媒がルテニウム系触媒である請求の範囲第 1 3項 記載の製造方法。 ·
5 ,3
1 5. シリ カ一アルミナ担体上にニッゲルを担持してなる脱硫剤を製 造するに当たり、 ニッゲル源及びアルミニゥム源を含む p H 2以下 の酸性水溶液または酸性分散液と、 ゲイ素源及び無機塩基を含む塩 基性水溶液とを混合したのち、 生成した固形物を取り出し、 焼成す るこ とを特徴とする石油系炭化水素用脱硫剤の製造方法。
1 6. ゲイ素源及び無機塩基を含む塩基性水溶液が、 無機塩基と して N a C 0 、 又は N a 2 C 0 3 と N a O Hを含むものである請求 の範囲第 1 5項記載の製造方法。
17. 二ッゲル源及びアルミ二ゥム源を含む p H 以下の酸性水溶液 または酸性分散液がアルミニゥム源と して擬べ一マイ ト、 ベーマイ トアルミナ及びァ —アルミナの中から選ばれる少なく とも一種を含 むものである請求の範囲第 1 5項記載の製造方法。
18. 2 0 0 〜 4 0 0 °Cの温度で焼成を行う請求の範囲第 1 5項記載 の製造方法。
19. シリカ一アルミナ担体上にニッゲル及び銅を担持してなる脱硫 剤を製造する方法において、 ニッケル源、 銅源及び担体を含む p H 2以下の酸性水溶液または酸性水分散液と、 無機塩基を含む塩基性 水溶液とを混合したのち、 生成した固形物を焼成することを特徴と する石油系炭化水素用脱硫剤の製造方法。
20. シリ カ—アルミナ担体上にニッゲル及び銅を担持してなる脱硫 剤を製造する方法において、 ニッケル源、 銅源及び担体を含む p H 2以下の酸性水溶液または酸性水分散液と、 無機塩基及び担体を含 む塩基性水溶液とを混合したのち、 生成した固形物を焼成すること を特徴とする請求の範囲第 1 9項記載の製造方法。
21. 無機塩基を含む塩基性水溶液が、 無機塩基として、 炭酸ナ ト リ ゥム、 水酸化ナ ト リ ウム又は炭酸ナ ト リ ウムと水酸化ナ ト リ ウムを 含むものである請求の範囲第 1 9項又は第 2 0項に記載の製造方法
22. 2 0 0 ~ 4 0 0 °Cの温度で.焼成を行う請求の範囲第 1 9項又は 第 2 0項に記載の製造方法。
PCT/JP2001/002861 2000-03-31 2001-04-02 Agent desulfurant pour hydrocarbures derives de petrole, procede de fabrication d'hydrogene pour pile a combustible et procede de fabrication d'agent desulfurant a base de nickel WO2001072417A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK01917783.1T DK1270069T3 (da) 2000-03-31 2001-04-02 Anvendelse af et afsvovlningsmiddel
EP01917783A EP1270069B1 (en) 2000-03-31 2001-04-02 Use of a desulfurizing agent
AU2001244705A AU2001244705A1 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producinghydrogen for use in fuel cell and method for producing nickel-based desulfurizi ng agent
US10/221,199 US7268097B2 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2000096490A JP4388665B2 (ja) 2000-03-31 2000-03-31 Ni−Cu系脱硫剤及び燃料電池用水素の製造方法
JP2000-96490 2000-03-31
JP2000-96487 2000-03-31
JP2000096487A JP4531917B2 (ja) 2000-03-31 2000-03-31 ニッケル系脱硫剤の製造方法
JP2000214146A JP4580071B2 (ja) 2000-03-31 2000-07-14 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP2000214145A JP4580070B2 (ja) 2000-03-31 2000-07-14 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP2000-214146 2000-07-14
JP2000-214145 2000-07-14
JP2000-214147 2000-07-14
JP2000214147A JP4531939B2 (ja) 2000-03-31 2000-07-14 ニッケル−銅系脱硫剤の製造方法

Publications (1)

Publication Number Publication Date
WO2001072417A1 true WO2001072417A1 (fr) 2001-10-04

Family

ID=27531475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002861 WO2001072417A1 (fr) 2000-03-31 2001-04-02 Agent desulfurant pour hydrocarbures derives de petrole, procede de fabrication d'hydrogene pour pile a combustible et procede de fabrication d'agent desulfurant a base de nickel

Country Status (5)

Country Link
US (1) US7268097B2 (ja)
EP (1) EP1270069B1 (ja)
AU (1) AU2001244705A1 (ja)
DK (1) DK1270069T3 (ja)
WO (1) WO2001072417A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030814A1 (en) * 2002-09-30 2004-04-15 Sud-Chemie, Inc. Catalyst adsorbent for removal of sulfur compounds for fuel cells
WO2004058927A1 (ja) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. 炭化水素含有ガス中の硫黄化合物除去方法
EP1473082A1 (en) * 2002-02-06 2004-11-03 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
CN107033946A (zh) * 2017-03-14 2017-08-11 浙江工业大学 一种以Cu2O/SiO2‑TiO2复合气凝胶为吸附剂脱除燃料油中噻吩类硫的方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022224A1 (ja) * 2002-09-05 2004-03-18 Idemitsu Kosan Co., Ltd. 硫黄化合物除去用吸着剤、水素の製造方法及び燃料電池システム
ATE359119T1 (de) * 2002-09-23 2007-05-15 Shell Int Research Katalysatorteilchen und ihre verwendung bei der entschwefelung
US20050020446A1 (en) * 2003-07-23 2005-01-27 Choudhary Tushar V. Desulfurization and novel process for same
US7897538B2 (en) * 2004-05-21 2011-03-01 Exxonmobil Research And Engineering Company Process for removing sulfur compounds from hydrocarbon streams and adsorbent used in this process
KR100719484B1 (ko) * 2004-12-31 2007-05-18 한국에너지기술연구원 금속모노리스 촉매를 이용한 컴팩트형 수증기개질구조촉매 및 이를 이용한 수소의 제조방법
JPWO2006101079A1 (ja) * 2005-03-24 2008-09-04 出光興産株式会社 脱硫剤及びこれを用いた脱硫方法
WO2007144897A1 (en) * 2006-06-12 2007-12-21 Bharat Petroleum Corporation Limited Sorbent composition, method for its manufacture and use
EP2177267B1 (en) * 2007-08-13 2013-07-31 Asahi Kasei Chemicals Corporation Catalyst for carboxylic acid ester production, method for producing the same, and method for producing carboxylic acid ester
WO2009105749A2 (en) * 2008-02-21 2009-08-27 Saudi Arabian Oil Company Catalyst to attain low sulfur gasoline
WO2009113445A1 (ja) * 2008-03-10 2009-09-17 独立行政法人産業技術総合研究所 液相用吸着脱硫剤
GB0804570D0 (en) * 2008-03-12 2008-04-16 Johnson Matthey Plc Desulphurisation materials
GB0804572D0 (en) 2008-03-12 2008-04-16 Johnson Matthey Plc Preparation of desulphurisation materials
US8404104B2 (en) * 2008-06-27 2013-03-26 Uop Llc Hydrocarbon dehydrogenation with zirconia
WO2010045958A1 (de) * 2008-10-20 2010-04-29 Siemens Aktiengesellschaft Verfahren zum entfernen korrosiver schwefelverbindungen aus einem transformatoröl
US8377290B2 (en) * 2009-03-31 2013-02-19 James K. and Mary A. Sanders Family L.L.C. Low sulfur fuels
RU2446879C1 (ru) * 2010-10-07 2012-04-10 Министерство Промышленности И Торговли Российской Федерации Катализатор парового риформинга углеводородов и способ его получения
CN103920454A (zh) * 2014-04-29 2014-07-16 哈尔滨理工大学 一种常温脱除硫系恶臭物质的复合铜基脱硫剂及其制备方法
CN107754813B (zh) * 2016-08-18 2019-09-20 万华化学集团股份有限公司 一种用于聚醚胺合成的负载型催化剂及其制备方法
US10814312B2 (en) * 2017-05-25 2020-10-27 Osaka Gas Co., Ltd. Desulfurizing agent for gases and gas desulfurization method
JP2022534312A (ja) * 2019-05-31 2022-07-28 中国石油化工股▲ふん▼有限公司 可逆性濃縮材料、その調製およびその適用
FR3104459B1 (fr) * 2019-12-17 2022-07-01 Ifp Energies Now Masse de captation de mercaptans préparée par voie sels fondus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130115A (en) * 1988-01-22 1992-07-14 Nippon Oil Co., Ltd. Process for hydrogen production from kerosene
EP0565025A1 (en) * 1992-04-06 1993-10-13 NIPPON OIL Co. Ltd. Process for producing fuel gas for fuel cell
JPH07194976A (ja) * 1993-12-29 1995-08-01 Tonen Corp シリカ−アルミナとその製造方法及び軽質炭化水素油の水素化処理用触媒
JPH08196907A (ja) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd ルテニウム触媒の製造方法及び該触媒を用いた炭化水素の水蒸気改質方法
JP2000042408A (ja) * 1998-05-26 2000-02-15 Tonen Corp 水素化処理用触媒およびこれを使用する炭化水素油の水素化処理方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921971A (en) * 1956-03-14 1960-01-19 Phillips Petroleum Co Process and catalyst for the poly-merization of olefins
US2951034A (en) 1957-04-09 1960-08-30 Sun Oil Co Desulfurization of hydrocarbons with a mixture of a group viii metal and group viii metal oxide or sulfide
FR1543423A (fr) * 1967-09-12 1968-10-25 Azote & Prod Chim Procédé de reformage des hydrocarbures lourds
IN159334B (ja) * 1982-06-16 1987-05-02 Exxon Research Engineering Co
NL190750C (nl) * 1984-06-21 1994-08-01 Unilever Nv Nikkelaluminaat katalysator, de bereiding daarvan en het hydrogeneren van onverzadigde organische verbindingen daarmee.
US5026536A (en) * 1988-12-20 1991-06-25 Nippon Oil Co., Ltd. Hydrogen production from hydrocarbon
US5800798A (en) * 1992-04-06 1998-09-01 Nippon Oil Co., Ltd Process for producing fuel gas for fuel cell
US5356847A (en) * 1992-11-10 1994-10-18 Engelhard Corporation Nickel catalyst
CN1083742A (zh) 1993-07-29 1994-03-16 周红星 双功能多金属氧化物催化剂
US6245709B1 (en) * 1995-07-14 2001-06-12 Exxon Research And Engineering Company Supported Ni-Cu hydroconversion catalyst
US6306289B1 (en) * 1998-03-16 2001-10-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
JP3706749B2 (ja) 1998-09-17 2005-10-19 キヤノン株式会社 画像読取装置及び画像読取方法及び記憶媒体
EP1101530A1 (en) * 1999-11-19 2001-05-23 Engelhard Corporation Nickel-iron containing hydrogenation catalyst
US6274533B1 (en) * 1999-12-14 2001-08-14 Phillips Petroleum Company Desulfurization process and novel bimetallic sorbent systems for same
US6875410B2 (en) * 2000-02-01 2005-04-05 Tokyo Gas Co., Ltd. Adsorbent for removing sulfur compounds from fuel gases and removal method
US6683024B1 (en) * 2000-03-15 2004-01-27 Conocophillips Company Desulfurization and novel sorbents for same
US20040063576A1 (en) * 2002-09-30 2004-04-01 Sud-Chemie Inc. Catalyst adsorbent for removal of sulfur compounds for fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130115A (en) * 1988-01-22 1992-07-14 Nippon Oil Co., Ltd. Process for hydrogen production from kerosene
EP0565025A1 (en) * 1992-04-06 1993-10-13 NIPPON OIL Co. Ltd. Process for producing fuel gas for fuel cell
JPH07194976A (ja) * 1993-12-29 1995-08-01 Tonen Corp シリカ−アルミナとその製造方法及び軽質炭化水素油の水素化処理用触媒
JPH08196907A (ja) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd ルテニウム触媒の製造方法及び該触媒を用いた炭化水素の水蒸気改質方法
JP2000042408A (ja) * 1998-05-26 2000-02-15 Tonen Corp 水素化処理用触媒およびこれを使用する炭化水素油の水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1270069A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473082A1 (en) * 2002-02-06 2004-11-03 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
EP1473082A4 (en) * 2002-02-06 2007-12-05 Japan Energy Corp PROCESS FOR PREPARING PURIFICATION HYDROGENATION CATALYST
WO2004030814A1 (en) * 2002-09-30 2004-04-15 Sud-Chemie, Inc. Catalyst adsorbent for removal of sulfur compounds for fuel cells
WO2004058927A1 (ja) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. 炭化水素含有ガス中の硫黄化合物除去方法
EP1577369A1 (en) * 2002-12-26 2005-09-21 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
JPWO2004058927A1 (ja) * 2002-12-26 2006-04-27 出光興産株式会社 炭化水素含有ガス中の硫黄化合物除去方法
EP1577369A4 (en) * 2002-12-26 2008-07-30 Idemitsu Kosan Co METHOD FOR REMOVING SULFUR CONNECTION IN CARBONATED WATER
US8444945B2 (en) 2002-12-26 2013-05-21 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
JP5220265B2 (ja) * 2002-12-26 2013-06-26 出光興産株式会社 炭化水素含有ガス中の硫黄化合物除去方法
CN107033946A (zh) * 2017-03-14 2017-08-11 浙江工业大学 一种以Cu2O/SiO2‑TiO2复合气凝胶为吸附剂脱除燃料油中噻吩类硫的方法
CN107033946B (zh) * 2017-03-14 2018-08-14 浙江工业大学 一种以Cu2O/SiO2-TiO2复合气凝胶为吸附剂脱除燃料油中噻吩类硫的方法

Also Published As

Publication number Publication date
EP1270069A1 (en) 2003-01-02
AU2001244705A1 (en) 2001-10-08
DK1270069T3 (da) 2011-09-26
EP1270069B1 (en) 2011-06-15
US20030113258A1 (en) 2003-06-19
US7268097B2 (en) 2007-09-11
EP1270069A4 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
WO2001072417A1 (fr) Agent desulfurant pour hydrocarbures derives de petrole, procede de fabrication d'hydrogene pour pile a combustible et procede de fabrication d'agent desulfurant a base de nickel
JP5220265B2 (ja) 炭化水素含有ガス中の硫黄化合物除去方法
JP5666777B2 (ja) 一酸化炭素転換用触媒およびそれを用いた一酸化炭素変成方法
WO2002038268A1 (fr) Catalyseur de reformage pour hydrocarbures et procede de reformage correspondant
WO2006101079A1 (ja) 脱硫剤及びこれを用いた脱硫方法
JP5094028B2 (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JP5096712B2 (ja) 一酸化炭素のメタネーション方法
WO2004022224A1 (ja) 硫黄化合物除去用吸着剤、水素の製造方法及び燃料電池システム
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JP4864688B2 (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JP3718092B2 (ja) 水素含有ガス中の一酸化炭素選択酸化触媒、及び当該触媒を用いた一酸化炭素選択除去方法並びに固体高分子電解質型燃料電池システム
JP5154887B2 (ja) バーミキュライト(Expandedvermiculite)を担体に用いた一酸化炭素選択酸化触媒
JP4388665B2 (ja) Ni−Cu系脱硫剤及び燃料電池用水素の製造方法
JP4749589B2 (ja) 有機硫黄化合物含有燃料油用脱硫剤及び燃料電池用水素の製造方法
JP4521172B2 (ja) 脱硫剤及びこれを用いた脱硫方法
JP4531939B2 (ja) ニッケル−銅系脱硫剤の製造方法
JP4580070B2 (ja) 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP4525909B2 (ja) 水性ガスシフト反応用触媒及びその製造方法、並びに水性ガスの製造方法
WO2004009735A1 (ja) 液状炭化水素の脱硫方法及び燃料電池用水素の製造方法
JP2004075778A (ja) 炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP2001279259A (ja) 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP2005146054A6 (ja) 脱硫剤及びこれを用いた脱硫方法
JP4580071B2 (ja) 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法
JP4531917B2 (ja) ニッケル系脱硫剤の製造方法
JP2001276605A (ja) 脱硫剤及び燃料電池用水素の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001917783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10221199

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001917783

Country of ref document: EP