WO2001055758A1 - Module de rechauffage et module guide d'ondes optiques - Google Patents

Module de rechauffage et module guide d'ondes optiques Download PDF

Info

Publication number
WO2001055758A1
WO2001055758A1 PCT/JP2001/000352 JP0100352W WO0155758A1 WO 2001055758 A1 WO2001055758 A1 WO 2001055758A1 JP 0100352 W JP0100352 W JP 0100352W WO 0155758 A1 WO0155758 A1 WO 0155758A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
module according
heater
ceramic
ceramic heater
Prior art date
Application number
PCT/JP2001/000352
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Hirose
Tadashi Tomikawa
Hirohisa Saito
Nobuyoshi Tatoh
Masuhiro Natsuhara
Hirohiko Nakata
Masahide Saito
Naoji Fujimori
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP01901469A priority Critical patent/EP1258752A4/en
Priority to CA002398971A priority patent/CA2398971A1/en
Publication of WO2001055758A1 publication Critical patent/WO2001055758A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring

Definitions

  • the present invention relates to a heater module and an optical waveguide module for heating an optical waveguide element.
  • a Peltier device and an optical module have been used as a device for controlling the temperature of an optical waveguide element provided in an optical waveguide module. Also, in the optical waveguide module, it is necessary to form a passage for drawing an optical fiber used for transmitting an optical signal to and from an external device into the module, so that it is difficult to hermetically seal the module. In a state where the airtightness is not maintained, it is difficult to secure the reliability of the Peltier device that is weak to humidity. Therefore, the temperature control of the optical waveguide device is generally performed by the optical module.
  • This module has a heat generating circuit (resistance) that generates heat when energized, so that heat from the heat generating circuit is transmitted to the optical waveguide element via the insulating layer. It is configured.
  • the above conventional technology has the following problems. That is, if the temperature distribution inside the optical waveguide element is large, the refractive index of the substrate changes depending on the location, and further, the size of the optical waveguide changes due to the difference in thermal expansion of the substrate. The characteristics will be affected. For this reason, temperature uniformity inside the optical waveguide device is required. Therefore, ceramics heaters such as alumina (heat conductivity 20 W / mK) having relatively high thermal conductivity have been often used. However, in recent years, especially in the field of optical communication, the trend toward large capacity and high speed communication has become remarkable. Large area optical waveguide devices have been used. Furthermore, there is a strong demand for multiplexing more signals for a certain frequency width than before. The demand for temperature uniformity is increasing.
  • the conventional optical waveguide module generally has a thickness of about 2 mm, while the other modules generally have a thickness of about 10 mm. Therefore, in a device equipped with an optical waveguide module, the design rules for designing a device consisting only of other modules cannot be applied, and a special design is required, resulting in design efficiency, design cost, and further, device cost. There is a problem that the optical waveguide module is raised, and it is desired to reduce the thickness of the optical waveguide module.
  • optical waveguide element is constantly heated by the heater during operation, it is required to reduce power consumption as much as possible.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an optical waveguide module and an optical waveguide module that can improve the temperature uniformity of an optical waveguide element, have a small thickness, and have reduced power consumption.
  • the purpose is to provide.
  • Means for improving the temperature uniformity of the optical waveguide element include:
  • the temperature uniformity of the optical waveguide element was set to ⁇ 0 by setting the thickness of the Cu heat equalizing plate 120 to about 3 mm. It turned out that it could be 5 ° C. However, because of the thickness of Cu, the thickness of the optical waveguide module cannot be reduced. That is, light As described above, the thickness of the waveguide module is desired to be 1 O mm or less because the thickness of other modules is 10 mm or less, but a heat equalizing plate 120 is required. For some reason, it was found that the thickness was about 2 O mm. It was also found that this was the main reason for the conventional optical waveguide module having a very large thickness.
  • the temperature uniformity of the optical waveguide device 2 could be made ⁇ 0.5 ° C. by the method (2), but the thickness could not be reduced as in (1). Because of the structure that heats the entire module, and consequently the entire module, there is a problem that the power consumption of the heater cannot be reduced. In other words, the power consumption in the method (1) was about 5 W when the optical waveguide was kept at 80 ° C at an environmental temperature of 0 ° C, but the power consumption in the method (2) was 10 W or more. And the power consumption was more than twice as high. This was contrary to the desire to reduce power consumption as much as possible.
  • the present inventors have found that, in order to simultaneously satisfy the required characteristics of the temperature uniformity of the optical waveguide element, the thickness of the heater module and the optical waveguide module, and low power consumption, a heat equalizing plate is required. It has been found that it is most effective to improve the thermal conductivity of the ceramic material itself without using 120 etc. According to this structure, not only can the temperature uniformity of the optical waveguide element 2 be improved, but also the thickness of the optical waveguide module can be reduced because a heat equalizing plate is not used. Furthermore, since it is not necessary to heat the soaking plate, low power consumption can be achieved.
  • the heating module of the present invention is a heating module for heating an optical waveguide element, and a heating circuit that generates heat when energized and an A stacked on the heating circuit. It is characterized by having ceramic ceramics with an IN ceramics layer.
  • the ceramics layer of the ceramics heater is formed of A1N having a high thermal conductivity, the heat transmitted from the heating circuit is substantially uniform in the ceramics layer.
  • the optical waveguide element diffused and further placed on the ceramic layer is heated uniformly. Specifically, it is possible to make the temperature distribution inside the optical waveguide element ⁇ 0.5 ° C or less.
  • the thickness of the heating module can be reduced.
  • the thickness of the optical waveguide module including the heater module can be reduced to 10 mm or less.
  • the heat module further includes a heat insulating substrate that supports the ceramic heater and has heat insulating properties.
  • the heat generated in the heat generating circuit is prevented from being released from the heat insulating substrate, thereby preventing the heat distribution of the ceramic heater from becoming uneven.
  • the temperature uniformity of the optical waveguide element can be further improved.
  • the heat insulating substrate may include alumina or alumina and silica glass. Further, the heat insulating substrate may include a resin or a resin and silica glass.
  • the heat insulating substrate has a plurality of protrusions for supporting the ceramic heater, and an air layer is formed around each protrusion. It is preferred that When such a configuration is adopted, the ceramic substrate is held by a plurality of protrusions, so that the ceramic substrate is not in full contact with the heat insulating substrate but in partial contact therewith. Even when the substrate and the protruding portion are bonded to each other, it is possible to prevent a warp from being generated over the ceramic layer and prevent the resin from peeling off from the ceramic layer.
  • the thickness of the air layer formed as the heat insulating layer is not less than 0.0 lmm and not more than 5 mm.
  • the ceramic heater and the heat insulating substrate may be bonded with a resin.
  • a resin in order to improve the bonding strength of this resin, it is preferable to control the surface roughness of the surface of the ceramic heater to be bonded to the resin to be 0.05 to 10 ⁇ m or more in Ra. Better.
  • an oxide layer, a glass coat layer, or an A1 vapor-deposited layer may be formed on the bonding surface between the ceramics resin and the resin.
  • the heat insulating substrate may be screwed through a hole provided in the ceramic substrate.
  • a pressing means may be provided for pressing the ceramic screen toward the heat insulating substrate, and the pressing means may fix the ceramic heater to the heat insulating substrate.
  • a temperature detecting element for detecting a temperature of the ceramic heater is further provided, and the temperature detecting element is provided on a surface opposite to a surface on which the optical waveguide of the ceramic heater is mounted. It is preferable that the bonded and heat-insulating substrate has a predetermined notch, and an electrode connected to the temperature detecting element is arranged in the notch.
  • the temperature detecting element such as a semiconductor element is used as an optical waveguide element. So that if attached to a surface opposite to the surface to be mounted, need to secure a space for the region and the temperature detecting element for an optical waveguide element on one surface of the ceramic heat Isseki disappears (Thus, ceramics
  • the area of the heater can be reduced, the size of the heater module can be reduced, and the heat generation circuit can be reduced by reducing the size of the heater module, thereby reducing power consumption.
  • a cutout is formed in the heat insulating substrate, and the cutout is provided with an electrode connected to the temperature detection element, so that the temperature detection element is connected to the electrode. In this case, the temperature detecting element and an external power supply for supplying power to the temperature detecting element are connected. Ingredients wires, preferably in contact with the ceramic heater evening.
  • the temperature of the ceramic heater is less affected by the environmental temperature when measuring the temperature, and appropriate temperature measurement can be performed.
  • a second A 1 N ceramic layer is provided below the heating circuit.
  • the moisture resistance of the ceramic heater can be improved, and the durability of the heating circuit can be improved.
  • the heat generation circuit can be formed using tungsten, molybdenum, or silver palladium as a main component.
  • the ceramic heater preferably has a coating film mainly composed of silica glass on the surface.
  • a coating film mainly composed of silica glass on the surface.
  • the heat recovery module of the present invention be configured so that when the temperature exceeds a predetermined temperature, no current flows through the heat generating circuit.
  • the heating circuit It is preferable that a part of the heater is formed of an alloy of tin and lead, or that a heating circuit and a terminal connected to an external power supply are connected by wiring formed of an alloy of tin and lead. With this configuration, it is possible to prevent the heating module from being broken or ignited due to a rise in temperature due to a malfunction of the heating module.
  • an optical waveguide element of the present invention is characterized by comprising: the above-described heat-and-light module of the present invention; and an optical waveguide element mounted on the ceramic and heat-sensitive module of the heat and light module.
  • the provision of the above-described heating module can improve the temperature uniformity of the optical waveguide element, and provide an optical waveguide module having a small thickness and reduced power consumption.
  • the optical waveguide element and the ceramic heat - between the evening is the difference in thermal expansion coefficient 3 X 1 0- 6 Z ° C hereinafter at room temperature of the optical waveguide element matching
  • a member has been inserted.
  • the present inventors have found that in joining ceramic heater evening and the optical waveguide device with an adhesive or the like, the difference in thermal expansion coefficient at room temperature between the optical waveguide element and the ceramic heater evening is 5 X 1 0 _ 6 / ° When it is larger than C, it has been found that excessive thermal stress acts on the optical waveguide element, which may hinder the wavelength selectivity and switching characteristics.
  • the L i N b 0 3 (thermal expansion coefficient 1 5 X 1 0 6 Z a C) novel waveguide element formed in like have been studied in turn, further, on the optical waveguide device Since high-density mounting of these devices is being studied, and strict wavelength selectivity and switching characteristics are often required, in such a case, heat at room temperature between the optical waveguide device and the ceramic heater is required. difference in expansion rate 3 X 1 0 one 6 /. Must be less than C. Therefore, as described above, a matching member having a difference in thermal expansion coefficient between the optical waveguide element and the ceramic heater at room temperature of 3 ⁇ 10 16 Z ° C or less is inserted between the optical waveguide element and the ceramic heater.
  • inserting a matching member is a method similar to inserting a conventional soaking plate.
  • the present invention does not require a heat equalizing plate, and it is necessary to reduce the thickness of the matching member in order to prevent the temperature uniformity of the optical waveguide element from deteriorating. This does not lead to an increase in the thickness of the optical waveguide module.
  • the thermal expansion coefficient of the optical waveguide element 0 5 x 1 0- 6 Z ° (:..
  • ⁇ 1 For O xl O- 6 / ° C and a low thermal expansion coefficient, such as F e- N i Alloy It is preferable to use a matching member, and conversely, in the case of a high coefficient of thermal expansion of about 15 X 10 _ 6 / ° C, it is preferable to use a matching member of Cu or a Cu alloy. Oxygen-free Cu, evening pitch Cu or the like can be used. As the Cu alloy, brass, silicon copper, phosphor bronze, aluminum bronze, nickel bronze, or the like can be used.
  • the thickness of the matching member is from 0.1 mm to 2 mm, preferably from 0.1 mm to 2 mm.
  • the thickness is less than 0.1 mm, the matching member is pulled by the coefficient of thermal expansion of the ceramics glass, so that the matching of the coefficient of thermal expansion between the optical waveguide element and the ceramics glass cannot be achieved.
  • a matching member having a thickness of less than 0.3 mm is difficult to handle. Therefore, it is preferable that the thickness be 0.3 mm or more.
  • the thickness of the matching member is increased, there is a concern that the temperature uniformity of the optical waveguide element may deteriorate.
  • the matching member is made of Cu or a Cu alloy, no problem occurs even if the thickness is large.
  • the thickness of the Fe—Ni alloy is more than 2 mm, the temperature uniformity is greatly deteriorated, which is not preferable.
  • the thickness of the matching member is larger than 1 mm, the thickness of the optical waveguide module is unavoidably increased, which is not desirable.
  • the bonding between the matching member and the optical waveguide element is performed using a resin adhesive having a solid form after the bonding. can do. Further, it is preferable that the ceramic heater and the optical waveguide element are bonded by a resin adhesive.
  • the thickness of the grease becomes uneven and it becomes difficult to improve the temperature uniformity of the optical waveguide element.
  • the adhesive is solid after bonding. Since it takes shape, such a lightning strike can be avoided.
  • the surface of the ceramic waveguide on which the optical waveguide element is mounted has a smaller area than the surface of the optical waveguide element facing the surface.
  • matching element difference in thermal expansion coefficient at room temperature of the optical waveguide element is less than 3 X 1 0- 6 / ° C is arranged, matching member and the optical waveguide element Are preferably joined. If the ceramic heater is smaller than the optical waveguide element, the structural stability of the optical waveguide element is reduced, but with such a configuration, the optical waveguide element can be supported by the matching member. By setting the coefficient of thermal expansion of the matching member in the above range, it is possible to prevent the optical waveguide element from being subjected to thermal stress. In this case, the thermal Rise Zhang index of the optical waveguide element is 0. 5 x 1 0- 6 / ° C ⁇ l.
  • F e- N i alloy For X 1 0- 6 / ° C and a low thermal expansion coefficient, F e- N i alloy It is preferable to use a matching member of When the degree of thermal expansion is high, it is preferable to use a matching member made of Cu or a Cu alloy.
  • optical waveguide module of the present invention may further include a housing for housing the optical waveguide element and the ceramic heater.
  • a heat insulating substrate that supports the ceramic heater and has heat insulating properties
  • the housing accommodates the heat insulating substrate.
  • supporting the ceramics heater with a heat insulating substrate that has heat insulating properties prevents the heat generated in the heating circuit from being released from the heat insulating substrate, resulting in uneven heat distribution in the ceramic heater. Therefore, the temperature uniformity of the optical waveguide device can be further improved.
  • the light-receiving module also serves as a part of the housing.
  • a structure can be adopted in which the heat-insulating substrate of the heating module becomes part of the housing.
  • the housing mainly contains copper tungsten, cobalt, iron, nickel, alumina, or aluminum nitride. In this case, the temperature uniformity of the housing can be improved, and further, the temperature uniformity of the optical waveguide element can be improved.
  • the housing is mainly composed of resin or silica glass. In this case, since these materials have high heat insulating properties, the heat in the housing can be prevented from being released to the outside, and the temperature of the optical waveguide element can be prevented from lowering.
  • a heat insulating layer having a thermal conductivity of 0.5 W / mk or less is provided around the light-receiving module.
  • the heat insulating layer may be an air layer.
  • the thickness of the air layer is preferably from 0.01 mm to 5 mm.
  • the housing preferably has a partition wall extending from the surface facing the optical waveguide element toward the optical waveguide element.
  • the convection trajectory in the housing can be reduced, and the temperature uniformity of the optical waveguide element can be improved.
  • the housing includes a sheet disposed at a predetermined distance from the inner wall surface of the housing.
  • the optical fiber is clamped to the optical waveguide element, and the clamp position between the optical fiber and the optical waveguide element is inside the housing.
  • FIG. 1 is a perspective view showing a heater module and an optical waveguide module according to the first embodiment.
  • FIG. 2 is a side view showing the optical waveguide module of the first embodiment.
  • FIG. 3 is a plan view of the inside of the ceramic ceramics of the first embodiment.
  • FIG. 4 is a sectional view taken along the line IV-IV of the ceramics shown in FIG.
  • FIG. 5 is a plan view showing the heater module of the first embodiment.
  • FIG. 6 is a side view showing the optical waveguide module of the second embodiment.
  • FIG. 7 is a plan view showing a heater module according to the second embodiment.
  • FIG. 8 is a sectional view showing a ceramic heater according to the second embodiment.
  • FIG. 9 is a side view showing the optical waveguide module of the third embodiment.
  • FIG. 10 is a cross-sectional view illustrating an optical waveguide module according to the fourth embodiment.
  • FIG. 11 is an enlarged perspective view showing the vicinity of a cutout portion of the heat insulating substrate of the fourth embodiment.
  • FIG. 12 is a side view showing the optical waveguide module of the fifth embodiment.
  • FIG. 13 is a perspective view showing the optical waveguide module of the sixth embodiment.
  • FIG. 14 is a side view showing the optical waveguide module of the sixth embodiment.
  • FIG. 15 is a perspective view showing the optical waveguide module of the seventh embodiment.
  • FIG. 16 is a side view showing the optical waveguide module of the seventh embodiment.
  • FIG. 17 is a perspective view showing the optical waveguide module of the eighth embodiment.
  • FIG. 18 is a side view showing the optical waveguide module of the eighth embodiment.
  • FIG. 19 is a side view showing the optical waveguide module of the ninth embodiment.
  • FIG. 20 is a side view showing the optical waveguide module of the tenth embodiment.
  • FIG. 21 is a perspective view showing a characteristic portion of the optical waveguide module of the eleventh embodiment.
  • FIG. 22 is a simplified perspective view showing a conventional optical waveguide module.
  • FIG. 23 is a simplified perspective view showing a conventional optical waveguide module.
  • FIG. 1 is a perspective view showing a heat module of the present embodiment and an optical waveguide module incorporating the same
  • FIG. 2 is a side view of the optical waveguide module shown in FIG.
  • the optical waveguide module 1 is for heating the optical waveguide element 2 made of quartz and measuring 5 O mm x 1 O mm x 1 mm, the optical fibers 4 and 4 connected to both ends thereof, and the optical waveguide element 2.
  • a housing 20 that houses the optical waveguide element 2 and the heater module 30.
  • the housing 20 is provided with a package board 22 for soldering lead pins 23 for energizing the heating module 30 and for supporting the heating module 30, and covering the package board 22.
  • a cover 24 The dimensions of the entire package are 100 mm x 50 mm x 10 mm.
  • the hysteresis module 30 has a size of 4 Omm x 2 Omm x 1 mm, and a ceramic module 40 mm that supports it and has a heat insulating property of 6 Omm x 3 Omm x 2 mm. It has a heat insulating substrate 50 (see FIG. 5).
  • FIG. 3 is a plan view showing the inside of the ceramic heater 40
  • FIG. 4 is a sectional view of the ceramic heater 4 ° shown in FIG.
  • the ceramic heater 40 is provided with a heat generating circuit 42 having a resistance of about 0.5 to 10 ⁇ and generating heat when energized. Further, electrodes 42 a and 42 b are provided at both ends of the heating circuit 42 to allow current to flow through the heating circuit 42.
  • a first A 1 N ceramic layer 44 is laminated on the upper layer (upper side in FIG. 4) of the heating circuit 42, and a second A 1 N ceramic layer 46 is formed below the heating circuit 42. Is provided.
  • the ceramics layer 44 is formed of A 1 N (aluminum nitride) having high thermal conductivity, the heat transmitted from the heat generating circuit 42 is formed. Diffuses almost uniformly in the first A 1 N ceramics layer 44, and furthermore, the optical waveguide element 2 adhered to one surface of the first A 1 N ceramics layer 44 is uniformly heated. Therefore, the temperature uniformity can be improved.
  • a 1 N has high moisture resistance, the resistance of the heating circuit 42 does not change even after long-term continuous use, and high reliability can be obtained.
  • the second A 1 N ceramic layer 46 is provided below the heating circuit 42, the moisture resistance of the ceramic heater 40 is improved, and the durability of the heating circuit 42 is further improved. be able to. More specifically, since the heat generation circuit 42 is not exposed by the second A 1 N ceramic layer 46, short circuit and oxidation of the heat generation circuit 42 can be prevented.
  • the total thickness of the first A 1 N ceramics layer 44 and the second A 1 N ceramics layer 46 is preferably 0.3 mm or more and 3.0 mm or less. If the thickness of the A 1 N ceramics layer is less than 0.3 mm, it becomes difficult to equalize the heat generated in the heater, so that the temperature uniformity of the optical waveguide element 2 is ⁇ 0.5 °. It will be difficult to make it below C. If the thickness of the ceramic layer is less than 0.3 mm, the mechanical strength is low, and it becomes very difficult to handle the optical waveguide element such as bonding.
  • the heat generating circuit 42 is formed and sintered after forming and sintering the tungsten, molybdenum, or A 1 N ceramics layer which can be simultaneously formed when the A 1 N ceramics layer is formed and sintered. It can be formed using silver palladium or the like that can use a technique as a main component. Tungsten and molybdenum can be formed simultaneously with A1N ceramics, which has the advantage of reducing costs.
  • silver palladium has the advantage that the resistance can be easily controlled with high accuracy.
  • These materials may be selected according to the priority required for the optical waveguide module. It should be noted that even if a heating material other than these materials is used, a ceramic using A 1 N It doesn't detract from the benefits of Mixhi, and you can use it without any problems.
  • the thickness of the heating circuit 42 is not particularly limited. However, in the case of forming a pattern by screen printing, for example, it is desirable to control it to l ⁇ m or more and 100 / m or less. If the thickness is less than l ⁇ m, the possibility of problems such as pattern loss will increase dramatically.
  • the thickness is larger than 100 zm, problems such as bleeding frequently occur when the pattern of the heating circuit is as thin as about 0.2 mm, which is not preferable.
  • the thickness is preferably set to 50 zm or less. Also, for example, when the heating circuit 42 is formed of a thin film or the like, a film thickness of 1 ⁇ m or less is possible. .
  • a glass coating film may be formed as a protective layer of the heat generating circuit 42.
  • a coating film containing silica glass as a main component can be formed on the surface of the heating circuit 42.
  • Such a glass coating film is formed once after the A 1 N ceramics layer and the heat generating circuit are once formed. Therefore, there is an advantage that the material of the glass coating film can be freely selected.
  • the thermal conductivity of the glass coating film is generally as low as 1 WZm K
  • a kind of glass coating U It functions as a heat insulating layer and functions to improve the temperature uniformity of the optical waveguide element 2.
  • the thickness of the glass coating film is preferably 1-111 or more and 0.2 mm or less. Further, it is preferable that the thickness be 10 mm or more and 0.2 mm or less.
  • the heating circuit 42 cannot be uniformly covered, and an uncoated portion occurs.
  • the film thickness is smaller than l ⁇ m, the heating circuit 42 cannot be uniformly covered, and an uncoated portion occurs.
  • the film thickness is larger than 200 ⁇ m, Thus, even when a film is formed by screen printing, an enormous amount of time is required, and the cost is dramatically increased, which is not preferable.
  • the thickness of the coating film is outside the above range, there is no problem as long as the heating circuit 42 can be protected to the minimum necessary.
  • the ceramic heater 40 since the ceramic heater 40 is supported by the heat insulating substrate 50 having heat insulating properties as described above, the heat generated in the heat generating circuit 42 is released from the heat insulating substrate 50. The situation where the heat distribution of the ceramic heater 40 becomes non-uniform can be prevented, and the temperature uniformity of the optical waveguide element 2 can be further improved. In particular, when the heat insulating substrate 50 is not provided, the ceramic heater 40 not only heats the optical waveguide element 2 mounted thereon, but also contacts the opposite surface on which the optical waveguide element 2 is mounted. Will also be heated.
  • the heat generated by the ceramic heater 40 will not be generated by the optical waveguide element 2
  • the temperature uniformity of the optical waveguide element 2 deteriorates, and the power consumption of the ceramic heater increases.
  • the heat generated in the heat generating circuit 42 is released from the heat insulating substrate 50 and the heat distribution of the ceramic heater 40 is reduced. The situation of non-uniformity can be prevented.
  • the thermal conductivity of the heat insulating substrate 50 it is preferable to set the thermal conductivity of the heat insulating substrate 50 to 5 OW / mK or less.
  • wiring can be provided inside the heat insulating substrate 50 and electrically connected to the ceramic heater, thereby simplifying the optical module and the optical waveguide module, so that wiring can be formed inside.
  • it is a material.
  • the heat insulating substrate 50 may be made of a material containing alumina and silica glass.
  • the heat insulating substrate 50 is formed mainly of alumina and silica glass in the present embodiment, the heat insulating property can be further improved by using resin and silica glass as main components.
  • the heat insulating substrate 50 it is preferable to form the heat insulating substrate 50 with a resin because the thermal conductivity can be reduced to 1 WZmK or less.
  • a resin material a general glass epoxy resin or BT (bismaleide 'triazine) resin for a printed wiring board can be used.
  • the manufacturing method of the ceramic heater 40 is as follows. First, the heating circuit 42 and the electrodes 42a, 42b are printed on the preform sheet of A1N ceramics in a W-paste. Next, a preform sheet of A 1 N ceramics is adhered on the heat generating circuit 42 to obtain a temporary molded body. Then, the temporary compact is sintered in a nitrogen atmosphere of 170 ° C. or more, and the ceramic heater 40 is completed.
  • FIG. 5 is a plan view showing the heater module 30.
  • electrodes 52a to 52f are formed on the upper surface of the heat-insulating substrate 50, and the electrodes 42a and 42b and the electrodes 52a and 52b of the ceramic heater 40 are formed.
  • each lead bin 53 is connected to each of the electrodes 52 a to 52 f. As shown in FIG. 2, each lead pin 53 is bent at a right angle, and an insertion hole of the package substrate 22 is formed. Soldered while inserted in As a result, each lead bin 53 is electrically connected to each lead pin 23 of the package substrate 22. Also, by forming the electrodes 52a to 52f on the heat insulating substrate 50 as described above, a long wiring connecting the ceramic heater 40 and an external electrode becomes unnecessary, so that assembly and mounting can be performed. It is easier and costs can be reduced.
  • the heat insulating substrate 50 and the ceramic heater 40 are bonded by a resin 41, and the ceramic substrate 40 and the optical waveguide element 2 are also bonded by a resin 43.
  • Any resin such as silicon resin or epoxy resin used for bonding electronic components can be used as the resin 41 to be bonded.
  • silicon resin is used in order to prevent deformation at the time of bonding.
  • the thermal expansion coefficient of A 1 N is close to that of the glass or Si forming the optical waveguide element 2, so that A 1 N The optical waveguide element 2 can be prevented from warping.
  • the resin 43 is also used for joining the optical waveguide element and A 1 N, but the resin 43 is a silicon resin.
  • the thickness of the resin 41 and the resin 43 is about 10 mm to 0.2 mm.
  • the resin bonding strength of A1N is weaker than that of other oxide ceramics. That is, the resin bonding strength results from the hydrogen bonding between the —OH group of the resin and the 10 groups on the metal surface, the anchoring effect between the materials, and the interaction between the two.
  • a 1 N contributes only to the anchoring effect because the surface is nitrided. Therefore, depending on the surface condition of the A 1 N ceramic, the bonding strength with the resin may be deteriorated.
  • A1N tree joint strength In order to increase the bonding strength between the A 1 N ceramic layer and the resin, there are two types, a first method for enhancing the anchor effect and a second method for providing a layer for increasing the resin strength.
  • the A1N surface roughness is less than 0.050m, a sufficient anchoring effect cannot be obtained between A1N and the resin, and the resin joint surface peels off during a reliability test or during use of the optical waveguide module. Problems such as dropout occur.
  • a resin with high adhesive strength such as silicone resin
  • sufficient bonding can be achieved if the A 1 N surface roughness is 0.05 ⁇ m or more, but sufficient bonding is possible with all other resins.
  • it is preferable that the A1N surface roughness is 0.1 ⁇ m or more.
  • A1N surface roughness If it is larger than 10 / m, air bubbles and the like easily flow between A 1 N and tree S, and a sufficient anchor effect cannot be obtained.
  • the resin particles and the bubbles are randomly present in the resin bonding layer, which greatly deteriorates the temperature uniformity.
  • the entrapment of air bubbles can be prevented if the above-mentioned A 1 N surface roughness is 10 or less.
  • the AIN surface roughness is preferably 10 m or less in order to prevent air bubbles from being trapped even when the viscosity rises due to aging of the resin or the like.
  • a layer that enhances resin strength requires a layer that contains OH groups or 1 O groups so as to enhance hydrogen bonding with the resin, or a layer that enhances anchor strength.
  • Oxide or metal can be considered as the layer that enhances the hydrogen bond with the resin.
  • alumina As such an oxide, for example, alumina can be considered.
  • ceramic oxides such as alumina have a problem that the temperature required for forming a layer is high, and thus the cost for the night is dramatically increased.
  • silica glass can lower the layer formation temperature compared to alumina, so that the cost can be kept low.
  • the resin bonding strength of the ceramic heater 40 This makes it possible to simultaneously improve the reliability and the reliability in a single process, making it possible to produce A1N ceramics with low cost and excellent characteristics.
  • the thickness of the silica glass layer formed on the surface of the ceramic heater 40 is preferably in the range of 111 to 0.5 mm as in the case of the glass coating film of the heating circuit described above. It is preferable that the thickness be equal to or larger than 1 mm. Shi When the thickness of the glass layer becomes smaller, the A1N ceramics cannot be covered uniformly, and there are uncoated portions, so that the resin strength cannot be sufficiently increased. Furthermore, when forming a protective layer of a heater in the same process, since there is a step in the heater layer, the layer thickness needs to be 10 mm or more to cover the step.
  • the thickness of the silica glass layer is larger than 500 ⁇ m, the strength of the glass itself is low, so the resin bonding is sufficient, but the glass itself breaks after the reliability test, and it may not be used. Can not. Although a film thickness smaller than this can be used, an enormous amount of time is required to form a film thicker than 10 and the cost is drastically increased. Must be less than zm.
  • the formation of the silica glass layer is not particularly limited. However, since it is necessary to form the silica glass layer at a limited portion such as a resin bonding portion or a heating portion, the glass paste is printed using screen printing or the like. A method of baking by firing or the like can be used.
  • Ni and Au used as a metal protective film have few OH groups and 0 groups on the surface, and particularly have extremely low bonding strength with the resin after the reliability test.
  • A1 is preferable because it has a relatively high resin strength because the surface is constantly oxidized. Furthermore, it was found that even if the oxidation was intentionally performed more than the natural oxide film, the resin strength was not increased, but rather decreased. Further examination revealed that the resin bonding strength greatly changed depending on the A1 film formation method. That is, by using the A1 film formed by vapor deposition in a naturally oxidized state, it is possible to manufacture an AIN ceramics substrate having extremely high resin bonding strength.
  • the vacancies serve as a starting point, and the junction is likely to be broken.
  • the resin can enter between the crystals, but the number of particles that contribute to the anchor effect per unit area decreases, so that sufficient bonding strength cannot be obtained. .
  • 10 x 10- 1Q m or 800 10- 1 Q m is a natural oxide film thickness. If there is no natural oxide film, sufficient bonding strength cannot be maintained because no hydrogen bond occurs between the resin and the resin.
  • the bonding strength between the resin and the oxide film is no problem, the oxide film of the metal is fragile since the oxide film and the base metal Cannot maintain the joint strength between the two.
  • the thickness of the A 1 film to be formed is preferably l / m or more and 100 ⁇ m or less.
  • a 1 If the thickness is less than 1 ⁇ m, a structure sufficient to produce the anchor effect cannot be formed. On the other hand, it is not preferable that the thickness is larger than l O O ⁇ m because breakage in the film easily occurs. On the other hand, if the thickness is more than 20 m, the cost and time for film formation become enormous, which is economically problematic. Therefore, the thickness of the A1 film is more preferably l m or more and 20 m or less.
  • the A1 film to be formed may be either A1 or A1 alloy.
  • the purity of the A1 alloy is preferably 99.9 wt% or more because it is difficult to control the composition during film formation and the adhesion to the base material tends to vary.
  • A1 vapor deposition can apply a vapor deposition film to various materials relatively easily, even if it is applied to other members to be resin-bonded in an optical waveguide module, the resin-bonding strength can be significantly improved. Because it is possible, it is preferable to apply A1 vapor deposition to other members as much as possible. Whether or not to perform vapor deposition may be determined by considering whether or not insulation is necessary because A1 is a metal and considering the cost increase due to vapor deposition.
  • the package substrate 22 has a flat plate 22a to which the lead bin 23 is soldered, and support plates 22b and 22b bonded to both lower ends of the flat plate 22a. .
  • the cover 24 and the package substrate 22 are bonded with a resin.
  • the cover 24 and the package substrate 22 of the housing 20 are formed mainly of copper tungsten. Therefore, the temperature uniformity of the housing 20 is high, and the temperature uniformity of the optical waveguide device 2 can be improved. Note that the same effect can be obtained even if the housing 20 is formed mainly of cobalt, iron, nickel, alumina, or aluminum nitride. Further, as a result of a thermal simulation, it has been found that the thermal conductivity of the housing 20 is preferably at least 1 OW / mK in order to improve the temperature uniformity of the optical waveguide element 2.
  • the housing 20 when the housing 20 is formed mainly of resin or silica glass, these materials have high heat insulating properties, so that heat in the housing 20 can be suppressed from being released to the outside.
  • the temperature of the optical waveguide element 2 can be prevented from lowering.
  • the resin forming the housing 20 include: Yatsuki, polyoxymethylene resin, polyester ether ketone resin, styrene resin, acrylic resin, epoxy resin, and phenol resin. Fat, urea resin, melamine resin, silicone resin, fluororesin, polycarbonate resin, polyphenylene's sulfide resin and the like can be used.
  • the thermal conductivity of such a resin was found to be preferably 1 W / mK or less in order to improve the temperature uniformity of the optical waveguide element 2.
  • glass fibers or the like may be mixed in order to improve the strength of these resins.
  • these materials have high heat insulating properties, the heat in the housing can be prevented from being released to the outside, and the temperature of the optical waveguide element 2 can be prevented from lowering.
  • a casing material for improving the temperature uniformity and a casing material for improving the heat insulating property may be formed into a multilayer or a combination thereof.
  • a heat insulating layer 27 having a thermal conductivity of 0.5 WZm k or less is provided around the heater module 30 (between the package substrate 22 and the heat insulating substrate 50). Have been killed.
  • the heat insulating layer 27 is an air layer, and its thickness is l mm.
  • the thickness of the heat insulating layer 27 as an air layer is preferably in the range of 0.01 mm or more and 5 mm or less. In order to obtain high temperature uniformity, it is important to avoid heat convection in the air layer. As a result of examining the conditions through thermal fluid simulations and experiments, it was found that if the thickness of the air layer is 5 mm or less, thermal convection can be largely prevented, and high temperature uniformity of the ceramic heater 40 can be ensured. It was. On the other hand, convection is less likely to occur as the thickness of the air layer decreases, but when the thickness is less than 0.0 lmm, the distortion of the optical module and optical waveguide module caused by heat generated by the heater.
  • the heat insulating substrate 50 comes into contact with the package substrate 22 and a part of the air space is reduced, so that high temperature uniformity cannot be obtained.
  • the thickness (reduction in thickness) of the heating module 30 and the optical waveguide module 1 will be described in detail.
  • the difference in the thermal expansion coefficients of the ceramic heater evening and the optical waveguide element 3 X 1 0- 6 ⁇ 5 X 1 0- 6 Bruno. If it is higher than C, excessive thermal stress acts on the optical waveguide element, which may hinder wavelength selection control and switching characteristics.
  • a 1 N of the ceramics heater 40 of the present embodiment has a thermal conductivity of 170 W
  • the optical waveguide element 2 and the ceramic heater 40 are adhered by the resin 43, and the resin 43 is a solid adhesive after joining. Therefore, the resin thickness does not vary, and the resin does not flow during the operation of the optical waveguide module.
  • the resin used for bonding the optical waveguide element 2 and the ceramic heater 40 is preferably a high thermal conductivity resin containing a filler such as metal or ceramics and having a thermal conductivity of about 0.5 W / mK or more.
  • the optical waveguide element 2 is uniformly heated by the ceramic heater 40. However, if a resin having a thermal conductivity lower than 0.5 W / mK is used, the temperature uniformity of the optical waveguide element 2 may be deteriorated.
  • a fluid is filled between the optical waveguide element 2 and the ceramic heater 40 with an oil compound or grease even after the above-mentioned bonding, and only a few points at the ends are fixed with the resin. Also, since the difference in the coefficient of thermal expansion between the optical waveguide element 2 and the ceramic layer 40 is small, no stress is applied to the optical waveguide element 2, and therefore, it can be used. However, when using this method, the thickness of the oil compound and grease must be strictly controlled.
  • the thickness of the tree S43 is preferably not less than 10 0 m and not more than 500 m. Since the bonding resin has a Young's modulus that is at least one order of magnitude lower than other constituent materials, it has the function of absorbing thermal stress generated during bonding. However, if the thickness of the resin 43 is smaller than 10 ⁇ m, the stress absorbing effect cannot be sufficiently exhibited, and the stress acting on the optical waveguide element 2 increases, which is not preferable. On the other hand, the resin 43 has a lower thermal conductivity than A 1 N or the like, so that the greater the thickness, the worse the temperature uniformity. If the thickness of the tree S 4 is larger than 500 zm, the temperature uniformity is deteriorated, which is not preferable.
  • the power consumption of the ceramic matrix 40 and the optical waveguide module 1 is lower than that of the case of using the conventional alumina heater. Since there is no need to heat the soaking plate for the product, etc., power consumption can be greatly reduced.
  • the following safety design can be performed.
  • heat is generated by forming a part of the heat generating circuit 42 with an alloy of tin and lead, or by connecting the heat generating circuit 42 to a terminal connected to an external power supply with a wiring formed of an alloy of tin and lead.
  • the wire is automatically disconnected, and no current flows through the heating circuit 42.
  • the wire will be broken at a little less than about 200 ° C., and the joining resin and the resin of the housing will not be destroyed.
  • Other low melting point alloys may be used instead of the alloys of lead and lead.
  • the temperature distribution inside the optical waveguide device 2 was ⁇ 0 ° C. when the environment temperature was 0 ° C. and the temperature of the ceramics was 40 ° C. and the temperature was 80 ° C. It was found that the temperature was kept below 4 ° C.
  • the following experiments were performed to measure the temperature controllability. That is, the optical waveguide module is put into a thermostat, the temperature of the thermostat is maintained at 140 ° C for 1 hour, the temperature is raised to 70 ° C in 1 hour, and the temperature is maintained at 70 ° C for 1 hour. The temperature was lowered to —40 ° C over time.
  • the optical waveguide element showed only a temperature change of ⁇ 0.7 ° C. or less, and was hardly affected by the external temperature.
  • the ceramic waveguide 40 and the optical waveguide element 2 had little warpage, no anisotropy was observed in the optical waveguide characteristics, and no problems such as loss increase, switching characteristics, and polarization dependence due to birefringence occurred.
  • the power consumption was required to be 5 W when using a Peltier element as in the past, but in the present embodiment, the power consumption was reduced to 4 W or less. Was completed.
  • FIGS. 1 and 2 differs from the first embodiment mainly in the structure of the heat insulating substrate 50.
  • the points different from the first embodiment will be mainly described.
  • the ceramic heater 40 is not in full contact with the heat insulating substrate 50 but is in partial contact therewith, so that the ceramic heater 40 is less likely to warp.
  • a tree for bonding the heat-insulating substrate 50 to the ceramic substrate 40 Can be prevented from being separated from the ceramic heater 40.
  • the resin may be applied to only one projection 62. For example, when the resin is applied only to the central projection 62, both ends of the ceramic heater 40 can freely expand and contract, so that the warpage of the ceramic heater 40 can be further reduced.
  • an air layer 64 is formed around each protrusion 62, in other words, between the bottom surface of the ceramic substrate 40 and the surface of the heat insulating substrate 50 opposed thereto. . Therefore, the air layer 64 functions as a heat insulating layer, and it is possible to suppress a situation in which heat from the ceramic heater 40 is released from the heat insulating substrate 50 side.
  • the thickness of the air layer is set to 0.2 mm.
  • the thickness of the air layer be in the range of 0.01 mm or more and 5 mm or less.
  • the thickness of the air layer is 5 mm or less, thermal convection can be largely prevented and a high temperature uniformity of 40% can be secured. I found out.
  • the thinner the air layer the less convection occurs, but if the air layer is thinner than 0.01 mm, ceramics due to the heating of the heater module and the optical waveguide module due to the heat generated by the heater. High temperature uniformity cannot be obtained because the heater and the heat-insulating substrate that supports it come into contact with each other and the air space is partially reduced.
  • a pressing portion (pressing means) 70 for pressing the ceramic substrate 40 toward the heat insulating substrate 50 is provided.
  • the pressing portion 70 includes a pressing plate 72 mounted on the upper surface of the ceramic substrate 40, and a screw 74 for screwing the pressing plate 72 to the heat insulating substrate 50. .
  • the ceramic heater 40 is pressed against the heat insulating substrate 50.
  • the ceramic heater 40 is moved toward the heat insulating substrate.
  • a plurality of through holes 55 are formed in the heat insulating substrate 50, and the through holes 55 and the heat generating circuit 42 of the ceramics substrate 40 are formed by conducting wires. It is electrically connected. Then, as shown in FIG. 6, the lead pins 23 passed through the package board are inserted into the through holes 55.
  • FIG. 8 is a sectional view of the ceramic heater 40 of the present embodiment.
  • the ceramic heater 40 of this embodiment is provided on a heating circuit 42 made of silver / palladium, an A 1 N ceramic layer 44 laminated thereon, and a lower surface of the heating circuit 42.
  • a coating film 45 containing silica glass as a main component By forming the coating film 45 on the surface of the ceramic screen 40 as described above, the moisture resistance of the ceramic screen 40 can be improved. Further, when the semi-lacquer 40 and the heat insulating substrate 50 are bonded to each other with a resin, the adhesiveness of the resin 40 to the ceramic heater can be improved.
  • FIG. 1 differs from the first embodiment in the structure of the housing 20.
  • the cover 24 of the housing 20 four partition walls 29 extending from the surface 24 r facing the optical waveguide element 2 toward the optical waveguide element 2 are provided. ing. Further, the height of the partition wall 29 is such that the lower end of the partition wall 29 does not contact the optical waveguide element 2 when the cover 24 is placed on the package substrate 22.
  • the trajectory of convection in the housing 20 or in other words, the trajectory of convection on the optical waveguide element 2 can be reduced, and the temperature uniformity of the optical waveguide element 2 can be reduced. Can be improved.
  • a ceramic sensor (temperature detecting element) 48 for detecting the temperature of the ceramic heater 40 is mounted on the bottom surface of the ceramic heater 40, that is, the optical waveguide element 2 is mounted. It is mounted on the side opposite to the side where it is placed. For this reason, it is not necessary to secure an area for mounting the thermistor 48 on the upper surface of the ceramic glass 40. As a result, the area of the ceramic heater 40 can be made smaller than in the first embodiment, and the heater module 30 can be downsized. Further, since the heat generation circuit 42 can be made smaller, power consumption can be reduced.
  • the ceramic heater dimensions are 4 O mm x 2 O mm x 1 mm
  • the heater module dimensions are 6 O mm x 3 O mm xl mm
  • the power consumption is 0 ° C
  • the power consumption is 0 ° C.
  • the heater dimensions were 40 mm ⁇ 12 mm ⁇ 1 mm
  • the heater module dimensions were 60 mm ⁇ 2
  • the size can be reduced to 0 mm and 1 mm
  • the power consumption can be reduced to 3.5 W.
  • a cutout portion 76 is formed in the heat insulating substrate 50, and an electrode pad 78 connected to the thermistor 48 is arranged in the cutout portion 76.
  • FIG. 11 is an enlarged perspective view showing the vicinity of the cutout portion 76.
  • the heat insulating substrate 50 has an upper layer 52 and a lower layer 54, and the electrode pad 72 is formed on the bottom surface of the upper layer 52. More specifically, a through hole 52h is formed in the upper layer 52, and a part of the bottom surface of the upper layer 52 is exposed in the lower layer 54. A through hole 54 h is formed. Then, at least a part of the electrode pad 78 is located on the exposed portion of the bottom surface of the upper layer 52.
  • an electrode pad 80 is formed on the bottom surface of the ceramic heater 40, and the ceramic pad 48 is connected to the electrode pad 80 by a wire 73, and the electrode pad 80 is connected to the electrode pad 80 by a wire 75.
  • the electrode pads 78 are connected.
  • the wire 75 can be connected to the electrode pad 78 through the cutout portion 76, that is, the through hole 52h and the through hole 54h, the wire 75 is insulated. Wiring can be simplified as compared with a case where the wiring passes around the substrate 50.
  • the wiring connecting the thermistor 48 and the external electrode that supplies power to the thermistor 48 is in contact with the ceramic electrode 40 at the electrode pad 80 and has a temperature almost equal to the ceramic electrode 40. Therefore, when the temperature of the ceramic heater 40 is measured, the temperature of the ceramic heater 40 is hardly affected by the environmental temperature, and appropriate temperature measurement can be performed.
  • the electrode pad 78 is connected to the lead pin 23 shown in FIG. 10, whereby conduction between the thermistor 48 and an external device is achieved.
  • the housing 20 of the optical waveguide module 1 will be described with reference to FIG.
  • the cover 24 is provided with two sheets 82 and 84 at a predetermined distance from the inner wall surface.
  • Each of the sheets 82 and 84 is fixed to a projection 24 c formed on the inner wall surface of the cover 24 by an adhesive.
  • the upper sheet 82 is fixed to the center projection 24c,
  • the step sheet 84 is connected to the projections 24c at both ends.
  • the package substrate 22 is also provided with two sheets 86, 88 at predetermined intervals from the upper surface.
  • each of the sheets 86, 88 is supported by a support member 89.
  • a support member 89 As described above, when the seats 82, 84, 86, 88 are attached at predetermined intervals from the inner wall surface of the housing 20, the inner wall surface of the housing 20 and each of the seats 82, 84, Between 86 and 88, the convection trajectory can be reduced and an air layer is formed. This air layer acts as a heat insulating layer. For this reason, the heat of the ceramic heater 40 is hardly released to the outside, and the optical waveguide element 2 to be heated is easily heated.
  • the number of sheets is not limited to two, but may be one, or may be three or more.
  • the optical waveguide element 2 made of quartz is used. Instead, an element using silica formed on a Si substrate, and an element made of LiNb ⁇ 3 are used. An element may be used. In this case, the same effects as those of the embodiments can be obtained.
  • FIG. 1 a fifth embodiment of the optical waveguide module of the present invention will be described with reference to FIG.
  • This embodiment is different from the first embodiment in a structure in which a matching plate 92 for matching the coefficient of thermal expansion is inserted between the optical waveguide element 2 and the ceramic heater 40.
  • the matching board 9 the difference in thermal expansion coefficient between the optical waveguide device 2 at room temperature to use the following 3 X 1 0- 6 / ° C .
  • Quartz in this embodiment (the thermal expansion coefficient 0 5 x 1 0 -. 6 / ° C).
  • the thermal expansion coefficient 2 of 0 X 1 0- 6 / ° C Fe—Ni alloy is used for the matching plate 92.
  • the dimensions of the matching plate 92 are 40 mm ⁇ 20 mm ⁇ 0.5 mm.
  • the stress acting on the optical waveguide element 2 can be reduced. Therefore, in order to measure the stress acting on the optical waveguide element 2, A strain gauge was attached to the upper center of the optical waveguide device 2 (the surface opposite to the joint surface with the insertion plate), and the difference in stress acting on the optical waveguide device 2 between the first embodiment and this embodiment was measured. . As a result, it was found that the thermal stress acting on the optical waveguide element 2 can be reduced to 1/3 in the present embodiment as compared with the first embodiment.
  • the first embodiment can be used sufficiently as an optical waveguide module, considering that stricter requirements will be required for the optical waveguide module in the future, the effect of reducing the thermal stress in this embodiment will be very advantageous. It is thought to have.
  • the optical waveguide device 2 L i Nb0 3 thermo expansion coefficient 1 5 X 10 6 / ° C
  • the insertion plate 92 in Cu alloy thermo expansion coefficient 1 6 X 10 6 / ° C
  • the optical waveguide device 2 made of quartz of the present embodiment is larger in size than that of the first embodiment, and is 30 mm long ⁇ 30 mm wide ⁇ 1 mm high. Accordingly, the dimensions of the optical waveguide module are also different.
  • the dimensions of the ceramic module 40 are 40 mm x 25 mm x 1 mm, the dimensions of the module 30 are 50 mm x 40 mm x 2 mm, and the dimensions of the entire package are 10 Omm x 6 Omm x 1 Omm.
  • the temperature uniformity when the environmental temperature was set to 0 ° (Ceramics temperature was set to 40 ° C and the temperature was set to 80 ° C), the temperature distribution inside the optical waveguide element 2 was ⁇ 0.4 °. It was found that the temperature was controlled to less than or equal to C. Regarding the temperature controllability, even if the environmental temperature was changed in the range of ⁇ 40 ° C. to 70 ° C., the temperature of the ceramic ceramics was ⁇ 0.
  • the cover 24 is formed into a body and is in contact with the heat insulating substrate 22. However, in this mode, it may be difficult to attach the optical fiber 14. At that time, the cover 24 is divided into a rectangular cylindrical side wall portion 24X and a top plate portion 24y, and once the package substrate 22 and the side wall portion 24x are joined, the optical waveguide element 2 The optical fiber 4 may be attached, and then the top plate portion 24y may be joined or screwed.
  • a seventh embodiment of the optical waveguide module of the present invention will be described with reference to a perspective view shown in FIG. 15 and a side view shown in FIG.
  • This embodiment differs from the sixth embodiment in the dimensions of the ceramic heater 40.
  • a detailed examination of the characteristics of the optical waveguide element 2 revealed that the area requiring temperature uniformity was not limited to the entire optical waveguide element 2 but to the vicinity of the ceramic hues. Specifically, it was found that the area was limited to about 10 mm x 10 mm around the area of Ceramics. Therefore, the book
  • the surface 40a of the ceramic heater 40 on which the optical waveguide element 2 is mounted is smaller in area than the surface of the 6-waveguide element 2 facing this surface 40a.
  • the dimensions of the ceramic heater 40 were set to 15 mm ⁇ 15 mm ⁇ 1 mm by design using thermal simulation.
  • the characteristics of the optical waveguide module 1 as described above were examined, the following results were obtained.
  • the temperature uniformity when the ambient temperature was set to 0 ° C and the temperature of the ceramic heater 40 was set to 80 ° C, observation was made with a thermoviewer. It was found that the temperature distribution was suppressed to 0.4 ° C or less in the area of mm.
  • the temperature controllability even if the ambient temperature was changed in the range of 140 ° C to 70 ° C, the ceramics 40 showed only a temperature change of ⁇ 0.5 ° C or less. Turned out to be less susceptible. Since the dimensions of the ceramic heater 40 were reduced, in this embodiment, the power consumption was reduced to 2 W or less compared to the power consumption of 4 W in the sixth embodiment.
  • an eighth embodiment of the optical waveguide module of the present invention will be described with reference to a perspective view shown in FIG. 17 and a side view shown in FIG.
  • This embodiment is different from the eighth embodiment in a matching plate 92 (a cross section is shown in FIG. 18) arranged so as to surround the ceramic heater 40.
  • the matching plate 92 the difference in thermal expansion coefficient between the optical waveguide device 2 at room temperature to use the following 3 X 10_ 6 Z ° C.
  • the thermal expansion coefficient 2. 0 X 10- The Fe—Ni alloy is used for the matching plate 92.
  • the dimensions of the matching plate 92 are 40 mm ⁇ 25 mm ⁇ 1 mm, which are the same dimensions as the ceramic ceramic 40 used in the sixth embodiment.
  • a ceramic heater 40 of 15 mm x 15 mm x 1 mm enters in the center. As shown in the figure, a 15.5 mm x 15.5 mm hollow part is formed by drilling.
  • the matching plate 92 surrounding the ceramic heater 40 in this manner, even when the ceramic heater 40 is smaller than the optical waveguide element 2, the optical waveguide element 2 can be firmly placed on the ceramic heater 40. And can be fixed.
  • the dimension of the matching plate 92 is preferably at least one side longer than the optical waveguide element 2 by about l mm to 10 mm in order to securely fix the optical waveguide element 2.
  • the material of the matching plate 92 must be selected so that the coefficient of thermal expansion is matched by the optical waveguide element 2. As described in the material of the heat equalizing plate, a Fe--Ni alloy or a Cu alloy is selected. can do.
  • the thickness of the matching plate 92 may be such that when the ceramic heater 40 is inserted into the matching plate 92, the upper surfaces of the two are located at a substantially constant height. Further, when the matching plate 92 is used as described above, the bonding with the optical waveguide element 2 can be performed by using a resin-based adhesive that becomes a solid after bonding as described above.
  • the heater power consumption at an ambient temperature of 0 ° C and a set temperature of 80 ° C was less than 2 W.
  • the optical waveguide element 2 is bonded not only to the ceramic heater 40 but also to the matching plate 92, so that the stability at the time of installation of the optical waveguide element 2 is smaller than that of the seventh embodiment. It has improved dramatically.
  • optical waveguide device 2 L i N B_ ⁇ 3 thermo expansion coefficient 1 5 x 1 0- 6 Bruno °
  • Matsuchin grayed plate 9 2 C u alloy thermo expansion coefficient 1 6 X 1 0 - 6 / ° C
  • FIG. 1 a ninth embodiment of the optical waveguide module of the present invention will be described with reference to FIG.
  • This embodiment is different from the first embodiment in that The point is that the plate 50 plays a role similar to that of the package substrate 22 in the first embodiment.
  • the heat insulating substrate 50 of the light-emitting module 30 also functions as a part of the housing 20.
  • the thickness of the optical waveguide module 1 can be made 8 mm, which is smaller than the 10 mm of the first embodiment.
  • FIG. 1 differs from the first embodiment in the clamp position (fixed position) between the optical fiber 4 and the optical waveguide element 2.
  • the force for fixing the optical fiber 4 by the through holes 24 a and 24 b of the housing 20 is inside the housing 20.
  • the optical fiber 4 is fixed by supporting members 99, 99 installed on the heat insulating substrate 50.
  • the housing 20 does not need to be designed with the optical fiber 4 clamped, so that the relative position between the heater module 30 and the housing 20 can be changed, and the shape of the housing 20 can be changed. Changes can be made easily.
  • the present embodiment is different from the sixth embodiment in the method of joining the ceramic substrate 40 and the heat insulating substrate 50.
  • the ceramic heater 40 and the heat insulating substrate 50 are joined by the resin 41.
  • both are fixed by screws.
  • screw holes 101 with a diameter of 1 mm are formed at the four corners of the ceramic heater 40, and female screws 102 are cut at the corresponding positions of the heat insulating substrate 50. I have. Then, the screw 103 passed through each screw hole 101 is screwed into the female screw 102, thereby fixing the ceramic heater 40 and the heat insulating substrate 50. In order to ensure thermal contact between the ceramic mix 40 and the heat insulating substrate 50, The summer compound is satisfied. As a result of performing the same measurement as in the sixth embodiment, a similar result was obtained.
  • the ceramic ceramics 40 used in the first embodiment are the A 1 N ceramics 44 used in the first embodiment, the tungsten heating layer 42, and the second A 1 An A 1 N heater made of N ceramics is used.
  • An AlN heater composed of the film 45 may be used.
  • the surface roughness Ra was variously changed, and the temperature uniformity of the optical waveguide element 2 was measured. Normally, in any initial state, temperature uniformity of ⁇ 0.5 ° C can be satisfied at any Ra. However, if the Ra condition is not appropriate, it is expected that the degradation will occur during the reliability test or during the actual use of the optical waveguide module. Therefore, a high-temperature and high-humidity test was performed in which the sample was exposed to an atmosphere of 85 ° C and a humidity of 85% for 2000 hours. Thereafter, the ambient temperature was set to 0 ° C, and the temperature of the ceramic heater 40 was set to 80 ° C. The temperature uniformity of the optical waveguide element 2 was observed with a mobile viewer.
  • the surface roughness Ra of the ceramic surface 40 used in Example 1 was variously changed, and As in Example 1, the temperature characteristics after 2000 hours of the high temperature and high humidity test were measured. Table 2 shows the results.
  • the surface roughness of ceramic ceramic 40 is 0.05 m It was found that good temperature uniformity and temperature controllability could be obtained even after the reliability test if the thickness was set to 10 mm or less.
  • the upper side of the first A 1 N ceramic layer 44 (the upper part of FIG. 4), which is the resin bonding surface of the ceramic layer 40 used in Example 1, and the second A
  • the glass coating layer shown below was provided below the 1 N ceramic layer 46 (the lower part in Fig. 4).
  • the film was formed by firing after using screen printing. Various thicknesses were formed at the time of screen printing, and a high-temperature and high-humidity test was performed for 200 hours as in Example 1. Later temperature characteristics were measured. The results are shown in Table 3. It was found that good temperature uniformity and temperature controllability can be obtained even after the reliability test if the thickness of the glass coating layer is 1 zm or more and 50 or less. In addition, by setting the film thickness to 100 ⁇ m or less, the film formation time could be significantly reduced.
  • the following experiment was performed using the ceramic heater 40 used in the second embodiment.
  • the formation of the coating film to be provided at Ceramics Night 40 was performed by screen printing followed by firing.
  • Various film thicknesses were formed at the time of screen printing, and the temperature characteristics after 2000 hours of the high temperature and high humidity test were measured in the same manner as in Example 1.
  • Table 4 shows the results. It was found that good film uniformity and temperature controllability can be obtained even after the reliability test if the film thickness is 10 m or more and 500 m or less. Also, reduce the film thickness to 100m or less. As a result, the film formation time was significantly reduced.
  • the heating circuit was used for the sample with a glass film thickness of less than 10 zm. It was confirmed that, due to the step 42, the coating layer was peeled or cracked to a size of 0.1 mm or more.
  • the upper side of the first A 1 N ceramic layer 44 (the upper part in FIG. 4), which is the resin bonding surface of the ceramic heater 40 used in Example 1, and the second A 1 N cell
  • the following A1 layer was provided below the mix layer 46 (the lower part of FIG. 4). That was charged with the ceramic heater 40 in the deposition vacuum chamber and foremost, 1. until the degree of vacuum below 33 x 10- 3 P a, was evacuated, with 99. 9 wt% or more of A 1 as a vapor deposition source A1 deposition was performed.
  • the thickness of one film was set to 1111 or more and 100 m or less, good temperature uniformity and temperature controllability could be obtained even after the reliability test. Furthermore, by setting the thickness of the A1 film to 20 ⁇ m or less, The interval could be significantly reduced.
  • Example 5 As shown in FIGS. 2 to 4, the upper side of the first A 1 N ceramic layer 44 (the upper part in FIG. 4), which is the resin bonding surface of the ceramic layer 40 used in Example 1, and the second A1 N cell An A1 layer shown below was provided below the lamix layer 46 (the lower part in FIG. 4) in the same manner as in Example 5. Films with various A 1 grain sizes were formed. On the other hand, the film thickness was 2 ⁇ m. As a result of measuring the native oxide film thickness formed on the A1 film by micro Auger electron spectroscopy, it was 500 ⁇ 10 1 Qm. In the same manner as in Example 1, the temperature characteristics of this sample were measured after a temperature and humidity test of 2000 hours. Table 6 shows the results. Crystal grain size
  • the upper side of the first A 1N ceramic layer 44 (the upper part in FIG. 4), which is the resin bonding surface of the ceramic heater 40 used in Example 1, and the second A 1 N cell
  • the A1 layer shown below was provided below the mix layer 46 (the lower part in FIG. 4) in the same manner as in Example 5.
  • the oxide film thickness of the A1 layer was intentionally changed.
  • the crystal grain size was 1.0 ⁇ m and the film thickness was 2 ⁇ m.
  • the temperature characteristics of this sample were measured after 2000 hours of the high-temperature and high-humidity test in the same manner as in Example 1. Table 7 shows the results. If the oxide film thickness below 1 0 1 0_ 1 Q m or 800 x 1 0 1 Q m, after the reliability test is also good temperature uniformity was found to obtain a temperature controllability.
  • the upper side of the first A 1 N ceramic layer 44 (the upper part in FIG. 2), which is the resin bonding surface of the ceramic ceramic 40 used in Example 1, and the second A1N ceramic layer Below the mix layer 46 (the lower part in FIG. 4), an A1 layer 82 shown below was provided in the same manner as in Example 6.
  • the crystal grain size was 1.0 ⁇ m, and the film thickness was.
  • the temperature characteristics of this sample after 2000 hours of the high-temperature and high-humidity test were measured in the same manner as in Example 1. Table 8 shows the results. It can be seen that the temperature uniformity and temperature controllability are slightly lower than those with a purity of 99.9%.
  • the air layer 64 provided between the ceramic substrate 40 and the heat insulating substrate 50 and the heat insulating layer 27 provided between the heat insulating substrate 50 and the package substrate 22 are used as the air layer.
  • the temperature uniformity was measured in the same manner as in Example 1 with various thickness changes. Table 9 shows the results. It was found that the temperature uniformity could be reduced to ⁇ 0.5 ° C or less by setting the air layer thickness to be more than 0.01 mm and less than 5 mm.
  • the resin joining the ceramic waveguide 40 and the optical waveguide element 2 is made of a silicon resin having a viscosity of 10000 cps and a thermal conductivity of 1 W / mK.
  • the temperature uniformity was measured in the same manner as in Example 1 except that the temperature uniformity was measured. The results are shown in Table 10. It can be seen that by setting the thickness of the resin 43 to be 10 to 500 ⁇ m, the temperature uniformity can be made ⁇ 0.5 ° C. or less.
  • the cross section was cut to investigate the cause of the deterioration in the temperature uniformity of Sample 39, and as a result, the resin was partially broken. Due to the thin resin thickness, it is expected that unevenness in the resin application may occur partially.However, the thermal stress caused by the difference in thermal expansion coefficient between the optical waveguide element 2 and the ceramic heater 40 cannot be completely absorbed. Probably destroyed.
  • the resin 43 joining the ceramic waveguide 40 and the optical waveguide element 2 was joined using a silicon-based thermal compound having a thermal conductivity of 1 W / mK. Since the thermal compound alone could not be used for fixing, only the four points at the end of the optical waveguide device were fixed with silicone resin with a viscosity of 10,000 cps and a thermal conductivity of 1 W / mK, and the temperature uniformity was measured as in Example 1. . The thickness of the thermal compound at the center of the optical waveguide device was 50 ⁇ m. Ten identical samples were prepared, and the temperature uniformity of each of the optical waveguide elements 2 was measured. However, temperature uniformity is Only two achieved 0.5 ° C.
  • the ceramic heater 40 is provided with a heat generating circuit 42 having a resistance value of about 0.5 to 10 ⁇ and generating heat when energized. Further, at both ends of the heat generating circuit 42, electrodes 42 a and 42 b for supplying current to the heat generating circuit 42 are provided. In this embodiment, a part of the heat generating circuit 42 is further provided.
  • the ceramic heater 40 is provided with a heat generating circuit 42 having a resistance value of about 0.5 to 10 ⁇ and generating heat when energized.
  • electrodes 42 a and 42 b for supplying current to the heat generating circuit 42 are provided at both ends of the heat generating circuit 42.
  • a part of the heat generating circuit 42 is further provided.
  • the heater temperature was measured at the joined thermistor. As a result, when the temperature reached 200 ° C, the temperature did not rise any more. After the experiment, when disassembled and inspected each member, it was confirmed that the solder formed on the heater was melted and disconnected. On the other hand, it was confirmed that the other resin members were not broken. It is also probable that the solder wire was not broken, but the heater rises higher in temperature, so the solder in the heater was broken first, so the wire was not broken.
  • Example 13 an A 1 N heater in which a part of the heat generating circuit was formed by solder was used. In this embodiment, a normal A 1 N heater was used. However, the same experiment as in Example 13 was performed, except that the lead wire for connecting the ceramic substrate 40 and the heat insulating substrate 50 was changed from a normal copper wire to a conductive wire made of solder. As a result, it was confirmed that the temperature did not rise any more when the temperature of the bar became 210 ° C. After the experiment, disassembly and inspection of each member confirmed that the solder conductor was melted and disconnected. On the other hand, it was confirmed that other resin components were not destroyed.
  • the present invention made by the inventor has been specifically described based on the embodiments.
  • the present invention is not limited to the above embodiments.
  • the quartz can heat by Joule, silica, not limited to L i N b 0 3 made of an optical waveguide element, other, it is effective for an optical waveguide device made of resin or the like.
  • the present invention can be applied to the size of the optical waveguide element regardless of whether it is smaller or larger than the above embodiments.
  • the resin used for bonding and the like and the material used for the housing and the like are not limited to the above embodiments.
  • the ceramics layer is formed of A 1 N having a high thermal conductivity, the heat transmitted from the heating circuit is not applied to the ceramics layer.
  • the optical waveguide element is almost uniformly diffused, and the optical waveguide element mounted on the ceramic layer is uniformly heated.
  • the ceramic heater is supported by a heat-insulating substrate having heat insulating properties, the heat generated in the heating circuit is prevented from being released from the heat-insulating substrate and the heat distribution of the ceramic heater becomes non-uniform. The temperature uniformity of the element can be further improved.
  • the ceramic heater of the present invention is formed of A1N and has a high thermal conductivity, it is possible to omit the soaking plate, which is indispensable when using other heaters having a low thermal conductivity. Thus, the thicknesses of the heater module and the optical waveguide module can be drastically reduced.
  • A1N has a high thermal conductivity and does not require a soaking plate, designing a small ceramic heater can significantly reduce the power consumption of the heater.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Description

明細:
ヒータモジュ一ル及び光導波路モジュ一ル
技術分野
本発明は、 光導波路素子を加熱するためのヒータモジュ一ル及び光導波路モジ ユールに関するものである。
背景技術
従来から、 光導波路モジュールに備えられた光導波路素子の温度調節用デバイ スとして、 ペルチェ素子ゃヒ一夕モジュールが利用されている。 また、 光導波路 モジュールでは、 外部機器との光信号の伝達に用いる光ファイバをモジュールに 引き込む通路を形成する必要があるため、 気密封止が困難である。 そして、 気密 にされていなレ、状態では、 湿度に弱いベルチェ素子の信頼性確保が困難であるた め、光導波路素子の温度調整は一般的にヒ一夕モジュールによって行われている。 このヒ一夕モジュールは、 通電されることで発熱する発熱回路 (抵抗) を絶縁層 の内部に有しており、 発熱回路からの熱が絶縁層を介して光導波路素子に伝達さ れるように構成されている。
発明の開示
しかしながら、 上記従来の技術には、 次のような問題があった。 すなわち、 光 導波路素子内部の温度分布が大きいと、場所場所によって基板の屈折率が変化し、 さらには基板の熱膨張差によつて光導波路の寸法が変化することによって波長選 択性ゃスイッチング特性に支障を来してしまう。 このため、 光導波路素子内部に おける温度均一性が必要になる。 そこで従来から比較的熱伝導率が高レ、アルミナ (熱伝導率 2 0 W/mK ) 等のセラミックスヒー夕を用いることが多かった。 し かしながら、 昨今特に、 光通信の分野では大容量化、 高速通信化の傾向が顕著に なっており、 最近では、 D— WD M (高密度—波長多重通信) への移行に伴って 大面積の光導波路素子が使用されるようになってきた。 さらには、 ある周波数幅 に対しても、 従来に比べて、 さらに多くの信号を多重化したいという要求が強く なってきており、 温度均一性への要求が高くなつている。 このため、 光導波路素 子の内部における温度均一性をさらに高めて温度分布を土 0 . 5 °C以下にするこ とが望まれているが、 従来のヒー夕ではこの要求を満たすことができなかった。 また、従来の光導波路モジュールは厚みが 2◦ mm程度のものが一般的であり、 これに対して他のモジュールは一般的に 1 0 mm程度である。 そのため、 光導波 路モジュールを搭載する装置では、 他のモジュールだけで構成する装置を設計す る場合の設計ルールが適用できず、 特別な設計が必要となり、 設計効率、 設計コ ストひいては装置のコストが上昇してしまうという問題があり、 光導波路モジュ —ルの厚みの低減が渴望されている。
さらには、光導波路素子は、動作中常時ヒータにて加熱されることになるため、 できるだけ消費電力を低下させることが求められている。
本発明は、 かかる事情に鑑みてなされたものであり、 光導波路素子の温度均一 性を向上させることができ、 厚みが小さく、 且つ、 消費電力が低減されたヒ一夕 モジュール及び光導波路モジュールを提供することを目的とする。
この目的の 1つである光導波路素子の温度均一性を向上する手段としては、
( 1 ) 図 2 2に示すような、 従来用いられてきたアルミナ製セラミックスヒ一夕 1 1 0で発生した熱を均一に光導波路素子 2に伝えるために、 C u (熱伝導率 3 9 0 W/m K ) 等の熱伝導率の高い均熱板 1 2 0をセラミックスヒ一夕 1 1 0と 光導波路素子 2間に挿入する方法、 ( 2 )図 2 3に示すような、熱伝導率が 1 W/ m K以下と非常に低いが、 柔軟性のあるゴム製のヒ一夕 1 1 2を、 光導波路素子 2を包むように儲け、 光導波路素子 2を下部からだけでなく、 全体から加熱する 方法、 などが考えられる。
そして、 これらの方法に関して調査した結果、 上記 ( 1 ) の方法では、 C u製 の均熱板 1 2 0の厚みを 3 mm程度にすることにより、 光導波路素子の温度均一 性を ± 0 . 5 °Cにすることができることが判った。 しかしながら、 C uの厚みが あるため、 光導波路モジュールの厚みを薄くすることができない。 すなわち、 光 導波路モジュールの厚みは、 前述のように、 その他のモジュールの厚みが 1 0 m m以下であることから、 1 O mm以下にすることが渴望されているが、 均熱板 1 2 0が必要であるために、 2 O mm程度の厚みになることが判った。 また、 この ことが、 従来の光導波路モジュール厚が非常に厚いことに対する主原因であるこ とが判明した。
一方、 上記 (2 ) の方法でも光導波路素子 2の温度均一性を ± 0 . 5 °Cにする ことができたが、 ( 1 )と同様に厚みを薄くできず、さらに、光導波路素子 2全体、 ひいてはモジュール全体を加熱する構造であるため、 ヒータの消費電力を低くで きないという問題が生じた。すなわち、 ( 1 )の手法での消費電力は環境温度 0 °C で光導波路を 8 0 °Cに保持する場合、 5 W程度であったのが、 (2 ) の手法では、 1 0 W以上と 2倍以上消費電力が高かった。 これは、 できるだけ消費電力を低減 したいという要求にも反していた。
そして、 本発明者らは、 更に研究を進めた結果、 要求特性である光導波路素子 の温度均一性、 ヒー夕モジュール及び光導波路モジュールの厚み、 低消費電力を 同時に満たすためには、 均熱板 1 2 0等を用いず、 セラミックスヒー夕の材質自 体の熱伝導率を向上することが最も効果的であることを突き止めた。 この構造に よれば、 光導波路素子 2の温度均一性を向上できるだけでなく、 均熱板を用いな いため、 光導波路モジュール厚を薄くすることができる。 さらには均熱板を加熱 する必要がないため、 低消費電力も達成できる。
さらに熱シミュレーション等を駆使して検討を進めると、 セラミックスの熱伝 導率は 1 0 O W/mK以上が必要であることを突き止め、材質としては、 B e〇、 A l Nに絞られることが判明した。 しかし、 B e 0は毒性があることで知られて おり、 ヒー夕としては、 セラミックス材料として A 1 Nを用いたセラミックスヒ —夕が最も適当であるという結論を得ることができた。
すなわち、 本発明のヒ一夕モジュールは、 光導波路素子を加熱するためのヒー 夕モジュールであって、 通電により発熱する発熱回路と発熱回路に積層された A I Nセラミックス層とを有するセラミックスヒ一夕を、 備えることを特徴として レ、る。
本発明のヒ一夕モジュールによれば、 セラミックスヒータにおけるセラミック ス層が熱伝導率の高い A 1 Nによって形成されているため、 発熱回路から伝達さ れた熱は、 セラミックス層内でほぼ均一に拡散し、 さらにはセラミックス層上に 載置される光導波路素子が均一に加熱されることになる。 具体的には、 光導波路 素子の内部における温度分布を ± 0 . 5 °C以下にすることが可能である。
また、 C u又は C u合金等の均熱板を設ける必要が無くなり、 ヒー夕モジユー ルの厚さを低減させることができる。 具体的には、 このヒータモジュールを備え た光導波路モジュール厚を 1 0 mm以下にすることも可能となる。
さらには、 均熱板を設ける必要が無くなるため、 消費電力を低減させることが できる。 具体的には、 アルミナヒータに 3 mm厚程度の C u又は C u合金の均熱 板を挿入した場合、 環境温度を 0 °Cで光導波路素子を 8 0 °Cに保持すると、 5 W 程度の消費電力が必要であつたのを、 A 1 Nヒー夕を用いることにより均熱板を 省略できるため 4 W程度に低減することができる。
また、 本発明のヒ一夕モジュールにおいて、 セラミックスヒー夕を支持すると 共に断熱性を有する断熱基板をさらに備えることが好ましい。
このように、 断熱性を有する断熱基板によってセラミックスヒータを支持する ことで、 発熱回路で発生した熱が断熱基板から放出されてセラミックスヒー夕の 熱分布が不均一になるという事態が防止されるため、 光導波路素子の温度均一性 をさらに向上させることができる。
また、 上記の断熱基板は、 アルミナ又は、 アルミナとシリカガラスを含むよう にしてもよい。 さらに、 断熱基板は、 樹脂又は、 樹脂とシリカガラスを含むよう にしてもよい。
また、 本発明のヒータモジュールにおいて、 断熱基板は、 セラミックスヒー夕 を支持するための複数の突起部を有し、 且つ、 各突起部の周囲には空気層が形成 されていることが好ましい。 このような構成を採用した場合、 セラミックスヒ一 夕は複数の突起部によって^持されるため断熱基板と全面的に接触しているので なく部分的に接触していることになり、 樹脂によって断熱基板と突起部とを接着 させる場合であっても、 セラミックスヒ一夕に反りが発生しにくくなり、 また、 樹脂がセラミックスヒー夕から剥がれるという事態を防止することができる。 さ らに、 各突起部の周囲、 すなわちセラミックスヒー夕と断熱基板との間には空気 層が形成されているため、 この空気層が断熱層となってセラミックスヒ一夕から の熱が断熱基板側から放出される事態を抑制することができる。 また、 断熱層と して形成する空気層の厚みは、 0 . 0 l mm以上 5 mm以下にすることが好まし レ、。
また、 セラミックスヒー夕と断熱基板とは、 樹脂によって接着してもよい。 さ らに、 この樹脂の接合強度を向上するために、 セラミックスヒータの樹脂との接 合面の表面粗さを R aで 0 . 0 5〃m以上 1 0 / m以下に制御することが好まし い。 また、 同様に樹脂との接合強度を向上するために、 セラミックスヒ一夕の樹 脂との接合面に酸化物層、 ガラスコート層、 もしくは A 1蒸着層を形成してもよ い。
また、 セラミックヒー夕と断熱基板の固定方法として、 セラミックスヒ一夕に 設けた穴を通して断熱基板をネジ止めするようにしてもよい。 また、 セラミック スヒ一夕を断熱基板側へ押圧する押圧手段を備え、 この押圧手段によってセラミ ックスヒー夕の断熱基板への固定を図ってもよい。
また、 本発明のヒ一夕モジュールにおいて、 セラミックスヒ一夕の温度を検出 する温度検出素子をさらに備え、 温度検出素子は、 セラミックスヒー夕の光導波 路が載置される面と反対の面に接着され、断熱基板は、所定の切り欠き部を有し、 切り欠き部内に、 温度検出素子に接続される電極が配されているように構成する ことが好ましい。
このような構成を採用した場合、 サ一ミス夕等の温度検出素子が光導波路素子 が載置される面と反対の面に装着されているため、 セラミックスヒ一夕の一つの 面に光導波路素子用の領域及び温度検出素子用の領域を確保する必要が無くなる ( これにより、 セラミックスヒータの面積を小さくすることができ、 ヒ一夕モジュ —ルの小型化を図ることができる。 また、 ヒータモジュールを小型化すると発熱 回路も小さくすることができるため、 消費電力の低減を図ることもできる。 さら に、 断熱基板には切り欠き部が形成され、 当該切り欠き部には温度検出素子に接 続される電極が配されている。 このため、 温度検出素子と当該電極とを接続する ための配線を切り欠き部内を通すことができ、配線の簡略化を図ることができる。 さらにこの場合に、 温度検出素子と温度検出素子に電力を供給する外部電源と をつなぐ配線が、 セラミックスヒー夕に接していることが好ましい。
上記配線がセラミックスヒー夕に接するようにすることで、 セラミックスヒ一 夕の温度を測定するにあたって環境温度の影響を受けにくくなり、 適切な温度測 定を行うことができる。
また、 本発明のヒ一夕モジュールにおいて、 発熱回路の下層に、 第 2の A 1 N セラミックス層を有することが好ましい。 このような構成を採用した場合、 セラ ミックスヒータの耐湿性が向上し、 さらには発熱回路の耐久性を向上させること ができる。
また、 発熱回路は、 タングステン、 モリブデン、 又は銀パラジウムを主成分と して形成することができる。
また、 セラミックスヒー夕は、 シリカガラスを主成分としたコ一ティング膜を 表面に有することが好ましい。 このような構成を採用した場合、 セラミックスヒ —夕の耐湿性を向上させることができる。 また、 例えばセミラックスヒー夕と断 熱基板とを樹脂によって接着させるような場合に、 樹脂のセラミックスヒー夕へ の接着性を向上させることができる。
また、 本発明のヒ一夕モジュールにおいて、 所定の温度以上になると、 発熱回 路に電流が流れなくなるように構成することが好ましい。 具体的には、 発熱回路 の一部をスズと鉛の合金で形成したり、 発熱回路と外部電源に接続された端子と をスズと鉛の合金で形成された配線によって接続するように構成することが好ま しい。 このように構成することで、 ヒー夕モジュールの動作不良により温度が上 昇することによって、 ヒー夕モジュールが破壊、 発火等することを防止すること ができる。
また、 本発明の光導波路素子は、 上記本発明のヒー夕モジュールと、 ヒー夕モ ジュールのセラミックスヒー夕上に載置された光導波路素子と、 を備えることを 特徴としている。 上記のヒー夕モジュールを備えることで、 光導波路素子の温度 均一性を向上させることができ、 厚みが小さく、 且つ、 消費電力が低減された光 導波路モジュールとなる。
また、 本発明の光導波路モジュールにおいて、 光導波路素子とセラミックスヒ —夕との間に、 光導波路素子との室温における熱膨張率の差が 3 X 1 0— 6Z°C以 下であるマッチング部材が挿入されていることが好ましい。
本発明者らは、セラミックスヒー夕と光導波路素子を接着剤等で接合する際に、 光導波路素子とセラミックスヒー夕との間の室温における熱膨張率の差が 5 X 1 0 _ 6/°Cより大きいと、 光導波路素子に過大な熱応力が働き、 波長選択性ゃスィ ツチング特性に支障を来すおそれがあることを見出した。 さらに近年では、 L i N b 0 3 (熱膨張率 1 5 X 1 0 6ZaC)等で形成された新しい光導波路素子が次々 に検討されていること、 さらには、 光導波路素子上への素子の高密度実装等が検 討されていること、 さらに厳しい波長選択性ゃスィツチング特性を要求される場 合も多いことから、 その場合は光導波路素子とセラミックスヒータとの間の室温 における熱膨張率の差を 3 X 1 0一6 /。 C以下にする必要がある。 このため、 上記 のように光導波路素子とセラミックスヒータとの間に、 光導波路素子との室温に おける熱膨張率の差が 3 X 1 0一6 Z°C以下であるマッチング部材を挿入するこ とで、 光導波路素子に過大な熱応力がかかることを防止することができる。 尚、 マッチング部材を揷入することは、 従来の均熱板を挿入することに類似した手法 と考えられるおそれがあるが、 従来とは異なり、 本発明は均熱板が必要でないこ と、 光導波路素子の温度均一性の悪化を防ぐためにもマツチング部材の厚みを薄 くする必要があること、 より光導波路モジュールの厚み増加には繋がらない。 この場合、 光導波路素子の熱膨張率が 0 . 5 x 1 0— 6Z° (:〜 1 . O x l O— 6 /°Cと低熱膨張率の場合は、 F e— N i合金等のマッチング部材を用いることが 好ましく、 逆に 1 5 X 1 0 _ 6/°C程度と高熱膨張率の場合は C u又は C u合金の マッチング部材を用いることが好ましい。 また、 C uとしては、 無酸素 C u、 夕 ンピッチ C u等を用いることができ、 C u合金としては、 黄銅、 ケィ素銅、 りん 青銅、 アルミ青銅、 ニッケル青銅等を用いることができる。
マッチング部材の厚みとしては、 0 . 1 mm以上 2 mm以下、 好ましくは 0 .
3 mm以上 1 mm以下が好ましい。 0 . 1 mmより薄くなると、 マッチング部材 がセラミックスヒー夕の熱膨張率に引っ張られるため、 光導波路素子とセラミッ クスヒ一夕の熱膨張率のマッチングを取ることができない。 ただし、 0 . 3 mm より薄いマッチング部材は取り扱いが困難となるため、 好ましくは 0 . 3 mm以 上の厚みである方が望ましい。 一方、 マッチング部材の厚みが厚くなると光導波 路素子の温度均一性の劣化が心配される。 マツチング部材が C u又は C u合金の 場合は厚みが厚くても問題は生じないが、 F e—N i合金の場合、 厚みが 2 mm より大きくなると温度均一性が大きく劣化するので好ましくない。 ただし、 マツ チング部材の厚みが 1 mmより大きくなると、 光導波路モジュール厚の増加が否 めなくなるので望ましくはない。 また、 このように、 光導波路素子との熱膨張率 をマッチングさせたマッチング部材を用いると、 マッチング部材と光導波路素子 との接合を、 接合後の形態が固体である樹脂製の接着剤にてすることができる。 また、 セラミックスヒー夕と光導波路素子とは、 樹脂製の接着剤によって接着 されていることが好ましい。 流動性を保つグリース等によってセラミックスヒ一 夕と光導波路素子とを接合する場合は、 グリースの厚さが不均一になって光導波 路素子の温度均一性を向上させるのが困難になるが、 接着剤は接合後の形態が固 形になるため、 このような問雷を回避できる。
また、 本発明の光導波路モジュールにおいて、 セラミックスヒー夕の光導波路 素子が載置される面は、 当該面と対向する光導波路素子の面よりも面積が狭いこ とが好ましい。 このようにセラミックスヒー夕の加熱面を光導波路素子よりも小 さくすることで、 消費電力をさらに低減させることができる。
この場合、 セラミックスヒ一夕の周囲には、 光導波路素子との室温における熱 膨張率の差が 3 X 1 0— 6/°C以下であるマッチング部材が配され、 マッチング部 材と光導波路素子とが接合していることが好ましい。 セラミックスヒー夕が光導 波路素子よりも小さいと光導波路素子の構造的な安定性が低下するが、 このよう に構成することで、 マッチング部材によって光導波路素子を支持することができ る。 また、 マッチング部材の熱膨張率を上記の範囲にすることで、 光導波路素子 に熱応力がかかることも防止することができる。 この場合、 光導波路素子の熱膨 張率が 0 . 5 x 1 0— 6/°C〜l . 0 X 1 0— 6/°Cと低熱膨張率の場合は、 F e— N i合金等のマッチング部材を用いることが好ましく、 逆に 1 5 X 1 0—
Figure imgf000011_0001
度と高熱膨張率の場合は C u又は C u合金のマツチング部材を用いることが好ま しい。
また、 本発明の光導波路モジュールにおいて、 光導波路素子及びセラミックス ヒー夕を収容する筐体をさらに備えてもよい。
この場合、 セラミックスヒー夕を支持すると共に断熱性を有する断熱基板を備 え、 筐体は、 断熱基板を収容することが好ましい。 このように、 断熱性を有する 断熱基板によってセラミヅクスヒータを支持することで、 発熱回路で発生した熱 が断熱基板から放出されてセラミックスヒー夕の熱分布が不均一になるという事 態が防止されるため、 光導波路素子の温度均一性をさらに向上させることができ る。
さらに、 ヒ一夕モジュールが筐体の一部を兼ねるように構成してもよい。 例え ば、 ヒー夕モジュールの断熱基板が筐体の一部となる構造にすることができる。 また、 筐体は、 銅タングステン、 コバルト、 鉄、 ニッケル、 アルミナ、 又は窒 化アルミニウムを主成分とすることが好ましい。 この場合、 筐体における温度均 一性が向上し、 さらには光導波路素子の温度均一性を向上させることができる。 また、 筐体は、 樹脂又はシリカガラスを主成分とすることも好ましい。 この場 合は、 これらの材料は断熱性が高いため、 筐体内の熱が外部に放出されることを 抑制でき、 光導波路素子の温度低下を防止することができる。
また、 ヒ一夕モジュールの周囲に、 熱伝導率が 0 . 5 W/m k以下の断熱層を 有することが好ましい。 このような構成を採用した場合、 光導波路素子の熱が筐 体の外へ放出されるのを抑制することができる。 また、 この断熱層は空気層であ つてもよく、 この場合、 空気層の厚みが 0 . 0 1 mm以上、 5 mm以下であるこ とが好ましい。
さらに、 筐体は、 光導波路素子との対向面から光導波路素子に向かって延びる 仕切り壁を内部に有することが好ましい。 このような構成を採用した場合、 筐体 内の対流の軌道を小さくすることができ、 光導波路素子の温度均一性を向上させ ることができる。 さらに筐体は、 筐体の内壁面から所定の間隔を隔てて配された シートを備えることが好ましい。 このような構成を採用した場合、 筐体内の対流 の軌道を小さくできるとともに、 筐体の内壁面とシ一トとの間に空気層が形成さ れ、 この空気層が断熱層として作用することになる。 このため、 セラミックスヒ 一夕の熱が外部に放出されにく くなり、 光導波路素子の加熱効率が向上する。 さらに、 光導波路素子に光ファイバがクランプされており、 光ファイバと光導 波路素子とのクランプ位置が筐体の内部であることが好ましい。 このように構成 した場合、 光ファイバと光導波路素子とをクランプするための機構を筐体に設け る必要が無くなり、 筐体の設計の自由度が向上する。
図面の簡単な説明
図 1は、 第 1実施形態のヒータモジュール及び光導波路モジュールを示す斜視 図である。 図 2は、 第 1実施形態の光導波路モジュールを示す側面図である。
図 3は、 第 1実施形態のセラミックスヒ一夕の内部の平面図である。
図 4は、 図 3に示すセラミヅクスヒ一夕の IV-IV方向の断面図である。
図 5は、 第 1実施形態のヒータモジュールを示す平面図である。
図 6は、 第 2実施形態の光導波路モジュールを示す側面図である。
図 7は、 第 2実施形態のヒータモジュールを示す平面図である。
図 8は、 第 2実施形態のセラミックスヒータを示す断面図である。
図 9は、 第 3実施形態の光導波路モジュールを示す側面図である。
図 1 0は、 第 4実施形態の光導波路モジュールを示す断面図である。
図 1 1は、第 4実施形態の断熱基板の切り欠き部近傍を示す拡大斜視図である。 図 1 2は、 第 5実施形態の光導波路モジュールを示す側面図である。
図 1 3は、 第 6実施形態の光導波路モジュールを示す斜視図である。
図 1 4は、 第 6実施形態の光導波路モジュールを示す側面図である。
図 1 5は、 第 7実施形態の光導波路モジュールを示す斜視図である。
図 1 6は、 第 7実施形態の光導波路モジュールを示す側面図である。
図 1 7は、 第 8実施形態の光導波路モジュールを示す斜視図である。
図 1 8は、 第 8実施形態の光導波路モジュールを示す側面図である。
図 1 9は、 第 9実施形態の光導波路モジュールを示す側面図である。
図 2 0は、 第 1 0実施形態の光導波路モジュールを示す側面図である。
図 2 1は、 第 1 1実施形態の光導波路モジュールの特徴部分を示す斜視図であ る。
図 2 2は、 従来の光導波路モジュールを示す簡略斜視図である。
図 2 3は、 従来の光導波路モジュールを示す簡略斜視図である。
発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明に係るヒー夕モジュール及び光導波路モジ ユールの好適な実施形態について詳細に説明する。 尚、 同一要素には同一符号を 用いるものとし、 重複する説明は省略する。
[第 1実施形態]
図 1は、 本実施形態のヒー夕モジュール及びこれを内蔵した光導波路モジュ一 ルを示す斜視図であり、図 2は、図 1に示す光導波路モジュールの側面図である。 光導波路モジュール 1は、 石英製の寸法が 5 O mm x 1 O mm x 1 mmの光導波 路素子 2と、 この両端に接続された光ファイバ 4 , 4と、 光導波路素子 2を加熱 するためのヒータモジュール 3 0と、 光導波路素子 2及びヒータモジュール 3 0 を収容する筐体 2 0とを備えている。 また、 筐体 2 0は、 ヒー夕モジュール 3 0 を通電させるためのリードピン 2 3が半田付けされると共にヒー夕モジュール 3 0を支持するためのパッケージ基板 2 2と、 当該パッケージ基板 2 2に被せられ るカバー 2 4と、 から構成されている。 なお、 パッケージ全体の寸法は、 1 0 0 mm x 5 0 mm x 1 0 mmである。
次に、 図 3〜図 5を参照して、 ヒータモジュール 3 0について詳説する。 ヒ一 夕モジュール 3 0は、 寸法が 4 O mm x 2 O mm x 1 mmのセラミックスヒ一夕 4 0及びこれを支持すると共に断熱性を有する寸法が 6 O mm x 3 O mm x 2 m mの断熱基板 5 0 (図 5参照) を有している。 図 3は、 セラミックスヒ一夕 4 0 の内部を示す平面図であり、図 4は、図 3に示すセラミックスヒー夕 4◦の IV-IV 断面図である。図 3及び図 4に示すように、セラミックスヒー夕 4 0には、約 0 . 5〜 1 0 Ωの抵抗値を有して通電により発熱する発熱回路 4 2が設けられている。 また、 発熱回路 4 2の両端には、 発熱回路 4 2に電流を流すための電極 4 2 a , 4 2 bが設けられている。
また、 発熱回路 4 2の上層 (図 4における上側) には第 1の A 1 Nセラミック ス層 4 4が積層され、 発熱回路 4 2の下層には第 2の A 1 Nセラミックス層 4 6 が設けられている。
このように、 本実施形態ではセラミックス層 4 4が熱伝導率の高い A 1 N (窒 化アルミニウム) によって形成されているため、 発熱回路 4 2から伝達された熱 は当該第 1の A 1 Nセラミツ'フス層 4 4内でほぼ均一に拡散し、 さらには第 1の A 1 Nセラミックス層 4 4の丄面に接着される光導波路素子 2が均一に加熱され ることになり、 温度均一性を高めることができる。 また、 A 1 Nは耐湿性が高い ため、 長期の連続使用でも発熱回路 4 2の抵抗値が変化せず、 高い信頼性が得ら れる。 さらに、 発熱回路 4 2の下層に第 2の A 1 Nセラミックス層 4 6が設けら れているため、 セラミックスヒータ 4 0の耐湿性が向上し、 さらには発熱回路 4 2の耐久性を向上させることができる。 詳しくは、 第 2の A 1 Nセラミックス層 4 6によって発熱回路 4 2が露出しないようにされているため、 発熱回路 4 2の 短絡や酸化を防止することができる。
また、 第 1の A 1 Nセラミックス層 4 4及び第 2の A 1 Nセラミックス層 4 6 の厚みの合計は、 0 . 3 mm以上 3 . 0 mm以下が好ましい。 A 1 Nセラミック ス層の厚みが 0 . 3 mmより薄いと、 ヒー夕で発生した熱を均熱化することが困 難になるため、 光導波路素子 2の温度均一性を ± 0 . 5 °C以下にすることが困難 になる。 また、 セラミックス層の厚みが 0 . 3 mmより薄いと、 機械的強度が小 さく、 光導波路素子の接合等の取り扱いが非常に困難になる。 一方、 第 1の A 1 Nセラミックス層 4 4及び第 2の A 1 Nセラミックス層 4 6の厚みの合計が 3 . 0 mmより厚くなると、 光導波路素子の温度均一性が劣化することはないが、 光 導波路モジュールの厚みが厚くなることが避けられなくなるため、好ましくない。 また、 発熱回路 4 2は、 A 1 Nセラミックス層を成形、 焼結する時に同時形成 できるタングステン、 モリブデン、 或いは、 A 1 Nセラミックス層を一旦成形、 焼結した後に発熱回路を形成、 焼結する手法を用いることができる銀パラジウム などを主成分として形成することができる。 タングステン、 モリブデンの場合は A 1 Nセラミックスと同時形成できるため、 コストを低くできる利点がある。 一 方、 銀パラジウムの場合は、 抵抗値を高精度に制御しやすいという利点がある。 これらの材質は光導波路モジュールとして要求される優先順位によって、 選択す ればよい。 なお、 これらの材質以外の発熱材料であっても、 A 1 Nを用いたセラ ミックスヒ一夕の利点を損なうものではなく、 使用しても何ら問題はない。 また、 発熱回路 4 2の厚みは、 特に制限を受けるものではない。 ただし、 例え ばスクリーン印刷にてパターン形成する場合では、 l〃m以上、 1 0 0 / m以下 に制御することが望ましい。 l〃mより厚みが薄いと、 パターンの欠損等の問題 が生じる可能性が飛躍的に高くなる。 一方、 1 0 0 z mより厚みが厚くなると、 発熱回路のパターンが 0 . 2 mm程度に細い場合に、 にじみ等の問題が多発する ため好ましくない。 これらの不良を完全に無くすためには、 厚みを 5 0 z m以下 にすることが好ましい。 また、 例えば薄膜等で発熱回路 4 2を形成する場合は、 1〃 m以下の膜厚も可能とはなるが、 電流を流しても欠損しなレ、程度の膜厚にす る必要がある。
また、 発熱回路 4 2の保護層として、 ガラスのコ一ティング膜を形成してもよ い。 例えば、 シリカガラスを主成分としたコーティング膜を発熱回路 4 2の表面 に形成することができる。 このようなガラスコ一ティング膜は A 1 Nセラミック ス層及び発熱回路を一旦形成した後に、 さらに形成することになる。 そのため、 ガラスコーティング膜の材質を自由に選択できる利点がある。 また、 ガラスコ一 ティング膜の熱伝導率は一般的に l WZm Kと低いため、 光導波路素子 2をこの ガラスコ一ティング膜と逆の面に載置することにより、 カラスコ一ティング U莫が 一種の断熱層として働き、 光導波路素子 2の温度均一性を向上する働きをする。 このように発熱回路 4 2にコ一ティング膜を形成することにより、 セラミックス ヒ一夕 4 0の耐湿性を向上させることができる。
また、 このガラスのコーティング膜の厚みは、 1〃111以上0 . 2 mm以下であ ることが好ましい。 さらに、 1 0〃m以上 0 . 2 mm以下であることが好適であ る。 膜厚が l〃mより小さくなると、 発熱回路 4 2を均一に覆うことができず、 皮膜されていない部分が生じる。さらには、発熱回路 4 2の段差が存在するため、 段差を皮膜するため膜厚を 1 0 z m以上にする方が歩留まりよく段差を皮膜する ことができる。 一方、 膜厚が 2 0 0〃mより大きくなると、 薄膜による形成はも とより、 スクリーン印刷によつて膜形成する場合でも膨大な時間が必要となり、 コストが飛躍的に増大してしまうため、 好ましくない。 ただし、 コ一ティング膜 の厚みを上記範囲以外としても、 発熱回路 4 2を必要最低限保護できていれば問 題はない。
また、 本実施形態では、 上記のようにセラミックスヒータ 4 0が断熱性を有す る断熱基板 5 0によって支持されているため、 発熱回路 4 2で発生した熱が断熱 基板 5 0から放出されてセラミヅクスヒー夕 4 0の熱分布が不均一になるという 事態を防止でき、 光導波路素子 2の温度均一性を一層向上させることができる。 特に、 断熱基板 5 0を設けない場合は、 セラミックスヒータ 4 0はその上に載置 された光導波路素子 2を加熱するだけでなく、 光導波路素子 2が載置された逆の 面に接する部材も加熱することになる。 すなわち、 光導波路素子 2と反対のセラ ミックスヒータ 4 0の面に熱伝導率の高い材料、 もしくは熱容量の大きな部材が 接合されると、セラミックスヒータ 4 0で発生した熱は光導波路素子 2ではなく、 これらの部材に主に流入するため、 光導波路素子 2の温度均一性の劣化、 セラミ ックスヒータの消費電力の増大を招いてしまう。 これに対し、 断熱基板 5 0によ つてセラミックスヒ一夕 5 0を支持することで、 発熱回路 4 2で発生した熱が断 熱基板 5 0から放出されてセラミックスヒー夕 4 0の熱分布が不均一になるとい う事態を防止できる。
また、 このような効果を得るには、 断熱基板 5 0の熱伝導率を 5 O W/mK以 下にすることが好ましいことが熱シミュレーションにより判明した。 また、 この 断熱基板 5 0内に配線を施し、 セラミックスヒータと電気的な接続を行うことに より、 ヒ一夕モジュールの簡素化、 光導波路モジュールの簡素化が図れるため、 内部に配線を形成できる材料であることが好ましい。 例えば、 断熱基板 5 0は、 アルミナ及びシリカガラスを含むような材料としてもよい。尚、断熱基板 5 0は、 本実施形態ではアルミナ及びシリカガラスを主成分として形成されているが、 樹 脂及びシリカガラスを主成分とすれば、さらに断熱性を向上させることができる。 特に、 断熱基板 5 0を樹脂によって形成すれば、 熱伝導率を 1 WZmK以下にす ることが可能となるので好適である。 樹脂材料としては、 プリント配線基板とし て一般的なガラスエポキシ樹脂や B T (ビスマレイ ド ' トリァジン) レジン等を 用いることができる。
尚、 セラミックスヒー夕 4 0の作製方法は、 次の通りである。 まず、 A 1 Nセ ラミックスのプリフォームシ一卜に発熱回路 4 2と電極 4 2 a, 4 2 bを Wぺー ストで印刷する。 次いで、 発熱回路 4 2の上に A 1 Nセラミックスのプリフォー ムシートを張り付けて、 ヒ一夕の仮成型体を得る。 そして、 この仮成形体を 1 7 0 0 °C以上の窒素雰囲気中で焼結し、 セラミックスヒータ 4 0が完成する。 図 5は、 ヒータモジュール 3 0を示す平面図である。 同図に示すように、 断熱 基板 5 0の上面には、 電極 5 2 a〜5 2 fが形成されており、 セラミックスヒー 夕 4 0の電極 4 2 a , 4 2 bと電極 5 2 a, 5 2 f とが導線によって接続されて いる。 また、 セラミックスヒ一夕 4 0の上面にはヒ一夕の温度を測定するための チップサ一ミス夕 4 8が配置されており、 当該チップサ一ミスタ 4 8と電極 5 2 c , 5 2 dとが導線によって接続されている。 さらに、 各電極 5 2 a〜5 2 f に はリ一ドビン 5 3が接続されており、 図 2に示すように、 各リードピン 5 3は直 角に折り曲げられ、 パッケージ基板 2 2の揷入孔に差し込まれた状態で半田付け される。 これにより、 各リ一ドビン 5 3は、 パッケージ基板 2 2の各リードピン 2 3と電気的に接続される。 また、 上記のように断熱基板 5 0上に電極 5 2 a〜 5 2 f を形成することで、 セラミックスヒータ 4 0と外部の電極とを繋ぐ長い配 線が不要となるため、 組立及び実装が容易になり、 コストダウンが図れる。
また、 図 2に示すように、 断熱基板 5 0とセラミックスヒータ 4 0とは、 樹脂 4 1によって接着され、 セラミックスヒ一夕 4 0と光導波路素子 2も樹脂 4 3に よって接着されている。 接合する樹脂 4 1は電子部品の接合に用いられるシリコ ン樹脂、 エポキシ樹脂等何でも用いることができるが、 接合時の変形を防止する ために、 本実施形態ではシリコン樹脂を用いている。 尚、 上述のようにセラミツ クスヒー夕 40の最上層には lの A INセラミックス層 44が設けられている が、 A 1 Nは熱膨張係数が光導波路素子 2を形成するガラスや S iに近いため、 熱膨張に伴って光導波路素子 2が反るのを防止できる。 本実施形態では、 光導波 路素子と A 1 Nの接合においても樹脂 43を用いたが、 樹脂 43はシリコン樹脂 である。 樹脂 4 1及び樹脂 43の厚さは、 10〃m〜0. 2mm程度である。 また、 A 1Nの樹脂接合強度が、 他の酸化物系のセラミックス等に比較して弱 いことが一般的に知られている。 すなわち、 樹脂接合強度は、 樹脂の— 0H基と 金属表面の一 0基の水素結合、 及び材料同士のアンカ一効果、 この両者の相互作 用に起因するものである。 しかし、 A 1 Nは表面が窒化物であるために、 アンカ —効果しか接合に寄与しない。 そのため、 A 1 Nセラミックスの表面状態等によ つては、 樹脂との接合強度が悪化する可能性がある。 従って、 A 1Nの樹旨接合 強度の信頼性を向上することが好ましい。 A 1 Nセラミックス層と樹脂の接合強 度を高めるためには、 アンカー効果を強化する第 1の方法、 樹脂強度を高めるよ うな層を設ける第 2の方法の 2種類が考えられる。
第 1の方法として、 充分なアンカー効果を得るために必要な条件を種々検討し た結果、 A 1 Nの樹脂と接合する面の表面粗さを厳密に制御することで達成でき ることを見いだした。 すなわち、 A 1Nヒータと光導波路素子や断熱基板等を有 するパッケージと樹脂接合する場合、 樹脂と接合されるセラミックスヒー夕 40 の表面粗さを Raで 0. 05 m以上、 10〃m以下、 好ましくは 0. 以 上、 10〃m以下に制御することで充分な接合強度を達成できることを突き止め た。 A1N表面粗さが0. 05〃mより小さくなると、 A 1Nと樹脂の間に充分 なアンカ一効果を得ることが出来ず、 信頼性試験中や、 光導波路モジュール使用 中に樹脂接合面の剥離、 脱落等の問題が生じる。 また、 シリコン樹脂等の接着強 度の高い樹脂を用いる時は上述の A 1 N表面粗さ 0. 05〃m以上であれば充分 な接合が実現できるが、 その他各種樹脂の全てで充分な接合を実現するためには A1N表面粗さが 0. l〃m以上である方が好ましい。 一方、 A1N表面粗さが 1 0 / mより大きくなると A 1 Nと樹 S旨の間に気泡等が流入しやすくなり、 充分 なアンカー効果を得ることが出来ない。 さらには、 樹脂接合層に樹 S旨と気泡が乱 雑に存在することになり、 温度均一性を大きく悪化させる。 塗布時の樹脂の粘度 が 1 0 0 0 0 c p s程度の比較的流動性の高い樹脂を用いる時は上述の A 1 N表 面粗さ 1 0 以下であれば気泡の巻き込みを防止できるが、 その他樹脂の経 時変化等で粘度が上昇したときにおいても気泡の巻き込みを防止するためには A I N表面粗さが 1 0 m以下である方が好ましい。
A 1 Nセラミックス層と樹脂の接合強度を高めるための第 2の手法として、 樹 脂強度を高めるような層を得るために必要な条件を種々検討した結果、 A 1の蒸 着層もしくは、 シリカガラスを主成分とした層をセラミックスヒー夕 4 0の樹月旨 接着面に塗布することが最も効果的であることを見いだした。
樹脂強度を高めるような層は、 樹脂との水素結合を高めるように OH基や一 O 基を含むような層、 もしくはアンカー強度を強化するような層が必要となる。 樹 脂との水素結合を高める層としては酸化物か金属が考えられる。
このような酸化物として、 例えばアルミナが考えられる。 しかし、 アルミナ等 のセラミックスの酸化物は層を形成するために必要な温度が高くなるため、 ヒ一 夕のコストが飛躍的に高くなつてしまうという問題がある。 一方、 シリカガラス はアルミナに比べ層の形成温度を低くできるためコストを低く押さえることがで きる。 しかも、 前述のようにセラミックスヒー夕 4 0の発熱回路 4 2の保護膜と して使用することも可能であるため、 シリカガラス層を形成する場合は、 セラミ ックスヒ一夕 4 0の樹脂接合強度向上と信頼性向上を同時に一つの工程でできる ことになり、 低コス卜で特性の優れた A 1 Nセラミックスヒ一夕を作製すること ができる。
また、セラミックスヒー夕 4 0表面に形成するシリカガラス層の厚みとしては、 前述の発熱回路のガラスコ一ティング膜と同様に、 1 111以上0 . 5 mm以下が 好ましく、 さらには、 1 0〃m以上◦ . 1 mm以下にすることが好適である。 シ リカガラス層の厚さが より小さくなると、 A 1 Nセラミックスを均一に覆 うことができず、 皮膜されていない部分が生じるため、 樹脂強度を充分に高める ことが出来ない。 さらには、 同一の工程でヒータの保護層を形成する場合、 ヒー 夕層の段差が存在するため、 段差を皮膜するため層厚を 1 0〃m以上にする必要 がある。 一方、 シリカガラス層の厚さが 5 0 0〃mより大きくなると、 ガラス自 体の強度が低いため、 樹脂接合は充分であるが、 信頼性試験後にガラス自体が破 壊してしまい、 用いることが出来ない。 これより薄い膜厚は使用可能であるが、 1 0 より厚く成膜するためには、 膨大な時間が必要となり、 コストが飛躍 的に増大してしまうため、 より好ましくは層厚を 1 0 0 z m以下にする必要があ る。
シリカガラス層の形成については、 特に限定されるものではないが、 樹脂接合 部やヒー夕部など限定された部分に形成する必要があるため、 スクリーン印刷等 を用いてガラスペース卜を印刷した後、 焼成により焼き付ける方法などを用いる ことができる。
一方、 金属を用いた層の形成では、 A l、 N i、 A 11等を除く金属では、 金属 が酸化してしまうため、 表面がぼろぼろになり同時に接合強度を維持することが できない。 一方、 金属の保護膜として用いられる N i、 A uは表面の OH基や— 0基が少なく、 特に信頼性試験後の樹脂との接合強度が極めて弱い。 これに対し て、 A 1は表面が常に酸化されるので、 樹脂強度が比較的強く好ましい。 さらに は、 自然酸化膜以上に故意に酸化させても、 樹脂強度は強くならず、 逆に弱くな ることが判った。 さらに検討を進めると、 A 1の成膜方法によって樹脂接合強度 が大きく変わることが判明した。 すなわち、 蒸着によって形成した A 1膜を自然 酸化状態で用いることにより、 樹脂接合強度が極めて高い A I Nセラミックスヒ 一夕を作製することができる。
蒸着による A 1膜の樹脂強度が高い原因を調査すると、 ミクロ的なアンカー効 果が寄与していることを突き止めた。 すなわち、 蒸着などにより A 1膜を形成す ると多角形状の結晶粒が生成される。 結晶粒間では 1〃m以下の微小な段差が存 在するが、 この段差は表面粗さ測定時には検出できないものである。 この結晶粒 径とそれに伴う結晶間の段差が充分なアンカ一効果を生み出すのである。 すなわ ち、 結晶粒径を 0. l〃m以上 10 /m以下に制御することにより、 充分なアン 力一効果を生み出すことが出来る。 結晶粒径が 0. l〃mより小さくなると接合 に用いる樹脂が結晶間に充分に入る込むことが出来ず、 空孔が生じやすい。 この 空孔が起点となって接合破壊が生じやすい。 10 mより結晶粒径が大きくなる と樹脂は結晶間に入り込むことが出来るが、 単位面積当たりでアンカ一効果に寄 与する粒子が少なくなることになるため、充分な接合強度を得ることができない。 上述のように充分なアンカー効果が得られる構造においては、 特に酸化膜を形 成する必要はない。 すなわち、 自然酸化膜厚である 10 x 10— 1Qm以上 800 10— 1 Qm以下が望ましい。 自然酸化膜がない状態であると樹脂との間に水素 結合が生じないために充分な接合強度を保つことができない。 また、 800 x 1 0一1 Qmを越える厚さの酸化膜を形成すると、 樹脂と酸化膜との間の接合強度は 問題ないが、 金属の酸化膜は脆いため酸化膜と母材金属との間の接合強度を保つ ことができない。
また、 形成する A 1膜厚としては、 l /m以上 100〃m以下が望ましい。 A 1膜厚が 1〃mより薄いと、 アンカー効果を生み出すのに充分な構造を形成でき ない。 一方、 l O O^mより厚いと、 膜内での破壊が生じやすくなるため好まし くない。 また、 20〃mより厚くなると膜形成のコスト、 時間が莫大になるため 経済的に問題がある。 従って、 A1膜の厚さは、 より好ましくは l〃m以上 20 m以下である。
形成する A 1膜としては A 1、 A 1合金のいずれでもよい。 ただし、 A1合金 は膜形成時に組成の制御が困難であること、 母材との密着性にばらつきが生じや すいことより、 純度 99. 9wt%以上が望ましい。 さらに、 99. 99wt % 以上の A 1膜とすると、 母材との密着度のばらつきが生じないため好適である。 なお、 A 1蒸着は比較的簡単に種々の材料に蒸着膜を施すことができるため、 光 導波路モジュールにおいて樹脂接合する他の部材に適用しても、 樹脂接合強度が 大幅に向上することができるので、 他の部材にも可能な限り A 1蒸着を施すこと が好ましい。 蒸着を施すか施さないかは、 A 1は金属であるために、 絶縁性が必 要かどうかの判断、 また、 蒸着を施すことによるコスト上昇を考え合わせて決定 すればよい。
次に、 図 1及び図 2を参照して、 光導波路モジュール 1の筐体 2 0について説 明する。 筐体 2 0のカバ一 2 4の対向する二面には、 光ファイバ 4, 4を揷通さ せるための揷通ロ 2 4 a , 2 4 b (図 1参照) が形成されている。 パッケージ基 板 2 2は、 上記リ一ドビン 2 3が半田付けされる平板 2 2 aと、 平板 2 2 aの両 下端に接着された支持板 2 2 b, 2 2 bとを有している。 このように支持板 2 2 bを設けることで、 光導波路モジュール 1をシステム用のボード等に実装する際 に、 リードピン 8に過大な負荷がかかることを防止できる。 また、 カバ一 2 4と パッケージ基板 2 2とは樹脂にて接着される。
さらに、 筐体 2 0のカバ一 2 4及びパッケージ基板 2 2は、 銅タングステンを 主成分として形成されている。 このため、 筐体 2 0における温度均一性が高く、 光導波路素子 2の温度均一性を向上させることができる。 尚、 筐体 2 0をコバル ト、鉄、ニッケル、アルミナ、又は窒化アルミニウムを主成分として形成しても、 同様の効果を得ることができる。 また、 熱シミュレーションを行った結果、 光導 波路素子 2の温度均一性を向上させるには、 筐体 2 0の熱伝導率は 1 O W/mK 以上であることが好ましいことが判明した。
また、 筐体 2 0を、 樹脂又はシリカガラスを主成分として形成した場合は、 こ れらの材料は断熱性が高いため、 筐体 2 0内の熱が外部に放出されることを抑制 でき、 光導波路素子 2の温度低下を防止することができる。 筐体 2 0を形成する 樹脂としては、 例えば、 八 樹且旨、 ポリオキシメチレン樹脂、 ポリエ一テルエ ーテルケトン樹脂、 スチレン樹脂、 アクリル樹脂、 エポキシ樹脂、 フエノール樹 脂、 ユリア樹脂、 メラミン樹脂、 シリコーン樹脂、 フッ素樹脂、 ポリ力一ボネィ ト樹 S旨、 ポリ · フエ二レン 'サルフアイ ド樹脂等を用いることができる。 このよ うな樹脂の熱伝導率に関しては、 熱シミュレーションを行った結果、 光導波路素 子 2の温度均一性を向上させるには 1 W/m K以下であることが好ましいことが 判った。 さらに、 これらの樹脂の強度を向上させるために、 ガラスファイバ等を 混入させてもよい。 この場合は、 これらの材料は断熱性が高いため、 筐体内の熱 が外部に放出されることを抑制でき、 光導波路素子 2の温度低下を防止すること ができる。 また、 これらの温度均一性を向上させる筐体材料と断熱性を向上させ る筐体材料を多層にしたり、 組み合わせて用いてもよい。
また、 図 2に示すように、 ヒー夕モジュール 3 0の周囲 (パッケージ基板 2 2 と断熱基板 5 0との間) には、 熱伝導率が 0 . 5 WZm k以下の断熱層 2 7が設 けられている。 本実施形態では断熱層 2 7は空気層であり、 その厚みは l mmと している。 このように断熱層 2 7を設けることで、 光導波路素子 2へ効率的に熱 を伝達することができる。 さらには、 筐体 2 0のカバー 2 4の内面には、 光導波 路素子 2の熱が筐体 2 0の外へ放出されるのを抑制するために、 空気層による断 熱層が設けられている。
尚、 空気層としての断熱層 2 7の厚さは、 0 . 0 1 mm以上、 5 mm以下の範 囲にすることが好ましい。 高い温度均一性を得るためには、 '空気層における熱対 流を生じさせないことが肝要である。 その条件を熱流体シミュレーション及び実 験によって検討した結果、 空気層の厚みを 5 mm以下にすれば、 熱対流を大幅に 防ぐことができ、 セラミックスヒータ 4 0の高い温度均一性を確保できることを 突き止めたのである。 一方、 空気層の厚みは、 薄ければ薄いほど対流は生じにく いが、 厚みが 0 . 0 l mmより小さくなると、 ヒー夕の発熱により生じた、 ヒ一 夕モジュールや光導波路モジュールのゆがみにより、 断熱基板 5 0とパッケージ 基板 2 2とが接触してしまい、 空気層が一部減少するため、 高い温度均一性を得 ることができない。 ここで、 ヒー夕モジュール 3 0及び光導波路モジュール 1の厚さ(厚さの低減) について詳説する。
セラミックスヒー夕 4 0と光導波路素子 2を接合する際に、 セラミックスヒー 夕と光導波路素子の熱膨張率の差が 3 X 1 0— 6〜5 X 1 0— 6ノ。 C以上である場 合、 光導波路素子に過大な熱応力が働き、 波長選択制やスイッチング特性に支障 をきたすおそれがある。従来用いてきたアルミナヒー夕は熱膨張率が 7 X 1 0一6 /°Cであり、 さらに、 熱伝導率が 2 0 Wノ mKと低いため、 均熱板が不可欠であ つた。 このような均熱板の厚みは一般的に 3 mm程度あるため、 光導波路モジュ —ル厚を薄くできなかった。 また、 光導波路素子に働く応力を低減するために、 均熱板と光導波路素子間を接合後も流動体であるオイルコンパウンドやグリース で満たし、 端部の数点だけを樹脂で固定する方法等も検討されているが、 数点で 樹脂固定する時に発生する熱応力でさえ光導波路素子にとっては問題となる場合 があり、 汎用的に用いることのできる手法ではなく、 さらには、 均熱板を無くす ことは不可能なので、 光導波路モジュールの厚みを減らすことはできなかった。 一方、 本実施形態のセラミックスヒータ 4 0の A 1 Nは、 熱伝導率が 1 7 0 W
/mKなので均熱板を用いる必要が無く、 光導波路モジュールの厚みを大幅に減 らすことができる。
さらに、 上記のように光導波路素子 2とセラミックスヒー夕 4 0とは樹脂 4 3 によって接着されているが、この樹脂 4 3は接合後の形態が固体の接着剤である。 このため、 樹脂厚にばらつきが生じることもなく、 光導波路モジュールの動作中 に樹脂が流動することもない。 また、 光導波路素子 2とセラミックスヒー夕 4 0 の接合に用いる樹脂は、 金属もしくはセラミックス等のフィラーを含有した熱伝 導率が 0 . 5 W/mK程度以上の高熱伝導率樹脂が望ましい。 光導波路素子 2は セラミックスヒータ 4 0により均一に加熱されているが、 熱伝導率が 0 . 5 W/ mKより低い樹脂を用いると、 光導波路素子 2の温度均一性が悪化するおそれが ある。 また、 樹脂 4 3の替わりに前述した接合後も流動体であるオイルコンパウンド やグリースを光導波路素子 2とセラミックスヒー夕 4 0との間に満たし、 端部の 数点だけを樹脂で固定する方法についても、 光導波路素子 2とセラミックスヒー 夕 4 0の熱膨張率の差が小さいため光導波路素子 2に応力を与えることはないの で、 用いることは可能である。 但し、 この方法を採る場合、 オイルコンパウンド ゃグリースの厚みの管理を厳密に行わなければならない。
また、樹 S旨 4 3の厚さは、 1 0 z m以上 5 0 0 m以下であることが好ましい。 接合樹脂は他の構成材料に比べてヤング率が一桁以上小さいため、 接合の際に生 じる熱応力を吸収する働きがある。 しかし、 樹脂 4 3の厚さが 1 0〃mより小さ くなると、 応力吸収作用が充分には発揮できず、 光導波路素子 2へ働く応力が大 きくなるため好ましくない。 一方、 樹脂 4 3は熱伝導率が A 1 N等に比べて低い ため、 厚さが大きくなると温度均一性が悪化する。 樹 S旨 4 3の厚さが 5 0 0 z m より大きくなると、 温度均一性が悪化し、 好ましくない。
さらに、 セラミヅクスヒ一夕 4 0及び光導波路モジュール 1の消費電力につい ては、 従来のアルミナヒータを用いた場合と比較して、 本実施形態では、 アルミ ナヒ一夕を用いる場合に必須の C u合金製等の均熱板を加熱する必要がないこと から、 大幅に消費電力を低減させることができる。
また、 本実施形態の光導波路モジュール 1において、 次のような安全設計を施 すことができる。 すなわち、 発熱回路 4 2の一部をスズと鉛の合金で形成したり 発熱回路 4 2と外部電源に接続された端子とをスズと鉛の合金で形成された配線 によって接続することで、 発熱回路 4 2の温度がその合金の融点以上になると自 動的に断線し、 発熱回路 4 2に電流が流れなくなる。 このような設計をすること で、 ヒータモジュールの動作不良により温度が上昇することによって、 ヒー夕モ ジュールが破壊、 発火等する事態を防止することができる。
例えば、 スズ 4 0 w t %、 鉛 6 O w t %の合金を用いれば、 約 2 0 0 °C弱で断 線することになり、 接合樹脂や筐体等の樹脂が破壊されることはない。 また、 ス ズと鉛の合金の替わりに、 他の低融点合金を使用してもよい。
以上のような光導波路モジュール 1の特性を調べたところ、 以下のような結果 が得られた。 温度均一性については、 環境温度を 0 °C、 セラミックスヒ一夕 4 0 の温度を 8 0 °Cとしてサ一モビュ一ァで観察したところ、 光導波路素子 2の内部 の温度分布が ± 0 . 4 °C以下に抑えられていることが判明した。 また、 温度制御 性を測定するために、 次のような実験を行った。 すなわち、 光導波路モジュール を恒温槽に投入し、 恒温槽の温度を、 一 4 0 °Cで 1時間保持、 1時間で 7 0 °Cま で昇温、 7 0 °Cで 1時間保持、 1時間で— 4 0 °Cまで降温、 と変化させた。 その 時の光導波路素子上の温度を測定し、 最大温度と最小温度の差を温度制御性の判 断指標とした。 その結果、 本実施形態では、 光導波路素子は ± 0 . 7 °C以下の温 度変化しか示さず、 外温の影響を受けにくいことが判明した。 また、 セラミック スヒ一夕 4 0及び光導波路素子 2の反りが少なく、 光導波路特性に異方性は観測 されず、 ロスの増大やスイッチング特性、 複屈折による偏波依存等の問題は生じ なかった。 さらに、 筐体内の断熱性が向上しているため、 従来のようにペルチェ 素子を用いる場合に消費電力が 5 W必要であつたのに対し、 本実施形態では消費 電力を 4 W以下に抑えることができた。
[第 2実施形態]
次に、 図 6〜図 8を参照して、 本発明の光導波路モジュールの第 2実施形態を 説明する。 本実施形態が第 1実施形態と異なるのは、 主として断熱基板 5 0の構 造にある。 以下、 第 1実施形態と異なる点を中心に説明する。
図 6に示すように、 断熱基板 5 0にはセラミックスヒ一夕 4 0を支持するため の 3つの突起部 6 2が形成されている。各突起部 6 2の上面には樹脂が塗布され、 これによりセラミックスヒータ 4 0との接着が図られている。 このように、 本実 施形態ではセラミックスヒータ 4 0は断熱基板 5 0と全面的に接触しているので なく部分的に接触しているため、 セラミックスヒー夕 4 0に反りが発生しにくく なると共に、 断熱基板 5 0とセラミックスヒ一夕 4 0とを接着させるための樹 S旨 がセラミックスヒータ 4 0から剥がれるという事態を防止することができる。尚、 本実施形態のように全ての突起部 6 2に接着用の樹脂を塗布するのではなく、 一 つの突起部 6 2にのみ樹脂を塗布してもよい。 例えば中央の突起部 6 2にのみ樹 脂を塗布した場合は、セラミックスヒー夕 4 0の両端部は自由に伸縮できるため、 セラミックスヒー夕 4 0の反りを一層低減することができる。
また、 本実施形態では、 各突起部 6 2の周囲、 換言すればセラミックスヒ一夕 4 0の底面とこれに対向する断熱基板 5 0の面との間に空気層 6 4が形成されて いる。 このため、 この空気層 6 4が断熱層として働き、 セラミックスヒー夕 4 0 からの熱が断熱基板 5 0側から放出される事態を抑制することができる。 本実施 形態では空気層の厚みを 0 . 2 mmとしている。
また、 空気層の厚さは、 0 . 0 1 mm以上、 5 mm以下の範囲にすることが好 ましい。 高い温度均一性を得るためには、 空気層における熱対流を生じさせない ことが肝要である。 その条件を熱流体シミュレーション及び実験によって検討し た結果、 空気層の厚みを 5 mm以下にすれば、 熱対流を大幅に防ぐことができ、 セラミックスヒ一夕 4 0の高い温度均一性を確保できることを突き止めたのであ る。 一方、 空気層の厚みは、 薄ければ薄いほど対流は生じにくいが、 厚みが 0 . 0 1 mmより小さくなると、 ヒータの発熱により生じた、 ヒー夕モジュールや光 導波路モジュールのゆがみにより、 セラミックスヒータとそれを支持する断熱基 板等が接触してしまい、 空気層が一部減少するため、 高い温度均一性を得ること ができない。
また、 図 7に示すように、 本実施形態では、 セラミックスヒ一夕 4 0を断熱基 板 5 0側へ押圧するための押圧部 (押圧手段) 7 0が設けられている。 押圧部 7 0は、 セラミックスヒ一夕 4 0の上面に載置される押圧板 7 2と、 当該押圧板 7 2を断熱基板 5 0にネジ止めするためのビス 7 4とから構成されている。 ビス 7 4を強く締め付けることで、 セラミックスヒー夕 4 0は断熱基板 5 0へ押し付け られる。 このような押圧部 7 0によってセラミックスヒー夕 4 0を断熱基板側へ 押圧することで、 振動疲労試験、 低下速度試験、 耐湿性試験で良好な結果を得る ことができた。 尚、 同図に示すように、 断熱基板 5 0には複数のスルーホール 5 5が形成されており、 このスル一ホール 5 5とセラミックスヒ一夕 4 0の発熱回 路 4 2は導線にて電気的に接続されている。 そして、 図 6に示すように、 パッケ ージ基板に揷通されたリードピン 2 3がスルーホール 5 5に挿通される。
図 8は、 本実施形態のセラミックスヒータ 4 0の断面図である。 同図に示すよ うに、 本実施形態のセラミックスヒータ 4 0は、 銀パラジウム製の発熱回路 4 2 と、 この上に積層された A 1 Nセラミックス層 4 4と、 発熱回路 4 2の下面に設 けられたシリカガラスを主成分としたコーティング膜 4 5と、 を備えている。 こ のようにコ一ティング膜 4 5をセラミックスヒ一夕 4 0の表面に形成することで、 セラミックスヒ一夕 4 0の耐湿性を向上させることができる。 また、 セミラック スヒ一夕 4 0と断熱基板 5 0とを樹脂によって接着させるに際して、 樹脂のセラ ミヅクスヒー夕へ 4 0の接着性を向上させることができる。
[第 3実施形態]
次に、 図 9を参照して、 本発明の光導波路モジュールの第 3実施形態を説明す る。 本実施形態が第 1実施形態と異なるのは、 筐体 2 0の構造にある。 同図に示 すように、 筐体 2 0のカバー 2 4の内部には、 光導波路素子 2との対向面 2 4 r から光導波路素子 2に向かって延びる仕切り壁 2 9が 4枚設けられている。また、 仕切り壁 2 9の高さは、 カバー 2 4をパヅケージ基板 2 2に被せた状態において 仕切り壁 2 9の下端が光導波路素子 2に接触しない程度とされている。 このよう な仕切り壁 2 9を設けることで、 筐体 2 0内の対流の軌道、 換言すれば光導波路 素子 2上の対流の軌道を小さくすることができ、 光導波路素子 2の温度均一性を 向上させることができる。
[第 4実施形態例]
次に、 図 1 0を参照して、 本発明の光導波路モジュールの第 4実施形態を説明 する。 本実施形態が第 1実施形態と異なるのは、 チップサ一ミス夕 4 8の取り付 け方法、 及び、 筐体 2 0並びにカバ一 2 4の構造にある。
まず、 チップサ一ミス夕 4 8の取り付け方法について詳述する。 図 1 0に示す ように本実施形態では、セラミックスヒータ 4 0の温度を検出するサ一ミス夕(温 度検出素子) 4 8が、 セラミックスヒー夕 4 0の底面、 すなわち光導波路素子 2 が載置される側の面と反対の面に装着されている。 このため、 セラミックスヒ一 夕 4 0の上面にサーミス夕 4 8を載置するための領域を確保する必要が無くなる。 これにより、 セラミックスヒー夕 4 0の面積を第 1実施形態より小さくすること ができ、 ヒータモジュール 3 0の小型化を図ることができる。 また、 発熱回路 4 2も小さくすることができるため、 消費電力の低下を図ることができる。 第 1実 施形態ではセラミックスヒ一夕寸法が 4 O mm x 2 O mm x 1 mm、 ヒータモジ ユール寸法が 6 O mm x 3 O mm x l mm、 ヒ一夕消費電力が環境温度 0 °C、 ヒ —夕制御温度 8 0 °Cで 4 Wであったのに対し、 本実施形態ではヒー夕寸法を 4 0 mm x 1 2 mm x 1 mm、 ヒータモジユーノレ寸、法を 6 0 mm x 2 0 mm 1 mm と小型化でき、 消費電力も 3 . 5 Wと低減させることができる。 さらに、 断熱基 板 5 0には、 切り欠き部 7 6が形成されており、 当該切り欠き部 7 6にはサーミ ス夕 4 8に接続される電極パッド 7 8が配されている。
尚、 従来用いていたアルミナヒータの場合、 アルミナの熱伝導率が低いことか らヒ一夕の光導波路素子を載置する面とこの逆の面との温度差が大きかったため、 逆の面で光導波路素子の温度を正確に計測することはできなかった。 これに対し て、 A l Nヒータを用いれば光導波路素子の載置面と逆の面でも光導波路素子 2 の温度を正確に予想できることが可能となることを、 熱シミュレーションで突き 止めた。
図 1 1は、 この切り欠き部 7 6の近傍を示す拡大斜視図である。 図 1 0及び図 1 1に示すように、 断熱基板 5 0は、 上層 5 2と下層 5 4とを有しており、 上層 5 2の底面に上記電極パッド 7 2が形成されている。 より詳しくは、 上層 5 2に 貫通孔 5 2 hが形成され、 下層 5 4には上層 5 2の底面の一部が露出するように 貫通孔 5 4 hが形成されてい 。 そして、 この上層 5 2の底面の露出部に、 電極 パッド 7 8の少なくとも一部が位置するように構成されている。
また、 セラミックスヒー夕 4 0の底面には電極パッド 8 0が形成されており、 ワイヤ 7 3によってサ一ミス夕 4 8と電極パッド 8 0が接続され、 ワイヤ 7 5に よって電極パッド 8 0と電極パッド 7 8とが接続されている。 ここで、 本実施形 態では、 ワイヤ 7 5を切り欠き部 7 6すなわち貫通孔 5 2 h及び貫通孔 5 4 hを 通して電極パッド 7 8に接続することができるため、 ワイヤ 7 5を断熱基板 5 0 の周りを通すような場合と比較して、 配線の簡略化を図ることができる。
また、 サーミス夕 4 8とこれに電力を供給する外部電極とをつなぐ配線が、 電 極パッド 8 0においてセラミックスヒ一夕 4 0に接してセラミックスヒ一夕 4 0 とほぼ等しい温度になっているため、 セラミックスヒータ 4 0の温度を測定する にあたって環境温度の影響を受けにくくなり、 適切な温度測定を行うことができ る。
なお、 電極パヅド 7 8は、 図 1 0に示すリードピン 2 3に接続されており、 こ れによってサーミス夕 4 8と外部機器との導通が図られている。 このようなサ一 ミス夕の電極構造にすることにより、 サーミス夕電極の温度低下を防ぐことがで きる。この処置を行っていない第 1実施形態に比べ、環境温度を一 4 0 °C〜7 0 °C とした場合の温度制御性について測定すると、 セラミックスヒータ 4 0の温度が ± 0 . 5 °C以下と第 1実施形態における ± 0 . 7 °Cに比べ、 外温の影響を受けに くいことが判明した。
次に、図 1 0を参照して、光導波路モジュール 1の筐体 2 0について説明する。 筐体 2 0のカバ一 2 4の対向する二面には、 光ファイバ 4 , 4を挿通させるため の揷通ロ 2 4 a, 2 4 bが形成されている。 また、 カバー 2 4には、 その内壁面 から所定の間隔を隔てて、 2枚のシート 8 2 , 8 4が設けられている。 各シート 8 2, 8 4は、 カバ一 2 4の内壁面に形成された突起 2 4 cに接着剤によって固 定されている。 詳しくは、 上段のシート 8 2は中央の突起 2 4 cに固定され、 下 段のシート 8 4は両端の突起 2 4 cに接続されている。 一方、 パッケージ基板 2 2にも、 その上面から所定の間隔を隔てて 2枚のシート 8 6, 8 8が張られてい る。 各シート 8 6 , 8 8の外周部は、 支持部材 8 9によって支持されている。 このように、 筐体 2 0の内壁面から所定の間隔を隔ててシート 8 2 , 8 4 , 8 6, 8 8を装着すると、 筐体 2 0の内壁面と各シート 8 2 , 8 4, 8 6, 8 8と の間において、 対流の軌道を小さくできるとともに、 空気層が形成され、 この空 気層が断熱層として作用することになる。 このため、 セラミックスヒー夕 4 0の 熱が外部に放出されにくくなり、 加熱対象物である光導波路素子 2が加熱されや すくなる。 なお、 シートの枚数は 2枚に限られず、 1枚でもよく、 3枚以上にし てもよい。
また、 上記第 1実施形態〜第 4実施形態では石英製の光導波路素子 2を用いた が、 この替わりに S i基板上に作成したシリカを用いた素子、 及び L i N b〇3 製の素子を用いてもよい。 この場合も、 各実施形態と同様の効果を得ることがで ぎる。
[第 5実施形態]
次に、 図 1 2を参照して、 本発明の光導波路モジュールの第 5実施形態を説明 する。 本実施形態が第 1実施形態と異なるのは、 光導波路素子 2とセラミックス ヒータ 4 0の間に熱膨張率マッチングのためのマッチング板 9 2を挿入した構造 にある。 マッチング板 9 2としては、 室温における光導波路素子 2との熱膨張率 の差が 3 X 1 0— 6 /°C以下のものを使用する。
本実施形態においては石英製 (熱膨張率 0 . 5 x 1 0 - 6 /°C) の光導波路素子 2を用いていることより、 熱膨張率 2 . 0 X 1 0— 6/°Cの F e— N i合金をマツ チング板 9 2に用いている。 尚、 マッチング板 9 2の寸法は、 4 0 mm x 2 0 m m x 0 . 5 mmである。
このようなマッチング板 9 2を設けることで、 光導波路素子 2に働く応力を小 さくすることができる。 そこで、 光導波路素子 2に働く応力を測定するために、 光導波路素子 2の中央上部 (挿入板との接合面とは逆の面) にひずみゲージを取 り付け、 第 1実施形態と本実施形態における光導波路素子 2に働く応力の差を測 定した。 その結果、 第 1実施形態に比べて、 本実施形態では光導波路素子 2に働 く熱応力を 1 / 3にできることが判った。 第 1実施形態でも光導波路モジュール として充分使用可能であるが、 今後、 光導波路モジュールには、 さらに厳しい要 求が求められることを考えると、 本実施形態における熱応力の低下効果は非常に 利点を持つものと考えられる。
また、 光導波路素子 2を S i基板上に作成したシリカを用いた素子 (熱膨張率 1. 3 x l O_6/°C) に変更して同様な実験を行ったが、 石英の場合とほぼ同じ 結果を得ることができた。
また、 本実施形態において、 光導波路素子 2を L i Nb03 (熱膨張率 1 5 X 10 6/°C)、 挿入板 92を Cu合金 (熱膨張率 1 6 X 10 6/°C) にそれそれ 変更して同様な実験を行ったところ、 ほぼ同じ良好な結果を得ることができた。
[第 6実施形態]
次に、 図 1 3に示す斜視図及び図 14に示す側面図を参照して、 本発明の光導 波路モジュールの第 6実施形態を説明する。 本実施形態の石英製の光導波路素子 2は、 第 1実施形態のものと比較して寸法が大きく、 縦 30mmx横 30mmx 高さ lmmとされている。 これに伴って、 光導波路モジュールの各寸法も異なつ ている。 セラミヅクスヒ一夕 40の寸法は 40 mmx 25 mmx 1 mmで、 ヒ一 夕モジュール 30の寸法は 50 mmx 40 mmx 2 mm、 パッケージ全体の寸法 は 10 Ommx 6 Omm X 1 Ommである。
また、 光導波路素子 2の寸法が大きくなつたことに伴い、 サ一ミス夕 48をセ ラミックスヒ一夕 40の上部、 すなわち光導波路素子 2との接合面に載置するス ペースの確保が困難になったため、 セラミックスヒータ 40の下部、 すなわち光 導波路素子 2との接合面とは逆の面にサ一ミス夕 48を載置した。 また、 光導波 路素子 2と光ファイバ 4の接続はファイバーアレイ 96を通して行った。さらに、 断熱基板 5 0とパッケージ基板 2 2には断熱層である空気層 2 7が形成されてい るが、 空気層 2 7が形成されても構造的に安定するように、 スぺ一サー 9 4を介 してパッケージ基板 2 2上に断熱基板 5 0を固定させた。
以上のような光導波路モジュール 1の特性を調べたところ、 以下のような結果 が得られた。 温度均一性については、 環境温度を 0 ° (、 セラミックスヒ一夕 4 0 の温度を 8 0 °Cとしてサ一モビューァで観察したところ、 光導波路素子 2の内部 の温度分布が ± 0 . 4 °C以下に抑えられていることが判明した。 また、 温度制御 性については、 環境温度をー4 0 °C〜7 0 °Cの範囲で変化させても、 セラミック スヒ一夕 4 0は ± 0 . 5 °C以下の温度変化しか示さず、 外温の影響を受けにくい ことが判明した。 また、 セラミックスヒ一夕 4 0及び光導波路素子 2の反りが少 なく、 光導波路特性に異方性は観測されず、 ロスの増大やスイッチング特性、 複 屈折による偏波依存等の問題は生じなかった。 さらに、 筐体内の断熱性が向上し ているため、 本実施形態でも消費電力を 4 W以下に抑えることができた。
なお、 本実施形態ではカバ一 2 4がー体ものとなっており、 断熱基板 2 2と接 合されるようになつている。 しかし、 この形態では光ファイバ一 4の取り付けが 困難になる場合がある。 その時は、 カバー 2 4を角筒状の側壁部 2 4 Xと天板部 2 4 yに分割して、 一旦パッケージ基板 2 2と側壁部 2 4 xを接合した段階で光 導波路素子 2や光ファイバ 4の取り付けを行い、 その後、 天板部 2 4 yを接合、 もしくはネジ止めするような形態にしてもよい。
[第 7実施形態]
次に、 図 1 5に示す斜視図及び図 1 6に示す側面図を参照して、 本発明の光導 波路モジュールの第 7実施形態を説明する。 本実施形態が第 6実施形態と異なる のは、 セラミックスヒータ 4 0の寸法にある。 光導波路素子 2の特性を詳細に調 査すると、 温度均一性が必要な領域が光導波路素子 2全体ではなく、 セラミック スヒ一夕周辺に限られていることが判明した。 具体的には、 セラミックスヒ一夕 周辺の約 1 0 mm x 1 0 mmの範囲に限られていることが判った。 そのため、 本 実施形態では、 セラミックスヒー夕 40の光導波路素子 2が載置される面 40 a は、 この面 40 aと対向するう 6導波路素子 2の面よりも面積を狭くしている。 こ のようにセラミックスヒ一夕 40の加熱面を光導波路素子 2よりも小さくするこ とで、 消費電力をさらに低減させることができる。 具体的には、 熱シミュレーシ ヨンを利用した設計により、 セラミックスヒータ 40の寸法を 1 5mmx 1 5m mx 1 mmとした。
以上のような光導波路モジュール 1の特性を調べたところ、 以下のような結果 が得られた。 温度均一性については、 環境温度を 0°C、 セラミックスヒー夕 40 の温度を 80°Cとしてサーモビュ一ァで観察したところ、 光導波路素子 2の内部 の温度均一性が必要な 10 mm X 1 0 mmの領域で温度分布が土 0. 4 °C以下に 抑えられていることが判明した。 また、 温度制御性については、 環境温度を一 4 0°C〜70°Cの範囲で変化させても、 セラミックスヒ一夕 40は ±0. 5°C以下 の温度変化しか示さず、 外温の影響を受けにくいことが判明した。 セラミックス ヒータ 40の寸法を小型化したため、 本実施形態では、 第 6実施形態の消費電力 4Wに比べて、 消費電力を 2W以下に抑えることができた。
[第 8実施形態]
次に、 図 1 7に示す斜視図及び図 18に示す側面図を参照して、 本発明の光導 波路モジュールの第 8実施形態を説明する。 本実施形態が第 8実施形態と異なる のは、 セラミックスヒー夕 40を囲うように配置されたマッチング板 92 (図 1 8においては断面を示す) にある。 マッチング板 92としては、 室温における光 導波路素子 2との熱膨張率の差が 3 X 10_6Z°C以下のものを使用する。
本実施形態においては石英製 (熱膨張率 0. 5 X 1 0-6/°C) の光導波路素子 2を用いていることより、 熱膨張率 2. 0 X 10—
Figure imgf000035_0001
の F e— N i合金をマツ チング板 92に用いている。 マッチング板 92の寸法は、 第 6実施形態で用いた セラミックスヒ一夕 40と同じ寸法である 40 mmx 2 5 mmx 1 mmとしてい る。 また、 中央に 1 5 mmx 1 5 mmx 1 mmのセラミックスヒータ 40が入る ように、 穴空け加工によって 1 5 . 5 mm x 1 5 . 5 mmの中空部を形成してい ) o
このように、セラミックスヒータ 4 0を囲うマッチング板 9 2を設けることで、 セラミックスヒータ 4 0が光導波路素子 2より小さい場合であつても光導波路素 子 2をセラミックスヒ一夕 4 0上にしっかりと固定することができる。 尚、 一般 的にこのマッチング板 9 2の寸法は、 光導波路素子 2を確実に固定するために、 少なくとも一辺の長さが光導波路素子 2より l mm〜 l 0 mm程度大きくするこ とが好ましい。 マッチング板 9 2の材質は光導波路素子 2によって熱膨張率がマ ツチングするように選択する必要があり、 均熱板の材質でも述べたように F e— N i合金や C u合金などを選択することができる。 また、 マッチング板 9 2の厚 みは、 セラミックスヒータ 4 0をマッチング板 9 2にはめ込んだ際に、 両者の上 面がほぼ一定の高さに位置する程度にすればよい。 さらに、 このようにマツチン グ板 9 2を用いると、 光導波路素子 2との接合を前述した接合後の形態が固体と なる樹脂製の接着剤にてすることができる。
この光導波路モジュール 1の特性を調べたところ、 他の実施形態と同様に優れ た特性を得ることができた。 また、 環境温度 0 ° ヒー夕設定温度 8 0 °Cにおけ るヒータ消費電力は 2 W以下であった。 さらに、 本実施形態では光導波路素子 2 がセラミックスヒータ 4 0だけでなく、 マッチング板 9 2とも接合されているた め、 光導波路素子 2の設置時の安定性が第 7実施形態に比べて、 飛躍的に向上し た。
また、 光導波路素子 2を L i N b〇3 (熱膨張率 1 5 x 1 0— 6ノ° 、 マツチン グ板 9 2を C u合金 (熱膨張率 1 6 X 1 0 - 6/°C) に変更して同様な実験を行つ たところ、 ほぼ同じ良好な結果を得ることができた。
[第 9実施形態]
次に、 図 1 9を参照して、 本発明の光導波路モジュールの第 9実施形態を説明 する。 本実施形態が第 1実施形態と異なるのは、 ヒ一夕モジュール 3 0の断熱基 板 5 0が第 1実施形態におけるパッケージ基板 2 2と同様の役割を果たしている 点である。 つまり、 ヒ一夕モジュール 3 0の断熱基板 5 0が筐体 2 0の一部を兼 ねることになる。 これにより、 光導波路モジュール 1の厚みを 8 mmと第 1実施 形態の 1 0 mmより薄くすることができる。 この光導波路モジュール 1の特性を 調べたところ、 他の実施形態と同様に優れた特性を得ることができた。
[第 1 0実施形態]
次に、 図 2 0を参照して、 本発明の光導波路モジュールの第 1 0実施形態を説 明する。 本実施形態が第 1実施形態と異なるのは、 光ファイバ 4と光導波路素子 2とのクランプ位置 (固定位置) にある。 第 1実施形態では、 筐体 2 0の揷通ロ 2 4 a , 2 4 bによって光ファイバ 4を固定している力 本実施形態では、 クラ ンプ位置を筐体 2 0の内部にしている。 詳しくは、 断熱基板 5 0に設置された支 持部材 9 9 , 9 9によって、 光ファイバ 4が固定されている。
このように構成することで、 筐体 2 0は光ファイバ 4のクランプ設計を行う必 要が無くなるため、 ヒータモジュール 3 0と筐体 2 0の相対位置の変更や、 筐体 2 0の形状の変更等が容易になる。
[第 1 1実施形態]
次に、 図 2 1を参照して、 本発明の光導波路モジュールの第 1 1実施形態を説 明する。 本実施形態が第 6実施形態と異なるのは、 セラミックスヒ一夕 4 0と断 熱基板 5 0の接合手法である。 第 6実施形態においては、 セラミックスヒー夕 4 0と断熱基板 5 0は樹脂 4 1により接合されていた。 これに対して、 本実施形態 では両者をネジによって固定している。
同図に示すように、 セラミックスヒー夕 4 0の四隅にそれそれ直径 1 mmのネ ジ穴 1 0 1が形成され、 断熱基板 5 0の対応する位置には雌ネジ 1 0 2が切られ ている。 そして、 各ネジ穴 1 0 1を通したネジ 1 0 3を雌ネジ 1 0 2に螺合させ ることで、 セラミックスヒー夕 4 0と断熱基板 5 0を固定している。 また、 セラ ミックスヒ一夕 4 0と断熱基板 5 0の間には、 熱的な接触を確実にするために、 サ一マルコンパゥンドが満たされている。 第 6実施形態と同じ測定を実施した結 果、 同様な結果を得ることができた。
また、 上記第 3実施形態から第 1 1実施形態では、 セラミックスヒ一夕 4 0と して、 第 1実施形態で使用した A 1 Nセラミックス 4 4、 タングステン発熱層 4 2、 第 2の A 1 Nセラミックスからなる A 1 Nヒータを用いているが、 この替わ りに第 2実施形態で使用した、 A 1 Nセラミックス 4 4、 銀パラジウム製の発熱 層 4 2、 シリカガラスを主成分としたコーティング膜 4 5からなる A l Nヒータ を用いてもよい。
[実施例]
次に、 主に第 1実施形態又は第 2実施形態の光導波路モジュールを基本として 行った実施例について説明する。
(実施例 1 )
第 1実施形態で用いたセラミックスヒ一夕 4 0に関して、 その表面粗さ R aを 種々変えて、 光導波路素子 2の温度均一性を測定した。 通常、 どのような R aに おいても初期状態では温度均一性 ± 0 . 5 °Cを満足することができる。 しかしな がら、 R a条件が適当でない場合、 信頼性試験中、 もしくは実際に光導波路モジ ユールを使用中に劣化することが予想される。 そこで、 8 5 °C、 湿度 8 5 %の雰 囲気に 2 0 0 0時間さらす高温高湿試験を行い、 その後環境温度を 0 °C、 セラミ ックスヒータ 4 0の温度を 8 0 °Cとしてサ一モビューァで光導波路素子 2の温度 均一性を観察した。 その結果を表 1に示す。 セラミックスヒー夕 4 0の固定用樹 脂 4 1及び 4 3として粘度 1 0 0 0 0 c p sのシリコン樹脂を用いた場合、 セラ ミックスヒー夕 4 0の表面粗さを 0 · 0 5〃111以上1 0〃m以下にすれば信頼性 試験後も良好な温度均一性、 温度制御性を得られることが判った。 なお、 樹脂が 経時変化した場合に相当する粘度 1 0 0 0 0 0 c p sの場合は表面粗さを 1 0 m以下に制御しないと均一な温度均一性、 温度制御性を得ることができない。 信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかった試料 のセラミックスヒー夕 40を 合している樹脂を実体顕微鏡 10倍で観察した結 果、 接合樹脂に 0. 1mm以上の大きさの剥離、 亀裂が確認された。 一方、 試験 後セラミックスヒータ 40単体を取り出し、 環境温度を 0°C、 セラミックスヒー 夕 40の温度を 80 °Cとしてサーモビューァで観察したところ、 信頼性試験前に 予め観察した結果とほぼ同じ結果が得られた。 また、 セラミックスヒー夕 40の 熱伝導率にも変化が認められなかった。
【表 1】
Ra 接合用樹脂 温度均一性 温度制御性
°C °C
試料 1 0. 1 シリコン ±0. 5 ±0. 7
(粘度 10000 c p s )
試料 2 10 シリコン ±0 5 ±0. 7
(粘度 10000 c p s )
試料 3' 100 シリコン ± 1 0 ±0. 7
(粘度 10000 c p s )
試料 4 10 シリ:□ン ±0 5 ±0. 7
(粘度 l O O O O O c p s)
試料 5' 15 シリ 3ン ± 1 0 ±2. 0
(粘度 l O O O O O c ps)
試料 6 0 05 シリコン ±0 5 ±0. 7
(粘度 10000 c p s)
試料 7* 0 01 シリコン ± 1 0 ±2. 0
(粘度 10000 c p s )
*:比較例
(実施例 2)
実施例 1で用いたセラミックスヒ一夕 40の表面粗さ R aを種々変えて、 実施 例 1と同じように、 高温高湿試験 2 0 0 0時間後の温度特性を測定した。 結果を 表 2に示す。 セラミックスヒ一夕 4 0の固定用樹脂 4 1、 及び 4 3として粘度 1 0 0 0 0 c p sのポリイミ ド樹脂を用いた場合、 セラミックスヒ一夕 4 0の表面 粗さを 0 . 0 5〃m以上 1 0〃m以下にすれば信頼性試験後も良好な温度均一性、 温度制御性を得られることが判った。
信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかった試料 のセラミックスヒ一夕 4 0を接合している樹脂を実体顕微鏡 1 0倍で観察した糸 i 果、 接合樹脂に 0 . 1 mm以上の大きさの剥離、 亀裂が確認された。 一方、 試験 後セラミックスヒータ 4 0単体を取り出し、 環境温度を 0 ° セラミックスヒ一 夕 4 0の温度を 8 0 Cとしてサ一モビューァで観察したところ、 信頼性試験前に 予め観察した結果とほぼ同じ結果が得られた。 また、 セラミックスヒータ 4 0の 熱伝導率にも変化が認められなかった。
【表 2】
R a 接合用樹脂 温度均一性 温度制御性 j m °C 。c
試料 8 * 1 2 0 ポリイミ ド 土 1 0 土 2 0 試料 9 1 0 ポリイミ ド 土 0 5 土 0 7 試料 1 0 0 . 0 5 ポリイミ ド ± 0 5 土 0 7 試料 1 1 * 0 . 0 1 ポリイミ ド 土 1 0 ± 2 0
*:比較例
(実施例 3 )
図 2〜図 4に示すように実施例 1で用いたセラミックスヒ一夕 4 0の樹脂接合 面である第 1の A 1 Nセラミックス層 4 4の上側(図 4の上部)、第 2の A 1 Nセ ラミックス層 4 6の下側 (図 4の下部) に、 次に示すガラスコーティング層を設 けた。 膜形成はスクリーン印刷を用いた後、 焼成して行った。 スクリーン印刷の 時に種々の膜厚を形成して、 実施例 1と同じように、 高温高湿試験 2 0 0 0時間 後の温度特性を測定した。 その結果を表 3に示す。 ガラスコ一ティング層の膜厚 を 1 zm以上 50 以下にすれば信頼性試験後も良好な温度均一性、 温度制 御性を得られることが判った。 また、 膜厚を 100〃m以下にすることで、 成膜 時間を著しく短縮することができた。
信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかった試料 のセラミックスヒ一夕 40を実体顕微鏡 10倍で観察した結果、 ガラスコ一ティ ング層の膜厚が 5 zmより小さい試料ではコーティング層が A 1 Nセラミックス 層 44, 46を完全には覆っておらず、 部分的に A 1 Nセラミックス層 44, 4 6が露出しており、 その部分と接合されている接合樹脂に 0. 1mm以上の大き さの剥離、 亀裂が確認された。 また、 ガラスの膜厚が 500〃mより大きい試料 では、 ガラス層の中に 0. 1 mm以上の大きさの剥離、 亀裂が確認された。
【表 3】
温度均一性 温度制御性
°C 。C
試料 12* 0. 5 ±0. 9 ± 1. 9
試料 13 ±0. 5 ±0. 7
試料 14 500 ±0. 5 ±0. 7
試料 15* 600 土 1. 0 ±2. 0
*:比較例
(実施例 4)
第 2実施形態で用いたセラミックスヒータ 40を用いて次の実験を行った。 セ ラミックスヒ一夕 40に設けるコ一ティング膜の S莫形成はスクリーン印刷を用い た後、 焼成して行った。 スクリーン印刷の時に種々の膜厚を形成して、 実施例 1 と同じように、 高温高湿試験 2000時間後の温度特性を測定した。 結果を表 4 に示す。 膜厚を 10 m以上 500〃m以下にすれば信頼性試験後も良好な温度 均一性、 温度制御性を得られることが判った。 また、 膜厚を 100〃m以下にす ることで、 成膜時間を著しく短縮することができた。
信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかった試料 のセラミックスヒ一夕 40を実体顕微鏡 10倍で観察した結果、 ガラスの膜厚が 10 zmより小さい試料では発熱回路 42の段差によって、コ一ティング層に 0. 1 m m以上の大きさの剥離、 亀裂が生じていることが確認された。
【表 4】
温度均一性 温度制御性
°C 。C
試料 16 * 5 ±0. 9 ± 1. 9
試料 17 10 ±0. 5 ±0. 7
*:比較例
(実施例 5)
図 2〜図 4に示すように実施例 1で用いたセラミックスヒータ 40の樹脂接合 面である第 1の A 1 Nセラミックス層 44の上側(図 4の上部)、第 2の A 1 Nセ ラミックス層 46の下側(図 4の下部)に、次に示す A 1層を設けた。すなわち、 セラミックヒータ 40を蒸着用真空チャンバ一に投入し、 1. 33 x 10— 3P a 以下の真空度になるまで、 真空排気した後、 蒸着源として 99. 9wt%以上の A 1を用いて A 1蒸着を行った。
蒸着中の真空度は 1. 33 X 10— 1 P a以上 1. 33 x 10— 3P a以下で、 セ ラミックスヒ一夕 40の温度は 100°C〜200°Cであった。 また、 種々の厚み の A 1膜を形成した。 一方、 A 1膜の結晶粒径は l〃mであった。 A 1膜上に形 成された自然酸化膜厚をマイクロォージヱ電子分光法で測定した結果、 50 O x 10— 1 Qmであった。 この試料を実施例 1と同じように、 高温高湿試験 2000 時間後の温度特性を測定した。 その結果を表 5に示す。 1膜の膜厚を 1 111以 上 100〃m以下にすれば信頼性試験後も良好な温度均一性、 温度制御性を得ら れることが判った。 さらに、 A1膜の膜厚を 20〃m以下にすることで、 成膜時 間を著しく減少させることができた。
信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかった試料 のセラミヅクスヒ一夕 40を実体顕微鏡 1 0倍で観察した結果、 A 1の膜厚が 1 〃 mより小さい試料では接合されて 、る接合樹脂に 0. 1 mm以上の大きさの剥 離、 亀裂が確認された。
【表 5】
温度均一性 温度制御性
°C °C
試料 18* 0. 5 ±0. 9 ± 1. 9
試料 19 1 ±0. 5 ±0. 7
試料 20 20 ±0. 5 ±0. 7
試料 2 1 1 0 0 ±0. 5 ±0. 7
*:比較例
(実施例 6 )
図 2〜図 4に示すように実施例 1で用いたセラミックスヒ一夕 40の樹脂接合 面である第 1の A 1 Nセラミックス層 44の上側(図 4の上部)、第 2の A1 Nセ ラミックス層 46の下側 (図 4の下部) に、 次に示す A 1層を実施例 5と同様に 設けた。 種々の A 1の結晶粒径の膜を形成した。 一方、 膜厚は 2〃 mであった。 A 1膜上に形成された自然酸化膜厚をマイクロォージェ電子分光法で測定した結 果、 500 X 10 1 Qmであった。 この試料を実施例 1と同じように、 髙温高湿 試験 2000時間後の温度特性を測定した。 その結果を表 6に示す。 結晶粒径を
0. 1 m以上 10 m以下にすれば信頼性試験後も良好な温度均一性、 温度制 御性を得られることが判った。
信頼性試験後に均一な温度均一性、 温度制御性を得ることができなかつた試料 のセラミックスヒ一夕 40を実体顕微鏡 10倍で観察した結果、 接合樹脂に 0.
1 mm以上の大きさの剥離、 亀裂が確認された。 【表 6】
結晶粒径 温度均一性 温度制御性
Figure imgf000044_0001
試料 22* 0. 05 ± 1. 0 ±2. 0
試料 23 0. 1 ±0. 5 ±0. 7
試料 24 10 ±0. 5 ±0. Ί
試料 25* 20 ±0. 9 ± 1. 9
*:比較例
(実施例 Ί )
図 2〜図 4に示すように実施例 1で用いたセラミックスヒー夕 40の樹脂接合 面である第 1の A 1Nセラミックス層 44の上側(図 4の上部)、第 2の A 1 Nセ ラミックス層 46の下側 (図 4の下部) に、 次に示す A 1層を実施例 5と同様に 設けた。 また、 A 1層の酸化膜厚を意図的に変化させた。 一方、 結晶粒径は 1. 0〃m、 膜厚は 2〃mであった。 この試料を実施例 1と同じように、 高温高湿試 験 2000時間後の温度特性を測定した。 その結果を表 7に示す。 酸化膜厚を 1 0 1 0_1 Qm以上 800 x 1 0 1 Qm以下にすれば、 信頼性試験後も良好な温 度均一性、 温度制御性を得られることが判った。
信頼性試験後に均一な温度均一性、 温度制御性を得ることが出来なかった試料 のセラミックスヒ一夕 40を実体顕微鏡 10倍で観察した結果、 酸化膜厚が 10 X 10— 1 Qmより小さい試料では接合樹脂に 0. 1 mm以上の大きさの剥離、 亀 裂が確認された。 一方、 酸化膜厚が 800 X 1 0— 1 Qmより大きい試料では、 A 1層に 0. 1mm以上の大きさの剥離、 亀裂が生じていることが確認された。
【表 7】
酸化膜厚 温度均一性 温度制御性
X 10 10 m °C °C
試料 26* ± 1. 0 ±2. 0 試料 27 10 ±0. 5 ±0. 7
試料 28 800 ±0. 5 ±0. 7
試料 29* 900 ± 1. 0 ±2. 0
*:比較例
(実施例 8)
図 2〜図 4に示すように実施例 1で用いたセラミックスヒ一夕 40の樹脂接合 面である第 1の A 1 Nセラミックス層 44の上側(図 2の上部)、第 2の A1Nセ ラミックス層 46の下側 (図 4の下部) に、 次に示す A 1層 82を実施例 6と同 様に設けた。 この際、 蒸着させる A 1の純度を 99%まで低下させた。 また、 結 晶粒径は 1. 0〃m、 膜厚は であった。 A 1膜上に形成された自然酸化膜 厚をマイクロォージェ電子分光法で測定した結果、 500 x 10— 1 Qmであった。 この試料を実施例 1と同じように、 高温高湿試験 2000時間後の温度特性を測 定した。 その結果を表 8に示す。 温度均一性、 温度制御性が純度 99. 9%のも のより若干低下していることが判る。
【表 8】
A 1純度 温度均一性 温度制御性
% °C °C
試料 3 OA 99. 9 ±0. 5 ±0. 7
試料 30B* 99 ±0. 6 ±0. 8
(実施例 9)
第 2実施形態において、 セラミックスヒ一夕 40と断熱基板 50の間に設けら れた空気層 64と断熱基板 50とパッケージ基板 22の間に設けられた断熱層 2 7を空気層としたときの厚みを種々変えて、 実施例 1と同じように、 温度均一特 性を測定した。 その結果を表 9に示す。 空気層厚を 0. 0 1mm以上、 5 mm以 下にすることにより、 温度均一性を ±0. 5°C以下にできることが判明した。
【表 9】 ヒーター断熱基板 断熱基板一パッケージ 温度均一性
mm mm °C
試料 3 1* 6 6 ±0. 7 試料 3 2* 6 2 ± 0. 7 試料 3 3* 2 6 ± 0. 7 試料 34 5 5 ±0. 5 試料 3 5 0. 0 1 0. 0 1 ± 0. 4 試料 3 6* 0. 0 0 5 0. 0 0 5 ± 0. 7 試料 3 7* 0. 0 0 5 2 ± 0. 6 試料 3 8* 2 0. 0 0 5 ± 0. 6
*:比較例
(実施例 1 0)
第 1実施形態において、 セラミックスヒ一夕 4 0と光導波路素子 2を接合する 樹 β旨 43を、 粘度 1 000 0 c p s、 熱伝導率 1 W/mKのシリコン系樹脂とし て、 その厚みを種々変えて、 実施例 1と同じように、 温度均一特性を測定した。 結果を表 1 0に示す。 樹脂 4 3の厚さを 1 0〃m以上 5 00〃m以下にすること により、 温度均一性を ± 0. 5 °C以下にできることが判る。 試料 3 9の温度均一 性が悪化した原因を探るべく断面を切断して調査した結果、 樹脂が部分的に破断 している様子が観察された。 樹脂厚が薄いため、 部分的に樹脂の塗布ムラがあつ たことも予想されるが、 さらには、 光導波路素子 2とセラミックヒータ 4 0の熱 膨張率差に起因する熱応力を吸収しきれずに破壊したものと考えられる。
【表 1 0】
樹脂厚 温度均一性
Mm °C
試料 3 9* 5 ± 0. 7
試料 40 1 0 ± 0. 5 試料 4 1 200 + 0 5
試料 42 500 ± 0. 5
試料 43* 600 ±0. 7
*:比較例
リ (実施例 1 1 )
実施例 10と同じ実験を熱伝導率 0. 5¥//111¾:及び0. . 3W/mkのシリコ ン樹脂を用いて行った。 その結果を表 1 1に示す。
【表 1 1】
樹脂熱伝導率 樹脂厚 温度均一性
i丄nリ W/mK μ.τα 。C
試料 44* 0. 5 5 土 0 . 7
試料 45 0. 5 1 0 ±0 . 5
試料 46 0. 5 200 ±0 . 5
試料 47 0. 5 500 ±0 . 5
15 試料 48* 0. 5 600 ±0 . 8
試料 49* 0. 3 1 0 ±0 . 8
試料 50* 0. 3 500 土 1 . 0
*:比較例
(実施例 1 2 )
0 第 1実施形態においてセラミックスヒ一夕 40と光導波路素子 2を接合する樹 脂 43について熱伝導率 1 W/mKのシリコン系のサーマルコンパゥンドを用い て接合を行った。 サーマルコンパウンドだけでは固定できないため光導波路素子 の端部 4力所だけを粘度 10000 c p s、 熱伝導率 1 W/mKのシリコン樹脂 で固定し、 実施例 1と同じように、 温度均一特性を測定した。 光導波路素子中央 5 部のサ一マルコンパウンド厚は 50〃mであった。 同じ試料を 10個用意し、 そ れそれの光導波路素子 2の温度均一性を測定した。 しかしながら温度均一性は土 0 . 5 °Cを達成したのは 2個だけであった。
(実施例 1 3 )
第 1実施形態 1において、 セラミックスヒー夕に次の回路を付け加えた。 すな わち、 図 3に示すように、 セラミックスヒー夕 4 0には、 約 0 . 5〜 1 0 Ωの抵 抗値を有して通電により発熱する発熱回路 4 2が設けられている。 また、 発熱回 路 4 2の両端には、 発熱回路 4 2に電流を流すための電極 4 2 a , 4 2 bが設け られているが、 本実施例ではさらに、 発熱回路 4 2の一部を、 半田ペーストをス クリーン印刷した後焼結した、 スズ 4 0 w t %鉛 6 0 七%の合金で形成した。 次に、温度制御回路の誤動作による A 1 Nヒ一夕の温度急上昇を模擬するため、 ヒー夕に電力を供給し続けて、 A l Nヒ一夕の温度を急上昇させた。 一方、 ヒー 夕温度を接合しているサーミス夕で測定した。 その結果、 ヒ一夕温度が 2 0 0 °C になると、 それ以上温度上昇することは無かった。 実験後、 各部材を分解調査す ると、 ヒータに形成した半田部分が溶解して断線していることが確認された。 一 方、 他の樹脂の部材は破壊されていないことが確認された。 また、 半田製の導線 は断線していなかつたが、 温度上昇がヒータの方が高いため、 まず、 ヒー夕の半 田部分が断線するため、 導線までは断線しなかったと考えられる。
(実施例 1 4 )
実施例 1 3では発熱回路の一部を半田で形成した A 1 Nヒー夕を用いたが、 本 実施例では、 通常の A 1 Nヒータを用いた。 ただし、 セラミックスヒ一夕 4 0と 断熱基板 5 0とを接続するためのリード線を通常の銅線から半田製の導線に変更 し、実施例 1 3と同じ実験を行った。その結果、 ヒ一夕温度が 2 1 0 °Cになると、 それ以上温度上昇することは無いことが確認された。 実験後、 各部材を分解調査 すると、 半田製の導線が溶解して断線していることが確認された。 一方、 他の樹 脂の部材は破壊されていないことが確認された。
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明した力 本発明は上記各実施形態に限定されるものではない。 例えば、 本発明のヒ一夕モ ジュールで加熱できるのは石英製、 シリカ製、 L i N b 0 3製の光導波路素子に 限られず、 その他、 樹脂製等の光導波路素子に対しても有効である。 また、 光導 波路素子の寸法に関しても、 上記各実施形態より小さくても、 大きくても本発明 を適用することは可能である。 さらに、 接合等に用いられる樹脂、 筐体等に用い られる材質に関しても、 上記各実施形態に限定されるわけではない。
産業上の利用可能性
以上説明したように、 本発明に係るヒー夕モジュール及び光導波路モジュール によれば、セラミックス層は熱伝導率の高い A 1 Nによって形成されているため、 発熱回路から伝達された熱は当該セラミックス層内でほぼ均一に拡散し、 さらに はセラミックス層上に載置される光導波路素子が均一に加熱されることになる。 また、 断熱性を有する断熱基板によってセラミックスヒータを支持することで、 発熱回路で発生した熱が断熱基板から放出されてセラミックスヒータの熱分布が 不均一になるという事態が防止されるため、 光導波路素子の温度均一性をさらに 向上させることができる。
また、 本発明のセラミックスヒー夕は A 1 Nで形成されていることから熱伝導 率が高いため、 他の熱伝導率が低いヒータを用いた場合に必須となっていた均熱 板を省略でき、 ヒータモジュール及び光導波路モジュールの厚みを飛躍的に低減 することができる。
さらには、 A 1 Nは熱伝導率が高く、 均熱板も不要であるため、 セラミックス ヒー夕を小さく設計することにより、 ヒー夕の消費電力を大幅に低下させること ができる。

Claims

請求の範囲
1 . 光導波路素子を加熱するためのヒー夕モジュールであって、 通電により発熱する発熱回路と前記発熱回路に積層された A I Nセラミックス 層とを有するセラミックスヒー夕を、備えることを特徴とするヒー夕モジュール。
2 . 前記セラミックスヒータを支持すると共に断熱性を有する断熱基板 をさらに備えることを特徴とする請求項 1記載のヒー夕モジュール。
3 . 前記断熱基板は、 アルミナ又は、 アルミナとシリカガラスを含むこ とを特徴とする請求項 2記載のヒ一夕モジュール。
4 . 前記断熱基板は、 樹脂又は、 樹脂とシリカガラスを含むことを特徴 とする請求項 2記載のヒ一夕モジュール。
5 . 前記断熱基板は、前記セラミックスヒ一夕を支持するための複数の 突起部を有し、 且つ、 前記各突起部の周囲には空気層が形成されていることを特 徴とする請求項 2記載のヒ一夕モジュール。
6 . 前記空気層の厚みは、 0 . 0 l mm以上 5 mm以下であることを特 徴とする請求項 5記載のヒータモジュール。
7 . 前記セラミックスヒー夕と前記断熱基板とは、樹脂によって接着さ れていることを特徴とする請求項 2記載のヒータモジュール。
8 . 前記セラミックスヒータと前記断熱基板とは、 ネジ止めされている ことを特徴とする請求項 2記載のヒー夕モジュール。
9 . 前記セラミックスヒー夕を前記断熱基板側へ押圧する押圧手段を有 することを特徴とする請求項 2記載のヒータモジュール。
1 0 . 前記セラミックスヒ一夕の温度を検出する温度検出素子をさらに 備え、
前記温度検出素子は、 前記セラミックスヒータの前記光導波路が載置される面 と反対の面に接着され、
前記断熱基板は、 所定の切り欠き部を有し、 前記切り欠き部内に、 前記 度検出素子に接続される電極が配されていること を特徴とする請求項 2記載のヒー夕モジュ一ル。
1 1 . 前記温度検出素子と前記温度検出素子に電力を供給する外部電源 とをつなぐ配線が、 前記セラミヅクスヒータに接していることを特徴とする請求 項 1 0記載のヒ一夕モジュール。
1 2 . 前記発熱回路の下層に、第 2の A 1 Nセラミックス層を有するこ とを特徴とする請求項 1記載のヒ一夕モジュール。
1 3 . 前記発熱回路は、 タングステン、 モリブデン、 又は銀パラジウム を主成分とすることを特徴とする請求項 1記載のヒータモジュール。
1 4 . 前記セラミックスヒー夕は、 シリカガラスを主成分としたコ一テ ィング膜を表面に有することを特徴とする請求項 1記載のヒータモジュール。
1 5 . 前記セラミックスヒータの表面粗さは、 R aで 0 . 0 5〃m以上 1 0 / m以下であることを特徴とする請求項 1記載のヒータモジュール。
1 6 . 前記セラミックスヒー夕の表面に、酸化物層又はガラスコ一ト層 を形成したことを特徴とする請求項 1記載のヒータモジュール。
1 7 . 前記セラミックスヒー夕の表面に、 A 1蒸着層を形成したことを 特徴とする請求項 1記載のヒータモジュール。
1 8 . 所定の温度以上になると、前記発熱回路に電流が流れなくなるこ とを特徴とする請求項 1記載のヒ一夕モジュール。
1 9 . 前記発熱回路の一部は、 スズと鉛の合金で形成されていることを 特徴とする請求項 1 8記載のヒータモジュール。
2 0 . 前記発熱回路と外部電源に接続された端子とが、 スズと鉛の合金 で形成された配線によって接続されていることを特徴とする請求項 1 8記載のヒ —夕モジュール。
2 1 . 請求項 1〜請求項 2 0のうち何れか一項記載のヒータモジュール と、 前記ヒ一夕モジュールの前記セラミックスヒータ上に載置された光導波路素子 と、
を備えることを特徴とする光導波路モジュール。
2 2 . 前記光導波路素子と前記セラミックスヒー夕との間に、前記光導 波路素子との室温における熱膨張率の差が 3 X 1 0— ^ΖΧ;以下であるマツチン グ部材が挿入されていることを特徴とする請求項 2 1記載の光導波路モジュ一ル。
2 3 . 前記マッチング部材は、 F e—N i合金によって形成されている ことを特徴とする請求項 2 2記載の光導波路モジュ一ル。
2 4 . 前記マッチング部材は、 C u又は C u合金によって形成されてい ることを特徴とする請求項 2 2記載の光導波路モジュール。
2 5 . 前記セラミックスヒー夕と前記光導波路素子とは、樹脂製の接着 剤によって接着されていることを特徴とする請求項 2 1記載の光導波路モジユー ル。
2 6 . 前記セラミックスヒータの前記光導波路素子が載置される面は、 当該面と対向する前記光導波路素子の面よりも面積が狭いことを特徴とする請求 項 2 1記載の光導波路モジュール。
2 7 . 前記セラミックスヒー夕の周囲には、前記光導波路素子との室温 における熱膨張率の差が 3 X 1 0—e Z°C以下であるマッチング部材が配され、 前 記マッチング部材と前記光導波路素子とが接合していることを特徴とする請求項 2 6記載の光導波路モジュール。
2 8 . 前記マッチング部材は、 F e— N i合金によって形成されている ことを特徴とする請求項 2 7記載の光導波路モジュール。
2 9 . 前記マッチング部材は、 C u又は C u合金によって形成されてい ることを特徴とする請求項 2 7記載の光導波路モジュール。
3 0 . 前記光導波路素子及び前記セラミックスヒー夕を収容する筐体を さらに備えることを特徴とする請求項 2 1記載の光導波路モジュ一ル。
3 1 . 前記セラミックスヒー夕を支持すると共に断熱性を有する断熱基 板を備え、 前記筐体は、 前記断熱基板を収容することを特徴とする請求項 3 0記 載の光導波路モジュール。
3 2 . 前記ヒータモジュールは、前記筐体の一部を兼ねていることを特 徴とする請求項 3 0記載の光導波路モジュール。
3 3 . 前記筐体は、 銅タングステン、 コバルト、 鉄、 ニッケル、 アルミ ナ、 又は窒化アルミニウムを主成分とすることを特徴とする請求項 3 0記載の光 導波路モジュール。
3 4 . 前記筐体は、樹脂又はシリカガラスを主成分とすることを特徴と する請求項 3 0記載の光導波路モジュール。
3 5 . 前記ヒー夕モジュールの周囲に、 熱伝導率が 0 . 5 Wノ m k以下 の断熱層を有することを特徴とする請求項 3 0記載の光導波路モジュール。
3 6 . 前記断熱層は空気層であって、 その厚みが 0 . 0 1 mm以上、 5 mm以下であることを特徴とする請求項 3 5記載の光導波路モジュール。
3 7 . 前記筐体は、前記光導波路素子との対向面から前記光導波路素子 に向かって延びる仕切り壁を内部に有することを特徴とする請求項 3 0記載の光 導波路モジュール。
3 8 . 前記筐体は、 当該筐体の内壁面から所定の間隔を隔てて配された シートを備えることを特徴とする請求項 3 0記載の光導波路モジュール。
3 9 . 前記光導波路素子に光ファイバがクランプされており、前記光フ アイバと前記光導波路素子とのクランプ位置が前記筐体の内部であることを特徴 とする請求項 3 0記載の光導波路モジュール。
PCT/JP2001/000352 2000-01-28 2001-01-19 Module de rechauffage et module guide d'ondes optiques WO2001055758A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01901469A EP1258752A4 (en) 2000-01-28 2001-01-19 HEATING MODULE AND LIGHTING WAVE MODULE
CA002398971A CA2398971A1 (en) 2000-01-28 2001-01-19 Heater module and optical waveguide module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-20283 2000-01-28
JP2000020283 2000-01-28
JP2000063733 2000-03-08
JP2000-63733 2000-03-08

Publications (1)

Publication Number Publication Date
WO2001055758A1 true WO2001055758A1 (fr) 2001-08-02

Family

ID=26584390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000352 WO2001055758A1 (fr) 2000-01-28 2001-01-19 Module de rechauffage et module guide d'ondes optiques

Country Status (7)

Country Link
US (1) US20030180030A1 (ja)
EP (1) EP1258752A4 (ja)
KR (1) KR100433743B1 (ja)
CN (1) CN1397024A (ja)
CA (1) CA2398971A1 (ja)
TW (1) TW483286B (ja)
WO (1) WO2001055758A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139970A (ja) * 2008-12-15 2010-06-24 Hitachi Chem Co Ltd 光導波路の製造方法
JP2011200398A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 内視鏡
JPWO2021214897A1 (ja) * 2020-04-22 2021-10-28

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60138981D1 (de) * 2000-05-18 2009-07-30 Meridian Bioscience Inc Immunoassay für H. pylori in Fäkalienproben mit Hilfe von gattungsspezifischen Antikörpern
JP2003151726A (ja) * 2001-11-19 2003-05-23 Nec Corp 加温装置、加温装置実装構造および光導波路デバイス
CN101395511B (zh) * 2006-03-06 2011-05-25 日立化成工业株式会社 柔性光导波路及其制造方法以及光模块
JP2008245668A (ja) * 2007-03-29 2008-10-16 Fujinon Corp 電子内視鏡の撮像装置、および電子内視鏡
JP5295524B2 (ja) 2007-06-05 2013-09-18 日本電波工業株式会社 光学薄膜成膜方法
DE102008010297A1 (de) * 2008-02-21 2009-10-29 Osram Opto Semiconductors Gmbh Frequenz-Konversions-Vorrichtung und Verfahren zur Herstellung einer Frequenz-Konversions-Vorrichtung
KR101489327B1 (ko) * 2008-05-15 2015-02-03 삼성전자주식회사 물질막의 형성 방법 및 메모리 장치의 제조 방법
JP2010266475A (ja) * 2009-05-12 2010-11-25 Nitto Denko Corp 光導波路の製造方法
US9400402B2 (en) 2014-01-07 2016-07-26 Electronics And Telecommunications Research Institute Optical waveguide and optical device based on the same
KR20190092587A (ko) 2016-12-29 2019-08-07 아이피지 포토닉스 코포레이션 고온 광학 분자 오염 방지 게터 시스템
CN109068408B (zh) * 2018-08-07 2024-03-26 深圳市鑫台铭智能装备股份有限公司 红外发热元件、红外发热组件及红外发热模块
JP7135645B2 (ja) * 2018-09-19 2022-09-13 住友大阪セメント株式会社 光モジュール
JP7342714B2 (ja) * 2020-01-21 2023-09-12 住友電気工業株式会社 受光デバイス及び受光デバイスの製造方法
JP7136830B2 (ja) * 2020-03-27 2022-09-13 矢崎総業株式会社 光ファイバートランシーバー及び光通信モジュール
CN112269276B (zh) * 2020-11-13 2024-05-24 中国科学院微电子研究所 一种光器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325462A (ja) * 1991-04-24 1992-11-13 Kawasaki Steel Corp AlNセラミックヒータ用発熱抵抗体用ペースト
JPH06283258A (ja) * 1993-03-30 1994-10-07 Hitachi Home Tec Ltd 平面発熱体
JPH06295779A (ja) * 1993-04-08 1994-10-21 Adamando Kogyo Kk セラミックヒータ
JPH10123340A (ja) * 1996-10-23 1998-05-15 Hitachi Cable Ltd 導波路型光モジュール
JPH1140895A (ja) * 1997-07-22 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 光モジュール組立方法および組立装置
JPH1167426A (ja) * 1997-08-26 1999-03-09 Toshiba Ceramics Co Ltd プレートヒータ及びその製造方法
JPH1184919A (ja) * 1997-09-11 1999-03-30 Canon Inc 加熱装置および画像形成装置
JPH11281826A (ja) * 1998-03-31 1999-10-15 Furukawa Electric Co Ltd:The 光モジュール
JPH11326658A (ja) * 1998-05-14 1999-11-26 Furukawa Electric Co Ltd:The 光モジュール

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324276A (ja) * 1991-04-24 1992-11-13 Kawasaki Steel Corp AlNセラミックヒータ及びその製造方法
US5343544A (en) * 1993-07-02 1994-08-30 Minnesota Mining And Manufacturing Company Integrated optical fiber coupler and method of making same
JPH07295409A (ja) * 1994-04-25 1995-11-10 Canon Inc 加熱定着装置及びその製造方法
US5960143A (en) * 1995-02-17 1999-09-28 Corning, Inc. Protective housing for an integrated optical component
US6084050A (en) * 1997-01-09 2000-07-04 Nippon Telegraph And Telephone Corporation Thermo-optic devices
JP3820706B2 (ja) * 1997-10-30 2006-09-13 住友電気工業株式会社 窒化アルミニウムヒーター
JP2002162584A (ja) * 2000-11-24 2002-06-07 Hitachi Metals Ltd 光スイッチ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325462A (ja) * 1991-04-24 1992-11-13 Kawasaki Steel Corp AlNセラミックヒータ用発熱抵抗体用ペースト
JPH06283258A (ja) * 1993-03-30 1994-10-07 Hitachi Home Tec Ltd 平面発熱体
JPH06295779A (ja) * 1993-04-08 1994-10-21 Adamando Kogyo Kk セラミックヒータ
JPH10123340A (ja) * 1996-10-23 1998-05-15 Hitachi Cable Ltd 導波路型光モジュール
JPH1140895A (ja) * 1997-07-22 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 光モジュール組立方法および組立装置
JPH1167426A (ja) * 1997-08-26 1999-03-09 Toshiba Ceramics Co Ltd プレートヒータ及びその製造方法
JPH1184919A (ja) * 1997-09-11 1999-03-30 Canon Inc 加熱装置および画像形成装置
JPH11281826A (ja) * 1998-03-31 1999-10-15 Furukawa Electric Co Ltd:The 光モジュール
JPH11326658A (ja) * 1998-05-14 1999-11-26 Furukawa Electric Co Ltd:The 光モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. TAKASUGI ET AL., PROCEEDINGS OF THE GENERAL MEETING IN 1999, ELECTRONICS 1, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, March 1999 (1999-03-01), pages 275, C-3-121, XP002945023 *
See also references of EP1258752A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139970A (ja) * 2008-12-15 2010-06-24 Hitachi Chem Co Ltd 光導波路の製造方法
JP2011200398A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 内視鏡
JPWO2021214897A1 (ja) * 2020-04-22 2021-10-28
WO2021214897A1 (ja) * 2020-04-22 2021-10-28 日本電信電話株式会社 波長変換装置
JP7319582B2 (ja) 2020-04-22 2023-08-02 日本電信電話株式会社 波長変換装置

Also Published As

Publication number Publication date
EP1258752A4 (en) 2008-10-01
TW483286B (en) 2002-04-11
CN1397024A (zh) 2003-02-12
EP1258752A1 (en) 2002-11-20
KR100433743B1 (ko) 2004-06-04
US20030180030A1 (en) 2003-09-25
CA2398971A1 (en) 2001-08-02
KR20020070489A (ko) 2002-09-09

Similar Documents

Publication Publication Date Title
WO2001055758A1 (fr) Module de rechauffage et module guide d&#39;ondes optiques
JP6077301B2 (ja) 静電チャック
US8397563B2 (en) Aeronautical probe with integrated heater
US20080066683A1 (en) Assembly with Enhanced Thermal Uniformity and Method For Making Thereof
WO2008013279A1 (fr) Boîtier de stockage de composant électronique et dispositif électronique
TW516335B (en) Heating module and light waveguide module
JP4002758B2 (ja) パワー半導体モジュール
JP4227610B2 (ja) 放熱基体の製造方法
KR20210065895A (ko) 정전 척 장치
KR101419563B1 (ko) 전도성 패턴으로서 성형된 열 저항 요소를 포함하는 가열 유닛
WO2018123729A1 (ja) 試料保持具
WO2005122701A2 (ja) 電極内蔵セラミックブロック及びその製造方法
JP2009115579A (ja) プローブ部材およびこのプローブ部材を用いたプローブカードならびにこれを用いたウエハ検査装置
US7632537B2 (en) Circuits including a titanium substrate
EP1469330B1 (en) Temperature control element, temperature control component, and waveguide optical module
US20050078919A1 (en) Waveguide type optical module, and temperature control component, and temperature control element thereof
JP2002025751A (ja) SiCヒータ
JP2003229508A (ja) 高放熱性絶縁基板及びこれを用いたモジュール
WO2020203633A1 (ja) 窒化珪素回路基板、及び、電子部品モジュール
JP2024013794A (ja) 保持装置
JP2001118960A (ja) 電気絶縁膜付炭素基金属複合材基板
JPH11186689A (ja) 配線基板の接続構造
GB2608618A (en) Thick film heating element
JP2023132402A (ja) 保持装置
KR100794960B1 (ko) 하이브리드형 히터 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 555839

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027009302

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2398971

Country of ref document: CA

Ref document number: 018041779

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001901469

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027009302

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001901469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10182120

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020027009302

Country of ref document: KR