WO2001032820A1 - Wasch- oder reinigungsmittel - Google Patents

Wasch- oder reinigungsmittel Download PDF

Info

Publication number
WO2001032820A1
WO2001032820A1 PCT/EP2000/010393 EP0010393W WO0132820A1 WO 2001032820 A1 WO2001032820 A1 WO 2001032820A1 EP 0010393 W EP0010393 W EP 0010393W WO 0132820 A1 WO0132820 A1 WO 0132820A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
agents
weight
particles
cleaning agent
Prior art date
Application number
PCT/EP2000/010393
Other languages
English (en)
French (fr)
Inventor
Ilona Lange
Alexander Ditze
Birgit Gies
Heinz-Dieter Soldanski
Heike Wendt
Christian Nitsch
Thomas Hardt
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP00978973A priority Critical patent/EP1224256A1/de
Priority to AU16464/01A priority patent/AU1646401A/en
Publication of WO2001032820A1 publication Critical patent/WO2001032820A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2

Definitions

  • the present invention relates to a detergent or cleaning agent which contains surfactants and, if appropriate, further customary constituents, an agent for cleaning hard surfaces, a rinse aid for use in the automatic cleaning of dishes and a textile detergent.
  • European patent EP 0772 514 a self-cleaning surface of objects simulated by plants is disclosed, which has an artificial surface structure of elevations and depressions and is characterized in that the distance between the elevations in the range from 5 to 200 ⁇ m and the height of the elevations in the Range from 5 to 100 ⁇ m and at least the elevations consist of hydrophobic polymers and durable hydrophilic materials and the elevations cannot be detached by water or by water with detergents.
  • the surfaces disclosed in the prior art have a permanently present surface with a defined structure. These surfaces are in the range of Detergents or cleaning agents are unsuitable because, due to the large number of surfaces to be cleaned, a permanent change would have to be taken into account in the production process for these substrates.
  • the object of the present invention was to provide a washing or cleaning agent which is suitable for temporarily changing the substrate to be cleaned in such a way that the surface of the substrate to be cleaned is temporarily given dirt-repellent properties.
  • dirt-repellent properties can be imparted to a surface temporarily if particles with a particle size of 5 to 500 nm are added to an agent which, in addition to surfactants, if appropriate contains further conventional ingredients.
  • Temporary change of the surface in the sense of the present invention means that the effect can be maintained after a few, in particular up to 4 washing or cleaning cycles.
  • the present invention accordingly relates to a detergent or cleaning agent containing surfactants and, if appropriate, other conventional ingredients, characterized in that it contains particles with a particle size of 5 to 500 nm.
  • the particles used according to the invention are preferably water-insoluble or only slightly water-soluble particles which remain temporarily on the substrate to be cleaned after the washing or cleaning process. According to the invention, these particles have a particle size of 5 to 500 nm, preferably 5 to 250 nm. Because of the particle size, these particles are also referred to as nanoscale particles. Any insoluble solids which are present in the size distribution mentioned can be used as particles.
  • suitable particles are any precipitated silicas, aerogels, xerogels, Mg (OH) 2 , boehmite (Al (O) OH, ZrO 2 , ZnO, CeO 2l Fe 2 O 3 , Fe 3 O 4 , TiO 2 , TiN, hydroxylapatite, Bentonite, hectorite, SiO 2 .CeO 2 , SnO 2 , ln 2 O 3 .SnO 2 , NgAI 2 O 4 , HfO 2 , brine, such as SiO 2 sol, AI 2 O 3 sol or TiO 2 sol, and any mixtures of the above.
  • compositions preferably contain 0.01 to 35% by weight, particularly preferably 0.01 to 20% by weight and in particular at least 0.1% by weight, for example 0.5 to 10% by weight, of the nanoscale particles , based on the finished product.
  • a further improvement can be achieved by modifying the surface of the nanoscale particle. This can be done, for example, using conventional complexing agents, which can prevent the precipitation of calcium or magnesium salts. These compounds can be applied in an amount such that they are present in the finished composition in amounts of 1 to 8% by weight, preferably 3.0 to 6.0% by weight and in particular 4.0 to 5.0% by weight. -%, based on the finished agent, are included. They are usually on the surface of the particles.
  • a preferred class of complexing agents are the phosphonates.
  • These preferred compounds include, in particular, organophosphonates such as, for example, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenethamine-penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2 , 4-tricarboxylic acid (PBS-AM), which are mostly used in the form of their ammonium or alkali metal salts.
  • organophosphonates such as, for example, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenethamine-penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2 , 4-tricarboxylic acid (PBS-AM), which are mostly used in the form of their ammonium or alkali metal salts.
  • the phosphonates are applied to the surface of the particles in such an amount that they are present in the finished agent in amounts of 0.01 to 2.0% by weight, preferably 0.05 to 1.5% by weight and in particular 0 , 1 to 1, 0 wt .-% are included.
  • Substances which complex heavy metals can also be used as complexing agents. Suitable heavy metal complexing agents are, for example, ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA) in the form of the free acids or as alkali metal salts and derivatives of the foregoing and alkali metal salts of anionic polyelectrolytes such as polymaleates and polysulfonates.
  • Suitable complexing agents are low molecular weight hydroxycarboxylic acids such as citric acid, tartaric acid, malic acid, lactic acid or gluconic acid or salts thereof, citric acid or sodium citrate being particularly preferred.
  • the surface of the particles can be modified, for example, simply by stirring a suspension of the particles with the complexing agent; this sticks to the surface of the particles while stirring.
  • hydrophilizing agents are mono- or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water.
  • the hydrophilizing agents are preferably selected from ethanol, n- or i-propanol, butanols, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether or dipropylene glycol , Di-isopropylene glycol monomethyl or ethyl ether, methoxy, ethoxy or butoxy triglycol, 1-butoxyethoxy-2-propanol, 3-methyl-3-methoxybutanol, propylene glycol t-butyl
  • the agents are in liquid to gel form, they are generally aqueous preparations which may contain further water-miscible organic solvents and thickeners.
  • Organic water-miscible solvents include e.g. B. the compounds mentioned above as hydrophilizing agents.
  • Liquid to gel preparations can be prepared continuously or in batches by simply mixing the constituents, if appropriate at elevated temperature.
  • one or more thickening systems can be added to a liquid composition according to the invention.
  • the viscosity of the compositions according to the invention can be measured using customary standard methods (for example Brookfield RVD-VII viscometer at 20 rpm and 20 ° C., spindle 3) and is preferably in the range from 100 to 5000 mPas.
  • Preferred compositions have viscosities of 200 to 4000 mPas, values between 400 and 2000 mPas being particularly preferred.
  • Suitable thickeners are usually polymeric compounds. These swelling agents are mostly organic, high-molecular substances that absorb liquids, swell and eventually convert into viscous real or colloidal solutions, come from the groups of natural polymers, modified natural polymers and fully synthetic polymers.
  • Polymers derived from nature that are used as thickeners are, for example, agar agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, xanthan gum, gelatin and casein. Modified natural products come primarily from the group of modified starches and celluloses; carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and propyl cellulose and core meal ethers may be mentioned as examples.
  • surfactant thickeners can also be used, e.g. B. Alkyipolyglycoside, such as C 8 . 10 -alkyl polyglucoside (APG ® 220, manufacturer: Cognis Deutschland GmbH); C 12 .. 4 -Alkylpolyglucosid (APG ® 600, manufacturer: Cognis Deutschland GmbH).
  • the means in solid form include e.g. B. powders, compacts, such as granules and moldings (tablets).
  • the individual molds can be produced by methods known from the prior art, such as by spray drying, granulation and pressing.
  • the surfactants contained according to the invention are preferably selected from nonionic, anionic, amphoteric and cationic surfactants and any mixtures thereof.
  • the surfactants are preferably present in an amount of 0.1 to 50% by weight, preferably 0.1 to 35% by weight and in particular 0.1 to 25% by weight, based on the composition.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in two positions or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 1 -alcohols with 3 EO to 7 EO, C 9 -n alcohol with 7 EO, C 13 . 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 . ⁇ 8 - alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12th 1 alcohol with 3 EO and C ⁇ 2 .i 8 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants which contain EO and PO groups together in the molecule can be used according to the invention.
  • block copolymers with EO-PO block units or PO-EO block units can be used, but also EO-PO-EO copolymers or PO-EO-PO copolymers.
  • mixed alkoxylated nonionic surfactants can also be used, in which EO and PO units are not distributed in blocks but statistically. Such products can be obtained by the simultaneous action of ethylene and propylene oxide on fatty alcohols.
  • fatty alcohol polyethylene glycol ethers are those with the formula (I)
  • R represents a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and n1 is a number from 1 to 5.
  • the substances mentioned are known commercial products. Typical examples are addition products of an average of 2 or 4 moles of ethylene oxide onto technical grade C 12 / , - coconut oil alcohol (Dehydol ® LS-2 or LS-4, Cognis Deutschland GmbH) or addition products of an average of 4 moles of ethylene oxide to C 14 15 oxo alcohols (Dobanol ® 45-4, Fa. Shell).
  • the products can have a conventional or narrowed homolog distribution.
  • Fatty alcohol polyethylene / polypropylene glycol ethers are to be understood as meaning nonionic surfactants of the formula (II)
  • R 2 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms, n2 stands for numbers from 1 to 0 and m2 for numbers from 1 to 4.
  • R 3 for a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms, n3 for numbers from 1 to 10, m2 for 0 or numbers from 1 to 4 and R 4 for an alkyl radical 1 to 4 carbon atoms or a benzyl radical.
  • Typical examples are mixed ethers of the formula (III) in which R 3 stands for a technical C 12 -cocoalkyl radical, n3 for 5 or 10, m3 for 0 and R 4 for a butyl group (Dehypon ® LS-54 or LS- 104, Cognis Deutschland GmbH).
  • R 3 stands for a technical C 12 -cocoalkyl radical
  • n3 for 5 or 10
  • R 4 for a butyl group
  • the use of mixed ethers which are closed with butyl or benzyl groups is particularly preferred for technical reasons.
  • Hydroxyalkylpolyethylene glycol ethers are compounds with the general formula (IV)
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monogiycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used in particular in solid compositions, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula V,
  • R 8 CO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 9 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 Hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula VI
  • R 10 for a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 11 for a linear, branched or cyclic alkyl radical or an aryl radical with 2 to 8 carbon atoms
  • R 12 for a linear, branched or cyclic alkyl radical or Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred
  • [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives of this rest.
  • [Z] is preferably obtained by reductive amination of a sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • Suitable surfactants of the sulfonate type are preferably C 9 .-, 3 - alkylbenzene sulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkane sulfonates, and the disulfonates obtained, for example, from C 12 -i8-Monoolef ⁇ nen with terminal or internal double bond by Sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products is considered.
  • alkanesulfonates which are derived from C 12 -i ⁇ alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization be won.
  • the esters of a-sulfofatty acids for example the a-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 2 o- Oxo alcohols and those half esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis.
  • the C 12 -C 16 alkyl sulfates and C 2 -C 5 alkyl sulfates and C 2 -ds alkyl sulfates are preferred for washing technology reasons.
  • 2,3-alkyl sulfates which are produced for example in accordance with US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycene with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • ⁇ alcohols such as 2-methyl-branched C 9 .n alcohols with an average of 3.5 moles of ethylene oxide (EO) or C ⁇ 2 . ⁇ 8 fatty alcohols with 1 to 4 EO, are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • preferred Sulfosuccinates contain C 8 . 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue, which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable anionic surfactants are, in particular, soaps, which are used in particular in powdered form and at higher pH values.
  • Saturated and unsaturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel, olive oil or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • gemini surfactants can be considered as further surfactants. These are generally understood to mean those compounds which have two hydrophilic groups and two hydrophobic groups per molecule. These groups are generally separated from one another by a so-called “spacer”. This spacer is generally a carbon chain which should be long enough that the hydrophilic groups are sufficiently far apart that they can act independently of one another. Such surfactants are distinguished generally due to an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water, but in exceptional cases the term gemini surfactants is understood to mean not only dimeric but also trimeric surfactants.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers, dimer alcohol bis and trimeral alcohol ths sulfates and ether sulfates. End group-blocked dimeric and trimeric mixed ethers are particularly characterized by their bi- and multifunctionality. The end-capped surfactants mentioned have good wetting properties and are low-foaming, so that they are particularly suitable for use in machine washing or cleaning processes. Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides can also be used.
  • Examples of the cationic surfactants which can be used in the agents according to the invention are, in particular, quaternary ammonium compounds.
  • Ammonium halides such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. B. cetylthmethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride.
  • the quaternized protein hydrolyzates are further cationic surfactants which can be used according to the invention.
  • cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone, which is also referred to as amodimethicone) will), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th. Goldschmidt; diquaternary polydimethylsiloxanes, Quaternium-80).
  • Alkyiamidoamines especially fatty acid amidoamines such as the stearylamidopropyldimethylamine available under the name Tego Amid ® S 18, can also be used and are distinguished by their good biodegradability.
  • a quaternary sugar derivative that can be used as a cationic surfactant is the commercial product Glucoquat ® 100, according to the CTFA nomenclature a "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride". All the builders commonly used in detergents and cleaning agents can be present in the detergent tablets according to the invention, in particular zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological prejudices against their use - the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + 1 H 2 O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 yH 2 O are preferred.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles are added
  • Electron diffraction experiments provide washed-out or even sharp diffraction maxima. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • Zeolite P is zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Zeolites of the faujasite type may be mentioned as further preferred and particularly suitable zeolites.
  • the mineral faujasite belongs to the faujasite types within the zeolite structure group 4, which is characterized by the double six-ring subunit D6R (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons , New York, London, Sydney, Toronto, 1974, page 92).
  • the zeolite structure group 4 also includes the minerals chabazite and gmelinite and the synthetic zeolites R (chabazite type), S (gmelinite type), L and ZK-5. The latter two synthetic zeolites have no mineral analogues.
  • Faujasite-type zeolites are made up of ß-cages, which are tetrahedrally linked via D6R subunits, the ß-cages being arranged in the diamond similar to the carbon atoms.
  • the three-dimensional network of the zeolites of the faujasite type used in the process according to the invention has pores of 2.2 and 7.4 A, the unit cell also contains 8 cavities with a diameter of approx. 13 A and can be represented by the formula Na 8 6 [(AIO 2 ) Describe 86 (SiO 2 ) ⁇ o6_ ' 264 H 2 O.
  • the network of zeolite X contains a void volume of approximately 50%, based on the dehydrated crystal, which represents the largest empty space of all known zeolites (zeolite Y: approx. 48% void volume, faujasite: approx. 47% void volume).
  • zeolite Y approx. 48% void volume
  • faujasite approx. 47% void volume.
  • zeolite of the faujasite type denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4.
  • zeolite Y and faujasite and mixtures of these compounds can also be used according to the invention, pure zeolite X being preferred.
  • the aluminum silicates which are used in the process according to the invention are commercially available and the methods for their preparation are described in standard monographs.
  • x can have values between 0 and 276 and have pore sizes of 8.0 to 8.4 A.
  • the zeolite can be used both as a builder in a granular compound and can also be used for a type of "powdering" of the entire mixture to be compressed, usually using both ways of incorporating the zeolite into the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22 wt .-%, in particular 20 to 22 wt .-% of bound water.
  • the alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), are of the greatest importance in the detergent and cleaning agent industry.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91, preferably “3 , melting point 60 °) and as a monohydrate (density 2.04, preferably " 3 ). Both salts are white, water-soluble powders, which lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1.68 gladly " 3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1, 52 like “3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and goes into it with more heating Diphosphate Na P 2 O 7 over. Disodium hydrogen phosphate is prepared by neutralizing phosphoric acid with soda solution using phenolphthalein as an indicator. Dipotassium hydrogen phosphate (secondary or dibasic quartz phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 P0 are colorless crystals, which like dodecahydrate have a density of 1.62 "3 and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C. and, in anhydrous form (corresponding to 39-40% P 2 O 5 ), a density of 2.536 ′′ 3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 "3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction Heating of Thomas slag with coal and potassium sulfate Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1, 815-1, 836 like " 3 , melting point 94 ° with water loss). Substances are colorless crystals that are soluble in water with an alkaline reaction. Na 4 P 2 O is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 "3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. For the latter in particular, there are a large number of names in Use: Melting or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O ⁇ 0 (sodium tripolyphosphate)
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O ⁇ 0 (potassium tripolyphosphate), for example in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) on the market.
  • the potassium polyphosphates are widely used in the detergent and cleaning agent industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • Organic cobuilders which can be used in the detergent tablets according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value for detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), using a UV detector. The measurement was made against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information, for which polystyrene sulfonic acids are standard The molar masses measured against polystyrene sulfonic acids are generally significantly higher than the molar masses specified in this document
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, the molecular weights of 2,000 to 10,000 g / mol, and particularly preferably 3,000 to 5,000 g / mol, can in turn be selected from this group. mol, have, be preferred
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable
  • Molecular mass, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the amount of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also contain allylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers
  • biodegradable polymers made up of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives
  • copolymers are those which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glyceryl disuccinates and glycerol trisuccinates are also preferred in this context.
  • Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • Other useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates Another class of substances with cobuilder properties are the phosphonates. Most of these are the same compounds that are already listed above as hydroxyalkane or aminoalkane phosphonates.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • It is preferably used as the sodium salt, the disodium salt reacting neutrally and the tetrasodium salt in an alkaline manner (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylphosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologues.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the agents according to the invention can contain all substances usually contained in washing and cleaning agents, such as enzymes, bleaching agents, bleach activators, graying inhibitors, foam inhibitors, inorganic salts, solvents, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, hydrotopes, silicone oils, soil release connections, optical brighteners,
  • washing and cleaning agents such as enzymes, bleaching agents, bleach activators, graying inhibitors, foam inhibitors, inorganic salts, solvents, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, hydrotopes, silicone oils, soil release connections, optical brighteners,
  • Graying inhibitors anti-shrink agents, anti-crease agents,
  • Enzymes which can be used in the agents are those from the class of oxidases, proteases, lipases, cutinases, amylases, pullulanases, cellulases, hemicellulases, xylanases and peroxidases and mixtures thereof, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal ®, Maxapem®, Alcalase®, Esperase® and / or Savinase®, amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® and / or Purafect® OxAm, lipases such as Lipolase®, Lipomax®, Lumafast® and / or
  • Enzymes obtained from fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes or Pseudomonas cepacia are particularly suitable.
  • the enzymes which may be used can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature inactivation. They are contained in the surfactant mixtures according to the invention preferably in amounts of up to 10% by weight, in particular from 0.2% by weight to 2% by weight, with enzymes stabilized against oxidative degradation being particularly preferred.
  • bleaching agents are, for example, persulfates and mixed salts with persulfates, such as the salts commercially available under the Is name CAROAT ®, peroxypyrophosphates, citrate perhydrates and H2 O2 -yielding peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, diperdodecanedioic acid or Phthaloiminoperklaren as Phthaliminopercapronsäure.
  • Organic peracids, alkali perborates and / or alkali percarbonates are preferably used in amounts of 0.1 to 40% by weight, preferably 3 to 30% by weight, in particular 5 to 25% by weight.
  • bleach activators can be incorporated into the detergent tablets.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 up to 4 carbon atoms and / or optionally substituted perbenzoic acid can be used.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines are preferred, in particular
  • TAED Tetraacetylethylenediamine
  • DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
  • TAGU 1,3,4,6-tetraacetylglycoluril
  • Acylimides especially N-nonanoylsuccinimide (NOSI), acylated phenol sulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), acylated hydroxycarboxylic acids, such as triethyl-O-acetyl citrate (TEOC), carboxylic acid anhydride, especially carboxylic acid anhydride and / or succinic anhydride, carboxamides, such as N-methyldiacetamide, glycolide, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, isopropenylacetate, 2,5-diacetoxy-2,5-dihydrofuran and those from German patent applications DE 196 16 693 and DE 196 16767 known enol esters as well as acetylated sorbitol and mannitol or their mixtures
  • hydrophilically substituted acylacetals known from German patent application DE-A-196 16 769 and the acyl lactams described in German patent application DE-A-196 16 770 and international patent application WO-A-95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE-A-44 43 177 can also be used.
  • nitrile derivatives such as cyanopyridines, nitrile quats, e.g. B. N-Alkyammoniumacetonitrile, and / or cyanamide derivatives can be used.
  • Preferred bleach activators are sodium 4- (octanoyloxy) benzenesulfonate, t?
  • bleach catalysts can also be included.
  • bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes are also suitable as bleaching catalysts. preference is given to using those compounds which are described in DE 197 09 284 A1.
  • washing and cleaning agents according to the invention are suitable both for cleaning hard surfaces, including dishes, and for washing textiles.
  • Another object of the present invention is accordingly an agent for cleaning hard surfaces, containing surfactants and particles with a particle size of 5 to 500 nm.
  • Cleaning hard surfaces in the sense of the present invention includes cleaning all surfaces occurring in the household and in the commercial sector, including floors, wall and cupboard surfaces and windows. The cleaning of dishes is also included. The cleaning process also includes pre-treatment and post-treatment steps, such as a rinsing process.
  • an agent according to the invention for cleaning hard surfaces contains 0.1 to 20% by weight of particles with a particle size of 5 to 500 nm, 3 to 45% by weight of surfactants and up to 10% by weight of organic solvent (Hydrophilizing agent), optionally complexing agent and water.
  • organic solvent Hydrophilizing agent
  • an agent for cleaning hard surfaces in particular for cleaning glass, contains 0.1 to 20% by weight of particles with a particle size of 5 to 500 nm, up to 20% by weight of water-soluble organic Solvents, preferably ethanol or propanol, up to 10% by weight of organic solvents, preferably glycol ethers, 0.1 to 3% by weight of nonionic surfactants, 0.1 to 3% by weight of anionic surfactants, up to 2% by weight % Alkalizing agent, preferably ammonia or amines, optionally fragrances and water.
  • Another object of the present invention is accordingly a textile detergent containing surfactants and particles with a particle size of 5 to 500 nm.
  • the textile detergents can be used for pretreatment, washing and post-treatment, i.e. can be used as fabric softener, etc.
  • a textile detergent according to the invention which is in solid form, contains 0.1 to 35% by weight of particles with a particle size of 5 to 500 nm, 2.5% by weight to 20% by weight of anionic surfactant, 1% by weight to 20% by weight of nonionic surfactant, 30% by weight to 55% by weight of water-insoluble inorganic builder, up to 25% by weight, in particular 1% by weight to 15% by weight of bleaching agent , up to 8% by weight, in particular 0.5% by weight to 6% by weight, of bleach activator and up to 20% by weight, in particular 0.1% by weight to 15% by weight, of inorganic salts, in particular alkali metal carbonate, sulfate and / or silicate, and up to 2% by weight, in particular 0.4% by weight to 1.2% by weight, of enzyme.
  • anionic surfactant 1% by weight to 20% by weight of nonionic surfactant
  • 30% by weight to 55% by weight of water-insoluble inorganic builder up to 25% by weight, in particular 1% by
  • a textile detergent according to the invention which is in liquid form, contains 0.1 to 32% by weight of particles with a particle size of 5 to 500 nm, up to 15% by weight, in particular 3% by weight to 10 %
  • anionic surfactants up to 15% by weight, in particular 3% by weight to 10% by weight of nonionic surfactants, up to 18% by weight, in particular 4% by weight to 16% by weight Soap, 0.5% by weight, up to 20% by weight of water-soluble organic builder, up to 20% by weight, in particular 0.1% by weight to 5% by weight of water-insoluble inorganic builder, and up to 60 %
  • enzyme and up to 10% by weight, in particular 0.01% by weight to 7.5% by weight enzyme stabilizer system.
  • the formulations were rubbed onto a glass pane and sprayed with dirty water (dispersion of water and a standard carpet dirt). The test was carried out in comparison with an untreated glass pane and a formulation without nanoparticles.
  • the surface treated with nanoparticles showed a uniformly running film of dirty water. Large drops formed on the untreated surface, drops also remained on the surface polished with the glass cleaner. After drying, the three glass panes were compared again. There was no contamination on the surface treated with nanoparticles, while on the other surfaces there were clear dirt residues as drop-shaped stains.
  • test results show that in the methylene blue test, a closed water film formed on the surface of the glass panes treated according to the invention, while in comparative samples (Examples 1 and 2), in addition to a pronounced edge alignment, a drop pattern was also evident.
  • comparative samples Examples 1 and 2
  • antifogging test there was no fogging of the glass pane compared to the untreated glass plate.
  • formulations according to the invention which contain particles with a particle size of 5 to 500 nm, show better wetting properties than the formulations without such particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Wasch- oder Reinigungsmittel, die Tenside und gegebenenfalls weitere übliche Inhaltsstoffe sowie Partikel mit einer Teilchengrösse von 5 bis 500 nm enthalten, verleihen einer zu reinigenden Oberfläche temporär schmutzabweisende Eigenschaften.

Description

Wasch- oder Reinigungsmittel
Die vorliegende Erfindung betrifft ein Wasch- oder Reinigungsmittel, das Tenside und gegebenenfalls weitere übliche Bestandteile enthält, ein Mittel zur Reinigung von harten Oberflächen, ein Klarspülmittel zum Einsatz bei der maschinellen Reinigung von Geschirr sowie ein Textilwaschmittel.
Das Reinigen von Substraten, d.h. sowohl von harten Oberflächen als auch von Textilien hat sowohl im Haushalt als auch im gewerblichen Bereich eine große Bedeutung. Zum einen haben die Wasch- oder Reinigungsverfahren hygienische Gründe, vielfach sind es auch ästhetische Gründe. Die ästhetischen Gründe sind insbesondere bei lichtdurchlässigen oder glatten Oberflächen von Bedeutung. So verlieren „angestaubte" Gläser einschließlich Fensterscheiben und auch Oberflächen aus Porzellan zumindest teilweise ihren Glanz.
Bei Beobachtungen in der Natur hat man festgestellt, daß Oberflächen von Pflanzen schmutzabweisende Eigenschaften besitzen, da sich auf diesen Oberflächen Schmutzpartikel nicht nachhaltig ablagern können. Derartige Oberflächen sind dazu in der Lage, sich durch Regen oder bewegtes Wasser zu reinigen. Diese Wirkung wird auf die sich auf der Oberfläche befindlichen Wachsschichten und insbesondere auf deren Oberflächenstruktur zurückgeführt.
Im europäischen Patent EP 0772 514 wird eine den Pflanzen nachgebildete selbstreinigende Oberfläche von Gegenständen offenbart, die eine künstliche Oberflächenstruktur aus Erhebungen und Vertiefungen aufweist und dadurch gekennzeichnet ist, daß der Abstand zwischen den Erhebungen im Bereich von 5 bis 200 μm und die Höhe der Erhebungen im Bereich von 5 bis 100 μm liegen und mindestens die Erhebungen aus hydrophoben Polymeren und haltbar hydrophierten Materialien bestehen und die Erhebungen nicht durch Wasser oder durch Wasser mit Detergentien ablösbar sind.
Die im Stand der Technik offenbarten Oberflächen weisen eine permanent vorliegende Oberfläche mit einer definierten Struktur auf. Diese Oberflächen sind im Bereich der Wasch- oder Reinigungsmittel ungeeignet, da aufgrund der Vielzahl der zu reinigenden Oberflächen eine permanente Veränderung bereits im Herstellungsverfahren dieser Substrate berücksichtigt werden müßte.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Wasch- oder Reinigungsmittel zur Verfügung zu stellen, das geeignet ist, das zu reinigende Substrat temporär derart zu verändern, daß der Oberfläche des zu reinigenden Substrats temporär schmutzabweisende Eigenschaften verliehen werden.
Überraschenderweise wurde festgestellt, daß einer Oberfläche temporär schmutzabweisende Eigenschaften verliehen werden können, wenn einem Mittel, das neben Tensiden gegebenenfalls weitere übliche Inhaltsstoffe enthält, Partikel mit einer Teilchengröße von 5 bis 500 nm zugesetzt werden.
Temporäre Veränderung der Oberfläche im Sinne der vorliegenden Erfindung bedeutet, daß die Wirkung nach einigen, insbesondere bis zu 4 Wasch- oder Reinigungszyklen aufrechterhalten werden kann.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Wasch- oder Reinigungsmittel, enthaltend Tenside und gegebenenfalls weitere übliche Inhaltsstoffe, dadurch gekennzeichnet, daß es Partikel mit einer Teilchengröße von 5 bis 500 nm enthält.
Bei den erfindungsgemäß eingesetzten Partikeln handelt es sich vorzugsweise um wasserunlösliche bzw. nur wenig in Wasser lösliche Partikel, die nach dem Wasch- beziehungsweise Reinigungsvorgang vorübergehend auf dem zu reinigenden Substrat verbleiben. Diese Partikel weisen erfindungsgemäß eine Teilchengröße von 5 bis 500 nm, vorzugsweise von 5 bis 250 nm, auf. Wegen der Teilchengröße werden diese Partikel auch als nanoskalige Partikel bezeichnet. Es können als Partikel beliebige unlösliche Feststoffe eingesetzt werden, die in der genannten Größenverteilung vorliegen. Beispiele für geeignete Partikel sind beliebige Fällungskieselsäuren, Aerogele, Xerogele, Mg(OH)2, Böhmit (AI(O)OH, ZrO2, ZnO, CeO2l Fe2O3, Fe3O4, TiO2, TiN, Hydroxylapatit, Bentonite, Hektorit, SiO2.CeO2, SnO2, ln2O3.SnO2, NgAI2O4, HfO2, Sole, wie SiO2-Soie, AI2O3-Sole oder TiO2-Sole, sowie beliebigen Gemischen der voranstehenden. Der Gehalt dieser nanoskaligen Partikel in den erfindungsgemäßen Mitteln sollte so bemessen sein, daß die Oberfläche des zu reinigenden Substrats ausreichend bedeckt ist. Vorzugsweise enthalten die Mittel 0,01 bis 35 Gew.-%, besonders bevorzugt 0,01 bis 20 Gew.-% und insbesondere mindestens 0,1 Gew.-%, beispielsweise 0,5 bis 10 Gew.-%, der nanoskaligen Partikel, bezogen auf das fertige Mittel.
Durch den Einsatz der nanoskaligen Partikel ist es möglich, die Benetzbarkeit der zu reinigenden Substrate deutlich zu verstärken. Es lassen sich vielfach Kontaktwinkel von 5° bis 20° erreichen, was bedeutet, daß ein Wasser- oder Öltropfen fast vollständig auf der Oberfläche spreitet.
Dies ist insbesondere deshalb vorteilhaft, da dadurch ein gleichmäßiges Ablaufen der Flüssigkeit vom benetzten Substrat gewährleistet ist und Rückstände sich nicht in den Tropfen anreichern können und nach dem Trocknen sichtbare Flecken bilden.
Eine weitere Verbesserung kann dadurch erreicht werden, daß die Oberfläche des nanoskaligen Partikels modifiziert wird. Dies kann beispielsweise durch übliche Komplexbildner erfolgen, wodurch die Ausfällung von Ca- bzw. Mg-Salzen verhindert werden kann. Diese Verbindungen können in einer solchen Menge aufgebracht werden, daß sie im fertigen Mittel in Mengen von 1 bis 8 Gew.-%, vorzugsweise von 3,0 bis 6,0 Gew.-% und insbesondere 4,0 bis 5,0 Gew.-%, bezogen auf das fertige Mittel, enthalten sind. Üblicherweise befinden sie sich auf der Oberfläche der Partikel.
Eine bevorzugte Klasse von Komplexbildnern sind die Phosphonate. Zu diesen bevorzugten Verbindungen zählen insbesondere Organophosphonate wie beispielsweise 1-Hydroxyethan-1 ,1-diphosphonsäure (HEDP), Aminotri(methylenphosphonsäure) (ATMP), Diethylenthamin-penta(methylenphosphonsäure) (DTPMP bzw. DETPMP) sowie 2-Phosphonobutan-1 ,2,4-tricarbonsäure (PBS-AM), die zumeist in Form ihrer Ammoniumoder Alkalimetallsalze eingesetzt werden. Die Phosphonate werden in einer solchen Menge auf die Oberfläche der Partikel aufgebracht, daß sie im fertigen Mittel in Mengen von 0,01 bis 2,0 Gew.-%, vorzugsweise 0,05 bis 1 ,5 Gew.-% und insbesondere von 0,1 bis 1 ,0 Gew.-% enthalten sind. Ferner können als Kompiexbildner Stoffe eingesetzt werden, die Schwermetalle kompiexieren. Geeignete Schwermetallkomplexbildner sind beispielsweise Ethylendiamintetraessigsäure (EDTA) oder Nitrilotriessigsäure (NTA) in Form der freien Säuren oder als Alkalimetallsaize und Derivate der voranstehenden sowie Alkaiimetallsalze von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten.
Weitere geeignete Komplexbildner sind niedermolekulare Hydroxycarbonsäuren wie Citro- nensäure, Weinsäure, Äpfelsäure, Milchsäure oder Gluconsäure bzw. deren Salze, wobei Citronensäure oder Natriumeitrat besonders bevorzugt sind.
Die Modifikation der Oberfläche der Partikel kann beispielsweise durch einfaches Verrühren einer Suspension der Partikel mit dem Komplexbildner erfolgen; dieser zieht während des Verrührens auf die Oberfläche der Partikel auf.
Für den Fachmann ist es offensichtlich, daß nicht die gesamte Menge an Komplexbildner, die in die Mittel eingearbeitet werden sollen, auf die nanoskaligen Partikel aufgebracht werden muß. Es ist auch möglich, diese Verbindungen ganz oder teilweise unmittelbar einzuarbeiten.
Eine weitere Steigerung der Benetzbarkeit läßt sich auch durch den Zusatz von Hydrophilierungsmittel erreichen. Beispiele für derartige Hydrophilierungsmittel sind ein- oder mehrwertigen Alkohole, Alkanolamine oder Glycolether, sofern sie mit Wasser mischbar sind. Vorzugsweise werden die Hydrophilierungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykolmethylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Dipropylenglykolmonomethyl- oder -ethylether, Di-isopropylenglykolmonomethyl- oder - ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl- 3-methoxybutanol, Propyien-glykol-t-butylether-Alkohole, insbesondere CrC -Alkanole, Glykole, Polyethylenglykole, vorzugsweise mit einem Molekulargewicht zwischen 100 und 100 000, insbesondere zwischen 200 und 10 000, und Polyole, wie Sorbitol und Mannitol, sowie bei Raumtemperatur flüssiges Polyethylenglykol, Carbonsäureester, Polyvinylalkohole, Ethylenoxid-Propylenoxid-Blockcopolymere sowie beliebige Gemische der voranstehenden. Die erfindungsgemäßen Mittel können in flüssiger bis gelförmiger oder auch in fester Form vorliegen.
Liegen die Mittel in flüssiger bis gelförmiger Form vor, so handelt es sich in der Regel um wäßrige Zubereitungen, die ggf. noch weitere, mit Wasser mischbare organische Lösungsmittel sowie Verdickungsmittel enthalten. Zu den mit Wasser mischbaren organischen Lösungsmitteln zählen z. B. die oben als Hydrophilierungsmittel genannten Verbindungen. Die Herstellung von flüssigen bis gelförmigen Zubereitungen kann kontinuierlich oder batchweise durch einfaches Vermischen der Bestandteile, ggf. bei erhöhter Temperatur erfolgen.
Zur Einstellung der Viskosität können einer flüssigen erfindungsgemäßen Zusammensetzung ein oder mehrere Verdickungssysteme zugesetzt werden. Die Viskosität der erfindungsgemäßen Zusammensetzungen kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter RVD-VII bei 20 U/min und 20°C, Spindel 3) gemessen werden und liegt vorzugsweise im Bereich von 100 bis 5000 mPas. Bevorzugte Zusammensetzungen haben Viskositäten von 200 bis 4000 mPas, wobei Werte zwischen 400 und 2000 mPas besonders bevorzugt sind.
Geeignete Verdicker sind üblicherweise polymere Verbindungen. Diese auch Quell(ungs)mittel genannten, meist organischen hochmolekularen Stoffe, die Flüssigkeiten aufsaugen, dabei aufquellen und schließlich in zähflüssige echte oder kolloide Lösungen übergehen, stammen aus den Gruppen der natürlichen Polymere, der abgewandelten natürlichen Polymere und der vollsynthetischen Polymere.
Aus der Natur stammende Polymere, die als Verdickungsmittel Verwendung finden, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Xanthan, Gelatine und Casein. Abgewandelte Naturstoffe stammen vor allem aus der Gruppe der modifizierten Stärken und Cellulosen; beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt. Darüber hinaus können auch tensidische Verdicker eingesetzt werden, z. B. Alkyipolyglycoside, wie C8.10-Alkylpolyglucosid (APG® 220, Hersteller: Cognis Deutschland GmbH) ; C12..4-Alkylpolyglucosid (APG® 600, Hersteller: Cognis Deutschland GmbH).
Zu den in fester Form vorliegenden Mittel zählen z. B. Pulver, Kompaktate, wie Granulate und Formkörper (Tabletten). Die einzelnen Formen können nach aus dem Stand der Technik bekannten Verfahren hergestellt werden, wie durch Sprühtrocknung, Granulation und Verpressen.
Die erfindungsgemäß enthaltenen Tenside sind vorzugsweise ausgewählt aus nichtionischen, anionischen, amphoteren und kationischen Tensiden sowie deren beliebigen Gemische.
Die Tenside liegen vorzugsweise in einer Menge von 0,1 bis 50 Gew.-%, vorzugsweise von 0,1 bis 35 Gew.-% und insbesondere von 0,1 bis 25 Gew.-%, bezogen auf die Zusammensetzung, vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Steliung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C1 .ι -Alkohole mit 3 EO bis 7 EO, C9.n-Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C128- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12. 1 -Alkohol mit 3 EO und Cι2.i8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO-Biockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO-Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Besonders bevorzugte Beispiele nichtinionische Tenside, die ein gutes Ablaufverhalten den Wasser auf harten Oberflächen bewirken sind die Fettalkoholpolyethylenglycolether, Fettalkoholpolyethylen/polypropylenglycolether und Mischether. die ggf. endgruppeverschiossen sein können.
Beispiele für Fettalkoholpolyethylengiycolether sind solche mit der Formel (I)
R1O-(CH2CH2O)mH (I)
in der R für eine linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohienstoffatomen und n1 für Zahlen von 1 bis 5 steht.
Die genannten Stoffe stellen bekannte Handelsprodukte dar. Typische Beispiele sind Anlagerungsprodukte von durchschnittlich 2 bzw. 4 Mol Ethylenoxid an technischen C12/ , - Kokosfettaikohol (Dehydol® LS-2 bzw. LS-4, Cognis Deutschland GmbH) oder Anlagerungsprodukte von durchschnittlich 4 Mol Ethylenoxid an C14 15-Oxoalkohole (Dobanol®45-4, Fa. Shell). Die Produkte können eine konventionelle oder auch eingeengte Homolgenverteilung aufweisen.
Unter Fettalkoholpolyethylen/polypropylenglycolethern sind nichtionische Tenside der Formel (II) zu verstehen,
CH3 R2O-(CH2CH2O)n2(CH2CHO)m2H (II) in der R2 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, n2 für Zahlen von 1 bis 0 und m2 für Zahlen von 1 bis 4 steht.
Auch diese Stoffe stellen bekannte Handelsprodukte dar. Typische Beispiele sind Anlagerungsprodukte von durchschnittlich 5 Mol Ethylenoxid und 4 Mol Propylenoxid an technischen Ci2/. -Kokosfettalkohol (Dehydol®LS-54, Cognis Deutschland GmbH), oder 6,4 Mol Ethylenoxid und 1 ,2 Mol Propylenoxid an technischen Cι04-Kokosfettalkohol (Dehydol®LS-980, Fa. Cognis Deutschland GmbH).
Unter Mischethern sind endgrupenverschlosssene Fettalkoholpolyglycolether mit der Formel (III) zu verstehen
CH3
I
R3O-(CH2CH2O)n3(CH2CHO)m3-R4 (III)
in der R3 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, n3 für Zahlen von 1 bis 10, m2 für 0 oder Zahlen von 1 bis 4 und R4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder einen Benzylrest steht.
Typische Beispiele sind Mischether der Formel (III), in der R3 für einen technischen C12 ι - Kokosalkylrest, n3 für 5 bzw. 10, m3 für 0 und R4 für eine Butylgruppe steht (Dehypon®LS-54 bzw. LS-104, Cognis Deutschland GmbH). Die Verwendung von butyl- bzw. benzylgruppenverschlossenen Mischethern ist aus anwendungstechnischen Gründen besonders bevorzugt.
Unter Hydroxyalkylpolyethyienglykolethern versteht man Verbindungen mit der allgemeinen Formel (IV)
OH R7
I I
R5-CH-CH-(OCH2CH2O)n4-OR6 (IV) in der R5 für Wasserstoff oder einen geradkettigen Alkylrest mit 1 bis 16 C-Atomen, R6 für einen geradkettigen oder verzweigten Alkylrest mit 4 bis 8 C-Atomen, R7 für Wasserstoff oder einen Alkylrest mit 1 bis 16 C-Atomen und n4 für eine Zahl von 7 bis 30 stehen, mit der Maßgabe, daß die Gesamtzahl der in R5 und R7 enthaltenen C-Atome 6 bis 16 beträgt.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligome sierungsgrad x, der die Verteilung von Monogiykosiden und Oiigoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse nichtionischer Tenside, die insbesondere in festen Mitteln eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-di- methylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäureal- kanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel V,
R9 R8-CO-N-[Z] (V)
in der R8CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R9 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoff atomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel VI,
R11-O-R12
R10-CO-N-[Z] VI
in der R10 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R11 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R12 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C^-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.-,3- Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-i8-Monoolefιnen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-iδ-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von a-Sulfofettsäuren (Estersulfonate), z.B. die a-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und Cι2-Cι5-Alkylsulfate sowie C -ds-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäuregly- cerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycehn mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7. ι-Alkohole, wie 2-Methyl-verzweigte C9.n-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Cι28-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8.18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkohoirest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht, die insbesondere in pulverförmigen Mitteln und bei höheren pH-Werten eingesetzt werden. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern-, Olivenöl- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsaize, insbesondere in Form der Natriumsalze vor.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten „Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini- Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether Dimeralkohol-bis- und Trimeralkohol-ths-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini- Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
Beispiele für die in den erfindungsgemäßen Mitteln verwendbaren kationischen Tenside sind insbesondere quartäre Ammoniumverbindungen. Bevorzugt sind Ammoniumhalogenide wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchioride, z. B. Cetylthmethylammoniumchlorid, Stearyltri- methyiammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammo- niumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid. Weitere erfindungsgemäß verwendbare kationische Tenside stellen die quaternisierten Proteinhydrolysate dar.
Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trime- thylsilylamodimethicon), Dow Corning 929 Emulsion (enthaltend ein hydroxyl-amino-mo- difiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80).
Alkyiamidoamine, insbesondere Fettsäureamidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylamidopropyldimethylamin, sind ebenfalls einsetzbar und zeichnen sich durch ihre gute biologische Abbaubarkeit aus.
Ebenfalls sehr gut biologisch abbaubar sind quaternäre Esterverbindungen, sogenannte "Esterquats", wie die unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyal- kyldialkoyloxyalkylammoniummethosulfate.
Ein Beispiel für ein als kationisches Tensid einsetzbares quatemäres Zuckerderivat stellt das Handelsprodukt Glucoquat®100 dar, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride". ln den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ- Natriumdisilikate Na2Si2O5 yH2O bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei
Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P.
Als weitere bevorzugt eingesetzte und besonders geeignete Zeolithe sind Zeolithe vom Faujasit-Typ zu nennen. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: „Zeolite Molecular Sieves,,, John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit- Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus ß-Käfigen aufgebaut, die tetrahedral über D6R- Unterein-heiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohienstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 A auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 A Durchmesser und läßt sich durch die Formel Na86[(AIO2)86(SiO2)ιo6_ ' 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: „Zeolite Molecular Sieves,,, John Wley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff „Zeolith vom Faujasit- Typ,, alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungs-gemäß einsetzbar, wobei die Vorteile des erfindungsgemäßen Verfahrens besonders deut-lich zu Tage treten, wenn mindestens 50 Gew.-% der Zeolithe Zeolithe vom Faujasit-Typ sind.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien be-schrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(AIO2)86(SiO2)106] ' x H2O,
K86[(AIO2)86(SiO2)106] x H2O,
Ca40Na6[(Alθ2)86(Siθ2)106] ' H2O,
Sr21Ba22[(Alθ2)86(SiO2)ιo6] ' x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 A aufweisen.
Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O (1-n)K2O AI2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1 ,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1 ,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaiiumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3P0 , sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern" 3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P30 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P30 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -» Na3K2P3Oιo + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar. Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Waschoder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden Die gegen Polystyrolsulfonsauren gemessenen Molmassen sind in der Regel deutlich hoher als die in dieser Schrift angegebenen Molmassen
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekulmasse von 2000 bis 20000 g/mol aufweisen Aufgrund ihrer überlegenen Loslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsaure mit Methacrylsaure und der Acrylsaure oder Methacrylsaure mit Maleinsäure Als besonders geeignet haben sich Copolymere der Acrylsaure mit Maleinsäure erwiesen, die 50 bis 90 Gew -% Acrylsaure und 50 bis 10 Gew -% Maleinsäure enthalten Ihre relative Moiekulmasse, bezogen auf freie Sauren, betragt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Losung eingesetzt werden Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten betragt vorzugsweise 0,5 bis 20 Gew -%, insbesondere 3 bis 10 Gew -%
Zur Verbesserung der Wasserloshchkeit können die Polymere auch Allylsulfonsauren, wie beispielsweise Allyloxybenzolsulfonsaure und Methallylsulfonsaure, als Monomer enthalten
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsaure und der Maleinsäure sowie Vinylalkohol bzw Vinylalkohol-Deπvate oder die als Monomere Salze der Acrylsaure und der 2-Alkylallylsulfonsaure sowie Zucker-Derivate enthalten
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsaure/Acrylsauresalze bzw Acrolein und Vinylacetat aufweisen Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poiysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin- N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glyceriπdisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%. Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform voriiegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften steilen die Phosphonate dar. Es handelt sich hierbei größtenteils um dieselben Verbindungen, die bereits oben aufgeführt werden, wie Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkan- phosphonaten ist das 1-Hydroxyethan-1 ,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethyienphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Weiterhin können die erfindungsgemäßen Mittel alle üblicherweise in Wasch- und Reinigungsmitteln enthaltenen Substanzen aufweisen, wie Enzyme, Bleichmittel, Bleichaktivatoren, Vergrauungsinhibitoren, Schauminhibitoren, anorganische Salze, Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Silikonöle, Soil-release-Verbindungen, optische Aufheller,
Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel,
Farbübertragungsinhibitoren, antimikrobielle Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, UV-Absorber oder deren Gemische. Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Oxidasen, Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®, Cellulasen wie Celluzyme® und oder Carezame®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können, wie zum Beispiel in der europäischen Patentschrift EP 0 564 476 oder in der internationalen Patentanmeldungen WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Tensidmischungen vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat, Natriumperboratmonohydrat und das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Persulfate und Mischsalze mit Persulfaten, wie die unter der Handeltsbezeichnung CAROAT® erhältlichen Salze, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Diperdodecandisäure oder Phthaloiminopersäuren wie Phthaliminopercapronsäure. Vorzugsweise werden organische Persäuren, Alkaliperborate und/oder Alkali- percarbonate, in Mengen von 0,1 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-%, insbesondere 5 bis 25 Gew.-% eingesetzt.
Um beim Waschen bei Temperaturen von 60 °C und darunter, und insbesondere bei der Wäschevorbehandlung eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Wasch- und Reinigungsmittelformkörper eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere
Tetraacetylethyiendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl- 2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Giycolurile, insbesondere 1 ,3,4,6- Tetraacetylglycoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), acylierte Hydroxycarbonsäuren, wie Triethyl-O-acetylcitrat (TEOC), Carbonsäureanhydride, insbesondere Phthalsäureaπhydrid, Isatosäureanhydrid und/oder Bernsteinsäureanhydrid, Carbonsäureamide, wie N-Methyldiacetamid, Glycolid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglycoldiacetat, Isopropenylacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0 525239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglucose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyiiertes Glucamin bzw. Gluconolacton, Triazol bzw. Triazolderivate und/oder teilchenförmige Caprolactame und/oder Caprolactamderivate, bevorzugt N-acylierte Lactame, beispielsweise N- Benzoylcaprolactam und N-Acetylcaprolactam, die aus den internationalen Patentanmeldungen WO-A-94/27970, WO-A-94/28102, WO-A-94/28103, WO-A-95/00626, WO-A- 95/14759 und WO-A-95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE-A-196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE-A-196 16 770 sowie der internationalen Patentanmeldung WO-A- 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE-A-44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Ebenso können Nitrilderivate wie Cyanopyridine, Nitrilquats, z. B. N-Alkyammoniumacetonitrile, und/oder Cyanamidderivate eingesetzt werden. Bevorzugte Bleichaktivatoren sind Natrium-4- (octanoyloxy)-benzolsulfonat, t?-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Undecenoyloxybenzolsulfonat (UDOBS), Natrium- dodecanoyloxybenzolsulfonat (DOBS), Decanoyloxybenzoesäure (DOBA, OBC 10) und/oder Dodecanoyloxybenzolsulfonat (OBS 12), sowie N-Methylmorpholinum-acetonitril (MMA). Derartige Bleichaktivatoren sind im üblichen Mengenbereich von 0,01 bis 20 Gew.-%, vorzugsweise in Mengen von 0,1 bis 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren enthalten sein. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkompiexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren geeignet, wobei solche Verbindungen bevorzugt eingesetzt werden, die in der DE 197 09 284 A1 beschrieben sind.
Die erfindungsgemäßen Wasch- und Reinigungsmittel eignen sich sowohl zum Reinigen von harten Oberflächen einschließlich Geschirr sowie zum Waschen von Textilien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist demgemäß ein Mittel zum Reinigen von harten Oberflächen, enthaltend Tenside und Partikel mit einer Teilchengröße von 5 bis 500 nm.
Reinigen von harten Oberflächen im Sinne der vorliegenden Erfindung schließt das Reinigen aller im Haushalt und im gewerblichen Bereich vorkommenden Flächen einschließlich Fußböden, Wand- und Schrankflächen sowie Fenster ein. Ebenso ist auch das Reinigen von Geschirr mit umfaßt. Zum Reinigungsvorgang zählen auch Schritte zur Vor- und Nachbehandlung, wie ein Spülvorgang.
In einer bevorzugten Ausführungsform enthält ein erfindungsgemäßes Mittel zum Reinigen von harten Oberflächen 0,1 bis 20 Gew.-% Partikel mit einer Teiichengröße von 5 bis 500 nm, 3 bis 45 Gew.-% Tenside, bis zu 10 Gew.-% organisches Lösungsmittel (Hydrophilierungsmittel), ggf. Komplexbildner und Wasser.
In einer besonders bevorzugten Ausführungsform enthält ein Mittel zum Reinigen von harten Oberflächen, insbesondere zum Reinigen von Glas, 0,1 bis 20 Gew.-% Partikel mit einer Teilchengröße von 5 bis 500 nm, bis zu 20 Gew.-% wasserlösliche organische Lösungsmittel, vorzugsweise Ethanol oder Propanol, bis 10 Gew.-% zu organische Lösungsmittel, vorzugsweise Glykolether, 0,1 bis 3 Gew.-% nichtionische Tenside, 0,1 bis 3 Gew.-% anionische Tenside, bis zu 2 Gew.-% Alkalisierungsmittel, vorzugsweise Ammoniak oder Amine, ggf. Duftstoffe und Wasser.
Noch ein weiterer Gegenstand der vorliegenden Erfindung ist demgemäß ein Textil- waschmittel, enthaltend Tenside und Partikel mit einer Teilchengröße von 5 bis 500 nm.
Die Textilwaschmittel können in Abhängigkeit von ihrer speziellen Rezeptur zur Wäschevorbehandlung, zum Waschen und zur Nachbehandlung, d.h. als Weichspüler, etc. eingesetzt werden.
In einer bevorzugten Ausführungsform enthält ein erfindungsgemäßes Textilwaschmittel, das in fester Form vorliegt, 0,1 bis 35 Gew.-% Partikel mit einer Teilchengröße von 5 bis 500 nm, 2,5 Gew.-% bis 20 Gew.-% anionisches Tensid, 1 Gew.-% bis 20 Gew.-% nichtionisches Tensid, 30 Gew.-% bis 55 Gew.-% wasserunlöslichen anorganischen Builder, bis zu 25 Gew.-%, insbesondere 1 Gew.-% bis 15 Gew.-% Bleichmittel, bis zu 8 Gew.-%, insbesondere 0,5 Gew.-% bis 6 Gew.-% Bleichaktivator und bis zu 20 Gew.-%, insbesondere 0,1 Gew.-% bis 15 Gew.-% anorganische Salze, insbesondere Alkalicarbo- nat, -sulfat und/oder -silikat, sowie bis zu 2 Gew.-%, insbesondere 0,4 Gew.-% bis 1 ,2 Gew.-% Enzym.
In einer bevorzugten Ausführungsform enthält ein erfindungsgemäßes Textilwaschmittel, das in flüssiger Form vorliegt, 0,1 bis 32 Gew.-% Partikel mit einer Teilchengröße von 5 bis 500 nm, bis zu 15 Gew.-%, insbesondere 3 Gew.-% bis 10 Gew.-% anionische Tenside, bis zu 15 Gew.-%, insbesondere 3 Gew.-% bis 10 Gew.-% nichtionische Tenside, bis zu 18 Gew.-%, insbesondere 4 Gew.-% bis 16 Gew.-% Seife, 0,5 Gew.-%, bis 20 Gew.-% wasserlöslichen organischen Builder, bis zu 20 Gew.-%, insbesondere 0,1 Gew.- % bis 5 Gew.-% wasserunlöslichen anorganischen Builder, und bis zu 60 Gew.-%, insbesondere 10 Gew.-% bis 50 Gew.-% Wasser und/oder wassermischbares Lösungsmittel, Enzym sowie bis zu 10 Gew.-%, insbesondere 0,01 Gew.-% bis 7,5 Gew.- % Enzymstabilisatorsystem. Beispiele
Beispiel 1 : Glasreiniger
A. Glasreinigerformuiierungen mit den in Tabelle 1 dargestellten Komponenten wurden durch Vermischen der einzelnen Bestandteile hergestellt.
Tests:
A. Behandlung der Glasscheibe
Die Formulierungen wurden auf eine Glasscheibe aufgerieben und mit Schmutzwasser (Dispersion aus Wasser und einem Standard-Teppichschmutz) besprüht. Der Test wurde im Vergleich mit einer unbehandelten Glasscheibe und einer Formulierung ohne Nanopartikel durchgeführt.
Ergebnis:
Die mit Nanopartikeln behandelte Oberfläche zeigte einen gleichmäßig ablaufenden Schmutzwasserfilm. Auf der unbehandelten Oberfläche bildeten sich große Tropfen, auf der mit dem Glasreiniger polierten Oberfläche verblieben ebenfalls Tropfen. Nach dem Antrocknen wurden die drei Glasscheiben erneut verglichen. Auf der mit Nanopartikeln behandelten Oberfläche zeigten sich keine Verunreinigungen, während man auf den anderen Oberflächen deutliche Schmutzrückstände als tropfenförmige Flecken erkennen konnte.
B. Methylenblau-Test:
Brauchwasser wurde mit Methylenblau angefärbt und auf wie in A vorbereitet Glasscheiben appliziert. Die Ergebnisse sind in Tabelle 2 wiedergegeben. Tabelle 1
Figure imgf000030_0001
C. Antifogging-Test
Eine wie in A mit der erfindungsgemäßen Formulierung behandelte Glasoberfläche und eine unbehandelte Glasoberfläche wurden über Wasserdampf gehalten. Die Ergebnisse sind in Tabelle 2 wiedergegeben.
Tabelle 2
Figure imgf000031_0001
Bewertungskriterien:
Methylenblau-Test und Langzeit-Test:
1 = geschlossener Wasserfilm ohne Kantenflucht
2 = geschlossener Wasserfilm mit leichter Kantenflucht
3 = kein Hydrophilie-Effekt
Antifogging-Test
1 kein Beschlagen der Scheiben 6 vollkommenes Beschlagen der Scheiben
Die Versuchsergebnisse zeigen, daß beim Methylenblau-Test sich auf den erfindungsgmäß behandelten Glasscheiben ein geschlossener Wasserfilm auf der Oberfläche bildete, während bei Vergleichsmustern (Beispiele 1 und 2) neben einer ausgeprägten Kantenflucht auch ein Tropfenmuster zu erkennen war. Beim Antifogging- Test ließ sich im Vergleich zu der unbehandelten Glasplatte kein Beschlagen der Glasscheibe erkennen.
Insgesamt zeigen die erfindungsgemäßen Formulierungen, die Partikel mit einer Teilchengröße von 5 bis 500 nm enthalten, bessere Benetzungseigenschaften als die Formulierungen ohne derartige Partikel.

Claims

Patentansprüche
1. Wasch- oder Reinigungsmittel enthaltend Tenside und gegebenenfalls weitere übliche Inhaltsstoffe, dadurch gekennzeichnet, daß es Partikel mit einer Teilchengröße von 5 bis 500 nm enthält.
2. Wasch- oder Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, daß die Partikel eine Teilchengröße von 5 bis 250 nm aufweisen.
3. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Partikel ausgewählt sind aus beliebigen Fällungskieselsäuren, Aerogelen, Xerogelen, Mg(OH)2, Böhmit (AI(O)OH, ZrO2, ZnO, CeO2, Fe2O3, Fe3O4, TiO2, TiN, Hydroxylapatit, Bentonite, Hektorit, SiO2.CeO2, SnO2, ln2O3.SnO2, NgAI2O4, HfO2, Solen, wie SiO2-Solen, AI2O3-Solen oder TiO2-Solen, sowie Gemischen der voranstehenden.
4. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Mittel 0,01 bis 35 Gew.-% der Partikel, bezogen auf das fertige Mittel, enthalten.
5. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Oberflächen der Partikel modifiziert werden mit Komplexbildnern ausgewählt aus den Phosphonaten, wie 1-Hydroxyethan-1 ,1- diphosphonsäure, Aminotri(methylenphosphonsäure), Diethylentriamin-penta- (methylenphosphonsäure) sowie 2-Phosphonobutan-1 ,2,4-tricarbonsäure (PBS- AM), die zumeist in Form ihrer Ammonium- oder Alkalimetallsalze vorliegen, Schwermetallkomplexbildnern, wie Ethylendiamintetraessigsäure oder Nitrilotriessigsäure in Form der freien Säuren oder als Alkalimetallsalze, deren Derivaten, Alkalimetallsalzen von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten, sowie niedermolekularen Hydroxycarbonsäuren, wie Citronensäure, Weinsäure, Äpfelsäure, Milchsäure oder Gluconsäure bzw. deren Salzen.
6. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es Hydrophilierungsmittel ausgewählt aus der Gruppe aus Ethanol, n- oder i-Propanol, Butanolen, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykolmethylether, Diethylenglykolethylether, Propyienglykoimethyl-, - ethyl- oder -propyl-ether, Dipropylenglykolmonomethyl- oder -ethylether, Di- isopropylenglykolmonomethyl- oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen- glykol-t-butylether-Alkohole, insbesondere C C4-Alkanole, Glykole und Polyole sowie bei Raumtemperatur flüssiges Polyethylenglykol, Carbonsäureester und beliebigen Gemischen der voranstehenden enthält.
7. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie in flüssiger bis gelförmiger oder in fester Form, insbesondere als Pulver oder Kompaktate, wie Tabletten, vorliegen.
8. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Tenside ausgewählt sind aus den nichionischen, anionischen, ampotheren und kationischen Tensiden sowie deren beliebige Gemische.
9. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Gerüststoffe ausgewählt aus der Gruppe der Zeolithe, Silikate, Carbonate, organischen Builder und Cobuilder und Phosphate enthalten sind.
10. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß Enzyme, Bleichmittel, Bleichaktivatoren, Vergrauungsinhibitoren, Schauminhibitoren, anorganische Salze, Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Silikonöle, Soil-release-Verbindungen, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobielle Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägmniermittel, Quell- und Schiebefestmittel, UV-Absorber oder deren Gemische enthalten sind.
11. Mittel zum Reinigen von harten Oberflächen, enthaltend Tenside und Partikel mit einer Teilchengröße von 5 bis 500 nm.
12. Textilwaschmittel, enthaltend Tenside und Partikel mit einer Teilchengröße von 5 bis 500 nm.
PCT/EP2000/010393 1999-10-30 2000-10-21 Wasch- oder reinigungsmittel WO2001032820A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00978973A EP1224256A1 (de) 1999-10-30 2000-10-21 Wasch- oder reinigungsmittel
AU16464/01A AU1646401A (en) 1999-10-30 2000-10-21 Detergents or cleaning agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999152383 DE19952383A1 (de) 1999-10-30 1999-10-30 Wasch- und Reinigungsmittel
DE19952383.5 1999-10-30

Publications (1)

Publication Number Publication Date
WO2001032820A1 true WO2001032820A1 (de) 2001-05-10

Family

ID=7927446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010393 WO2001032820A1 (de) 1999-10-30 2000-10-21 Wasch- oder reinigungsmittel

Country Status (4)

Country Link
EP (1) EP1224256A1 (de)
AU (1) AU1646401A (de)
DE (1) DE19952383A1 (de)
WO (1) WO2001032820A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083662A1 (de) * 2000-05-04 2001-11-08 Henkel Kommanditgesellschaft Auf Aktien Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
EP1215276A1 (de) * 2000-12-12 2002-06-19 Clariant GmbH Wasch- und Reinigungsmittel, enthaltend mikrodisperse silikathaltige Partikel
EP1249468A2 (de) * 2001-04-12 2002-10-16 Creavis Gesellschaft für Technologie und Innovation mbH Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
WO2002084016A1 (de) * 2001-04-12 2002-10-24 Creavis Gesellschaft Für Technologie Und Innovation Mbh Textile flächengebilde mit selbstreinigender und wasserabweisender oberfläche
WO2002074448A3 (en) * 2001-01-30 2003-01-16 Procter & Gamble Coatings for modifying hard surfaces and processes for applying the same
US6562142B2 (en) 2001-01-30 2003-05-13 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
KR20030097201A (ko) * 2002-06-20 2003-12-31 니카코리아 (주) 수분산 불소계 발수발유제 및 그 제조방법
US6846512B2 (en) 2001-01-30 2005-01-25 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
WO2005026308A1 (ja) 2003-09-12 2005-03-24 Fumakilla Limited 塵埃除去用組成物
US6955834B2 (en) 2000-06-14 2005-10-18 The Procter & Gamble Company Long lasting coatings for modifying hard surfaces and processes for applying the same
US7267728B2 (en) 2001-01-30 2007-09-11 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
EP1837394A1 (de) * 2006-03-21 2007-09-26 The Procter and Gamble Company Reinigungsverfahren
US7371716B2 (en) 2002-04-26 2008-05-13 Basf Aktiengesellschaft C10-alkanolalkoxylate mixtures and the use thereof
US7419552B2 (en) 2002-04-26 2008-09-02 Basf Aktiengesellschaft C10-alkanol alkoxylates and the use thereof
WO2009019135A1 (en) * 2007-08-03 2009-02-12 Basf Se Fluorescent whitening nanoparticles
WO2009040729A2 (en) * 2007-09-24 2009-04-02 The Procter & Gamble Company Detergent particle
JP2009527444A (ja) * 2006-02-21 2009-07-30 エボニック デグサ ゲーエムベーハー 酸化アルミニウム含有分散液
AU2004207832B2 (en) * 2003-01-29 2009-10-29 Molycorp Minerals, Llc Process for removing arsenic from aqueous streams
US20100069509A1 (en) * 2006-12-14 2010-03-18 Basf Se Nonionic emulsifiers for emulsion concentrates for spontaneous emulsification
WO2010070088A1 (de) 2008-12-18 2010-06-24 Basf Se Tensidgemisch enthaltend verzweigte kurzkettige sowie verzweigte langkettige komponenten
US20120165236A1 (en) * 2010-07-23 2012-06-28 Shoichi Nakamura Cleansing agent
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814064B1 (fr) * 2000-09-20 2005-06-17 Oreal Composition de lavage comprenant des particules d'oxyde d'aluminium, au moins un agent conditionneur et au moins un tensioactif detergent
FR2814065B1 (fr) * 2000-09-20 2005-06-17 Oreal Composition de lavage comprenant des particules d'oxyde d'aluminium, au moins un tensioactif anionique et au moins un tensioactif amphotere ou non ionique
DE10064637A1 (de) * 2000-12-22 2002-07-04 Henkel Kgaa Nanopartikuläres oberflächenmodifiziertes Titanoxid und seine Verwendung in Zahnpflegemitteln
DE10205442A1 (de) * 2002-02-08 2003-08-21 Basf Ag Hydrophiles Compositmaterial
DE10210027A1 (de) * 2002-03-07 2003-09-18 Creavis Tech & Innovation Gmbh Hydrophile Oberflächen
DE10258831A1 (de) * 2002-12-17 2004-07-08 Henkel Kgaa Reinigungsmittel für harte Oberflächen
DE102004019022A1 (de) * 2004-04-16 2005-11-17 Henkel Kgaa Hydrophillierender Reiniger für harte Oberflächen
WO2008090191A2 (de) * 2007-01-26 2008-07-31 Basf Se Partikel, verfahren zu ihrer herstellung und ihre verwendung
DE102007014875A1 (de) * 2007-03-26 2008-10-02 Henkel Ag & Co. Kgaa Reinigungsmittel
EP2205689A1 (de) * 2007-09-28 2010-07-14 Coswell S.p.A. Flüssiges reinigungsmittel und verfahren zur reinigung einer oberfläche
EP2241602A1 (de) * 2009-04-17 2010-10-20 Bühler PARTEC GmbH Mit Phosphonocarbonsäure modifizierte Zinkoxid-Partikel und Verwendung von Zinkoxid-Partikeln
EP2393883B1 (de) * 2009-02-03 2013-04-17 Bühler PARTEC GmbH Mit phosphonocarbonsäure modifizierte zinkoxid-partikel und verwendung von zinkoxid-partikeln
DE102010012197A1 (de) * 2010-03-19 2011-09-22 Merck Patent Gmbh Elektrisch leitfähige Fußbodenpflegemittel
EP2607467A1 (de) * 2011-12-22 2013-06-26 Saint-Gobain Glass France Reinigungsmittel zur Entfernung von Grauschleier auf Glasscheiben
DE102015203041B4 (de) * 2015-02-20 2022-02-10 Thomas Lutgen Verfahren sowie Gel zum Herauslösen von Schmutzpartikeln aus Poren einer Oberfläche

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956162A (en) * 1973-06-15 1976-05-11 E. I. Du Pont De Nemours And Company Thixotropic cleaning composition containing particulate resins and fumed silica
US4968445A (en) * 1987-09-29 1990-11-06 Colgate-Palmolive Co. Thixotropic aqueous liquid automatic dishwashing detergent composition
EP0407187A2 (de) * 1989-07-07 1991-01-09 Unilever Plc Wässerige thixotrope Reinigungsmittelzusammensetzung
US5364550A (en) * 1992-12-16 1994-11-15 Eastman Kodak Company Liquid detergent composition
JPH08151597A (ja) * 1994-11-29 1996-06-11 Lion Corp 液体洗浄剤組成物
FR2729673A1 (fr) * 1995-01-25 1996-07-26 Rhone Poulenc Chimie Composition detergente contenant du dioxyde de titane a fonction bactericide et photo-oxydante
US5814592A (en) * 1996-06-28 1998-09-29 The Procter & Gamble Company Non-aqueous, particulate-containing liquid detergent compositions with elasticized, surfactant-structured liquid phase
WO1999061244A1 (en) * 1998-05-27 1999-12-02 Nanogram Corporation Silicon oxide particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH511937A (fr) * 1970-03-13 1971-08-31 Indiana University Foundation Composition de nettoyage et polissage à base de silicate de zirconium et de bioxyde de zirconium
DE3311568C2 (de) * 1982-04-08 1994-10-20 Colgate Palmolive Co Teilchenförmiges und weichmachendes Grobwaschmittel, Verfahren zu dessen Herstellung und als Zusatz für Grobwaschmittel geeignetes Bentonit-Agglomerat
US4626364A (en) * 1985-01-28 1986-12-02 Colgate-Palmolive Company Particulate fabric softening and antistatic built detergent composition and particulate agglomerate for use in manufacture thereof
DE3628406A1 (de) * 1986-08-21 1988-02-25 Henkel Kgaa Glasreinigungsmittel in tablettenform
US4931195A (en) * 1987-07-15 1990-06-05 Colgate-Palmolive Company Low viscosity stable non-aqueous suspension containing organophilic clay and low density filler
FR2694016B1 (fr) * 1992-07-22 1994-09-30 Delcroix Yves Agent nettoyant-rénovateur pour surfaces lisses.
DE4306665A1 (de) * 1993-03-03 1994-09-08 Sued Chemie Ag Waschmittelzusatz für gewebeweichmachende Waschmittel
ATE200236T1 (de) * 1995-08-28 2001-04-15 Advanced Nano Technologies Pty Verfahren zur herstellung ultrafeiner teilchen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956162A (en) * 1973-06-15 1976-05-11 E. I. Du Pont De Nemours And Company Thixotropic cleaning composition containing particulate resins and fumed silica
US4968445A (en) * 1987-09-29 1990-11-06 Colgate-Palmolive Co. Thixotropic aqueous liquid automatic dishwashing detergent composition
EP0407187A2 (de) * 1989-07-07 1991-01-09 Unilever Plc Wässerige thixotrope Reinigungsmittelzusammensetzung
US5364550A (en) * 1992-12-16 1994-11-15 Eastman Kodak Company Liquid detergent composition
JPH08151597A (ja) * 1994-11-29 1996-06-11 Lion Corp 液体洗浄剤組成物
FR2729673A1 (fr) * 1995-01-25 1996-07-26 Rhone Poulenc Chimie Composition detergente contenant du dioxyde de titane a fonction bactericide et photo-oxydante
US5814592A (en) * 1996-06-28 1998-09-29 The Procter & Gamble Company Non-aqueous, particulate-containing liquid detergent compositions with elasticized, surfactant-structured liquid phase
WO1999061244A1 (en) * 1998-05-27 1999-12-02 Nanogram Corporation Silicon oxide particles

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083662A1 (de) * 2000-05-04 2001-11-08 Henkel Kommanditgesellschaft Auf Aktien Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
US6955834B2 (en) 2000-06-14 2005-10-18 The Procter & Gamble Company Long lasting coatings for modifying hard surfaces and processes for applying the same
US6784149B2 (en) 2000-12-12 2004-08-31 Clariant Gmbh Laundry detergents and cleaners comprising microdisperse silicate-containing particles
EP1215276A1 (de) * 2000-12-12 2002-06-19 Clariant GmbH Wasch- und Reinigungsmittel, enthaltend mikrodisperse silikathaltige Partikel
US6846512B2 (en) 2001-01-30 2005-01-25 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
US6872444B2 (en) 2001-01-30 2005-03-29 The Procter & Gamble Company Enhancement of color on surfaces
EP1355995A2 (de) * 2001-01-30 2003-10-29 The Procter & Gamble Company Klarspüler-überzugszusammensetzungen zur modifizierung von geschirroberflächen
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
US7267728B2 (en) 2001-01-30 2007-09-11 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
US7112621B2 (en) 2001-01-30 2006-09-26 The Proctor & Gamble Company Coating compositions for modifying surfaces
US6693071B2 (en) 2001-01-30 2004-02-17 The Procter & Gamble Company Rinse aid surface coating compositions for modifying dishware surfaces
WO2002074448A3 (en) * 2001-01-30 2003-01-16 Procter & Gamble Coatings for modifying hard surfaces and processes for applying the same
US6562142B2 (en) 2001-01-30 2003-05-13 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
US6863933B2 (en) 2001-01-30 2005-03-08 The Procter And Gamble Company Method of hydrophilizing materials
WO2002084016A1 (de) * 2001-04-12 2002-10-24 Creavis Gesellschaft Für Technologie Und Innovation Mbh Textile flächengebilde mit selbstreinigender und wasserabweisender oberfläche
EP1249468A3 (de) * 2001-04-12 2003-11-26 Creavis Gesellschaft für Technologie und Innovation mbH Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1249468A2 (de) * 2001-04-12 2002-10-16 Creavis Gesellschaft für Technologie und Innovation mbH Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
US8629070B2 (en) 2001-04-12 2014-01-14 Evonik Degussa Gmbh Flat textile structures with self-cleaning and water-repellent surface
US7371716B2 (en) 2002-04-26 2008-05-13 Basf Aktiengesellschaft C10-alkanolalkoxylate mixtures and the use thereof
US7419552B2 (en) 2002-04-26 2008-09-02 Basf Aktiengesellschaft C10-alkanol alkoxylates and the use thereof
KR20030097201A (ko) * 2002-06-20 2003-12-31 니카코리아 (주) 수분산 불소계 발수발유제 및 그 제조방법
AU2004207832B2 (en) * 2003-01-29 2009-10-29 Molycorp Minerals, Llc Process for removing arsenic from aqueous streams
US7686976B2 (en) * 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
EP1666578A1 (de) * 2003-09-12 2006-06-07 Fumakilla Limited Entstaubungsmittel
EP1666578A4 (de) * 2003-09-12 2008-03-12 Fumakilla Ltd Entstaubungsmittel
WO2005026308A1 (ja) 2003-09-12 2005-03-24 Fumakilla Limited 塵埃除去用組成物
JP2009527444A (ja) * 2006-02-21 2009-07-30 エボニック デグサ ゲーエムベーハー 酸化アルミニウム含有分散液
EP1837394A1 (de) * 2006-03-21 2007-09-26 The Procter and Gamble Company Reinigungsverfahren
WO2007109239A3 (en) * 2006-03-21 2007-11-08 Procter & Gamble Cleaning method
WO2007109239A2 (en) * 2006-03-21 2007-09-27 The Procter & Gamble Company Cleaning method
US20100069509A1 (en) * 2006-12-14 2010-03-18 Basf Se Nonionic emulsifiers for emulsion concentrates for spontaneous emulsification
WO2009019135A1 (en) * 2007-08-03 2009-02-12 Basf Se Fluorescent whitening nanoparticles
EP2045316A1 (de) * 2007-09-24 2009-04-08 The Procter and Gamble Company Reinigungsmittelpartikel
WO2009040729A2 (en) * 2007-09-24 2009-04-02 The Procter & Gamble Company Detergent particle
WO2009040729A3 (en) * 2007-09-24 2009-08-20 Procter & Gamble Detergent particle
WO2010070088A1 (de) 2008-12-18 2010-06-24 Basf Se Tensidgemisch enthaltend verzweigte kurzkettige sowie verzweigte langkettige komponenten
US20120165236A1 (en) * 2010-07-23 2012-06-28 Shoichi Nakamura Cleansing agent
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions

Also Published As

Publication number Publication date
DE19952383A1 (de) 2001-05-17
AU1646401A (en) 2001-05-14
EP1224256A1 (de) 2002-07-24

Similar Documents

Publication Publication Date Title
EP1224256A1 (de) Wasch- oder reinigungsmittel
EP1280878B1 (de) Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
EP1924679B1 (de) Wasch- und reinigungsmittel mit gut löslichen kapseln
EP1781766B1 (de) Klares wasch- und reinigungsmittel mit fliessgrenze
EP2021449B1 (de) Verkapselte bleichmittelteilchen
DE19956382A1 (de) Verfahren zur Herstellung von mikroverkapselten Enzymen
DE19954959A1 (de) Umhüllte teilchenförmige Peroxoverbindungen
EP1099748A2 (de) Tensid-haltige Wasch- und Reinigungsmittel
EP3234085B1 (de) Wasch- und reinigungsmittel
EP0986629B2 (de) Granulares waschmittel
DE19953870A1 (de) Verfahren zur Herstellung einer wasserarmen Enzymzubereitung
WO2008012141A2 (de) Wasch- oder reinigungsmittel mit verbessertem dispergiervermögen
DE10020332A1 (de) Wasch- und Reinigungsmittel
DE102014225184A1 (de) Entfernung von Antitranspirantanschmutzungen
WO2019034490A1 (de) Rhamnolipidhaltige wasch- und reinigungsmittel
EP1694806B1 (de) Bleichendes wasch- oder reinigungsmittel
EP1113067B1 (de) Tensidhaltige Zubereitung
DE19939991A1 (de) Tensidzusammensetzung
DE102015224954A1 (de) Reinigungsverstärkende Celluloseether
EP2108038B1 (de) Wasch- oder reinigungsmittel mit stabiler viskosität
WO2019034489A1 (de) Entfernung von lipidanschmutzungen
DE19858888A1 (de) Verhinderung von Ablagerungen
WO2001046377A1 (de) Mittel zur behandlung von substraten
WO2002051973A1 (de) Flüssiges wasch- und/oder reinigungsmittel
DE102014225183A1 (de) Entfernung von Antitranspirantanschmutzungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ DZ HU ID IL IN JP KR MX PL RO RU SG SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000978973

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000978973

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000978973

Country of ref document: EP