DE19956382A1 - Verfahren zur Herstellung von mikroverkapselten Enzymen - Google Patents

Verfahren zur Herstellung von mikroverkapselten Enzymen

Info

Publication number
DE19956382A1
DE19956382A1 DE1999156382 DE19956382A DE19956382A1 DE 19956382 A1 DE19956382 A1 DE 19956382A1 DE 1999156382 DE1999156382 DE 1999156382 DE 19956382 A DE19956382 A DE 19956382A DE 19956382 A1 DE19956382 A1 DE 19956382A1
Authority
DE
Germany
Prior art keywords
acid
weight
enzymes
detergents
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999156382
Other languages
English (en)
Inventor
Kathleen Paatz
Werner Pichler
Beatrix Kottwitz
Dieter Nickel
Theodor Voelkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE1999156382 priority Critical patent/DE19956382A1/de
Priority to PCT/EP2000/011280 priority patent/WO2001038471A1/de
Priority to AU21588/01A priority patent/AU2158801A/en
Priority to CA 2326758 priority patent/CA2326758A1/en
Publication of DE19956382A1 publication Critical patent/DE19956382A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38663Stabilised liquid enzyme compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38672Granulated or coated enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/98Preparation of granular or free-flowing enzyme compositions

Abstract

Es wird ein Verfahren zur Herstellung von mikroverkapselten Enzymen beansprucht, das dadurch gekennzeichnet ist, dass man eine Stärkelösung beziehungsweise -emulsion und eine Enzymlösung miteinander vermischt und dispergiert. Durch dieses Verfahren wird eine Zubereitungsform für Enzyme zur Verfügung gestellt, in der die Enzyme stabilisiert werden und welche in Wasch- und Reinigungsmittel eingearbeitet werden kann, ohne dass sich die Enzymaktivität wesentlich verringert.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mikroverkapselten Enzymen, die Verwendung dieser Enzyme in Wasch- und Reinigungsmitteln sowie ein Wasch- und Reinigungsmittel.
Enzyme zur industriellen Weiterverarbeitung werden im Allgemeinen als flüssige Enzymkonzentrate angeboten, die aus einer Fermentationsbrühe isoliert und in aufkonzentrierter Form angeboten werden. Die Stabilität der Enzyme in wässeriger Umgebung ist nur begrenzt. Um die erhaltenen Enzymkonzentrate in eine wasserfreie Form zu überführen, kann das Konzentrat z. B. in Gegenwart eines polymeren Bindemittels sprüh­ getrocknet werden, worin die getrockneten Enzymteilchen vom Bindemittel aufgenommen werden und sich Aggregate bilden. Zur Herstellung von flüssigen Zubereitungen werden die sprühgetrockneten Partikel redispergiert.
Ein Verfahren zur Herstellung von Enzymdispersionen wird in der WO 94/25 560 offenbart. Das dort beschriebene Verfahren umfaßt das Emulgieren einer Enzymzubereitung in einer mit Wasser nicht mischbaren Flüssigkeit in Gegenwart eines polymeren Dispersionsstabilisators, wodurch eine stabile Dispersion der wässerigen Enzymteilchen, die wasserfrei eine Teilchengröße mit einem Durchmesser von weniger als 30 µm aufweisen, gebildet wird, und Dehydratisieren der dispergierten Teilchen durch azeotrope Destillation. Das wesentliche Merkmal des beschriebenen Verfahrens ist, dass vor, während oder nach dem Dehydratisieren der Teilchen eine organische Flüssigkeit, die weniger flüchtig ist als die nicht mit Wasser mischbare Flüssigkeit und die ausgewählt ist aus Tensiden und mit Wasser mischbaren Flüssigkeiten, zur Dispersion zugefügt wird, und die nicht mit Wasser mischbare Flüssigkeit aus der Dispersion abdestilliert wird, bis die Menge dieser anfangs vorgelegten, nicht mit Wasser mischbaren Flüssigkeit in der verbleibenden Dispersion unterhalb 20 Gew.-% bezogen auf die flüssige Phase der Dispersion, liegt.
In der internationalen Patent-Anmeldung WO 97/24 177 wird ein zum Verdünnen mit Wasser geeignetes Detergens-Konzentrat offenbart, das aus einer flüssigen Detergens-Phase und darin dispergierten Enzym-enthaltenden Partikeln besteht. Darin sollen wenigstens 90 Gew.-% der enzymhaltigen Partikel einen Durchmesser von weniger als 30 µm aufweisen und ihrerseits aus einer für Wasser und Verbindungen niedrigen Molekulargewichts durchlässigen, aus einem Kondensationspolymer hergestellten Schale und aus einem, die Enzymkomponente darstellenden Kern bestehen. Das wesentliche Merkmal besteht darin, daß der Kern selbst nicht nur aus Enzym, sondern auch aus einer, mit der umgebenden Flüssigkeit im Gleichgewicht stehenden Detergensphase und einem Kernpolymer besteht, wobei in den Augenblick, in dem zur Herstellung der Waschflüssigkeit das beanspruchte Detergens-Konzentrat mit Wasser verdünnt wird, dieses Wasser osmotisch in den Partikel- Kern gelangt und mit dem dort bereits befindlichen Wasser kooperiert, um das Partikel um wenigstens das 1,2-fache seines Durchmessers anschwellen zu lassen, wodurch das Enzym im Augenblick des Verdünnens in das Waschwasser freigesetzt wird. Dieses Dokument befaßt sich also im wesentlichen damit, einen biophysikalisch optimalen Freisetzungsprozeß zu ermöglichen. Die eigentliche Enzymformulierung steht dabei im Hintergrund.
Die Herstellung von Enzymen in pulverförmiger Form, zum Beispiel durch Sprühtrocknung oder auch durch Kristallisationsverfahren, führt häufig zu sehr feinen Pulvern mit Teilchengrößen unterhalb 20 µm, was aufgrund der möglichen Staubbildung Gesundheitsrisiken durch das Einatmen des Staubes bei der Herstellung und Verarbeitung mit sich bringt. Hinzu kommt, dass bei diesen Trocknungsverfahren ein Teil der enzymatischen Aktivität durch Denaturierung verloren gehen kann.
Ein bedeutendes Anwendungsgebiet für Enzyme sind Wasch- und Reinigungsmittel. In diesen Mitteln werden die Enzyme entweder als feste Bestandteile eingearbeitet oder in Form von flüssigen Formulierungen.
Bei der Herstellung von flüssigen Wasch- und Reinigungsmitteln ist es besonders vorteilhaft und kostengünstig, wenn auch die Ausgangsstoffe in flüssiger beziehungsweise dispergierter Form vorliegen. Für den Einsatz der Enzyme bietet es sich an, direkt die aus der Herstellung erhaltene Enzymkonzentrate einzusetzen. Diese Konzentrate weisen jedoch einen relativ hohen Wasseranteil auf. In flüssigen Formulierungen besteht ferner die Gefahr, dass die Enzyme zumindest teilweise ihre Aktivität verlieren.
Flüssige Bleichmittel-haltige Formulierungen erfordern, dass der Wassergehalt nur gering ist, um das Bleichmittel zu stabilisieren. Das bedeutet, dass der Wassergehalt der eingesetzten Rohstoffe entsprechend gering sein muß.
Der vorliegenden Erfindung lag demgemäß die Aufgabe zugrunde, eine Zubereitungsform für Enzyme zur Verfügung zu stellen, in der die Enzyme stabilisiert werden und die in Wasch- und Reinigungsmittel eingearbeitet werden kann, ohne dass sich die Enzymaktivität wesentlich verringert.
Überraschenderweise wurde festgestellt, dass Enzyme sich in einfacher Weise stabilisieren lassen, indem sie unter Einsatz von wässerigen Stärkelösungen beziehungsweise Stärkeemulsionen mikroverkapselt werden; sie können dann entweder als Mikroemulsionen oder in Form von sprühgetrockneten Produkten den Wasch- und Reinigungsmitteln zugesetzt werden.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von mirkoverkapselten Enzymen, dass dadurch gekennzeichnet ist, dass man eine Stärkelösung beziehungsweise -emulsion und eine Enzymlösung miteinander vermischt und dispergiert.
Zur Herstellung von mikroverkapselten Enzymen beziehungsweise Enzymzubereitungen eignen sich wasserlösliche oder in Wasser emulgierbare Stärken beziehungsweise Stärkederivate, wie beispielsweise hydrophobierte Stärken. Beispiele für derartige Stärkederivate sind Maltodextrine, Glucose-Sirupe bzw. dedydratisierte Glucose oder Octenylsuccinat-Stärken. Geeignete Stärken sind z. B. im Handel unter Narlex® ST2 (National Starch) oder Cleargum CO 01® (Roquette) erhältlich.
Die Enzyme können aus beliebigen, für Wasch- und Reinigungsmittel üblichen Enzymen ausgewählt werden. Als Enzyme kommen in erster Linie die aus Mikroorganismen, wie Bakterien oder Pilzen, gewonnenen Proteasen, Lipasen, Amylasen und/oder Cellulasen in Frage, wobei von Bacillus-Arten abgeleitete und/oder erzeugte Proteasen sowie ihre Gemische mit Amylasen bevorzugt sind. Sie werden in bekannter Weise durch Fermentationsprozesse aus geeigneten Mikroorganismen gewonnen, die zum Beispiel in den deutschen Offenlegungsschriften DE 19 40 488, DE 20 44 161, DE 22 01 803 und DE 21 21 397, den US-amerikanischen Patentschriften US 3 632 957 und US 4 264 738, der europäischen Patentanmeldung EP 006 638 sowie der internationalen Patentanmeldung WO 91/912 792 beschrieben sind. Falls es sich bei der erfindungsgemäß hergestellten Zubereitung um eine proteasehaltige Zubereitung handelt, beträgt die Proteaseaktivität vorzugsweise 150 000 Proteaseeinheiten (PE, bestimmt nach der in Tenside, Bd. 7 (1970), S. 125-132 beschriebenen Methode) bis 350 000 PE, insbesondere 160 000 PE bis 300 000 PE, pro Gramm Zubereitung.
Die Enzymlösungen werden vorzugsweise als Enzymkonzentrate eingesetzt, wie sie z. B. nach aus dem Stand der Technik bekannten Verfahren, z. B. durch Mikrofiltration oder Ultrafiltration, erhalten werden können. Sind die Enzymkonzentrate Proteasekonzentrate so kann die Proteaseaktivität bis zu 1 500 000 PE betragen.
Zur Durchführung des erfindungsgemäßen Verfahrens werden vorzugsweise zunächst eine konzentrierte, wässerige Enzymlösung und eine Stärkelösung miteinander vermischt und die Enzymlösung unter Einsatz einer Dispergiervorrichtung fein in der Stärkelösung dispergiert. Durch dieses Verfahren werden die Enzyme von Stärkemolekülen umschlossen und dadurch stabilisiert.
Die erfindungsgemäß erhaltenen mikroverkapselten Enzyme können in Form ihrer Dispersionen oder als aufkonzentrierte Produkte in an sich bekannter Weise ihren Verwendungszwecken zugeführt und dort weiter verarbeitet werden.
Sollen die mikroverkapselten Enzyme in fester Form verarbeitet werden, so kann das Wasser mit aus dem Stand der Technik bekannten Verfahren entfernt werden, wie Sprühtrocknung, Abzentrifugieren oder durch Umsolubilisieren. Die erhaltenen Teilchen haben üblicherweise eine Teilchengröße zwischen 50 und 200 µm.
In einer bevorzugten Ausführungsform werden die mikroverkapselten Enzyme in Wasch- und Reinigungsmitteln eingesetzt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist demgemäß die Verwendung der nach dem zuvor beschriebenen Verfahren erhaltenen mikroverkapselten Enzyme in Wasch- und Reinigungsmitteln, vorzugsweise in flüssigen bis gelförmigen Bleichmittel-haltigen Wasch- und Reinigungsmitteln.
Noch ein weiterer Gegenstand der vorliegenden Erfindung sind Wasch- und Reinigungsmittel, die Tenside und Buildersubstanzen sowie gegebenenfalls weitere übliche Inhaltsstoffe enthalten, die sich dadurch auszeichnen, dass sie mikroverkapselte Enzyme, wie sie nach dem oben beschriebenen Verfahren erhalten werden können, enthalten.
Die erfindungsgemäßen Mittel enthalten Tenside, z. B. nichtionische, anionische und amphotere Tenside, und Bleichmittel sowie ggf. weitere übliche Inhaltsstoffe.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann, bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18- Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevor­ zugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosylierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4. Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N­ dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanol­ amide können geeignet sein. Der Anteil dieser nichtionischen Tenside liegt vorzugsweise nicht über dem der ethoxylierten Fettalkohole, insbesondere bei nicht mehr als der Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um be­ kannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierenden Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können beispielsweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Die Tenside können in den erfindungsgemäßen Reinigungs- oder Waschmitteln insgesamt in einer Menge von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, bezogen auf das fertige Mittel, enthalten sein.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disul­ fonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methyl­ ester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemi­ scher Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradketti­ gen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durch­ schnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen bis 5 Gew.-%, üblicherweise von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sul­ fosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind ge­ sättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Tri­ ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium­ monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoper­ oxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipin­ säure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxy­ dicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperoxy­ sebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4- disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue).
Um beim Waschen bei Temperaturen von 60°C und darunter, und insbesondere bei der Wäschevorbehandlung eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Wasch- und Reinigungsmittelformkörper eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glycolurile, insbesondere 1,3,4,6-Tetraacetylglycoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n- Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), acylierte Hydroxycarbonsäuren, wie Triethyl-O-acetylcitrat (TEOC), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Isatosäureanhydrid und/oder Bernsteinsäureanhydrid, Carbonsäureamide, wie N-Methyldiacetamid, Glycolid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglycoldiacetat, Isopropenylacetat, 2,5-Diacetoxy-2,5- dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungs­ weise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglucose (PAG), Pentaacetyl­ fructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alky­ liertes Glucamin bzw. Gluconolacton, Triazol bzw. Triazolderivate und/oder teilchenförmige Caprolactame und/oder Caprolactamderivate, bevorzugt N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam und N-Acetylcaprolactam, die aus den internationalen Patentanmeldungen WO-A-94/27 970, WO-A-94/28 102, WO-A-94/28 103, WO-A-95/00 626, WO-A-95/14 759 und WO-A-95/17 498 bekannt sind. Die aus der deutschen Pa­ tentanmeldung DE-A-196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE-A-196 16 770 sowie der internationalen Patentanmel­ dung WO-A-95/14 075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE-A-44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Ebenso können Nitrilderivate wie Cyanopyridine, Nitrilquats, z. B. N-Alkyammoniumacetonitrile, und/oder Cyanamid­ derivate eingesetzt werden. Bevorzugte Bleichaktivatoren sind Natrium-4-(octanoyloxy)- benzolsulfonat, n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Unde­ cenoyloxybenzolsulfonat (UDOBS), Natriumdodecanoyloxybenzolsulfonat (DOBS), Deca­ noyloxybenzoesäure (DOBA, OBC 10) und/oder Dodecanoyloxybenzolsulfonat (OBS 12), sowie N-Methylmorpholinum-acetonitril (MMA). Derartige Bleichaktivatoren können im üblichen Mengenbereich von 0,01 bis 20 Gew.-%, vorzugsweise in Mengen von 0,1 bis 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten sein.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren enthalten sein. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Aminkomplexe sind als Bleichkatalysatoren geeignet, wobei solche Verbindungen bevorzugt eingesetzt werden, die in der DE 197 09 284 A1 beschrieben sind.
Der Gehalt der Mittel an Bleichmittel kann 1 bis 40 Gew.-% und insbesondere 10 bis 20 Gew.-%, betragen, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
Die erfindungsgemäßen Mittel enthalten in der Regel einen oder mehrere Builder, insbesondere Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Gründe gegen ihren Einsatz sprechen - auch die Phosphate. Letztere sind insbesondere in Reinigungsmitteltabletten für das maschinelle Geschirrspülen bevorzugt einzusetzende Gerüststoffe.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und für x bevorzugte Werte 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Ver­ dichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Beide Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf <200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50gew.-%igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu vermeiden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70 000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen MW der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20 000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10 000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70 000 g/mol, vorzugsweise 20 000 bis 50 000 g/mol und insbesondere 30 000 bis 40 000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wässerige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten kann von 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%, betragen.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata­ lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolysepro­ dukte mit mittleren Molmassen im Bereich von 400 bis 500 000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose ist, welche ein DE von 100 besitzt. Brauch­ bar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30 000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen zwischen 3 und 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Wasch- und Reinigungsmittel flüssige bis gelförmige Mittel.
Lösungsmittel, die in den flüssigen bis gelförmigen Zusammensetzungen eingesetzt werden können, stammen beispielsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alkanol­ amine oder Glycolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i- Propanol, Butanolen, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpro­ pylether, Ethylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylenglykolethyl­ ether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Dipropylenglykolmonomethyl-, oder -ethylether, Di-isopropylenglykolmonomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder But­ oxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t-butyl­ ether sowie Mischungen dieser Lösungsmittel. Lösungsmittel können in den erfindungsge­ mäßen flüssigen bis gelförmigen Waschmitteln in Mengen zwischen 0,1 und 20 Gew.-%, be­ vorzugt aber unter 15 Gew.-% und insbesondere unterhalb von 10 Gew.-% eingesetzt werden.
Zur Einstellung der Viskosität können der erfindungsgemäßen Zusammensetzung ein oder mehrere Verdicker bzw. Verdickungssysteme zugesetzt werden. Die Viskosität der erfindungsgemäßen Zusammensetzungen kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter RVD-VII bei 20 U/min und 20°C, Spindel 3) gemessen werden und liegt vorzugsweise im Bereich von 100 bis 5000 mPa.s. Bevorzugte Zusammensetzungen haben Viskositäten von 200 bis 4000 mPa.s, wobei Werte zwischen 400 und 2000 mPa.s besonders bevorzugt sind.
Geeignete Verdicker sind anorganische oder polymere organische Verbindungen. Diese meist organischen hochmolekularen Stoffe, die auch Quell(ungs)mittel genannt werden, saugen meist die Flüssigkeiten auf und quellen dabei auf, um schließlich in zähflüssige echte oder kolloide Lösungen überzugehen.
Zu den anorganischen Verdickern zählen beispielsweise Polykieselsäuren, Tonmineralien wie Montmorillonite, Zeolithe, Kieselsäuern und Bentonite.
Die organischen Verdicker stammen aus den Gruppen der natürlichen Polymere, der abgewandelten natürlichen Polymere und der vollsynthetischen Polymere.
Aus der Natur stammende Polymere, die als Verdickungsmittel Verwendung finden, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein.
Abgewandelte Naturstoffe stammen vor allem aus der Gruppe der modifizierten Stärken und Cellulosen. Beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt.
Eine große Gruppe von Verdickungsmitteln, die breite Verwendung in den unterschiedlich­ sten Anwendungsgebieten finden, sind die vollsynthetischen Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Po­ lyamide und Polyurethane.
Die Verdicker können in einer Menge bis zu 5 Gew.-%, vorzugsweise von 0,05 bis 2 Gew.-%, und besonders bevorzugt von 0,1 bis 1,5 Gew.-%, bezogen auf die fertige Zusammensetzung, enthalten sein.
Das erfindungsgemäße Wasch- und Reinigungsmittel kann als weitere übliche Inhaltsstoffe insbesondere Sequestrierungsmittel, Elektrolyte, pH-Regulatoren, Phosphonate, Enzyme und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertragungs­ inhibitoren, Schaumregulatoren, zusätzliche Bleichaktivatoren, Farb- und Duftstoffe enthalten.
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z. B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersub­ stanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylen­ diamiden bevorzugt.
Als Salze von Polyphosphonsäuren werden vorzugsweise die neutral reagierenden Natriumsalze von beispielsweise 1-Hydroxyethan-1,1-diphosphonat, Diethylen­ triaminpentamethylenphosphonat oder Ethylendiamintetramethylenphosphonat verwendet, die in Mengen von 0,1 bis 1,5 Gew.-% eingesetzt werden können.
Die erfindungsgemäßen Mittel können als optische Aufheller Derivate der Diaminostilbendi­ sulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2- anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Auf­ heller können verwendet werden.
Wird das erfindungsgemäße Mittel als sogenanntes flüssiges bis gelförmiges Waschmittel eingesetzt, enthält es vorzugsweise von 0 bis 20 Gew.-% anionische Tenside, 40 bis 80 Gew.-% nichtionische Tenside, 2 bis 25 Gew.-% Buildermaterialien, 0 bis 20 Gew.-% Bleichmittel, 0 bis 20 Gew.-% Bleichaktivatoren, 0 bis 5 Gew.-% Enzyme, Duftstoffe sowie weitere Inhaltsstoffe.
Beispiel
Zur Herstellung der Mikroemulsionen wurde Stärke in Wasser gelöst. Nach dem Quellen der Stärke wurde eine Proteaselösung mit einer Aktivität von 800 000 PE/g zugefügt. Anschließend wurde die Enzymlösung in der Stärkelösung unter Einsatz eines Dispergierapparates (Dispax® der Firma IKA) fein dispergiert.
Tabelle 1
Die Enzymstabilität im Flüssigwaschmittel wurde in einem Test unter verschärften Bedingungen (Temperatur 60°C) getestet, um eine realistische Alterung zu simulieren.
Beide Mikroemulsionen zeigten - wie in Tabelle 2 gezeigt - gegenüber dem unbehandelten Proteasekonzentrat deutliche Stabilitätsvorteile. Für die Mikroemulsion 1 konnte überhaupt kein Abfall der Enzymaktivität nachgewiesen werden. Für die Mikroemulsion 2 zeigte sich ein Aktivitätsverlust von weniger als 10%. Die unbehandelte Enzymprobe weist dagegen einen Aktivitätsverlust von 25-30% auf.
Es wurde somit festgestellt, dass die erfindungsgemäß erhaltenen mikroverkapselten Enzyme eine gute Stabilität aufweisen. Insbesondere wurden keine Proteinnachfällungen beobachtet, wie es bei den aus dem Stand der Technik erhaltenen Enzymzubereitungen häufig der Fall ist. Das erhaltene Produkt zeigte ferner eine hellbeige Farbe, so dass keine spezielle Entfärbung mehr erforderlich ist.
Üblicherweise werden die Enzymkonzentrate mit einem Polydiol vermischt, um die Lagerstabilität zu verbessern. Derartige Enzymlösungen mit Polydiol weisen jedoch häufig eine schwarze beziehungsweise braune Farbe auf, was die Entfärbung vor der Weiterverarbeitung in Wasch- und Reinigungsmittel erforderlich macht.
Tabelle 2

Claims (12)

1. Verfahren zur Herstellung von mikroverkapselten Enzymen, worin eine wässerige Enzymlösung und eine Stärkelösung beziehungsweise Stärkeemulsion miteinander vermischt und die Enzymlösung in der Stärkelösung beziehungsweise Stärkeemulsion dispergiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stärke ausgewählt ist aus hydrophobierten Stärken.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Enzyme ausgewählt sind aus Protease, Amylase, Lipase und/oder Cellulase.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die wässerige Enzymlösung ein aus der Fermentation stammendes Enzymkonzentrat ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erhaltene Dispersion einer Sprühtrocknung unterworfen wird.
6. Verwendung der wasserarmen Enzymzubereitung nach einem der Ansprüche 1 bis 5 in Wasch- und Reinigungsmitteln.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass die Wasch- und Reinigungsmittel flüssige bis gelförmige Bleichmittel-haltige Wasch- und Reinigungsmittel sind.
8. Wasch- und Reinigungsmittel, enthaltend Tenside und Buildersubstanzen sowie gegebenenfalls weitere übliche Inhaltsstoffe, dadurch gekennzeichnet, dass mikroverkapselte Enzyme erhalten nach einem der Ansprüche 1 bis 5 eingesetzt werden.
9. Mittel nach Anspruch 8, dadurch gekennzeichnet, dass es sich um ein flüssiges bis gelförmiges Wasch- und Reinigungsmittel handelt.
10. Mittel nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass es Bleichmittel enthält.
11. Mittel nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass es weiterhin Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schaumregulatoren, zusätzliche Bleichaktivatoren, Farb- und Duftstoffe enthält.
12. Mittel nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass es von 0 bis 20 Gew.-% anionische Tenside, 40 bis 80 Gew.-% nichtionische Tenside, 2 bis 25 Gew.-% Buildermaterialien, 0 bis 20 Gew.-% Bleichmittel, 0 bis 20 Gew.-% Bleichaktivatoren, 0 bis 5 Gew.-% Enzyme, Duftstoffe sowie weitere Inhaltsstoffe enthält.
DE1999156382 1999-11-24 1999-11-24 Verfahren zur Herstellung von mikroverkapselten Enzymen Withdrawn DE19956382A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE1999156382 DE19956382A1 (de) 1999-11-24 1999-11-24 Verfahren zur Herstellung von mikroverkapselten Enzymen
PCT/EP2000/011280 WO2001038471A1 (de) 1999-11-24 2000-11-15 Verfahren zur herstellung von enzymhaltigen mikroemulsionen und mikroverkapselten enzymen
AU21588/01A AU2158801A (en) 1999-11-24 2000-11-15 Method for production of enzyme-containing micro-emulsions and micro-encapsulated enzymes
CA 2326758 CA2326758A1 (en) 1999-11-24 2000-11-23 Process for the preparation of microencapsulated enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999156382 DE19956382A1 (de) 1999-11-24 1999-11-24 Verfahren zur Herstellung von mikroverkapselten Enzymen

Publications (1)

Publication Number Publication Date
DE19956382A1 true DE19956382A1 (de) 2001-05-31

Family

ID=7930076

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999156382 Withdrawn DE19956382A1 (de) 1999-11-24 1999-11-24 Verfahren zur Herstellung von mikroverkapselten Enzymen

Country Status (4)

Country Link
AU (1) AU2158801A (de)
CA (1) CA2326758A1 (de)
DE (1) DE19956382A1 (de)
WO (1) WO2001038471A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047097A1 (de) * 2004-09-29 2006-04-06 Henkel Kgaa Wasch- und Reinigungsmittel mit immobilisierten aktiven Inhaltsstoffen
WO2007054203A2 (de) 2005-11-08 2007-05-18 Henkel Ag & Co. Kgaa Enzym / subtstrat sytem zur generierung von wasserstoffperoxid enthaltend sorbitol oxidase aus streptomyces c0elic0l0r und sorbitol
US7300782B2 (en) 2001-12-21 2007-11-27 B.R.A.I.N. Biotechnology Research And Information Network Ag Glycosyl hydrolases
US7510859B2 (en) 2002-12-20 2009-03-31 Henkel Kommanditgesellschaft Auf Aktien Subtilisin variants with improved perhydrolase activity
US7803604B2 (en) 2000-07-28 2010-09-28 Henkel Ag & Co. Kgaa Amylolytic enzyme extracted from Bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme
US7888104B2 (en) 2000-11-28 2011-02-15 Henkel Ag & Co. Kgaa Cyclodextrin glucanotransferase (CGTase), obtained from<I>Bacillus agaradherens<λ>(DSM 9948) and detergents and cleaning agents containing said novel cyclodextrin glucanotransferase
DE102004047776B4 (de) 2004-10-01 2018-05-09 Basf Se Gegen Di- und/oder Multimerisierung stabilisierte Alpha-Amylase-Varianten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102004047777B4 (de) 2004-10-01 2018-05-09 Basf Se Alpha-Amylase-Varianten mit erhöhter Lösungsmittelstabilität, Verfahren zu deren Herstellung sowie deren Verwendung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
DE10162727A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14391) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
DE10163884A1 (de) 2001-12-22 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus sp. (DSM 14392) und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease
GB2392449A (en) * 2002-08-24 2004-03-03 Reckitt Benckiser Nv Detergent composition containing stabilised enzymes
GB2390098A (en) * 2002-06-28 2003-12-31 Reckitt Benckiser Nv Detergent gel containing encapsulated enzymes
ATE358710T1 (de) * 2002-06-28 2007-04-15 Reckitt Benckiser Nv Tensidzusammensetzung
GB0313139D0 (en) * 2003-06-06 2003-07-09 Unilever Plc Detergent component and process for preparation
DE10360805A1 (de) 2003-12-23 2005-07-28 Henkel Kgaa Neue Alkalische Protease und Wasch- und Reinigungsmittel, enthaltend diese neue Alkalische Protease
DE102004019751A1 (de) 2004-04-23 2005-11-17 Henkel Kgaa Neue Alkalische Proteasen und Wasch- und Reinigungsmittel, enthaltend diese neuen Alkalischen Proteasen
DE102007003143A1 (de) 2007-01-16 2008-07-17 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease
DE102007008655A1 (de) 2007-02-20 2008-08-21 Henkel Ag & Co. Kgaa Siderophor-Metall-Komplexe als Bleichkatalysatoren
DE102007017657A1 (de) 2007-04-12 2008-10-16 Henkel Ag & Co. Kgaa Tris/heterocyclyl)-Metallkomplexe als Bleichkatalysatoren
DE102007017654A1 (de) 2007-04-12 2008-10-16 Henkel Ag & Co. Kgaa Bis(hydroxychinolin)-Metallkomplexe als Bleichkatalysatoren
DE102007017656A1 (de) 2007-04-12 2008-10-16 Henkel Ag & Co. Kgaa Biheteroaryl-Metallkomplexe als Bleichkatalysatoren
DE102007040326A1 (de) 2007-08-24 2009-02-26 Henkel Ag & Co. Kgaa Wäschevorbehandlungsmittel und -verfahren
DE102007049830A1 (de) 2007-10-16 2009-04-23 Henkel Ag & Co. Kgaa Neue Proteinvarianten durch zirkulare Permutation
DE102007051092A1 (de) 2007-10-24 2009-04-30 Henkel Ag & Co. Kgaa Subtilisin aus Becillus pumilus und Wasch- und Reinigungsmittel enthaltend dieses neue Subtilisin
DE102008027375A1 (de) 2008-06-09 2009-12-10 Henkel Ag & Co. Kgaa Bacitracin-Metall-Komplexe als Bleichkatalysatoren
US20140308162A1 (en) 2013-04-15 2014-10-16 Ecolab Usa Inc. Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing
US8871699B2 (en) 2012-09-13 2014-10-28 Ecolab Usa Inc. Detergent composition comprising phosphinosuccinic acid adducts and methods of use
US9994799B2 (en) 2012-09-13 2018-06-12 Ecolab Usa Inc. Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
JP2017503061A (ja) 2013-11-11 2017-01-26 エコラボ ユーエスエー インコーポレイティド 多目的酵素洗剤及び使用溶液を安定化する方法
CA2929570C (en) 2013-11-11 2021-11-30 Ecolab Usa Inc. High alkaline warewash detergent with enhanced scale control and soil dispersion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755354A (fr) * 1969-08-29 1971-03-01 Fuji Photo Film Co Ltd Microcapsule contenant de l'enzyme detergente et procede pour sa fabrication
US4011169A (en) * 1973-06-29 1977-03-08 The Procter & Gamble Company Stabilization and enhancement of enzymatic activity
US4724208A (en) * 1985-11-04 1988-02-09 Miles Laboratories, Inc. Process for the production of solution stable alpha-amylase and liquid alpha-amylase produced thereby
DE4041752A1 (de) * 1990-12-24 1992-06-25 Henkel Kgaa Enzymzubereitung fuer wasch- und reinigungsmittel
JPH04370197A (ja) * 1991-06-17 1992-12-22 Seiko Epson Corp 酵素液体洗浄剤
US5480575A (en) * 1992-12-03 1996-01-02 Lever Brothers, Division Of Conopco, Inc. Adjuncts dissolved in molecular solid solutions
WO1999032612A1 (en) * 1997-12-20 1999-07-01 Genencor International, Inc. Fluidized bed matrix granule

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803604B2 (en) 2000-07-28 2010-09-28 Henkel Ag & Co. Kgaa Amylolytic enzyme extracted from Bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme
US7888104B2 (en) 2000-11-28 2011-02-15 Henkel Ag & Co. Kgaa Cyclodextrin glucanotransferase (CGTase), obtained from<I>Bacillus agaradherens<λ>(DSM 9948) and detergents and cleaning agents containing said novel cyclodextrin glucanotransferase
US7300782B2 (en) 2001-12-21 2007-11-27 B.R.A.I.N. Biotechnology Research And Information Network Ag Glycosyl hydrolases
US7510859B2 (en) 2002-12-20 2009-03-31 Henkel Kommanditgesellschaft Auf Aktien Subtilisin variants with improved perhydrolase activity
DE102004047097A1 (de) * 2004-09-29 2006-04-06 Henkel Kgaa Wasch- und Reinigungsmittel mit immobilisierten aktiven Inhaltsstoffen
DE102004047776B4 (de) 2004-10-01 2018-05-09 Basf Se Gegen Di- und/oder Multimerisierung stabilisierte Alpha-Amylase-Varianten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102004047777B4 (de) 2004-10-01 2018-05-09 Basf Se Alpha-Amylase-Varianten mit erhöhter Lösungsmittelstabilität, Verfahren zu deren Herstellung sowie deren Verwendung
WO2007054203A2 (de) 2005-11-08 2007-05-18 Henkel Ag & Co. Kgaa Enzym / subtstrat sytem zur generierung von wasserstoffperoxid enthaltend sorbitol oxidase aus streptomyces c0elic0l0r und sorbitol

Also Published As

Publication number Publication date
AU2158801A (en) 2001-06-04
CA2326758A1 (en) 2001-05-24
WO2001038471A1 (de) 2001-05-31

Similar Documents

Publication Publication Date Title
DE19956382A1 (de) Verfahren zur Herstellung von mikroverkapselten Enzymen
EP1735422B1 (de) Wasserlöslich umhüllte bleichmittelteilchen
EP0961823B1 (de) Ph-gesteuerte freisetzung von waschmittelkomponenten
DE19952383A1 (de) Wasch- und Reinigungsmittel
EP1735423B1 (de) Flüssiges wasch- oder reinigungsmittel mit wasserlöslich umhülltem bleichmittel
DE19954959A1 (de) Umhüllte teilchenförmige Peroxoverbindungen
DE19954831A1 (de) Tensid-haltige Wasch- und Reinigungsmittel
DE19953870A1 (de) Verfahren zur Herstellung einer wasserarmen Enzymzubereitung
WO2000078676A1 (de) Verwendung von aktivierten schichtsilicaten in nichtwässrigen flüssigwaschmitteln
EP1979453B1 (de) Flüssiges wasch- oder reinigungsmittel mit teilchenförmigem persäure-bleichmittel
EP2007864B1 (de) Umhüllte imidoperoxocarbonsäureteilchen
DE19961660A1 (de) Pflegemittel für Wasch- und Geschirrspülmaschinen
DE19936614B4 (de) Verfahren zur Herstellung eines Waschmittels
EP0877789B1 (de) Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
EP3578629B1 (de) Verfahren zur herstellung eines flüssigen wasch- oder reinigungsmittels mit einer konservierungsmittelfreien farbstofflösung
DE10062007A1 (de) Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
DE19939991A1 (de) Tensidzusammensetzung
EP1113067B1 (de) Tensidhaltige Zubereitung
DE102004018787A1 (de) Bleichmittelhaltiges flüssiges Wasch- oder Reinigungsmittel
DE19957738A1 (de) Lagerstabile Bleichmittel-haltige Wasch- und Reinigungsmittel
EP1235896A2 (de) Verfahren zur herstellung von verdichteten teilchen
WO2019034489A1 (de) Entfernung von lipidanschmutzungen
EP1004658A2 (de) Citronensäurehaltiges Waschmittel
WO2000039266A1 (de) Sprühgetrocknetes granulat
DE10064636A1 (de) Flüssiges Wasch-und/oder Reinigungsmittel

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee