WO2001026167A1 - Dispositif piezo-electrique / electrostrictif et procede de fabrication correspondant - Google Patents

Dispositif piezo-electrique / electrostrictif et procede de fabrication correspondant Download PDF

Info

Publication number
WO2001026167A1
WO2001026167A1 PCT/JP2000/006747 JP0006747W WO0126167A1 WO 2001026167 A1 WO2001026167 A1 WO 2001026167A1 JP 0006747 W JP0006747 W JP 0006747W WO 0126167 A1 WO0126167 A1 WO 0126167A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrostrictive
electrostrictive device
thin plate
manufacturing
Prior art date
Application number
PCT/JP2000/006747
Other languages
English (en)
French (fr)
Inventor
Yukihisa Takeuchi
Kazuyoshi Shibata
Masahiko Namerikawa
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/524,042 external-priority patent/US6498419B1/en
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP00962961A priority Critical patent/EP1148560B1/en
Priority to DE60044666T priority patent/DE60044666D1/de
Publication of WO2001026167A1 publication Critical patent/WO2001026167A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2043Cantilevers, i.e. having one fixed end connected at their free ends, e.g. parallelogram type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/501Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane parallel to the stacking direction, e.g. polygonal or trapezoidal in side view
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4957Sound device making
    • Y10T29/49574Musical instrument or tuning fork making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49798Dividing sequentially from leading end, e.g., by cutting or breaking

Definitions

  • the present invention relates to a piezoelectric / electrostrictive device having a movable portion that operates based on the displacement operation of a piezoelectric / electrostrictive element, or a piezoelectric / electrostrictive device capable of detecting the displacement of a movable portion by a piezoelectric / electrostrictive element and a method of manufacturing the same. More particularly, the present invention relates to a piezoelectric Z electrostrictive device having excellent strength, impact resistance, and moisture resistance and capable of efficiently operating a movable portion largely, and a method for manufacturing the same.
  • Background art
  • displacement elements that can adjust the optical path length and position on the order of submicrons are required, and piezoelectric Z-electrostrictive materials (for example, ferroelectric materials) Development of a displacement element that utilizes displacement caused by the inverse piezoelectric effect and electrostriction effect caused when a voltage is applied is being developed.
  • a displacement element for example, as shown in FIG. 53, by providing a hole portion 402 in a plate body 400 made of a piezoelectric electrostrictive material, there is disclosed a piezoelectric actuator in which a moving part 406 and a beam part 408 supporting them are integrally formed, and further, an electrode layer 410 is provided on the beam part 408 (for example, Kaihei 10-13 6 665 Reference).
  • the beam portion 408 connects the fixed portion 404 and the movable portion 406 due to the reverse piezoelectric effect and the electrostrictive effect. Since the movable portion 406 expands and contracts in the direction, it is possible to cause the movable portion 406 to perform an arc-shaped displacement or a rotational displacement within the plane of the plate-like body 400.
  • Japanese Patent Application Laid-Open No. 63-64040 discloses that, with respect to an actuating device using a bimorph, the electrodes of the bimorph are divided and provided, and the divided electrodes are selected and driven. A technique for performing high-precision positioning at high speed has been disclosed. (Particularly FIG. 4) shows a structure in which, for example, two bimorphs are used facing each other.
  • the displacement of the piezoelectric electrostrictive material in the direction of expansion and contraction (that is, the in-plane direction of the plate-like body 400) is transmitted to the movable portion 406 as it is, so that the movable portion There was a problem that the operation amount of 406 was small.
  • piezoelectric actuator all parts of the piezoelectric actuator are made of piezoelectric / electrostrictive materials, which are fragile and relatively heavy materials, so their mechanical strength is low, and handling, impact resistance and moisture resistance are poor.
  • piezoelectric actuator itself was heavy and had a problem that it was susceptible to harmful vibrations (for example, residual vibration and noise vibration during high-speed operation) during operation.
  • the present invention has been made in view of such a problem, and can improve the life of the device, the handleability of the device, the attachment of parts to the movable portion, or the fixability of the device, and In addition to being able to significantly displace the movable part at a relatively low voltage, it is also possible to achieve high-speed displacement operation (high resonance frequency) of the device, especially the movable part, and also to cause harmful vibration. Displacement elements that are less susceptible to vibration, are capable of high-speed response, have high mechanical strength, are excellent in handling, shock resistance, and moisture resistance, and are capable of detecting vibration of movable parts with high accuracy. It is an object of the present invention to provide a piezoelectric / electrostrictive device that can be obtained and a method for manufacturing the same.
  • the present invention includes a pair of metal thin plate portions opposed to each other, and a fixed portion fixed to the thin plate portions via an adhesive, and has a movable portion at a tip end of the pair of thin plate portions.
  • a piezoelectric Z-electrostrictive device in which at least one piezoelectric Z-electrostrictive element is disposed on at least one of the pair of thin-plate portions, wherein at least one of the movable portion and the fixed portion is provided.
  • One has end surfaces facing each other, and a distance between the end surfaces is equal to or longer than a length of the movable portion.
  • the thin plate portion is made of metal, it has excellent strength and toughness and can cope with a sudden displacement operation. That is, in the present invention, it is possible to sufficiently cope with fluctuations in the use environment and severe use conditions, to have excellent impact resistance, to extend the life of the piezoelectric electrostrictive device, and to improve the handling properties.
  • the thin plate can be displaced greatly at a relatively low voltage, and the thin plate has high rigidity. (High resonance frequency) can be achieved.
  • the piezoelectric / electrostrictive element may be in the form of a film, and may be fixed to the thin plate via an adhesive. Further, the piezoelectric Z electrostrictive element may be configured to include a piezoelectric Z electrostrictive layer and a pair of electrodes formed on the piezoelectric Z electrostrictive layer. In this case, the vibration caused by the piezoelectric electrostrictive element can be efficiently transmitted to the movable portion or the fixed portion through the thin plate portion, and the response can be improved.
  • the piezoelectric Z electrostrictive layer and the plurality of the pair of electrodes are formed in a laminated form.
  • the generated force of the piezoelectric Z-electrostrictive element increases, thereby achieving large displacement, and increasing the rigidity of the piezoelectric electrostrictive device itself, thereby increasing the resonance frequency.
  • the speeding up of the displacement operation can be easily achieved.
  • an organic resin, glass, brazing material, or solder can be used as the adhesive.
  • a cutout portion may be provided in one of the movable portion and the fixed portion, and a portion of the cutout portion may constitute the end faces facing each other.
  • a gap may be provided between the end surfaces facing each other, or a plurality of members that are the same as or different from one of the movable portion and the fixed portion between the end surfaces facing each other, for example, Glass, cement, organic resin, etc., preferably organic resin, such as epoxy, acrylic, polyimide, phenolic, silicone, terpene, xylene, styrene, melamine, methacrylic, rubber System Alternatively, these mixtures and copolymers may be interposed.
  • an epoxy-based, acrylic-based, or methacrylic-based organic resin from the viewpoint of bonding properties, handleability, hardness and the like. It is also preferable to mix a filler such as an inorganic material for the purpose of further increasing the hardness.
  • a light member is also interposed between the opposed end surfaces as a component of the movable portion or the fixed portion, or the member is small.
  • the distance between the end faces is equal to or greater than the length of the movable part, when attaching other parts to the movable part, even if the dimensional accuracy of the end faces and the parts is low, it is easy to suppress the influence of these dimensional accuracy. Therefore, the mountability of parts can be improved.
  • the article can be held from both sides and held, so that the components can be securely fixed.
  • the height of the article and the height of the movable portion are not simply added, and the overall height including the article can be kept low. Further, since the length of the movable portion can be made smaller than the distance on the end face side, the physical properties of the adhesive or the like for bonding the components effectively act, and the displacement can be increased.
  • the piezoelectric electrostrictive device according to the present invention can be firmly fixed to a predetermined fixing portion, and reliability can be improved.
  • the weight of the piezoelectric Z electrostrictive device can be reduced, and in particular, the weight of the movable portion or the fixed portion can be reduced.
  • a piezoelectric / electro When the strain element is fixed with an adhesive, an internal residual stress is generated in the piezoelectric Z-electrostrictive element and a portion that becomes a thin plate or a thin plate, particularly in a step of solidifying the adhesive.
  • a desired displacement may not be exhibited in the movable portion even when a predetermined electric field is applied to the piezoelectric / electrostrictive layer constituting the piezoelectric Z-electrostrictive element. This is because the material characteristics of the piezoelectric electrostrictive layer and the displacement operation of the movable portion are hindered by the piezoelectric electrostrictive element and / or the internal residual stress generated in the thin plate portion.
  • the distance between the end faces is limited by the internal residual generated in the piezoelectric electrostrictive element and the flat or thin plate part. Due to the stress, for example, it shrinks. That is, the internal residual stress generated in the piezoelectric electrostrictive element and the nose or the thin plate is released by the movement of the end face.
  • the distance between the end faces is widened, even if the distance between the end faces is reduced due to the internal residual stress, it is possible to provide a margin for mounting other parts between the end faces. .
  • the displacement operation of the movable portion is not hindered by the internal residual stress, and the displacement operation of the movable portion can be obtained substantially as designed.
  • the release of the internal residual stress can improve the mechanical strength of the piezoelectric electrostrictive device.
  • a gel-like material is formed in the hole. May be filled.
  • the displacement of the movable part is usually restricted by the presence of the filler, but the above-described invention reduces the weight and the movable part due to the formation of the end face on the movable part or the fixed part. Since the amount of displacement is increased, the restriction of the displacement operation of the movable part by the filler is canceled out, and the effect of the presence of the filler, that is, higher resonance frequency and higher rigidity are realized. Can be done.
  • the present invention when the plurality of members described above are interposed between the end surfaces, at least one of the plurality of members may be an organic resin.
  • the present invention comprises: a pair of metal thin plate portions opposed to each other; and a fixed portion fixed to the thin plate portions via an adhesive, and the movable portions are movable at the distal end portions of the pair of thin plate portions.
  • a method for manufacturing a piezoelectric electrostrictive device wherein at least one piezoelectric electrostrictive element is disposed on at least one thin plate portion of the pair of thin plate portions, wherein the first base comprises: A first step of fabricating a second base by fixing a metal plate to be a thin plate portion later, and at least one cutting process on the second base, having end faces facing each other; and A second step of forming the movable part or the fixed part having a distance between them equal to or longer than the length of the movable part.
  • the internal residual stress generated in the piezoelectric Z-electrostrictive element and / or the thin plate portion at the time of manufacturing is reduced by the distance between the end faces, for example. It is released by contraction, so that the displacement operation of the movable part is not hindered by the internal residual stress.
  • metal is used for the thin plate, it has excellent strength and toughness, and can cope with sudden displacement.
  • a piezoelectric electrostrictive device can be manufactured efficiently and easily, and mass production of a high-performance piezoelectric electrostrictive device can be realized.
  • the movable portion or the fixed portion easily bends and becomes resistant to deformation, the handling property of the piezoelectric Z electrostrictive device is excellent, and the existence of the opposed end faces and the distance between the end faces are widened.
  • the mounting of the parts should be improved. Can be.
  • displacement can be improved when the components are sandwiched and bonded.
  • the manufacturing method may include a step of fixing the piezoelectric / electrostrictive element to an outer surface of the metal plate which will later become a thin plate portion via an adhesive.
  • the manufacturing method may include a step of fixing the piezoelectric / electrostrictive element to an outer surface of the metal plate which will later become a thin plate portion via an adhesive.
  • the piezoelectric z-electrostrictive element may be fixed on the outer surface of the metal plate before fixing the metal plate which will later become the thin plate portion to the first base.
  • a hybrid laminate production step of producing a hybrid laminate by fixing the above-mentioned metal plate to be a thin plate portion later to the ceramic laminate via an adhesive may be provided.
  • the method may include a step of stacking at least one metal sheet having at least a window to produce the first base.
  • the first base may be constituted by a bulk metal member.
  • a step of interposing a plurality of members different from the constituent members of the movable portion or the fixed portion may be included between the end surfaces facing each other.
  • an organic resin can be used as at least one of the plurality of members.
  • an adhesive made of an organic resin or an adhesive made of glass, brazing material or solder can be used as the adhesive.
  • various transducers various types of actuators, frequency domain functional components (filters), transformers, transducers for communication and power, and resonators for resonance.
  • Active elements such as transducers, oscillators, and discriminators, ultrasonic sensors, acceleration sensors, angular velocity sensors, shock sensors, and mass sensors. It can be used as a sensor element for various sensors such as sensors, and is particularly suitable for various actuators used in mechanisms for displacement, positioning and angle adjustment of various precision parts such as optical equipment and precision equipment. Can be used.
  • FIG. 1 is a perspective view showing a configuration of the piezoelectric electrostrictive device according to the first embodiment.
  • FIG. 2 is a perspective view showing a first modification of the piezoelectric electrostrictive device according to the first embodiment.
  • FIG. 3 is a perspective view showing a second modification of the piezoelectric Z electrostrictive device according to the first embodiment.
  • FIG. 4 is a perspective view showing a third modified example of the piezoelectric electrostrictive device according to the first embodiment.
  • FIG. 5 is a perspective view showing a fourth modification of the piezoelectric Z electrostrictive device according to the first embodiment.
  • FIG. 6 is a perspective view showing a fifth modification of the piezoelectric electrostrictive device according to the first embodiment.
  • FIG. 7 is a perspective view showing another example of the piezoelectric electrostrictive device according to the fifth modification.
  • FIG. 8 is a perspective view showing a sixth modification of the piezoelectric Z electrostrictive device according to the first embodiment.
  • FIG. 9 is a perspective view showing a seventh modification of the piezoelectric / electrostrictive device according to the first embodiment.
  • FIG. 10 is a perspective view showing another example of the piezoelectric electrostrictive element with a part thereof omitted.
  • FIG. 11 is a perspective view showing still another example of the piezoelectric Z electrostrictive element with a part thereof omitted.
  • FIG. 12 is an explanatory diagram showing a case where the piezoelectric / electrostrictive element does not perform any displacement operation in the piezoelectric Z electrostrictive device according to the first embodiment.
  • FIG. 13A is a waveform diagram showing a voltage waveform applied to one piezoelectric Z electrostrictive element.
  • FIG. 13B is a waveform diagram showing a voltage waveform applied to the other piezoelectric electrostrictive element.
  • FIG. 14 is an explanatory diagram showing a case where the piezoelectric Z-electrostrictive element performs a displacement operation in the piezoelectric electrostrictive device according to the first embodiment.
  • FIG. 15 is a perspective view showing a case where the other piezoelectric electrostrictive device is fixed to the movable portion of one piezoelectric Z electrostrictive device.
  • FIG. 16A is an explanatory diagram showing a lamination process of the necessary ceramic green sheets in the first manufacturing method.
  • FIG. 16B is an explanatory view showing a state in which a ceramic green laminate is formed.
  • FIG. 17A is an explanatory diagram showing a state in which the ceramic green laminate is fired to form a ceramic laminate.
  • FIG. 17B is an explanatory view showing a state in which the piezoelectric electrostrictive elements formed separately are adhered to the surface of a metal plate serving as a thin plate.
  • FIG. 18 is an explanatory diagram showing a state in which a metal plate is bonded to a ceramic laminate to form a hybrid laminate in the first manufacturing method.
  • FIG. 19 is an explanatory diagram showing a state in which the hybrid laminate is cut along a predetermined cutting line to produce a piezoelectric electrostrictive device according to a first modification.
  • FIG. 2OA is an explanatory view showing a laminating process of a necessary ceramic green sheet in the second manufacturing method.
  • FIG. 20B is an explanatory diagram showing a state of a ceramic green laminate.
  • FIG. 21A is an explanatory view showing a state in which a ceramic green laminate is fired to form a ceramic laminate, and then a hole is filled with a filler.
  • FIG. 21B is an explanatory diagram showing a state in which a metal plate serving as a thin plate portion is bonded to a ceramic laminate to form a hybrid laminate.
  • FIG. 22 is an explanatory view showing a state in which a piezoelectric / electrostrictive element configured as a separate body is bonded to the surface of a metal plate of a hybrid laminate.
  • FIG. 23 is an explanatory diagram showing a state in which the hybrid laminate is cut along a predetermined cutting line to produce a piezoelectric Z electrostrictive device according to a first modification.
  • FIG. 24 is a perspective view showing the configuration of the piezoelectric electrostrictive device according to the second embodiment.
  • FIG. 25 is a perspective view showing another configuration of the piezoelectric electrostrictive device according to the second embodiment.
  • FIG. 26 is an enlarged view showing a configuration example of a laminated piezoelectric electrostrictive element.
  • FIG. 27 is an enlarged view showing a preferred configuration example of the multilayer piezoelectric electrostrictive element shown in FIG.
  • FIG. 28 is an enlarged view showing another configuration example of the laminated piezoelectric electrostrictive element.
  • FIG. 29 is an enlarged view showing a preferred configuration example of the laminated piezoelectric Z electrostrictive element shown in FIG.
  • FIG. 30 is a perspective view showing still another configuration of the piezoelectric Z electrostrictive device according to the second embodiment.
  • FIG. 31 is an explanatory diagram illustrating a preferable dimensional relationship of the piezoelectric Z electrostrictive device according to the second embodiment.
  • FIG. 32 is an explanatory diagram showing a state in which a rectangular hole is formed in the center of the stainless steel plate to produce a rectangular ring-shaped base body in the third manufacturing method.
  • FIG. 33 is an explanatory view showing a state where an adhesive is formed on the first stainless steel sheet.
  • FIG. 34 is an explanatory diagram showing a state in which a laminated piezoelectric electrostrictive element is bonded to a first thin stainless steel plate via an adhesive.
  • FIG. 35 is an explanatory diagram showing a state in which the first and second stainless steel sheets are bonded to the base via an adhesive.
  • FIG. 36 is an explanatory diagram showing a state in which the manufactured device master is cut.
  • FIG. 37 shows that, in the fourth manufacturing method, a rectangular hole is formed in the center of the stainless steel plate to produce a rectangular ring-shaped base, and the first and the second bases are bonded to the base via an adhesive.
  • FIG. 4 is an explanatory view showing a state where a second stainless steel plate is bonded.
  • FIG. 38 is an explanatory diagram showing a state where the first and second stainless steel sheets are bonded to the base via an adhesive.
  • FIG. 39 is an explanatory diagram showing a state where an adhesive is formed on the first stainless steel sheet.
  • FIG. 40 is an explanatory diagram showing a state in which a laminated piezoelectric electrostrictive element is bonded to a first thin stainless steel plate via an adhesive.
  • FIG. 41 is an explanatory diagram showing a state in which first and second stainless steel sheets are bonded to a substrate of another example via an adhesive.
  • FIG. 42 is an explanatory diagram showing an example in which, in the fifth manufacturing method, a step is provided at least in a portion of each thin plate portion to which the fixed portion is bonded.
  • FIG. 43 is an explanatory view showing an example in which, in the fifth manufacturing method, at least a portion of each thin plate portion to which the fixing portion is bonded is not provided with a step.
  • FIG. 44 is an explanatory diagram showing an example in which no step is provided in each thin plate portion in the fifth manufacturing method.
  • FIG. 45 is an explanatory view showing an example in which, in the fifth manufacturing method, a projection for forming a section for bonding is provided in a portion of each thin plate portion to which the fixing portion is bonded.
  • FIG. 46 is an explanatory view showing an example in which the fixing portion is enlarged in the fifth manufacturing method.
  • FIG. 47 is an explanatory diagram showing the first method (providing holes in the thin plate portion).
  • FIG. 48 is an explanatory diagram showing a second method (roughening the surfaces of the thin plate portion and the piezoelectric Z-electrostrictive element).
  • FIG. 49 is an explanatory view showing the third method (providing a curvature at the protruding portion of the adhesive).
  • FIG. 50 is an explanatory diagram showing a fourth method (chamfering a corner of a fixed portion).
  • FIG. 51 is an explanatory diagram showing a fifth method (turning burrs outward).
  • FIG. 52 is an explanatory view showing a sixth method (changing the thickness of the thin plate portion).
  • FIG. 53 is a configuration diagram showing a piezoelectric electrostrictive device according to a conventional example.
  • the piezoelectric electrostrictive device uses the piezoelectric Z electrostrictive element to This is a concept that includes elements that mutually convert energy with energy. Therefore, it is most suitably used as an active element such as various actuators and vibrators, particularly as a displacement element utilizing displacement due to an inverse piezoelectric effect and an electrostrictive effect, and also a passive element such as an acceleration sensor element and an impact sensor element. Can also be suitably used.
  • the piezoelectric electrostrictive device 1 OA As shown in FIG. 1, the piezoelectric electrostrictive device 1 OA according to the first embodiment has a long rectangular parallelepiped shape as a whole, and a hole 12 is provided at a substantially central portion in the major axis direction. Substrate 14 provided.
  • the base body 14 includes a pair of opposed thin plate portions 16a and 16b, a movable portion 20, and a fixed portion that supports the pair of thin plate portions 16a and 16b and the movable portion 20. 22.
  • Piezoelectric Z electrostrictive elements 24a and 24b are formed on at least a part of each of the thin plate portions 16a and 16b.
  • the base 14 may be formed entirely of ceramics or metal, or may be of a hybrid structure combining ceramics and metal.
  • the base 14 should have a structure in which each part is bonded with an adhesive such as an organic resin or glass, or a metal integrated structure in which the parts are integrated by brazing, soldering, eutectic bonding, welding, or the like. Can be.
  • a pair of thin plate portions 16a and 16b of the base 14 are made of metal, and the other movable portion 20 and the fixed portion 22 are made of ceramic. It has a hybrid structure. Specifically, metal thin plate portions 16a and 16b are fixed to the respective side surfaces of the movable portion 20 and the fixed portion 22 made of ceramic via an adhesive 200. Of course, the thin plate portions 16a and 16b, the movable portion 20 and the fixed portion 22 may all be made of metal.
  • the piezoelectric Z electrostrictive elements 24 a and 24 b are prepared separately from the piezoelectric Z electrostrictive elements 24 a and 24 b as described later, and an organic resin, glass, or the like is bonded to the base 14. In addition to being attached by an agent, brazing, soldering, eutectic bonding, or the like, and by using a film forming method, it is formed directly on the substrate 14 instead of the above-mentioned attachment. In the first embodiment, the piezoelectric Z electrostrictive elements 24a and 24b are fixed on the thin plate portions 16a and 16b via an adhesive 202, respectively.
  • the piezoelectric electrostrictive device 1 OA has, for example, a rectangular shape by both inner walls of a pair of thin plate portions 16 a and 16 b, an inner wall 20 a of the movable portion 20, and an inner wall 22 a of the fixed portion 22.
  • the movable portion 20 is displaced by driving the piezoelectric Z electrostrictive elements 24a and Z or 24b, or the displacement of the movable portion 20 is determined by the piezoelectric / electrostrictive element. It has a configuration to detect by 24a and / or 24b.
  • Each of the piezoelectric electrostrictive elements 24 a and 24 b includes a piezoelectric Z electrostrictive layer 26 and a pair of electrodes 28 and 30 formed on both sides of the piezoelectric electrostrictive layer 26.
  • One of the pair of electrodes 28 and 30 is formed on at least a pair of thin plate portions 16a and 16b.
  • the pair of electrodes 28 and 30 constituting the piezoelectric electrostrictive elements 24 a and 24 b and the tip surfaces of the piezoelectric electrostrictive layer 26 are substantially aligned, and the piezoelectric Z
  • the substantially driving portion 18 of the electrostrictive elements 24 a and 24 b (the portion where the paired electrodes 28 and 30 overlap with the piezoelectric Z electrostrictive layer 26 interposed therebetween) is the fixed portion 22. It is formed continuously from a part of the outer surface to a part of the outer surface of the thin plate portions 16a and 16b.
  • the tip surfaces of the pair of electrodes 28 and 30 are located slightly closer to the rear end than the inner wall 20a of the movable portion 20.
  • the piezoelectric electrostrictive elements 24a and 24b are formed so that the substantial driving part 18 is located from a part of the movable part 20 to a part of the thin plate parts 16a and 16b. You may make it.
  • the movable unit 20 is formed with the end faces 36 a and 36 b facing each other.
  • the end faces 36 a and 36 b are side faces of the movable part 20, that is, planes substantially parallel to the element forming surface, and are separated from the upper surface of the movable part 20 to the hole 12. I have.
  • the distances Da and Db from the central axis n of the movable portion 20 to the end faces 36a and 36b are substantially equal.
  • an air gap (air) 38 may be interposed between these end faces 36a and 36b, or in the seventh modification shown in FIG.
  • a piezoelectric Z electrostrictive device 10 Ag and, as shown in FIG. A member different from the constituent member of the movable portion 20, for example, a member 40 made of resin or the like may be interposed between 6b.
  • the application of the voltage to the pair of electrodes 28 and 30 is performed by fixing the fixed portions 22 2 of the electrodes 28 and 30 respectively. This is performed through terminals (pads) 32 and 34 formed on both side surfaces (element formation surface) of the device.
  • the positions of the terminals 32 and 34 are such that the terminal 32 corresponding to one electrode 28 is formed near the rear end of the fixed portion 22 and the terminal 3 4 corresponding to the other electrode 30 in the external space side. Is formed near the inner wall 22 a of the fixed part 22.
  • the piezoelectric electrostrictive device 1 OA can be fixed separately using a surface different from the surface on which the terminals 32 and 34 are arranged.
  • the piezoelectric Z electrostrictive device 1 OA can be fixed. High reliability can be obtained for both the fixing of the OA and the electrical connection between the circuit and the terminals 32 and 34.
  • the terminals 32 and 34 are electrically connected to the circuit by a flexible printed circuit (also called FPC), a flexible flat cable (also called FFC), wire bonding, or the like.
  • a piezoelectric electrostrictive device 10Aa according to a first modification shown in FIG.
  • the tips of a pair of electrodes 28 and 30 constituting the Z electrostrictive elements 24 a and 24 b are aligned, and only the tip of the piezoelectric / electrostrictive layer 26 protrudes toward the movable part 20.
  • a piezoelectric electrostrictive device 1 OA b according to a second modification shown in FIG. 3
  • one end of one electrode 28 and the piezoelectric electrostrictive layer 26 are aligned, Only the tip of the other electrode 30 may be positioned closer to the fixed part 22.
  • the piezoelectric electrostrictive device 10 Ab shown in FIG. 3 an example is shown in which end portions 36 a and 36 b facing each other are provided on a fixed portion 22 instead of the movable portion 20.
  • each tip of one electrode 28 and the piezoelectric / electrostrictive layer 26 is connected to the side surface of the movable portion 20.
  • the tip of the other electrode 30 may be positioned substantially at the center in the length direction (Z-axis direction) of the thin plate portions 16a and 16b.
  • the piezoelectric electrostrictive elements 24a and 24b are configured by the piezoelectric electrostrictive layer 26 having a single-layer structure and a pair of electrodes 28 and 30. It is also preferable that the strain elements 24a and 24b are formed by stacking the piezoelectric Z electrostrictive layer 26 and a plurality of the pair of electrodes 28 and 30.
  • the piezoelectric electrostrictive layer 26 and the pair of electrodes 28 and 30 each have a multilayer structure, and one of the electrodes 28 And the other electrode 30 are alternately laminated, and a portion where the one electrode 28 and the other electrode 30 overlap with the piezoelectric electrostrictive layer 26 interposed therebetween (substantially the driving portion 18)
  • the multi-stage piezoelectric electrostrictive elements 24a and 24b may be used.
  • the piezoelectric Z electrostrictive layer 26 has a three-layer structure, and one electrode 28 is provided on the lower surface of the first layer (side surface of the thin plate portion 16a and 16b) and on the upper surface of the second layer, respectively.
  • the other electrode 30 is separately formed on the upper surface of the first layer and the upper surface of the third layer, and the terminals 32 a and 3 are respectively formed on the respective ends of one electrode 28.
  • 2B shows an example in which terminals 34a and 34b are provided at the respective ends of the other electrode 30.
  • the piezoelectric electrostrictive layer 26 and the pair of electrodes 28 and 30 each have a multilayer structure, and one electrode 28 and the other electrode 30 are alternately laminated so as to have a substantially comb-shaped cross section, and the one electrode 28 and the other electrode 30 overlap with the piezoelectric / electrostrictive layer 26 interposed therebetween.
  • the piezoelectric Z-electrostrictive elements 24 a and 24 b in which the part (substantially the driving part 18) has a multi-stage configuration may be used. In FIG.
  • the piezoelectric / electrostrictive layer 26 has a three-layer structure, and one electrode 28 is provided on the lower surface of the first layer (side surfaces of the thin plate portions 16a and 16b) and the upper surface of the second layer.
  • One example is shown in which the electrode 30 is formed in a comb shape so as to be positioned, and the other electrode 30 is formed in a comb shape so as to be positioned on the upper surface of the first layer and the upper surface of the third layer.
  • the number of terminals 32 and 34 can be reduced as compared with the configuration of FIG. 5 by connecting and sharing one electrode 28 and the other electrode 30 with each other. It is possible to prevent the size of the electrostrictive elements 24a and 24b from increasing due to the multilayering. As shown in FIG.
  • the piezoelectric Z electrostrictive elements 24 a and 24 b Department It may be formed so as to remain on 16a and 16b.
  • FIG. 7 shows an example in which the distal ends of the piezoelectric Z electrostrictive elements 24a and 24b are located at substantially the center in the length direction of the thin plate portion. In this case, there is an advantage that the movable portion 20 can be largely displaced.
  • two piezoelectric electrostrictive elements 24 a 1 and 24 b 1 having a multi-stage configuration are fixed to the fixed portions 22 2, respectively.
  • the thin plate portions 16a and 16b, and the other two multi-stage piezoelectric electrostrictive elements 24a2 and 24b2 are connected to the movable portion 20 and the thin plate portion 16a, respectively.
  • 16 may be formed.
  • the movable part 20 is extremely displaced due to the effect that the piezoelectric / electrostrictive elements 24 a and 24 b have a multi-stage structure and the effect that the number of action points for displacing the movable part 20 increases. And high-speed response is excellent.
  • the piezoelectric electrostrictive layer 26 has a two-layer structure, and one electrode 28 has a lower surface of the first layer (a thin plate). (The side surfaces of the sections 16a and 16b) and a comb-like shape so as to be located on the upper surface of the second layer, and the other electrode 30 is formed so as to be located on the upper surface of the first layer.
  • the piezoelectric electrostrictive elements 24a and 24b may be used.
  • a member different from the movable portion 20 is filled between the end faces 36a and 36b of the movable portion 20.
  • the number of stages may be determined as appropriate according to the application and use state. Further, in the piezoelectric electrostrictive device 1 OA according to the first embodiment, even if the piezoelectric electrostrictive elements 24 a and 24 b are multi-tiered to increase the driving force, the thin plate portion 16 a And the width of 16b (distance in the Y-axis direction) are invariable. For example, positioning of magnetic heads for hard disks used in very narrow gaps, ringing This is a very preferable device when applied to factories and other functions.
  • the multi-stage structure increases the capacitance and the generated electric charge, so that the level of the electric signal generated by the sensor increases.
  • processing in a signal processing circuit connected downstream of the sensor is facilitated.
  • piezoelectric electrostrictive elements 24a and 24b a case was shown in which a so-called sandwich structure in which a piezoelectric electrostrictive layer 26 was interposed between a pair of electrodes 28 and 30 was shown.
  • a pair of comb-shaped electrodes 280 and 30 are formed on at least one main surface of the piezoelectric Z electrostrictive layer 26 formed on the side surfaces of the thin plate portions 16a and 16b.
  • a pair of comb-shaped electrodes 28 and 3 may be formed on at least the piezoelectric Z electrostrictive layer 26 formed on the side surfaces of the thin plate portions 16 a and 16 b. It may be formed by embedding 0.
  • the structure shown in Fig. 10 has the advantage that the power consumption can be kept low.
  • the structure shown in Fig. 11 is a structure that can effectively use the reverse piezoelectric effect in the direction of the electric field where distortion and generated force are large. Therefore, it is advantageous for generating large displacement.
  • the piezoelectric / electrostrictive elements 24 a and 24 b shown in FIG. 10 have a pair of comb-shaped electrodes 280 and 30 formed on one main surface of the piezoelectric electrostrictive layer 26.
  • One electrode 28 and the other electrode 30 alternately face each other with a gap 29 having a constant width.
  • FIG. 10 shows an example in which the pair of electrodes 28 and 30 are formed on one main surface of the piezoelectric Z electrostrictive layer 26.
  • the thin plate portions 16a and 16b and the piezoelectric electrostrictive layer 26 may be formed, or one main surface of the piezoelectric electrostrictive layer 26 and the thin plate portions 16a and 16b may be connected to the piezoelectric Z electrostrictive layer.
  • a pair of comb-shaped electrodes 28 and 30 may be formed between the electrode 26 and the layer 26.
  • the piezoelectric electrostrictive elements 24a and 24b shown in FIG. 11 are formed with a pair of electrodes 28 and 30 having a comb structure so as to be embedded in the piezoelectric electrostrictive layer 26.
  • the electrode 28 and the other electrode 30 alternately face each other with a gap 29 having a constant width.
  • Such piezoelectric electrostrictive elements 24a and 24b as shown in FIGS. 10 and 11 are also used. It can be suitably used for the piezoelectric electrostrictive device 1 OA according to the first embodiment.
  • the combs of the electrodes 28 and 30 are used. By reducing the tooth pitch D, it is possible to increase the displacement of the piezoelectric electrostrictive elements 24a and 24b.
  • FIG. 1A the major axis m of the piezoelectric / electrostrictive device 1OA (the major axis of the fixed part) and the central axis n of the movable part 20 are almost coincident.
  • a sine wave Wa having a predetermined bias potential Vb is applied to a pair of electrodes 28 and 30 in one piezoelectric electrostrictive element 24a.
  • the pair of electrodes 28 and 30 in the other piezoelectric Z-electrostrictive element 24 b have a sine wave W having a phase almost 180 ° different from that of the sine wave Wa. Apply b.
  • the piezoelectric Z electrostriction in one piezoelectric electrostrictive element 24a is The layer 26 contracts and displaces in the direction of its main surface.
  • a stress is generated in one thin plate portion 16a in a direction to bend the thin plate portion 16a rightward, for example, as shown by an arrow A. Therefore, the one thin plate portion 16a is bent rightward, and at this time, no voltage is applied to the pair of electrodes 28 and 30 in the other piezoelectric electrostrictive element 24b.
  • the other thin plate portion 16b deflects rightward following the deflection of the one thin plate portion 16a.
  • the movable section 20 is displaced, for example, rightward with respect to the major axis m of the piezoelectric electrostrictive device 1OA.
  • the amount of displacement changes in accordance with the maximum value of the voltage applied to each of the piezoelectric electrostrictive elements 24a and 24b. For example, the displacement increases as the maximum value increases.
  • a piezoelectric Z-electrostrictive material having a high coercive electric field is applied as a constituent material of the piezoelectric Z-electrostrictive layer 26, as shown by the two-dot chain lines in FIGS. 13A and 13B.
  • the bias potential may be adjusted so that the level of the minimum value is slightly negative. In this case, the piezoelectric electrostrictive element to which the negative level is applied
  • the piezoelectric electrostrictive element 24 b or 24 a By using the waveforms shown by the two-dot chain lines in FIGS. 13A and 13B, the piezoelectric electrostrictive element 24 b or 24 a to which a negative level is applied becomes A function of supporting the piezoelectric Z electrostrictive element 24a or 24b that is the main component of the displacement operation can be provided.
  • the applied voltage (see sine wave W a) is applied, and the voltage shown in Fig. 13B (see sine wave W b) is applied to the other piezoelectric Z-electrostrictive elements 24 a 2 and 24 b 1. Is applied.
  • the minute displacement of the piezoelectric electrostrictive elements 24a and 24b causes the bending of the thin plate portions 16a and 16b. Since it is amplified to a large displacement operation and transmitted to the movable part 20, the movable part 20 can be displaced greatly with respect to the long axis m of the piezoelectric Z electrostrictive device 1 OA Becomes
  • the movable section 20 is provided with the end faces 36a and 36b facing each other.
  • a space 38 is formed between the end faces 36a and 36b facing each other, or a member 4 lighter than the constituent member of the movable portion 20 is provided between the end faces 36a and 36b facing each other.
  • the frequency indicates the frequency of the voltage waveform when the movable part 20 is displaced left and right by alternately switching the voltage applied to the pair of electrodes 28 and 30. Indicates a frequency at which the displacement amplitude of the movable portion 20 becomes maximum when a predetermined sine wave voltage is applied.
  • a pair of The thin plate parts 16a and 16b are made of metal, and the other movable part 20 and fixed part 22 are made of ceramic.They have a hybrid structure, and all parts are fragile and relatively heavy. Since it is not necessary to use a piezoelectric Z-electrostrictive material, it has high mechanical strength, excellent handling properties, shock resistance, and moisture resistance, and harmful vibrations during operation (for example, residual vibration during high-speed operation). And noise vibration).
  • a part 2OA of the movable portion 20 including one end face 36a is provided. And another part 20 B of the movable part 20 including the other end face 36 b is easily bent, and becomes resistant to deformation. Therefore, the handling performance of the piezoelectric electrostrictive device 1OA is excellent.
  • the surface area of the movable portion 20 or the fixed portion 22 increases due to the presence of the end faces 36a and 36b facing each other. Therefore, as shown in FIG. 1, when the movable part 20 having the end faces 36a and 36b facing each other is used, when attaching another part to the movable part 20, the mounting area is reduced. It can be large, and the mounting of parts can be improved.
  • the adhesive spreads not only to one main surface (the component mounting surface) of the movable portion 20 but also to the end surfaces 36a and 36b. In addition, it is possible to eliminate insufficient application of the adhesive and the like, and the components can be securely fixed.
  • FIG. 15 shows another example of the piezoelectric electrostrictive device according to the present embodiment, which is provided on the movable portion 20 of the piezoelectric Z electrostrictive device (one piezoelectric electrostrictive device 10A1) according to the present embodiment. This shows a case where the device (the other piezoelectric electrostrictive device 10 A 2) is fixed.
  • One of the piezoelectric electrostrictive devices 10 A 1 has its fixing portion 22 fixed to the surface of the substrate 122 via an adhesive 120.
  • the fixed portion 22 of the other piezoelectric / electrostrictive device 10A2 is fixed to the movable portion 20 of the one piezoelectric / electrostrictive device 10A1 via an adhesive 124. That is, two piezoelectric Z electrostrictive devices 1 OA 1 and 10 A 2 are arranged in series.
  • a lighter member 126 different from the movable part 20 is interposed between the opposing end faces 36a and 36b of the movable part 20 of the other piezoelectric electrostrictive device 10A2. I have.
  • the other piezoelectric / electrostrictive device 1 OA 2 is firmly fixed to one piezoelectric electro-strictive device 1 OA 1.
  • a lightweight member different from the movable portion 20 between the end faces 36a and 36b at the same time as the bonding (the adhesive 12 in this example). 4) has the advantage that the manufacturing process can be simplified.
  • FIG. 1 for fixing the other piezoelectric electrostrictive device 10 A 2 to between the end faces 36 a and 36 b of the movable portion 20 in one piezoelectric electrostrictive device 1 OA 1.
  • the piezoelectric electrostrictive device 10Ab according to the second modification can be firmly fixed to a predetermined fixing portion, and reliability can be improved.
  • a part (substantially driving part 18) in which the pair of electrodes 28 and 30 overlap with the piezoelectric electrostrictive layer 26 interposed therebetween is part of the fixed part 22. It is formed continuously from the thin plate portions 16a and 16b to a part thereof.
  • the substantial driving portion 18 is further formed over a part of the movable portion 20, the displacement operation of the movable portion 20 is limited by the substantial driving portion 18, and a large displacement may not be obtained.
  • the substantial driving portion 18 is formed so as not to be applied to the movable portion 20, the disadvantage that the displacement operation of the movable portion 20 is limited is avoided.
  • the displacement of the movable part 20 can be increased.
  • the substantial driving part 18 is moved from a part of the movable part 20 to the thin plate part 16 a. And it is preferably formed so as to be located over a part of 16b. This is because, if the substantial driving portion 18 is formed to extend to a part of the fixed portion 22, the displacement operation of the movable portion 20 is restricted as described above.
  • the effective driving part 18 of the piezoelectric Z electrostrictive elements 24 a and 24 b is moved by the distance between the fixed part 22 and the movable part 20. It is preferable that the separation g is 12 or more of the thickness d of the thin plate portions 16a and 16b.
  • the ratio between the distance between the inner walls of the thin plate portions 16a and 16b (distance in the X-axis direction) a and the width of the thin plate portions 16a and 16b (distance in the Y-axis direction) b a Z b Is set to be 0.5 to 20.
  • the ratio aZb is preferably from 1 to 15, more preferably from 1 to 10.
  • the specified value of the ratio a Z b is based on the discovery that the displacement amount of the movable part 20 is increased and the displacement in the XZ plane can be obtained dominantly.
  • the ratio e Z a between the lengths (distances in the Z-axis direction) e of the thin plate portions 16 a and 16 b and the distance a between the inner walls of the thin plate portions 16 a and 16 b is preferably It is preferably 0.5 to 10 and more preferably 0.5 to 5.
  • the displacement of the movable portion 20 is restricted by the presence of the filler.
  • the displacement operation of the movable portion 20 due to the material is negated, and the effect of the presence of the filler, that is, an increase in the resonance frequency and an increase in rigidity can be realized.
  • the length f (distance in the Z-axis direction) f of the movable portion 20 is preferably short. This is because shortening can reduce the weight and increase the resonance frequency.
  • the ratio fZd to the thickness d of the thin plate parts 16a and 16b must be 2 Above, preferably 5 or more is desirable.
  • each part is the joint area for attaching the part to the movable part 20, the joint area for attaching the fixed part 22 to other members, and the joint area for attaching the electrode terminals, etc.
  • the piezoelectric Z electrostrictive device 1 is determined in consideration of the strength, durability, required displacement amount, resonance frequency, drive voltage, and the like of the entire OA.
  • the distance a between the inner walls of the thin plate portions 16a and 16b is preferably 100 to 200 zm, more preferably 200 m to 1600 im. .
  • the width b of the thin plate portions 16a and 16b is preferably 50 zm to 2000 m, and more preferably 100 / m to 500 It is.
  • the thickness d of the thin plate portions 16a and 16b is b> d in relation to the width b of the thin plate portions 16a and 16b so that the tilting displacement, which is a displacement component in the Y-axis direction, can be effectively suppressed. And 2 to 100 °, more preferably 10 to 80 / m.
  • the length e of the thin plate portions 16a and 16b is preferably 200 zm to 3000 m, more preferably 300 // m to 2000 xm.
  • the length f of the movable section 20 is preferably 50 m to 2000 m, and more preferably 100 m to 1000 / zm.
  • the displacement in the Y-axis direction does not exceed 10% with respect to the displacement in the X-axis direction, but low-voltage driving can be achieved by appropriately adjusting the above-mentioned ratio of dimensions and actual dimensions. It is possible to suppress the displacement component in the Y-axis direction to 5% or less.
  • the movable portion 20 is substantially displaced in one axis direction, that is, the X-axis direction, and furthermore has excellent high-speed response and can obtain a large displacement at a relatively low voltage.
  • the movable part 20 and the fixed part 22 have a substantially rectangular parallelepiped shape, instead of a conventional plate-like shape (a shape having a small thickness in a direction perpendicular to the displacement direction) as in the related art. Since a pair of thin plate portions 16a and 16b are provided so that the side surfaces of the movable portion 20 and the fixed portion 22 are continuous, the rigidity of the piezoelectric electrostrictive device 1OA in the Y-axis direction can be selectively set. Can be higher.
  • the movable portion 20 is a portion that operates based on the driving amount of the thin plate portions 16a and 16b, and various members are attached according to the intended use of the piezoelectric electrostrictive device 1OA.
  • a piezoelectric electrostrictive device 1 OA as a displacement element If it is used for a magnetic head of a hard disk drive or used for a ringing suppression mechanism, a magnetic head, a slider with a magnetic head, and a slider are used.
  • the fixed portion 22 is a portion that supports the thin plate portions 16a and 16b and the movable portion 20, and is used, for example, when positioning the magnetic head of the hard disk drive.
  • the piezoelectric Z electrostrictive device 1 OA is supported and fixed to a carriage arm attached to a VCM (voice coil module), a fixed plate or a suspension attached to the carriage arm, or the like. Is fixed.
  • terminals 32 and 34 for driving the piezoelectric Z electrostrictive elements 24 a and 24 b and other members may be arranged in the fixing portion 22 as shown in FIG. .
  • the material forming the movable portion 20 and the fixed portion 22 is not particularly limited as long as it has rigidity, but ceramics to which a ceramic green sheet laminating method described later can be applied can be suitably used. More specifically, in addition to stabilized zirconia, partially stabilized zirconia, and other materials containing zirconia, alumina, magnesia, silicon nitride, aluminum nitride, titanium oxide as a main component, and mixtures thereof, From the viewpoint of high mechanical strength and high toughness, zirconia, particularly a material mainly containing stabilized zirconia and a material mainly containing partially stabilized zirconia, are preferable.
  • the metal material is not limited as long as it has rigidity, and examples thereof include stainless steel, nickel, brass, white copper, and bronze.
  • the stabilized zirconia and partially stabilized zirconia those stabilized and partially stabilized as described below are preferable. That is, compounds that stabilize and partially stabilize zirconium include yttrium oxide, ytterbium oxide, cerium oxide, calcium oxide, and magnesium oxide. Can be partially or completely stabilized, but the stabilization can be achieved not only by adding one kind of compound but also by adding those compounds in combination. Key stabilization is possible.
  • the amount of each compound to be added is 1 to 30 mol%, preferably 1.5 to 10 mol% in the case of yttrium oxide and ytterbium oxide, and in the case of cerium oxide. Is 6 to 50 mol%, preferably 8 to 20 mol%, and in the case of calcium oxide or magnesium oxide, it is 5 to 40 mol%, preferably 5 to 20 mol%. Desirably, among them, it is particularly preferable to use yttrium oxide as a stabilizer, and in that case, it is desirable that the content be 1.5 to 10 mol%, more preferably 2 to 4 mol%.
  • Alumina, silica, transition metal oxides and the like can be added as additives such as sintering aids in the range of 0.05 to 20 wt%, but the piezoelectric electrostrictive element 24 a
  • sintering aids in the range of 0.05 to 20 wt%
  • the piezoelectric electrostrictive element 24 a When sintering and integration by a film forming method is adopted as a method for forming the layer 24b, it is also preferable to add alumina, magnesia, transition metal oxide, or the like as an additive.
  • the average crystal particle diameter of zircoair is 0.05 to 3 m, preferably 0.05 to 1 im.
  • the same ceramics as those of the movable portion 20 and the fixed portion 22 can be used, but preferably, substantially the same material is used. It is advantageous to use this structure in order to reduce the reliability of the joint, the strength of the piezoelectric electrostrictive device 1OA, and the complexity of manufacturing.
  • the thin plate portions 16a and 16b are portions driven by the displacement of the piezoelectric electrostrictive elements 24a and 24b.
  • the thin plate portions 16a and 16b are flexible thin plate-like members, and flexurally displace the expansion / contraction displacement of the piezoelectric / electrostrictive elements 24a and 24b disposed on the surface. And a function of transmitting the amplified signal to the movable section 20. Therefore, the shape and material of the thin plate portions 16a and 16b are only required to be flexible and have sufficient mechanical strength so as not to be damaged by bending deformation. It can be appropriately selected in consideration of the operability and operability.
  • the thickness d of the thin plate portions 16a and 16b is preferably about 2 xm to 100 / m, and the thin plate portions 16a and 16b and the piezoelectric Z electrostrictive elements 24a and
  • the total thickness of 24b and 7b is preferably 7 m to 500; m.
  • the thickness of electrodes 28 and 30 is 0.1 to 50 m, and the thickness of the piezoelectric Z electrostrictive layer 26 is preferably 3 to 300 // m.
  • the width b of the thin plate portions 16a and 16b is preferably 50 m to 2000 tm.
  • the shape and material of the thin plate portions 16a and 16b are sufficient if they have flexibility and mechanical strength enough not to be damaged by bending deformation, and metal is preferably used.
  • a metal material that is flexible and can be bent and deformed specifically, a metal material having a Young's modulus of 100 GPa or more may be used.
  • austenitic stainless steel such as SUS301, SUS304, AISI 653, and SUH660
  • ferrite stainless steel such as SUS430 and 434
  • martensitic stainless steel such as SUS410 and SUS630.
  • steel semi-austenite stainless steel such as SUS631, AISI632, etc., maraging stainless steel, and various spring steels.
  • the non-ferrous material should be composed of titanium-nickel alloys or other superelastic titanium alloys, brass, bronze, aluminum, tungsten, molybdenum, beryllium copper, phosphor bronze, nickel, nickel-iron alloys, titanium, etc. Is desirable.
  • zirconia is preferable.
  • the material containing stabilized zirconia as a main component and the material containing partially stabilized zirconia as a main component have high mechanical strength, high toughness even in the case of a thin wall, and are difficult to be combined with the piezoelectric electrostrictive layer 26 and the electrode material. It is most preferably used because of its low reactivity.
  • Each of the piezoelectric electrostrictive elements 24 a and 24 b has at least a piezoelectric electrostrictive layer 26 and a pair of electrodes 28 and 30 for applying an electric field to the piezoelectric electrostrictive layer 26, and has a unimorph type and a bimorph type.
  • the unimorph type combined with the thin plate portions 16a and 16b is more excellent in the stability of the generated displacement and is advantageous for weight reduction. Suitable for a large piezoelectric electrostrictive device 1 OA.
  • one electrode 28 the piezoelectric electrostrictive layer 26 and the other A piezoelectric electrostrictive element or the like in which the poles 30 are stacked in layers can be suitably used, and a multi-stage structure may be used as shown in FIGS.
  • the displacement of the films (electrode films) constituting the electrodes 28 and 30, that is, the displacement in the plane direction of the vertical projection plane of the electrode 28 every other layer becomes 50 m or less. I have. This is the same for the electrode 30.
  • the piezoelectric electrostrictive elements 24a and 24b are formed on the outer surface side of the piezoelectric electrostrictive device 1OA, the thin plate portions 16a and 16b are driven more greatly.
  • it may be formed on the inner surface side of the piezoelectric Z electrostrictive device 1 OA, that is, on the inner wall surface of the hole 12, depending on the usage form. It may be formed on both the outer surface and the inner surface of the OA.
  • Piezoelectric ceramics is preferably used for the piezoelectric Z electrostrictive layer 26, but it is also possible to use electrostrictive ceramics, ferroelectric ceramics, or antiferroelectric ceramics.
  • this piezoelectric Z electrostrictive device 1 OA is used for positioning a magnetic head of a hard disk drive, etc.
  • the linearity between the displacement of the movable part 20 and the drive voltage or output voltage is important, It is preferable to use a material having a small history, and it is preferable to use a material having a coercive electric field of 10 kVZmm or less.
  • Specific materials include lead zirconate, lead titanate, lead magnesium niobate, lead nickel niobate, lead zinc niobate, lead manganese niobate, lead antimony stannate, lead manganese tungstate, lead cobalt niobate, Ceramics containing barium titanate, sodium bismuth titanate, potassium sodium niobate, strontium bismuth tantalate alone or as a mixture are mentioned.
  • the thin plate portions 16a and 16b are made of ceramic and have a high electromechanical coupling coefficient and piezoelectric constant, and the piezoelectric Z electrostrictive layer 26 is integrally fired, the thin plate portions 16a and In terms of low reactivity with 16b (ceramics) and a stable composition, a material containing lead zirconate, lead titanate, and lead magnesium niobate as main components, or sodium bismuth titanate is used. A material as a main component is preferably used.
  • the materials include lanthanum, calcium, strontium, molybdenum, tungsten, barium, niobium, zinc, nickel, manganese, cerium, cadmium, chromium, cobalt, antimony, iron, yttrium, tantalum, lithium, bismuth, and tin. Ceramics in which an oxide such as the above or a compound containing at least one component that eventually becomes an oxide may be used alone or as a mixture.
  • the pair of electrodes 28 and 30 of the piezoelectric electrostrictive elements 24 a and 24 b are preferably solid at room temperature and made of a metal having excellent conductivity, for example, aluminum, Simple metals such as titanium, chromium, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, palladium, rhodium, silver, tin, tantalum, tandasten, iridium, platinum, gold, lead, and alloys thereof.
  • a cermet material in which the same material as the piezoelectric Z electrostrictive layer 26 or a different ceramic material is dispersed may be used.
  • the material selection of the electrodes 28 and 30 in the piezoelectric / electrostrictive elements 24 a and 24 b is determined depending on the method of forming the piezoelectric / electrostrictive layer 26. For example, when one electrode 28 is formed on the thin plate portions 16a and 16b, and then the piezoelectric / electrostrictive layer 26 is formed on the one electrode 28 by firing, one electrode 28 is formed. It is necessary to use a high melting point metal such as platinum, palladium, a platinum-palladium alloy, or a silver-palladium alloy which does not change even at the firing temperature of the piezoelectric / electrostrictive layer 26. After forming 6, the other electrode 30 in the case of being located on the outermost layer formed on the piezoelectric electrostrictive layer 26 can be formed at a low temperature, so that aluminum, gold, silver, etc. Low melting point metals can be used.
  • a high melting point metal such as platinum, palladium, a platinum-palladium alloy, or a silver-palladium alloy
  • the laminated piezoelectric Z electrostrictive element 24 is attached to the thin plate portions 16a and 16b with an adhesive 20.
  • the piezoelectric Z electrostrictive layer 26 and the electrodes 28 and 30 are preferably laminated in a multilayer and integrated, and then fired at once.
  • the electrodes 28 and 30 use high melting point metals such as platinum, palladium, and alloys thereof.
  • the electrodes 28 and 30 are preferably made of a cermet which is a mixture of a high melting point metal and a piezoelectric electrostrictive material or another ceramic.
  • the thickness of the electrodes 28 and 30 is not a small factor, but also causes a reduction in the displacement of the piezoelectric electrostrictive elements 24a and 24b. It is preferable to use a material such as an organic metal paste capable of obtaining a dense and thinner film after firing, such as a gold resinate paste, a platinum resinate paste, and a silver resinate paste.
  • a material such as an organic metal paste capable of obtaining a dense and thinner film after firing, such as a gold resinate paste, a platinum resinate paste, and a silver resinate paste.
  • FIG. 16A shows a piezoelectric Z electrostrictive device 1OA according to the first embodiment.
  • the thin plate portions 16a and 16b are made of metal, and the constituent materials of the movable portion 20 and the fixed portion 22 are made of ceramics. Therefore, as the components of the piezoelectric Z electrostrictive device 1 OA, except for the thin plate portions 16 a and 16 b and the piezoelectric electrostrictive elements 24 a and 24 b, the fixed portion 22 and the movable portion 20 are not included. It is preferable to manufacture using a ceramic green sheet laminating method.On the other hand, for the terminals 32 and 34 including the piezoelectric electrostrictive elements 24a and 24b, a film forming method such as a thin film or a thick film is used. It is preferable to manufacture using.
  • the thin plate portions 16a and 16 are preferably fixed to the side surfaces of the movable portion 20 and the fixed portion 22 with an adhesive 200, and the piezoelectric Z-electrode is applied to the thin plate portions 16a and 16b.
  • the fixing of the strain elements 24a and 24b is preferably performed by an adhesive 202. According to the ceramic green sheet laminating method in which the movable part 20 and the fixed part 22 of the piezoelectric Z electrostrictive device 1 OA can be integrally formed, there is almost no change in the state of the joint of each member with time. Therefore, the reliability of the joint is high and it is an advantageous method for securing rigidity.
  • the boundary portions between the thin plate portions 16 a and 16 b and the fixed portion 22 and the thin plate portions 16 a and 16 b and the movable portion 2 0
  • the boundary between these two points serves as a fulcrum for the onset of displacement, and the reliability of these boundaries is an important point that determines the characteristics of the piezoelectric electrostrictive device 1 OA.
  • the manufacturing method described below is excellent in productivity and moldability, so that a piezoelectric electrostrictive device having a predetermined shape can be obtained in a short time and with good reproducibility.
  • the laminated body obtained by laminating the ceramic green sheets is defined as a ceramic green laminated body 158 (for example, see FIG. 16B), and the ceramic green laminated body 158 is integrated by firing.
  • a ceramic laminate 16 (see, for example, FIG. 17A)
  • a laminate of the ceramic laminate 16 and a metal plate is defined as a hybrid laminate 16 2 (see FIG. 18).
  • Unnecessary parts are cut out of the hybrid laminate 16 2 to form a base 14 D (see FIG. 19) in which the movable part 20, the thin plate parts 16 a and 16 b, and the fixed part 22 are integrated. ).
  • the hybrid laminate 162 is finally cut into chips, and a large number of piezoelectric Z electrostrictive devices 1OA are obtained. For this reason, the explanation will be made mainly on taking one piezoelectric OA device 1 OA.
  • a slurry is prepared by adding a binder, a solvent, a dispersant, a plasticizer, etc. to ceramic powder such as zirconia, and then defoaming the slurry. According to the method, a ceramic green sheet having a predetermined thickness is manufactured.
  • the ceramic Darline sheet is processed into various shapes as shown in Fig. 16A by a method such as punching or laser processing using a die, and a plurality of ceramic green sheets for forming a substrate. More specifically, a plurality (for example, four) of ceramic green sheets 50 A to 50 D having at least a window portion 54 forming a hole 12 later, and a window forming a hole 12 later A ceramic green sheet 102 in which a portion 54 and a window 100 for forming a movable portion 20 having end faces 36a and 36b opposed to each other are continuously formed is prepared. Thereafter, as shown in FIG. 16B, the ceramic green sheets 50 A to 50 D and 102 are laminated and pressed to form a ceramic green laminate 158.
  • the ceramic green sheet 102 is positioned at the center. Thereafter, the ceramic green laminate 158 is fired to obtain a ceramic laminate 160 as shown in FIG. 17A. At this time, the ceramic laminate 160 has a shape in which a hole 130 is formed by the windows 54 and 100.
  • the piezoelectric electrostrictive elements 24a and 24b which were formed separately, were respectively placed on the surfaces of the metal plates 15A and 15B, which are thin plates, with an epoxy-based material. Glue with adhesive 202.
  • the metal plates 15A and 15B were sandwiched between the metal plates 15A and 15B and the hole 13 was closed so as to sandwich the ceramic laminate 16O.
  • B is bonded to the ceramic laminate 160 with an epoxy adhesive 200 to obtain a hybrid laminate 162 (see FIG. 18).
  • a plurality of (for example, four) ceramic drain sheets 50 A on which windows 54 for forming holes 12 are formed at least later are formed.
  • the prepared ceramic green sheet 102 is prepared.
  • the ceramic green sheets 50A to 50D and 102 are laminated and pressed together to form a ceramic green laminate 158.
  • the ceramic green laminate 158 is fired, and as shown in FIG. To obtain a black laminate 16.
  • the ceramic laminate 160 has windows 54 and
  • the metal plates 150 A and 152 B are sandwiched between the ceramic laminate 160 and the holes 130 are closed so that the metal The plates 15A and 152B are bonded to the ceramic laminate 160 with an epoxy adhesive 200 to obtain a hybrid laminate 162.
  • an epoxy adhesive 200 to obtain a hybrid laminate 162.
  • the filler 164 Since the filler 164 needs to be finally removed, it is easily dissolved in a solvent or the like, and is preferably a hard material, and examples thereof include an organic resin, wax, and wax. Alternatively, a material in which ceramic powder is mixed as a filler with an organic resin such as acrylic resin can be used.
  • the piezoelectric / electrostrictive elements 24a and 24 formed separately on the surface of the metal plates 15A and 15B in the hybrid laminate 162 b is bonded with an epoxy-based adhesive 202. Separate piezoelectric / electrostrictive elements 24a and 2
  • 4b can be formed by, for example, a ceramic green sheet laminating method or a printing multilayer method.
  • the eight-electrode laminate 16 2 on which the piezoelectric electrostrictive elements 24 a and 24 b were formed was cut along cutting lines C 1, C 2, and C 5. By doing so, the side and tip of the hybrid laminate 162 are cut off. As a result of this excision, as shown in FIG. 23, the piezoelectric electrostrictive elements 24a and 24b are formed on the thin plate portions 16a and 16b made of a metal plate in the base 14D.
  • the piezoelectric / electrostrictive device 1OA according to the first embodiment, in which the movable portion 20 having the end faces 36a and 36b facing each other is formed.
  • a portion corresponding to the ceramic laminate 160 in FIG. 17A is formed by fabrication, and the bulk member is ground, wire-discharge machined, or the like. Formed by die punching and chemical etching It may be formed by laminating thin metal sheets and forming them by a cladding method.
  • the piezoelectric Z electrostrictive device 10B includes a pair of thin plate portions 16a and 16b opposed to each other, and these thin plate portions 16a and 16b. And a fixed portion 22 for supporting 16b, and a laminated piezoelectric Z-electrostrictive element 24 is disposed on one of the thin plate portions 16a of the pair of thin plate portions 16a and 16b. It is configured. Since the structure of the multilayer piezoelectric / electrostrictive element 24 is complicated, it is simplified in FIGS. 24 and 25, and the detailed enlarged view is shown in FIGS. 26 to 29. It is shown.
  • a fixing portion 22 is fixed between the rear end portions of the pair of thin plate portions 16a and 16b by, for example, an adhesive 200, and each end of the pair of thin plate portions 16a and 16b.
  • the part is open end.
  • the above-described movable portion 20 or various members / parts are provided between the tip portions of the pair of thin plate portions 16a and 16b, for example, with an adhesive 200 Is fixed through.
  • the movable portion 20 made of the same member as the fixed portion 22 is interposed between the tip portions of the pair of thin plate portions 16a and 16b with the adhesive 200 interposed therebetween.
  • An example is shown in FIG. 25
  • Each of the pair of thin plate portions 16a and 16b is made of metal, and the fixed portion 22 and the movable portion 20 are made of ceramics or metal.
  • the thickness of one thin plate portion 16a on which the laminated piezoelectric / electrostrictive element 24 is formed is reduced. It is larger than the thickness of the other thin plate portion 16b.
  • the laminated piezoelectric electrostrictive element 24 is attached to the thin plate portion 16a with an adhesive 202 such as organic resin, glass, brazing, soldering, and eutectic bonding. That is, the laminated piezoelectric / electrostrictive element 24 is fixed to the metal thin plate portion 16a via the adhesive 202, so that the actuator which is the driving source of the piezoelectric / electrostrictive device 10B is formed. Overnight part 204 will be composed. Then, the piezoelectric Z electrostrictive device 10 B is driven by the actuating portion 204 to move the tip (movable portion) at the thin plate portion 16 a (16 a and 16 b in the example of FIG. 25). 20) is displaced. Alternatively, the displacement of the tip portion of the thin plate portion 16a is electrically detected through the actuator portion (transducer portion when used as a sensor) 204. In this case, it will be used as a sensor.
  • an adhesive 202 such as organic resin, glass, brazing, soldering, and
  • the laminated piezoelectric electrostrictive element 24 has a piezoelectric / electrostrictive layer 26 and a pair of electrodes 28 and 30 each having a multilayer structure, and one electrode 28 and the other electrode. 30 are alternately stacked, and a portion where the one electrode 28 and the other electrode 30 overlap with the piezoelectric electrostrictive layer 26 interposed therebetween has a multi-stage configuration.
  • the piezoelectric / electrostrictive layer 26 and the pair of electrodes 28 and 30 each have a multilayer structure, and one electrode 28 and the other electrode 30 are each formed in a substantially comb-shaped cross section.
  • the electrode 28 and the other electrode 30 overlap each other with the piezoelectric electrostrictive layer 26 interposed therebetween in a multi-stage configuration.
  • the laminated piezoelectric electrostrictive element 24 has a substantially rectangular parallelepiped shape, and includes a plurality of piezoelectric electrostrictive layers 26 and electrode films 28 and 30. Then, the electrode films 28 and 30 that are in contact with the upper and lower surfaces of each piezoelectric Z electrostrictive layer 26 are alternately led out to the opposite end surfaces 208 and 209, respectively, and the alternately opposite end surfaces 208 and End electrodes 28 c and 30 c for electrically connecting the respective electrode films 28 and 30 derived to 209 are provided on the surface of the outermost piezoelectric Z electrostrictive layer 26, and The terminals 28 b and 30 b are electrically connected to each other at a distance D k.
  • the predetermined distance Dk between the terminal portions 28b and 30b is preferably 20 m or more.
  • the materials of the electrode films 28 and 30 that are in contact with the upper and lower surfaces of the piezoelectric electrostrictive layer may be made different from the materials of the end electrodes 28 c and 30 c.
  • at least one of the terminal portions (the terminal portion 28b in the example of FIG. 26) and the end surface electrode 28c corresponding to the terminal portion 28b are connected to the terminal portion 28b and the end surface electrode. Electrode of thin film thinner than 28 c (outer surface electrode) It may be electrically connected by 28 d.
  • the electrode film 28 d on the surface formed after firing the piezoelectric electrostrictive layer 26, 28 and 30 and the terminal portions 28 b and 30 b are formed before the sintering of the piezoelectric Z electrostrictive layer 26, or are thinner than the electrode layers 28 and 30 sintered at the same time.
  • the heat resistance may be low.
  • the piezoelectric Z electrostrictive layer 26 has a five-layer structure, and one electrode 28 has a comb-like shape so that it is located on the upper surface of the first layer, the upper surface of the third layer, and the upper surface of the fifth layer.
  • One example is shown in which the other electrode 30 is formed in a comb shape so as to be located on the upper surface of the second layer and the upper surface of the fourth layer.
  • the piezoelectric electrostrictive layer 26 has the same five-layer structure, and one of the electrodes 28 is comb-shaped so as to be located on the upper surface of the first layer, the upper surface of the third layer, and the upper surface of the fifth layer.
  • the other electrode 30 is formed in a comb shape so as to be positioned on the lower surface of the first layer, the upper surface of the second layer, and the upper surface of the fourth layer.
  • the driving force of the actuator section 204 can be increased, but the power consumption will also increase accordingly, so when implementing, the number of stages should be appropriately determined according to the application and use condition. You can decide. Further, in the piezoelectric electrostrictive device 10 B according to the second embodiment, by using the multilayer piezoelectric electrostrictive element 24, even if the driving force of the actuator unit 204 is increased, In general, the width (distance in the Y-axis direction) of the thin plate portions 16a and 16b is invariable, so that the thin plate portions 16a and 16b can be easily used for positioning magnetic heads for hard disks used in very narrow gaps, ringing control, etc. This is a very favorable device for application.
  • the tip 208 of the multilayer body constituting the multilayer piezoelectric electrostrictive element 24 is planarly viewed. At least a position not including the fixed portion 22 (in the example of FIG. 25, a position included in a hole formed between the movable portion 20 and the fixed portion 22), the laminated piezoelectric electrostrictive element 24
  • the rear end 209 of the multilayer body is a position that includes at least the fixed portion 22 in plan view
  • the end portion 28 a of the electrode 28 is a position that includes at least the fixed portion 22 in plan view.
  • the end 30a of the electrode 30 is located at a position not including the fixed portion 22 in a plane (in the example of FIG. 25, the end 30a is also formed between the movable portion 20 and the fixed portion 22). (A position included in the hole).
  • the voltage is applied to the pair of electrodes 28 and 30 at the ends of the electrodes 28 and 30 formed on the fifth piezoelectric / electrostrictive layer 26 (hereinafter referred to as terminal portions 28). b and 30b).
  • the terminal portions 28b and 30b are formed so as to be separated from each other so as to be electrically insulated.
  • the predetermined interval Dk between the terminal portions 28a and 30b is preferably 20 m or more. Moreover, when the thickness of the terminal portions 28b and 30b is 1 m to 30 m, the distance is not less than m. It is good.
  • the terminal portions 28 b and 30 b may be the same material as or different from the internal electrodes 28 and 30. For example, when co-firing with the piezoelectric electrostrictive layer 26, the same material may be used, and in another firing, a different material may be used.
  • the end electrodes 28 c and 30 c are ground and polished to electrically connect the internal electrodes to the end electrodes.
  • the materials of the end electrodes 28 c and 30 c may be the same as or different from those of the internal electrodes 28 and 30.
  • it can have substantially the same configuration as the piezoelectric Z electrostrictive device according to the first embodiment described above.
  • the piezoelectric electrostrictive device 10B can be fixed separately by using a surface different from the surface on which the terminal portions 28b and 30b are arranged. High reliability can be obtained for both the fixing of the electrostrictive device 10B and the electrical connection between the circuit and the terminal portions 28b and 30b.
  • flexiv The electrical connection between the terminals 28b and 30b and the circuit is made by a printed circuit, a flexible flat cable, wire bonding, or the like.
  • the actuator part 204 is formed on the metal thin plate part 16a via the adhesive 202. Since the laminated piezoelectric electrostrictive element 24 is fixed, the thin plate part 16a (and 16b) can be used without increasing the planar area of the laminated piezoelectric electrostrictive element 24. ) Can be largely displaced, and since the thin plate portion 16a (and 16b) is made of metal, it has excellent strength and toughness, and can cope with a sudden displacement operation.
  • the second embodiment can sufficiently cope with fluctuations in the use environment and severe use conditions, has excellent impact resistance, prolongs the life of the piezoelectric electrostrictive device 10B, and reduces And the thin plate portion 16a (and 16b) can be largely displaced at a relatively low voltage, and the rigidity of the thin plate portion 16a (and 16b) can be improved. Since the film thickness is high and the thickness of the actuator section 204 is large and the rigidity is high, it is possible to achieve a high speed (high resonance frequency) displacement operation of the thin plate section 16a (and 16b). it can.
  • the rigidity of the actuator part 204 is required to drive the actuator at high speed. It is necessary to increase the rigidity of the actuator part 204 to obtain a large displacement.
  • the piezoelectric / electrostrictive device 10B according to the second embodiment, the thin plate portions 16a and 16b constituting the actuator portion 204 are opposed to each other so that the pair of thin plate portions 1 6a and 16b, and a fixing portion 22 is fixed between the rear ends of the pair of thin plate portions 16a and 16b with an adhesive 200, and the piezoelectric / electrostrictive element 24 is mounted.
  • the piezoelectric Z-electrostrictive device 10B is configured as a multi-stage structure, and the position of the piezoelectric electro-strictive element 24 and the material and size of the constituent members are appropriately selected to configure the piezoelectric Z-electrostrictive device 10B.
  • the minimum resonance frequency of the body is equal to or higher than 20 kHz, and the relative displacement between the body and the fixed part 22; However, it is possible to make the actual applied voltage 3 OV or more at 0.5 m or more at a frequency of 1 to 4 or less of the resonance frequency.
  • the pair of thin plate portions 16a and 16b can be largely displaced, and at the same time, the displacement operation of the piezoelectric electrostrictive device 10B, in particular, the pair of thin plate portions 16a and 16b Higher speed (higher resonance frequency) can be achieved.
  • the minute displacement of the piezoelectric electrostrictive element 24 is large using the bending of the thin plate portions 16a and 16b.
  • the movable part 20 is amplified by a complicated displacement operation and transmitted to the movable part 20, so that the movable part 20 is displaced greatly with respect to the long axis m of the piezoelectric / electrostrictive device 10B (see FIG. 14). This is possible.
  • piezoelectric electrostrictive device 10 B in the piezoelectric electrostrictive device 10 B according to the second embodiment, all parts do not need to be made of a piezoelectric electrostrictive material which is a fragile and relatively heavy material, and therefore, the mechanical strength is not so high. It has the advantage of excellent handling, impact resistance, and moisture resistance, and is less susceptible to harmful vibrations (eg, residual vibration or noise vibration during high-speed operation).
  • the ends of the pair of thin plate portions 16a and 16b are open ends, various members and parts are attached to the piezoelectric electrostrictive device 10B.
  • the tip portions of the pair of thin plate portions 16a and 16b can be used, and the member and the component can be attached to be sandwiched between these tip portions. In this case, the mounting area between the member and the component can be increased, and the mountability of the component can be improved.
  • the member / part to be attached is included in the pair of thin plate portions 16a and 16b, the size of the piezoelectric electrostrictive device after the member / part is attached is reduced in the Y direction. This is advantageous in miniaturization.
  • FIG. 25 when the movable portion 20 is fixed between the respective front ends of the pair of thin plate portions 16a and 16b, The members and components are fixed via, for example, an adhesive.
  • a rear end 209 of the multilayer body is a position including at least the fixed portion 22 in a plane
  • an end portion 28 a of the electrode 28 is a position including at least the fixed portion 22 in a plane.
  • the end 30 a of the electrode 30 is formed at a position not including the fixed portion 22 in plan view.
  • the displacement operation of the pair of thin plate portions 16a and 16b is performed by the laminated piezoelectric Z-electrostrictive element.
  • the displacement operation of the movable part 20 is restricted in the second embodiment because of the positional relationship described above. Inconvenience can be avoided, and the displacement of the pair of thin plate portions 16a and 16b can be increased.
  • the piezoelectric electrostrictive device 10B is not a conventional plate-like shape but has a movable portion 20.
  • the movable portion 20 and the fixed portion 22 have a rectangular parallelepiped shape, and a pair of thin plate portions 16 a and 16 b are provided so that the side surfaces of the movable portion 20 and the fixed portion 22 are continuous. Because of the rectangular annular structure, the rigidity of the piezoelectric / electrostrictive device 10B in the Y-axis direction can be selectively increased.
  • the thin plate portions 16a and 16b are preferably made of metal, and the fixed portion 22 and the movable portion 20 may be made of different materials, but are more preferably made of metal.
  • the thin plate portions 16a and 16b and the fixed portion 22 and the thin plate portions 16a and 16b and the movable portion 20 may be bonded with an organic resin, brazing material, solder, or the like. It is more preferable to form an integrated structure by diffusion bonding or welding. In addition, the use of cold-rolled metal increases the number of dislocations. Due to its presence, it has high strength and is more desirable.
  • the laminated piezoelectric element 24 is formed only on one of the thin plate portions 16a, a pair of thin plate portions 16 are formed as shown in FIG. It can be manufactured at a lower cost as compared with those in which the laminated piezoelectric electrostrictive elements 24a and 24b are formed on a and 16b, respectively (modification). Furthermore, in the second embodiment, when the movable portion 20 is viewed in a fixed state, the thick thin plate portion 16 a on which the laminated piezoelectric Z electrostrictive element 24 is formed is directly displaced, In conjunction with this, the thin thin plate portion 16b on which the laminated piezoelectric electrostrictive element 24 is not formed is displaced, so that the displacement can be made larger.
  • the laminated piezoelectric electrostrictive element 24 is formed on the thin plate part 16a by bonding the laminated piezoelectric electrostrictive element 24 to the thin plate part 16a with an organic resin, a brazing material, solder, or the like. It can be realized, but when bonding at a low temperature, an organic resin is desirable, and when bonding at a high temperature is possible, brazing material, solder, glass or the like is preferable.
  • the thin plate portion 16a, the laminated piezoelectric electrostrictive element 24, and the adhesive 202 generally have different coefficients of thermal expansion in general, so that the laminated piezoelectric / electrostrictive element 24 has a thermal expansion coefficient.
  • the bonding temperature be low so as not to generate stress due to the difference in modulus.
  • An organic resin is preferably employed because it can be bonded at a temperature of approximately 180 at the following temperature. More preferably, it is desirable to use a room temperature-curable adhesive.
  • the thin plate sections 16a and 16b are fixed to the piezoelectric / electrostrictive element 24, and the fixed section 22 and the movable section 20 are fixed to the thin plate sections 16a and 16b after or simultaneously. In this case, if the fixed portion 22 or the movable portion 20 has an open structure, the distortion generated between different kinds of materials can be effectively reduced.
  • the laminated piezoelectric Z-electrostrictive element 24 and the thin plate portion 16a are bonded with an organic resin, and the thin plate portion 1 It is preferable that the fixing of the fixed portions 22 and 20 and the fixed portion 22 and the movable portion 20 be performed in separate steps. Further, as shown in FIG. 31, when a part of the piezoelectric electrostrictive element 24 is located at the fixed part 22, the boundary between the pair of thin plate parts 16 a and 16 b and the movable part 20 is formed.
  • La is the shortest distance between the part and the boundary between the fixed part 22 and the movable part 20 and the thin plate part 16
  • the shortest distance among the distance from the boundary with a to either end 28a or 30a of the pair of electrodes 28 and 30 of the multilayer piezoelectric element 24 is L.
  • (1-LbZLa) is preferably 0.4 or more, more preferably 0.5 to 0.8. If it is less than 0.4, large displacement cannot be obtained. In the case of 0.5 to 0.8, it is easy to achieve both the displacement and the resonance frequency, but in this case, the laminated piezoelectric Z electrostrictive element 24 is formed only on one thin plate part 16a. Things are more suitable. This is the same even when a part of the piezoelectric electrostrictive element 24 is located at the movable part 20.
  • the total thickness of the laminated piezoelectric Z-electrostrictive element 24 is preferably set to 40 / xm or more. If it is less than 40 m, it is difficult to bond the laminated piezoelectric electrostrictive element 24 to the thin plate portion 16a.
  • the total thickness is desirably 180 m or less. If it exceeds 180 m, it is difficult to reduce the size of the piezoelectric Z electrostrictive device 10B.
  • FIG. 28 or FIG. 29 the portion in contact with the thin plate portion 16a is shown in FIG. 28 or FIG. 29 when a metal such as a brazing material or a solder layer is used as the adhesive 202.
  • a metal such as a brazing material or a solder layer
  • FIGS. 28 and 29 show a state in which an electrode film constituting the other electrode 30 is arranged.
  • FIG. 26 or FIG. 28 When the laminated piezoelectric / electrostrictive element 24 shown in FIG. 26 or FIG. 28 is bonded to the thin plate portion 16a via a brazing material or a metal layer such as a solder layer, FIG. As shown in FIG. 9, it is preferable to chamfer a corner of the lower surface of the laminated piezoelectric Z electrostrictive element 24 where at least one electrode 28 is present. This is to prevent the pair of electrodes 28 and 30 from being short-circuited through the metal layer and the thin plate portion 16a.
  • FIG. 27 shows an example in which two corners in which a pair of electrodes 28 and 30 are present are chamfered
  • FIG. 29 shows an example in which a corner in which one electrode 28 is present is chamfered.
  • a two-component reactive adhesive such as epoxy or isocyanate, an instantaneous adhesive such as cyanoacrylate, or a hot melt adhesive such as ethylene-vinyl acetate copolymer may be used.
  • the adhesive 202 preferably has a hardness of Shore D of 80 or more.
  • an organic adhesive containing a filler such as metal or ceramics may be used.
  • the thickness of the adhesive 202 be not more than 100 m.
  • the thickness of the substantial resin component can be reduced, and the hardness of the adhesive can be kept high.
  • an inorganic adhesive may be used in addition to the organic adhesive described above.
  • the inorganic adhesive include glass, cement, solder, and brazing material.
  • the shape and material of the thin plate portions 16a and 16b are sufficient if they have flexibility and mechanical strength enough not to be damaged by bending deformation, and metal is preferably used.
  • a metal material that is flexible and can be bent and deformed specifically, a metal material having a Young's modulus of 100 GPa or more may be used.
  • austenitic stainless steels such as SUS301, SUS304, AISI 653, and SUH660; ferritic stainless steels such as SUS430 and 434; martensitic stainless steels such as SUS410 and SUS630; It is desirable to use stainless steel such as SUS 631 and AISI 632, such as semi-oustenitic stainless steel, maraging stainless steel, and various spring steels.
  • nonferrous materials should be made of titanium-nickel alloys and other superelastic titanium alloys, brass, bronze, aluminum, tungsten, molybdenum, beryllium copper, phosphor bronze, nickel, nickel-iron alloys, titanium, etc. Is desirable.
  • a rectangular hole 252 having a length of 1 mm and a width of 8 mm is formed in the center of a stainless steel plate 250 having a length of 1.6 mm ⁇ width l OmmX and a thickness of 9 mm.
  • a base 258 having a rectangular annular structure in which support portions 254 and 256 are disposed on both sides of the hole 252, respectively, is produced.
  • a first stainless steel sheet 260 with a length of 1.6 mm x 1 Ommx and a thickness of 0.05 mm, and a second stainless steel sheet 262 with a length of 1.6 mm x 1 OmmX and a thickness of 0.02 mm (Fig. Prepare 35).
  • an adhesive 202 (for example, an epoxy resin adhesive) is screen-printed on a portion of the upper surface of the first stainless steel plate 260 where the laminated piezoelectric electrostrictive element 24 is to be formed. Form. Then, as shown in FIG. 34, the laminated piezoelectric Z-electrostrictive element 24 is bonded to the first stainless steel sheet 260 via the adhesive 202.
  • an adhesive 202 for example, an epoxy resin adhesive
  • an adhesive 200 for example, an epoxy resin adhesive
  • an adhesive 200 for example, an epoxy resin adhesive
  • the first stainless thin plate 260 on which the laminated piezoelectric electrostrictive element 24 has already been formed is bonded to one surface of each of the support portions 254 and 256 via an adhesive 200
  • a second stainless steel plate 262 is adhered on the other surface of the parts 254 and 256 via an adhesive 200, and the first and second stainless steel plates 260 and 262 are pressed in a direction to sandwich the base 258.
  • a device master 270 shown in FIG. 36 is manufactured. Incidentally, pressure is 0. 1 ⁇ 10 kg f / cm 2.
  • the device master 270 is cut along the cutting line 272, and separated into individual piezoelectric Z electrostrictive devices 10B as shown in FIG.
  • This cutting process was performed using a wire saw with a wire diameter of 0.1 mm and an interval of 0.2 mm.
  • the width of the piezoelectric electrostrictive element 24, the width of the thin plate portion 16a, and the widths of the adhesives 200 and 202 can be substantially the same, although the materials are different from each other.
  • a rectangular hole 252 with a length of 1 mm and a width of 8 mm is drilled in the center of a stainless steel plate 250 with a length of 1.6 mm x width l OmmX and a thickness of 9 mm.
  • a substrate 258 having a rectangular annular structure in which support portions 254 and 256 are disposed on both sides of the hole 252, respectively, is produced.
  • an adhesive 202 (for example, an epoxy resin adhesive) is formed on a portion of the upper surface of the first stainless thin plate 260 where the laminated piezoelectric Z-electrostrictive element 24 is to be formed by screen printing.
  • the laminated piezoelectric electrostrictive element 24 is bonded to the first stainless steel thin plate 260 via the adhesive 202 to produce the device master 270.
  • the device master 270 is cut along the cutting line 272, and separated into individual piezoelectric electrostrictive devices 10B as shown in FIG. A part (for example, a fixing part 22) of the piezoelectric Z electrostrictive device 10B manufactured by the third and fourth manufacturing methods is fixed, and the piezoelectric Z electrostrictive device 10B is sandwiched between a pair of electrodes 28 and 30 of the laminated piezoelectric Z electrostrictive element 24.
  • the displacement of the movable part 20 was measured and found to be ⁇ 1.2 m.
  • the frequency was swept and the lowest resonance frequency at which the maximum displacement was measured was 50 kHz.
  • the configuration of the base 258 is a rectangular annular structure having a support portion 254 that later becomes the movable portion 20 and a support portion 256 that later becomes the fixed portion 22.
  • the hole 252 is widened, and the frame-like portion 254a supporting the first and second stainless steel plates 260 and 262 (at least substantially defining the thickness of the portion where the movable portion 20 intervenes later) It is also possible to adopt a rectangular annular structure having a supporting portion 256 which becomes a fixing portion 22 later.
  • a device master similar to that shown in FIG. 36 is fixed by adhering a base 258 via an adhesive 200 so as to be sandwiched between first and second stainless steel plates 260 and 262.
  • fabricating 270 and further cutting along a cutting line 272 as shown in FIG. 36 for example, as shown in FIG. 44, the tip portions of the thin plate portions 16a and 16b
  • a piezoelectric / electrostrictive device having no movable part 20 therebetween can be manufactured.
  • an adhesive 200 and a fixing portion 22 are arranged between the rear ends of the thin plate portions 16a and 16b, respectively.
  • the adhesive 200, the movable part 20 and the pressure spacer 310 are arranged between the thin plate parts 16a and 16b, respectively.
  • the fixing portion 22 is fixed between the rear end portions of each of the thin plate portions 16a and 16 via an adhesive 200
  • the movable portion 20 is fixed to the tip of each of the thin plate portions 16a and 16b via an adhesive 200, respectively.
  • the pressurizing spacer 310 since the pressurizing spacer 310 is not fixed to the movable portion 20 with an adhesive or the like, it can be easily removed after cutting along the cutting line 272. .
  • a second fixed portion (not shown) having substantially the same thickness as the movable portion 20 is provided between the fixed portion 22 and each of the thin plate portions 16a and 16b via an adhesive 200 on both sides thereof. It may be fixed.
  • the first stainless thin plate 260 and the second stainless thin plate 262 are provided with support portions 254 and 25 6 to form a device master 270, and then separate it into individual piezo-electrostrictive devices 10B, or apply a laminated piezo-electrostrictive to the thin plate portions 16a and 16b.
  • the units separately formed in each actuator part 204 forming the elements 24a and 24b are similarly separated and provided as fixed parts 22 (and appropriately movable parts 20).
  • the present invention can be applied to the case where the piezoelectric Z electrostrictive device 10B is manufactured by fixing the piezoelectric Z electrostrictive device 10B.
  • the support portion 256 and the fixed portion 22 that will later become the fixed portion 22 will be referred to as “fixed portion 22” for convenience, and the first and second portions that will later become the thin plate portions 16a and 16b.
  • the second stainless steel sheets 260 and 262 and the thin plate sections 16a and 16b are Plate section 16a and 16b ”.
  • steps 280 am and 280 bm are also provided on the surfaces of the open ends of 6 a and 16 b facing each other.
  • the steps 280am and 280an, and 280bm and 280bn may be formed by laminating plate-like objects.
  • FIG. 43 shows a case where a highly viscous adhesive is used as the adhesive 200 used for bonding the fixing portion 22 and each of the thin plate portions 16a and 16b, and at least the fixing portion 22
  • An example is shown in which the steps 280 am and 280 bm as described above are not provided at the portion where is bonded.
  • FIG. 44 shows a case where a highly viscous adhesive is used as the adhesive 200 used for bonding the fixing portion 22 and each of the thin plate portions 16a and 16b. This shows a structure without 80 am and 280 bm. Also, in this example, when bonding an object (not shown) between the open ends of the thin plate portions 16a and 16b, it is assumed that a high-viscosity adhesive is used. Steps 280 an and 280 bn are not provided on the surfaces of the open ends of a and 16 b facing each other.
  • the size of the fixing portion 22, particularly, the area of the surface facing the step 280 of the thin plate portions 16 a and 16 b is smaller than the area of the steps 280 am and 280 bm. You may make it large.
  • the substantial driving portion (the portion between the steps 280am and 280an and the portion between 280bm and 280bn) is defined by the steps 280am and 280bm. can do. As shown in Fig.
  • FIG. 46 shows an example in which the fixing portion 22 is enlarged toward the open ends of the thin plate portions 16a and 16b, the fixing portion 22 may be enlarged in a direction opposite to the above direction. Good.
  • the steps 280 am, 280 bm, 280 an and 280 bn and the projections 282 am, 282 bm, 282 an and 282 bn are integrated with the thin plate portions 16 a and 16 b.
  • the processed plate may be provided by laminating via an adhesive as in FIGS. 19 and 23.
  • the plate members are thinned by etching or cutting to form the thin plate portions 16a and 16b, and at the same time, the steps 280am, 280bm, 280an and 280bn and the projections 282am, 282 bm, 282 an and 282 bn can be provided integrally.
  • the example in which the formation of the adhesives 200 and 202 is performed by screen printing has been described. However, other than that, debbing, dispenser, transfer, or the like can be used.
  • the thickness of the adhesive 202 is not more than 5% of the total thickness of the laminated piezoelectric Z-electrostrictive element 24 and is small enough to absorb the thermal stress caused by the difference in the coefficient of thermal expansion between the thin plate portion 16a and the adhesive 202. It is preferable that the thickness is not less than the thickness.
  • the diameter of the holes 290 is preferably 5 m to 100 m, and the arrangement pattern may be a matrix or a staggered arrangement. Of course, a plurality of holes 290 may be arranged in one row.
  • the arrangement pitch of the holes 290 is preferably 10 111 to 200 111.
  • a concave portion may be used instead of the hole 290.
  • the diameter of the holes is preferably 5 m to 100 im, and the arrangement pattern may be a matrix or a staggered arrangement.
  • the arrangement pitch of the holes is preferably 10 m to 200 rr.
  • the planar rectangular shape may be used, and the opening area may be slightly smaller than the projected area of the piezoelectric Z electrostrictive element 24 with respect to the thin plate portion 16a.
  • etching, laser processing, punching, drilling, electric discharge machining, ultrasonic machining, or the like can be adopted as a method of forming the hole 290 or the hole in the thin plate portion 16a.
  • the surface 292 of the portion of the thin plate portion 16a where the laminated piezoelectric electrostrictive element 24 is formed is roughened by blasting, etching or fitting.
  • the lower surface 294 of the multilayer piezoelectric / electrostrictive element 24 is also roughened.
  • the bonding area is substantially increased, so that the thickness of the adhesive 202 can be reduced.
  • FIG. 48 shows an example in which the surface of the thin plate portion 16a and the lower surface of the piezoelectric Z electrostrictive element 24 (the surface facing the thin plate portion 16a) are roughened, but the surface having the smaller adhesive strength with the adhesive 202 is shown. It is sufficient that the surface of the thin plate portion 16a is only roughened.
  • the shape of the protrusion of the adhesive 200 particularly the shape of the protrusion of the adhesive 200 to the inner wall 22a of the fixed portion 22, is made to have a curvature 296.
  • the radius of curvature is 0.05 mm or more, and the It is preferred that the shape be linear or include a straight portion.
  • the formation of the curvature 2966 of the adhesive 200 with respect to the protruding portion is performed by, for example, forming a cylindrical core material before the adhesive 200 hardens, and forming the inner walls of the thin plate portions 16a and 16b and the fixing portion 22. It can be realized by passing through the space formed by 22a.
  • the adhesive is controlled by the physical properties and application amount of the adhesive 200 so that at least the protruding shape does not become convex.
  • the inner wall 22a of the fixed portion 22 and the inner walls of the thin plate portions 16a and 16b are also used as the bonding surface, so that the bonding area is increased and the bonding strength can be increased.
  • the stress concentration on the joint (corner) between the inner wall 22a of the fixed portion 22 and the inner wall of each of the thin plate portions 16a and 16b can be effectively dispersed.
  • a fourth method shown in FIG. 50 is to chamfer each corner of the inner wall 22a of the fixed portion 22 to form a tapered surface 2998.
  • a portion to be the corner portion of the support portion 256 be subjected to grinding and polishing in advance to form a tapered surface 298 before assembling.
  • the chamfering may be performed.
  • laser processing, ultrasonic processing, sand blast, or the like is preferably employed.
  • punching is usually performed.
  • burrs 300 are generated. The generated flash 300 may be removed before assembling, but may be left as it is.
  • FIG. 51 shows a state in which the burrs 300 of the thin plate portions 16a and 16b are directed outward.
  • the thickness of one thin plate portion 16a is made larger than the thickness of the other thin plate portion 16b.
  • Ichikyue Night Club 2 0 4 When used, it is preferable to form the laminated piezoelectric electrostrictive element 24 on one of the thin plate portions 16a. Even when used as a sensor, it is preferable to form the laminated piezoelectric electrostrictive element 24 on one of the thin plate portions 16a.
  • the multilayer piezoelectric electrostrictive element 24 is bonded to the thin plate portions 16a and 16b via the adhesive 202, the multilayer piezoelectric electrostrictive element 24 is used.
  • lower surface for example, Z r 0 2 layers may be interposed as an underlying layer.
  • the longitudinal direction of thin plate portions 16a and 16b and stainless steel thin plate 2 It is preferable that the cold rolling directions of 60 and 26 2 substantially coincide with each other.
  • the electrostrictive electrostrictive layer 26 constituting the multilayer piezoelectric electrostrictive element 2 is stacked.
  • various transducers various actuators, frequency domain functional components (filters), transformers, oscillators and resonators for communication and power, and oscillations
  • active elements such as sensors, discriminators, etc.
  • it can be used as sensor elements for various sensors such as ultrasonic sensors, acceleration sensors, angular velocity sensors, impact sensors, mass sensors, etc. It can be suitably used for various factories used for displacement, positioning adjustment, and angle adjustment mechanisms of various precision parts such as equipment.
  • the piezoelectric electrostrictive device and the method of manufacturing the same according to the present invention are not limited to the above-described embodiment, but may adopt various configurations without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

明 細 書 圧電ノ電歪デバイス及びその製造方法 技術分野
本発明は、 圧電ノ電歪素子の変位動作に基づいて作動する可動部を備えた圧電 電歪デバイス、 もしくは可動部の変位を圧電ノ電歪素子により検出できる圧電 /電歪デバイス及びその製造方法に関し、 詳しくは、 強度、 耐衝撃性、 耐湿性に 優れ、 効率よく可動部を大きく作動させることができる圧電 Z電歪デバイス及び その製造方法に関する。 背景技術
近時、 光学や磁気記録、 精密加工等の分野において、 サブミクロンオーダーで 光路長や位置を調整可能な変位素子が必要とされており、 圧電 Z電歪材料 (例え ば強誘電体等) に電圧を印加したときに惹起される逆圧電効果ゃ電歪効果による 変位を利用した変位素子の開発が進められている。
従来、 このような変位素子としては、 例えば図 5 3に示すように、 圧電ノ電歪 材料からなる板状体 4 0 0に孔部 4 0 2を設けることにより、 固定部 4 0 4と可 動部 4 0 6とこれらを支持する梁部 4 0 8とを一体に形成し、 更に、 梁部 4 0 8 に電極層 4 1 0を設けた圧電ァクチユエ一夕が開示されている (例えば特開平 1 0 - 1 3 6 6 6 5号公報参照) 。
前記圧電ァクチユエ一夕においては、 電極層 4 1 0に電圧を印加すると、 逆圧 電効果ゃ電歪効果により、 梁部 4 0 8が固定部 4 0 4と可動部 4 0 6とを結ぶ方 向に伸縮するため、 可動部 4 0 6を板状体 4 0 0の面内において弧状変位又は回 転変位させることが可能である。
一方、 特開昭 6 3— 6 4 6 4 0号公報には、 バイモルフを用いたァクチユエ一 夕に関して、 そのバイモルフの電極を分割して設け、 分割された電極を選択して 駆動することにより、 高精度な位置決めを高速に行う技術が開示され、 この公報 (特に第 4図) には、 例えば 2枚のバイモルフを対向させて使用する構造が示さ れている。
しかしながら、 前記圧電ァクチユエ一夕においては、 圧電 電歪材料の伸縮方 向 (即ち、 板状体 4 0 0の面内方向) の変位をそのまま可動部 4 0 6に伝達して いたため、 可動部 4 0 6の作動量が小さいという問題があった。
また、 圧電ァクチユエ一夕は、 すべての部分を脆弱で比較的重い材料である圧 電 /電歪材料によって構成しているため、 機械的強度が低く、 ハンドリング性、 耐衝撃性、 耐湿性に劣ることに加え、 圧電ァクチユエ一夕自体が重く、 動作上、 有害な振動 (例えば、 高速作動時の残留振動やノイズ振動) の影響を受けやすい という問題点があった。
前記問題点を解決するために、 孔部 4 0 2に柔軟性を有する充填材を充填する ことが提案されているが、 単に充填材を使用しただけでは、 逆圧電効果や電歪効 果による変位の量が低下することは明らかである。 発明の開示
本発明はこのような課題を考慮してなされたものであり、 デバイスの長寿命化、 デバイスのハンドリング性並びに可動部への部品の取付性又はデバイスの固定性 を向上させることができ、 これにより、 相対的に低電圧で可動部を大きく変位す ることができると共に、 デバイス、 特に、 可動部の変位動作の高速化 (高共振周 波数化) を達成させることができ、 しかも、 有害な振動の影響を受け難く、 高速 応答が可能で、 機械的強度が高く、 ハンドリング性、 耐衝撃性、 耐湿性に優れた 変位素子、 並びに可動部の振動を精度よく検出することが可能なセンサ素子を得 ることができる圧電/電歪デバイス及びその製造方法を提供することを目的とす る。
本発明は、 相対向する一対の金属製の薄板部と、 これら薄板部に対して接着剤 を介して固着された固定部とを具備し、 前記一対の薄板部の先端部に可動部を有 し、 前記一対の薄板部のうち、 少なくとも 1つの薄板部に 1以上の圧電 Z電歪素 子が配設された圧電 Z電歪デバイスであって、 前記可動部又は固定部のいずれか 一方は、 互いに対向する端面を有し、 前記端面間の距離が前記可動部の長さ以上 であることを特徴とする。
この場合、 薄板部が金属製であるため、 強度ゃ靱性に優れ、 急激な変位動作に も対応できる。 つまり、 本発明においては、 使用環境の変動や過酷な使用状態に おいても十分に対応でき、 耐衝撃性に優れ、 圧電ノ電歪デバイスの長寿命化、 ハ ンドリング性の向上を図ることができ、 しかも、 相対的に低電圧で薄板部を大き く変位することができると共に、 薄板部の剛性が高く、 またァクチユエ一夕膜の 膜厚が厚く、 剛性が高いため、 薄板部の変位動作の高速化 (高共振周波数化) を 達成させることができる。
前記圧電/電歪素子は膜状であって、 前記薄板部に接着剤を介して固着するよ うにしてもよい。 また、 前記圧電 Z電歪素子は、 圧電 Z電歪層と、 該圧電 Z電歪 層に形成された一対の電極とを有するように構成してもよい。 この場合、 圧電ノ 電歪素子による振動を薄板部を通じて効率よく可動部又は固定部に伝達すること ができ、 応答性の向上を図ることができる。
特に、 前記圧電ノ電歪素子は、 前記圧電 Z電歪層と前記一対の電極の複数が積 層形態で構成されていることが好ましい。 このような構成にすることにより、 圧 電 Z電歪素子の発生力が増大し、 もって大変位が図られると共に、 圧電 電歪デ バイス自体の剛性が増すことで、 高共振周波数化が図られ、 変位動作の高速化を 容易に達成できるという特徴がある。
前記接着剤は、 有機樹脂あるいはガラス、 ロウ材又は半田を用いることができ る。
また、 前記可動部又は固定部のいずれか一方に切除部を設け、 前記切除部の一 部が前記互いに対向する端面を構成するようにしてもよい。 この場合、 前記互い に対向する端面の間を空隙としてもよいし、 前記互いに対向する端面の間に前記 可動部又は固定部のいずれか一方の構成部材と同じ部材あるいは異なる複数の部 材、 例えばガラス、 セメント、 有機樹脂などが挙げられ、 好ましくは有機樹脂、 例えばエポキシ系、 アクリル系、 ポリイミド系、 フエノール系、 シリコーン系、 テルペン系、 キシレン系、 スチレン系、 メラミン系、 メ夕クリル系、 ゴム系等も しくはこれらの混合物、 共重合体を介在させるようにしてもよい。 中でも接合性、 取り扱い性、 硬さ等の点から、 エポキシ系、 アクリル系、 メ夕クリル系の有機樹 脂などを介在させることが好ましい。 また、 更に硬度を上げる目的で無機材料等 のフィラーを混入させることも好ましい。
特に、 前記互いに対向する端面の間を空隙とした場合や、 前記互いに対向する 端面の間に前記可動部又は固定部の構成部材ょりも軽い部材を介在させる、 ある いは前記部材でも小さなものにより端面間を接合させることで、 可動部又は固定 部の軽量化を有効に図ることができるため、 可動部又は固定部の変位量を低下さ せることなく、 共振周波数を高めることが可能となる。
また、 前記互いに対向する端面の間を空隙とした場合は、 一方の端面を含む可 動部又は固定部の一部と、 他方の端面を含む可動部又は固定部の別の一部とが撓 みやすくなり、 変形に強くなる。 そのため、 圧電 Z電歪デバイスのハンドリング 性に優れることとなる。
更に、 端面間の距離が前記可動部の長さ以上であるため、 可動部に他の部品を 取り付ける場合に、 端面や部品の寸法精度が低くても、 これらの寸法精度の影響 を抑えやすくなるため、 部品の取付性を向上させることができる。 ここで、 部品 を例えば接着剤等によって固着する場合を考えると、 物品を両側から挟んで保持 することができるため、 部品を確実に固着することができる。
更に、 物品を両側から挟んで保持することで、 物品の高さと可動部の高さが単 純に加算されなくなり、 物品を含めた全体の高さを低く保つことができる。 また、 更に、 可動部の長さを端面側の距離よりも小さくできることから、 部品を接着す る接着剤等の物性が有効に作用し、 変位を大きくすることができる。
一方、 互いに対向する端面を有する固定部とした場合は、 この発明に係る圧電 電歪デバイスを所定の固定部分に強固に固定することが可能となり、 信頼性の 向上を図ることができる。
このように、 本発明においては、 圧電 Z電歪デバイスの軽量化、 中でも可動部 又は固定部の軽量化を図ることができる。
ところで、 圧電 Z電歪デバイスの製造においては、 金属製の薄板部に圧電 /電 歪素子を接着剤にて固着する際、 特に、 接着剤の固化段階において、 圧電 Z電歪 素子及びノ又は薄板部となる部分に内部残留応力が発生することになる。
この状態から、 圧電 Z電歪デバイスを作製し、 使用すると、 圧電 Z電歪素子を 構成する圧電/電歪層に所定電界を与えても、 可動部において所望の変位を示さ ない場合がある。 これは、 圧電 電歪層の材料特性及び可動部の変位動作が、 圧 電ノ電歪素子及び/又は前記薄板部に発生している内部残留応力によって阻害さ れているからである。
この発明では、 可動部又は固定部のいずれか一方に互いに対向する端面を設け るようにしているため、 端面間の距離が、 前記圧電 電歪素子及びノ又は薄板部 に発生している内部残留応力によって、 例えば縮まることになる。 即ち、 圧電 電歪素子及びノ又は薄板部に生じていた内部残留応力が端面の移動によって解放 されることとなる。
更に、 この発明では、 端面間の距離を広くとるようにしているため、 内部残留 応力によって端面間の距離が狭まっても、 該端面間に他の部品を取り付けるだけ の余裕を持たせることができる。
このように、 本発明では、 可動部の変位動作が前記内部残留応力によって阻害 されることがなくなり、 ほぼ設計通りの可動部の変位動作を得ることができる。 加えて、 この内部残留応力の解放によって、 圧電ノ電歪デバイスの機械強度の向 上も図ることができる。
また、 前記一対の薄板部の両内壁と前記可動部の内壁と前記複数の部材の内壁 と前記固定部の内壁とにより孔部が形成される場合に、 該孔部内に、 ゲル状の材 料を充填するようにしてもよい。 この場合、 通常は、 充填材の存在によって、 可 動部の変位動作が制限を受けることになるが、 上述の発明は、 可動部又は固定部 への端面の形成に伴う軽量化や可動部の変位量の増大化を図るようにしているた め、 前記充填材による可動部の変位動作の制限が打ち消され、 充填材の存在によ る効果、 即ち、 高共振周波数化や剛性の確保を実現させることができる。
また、 本発明においては、 端面間に上述した複数の部材を介在させた場合に、 前記複数の部材のうち、 少なくとも 1つの部材を有機樹脂としてもよい。 次に、 本発明は、 相対向する一対の金属製の薄板部と、 これら薄板部に対して 接着剤を介して固着された固定部とを具備し、 前記一対の薄板部の先端部に可動 部を有し、 前記一対の薄板部のうち、 少なくとも 1つの薄板部に 1以上の圧電ノ 電歪素子が配設された圧電ノ電歪デバイスの製造方法であつて、 第 1の基体に、 後に薄板部となる金属板を固着して第 2の基体を作製する第 1の工程と、 前記第 2の基体に対する少なくとも 1回の切除処理によって、 互いに対向する端面を有 し、 かつ、 前記端面間の距離が前記可動部の長さ以上とされた前記可動部又は固 定部を形成する第 2の工程とを有することを特徴とする。
これにより、 互いに対向する端面を有する可動部又は固定部が設けられること となるため、 製造時に圧電 Z電歪素子及び/又は薄板部に発生していた内部残留 応力が、 端面間の距離が例えば縮まることによって解放されることになり、 可動 部の変位動作が前記内部残留応力によって阻害されることがない。 特に、 薄板部 として金属を用いているため、 強度ゃ靱性に優れ、 急激な変位動作にも対応でき る。
また、 互いに対向する端面を有する可動部又は固定部を設けることによって、 可動部又は固定部が軽量化されるため、 可動部の変位量を低下させることなく、 共振周波数を高めることが可能となる圧電 電歪デバイスを効率よく、 かつ、 容 易に製造することができ、 高性能の圧電 電歪デバイスの量産化を実現させるこ とができる。
しかも、 可動部又は固定部が撓みやすくなり、 変形に強くなるため、 圧電 Z電 歪デバイスのハンドリング性に優れることとなり、 また、 前記互いに対向する端 面の存在と、 該端面間の距離を広くするようにしているため、 可動部に他の部品 を取り付ける場合に、 端面や部品の寸法精度が低くても、 これらの寸法精度の影 響を抑えやすくなるため、 部品の取付性を向上させることができる。 また、 部品 を挟んで接着する際、 変位を向上させることができる。
そして、 前記製造方法において、 後に薄板部となる前記金属板の外表面に前記 圧電 /電歪素子を接着剤を介して固着する工程を有するようにしてもよい。 これ により、 圧電/電歪デバイスの製造において、 特に、 金属製の薄板部に圧電ノ電 歪素子を接着剤にて固着する際、 特に、 接着剤の固化段階において、 圧電/電歪 素子及び Z又は薄板部に発生する内部残留応力を効果的に解放することができる ため、 圧電 Z電歪デバイスを作製する場合において、 圧電ノ電歪デバイスの軽量 化、 中でも可動部又は固定部の軽量化、 圧電 電歪デバイスのハンドリング性、 並びに可動部への部品の取付性、 圧電ノ電歪デバイスの固定性を向上させること ができ、 これにより、 可動部を大きく変位させることができる。
なお、 前記第 1の基体に、 後に前記薄板部となる金属板を固着する前に、 予め 前記金属板の外表面に前記圧電 z電歪素子を固着しておくようにしてもよい。 そして、 前記第 1の基体がセラミック積層体にて構成される場合は、 少なくと も窓部を有する 1以上のセラミックグリーンシートを積層焼成して、 セラミック 積層体を作製するセラミック積層体作製工程と、 前記セラミック積層体に後に前 記薄板部となる金属板を接着剤を介して固着してハイプリッド積層体を作製する ハイブリッド積層体作製工程とを有するようにしてもよい。
この場合、 前記セラミック積層体作製工程は、 少なくとも互いに対向する端面 を有する前記可動部又は固定部を形成するための窓部を有する複数のセラミック グリーンシートを焼成して、 前記セラミック積層体を作製するようにしてもよい。 また、 前記第 1の基体が金属にて構成される場合は、 少なくとも窓部を有する 1以上の金属シートを積層して前記第 1の基体を作製する工程を有するようにし てもよいし、 前記第 1の基体をバルクの金属部材にて構成するようにしてもよい。 なお、 前記互いに対向する端面の間に、 前記可動部又は固定部の構成部材と異 なる複数の部材を介在させる工程を含めるようにしてもよい。 この場合、 前記複 数の部材のうち、 少なくとも 1つの部材として有機樹脂を用いることができる。 また、 前記接着剤として、 有機樹脂からなる接着剤やガラス、 ロウ材又は半田 からなる接着剤を用いることができる。
従って、 本発明に係る圧電/電歪デバイス及びその製造方法によれば、 各種ト ランスデューサ、 各種ァクチユエ一夕、 周波数領域機能部品 (フィルタ) 、 トラ ンス、 通信用や動力用の振動子や共振子、 発振子、 ディスクリミネ一夕等の能動 素子のほか、 超音波センサや加速度センサ、 角速度センサや衝撃センサ、 質量セ ンサ等の各種センサ用のセンサ素子として利用することができ、 特に、 光学機器 、 精密機器等の各種精密部品等の変位や位置決め調整、 角度調整の機構に用いら れる各種ァクチユエ一夕に好適に利用することができる。
添付した図面と協同する次の好適な実施の形態例の説明から、 上記の目的及び 他の目的、 特徴及び利点がより明らかになるであろう。 図面の簡単な説明
図 1は、 第 1の実施の形態に係る圧電 電歪デバイスの構成を示す斜視図であ る。
図 2は、 第 1の実施の形態に係る圧電 電歪デバイスの第 1の変形例を示す斜 視図である。
図 3は、 第 1の実施の形態に係る圧電 Z電歪デバイスの第 2の変形例を示す斜 視図である。
図 4は、 第 1の実施の形態に係る圧電ノ電歪デバイスの第 3の変形例を示す斜 視図である。
図 5は、 第 1の実施の形態に係る圧電 Z電歪デバイスの第 4の変形例を示す斜 視図である。
図 6は、 第 1の実施の形態に係る圧電 電歪デバイスの第 5の変形例を示す斜 視図である。
図 7は、 第 5の変形例に係る圧電 電歪デバイスの他の例を示す斜視図である。 図 8は、 第 1の実施の形態に係る圧電 Z電歪デバイスの第 6の変形例を示す斜 視図である。
図 9は、 第 1の実施の形態に係る圧電/電歪デバイスの第 7の変形例を示す斜 視図である。
図 1 0は、 圧電 電歪素子の他の例を一部省略して示す斜視図である。
図 1 1は、 圧電 Z電歪素子の更に他の例を一部省略して示す斜視図である。 図 1 2は、 第 1の実施の形態に係る圧電 Z電歪デバイスにおいて、 圧電 /電歪 素子が共に変位動作を行っていない場合を示す説明図である。 図 1 3 Aは、 一方の圧電 Z電歪素子に印加される電圧波形を示す波形図である。 図 1 3 Bは、 他方の圧電 電歪素子に印加される電圧波形を示す波形図である。 図 1 4は、 第 1の実施の形態に係る圧電 電歪デバイスにおいて、 圧電 Z電歪 素子が変位動作を行つた場合を示す説明図である。
図 1 5は、 一方の圧電 Z電歪デバイスの可動部に他方の圧電 電歪デバイスを 固着した場合を示す斜視図である。
図 1 6 Aは、 第 1の製造方法において、 必要なセラミックグリーンシートの積 層過程を示す説明図である。
図 1 6 Bは、 セラミックグリーン積層体とした状態を示す説明図である。
図 1 7 Aは、 セラミックグリーン積層体を焼成してセラミック積層体とした状 態を示す説明図である。
図 1 7 Bは、 別体として構成した圧電 電歪素子をそれぞれ薄板部となる金属 板の表面に接着した状態を示す説明図である。
図 1 8は、 第 1の製造方法において、 金属板をセラミック積層体に接着してハ イブリッド積層体とした状態を示す説明図である。
図 1 9は、 ハイブリッド積層体を所定の切断線に沿って切断して、 第 1の変形 例に係る圧電 電歪デバイスを作製した状態を示す説明図である。
図 2 O Aは、 第 2の製造方法において、 必要なセラミックグリーンシートの積 層過程を示す説明図である。
図 2 0 Bは、 セラミックグリーン積層体とした状態を示す説明図である。
図 2 1 Aは、 セラミックグリーン積層体を焼成してセラミック積層体とした後、 孔部に充填材を充填した状態を示す説明図である。
図 2 1 Bは、 それぞれ薄板部となる金属板をセラミック積層体に接着してハイ プリッド積層体とした状態を示す説明図である。
図 2 2は、 別体として構成した圧電/電歪素子をハイプリッド積層体の金属板 の表面に接着した状態を示す説明図である。
図 2 3は、 ハイブリッド積層体を所定の切断線に沿って切断して、 第 1の変形 例に係る圧電 Z電歪デバイスを作製した状態を示す説明図である。 図 2 4は、 第 2の実施の形態に係る圧電 電歪デバイスの構成を示す斜視図で ある。
図 2 5は、 第 2の実施の形態に係る圧電 電歪デバイスの他の構成を示す斜視 図である。
図 2 6は、 積層型圧電ノ電歪素子の一構成例を示す拡大図である。
図 2 7は、 図 2 6で示す積層型圧電 電歪素子の好ましい構成例を示す拡大図 である。
図 2 8は、 積層型圧電ノ電歪素子の他の構成例を示す拡大図である。
図 2 9は、 図 2 8で示す積層型圧電 Z電歪素子の好ましい構成例を示す拡大図 である。
図 3 0は、 第 2の実施の形態に係る圧電 Z電歪デバイスの更に他の構成を示す 斜視図である。
図 3 1は、 第 2の実施の形態に係る圧電 Z電歪デバイスの好ましい寸法関係を 示す説明図である。
図 3 2は、 第 3の製造方法において、 ステンレス板の中央部に矩形状の孔を穿 設して矩形の環状構造の基体を作製した状態を示す説明図である。
図 3 3は、 第 1のステンレス薄板に接着剤を形成する状態を示す説明図である。 図 3 4は、 第 1のステンレス薄板に接着剤を介して積層型圧電ノ電歪素子を接 着した状態を示す説明図である。
図 3 5は、 基体に接着剤を介して第 1及び第 2のステンレス薄板を接着する状 態を示す説明図である。
図 3 6は、 作製されたデバイス原盤を切断する状態を示す説明図である。
図 3 7は、 第 4の製造方法において、 ステンレス板の中央部に矩形状の孔を穿 設して矩形の環状構造の基体を作製し、 更に、 該基体に接着剤を介して第 1及び 第 2のステンレス薄板を接着する状態を示す説明図である。
図 3 8は、 基体に接着剤を介して第 1及び第 2のステンレス薄板を接着した状 態を示す説明図である。
図 3 9は、 第 1のステンレス薄板に接着剤を形成する状態を示す説明図である 図 4 0は、 第 1のステンレス薄板に接着剤を介して積層型圧電 電歪素子を接 着した状態を示す説明図である。
図 4 1は、 他の例の基体に接着剤を介して第 1及び第 2のステンレス薄板を接 着する状態を示す説明図である。
図 4 2は、 第 5の製造方法において、 各薄板部のうち、 少なくとも固定部が接 着される部分に段差を設けた例を示す説明図である。
図 4 3は、 第 5の製造方法において、 各薄板部のうち、 少なくとも固定部が接 着される部分に段差を設けない例を示す説明図である。
図 4 4は、 第 5の製造方法において、 各薄板部に段差を設けない例を示す説明 図である。
図 4 5は、 第 5の製造方法において、 各薄板部のうち、 固定部が接着される部 分に接着の区画を形成するための突起を設けた例を示す説明図である。
図 4 6は、 第 5の製造方法において、 固定部を大きくした例を示す説明図であ る。
図 4 7は、 第 1の手法 (薄板部に孔を設ける) を示す説明図である。
図 4 8は、 第 2の手法 (薄板部及び圧電 Z電歪素子の表面を粗くする) を示す 説明図である。
図 4 9は、 第 3の手法 (接着剤のはみ出し部分に曲率を設ける) を示す説明図 である。
図 5 0は、 第 4の手法 (固定部の角部を面取りする) を示す説明図である。 図 5 1は、 第 5の手法 (ばりを外方に向ける) を示す説明図である。
図 5 2は、 第 6の手法 (薄板部の厚みを変える) を示す説明図である。
図 5 3は、 従来例に係る圧電ノ電歪デバイスを示す構成図である。 発明を実施するための最良の形態
以下、 本発明に係る圧電 電歪デバイス及びその製造方法の実施の形態例を図 1〜図 5 2を参照しながら説明する。
ここで、 圧電 電歪デバイスは、 圧電 Z電歪素子により電気的エネルギと機械 的エネルギとを相互に変換する素子を包含する概念である。 従って、 各種ァクチ ユエ一夕や振動子等の能動素子、 特に、 逆圧電効果ゃ電歪効果による変位を利用 した変位素子として最も好適に用いられるほか、 加速度センサ素子や衝撃センサ 素子等の受動素子としても好適に使用され得る。
第 1の実施の形態に係る圧電 電歪デバイス 1 O Aは、 図 1に示すように、 全 体として長尺の直方体の形状を呈し、 その長軸方向のほぼ中央部分に孔部 1 2が 設けられた基体 1 4を有する。
基体 1 4は、 相対向する一対の薄板部 1 6 a及び 1 6 bと、 可動部 2 0と、 前 記一対の薄板部 1 6 a及び 1 6 b並びに可動部 2 0を支持する固定部 2 2とを具 備し、 少なくとも薄板部 1 6 a及び 1 6 bの各一部にそれぞれ圧電 Z電歪素子 2 4 a及び 2 4 bが形成されている。
なお、 前記基体 1 4については、 全体をセラミックスもしくは金属を用いて構 成されたもののほか、 セラミックスと金属の材料で製造されたものを組み合わせ たハイブリッド構造としてもよい。 また、 基体 1 4は、 各部を有機樹脂、 ガラス 等の接着剤で接着してなる構造、 ロウ付け、 半田付け、 共晶接合もしくは溶接等 で一体化した金属一体構造等の構成を採用することができる。
この第 1の実施の形態については、 基体 1 4のうち、 一対の薄板部 1 6 a及び 1 6 bが金属製であって、 他の可動部 2 0及び固定部 2 2がセラミック製とされ たハイブリッド構造となっている。 具体的には、 金属製の薄板部 1 6 a及び 1 6 bがセラミック製の可動部 2 0と固定部 2 2の各側面に接着剤 2 0 0を介して固 着されている。 もちろん、 薄板部 1 6 a及び 1 6 b、 可動部 2 0及び固定部 2 2 を全て金属製にしてもよい。
そして、 圧電 Z電歪素子 2 4 a及び 2 4 bは、 後述のとおり別体として圧電 Z 電歪素子 2 4 a及び 2 4 bを準備して、 基体 1 4に有機樹脂、 ガラス等の接着剤 や、 ロウ付け、 半田付け、 共晶接合等で貼り付けられるほか、 膜形成法を用いる ことにより、 前記貼り付けではなく直接基体 1 4に形成されることとなる。 第 1 の実施の形態では、 薄板部 1 6 a及び 1 6 b上にそれぞれ圧電 Z電歪素子 2 4 a 及び 2 4 bが接着剤 2 0 2を介して固着されて構成されている。 また、 この圧電ノ電歪デバイス 1 O Aは、 一対の薄板部 1 6 a及び 1 6 bの両 内壁と可動部 2 0の内壁 2 0 aと固定部 2 2の内壁 2 2 aにより例えば矩形状の 前記孔部 1 2が形成され、 前記圧電 Z電歪素子 2 4 a及び Z又は 2 4 bの駆動に よって可動部 2 0が変位し、 あるいは可動部 2 0の変位を圧電 /電歪素子 2 4 a 及び 又は 2 4 bにより検出する構成を有する。
圧電 電歪素子 2 4 a及び 2 4 bは、 圧電 Z電歪層 2 6と、 該圧電ノ電歪層 2 6の両側に形成された一対の電極 2 8及び 3 0とを有して構成され、 該一対の電 極 2 8及び 3 0のうち、 一方の電極 2 8が少なくとも一対の薄板部 1 6 a及び 1 6 bに形成されている。
図 1の例では、 圧電ノ電歪素子 2 4 a及び 2 4 bを構成する一対の電極 2 8及 び 3 0並びに圧電 電歪層 2 6の各先端面がほぼ揃っており、 この圧電 Z電歪素 子 2 4 a及び 2 4 bの実質的駆動部分 1 8 (—対の電極 2 8及び 3 0が圧電 Z電 歪層 2 6を間に挟んで重なる部分) が固定部 2 2の外表面の一部から薄板部 1 6 a及び 1 6 bの外表面の一部にかけて連続的に形成されている。 特に、 この例で は、 一対の電極 2 8及び 3 0の各先端面が可動部 2 0の内壁 2 0 aよりもわずか に後端寄りに位置されている。 もちろん、 前記実質的駆動部分 1 8が可動部 2 0 の一部から薄板部 1 6 a及び 1 6 bの一部にかけて位置するように圧電ノ電歪素 子 2 4 a及び 2 4 bを形成するようにしてもよい。
そして、 上述の第 1の実施の形態に係る圧電 電歪デバイス 1 O Aにおいては、 図 1に示すように、 可動部 2 0に互いに対向する端面 3 6 a及び 3 6 bが形成さ れて構成されている。 各端面 3 6 a及び 3 6 bは、 可動部 2 0の側面、 即ち、 素 子形成面にほぼ平行な面であって、 可動部 2 0の上面から孔部 1 2にかけて互い に分離されている。 このとき、 例えば図 1 2に示すように、 可動部 2 0の中心軸 nから各端面 3 6 a及び 3 6 bまでの距離 D a及び D bをほぼ等しくすることが 好ましい。
また、 これら端面 3 6 a及び 3 6 bの間には、 例えば図 1に示すように、 空隙 (空気) 3 8を介在させるようにしてもよいし、 図 9に示す第 7の変形例に係る 圧電 Z電歪デバイス 1 0 A gや、 図 1 2に示すように、 これら端面 3 6 a及び 3 6 bの間に前記可動部 2 0の構成部材とは異なる部材、 例えば樹脂等からなる部 材 4 0を介在させるようにしてもよい。
ところで、 第 1の実施の形態に係る圧電ノ電歪デバイス 1 O Aにおいて、 一対 の電極 2 8及び 3 0への電圧の印加は、 各電極 2 8及び 3 0のうち、 それぞれ固 定部 2 2の両側面 (素子形成面) 上に形成された端子 (パッド) 3 2及び 3 4を 通じて行われるようになつている。 各端子 3 2及び 3 4の位置は、 一方の電極 2 8に対応する端子 3 2が固定部 2 2の後端寄りに形成され、 外部空間側の他方の 電極 3 0に対応する端子 3 4が固定部 2 2の内壁 2 2 a寄りに形成されている。 この場合、 圧電 電歪デバイス 1 O Aの固定を、 端子 3 2及び 3 4が配置され た面とは別の面を利用してそれぞれ別個に行うことができ、 結果として、 圧電 Z 電歪デバイス 1 O Aの固定と、 回路と端子 3 2及び 3 4間の電気的接続の双方に 高い信頼性を得ることができる。 この構成においては、 フレキシブルプリント回 路 (F P Cとも称される) 、 フレキシブルフラットケーブル (F F Cとも称され る) 、 ワイヤボンディング等によって端子 3 2及び 3 4と回路との電気的接続が 行われる。
圧電 Z電歪素子 2 4 a及び 2 4 bの構成としては、 図 1に示す構成のほか、 図 2に示す第 1の変形例に係る圧電ノ電歪デバイス 1 0 A aのように、 圧電 Z電歪 素子 2 4 a及び 2 4 bを構成する一対の電極 2 8及び 3 0の各先端部を揃え、 圧 電/電歪層 2 6の先端部のみを可動部 2 0側に突出させるようにしてもよく、 ま た、 図 3に示す第 2の変形例に係る圧電 電歪デバイス 1 O A bのように、 一方 の電極 2 8と圧電 電歪層 2 6の各先端部を揃え、 他方の電極 3 0の先端部のみ を固定部 2 2寄りに位置させるようにしてもよい。 この図 3に示す圧電 電歪デ バイス 1 0 A bにおいては、 可動部 2 0の代わりに固定部 2 2に互いに対向する 端面 3 6 a及び 3 6 bを設けた例を示す。
その他、 図 4に示す第 3の変形例に係る圧電/電歪デバイス 1 0 A cのように、 一方の電極 2 8及び圧電 /電歪層 2 6の各先端部を可動部 2 0の側面にまで延ば し、 他方の電極 3 0の先端部を薄板部 1 6 a及び 1 6 bの長さ方向 (Z軸方向) のほぼ中央に位置させるようにしてもよい。 上述の例では、 圧電 電歪素子 2 4 a及び 2 4 bを、 1層構造の圧電 電歪層 2 6と一対の電極 2 8及び 3 0で構成するようにしたが、 その他、 圧電/電歪素 子 2 4 a及び 2 4 bを、 圧電 Z電歪層 2 6と一対の電極 2 8及び 3 0の複数を積 層形態にして構成することも好ましい。
例えば図 5に示す第 4の変形例に係る圧電 電歪デバイス 1 O A dのように、 圧電ノ電歪層 2 6並びに一対の電極 2 8及び 3 0をそれぞれ多層構造とし、 一方 の電極 2 8と他方の電極 3 0をそれぞれ交互に積層して、 これら一方の電極 2 8 と他方の電極 3 0が圧電ノ電歪層 2 6を間に挟んで重なる部分 (実質的駆動部分 1 8 ) が多段構成とされた圧電 電歪素子 2 4 a及び 2 4 bとしてもよい。 この 図 5では、 圧電 Z電歪層 2 6を 3層構造とし、 1層目の下面 (薄板部 1 6 a及び 1 6 bの側面) と 2層目の上面に一方の電極 2 8をそれぞれ分離して形成し、 1 層目の上面と 3層目の上面に他方の電極 3 0をそれぞれ分離して形成し、 更に、 一方の電極 2 8の各端部にそれぞれ端子 3 2 a及び 3 2 bを設け、 他方の電極 3 0の各端部にそれぞれ端子 3 4 a及び 3 4 bを設けた例を示している。
また、 図 6に示す第 5の変形例に係る圧電/電歪デバイス 1 O A eのように、 圧電ノ電歪層 2 6並びに一対の電極 2 8及び 3 0をそれぞれ多層構造とし、 一方 の電極 2 8と他方の電極 3 0を断面ほぼ櫛歯状となるようにそれぞれ互い違いに 積層し、 これら一方の電極 2 8と他方の電極 3 0が圧電/電歪層 2 6を間に挟ん で重なる部分 (実質的駆動部分 1 8 ) が多段構成とされた圧電 Z電歪素子 2 4 a 及び 2 4 bとしてもよい。 この図 6では、 圧電/電歪層 2 6を 3層構造とし、 一 方の電極 2 8が 1層目の下面 (薄板部 1 6 a及び 1 6 bの側面) と 2層目の上面 に位置するように櫛歯状に形成し、 他方の電極 3 0が 1層目の上面と 3層目の上 面に位置するように櫛歯状に形成した例を示している。 この構成の場合、 一方の 電極 2 8同士並びに他方の電極 3 0同士をそれぞれつなぎ共通化することで、 図 5の構成と比べて端子 3 2及び 3 4の数を減らすことができるため、 圧電 電歪 素子 2 4 a及び 2 4 bの多層化に伴うサイズの大型化を抑えることができる。 また、 図 7に示すように、 前記第 5の変形例に係る圧電 Z電歪デバイス 1 O A eの他の例において、 圧電 Z電歪素子 2 4 a及び 2 4 bを、 その先端部が薄板部 1 6 a及び 1 6 b上にとどまるように形成するようにしてもよい。 図 7の例では、 圧電 Z電歪素子 2 4 a及び 2 4 bの先端部を薄板部の長さ方向ほぼ中央部に位置 された例を示す。 この場合、 可動部 2 0を大きく変位させることができるという 利点がある。
また、 図 8に示す第 6の変形例に係る圧電 Z電歪デバイス 1 0 A f のように、 2つの多段構成の圧電 電歪素子 2 4 a 1及び 2 4 b 1をそれぞれ固定部 2 2と 薄板部 1 6 a及び 1 6 bとを跨るように形成し、 他の 2つの多段構成の圧電 電 歪素子 2 4 a 2及び 2 4 b 2をそれぞれ可動部 2 0と薄板部 1 6 a及び 1 6 と を跨るように形成するようにしてもよい。 この場合、 圧電/電歪素子 2 4 a及び 2 4 bを多段構造にする効果と、 可動部 2 0を変位させるための作用点が増える という効果により、 可動部 2 0をきわめて大きく変位させることができ、 また、 高速応答性にも優れたものになり、 好ましい。
また、 図 9に示す第 7の変形例に係る圧電 電歪デバイス 1 0 A gのように、 圧電 電歪層 2 6を 2層構造とし、 一方の電極 2 8が 1層目の下面 (薄板部 1 6 a及び 1 6 bの側面) と 2層目の上面に位置するように櫛歯状に形成し、 他方の 電極 3 0が 1層目の上面に位置するように形成した多段構成の圧電ノ電歪素子 2 4 a及び 2 4 bとしてもよい。 この例では、 可動部 2 0の端面 3 6 a及び 3 6 b 間に可動部 2 0とは異なる部材が充填されている。
このような圧電/電歪素子 2 4 a及び 2 4 bを多段構造とすることにより、 圧 電 Z電歪素子 2 4 a及び 2 4 bの発生力が増大し、 もって大変位が図られると共 に、 圧電/電歪デバイス 1 O A自体の剛性が増すことで、 高共振周波数化が図ら れ、 変位動作の高速化が容易に達成できる。
なお、 段数を多くすれば、 駆動力の増大は図られるが、 それに伴い消費電力も 増えるため、 実際に実施する場合には、 用途、 使用状態に応じて適宜段数等を決 めればよい。 また、 この第 1の実施の形態に係る圧電 電歪デバイス 1 O Aでは、 圧電 電歪素子 2 4 a及び 2 4 bを多段構造にして駆動力を上げても、 基本的に 薄板部 1 6 a及び 1 6 bの幅 (Y軸方向の距離) は不変であるため、 例えば非常 に狭い間隙において使用されるハードディスク用磁気へッドの位置決め、 リンギ ング制御等のァクチユエ一夕に適用する上で非常に好ましいデバイスとなる。 ま た、 センサ (例えば加速度センサ) として使用する場合においても、 多段構造と することにより、 静電容量が増加し、 発生電荷が増加するため、 センサが発生す る電気信号のレベルが大きくなり、 センサの後段に接続される信号処理回路での 処理が容易になるという利点がある。
上述の圧電 電歪素子 2 4 a及び 2 4 bにおいては、 一対の電極 2 8及び 3 0 間に圧電 電歪層 2 6を介在させたいわゆるサンドィツチ構造で構成した場合を 示したが、 その他、 図 1 0に示すように、 少なくとも薄板部 1 6 a及び 1 6 bの 側面に形成された圧電 Z電歪層 2 6の一主面に櫛型の一対の電極 2 8及び 3 0を 形成するようにしてもよいし、 図 1 1に示すように、 少なくとも薄板部 1 6 a及 び 1 6 bの側面に形成された圧電 Z電歪層 2 6に櫛型の一対の電極 2 8及び 3 0 を埋め込んで形成するようにしてもよい。
図 1 0に示す構造の場合、 消費電力を低く抑えることができるという利点があ り、 図 1 1に示す構造は、 歪み、 発生力の大きな電界方向の逆圧電効果を効果的 に利用できる構造であることから、 大変位の発生に有利になる。
具体的には、 図 1 0に示す圧電/電歪素子 2 4 a及び 2 4 bは、 圧電ノ電歪層 2 6の一主面に櫛型構造の一対の電極 2 8及び 3 0が形成されてなり、 一方の電 極 2 8及び他方の電極 3 0が互い違いに一定の幅の間隙 2 9をもって相互に対向 する構造を有する。 図 1 0では、 一対の電極 2 8及び 3 0を圧電 Z電歪層 2 6の 一主面に形成した例を示したが、 その他、 薄板部 1 6 a及び 1 6 bと圧電 電歪 層 2 6との間に一対の電極 2 8及び 3 0を形成するようにしてもよいし、 圧電ノ 電歪層 2 6の一主面並びに薄板部 1 6 a及び 1 6 bと圧電 Z電歪層 2 6との間に それぞれ櫛型の一対の電極 2 8及び 3 0を形成するようにしてもよい。
一方、 図 1 1に示す圧電 電歪素子 2 4 a及び 2 4 bは、 圧電 電歪層 2 6に 埋め込まれるように、 櫛型構造の一対の電極 2 8及び 3 0が形成され、 一方の電 極 2 8及び他方の電極 3 0が互い違いに一定の幅の間隙 2 9をもって相互に対向 する構造を有する。
このような図 1 0及び図 1 1に示すような圧電ノ電歪素子 2 4 a及び 2 4 bも 第 1の実施の形態に係る圧電 電歪デバイス 1 O Aに好適に用いることができる。 図 1 0及び図 1 1に示す圧電 Z電歪素子 2 4 a及び 2 4 bのように、 櫛型の一対 の電極 2 8及び 3 0を用いる場合は、 各電極 2 8及び 3 0の櫛歯のピッチ Dを小 さくすることで、 圧電 電歪素子 2 4 a及び 2 4 bの変位を大きくすることが可 能である。
ここで、 この第 1の実施の形態に係る圧電 Z電歪デバイス 1 O Aの動作につい て説明する。 まず、 例えば 2つの圧電 電歪素子 2 4 a及び 2 4 bが自然状態、 即ち、 圧電/電歪素子 2 4 a及び 2 4 bが共に変位動作を行っていない場合は、 図 1 2に示すように、 圧電/電歪デバイス 1 O Aの長軸 (固定部の長軸) mと可 動部 2 0の中心軸 nとがほぼ一致している。
この状態から、 例えば図 1 3 Aの波形図に示すように、 一方の圧電 電歪素子 2 4 aにおける一対の電極 2 8及び 3 0に所定のバイアス電位 V bを有するサイ ン波 W aをかけ、 図 1 3 Bに示すように、 他方の圧電 Z電歪素子 2 4 bにおける 一対の電極 2 8及び 3 0に前記サイン波 W aとはほぼ 1 8 0 ° 位相の異なるサイ ン波 W bをかける。
そして、 一方の圧電 電歪素子 2 4 aにおける一対の電極 2 8及び 3 0に対し て例えば最大値の電圧が印加された段階においては、 一方の圧電 電歪素子 2 4 aにおける圧電 Z電歪層 2 6はその主面方向に収縮変位する。 これにより、 例え ば図 1 4に示すように、 一方の薄板部 1 6 aに対し、 矢印 Aで示すように、 該薄 板部 1 6 aを例えば右方向に撓ませる方向の応力が発生することから、 該一方の 薄板部 1 6 aは右方向に橈み、 このとき、 他方の圧電 電歪素子 2 4 bにおける 一対の電極 2 8及び 3 0には、 電圧は印加されていない状態となるため、 他方の 薄板部 1 6 bは一方の薄板部 1 6 aの撓みに追従して右方向に橈む。 その結果、 可動部 2 0は、 圧電 電歪デバイス 1 O Aの長軸 mに対して例えば右方向に変位 する。 なお、 変位量は、 各圧電ノ電歪素子 2 4 a及び 2 4 bに印加される電圧の 最大値に応じて変化し、 例えば最大値が大きくなるほど変位量も大きくなる。 特に、 圧電 Z電歪層 2 6の構成材料として、 高い抗電界を有する圧電 Z電歪材 料を適用した場合には、 図 1 3 A及び図 1 3 Bの二点鎖線の波形に示すように、 最小値のレベルが僅かに負のレベルとなるように、 前記バイアス電位を調整する ようにしてもよい。 この場合、 該負のレベルが印加されている圧電 電歪素子
(例えば他方の圧電 Z電歪素子 2 4 b ) の駆動によって、 例えば他方の薄板部 1 6 bに一方の薄板部 1 6 aの撓み方向と同じ方向の応力が発生し、 可動部 2 0の 変位量をより大きくすることが可能となる。 つまり、 図 1 3 A及び図 1 3 Bにお ける二点鎖線に示すような波形を使用することで、 負のレベルが印加されている 圧電ノ電歪素子 2 4 b又は 2 4 aが、 変位動作の主体となっている圧電 Z電歪素 子 2 4 a又は 2 4 bをサポートとするという機能を持たせることができる。
なお、 図 8に示す圧電/電歪デバイス 1 O A f の例では、 対角線上に配置され た例えば圧電 Z電歪素子 2 4 a 1と圧電 電歪素子 2 4 b 2に、 図 1 3 Aに示す 電圧 (サイン波 W a参照) が印加され、 他の圧電 Z電歪素子 2 4 a 2と圧電 Z電 歪素子 2 4 b 1に、 図 1 3 Bに示す電圧 (サイン波 W b参照) が印加される。 このように、 第 1の実施の形態に係る圧電ノ電歪デバイス 1 O Aにおいては、 圧電 電歪素子 2 4 a及び 2 4 bの微小な変位が薄板部 1 6 a及び 1 6 bの撓み を利用して大きな変位動作に増幅されて、 可動部 2 0に伝達することになるため、 可動部 2 0は、 圧電 Z電歪デバイス 1 O Aの長軸 mに対して大きく変位させるこ とが可能となる。
特に、 この第 1の実施の形態では、 可動部 2 0に互いに対向する端面 3 6 a及 び 3 6 bを設けるようにしている。 この場合、 互いに対向する端面 3 6 a及び 3 6 bの間を空隙 3 8にしたり、 前記互いに対向する端面 3 6 a及び 3 6 bの間に 可動部 2 0の構成部材よりも軽い部材 4 0を介在させることで、 可動部 2 0の軽 量化を有効に図ることができ、 可動部 2 0の変位量を低下させることなく、 共振 周波数を高めることが可能となる。
ここで、 周波数とは、 一対の電極 2 8及び 3 0に印加する電圧を交番的に切り 換えて、 可動部 2 0を左右に変位させたときの電圧波形の周波数を示し、 共振周 波数とは、 所定の正弦波電圧を印加した際に可動部 2 0の変位振幅が最大となる 周波数を示す。
また、 第 1の実施の形態に係る圧電 Z電歪デバイス 1 O Aにおいては、 一対の 薄板部 1 6 a及び 1 6 bが金属製であって、 他の可動部 2 0及び固定部 2 2がセ ラミック製とされたハイプリッド構造となっており、 すべての部分を脆弱で比較 的重い材料である圧電 Z電歪材料によって構成する必要がないため、 機械的強度 が高く、 ハンドリング性、 耐衝撃性、 耐湿性に優れ、 動作上、 有害な振動 (例え ば、 高速作動時の残留振動やノイズ振動) の影響を受け難いという利点を有する。 更に、 この第 1の実施の形態においては、 互いに対向する端面 3 6 a及び 3 β bの間を空隙 3 8とした場合、 一方の端面 3 6 aを含む可動部 2 0の一部 2 O A と、 他方の端面 3 6 bを含む可動部 2 0の別の一部 2 0 Bとが撓みやすくなり、 変形に強くなる。 そのため、 圧電 電歪デバイス 1 O Aのハンドリング性に優れ ることとなる。
また、 前記互いに対向する端面 3 6 a及び 3 6 bの存在により、 可動部 2 0又 は固定部 2 2の表面積が大きくなる。 従って、 図 1に示すように、 互いに対向す る端面 3 6 a及び 3 6 bを有する可動部 2 0とした場合は、 可動部 2 0に他の部 品を取り付ける場合に、 その取付面積を大きくとることができ、 部品の取付性を 向上させることができる。 ここで、 部品を例えば接着剤等によって固着する場合 を考えると、 接着剤は可動部 2 0の一主面 (部品取付面) のほか端面 3 6 a及び 3 6 bにまで行き渡ることとなるため、 接着剤の塗布不足等を解消することが可 能となり、 部品を確実に固着することができる。
この一例として、 図 1 5に、 本実施の形態に係る圧電 Z電歪デバイス (一方の 圧電ノ電歪デバイス 1 0 A 1 ) の可動部 2 0に別の本実施の形態に係る圧電 電 歪デバイス (他方の圧電ノ電歪デバイス 1 0 A 2 ) を固着した場合を示す。
一方の圧電ノ電歪デバイス 1 0 A 1は、 その固定部 2 2が接着剤 1 2 0を介し て基板 1 2 2の表面に固着されている。 この一方の圧電/電歪デバイス 1 0 A 1 の可動部 2 0には、 他方の圧電/電歪デバイス 1 0 A 2の固定部 2 2が接着剤 1 2 4を介して固着されている。 即ち、 2つの圧電 Z電歪デバイス 1 O A 1及び 1 0 A 2が直列に配置された構成となっている。 なお、 他方の圧電ノ電歪デバイス 1 0 A 2における可動部 2 0の互いに対向する端面 3 6 a及び 3 6 b間には可動 部 2 0とは異なる軽量な部材 1 2 6が介在されている。 この場合、 一方の圧電 電歪デバイス 1 O A 1における可動部 2 0の端面 3 6 a及び 3 6 bの間にまで、 他方の圧電ノ電歪デバイス 1 0 A 2を固着するための 接着剤 1 2 4が行き渡つており、 これにより、 他方の圧電/電歪デバイス 1 O A 2は一方の圧電ノ電歪デバイス 1 O A 1に対して強固に固着されることになる。 また、 このように圧電/電歪デバイス 1 0 A 2を接着すれば、 接着と同時に端面 3 6 a及び 3 6 b間に可動部 2 0とは異なる軽量な部材 (この例では接着剤 1 2 4 ) を介在させることができるため、 製造工程が簡略化できるという利点がある。 一方、 図 3に示すように、 互いに対向する端面 3 6 a及び 3 6 bを有する固定 部 2 2とした場合は、 前述した可動部 2 0に互いに対向する端面 3 6 a及び 3 6 bを有する場合の効果に加え、 この第 2の変形例に係る圧電 電歪デバイス 1 0 A bを所定の固定部分に強固に固定することが可能となり、 信頼性の向上を図る ことができる。
また、 この第 1の実施の形態においては、 一対の電極 2 8及び 3 0が圧電 電 歪層 2 6を間に挟んで重なる部分 (実質的駆動部分 1 8 ) を固定部 2 2の一部か ら薄板部 1 6 a及び 1 6 bの一部にかけて連続的に形成するようにしている。 実 質的駆動部分 1 8を更に可動部 2 0の一部にかけて形成した場合、 可動部 2 0の 変位動作が前記実質的駆動部分 1 8によって制限され、 大きな変位を得ることが できなくなるおそれがあるが、 この第 1の実施の形態では、 前記実質的駆動部分 1 8を可動部 2 0にかけないように形成しているため、 可動部 2 0の変位動作が 制限されるという不都合が回避され、 可動部 2 0の変位量を大きくすることがで さる。
逆に、 可動部 2 0の一部に圧電/電歪素子 2 4 a及び 2 4 bを形成する場合は、 前記実質的駆動部分 1 8が可動部 2 0の一部から薄板部 1 6 a及び 1 6 bの一部 にかけて位置させるように形成することが好ましい。 これは、 実質的駆動部分 1 8が固定部 2 2の一部にまでわたって形成されると、 上述したように、 可動部 2 0の変位動作が制限されるからである。
次に、 第 1の実施の形態に係る圧電ノ電歪デバイス 1 O Aの好ましい構成例に ついて説明する。 まず、 可動部 2 0の変位動作を確実なものとするために、 圧電 Z電歪素子 2 4 a及び 2 4 bの実質的駆動部分 1 8が固定部 2 2もしくは可動部 2 0にかかる距 離 gを薄板部 1 6 a及び 1 6 bの厚み dの 1 2以上とすることが好ましい。 そして、 薄板部 1 6 a及び 1 6 bの内壁間の距離 (X軸方向の距離) aと薄板 部 1 6 a及び 1 6 bの幅 (Y軸方向の距離) bとの比 a Z bが 0 . 5〜2 0とな るように構成する。 前記比 a Z bは、 好ましくは 1〜1 5とされ、 更に好ましく は 1〜1 0とされる。 この比 a Z bの規定値は、 可動部 2 0の変位量を大きくし、 X—Z平面内での変位を支配的に得られることの発見に基づく規定である。
一方、 薄板部 1 6 a及び 1 6 bの長さ (Z軸方向の距離) eと薄板部 1 6 a及 び 1 6 bの内壁間の距離 aとの比 e Z aにおいては、 好ましくは 0 . 5〜1 0と され、 更に好ましくは 0 . 5〜5とすることが望ましい。
更に、 孔部 1 2にゲル状の材料、 例えばシリコンゲルを充填することが好まし レ^ 通常は、 充填材の存在によって、 可動部 2 0の変位動作が制限を受けること になるが、 この第 1の実施の形態では、 可動部 2 0への端面 3 6 a及び 3 6 bの 形成に伴う軽量化や可動部 2 0の変位量の増大化を図るようにしているため、 前 記充填材による可動部 2 0の変位動作の制限が打ち消され、 充填材の存在による 効果、 即ち、 高共振周波数化や剛性の確保を実現させることができる。
また、 可動部 2 0の長さ (Z軸方向の距離) f は、 短いことが好ましい。 短く することで軽量化と共振周波数の増大が図られるからである。 しかしながら、 可 動部 2 0の X軸方向の剛性を確保し、 その変位を確実なものとするためには、 薄 板部 1 6 a及び 1 6 bの厚み dとの比 f Z dを 2以上、 好ましくは 5以上とする ことが望ましい。
なお、 各部の実寸法は、 可動部 2 0への部品の取り付けのための接合面積、 固 定部 2 2を他の部材に取り付けるための接合面積、 電極用端子などの取り付けの ための接合面積、 圧電 Z電歪デバイス 1 O A全体の強度、 耐久度、 必要な変位量 並びに共振周波数、 そして、 駆動電圧等を考慮して定められることになる。
具体的には、 例えば薄板部 1 6 a及び 1 6 bの内壁間の距離 aは、 1 0 0 〜2 0 0 0 z mが好ましく、 更に好ましくは 2 0 0 m〜l 6 0 0 i mである。 薄板部 16 a及び 16 bの幅 bは、 50 zm〜 2000 mが好ましく、 更に好 ましくは 100 /m〜500
Figure imgf000025_0001
である。 薄板部 16 a及び 16 bの厚み dは、 Y軸方向への変位成分である煽り変位が効果的に抑制できるように、 薄板部 16 a及び 16 bの幅 bとの関係において b>dとされ、 かつ、 2 ΠΙ〜100 ΠΙ が好ましく、 更に好ましくは 10 m〜80 /mである。
薄板部 16 a及び 16 bの長さ eは、 200 zm〜3000 mが好ましく、 更に好ましくは 300 //m〜2000 xmである。 可動部 20の長さ f は、 50 m〜2000 mが好ましく、 更に好ましくは 100 m〜 1000 /zmであ る。
このような構成にすることにより、 X軸方向の変位に対して Y軸方向の変位が 10%を超えないが、 上述の寸法比率と実寸法の範囲で適宜調整を行うことで低 電圧駆動が可能で、 Y軸方向への変位成分を 5%以下に抑制できるというきわめ て優れた効果を示す。 つまり、 可動部 20は、 実質的に X軸方向という 1軸方向 に変位することになり、 しかも、 高速応答性に優れ、 相対的に低電圧で大きな変 位を得ることができる。
また、 この圧電 電歪デバイス 1 OAにおいては、 デバイスの形状が従来のよ うな板状 (変位方向に直交する方向の厚みが小さい形状) ではなく、 可動部 20 と固定部 22が概ね直方体の形状を呈しており、 可動部 20と固定部 22の側面 が連続するように一対の薄板部 16 a及び 16 bが設けられているため、 圧電 電歪デバイス 1 OAの Y軸方向の剛性を選択的に高くすることができる。
即ち、 この圧電 Z電歪デバイス 1 OAでは、 平面内 (XZ平面内) における可 動部 20の動作のみを選択的に発生させることができ、 可動部 20の YZ面内の 動作 (いわゆる煽り方向の動作) を抑制することができる。
次に、 この第 1の実施の形態に係る圧電 /電歪デバイス 1 OAの各構成要素に ついて説明する。
可動部 20は、 上述したように、 薄板部 16 a及び 16 bの駆動量に基づいて 作動する部分であり、 圧電 電歪デバイス 1 OAの使用目的に応じて種々の部材 が取り付けられる。 例えば、 圧電 電歪デバイス 1 OAを変位素子として使用す る場合であれば、 光シャツ夕の遮蔽板等が取り付けられ、 特に、 ハードディスク ドライブの磁気へッドの位置決めやリンギング抑制機構に使用するのであれば、 磁気ヘッド、 磁気ヘッドを有するスライダ、 スライダを有するサスペンション等 の位置決めを必要とする部材が取り付けられる。
固定部 2 2は、 上述したように、 薄板部 1 6 a及び 1 6 b並びに可動部 2 0を 支持する部分であり、 例えば前記ハードディスクドライブの磁気へッドの位置決 めに利用する場合には、 V CM (ボイスコイルモ一夕) に取り付けられキヤリツ ジアーム、 該キヤリッジアームに取り付けられた固定プレート又はサスペンショ ン等に固定部 2 2を支持固定することにより、 圧電 Z電歪デバイス 1 O Aの全体 が固定される。 また、 この固定部 2 2には、 図 1に示すように、 圧電 Z電歪素子 2 4 a及び 2 4 bを駆動するための端子 3 2及び 3 4その他の部材が配置される 場合もある。
可動部 2 0及び固定部 2 2を構成する材料としては、 剛性を有する限りにおい て特に限定されないが、 後述するセラミックグリーンシート積層法を適用できる セラミックスを好適に用いることができる。 具体的には、 安定化ジルコニァ、 部 分安定化ジルコニァをはじめとするジルコニァ、 アルミナ、 マグネシア、 窒化珪 素、 窒化アルミニウム、 酸化チタンを主成分とする材料等のほか、 これらの混合 物を主成分とした材料が挙げられるが、 機械的強度ゃ靱性が高い点において、 ジ ルコニァ、 特に安定化ジルコニァを主成分とする材料と部分安定化ジルコニァを 主成分とする材料が好ましい。 また、 金属材料においては、 剛性を有する限り、 限定されないが、 ステンレス鋼、 ニッケル、 黄銅、 白銅、 青銅等が挙げられる。 前記安定化ジルコニァ並びに部分安定化ジルコニァにおいては、 次のように安 定化並びに部分安定化されたものが好ましい。 即ち、 ジルコニァを安定化並びに 部分安定化させる化合物としては、 酸化イットリウム、 酸化イッテルビウム、 酸 化セリウム、 酸化カルシウム、 及び酸化マグネシウムがあり、 少なくともそのう ちの 1つの化合物を添加、 含有させることにより、 ジルコニァは部分的にあるい は完全に安定することになるが、 その安定化は、 1種類の化合物の添加のみなら ず、 それら化合物を組み合わせて添加することによつても、 目的とするジルコ二 ァの安定化は可能である。
なお、 それぞれの化合物の添加量としては、 酸化ィットリゥムゃ酸化ィッテル ビゥムの場合にあっては、 1〜3 0モル%、 好ましくは 1 . 5〜1 0モル%、 酸 化セリウムの場合にあっては、 6〜5 0モル%、 好ましくは 8〜2 0モル%、 酸 化カルシウムや酸化マグネシウムの場合にあっては、 5〜4 0モル%、 好ましく は 5〜2 0モル%とすることが望ましいが、 その中でも特に酸化イツトリウムを 安定化剤として用いることが好ましく、 その場合においては、 1 . 5〜 1 0モ ル%、 更に好ましくは 2〜4モル%とすることが望ましい。 また、 焼結助剤等の 添加物としてアルミナ、 シリカ、 遷移金属酸化物等を 0 . 0 5〜2 0 w t %の範 囲で添加することが可能であるが、 圧電 電歪素子 2 4 a及び 2 4 bの形成手法 として、 膜形成法による焼成一体化を採用する場合は、 アルミナ、 マグネシア、 遷移金属酸化物等を添加物として添加することも好ましい。
なお、 機械的強度と安定した結晶相が得られるように、 ジルコエアの平均結晶 粒子径を 0 . 0 5〜3 m、 好ましくは 0 . 0 5〜1 i mとすることが望ましい。 また、 上述のように、 薄板部 1 6 a及び 1 6 bについては、 可動部 2 0並びに固 定部 2 2と同様のセラミックスを用いることができるが、 好ましくは、 実質的に 同一の材料を用いて構成することが、 接合部分の信頼性、 圧電 電歪デバイス 1 O Aの強度、 製造の煩雑さの低減を図る上で有利である。
薄板部 1 6 a及び 1 6 bは、 上述したように、 圧電 電歪素子 2 4 a及び 2 4 bの変位により駆動する部分である。 薄板部 1 6 a及び 1 6 bは、 可撓性を有す る薄板状の部材であって、 表面に配設された圧電/電歪素子 2 4 a及び 2 4 bの 伸縮変位を屈曲変位として増幅して、 可動部 2 0に伝達する機能を有する。 従つ て、 薄板部 1 6 a及び 1 6 bの形状や材質は、 可撓性を有し、 屈曲変形によって 破損しない程度の機械的強度を有するものであれば足り、 可動部 2 0の応答性、 操作性を考慮して適宜選択することができる。
薄板部 1 6 a及び 1 6 bの厚み dは、 2 x m〜 1 0 0 / m程度とすることが好 ましく、 薄板部 1 6 a及び 1 6 bと圧電 Z電歪素子 2 4 a及び 2 4 bとを合わせ た厚みは 7 m〜5 0 0; mとすることが好ましい。 電極 2 8及び 3 0の厚みは 0. l〜50 m、 圧電 Z電歪層 26の厚みは 3〜300 //mとすることが好ま しい。 また、 薄板部 16 a及び 16 bの幅 bとしては、 50 m〜2000 tm が好適である。
一方、 薄板部 16 a及び 16 bの形状や材質は、 可撓性を有し、 屈曲変形によ つて破損しない程度の機械的強度を有するものであれば足り、 金属が好ましく採 用される。 この場合、 前述のとおり、 可撓性を有し、 屈曲変形が可能な金属材料、 具体的には、 ヤング率 100 GP a以上の金属材料であればよい。
好ましくは、 鉄系材料としては、 SUS 301、 SUS 304, A I S I 65 3、 SUH660等のオーステナイト系ステンレス鋼、 SUS 430、 434等 のフェライ卜系ステンレス鋼、 SUS410、 S US 630等のマルテンサイト 系ステンレス鋼、 SUS 631、 A I S I 632等のセミオーステナイト系等の ステンレス鋼、 マルエージングステンレス鋼、 各種バネ鋼鋼材で構成することが 望ましい。 また、 非鉄系材料としては、 チタン一ニッケル合金をはじめとする超 弾性チタン合金、 黄銅、 白銅、 アルミニウム、 タングステン、 モリブデン、 ベリ リウム銅、 リン青銅、 ニッケル、 ニッケル鉄合金、 チタン等で構成することが望 ましい。
薄板部 16 a及び 16 として、 可動部 20や固定部 22と同様に、 セラミツ クスを用いる場合はジルコニァが好適である。 中でも安定化ジルコニァを主成分 とする材料と部分安定化ジルコニァを主成分とする材料は、 薄肉であっても機械 的強度が大きいこと、 靱性が高いこと、 圧電 電歪層 26や電極材との反応性が 小さいことから最も好適に用いられる。
圧電ノ電歪素子 24 a及び 24 bは、 少なくとも圧電 電歪層 26と、 該圧電 ノ電歪層 26に電界をかけるための一対の電極 28及び 30を有するものであり、 ュニモルフ型、 バイモルフ型等の圧電ノ電歪素子を用いることができるが、 薄板 部 16 a及び 16 bと組み合わせたュニモルフ型の方が、 発生する変位量の安定 性に優れ、 軽量化に有利であるため、 このような圧電 電歪デバイス 1 OAに適 している。
例えば、 図 1に示すように、 一方の電極 28、 圧電 電歪層 26及び他方の電 極 3 0が層状に積層された圧電ノ電歪素子等を好適に用いることができるほか、 図 5〜図 9に示すように、 多段構成にしてもよい。 この場合、 電極 2 8及び 3 0 を構成する膜 (電極膜) の位置ずれ、 即ち、 1層おきの例えば電極 2 8の垂直投 影面における面方向の位置ずれが 5 0 m以下となっている。 これは電極 3 0も 同様である。
前記圧電 電歪素子 2 4 a及び 2 4 bは、 図 1に示すように、 圧電 電歪デバ イス 1 O Aの外面側に形成する方が薄板部 1 6 a及び 1 6 bをより大きく駆動さ せることができる点で好ましいが、 使用形態などに応じて、 圧電 Z電歪デバイス 1 O Aの内面側、 即ち、 孔部 1 2の内壁面に形成してもよく、 圧電/電歪デバイ ス 1 O Aの外面側、 内面側の双方に形成してもよい。
圧電 Z電歪層 2 6には、 圧電セラミックスが好適に用いられるが、 電歪セラミ ックスや強誘電体セラミックス、 あるいは反強誘電体セラミックスを用いること も可能である。 但し、 この圧電 Z電歪デバイス 1 O Aをハードディスクドライブ の磁気へッドの位置決め等に用いる場合は、 可動部 2 0の変位量と駆動電圧又は 出力電圧とのリニアリティが重要とされるため、 歪み履歴の小さい材料を用いる ことが好ましく、 抗電界が 1 0 k VZmm以下の材料を用いることが好ましい。 具体的な材料としては、 ジルコン酸鉛、 チタン酸鉛、 マグネシウムニオブ酸鉛、 ニッケルニオブ酸鉛、 亜鉛ニオブ酸鉛、 マンガンニオブ酸鉛、 アンチモンスズ酸 鉛、 マンガンタングステン酸鉛、 コバルトニオブ酸鉛、 チタン酸バリウム、 チタ ン酸ナトリウムビスマス、 ニオブ酸カリウムナトリウム、 タンタル酸ストロンチ ゥムビスマス等を単独であるいは混合物として含有するセラミックスが挙げられ る。
特に、 高い電気機械結合係数と圧電定数を有し、 薄板部 1 6 a及び 1 6 bをセ ラミックスとし、 圧電 Z電歪層 2 6を一体焼成する場合には、 薄板部 1 6 a及び 1 6 b (セラミックス) との反応性が小さく、 安定した組成のものが得られる点 において、 ジルコン酸鉛、 チタン酸鉛、 及びマグネシウムニオブ酸鉛を主成分と する材料、 もしくはチタン酸ナトリウムビスマスを主成分とする材料が好適に用 いられる。 更に、 前記材料に、 ランタン、 カルシウム、 ストロンチウム、 モリブデン、 夕 ングステン、 バリウム、 ニオブ、 亜鉛、 ニッケル、 マンガン、 セリウム、 カドミ ゥム、 クロム、 コバルト、 アンチモン、 鉄、 イットリウム、 タンタル、 リチウム、 ビスマス、 スズ等の酸化物あるいは最終的に酸化物となる少なくとも 1つの成分 を含む化合物等を単独で、 もしくは混合したセラミックスを用いてもよい。
例えば、 主成分であるジルコン酸鉛とチタン酸鉛及びマグネシゥムニオブ酸鉛 に、 ランタンやストロンチウムを含有させることにより、 抗電界や圧電特性を調 整可能となる等の利点を得られる場合がある。
なお、 シリカ等のガラス化し易い材料の添加は避けることが望ましい。 なぜな らば、 シリカ等の材料は、 圧電 Z電歪層の熱処理時に、 圧電 Z電歪材料と反応し 易く、 その組成を変動させ、 圧電特性を劣化させるからである。
一方、 圧電ノ電歪素子 2 4 a及び 2 4 bの一対の電極 2 8及び 3 0は、 室温で 固体であり、 導電性に優れた金属で構成されていることが好ましく、 例えばアル ミニゥム、 チタン、 クロム、 鉄、 コバルト、 ニッケル、 銅、 亜鉛、 ニオブ、 モリ ブデン、 ルテニウム、 パラジウム、 ロジウム、 銀、 スズ、 タンタル、 タンダステ ン、 イリジウム、 白金、 金、 鉛等の金属単体、 もしくはこれらの合金が用いられ、 更に、 これらに圧電 Z電歪層 2 6と同じ材料あるいは違う材料のセラミックスを 分散させたサーメット材料を用いてもよい。
圧電/電歪素子 2 4 a及び 2 4 bにおける電極 2 8及び 3 0の材料選定は、 圧 電/電歪層 2 6の形成方法に依存して決定される。 例えば薄板部 1 6 a及び 1 6 b上に一方の電極 2 8を形成した後、 該一方の電極 2 8上に圧電/電歪層 2 6を 焼成により形成する場合は、 一方の電極 2 8には、 圧電 /電歪層 2 6の焼成温度 においても変化しない白金、 パラジウム、 白金—パラジウム合金、 銀一パラジゥ ム合金等の高融点金属を使用する必要があるが、 圧電ノ電歪層 2 6を形成した後 に、 該圧電 電歪層 2 6上に形成される最外層に位置する場合の他方の電極 3 0 は、 低温で電極形成を行うことができるため、 アルミニウム、 金、 銀等の低融点 金属を使用することができる。
前記積層型圧電 Z電歪素子 2 4が薄板部 1 6 a及び 1 6 bに対して接着剤 2 0 2で貼り合わされる場合は、 圧電 Z電歪層 2 6と電極 2 8及び 3 0 (電極膜) と は多層に積層されて一体にされた後、 一括に焼成されることが好ましく、 その際 の電極 2 8及び 3 0は白金、 パラジウム、 それらの合金等の高融点金属を使用す る。 また、 電極 2 8及び 3 0は、 高融点金属と圧電 電歪材料、 あるいは他のセ ラミックスとの混合物であるサーメットとすることが好ましい。
また、 電極 2 8及び 3 0の厚みは、 少なからず圧電 電歪素子 2 4 a及び 2 4 bの変位を低下させる要因ともなるため、 特に圧電 電歪層 2 6の焼成後に形成 される電極には、 焼成後に緻密でより薄い膜が得られる有機金属ペースト、 例え ば金レジネートペースト、 白金レジネートペースト、 銀レジネートペースト等の 材料を用いることが好ましい。
次に、 第 1の実施の形態に係る圧電 Z電歪デバイス 1 O Aのいくつかの製造方 法を図 1 6 A〜図 2 3を参照しながら説明する。
第 1の実施の形態に係る圧電 電歪デバイス 1 O Aは、 薄板部 1 6 a及び 1 6 bを金属製とし、 可動部 2 0及び固定部 2 2の構成材料をセラミックスとしてい る。 従って、 圧電 Z電歪デバイス 1 O Aの構成要素として、 薄板部 1 6 a及び 1 6 b並びに圧電ノ電歪素子 2 4 a及び 2 4 bを除く、 固定部 2 2及び可動部 2 0 についてはセラミックグリーンシート積層法を用いて製造することが好ましく、 一方、 圧電 電歪素子 2 4 a及び 2 4 bをはじめとして、 各端子 3 2及び 3 4に ついては、 薄膜や厚膜等の膜形成手法を用いて製造することが好ましい。
そして、 可動部 2 0及び固定部 2 2の側面に対する薄板部 1 6 a及び 1 6 の 固着は接着剤 2 0 0による固着が好ましく、 薄板部 1 6 a及び 1 6 b上への圧電 Z電歪素子 2 4 a及び 2 4 bの固着は接着剤 2 0 2による固着が好ましい。 圧電 Z電歪デバイス 1 O Aの可動部 2 0や固定部 2 2を一体的に成形すること が可能なセラミックグリーンシート積層法によれば、 各部材の接合部の経時的な 状態変化がほとんど生じないため、 接合部位の信頼性が高く、 かつ、 剛性確保に 有利な方法である。
この第 1の実施の形態に係る圧電/電歪デバイス 1 O Aでは、 薄板部 1 6 a及 び 1 6 bと固定部 2 2との境界部分並びに薄板部 1 6 a及び 1 6 bと可動部 2 0 との境界部分は、 変位発現の支点となるため、 これら境界部分の信頼性は圧電ノ 電歪デバイス 1 O Aの特性を左右する重要なポイントである。
また、 以下に示す製造方法は、 生産性や成形性に優れるため、 所定形状の圧電 電歪デバイスを短時間に、 かつ、 再現性よく得ることができる。
以下、 具体的に第 1の実施の形態に係る圧電 電歪デバイス 1 O Aの第 1の製 造方法について説明する。 ここで、 定義付けをしておく。 セラミックグリーンシ 一トを積層して得られた積層体をセラミックグリーン積層体 1 5 8 (例えば図 1 6 B参照) と定義し、 このセラミックグリーン積層体 1 5 8を焼成して一体化し たものをセラミック積層体 1 6 0 (例えば図 1 7 A参照) と定義し、 セラミック 積層体 1 6 0と金属板を貼り合わせたものをハイブリッド積層体 1 6 2 (図 1 8 参照) と定義し、 このハイブリッド積層体 1 6 2から不要な部分を切除して可動 部 2 0、 薄板部 1 6 a及び 1 6 b並びに固定部 2 2が一体化されたものを基体 1 4 D (図 1 9参照) と定義する。
また、 この第 1の製造方法においては、 最終的にハイブリッド積層体 1 6 2を チップ単位に切断して、 圧電 Z電歪デバイス 1 O Aを多数個取りするものである が、 説明を簡単にするために、 圧電 Z電歪デバイス 1 O Aの 1個取りを主体にし て説明する。
まず、 ジルコニァ等のセラミック粉末にバインダ、 溶剤、 分散剤、 可塑剤等を 添加混合してスラリーを作製し、 これを脱泡処理後、 リバースロールコ一夕一法、 ドク夕一ブレード法等の方法により、 所定の厚みを有するセラミックグリーンシ ートを作製する。
次に、 金型を用いた打抜き加工やレーザ加工等の方法により、 セラミックダリ ーンシートを図 1 6 Aのような種々の形状に加工して、 複数枚の基体形成用のセ ラミックグリーンシート、 具体的には、 少なくとも後に孔部 1 2を形成する窓部 5 4が形成された複数枚 (例えば 4枚) のセラミックグリーンシート 5 0 A〜5 0 Dと、 後に孔部 1 2を形成する窓部 5 4と互いに対向する端面 3 6 a及び 3 6 bを有する可動部 2 0を形成するための窓部 1 0 0とが連続形成されたセラミツ クグリーンシート 1 0 2とを用意する。 その後、 図 1 6 Bに示すように、 セラミックグリーンシート 5 0 A〜5 0 D及 び 1 0 2を積層 ·圧着して、 セラミックグリーン積層体 1 5 8とする。 この積層 にあたってはセラミックグリーンシート 1 0 2を中央に位置させて積層する。 そ の後、 セラミックグリーン積層体 1 5 8を焼成して、 図 1 7 Aに示すように、 セ ラミック積層体 1 6 0を得る。 このとき、 セラミック積層体 1 6 0には、 窓部 5 4及び 1 0 0による孔部 1 3 0が形成されたかたちとなる。
次に、 図 1 7 Bに示すように、 別体として構成した圧電 電歪素子 2 4 a及び 2 4 bをそれぞれ薄板部となる金属板 1 5 2 A及び 1 5 2 Bの表面にエポキシ系 接着剤 2 0 2で接着する。
次に、 金属板 1 5 2 A及び 1 5 2 Bでセラミック積層体 1 6 0を挟み込むよう に、 かつ、 孔部 1 3 0を塞ぐようにして、 これら金属板 1 5 2 A及び 1 5 2 Bを セラミック積層体 1 6 0にエポキシ系の接着剤 2 0 0で接着し、 ハイプリッド積 層体 1 6 2 (図 1 8参照) とする。
次に、 図 1 8に示すように、 圧電 電歪素子 2 4 a及び 2 4 bが形成されたハ イブリツド積層体 1 6 2のうち、 切断線 C l、 C 2、 C 5に沿って切断すること により、 ハイブリッド積層体 1 6 2の側部と先端部を切除する。 この切除によつ て、 図 1 9に示すように、 基体 1 4 Dのうち、 金属板で構成された薄板部 1 6 a 及び 1 6 bに圧電 Z電歪素子 2 4 a及び 2 4 bが形成され、 かつ、 互いに対向す る端面 3 6 a及び 3 6 bを有する可動部 2 0が形成された第 1の実施の形態に係 る圧電/電歪デバイス 1 O Aを得る。
一方、 第 2の製造方法は、 まず、 図 2 O Aに示すように、 少なくとも後に孔部 1 2を形成する窓部 5 4が形成された複数枚 (例えば 4枚) のセラミックダリー ンシート 5 0 A〜 5 0 Dと、 後に孔部 1 2を形成する窓部 5 4と互いに対向する 端面 3 6 a及び 3 6 bを有する可動部 2 0を形成するための窓部 1 0 0とが連続 形成されたセラミックグリーンシート 1 0 2とを用意する。
その後、 図 2 0 Bに示すように、 セラミックグリーンシート 5 0 A〜 5 0 D及 び 1 0 2を積層 '圧着して、 セラミックグリーン積層体 1 5 8とする。 その後、 セラミックグリーン積層体 1 5 8を焼成して、 図 2 1 Aに示すように、 セラミツ ク積層体 1 6 0を得る。 このとき、 セラミック積層体 1 6 0には、 窓部 5 4及び
1 0 0による孔部 1 3 0が形成されたかたちとなる。
次に、 図 2 1 Bに示すように、 金属板 1 5 2 A及び 1 5 2 Bでセラミック積層 体 1 6 0を挟み込むように、 かつ、 孔部 1 3 0を塞ぐようにして、 これら金属板 1 5 2 A及び 1 5 2 Bをセラミック積層体 1 6 0にエポキシ系の接着剤 2 0 0で 接着し、 ハイブリッド積層体 1 6 2とする。 このとき、 接着した金属板 1 5 2 A 及び 1 5 2 Bの表面に圧電 電歪素子 2 4 a及び 2 4 bを貼り合わせる際に、 十 分な接着圧力がかけられるように、 図 2 1 Aに示すように、 必要に応じて、 孔部
1 3 0に充填材 1 6 4を充填する。
充填材 1 6 4は、 最終的には除去する必要があるため、 溶剤等に溶解しやすく、 また、 硬い材料であることが好ましく、 例えば有機樹脂やワックス、 ロウなどが 挙げられる。 また、 アクリル等の有機樹脂にセラミック粉末をフイラ一として混 合した材料を採用することもできる。
次に、 図 2 1 Bに示すように、 ハイブリッド積層体 1 6 2における金属板 1 5 2 A及び 1 5 2 Bの表面に、 別体として形成した圧電/電歪素子 2 4 a及び 2 4 bをエポキシ系の接着剤 2 0 2で接着する。 別体の圧電/電歪素子 2 4 a及び 2
4 bは、 例えばセラミックグリーンシート積層法、 印刷多層法により形成するこ とができる。
次に、 図 2 2に示すように、 圧電 電歪素子 2 4 a及び 2 4 bが形成された八 イブリツド積層体 1 6 2のうち、 切断線 C l、 C 2、 C 5に沿って切断すること により、 ハイブリッド積層体 1 6 2の側部と先端部を切除する。 この切除によつ て、 図 2 3に示すように、 基体 1 4 Dのうち、 金属板で構成された薄板部 1 6 a 及び 1 6 bに圧電 電歪素子 2 4 a及び 2 4 bが形成され、 かつ、 互いに対向す る端面 3 6 a及び 3 6 bを有する可動部 2 0が形成された第 1の実施の形態に係 る圧電/電歪デバイス 1 O Aを得る。
また、 基体部をすベて金属とする場合には、 例えば図 1 7 Aにおけるセラミツ ク積層体 1 6 0に相当する部位を铸造により形成するほか、 バルク状部材を研削 加工、 ワイヤ放電加工、 金型打抜き加工、 ケミカルエッチングの方法で形成した り、 薄板状の金属を積層し、 クラッデイング法により形成すればよい。 次に、 第 2の実施の形態に係る圧電ノ電歪デバイス 1 0 Bについて図 2 4〜図 5 2を参照しながら説明する。
この第 2の実施の形態に係る圧電 Z電歪デバイス 1 0 Bは、 図 2 4に示すよう に、 相対向する一対の薄板部 1 6 a及び 1 6 bと、 これら薄板部 1 6 a及び 1 6 bを支持する固定部 2 2とを具備し、 前記一対の薄板部 1 6 a及び 1 6 bのうち、 一方の薄板部 1 6 aに積層型圧電 Z電歪素子 2 4が配設されて構成されている。 なお、 積層型圧電/電歪素子 2 4は構造が複雑であるため、 図 2 4及び図 2 5に おいて簡略化して図示し、 図 2 6〜図 2 9において、 その詳細な拡大図を示して ある。
一対の薄板部 1 6 a及び 1 6 bの各後端部の間には、 固定部 2 2が例えば接着 剤 2 0 0によって固着され、 一対の薄板部 1 6 a及び 1 6 bの各先端部は開放端 となっている。
一対の薄板部 1 6 a及び 1 6 bにおける各先端部の間には、 例えば図 2 5に示 すように、 上述の可動部 2 0、 あるいは種々の部材ゃ部品が例えば接着剤 2 0 0 を介して固着される。 図 2 5の例では、 一対の薄板部 1 6 a及び 1 6 bにおける 各先端部の間に、 固定部 2 2と同一の部材で構成された可動部 2 0を接着剤 2 0 0を介して固着した例を示す。
一対の薄板部 1 6 a及び 1 6 bは、 それぞれ金属にて構成され、 固定部 2 2や 可動部 2 0については、 セラミックスもしくは金属を用いて構成される。 特に、 図 2 4や図 2 5の例では、 一対の薄板部 1 6 a及び 1 6 bのうち、 積層型圧電/ 電歪素子 2 4が形成される一方の薄板部 1 6 aの厚みが他方の薄板部 1 6 bの厚 みよりも大とされている。
また、 積層型圧電 電歪素子 2 4は、 薄板部 1 6 aに対して有機樹脂、 ガラス、 ロウ付け、 半田付け、 共晶接合等の接着剤 2 0 2で貼り付けられる。 即ち、 金属 製の薄板部 1 6 aに前記積層型圧電/電歪素子 2 4が接着剤 2 0 2を介して固着 されることによって、 圧電/電歪デバイス 1 0 Bの駆動源であるァクチユエ一夕 部 2 0 4が構成されることになる。 そして、 この圧電 Z電歪デバイス 1 0 Bは、 ァクチユエ一夕部 2 0 4の駆動に よって薄板部 1 6 a (図 2 5の例では 1 6 a及び 1 6 b ) における先端部 (可動 部 2 0が取り付けられた部分) が変位する。 あるいは薄板部 1 6 aにおける先端 部の変位がァクチユエ一夕部 (センサとして使用する場合はドランスデューサ 部) 2 0 4を通じて電気的に検出されることになる。 この場合、 センサとして利 用されることになる。
積層型圧電 電歪素子 2 4は、 例えば図 2 6に示すように、 圧電/電歪層 2 6 並びに一対の電極 2 8及び 3 0をそれぞれ多層構造とし、 一方の電極 2 8と他方 の電極 3 0をそれぞれ交互に積層して、 これら一方の電極 2 8と他方の電極 3 0 が圧電ノ電歪層 2 6を間に挟んで重なる部分が多段構成とされている。
図 2 6では、 圧電/電歪層 2 6並びに一対の電極 2 8及び 3 0をそれぞれ多層 構造とし、 一方の電極 2 8と他方の電極 3 0を断面ほぼ櫛歯状となるようにそれ ぞれ互い違いに積層し、 これら一方の電極 2 8と他方の電極 3 0が圧電 電歪層 2 6を間に挟んで重なる部分が多段構成とされている。
詳しくは、 前記積層型圧電ノ電歪素子 2 4は、 ほぼ直方体形状を呈し、 複数の 圧電 電歪層 2 6と電極膜 2 8及び 3 0から構成されている。 そして、 各圧電 Z 電歪層 2 6の上下面に接する電極膜 2 8及び 3 0が互い違いに反対の端面 2 0 8 及び 2 0 9にそれぞれ導出され、 当該互い違いの反対の端面 2 0 8及び 2 0 9に 導出された各電極膜 2 8及び 3 0を電気的に接続する端面電極 2 8 c及び 3 0 c 力 最外層の圧電 Z電歪層 2 6の表面に設けられ、 かつ、 所定距離 D kだけ離れ て配置された端子部 2 8 b及び 3 0 bに電気的に接続されている。
前記端子部 2 8 b及び 3 0 b間の所定距離 D kは、 2 0 m以上であることが 好ましい。 また、 圧電ノ電歪層の上下面に接する電極膜 2 8及び 3 0の材質と端 面電極 2 8 c及び 3 0 cの材質を異ならせるようにしてもよい。 また、 少なくと も一方の端子部 (図 2 6の例では、 端子部 2 8 b ) と該端子部 2 8 bと対応する 端面電極 2 8 cとを、 これら端子部 2 8 bや端面電極 2 8 cより薄い薄膜の電極 膜 (外表面電極) 2 8 dで電気的に接続するようにしてもよい。
また、 圧電 電歪層 2 6の焼成後に形成される表面の電極膜 2 8 d、 端面電極 2 8じ及び3 0じ、 端子部 2 8 b及び 3 0 bは、 圧電 Z電歪層 2 6の焼成前に形 成される、 あるいは同時に焼成される電極層 2 8及び 3 0よりも薄く、 また、 耐 熱性の低いものとしてもよい。
この図 2 6では、 圧電 Z電歪層 2 6を 5層構造とし、 一方の電極 2 8を 1層目 の上面と 3層目の上面と 5層目の上面に位置するように櫛歯状に形成し、 他方の 電極 3 0を 2層目の上面と 4層目の上面に位置するように櫛歯状に形成した例を 示している。
また、 図 2 8では、 圧電 電歪層 2 6を同じく 5層構造とし、 一方の電極 2 8 を 1層目の上面と 3層目の上面と 5層目の上面に位置するように櫛歯状に形成し、 他方の電極 3 0を 1層目の下面と 2層目の上面と 4層目の上面に位置するように 櫛歯状に形成した例を示している。
これらの構成の場合、 一方の電極 2 8同士並びに他方の電極 3 0同士をそれぞ れつなぎ共通化することで、 端子の数の増加を抑制することができるため、 積層 型圧電 電歪素子 2 4を用いたことによるサイズの大型化を抑えることができる。 このように積層型圧電 Z電歪素子 2 4を用いることにより、 ァクチユエ一夕部 2 0 4の駆動力が増大し、 もって大変位が図られると共に、 圧電 Z電歪デバイス 1 0 B自体の剛性が増すことで、 高共振周波数化が図られ、 変位動作の高速化が 容易に達成できる。
なお、 段数を多くすれば、 ァクチユエ一夕部 2 0 4の駆動力の増大は図られる が、 それに伴い消費電力も増えるため、 実施する場合には、 用途、 使用状態に応 じて適宜段数等を決めればよい。 また、 この第 2の実施の形態に係る圧電 電歪 デバイス 1 0 Bでは、 積層型圧電 電歪素子 2 4を用いることによって、 ァクチ ユエ一夕部 2 0 4の駆動力を上げても、 基本的に薄板部 1 6 a及び 1 6 bの幅 (Y軸方向の距離) は不変であるため、 例えば非常に狭い間隙において使用され るハードディスク用磁気ヘッドの位置決め、 リンギング制御等のァクチユエ一夕 に適用する上で非常に好ましいデバイスとなる。
ここで、 薄板部 1 6 aに対する積層型圧電 Z電歪素子 2 4の形成位置に関して は、 前記積層型圧電 電歪素子 2 4を構成する多層体の先端 2 0 8が、 平面的に 少なくとも固定部 2 2を含まない位置 (図 2 5の例では、 可動部 2 0と固定部 2 2との間に形成される孔に含まれる位置) で、 前記積層型圧電 電歪素子 2 4を 構成する多層体の後端 2 0 9が、 平面的に少なくとも固定部 2 2を含む位置であ つて、 電極 2 8の端部 2 8 aは平面的に少なくとも固定部 2 2を含む位置であつ て、 電極 3 0の端部 3 0 aは平面的に固定部 2 2を含まない位置 (図 2 5の例で は、 同じく可動部 2 0と固定部 2 2との間に形成される孔に含まれる位置) に形 成されることが好ましい。
なお、 一対の電極 2 8及び 3 0への電圧の印加は、 5層目の圧電/電歪層 2 6 上に形成された各電極 2 8及び 3 0の端部 (以下、 端子部 2 8 b及び 3 0 bと記 す) を通じて行われるようになつている。 各端子部 2 8 b及び 3 0 bは電気的に 絶縁できる程度に離間して形成されている。
端子部 2 8 a及び 3 0 bの所定間隔 D kは、 2 0 m以上が好ましく、 更に、 端子部 2 8 b及び 3 0 bの厚みが 1 m〜 3 0 mの場合は、 m以上が好 ましい。 また、 端子部 2 8 b及び 3 0 bは、 内部電極 2 8及び 3 0と同じ材質で あっても異なる材質であっても構わない。 例えば、 圧電ノ電歪層 2 6と同時焼成 する場合は、 同じ材質とし、 別焼成では異なる材質とすればよい。
端面電極 2 8 c及び 3 0 cは、 内部電極 2 8及び 3 0並びに圧電 電歪層 2 6 の焼成後、 これらの端面を研削、 研磨等して内部電極と端面電極との電気的接続 することが好ましい。 端面電極 2 8 c及び 3 0 cの材質も内部電極 2 8及び 3 0 と同じであってもよいし、 異なっていてもよい。 例えば、 内部電極 2 8及び 3 0 を白金ペースト、 外表面電極 2 8 dを金レジネート、 端面電極 2 8 c及び 3 0 c 並びに端子部 2 8 b及び 3 0 bには金ペーストを利用することが好ましいが、 上 述した第 1の実施の形態に係る圧電 Z電歪デバイスとほぼ同じ構成をとることも できる。
この場合、 圧電 電歪デバイス 1 0 Bの固定を、 端子部 2 8 b及び 3 0 bが配 置された面とは別の面を利用してそれぞれ別個に行うことができ、 結果として、 圧電 電歪デバイス 1 0 Bの固定と、 回路と端子部 2 8 b及び 3 0 b間の電気的 接続の双方に高い信頼性を得ることができる。 この構成においては、 フレキシブ ルプリント回路、 フレキシブルフラットケーブル、 ワイヤボンディング等によつ て端子部 2 8 b及び 3 0 bと回路との電気的接続が行われる。
このように、 第 2の実施の形態に係る圧電 /電歪デバイス 1 0 Bにおいては、 ァクチユエ一夕部 2 0 4を、 金属製の薄板部 1 6 a上に接着剤 2 0 2を介して積 層型圧電 電歪素子 2 4を固着させて構成するようにしているため、 積層型圧電 ノ電歪素子 2 4の平面上の面積を広げなくても薄板部 1 6 a (及び 1 6 b ) を大 きく変位させることができ、 しかも、 薄板部 1 6 a (及び 1 6 b ) が金属製であ るため、 強度ゃ靱性に優れ、 急激な変位動作にも対応できる。
つまり、 この第 2の実施の形態では、 使用環境の変動や過酷な使用状態におい ても十分に対応でき、 耐衝撃性に優れ、 圧電ノ電歪デバイス 1 0 Bの長寿命化、 八ンドリング性の向上を図ることができ、 しかも、 相対的に低電圧で薄板部 1 6 a (及び 1 6 b ) を大きく変位することができると共に、 薄板部 1 6 a (及び 1 6 b ) の剛性が高く、 またァクチユエ一夕部 2 0 4の膜厚が厚く、 剛性が高いた め、 薄板部 1 6 a (及び 1 6 b ) の変位動作の高速化 (高共振周波数化) を達成 させることができる。
通常、 薄板部 1 6 aと、 歪み変形する圧電 電歪素子 2 4とを組み合わせたァ クチユエ一夕部 2 0 4について、 これを高速に駆動するにはァクチユエ一夕部 2 0 4の剛性を高めることが必要であり、 大きな変位を得るにはァクチユエ一夕部 2 0 4の剛性を低めることが必要である。
しかし、 この第 2の実施の形態に係る圧電/電歪デバイス 1 0 Bにおいては、 ァクチユエ一夕部 2 0 4を構成する薄板部 1 6 a及び 1 6 bを対向させて一対の 薄板部 1 6 a及び 1 6 bとし、 この一対の薄板部 1 6 a及び 1 6 bの各後端部の 間に固定部 2 2を接着剤 2 0 0により固着し、 圧電/電歪素子 2 4を多段構造と し、 当該圧電ノ電歪素子 2 4の位置及び構成部材の材質、 大きさを適宜選択して、 圧電 Z電歪デバイス 1 0 Bを構成するようにしたので、 上述のような相反する特 性を両立させることが可能となり、 前記一対の薄板部 1 6 a及び 1 6 bの開放端 の間に固定部 2 2と実質的に同程度の大きさの物体が介在する場合の構造体の最 小共振周波数が 2 0 k H z以上であって、 前記物体と固定部 2 2との相対変位量 が、 前記共振周波数の 1ノ4以下の周波数で実体的な印加電圧 3 O Vで 0 . 5 m以上とすることが可能となる。
その結果、 一対の薄板部 1 6 a及び 1 6 bを大きく変位させることができると 共に、 圧電ノ電歪デバイス 1 0 B、 特に、 一対の薄板部 1 6 a及び 1 6 bの変位 動作の高速化 (高共振周波数化) を達成させることができる。
また、 この第 2の実施の形態に係る圧電 電歪デバイス 1 0 Bにおいては、 圧 電ノ電歪素子 2 4の微小な変位が薄板部 1 6 a及び 1 6 bの撓みを利用して大き な変位動作に増幅されて、 可動部 2 0に伝達することになるため、 可動部 2 0は、 圧電/電歪デバイス 1 0 Bの長軸 m (図 1 4参照) に対して大きく変位させるこ とが可能となる。
また、 この第 2の実施の形態に係る圧電 電歪デバイス 1 0 Bにおいては、 す ベての部分を脆弱で比較的重い材料である圧電 電歪材料によって構成する必要 がないため、 機械的強度が高く、 ハンドリング性、 耐衝撃性、 耐湿性に優れ、 動 作上、 有害な振動 (例えば、 高速作動時の残留振動やノイズ振動) の影響を受け 難いという利点を有する。
また、 図 2 4に示すように、 一対の薄板部 1 6 a及び 1 6 bの先端部を開放端 としているため、 この圧電 電歪デバイス 1 0 Bに種々の部材ゃ部品を取り付け る場合に、 前記一対の薄板部 1 6 a及び 1 6 bの先端部を利用することができ、 これら先端部で部材ゃ部品を挟み込むようにして取り付けることができる。 この 場合、 部材ゃ部品の取付面積を大きくとることができ、 部品の取付性を向上させ ることができる。 しかも、 取り付けられる部材ゃ部品が一対の薄板部 1 6 a及び 1 6 b内に含まれる形になるため、 部材ゃ部品を取り付けた後の圧電 電歪デバ イスの Y方向の大きさを小さくすることができ、 小型化において有利となる。 もちろん、 図 2 5に示すように、 一対の薄板部 1 6 a及び 1 6 bにおける各先 端部の間に可動部 2 0を固着した場合は、 可動部 2 0の一主面に種々の部材ゃ部 品が例えば接着剤を介して固着されることになる。
また、 この第 2の実施の形態においては、 前記積層型圧電 Z電歪素子 2 4を構 成する多層体の先端 2 0 8が平面的に少なくとも固定部 2 2を含まない位置で、 前記多層体の後端 2 0 9が、 平面的に少なくとも固定部 2 2を含む位置であって、 電極 2 8の端部 2 8 aは平面的に少なくとも固定部 2 2を含む位置であって、 電 極 3 0の端部 3 0 aは平面的に固定部 2 2を含まない位置に形成するようにして いる。
例えば一対の電極 2 8及び 3 0の各端部を、 可動部 2 0に含まれる位置に形成 した場合、 一対の薄板部 1 6 a及び 1 6 bの変位動作が積層型圧電 Z電歪素子 2 4によって制限され、 大きな変位を得ることができなくなるおそれがあるが、 こ の第 2の実施の形態では、 上述の位置関係としているため、 可動部 2 0の変位動 作が制限されるという不都合が回避され、 一対の薄板部 1 6 a及び 1 6 bの変位 量を大きくすることができる。
次に、 第 2の実施の形態に係る圧電/電歪デバイス 1 0 Bの好ましい構成例に ついて説明する。 好ましい構成例については、 上述した第 1の実施の形態に係る 圧電ノ電歪デバイス 1 O Aとほぼ同じであるため、 この第 2の実施の形態に係る 圧電 Z電歪デバイス 1 0 Bに特有の好ましい構成例のみ説明する。
まず、 この第 2の実施の形態に係る圧電 電歪デバイス 1 0 Bにおいては、 該 圧電ノ電歪デバイス 1 0 Bの形状が従来のような板状ではなく、 可動部 2 0を設 けた場合、 可動部 2 0と固定部 2 2が直方体の形状を呈しており、 可動部 2 0と 固定部 2 2の側面が連続するように一対の薄板部 1 6 a及び 1 6 bが設けられて、 矩形の環状構造となっているため、 圧電/電歪デバイス 1 0 Bの Y軸方向の剛性 を選択的に高くすることができる。
即ち、 この圧電 Z電歪デバイス 1 0 Bでは、 平面内 (X Z平面内) における可 動部 2 0の動作のみを選択的に発生させることができ、 一対の薄板部 1 6 a及び 1 6 13の丫2面内の動作 (いわゆる煽り方向の動作) を抑制することができる。 薄板部 1 6 a及び 1 6 bは金属であることが望ましく、 固定部 2 2や可動部 2 0は異種材料であってもよいが、 金属であることがより好ましい。 薄板部 1 6 a 及び 1 6 bと固定部 2 2、 薄板部 1 6 a及び 1 6 bと可動部 2 0とは、 有機樹脂、 ロウ材、 半田等で接着してもよいが、 金属間で拡散接合あるいは溶接させた一体 構造がより好ましい。 更に、 冷間圧延加工された金属を利用すると、 転位が多く 存在することから高強度であり、 更に望ましい。
また、 この第 2の実施の形態では、 一方の薄板部 1 6 aのみに積層型圧電 電 歪素子 2 4を形成するようにしたので、 図 3 0に示すように、 一対の薄板部 1 6 a及び 1 6 bにそれぞれ積層型圧電 電歪素子 2 4 a及び 2 4 bを形成したもの (変形例) と比して安価に作製することができる。 更に、 この第 2の実施の形態 では、 可動部 2 0を固着した状態で見た場合、 積層型圧電 Z電歪素子 2 4が形成 された厚みの大きい薄板部 1 6 aが直接変位し、 これに連動して積層型圧電 電 歪素子 2 4が形成されていない厚みの薄い薄板部 1 6 bが変位することになるた め、 より大きく変位させることができる。
また、 薄板部 1 6 aへの積層型圧電ノ電歪素子 2 4の形成は、 薄板部 1 6 aに 積層型圧電 電歪素子 2 4を有機樹脂、 ロウ材、 半田等で接着させることにより 実現させることができるが、 低温で接着させる場合は、 有機樹脂が望ましく、 高 温で接着させてもよい場合は、 ロウ材、 半田、 ガラス等が好ましい。 しかし、 薄 板部 1 6 aと積層型圧電ノ電歪素子 2 4と接着剤 2 0 2は、 一般に熱膨張率が異 なることが多いため、 積層型圧電/電歪素子 2 4に熱膨張率の差による応力を生 じさせないようにするために、 接着温度は低いことが望ましい。 有機樹脂であれ ば、 概ね 1 8 0で以下の温度で接着が可能であるため、 好ましく採用される。 更 に好ましくは、 室温硬化型の接着剤を用いることが望ましい。 また、 薄板部 1 6 a及び 1 6 bと圧電/電歪素子 2 4との固定が、 固定部 2 2、 可動部 2 0と薄板 部 1 6 a及び 1 6 bとの固定後あるいは同時固定の場合、 固定部 2 2あるいは可 動部 2 0が開放型の構造であれば、 異種材料間に発生する歪みを効果的に低減す ることができる。
積層型圧電 Z電歪素子 2 4に熱応力を及ぼさないようにするために、 積層型圧 電 Z電歪素子 2 4と薄板部 1 6 aとの接着は、 有機樹脂で行い、 薄板部 1 6 a及 び 1 6 bと固定部 2 2や可動部 2 0の固定は別工程にすることが好ましい。 また、 図 3 1に示すように、 圧電 電歪素子 2 4の一部が固定部 2 2に位置す る場合において、 一対の薄板部 1 6 a及び 1 6 bにおける可動部 2 0との境界部 分と固定部 2 2との境界部分との間の最短距離を L a、 可動部 2 0と薄板部 1 6 aとの境界部分から積層型圧電ノ電歪素子 2 4の一対の電極 2 8及び 3 0におけ るいずれかの端部 2 8 a又は 3 0 aまでの距離のうち、 最も短い距離を L bとし たとき、 (1— L b ZL a ) が 0 . 4以上であることが好ましく、 0 . 5〜0 . 8がより好ましい。 0 . 4以下の場合は、 変位を大きくとれない。 0 . 5〜0 . 8の場合は、 変位と共振周波数の両立が達成しやすいが、 この場合、 一方の薄板 部 1 6 aにのみ積層型圧電 Z電歪素子 2 4が形成された構造のものがより適して いる。 これは、 圧電ノ電歪素子 2 4の一部が可動部 2 0に位置する場合において も同様である。
積層型圧電 Z電歪素子 2 4の総厚は、 4 0 /x m以上とすることが好ましい。 4 0 m未満であると、 積層型圧電 電歪素子 2 4を薄板部 1 6 aに接着すること が困難である。 また、 前記総厚は 1 8 0 m以下が望ましい。 1 8 0 mを超過 すると、 圧電 Z電歪デバイス 1 0 Bの小型化が困難となる。
積層型圧電/電歪素子 2 4のうち、 薄板部 1 6 aと接する部分は、 接着剤 2 0 2としてロウ材ゃ半田層等の金属を利用する場合、 図 2 8や図 2 9に示すように、 濡れ性の関係から最下層に電極膜が存在することが好ましい。 図 2 8や図 2 9で は、 他方の電極 3 0を構成する電極膜を配置した状態を示す。
また、 図 2 6や図 2 8に示す積層型圧電/電歪素子 2 4を薄板部 1 6 aにロウ 材ゃ半田層等の金属層を介して接着する場合は、 図 2 7や図 2 9に示すように、 積層型圧電 Z電歪素子 2 4の下面うち、 少なくとも一方の電極 2 8が存在する角 部を面取りすることが好ましい。 これは、 一対の電極 2 8及び 3 0が金属層及び 薄板部 1 6 aを通じて短絡するのを防止するためである。 図 2 7は、 一対の電極 2 8及び 3 0が存在する 2つの角部を面取りした例を示し、 図 2 9は一方の電極 2 8が存在する角部を面取りした例を示す。
薄板部 1 6 aに積層型圧電/電歪素子 2 4を接着するための接着剤 2 0 2や薄 板部 1 6 a及び 1 6 bを固定部 2 2等に接着するための接着剤 2 0 0としては、 エポキシ、 イソシァネート系のような 2液型の反応性接着剤、 シァノアクリレー ト系等の瞬間接着剤、 エチレン一酢酸ビニル共重合体等のホットメル卜接着剤等 でよいが、 特に、 薄板部 1 6 aに積層型圧電 電歪素子 2 4を接着するための接 着剤 202としては、 硬度がショァ Dで 80以上のものが好ましい。
また、 薄板部 16 a及び 16 bと圧電ノ電歪素子 24 (24 a及び 24 b) と を接着する接着剤 202としては、 金属、 セラミックス等のフイラ一を含有した 有機接着剤とすることが望ましい。 この場合、 接着剤 202の厚みは、 100 ^ m以下の厚みにすることが望ましい。 フィラーを含有させることで、 実質的な樹 脂分の厚みが小さくなることと、 接着剤の硬度を高く保つことができるからであ る。
接着剤 200及び 202としては、 上述の有機接着剤のほか、 無機接着剤でも よく、 この無機接着剤としては、 ガラス、 セメント、 半田、 ロウ材等がある。 一方、 薄板部 16 a及び 16 bの形状や材質は、 可撓性を有し、 屈曲変形によ つて破損しない程度の機械的強度を有するものであれば足り、 金属が好ましく採 用される。 この場合、 前述のとおり、 可撓性を有し、 屈曲変形が可能な金属材料、 具体的には、 ヤング率 100 GP a以上の金属材料であればよい。
好ましくは、 鉄系材料としては、 SUS 301、 SUS 304、 A I S I 65 3、 SUH660等のオーステナイト系ステンレス鋼、 SUS 430、 434等 のフェライト系ステンレス鋼、 SUS410、 SUS 630等のマルテンサイト 系ステンレス鋼、 SUS 631、 A I S I 632等のセミオ一ステナイト系等の ステンレス鋼、 マルエージングステンレス鋼、 各種バネ鋼鋼材で構成することが 望ましい。 また、 非鉄系材料としては、 チタン—ニッケル合金をはじめとする超 弾性チタン合金、 黄銅、 白銅、 アルミニウム、 タングステン、 モリブデン、 ベリ リウム銅、 リン青銅、 ニッケル、 ニッケル鉄合金、 チタン等で構成することが望 ましい。
次に、 第 2の実施の形態に係る圧電 Z電歪デバイス 10Bを作製するためのい くつかの製造方法を図 32〜図 40を参照しながら説明する。
第 3の製造方法は、 まず、 図 32に示すように、 縦 1. 6mmX横 l OmmX 厚み 9mmのステンレス板 250の中央部に縦 1 mmX横 8 mmの矩形状の 孔 252を穿設して、 該孔 252の両側にそれぞれ支持部 254及び 256が配 された矩形の環状構造を有する基体 258を作製する。 その後、 図 33に示すように、 縦 1. 6mmx横 1 Ommx厚み 0. 05mm の第 1のステンレス薄板 260と、 縦 1. 6mmX横 1 OmmX厚み 0. 02m mの第 2のステンレス薄板 262 (図 35参照) を用意する。
その後、 図 33に示すように、 第 1のステンレス薄板 260の上面のうち、 積 層型圧電ノ電歪素子 24が形成される部分に接着剤 202 (例えばエポキシ樹脂 製接着剤) をスクリーン印刷によって形成する。 その後、 図 34に示すように、 第 1のステンレス薄板 260に接着剤 202を介して積層型圧電 Z電歪素子 24 を接着する。
その後、 図 35に示すように、 基体 258の各支持部 254及び 256上に接 着剤 200 (例えばエポキシ樹脂製接着剤) をスクリーン印刷によって形成する。 その後、 各支持部 254及び 256の一方の面上に接着剤 200を介して、 す でに前記積層型圧電 電歪素子 24が形成されている第 1のステンレス薄板 26 0を接着し、 各支持部 254及び 256の他方の面上に接着剤 200を介して第 2のステンレス薄板 262を接着し、 更に、 これら第 1及び第 2のステンレス薄 板 260及び 262を基体 258を挟む方向に加圧して、 図 36に示すデバイス 原盤 270を作製する。 なお、 加圧力は 0. 1〜10 kg f /cm2である。
その後、 図 36に示すように、 デバイス原盤 270を切断線 272の部分で切 断して、 図 25に示すような、 個々の圧電 Z電歪デバイス 10 Bに分離する。 こ の切断処理は、 線径 0. lmm、 間隔 0. 2mmのワイヤソーを使って行った。 ワイヤソーを使用することにより、 それぞれ材料が異なるにも拘わらず、 圧電ノ 電歪素子 24の幅と薄板部 16 aの幅並びに接着剤 200及び 202の幅をほぼ 同一に規定することができる。
次に、 第 4の製造方法は、 図 37に示すように、 縦 1. 6mmx横 l OmmX 厚み 9mmのステンレス板 250の中央部に縦 1 mmX横 8 mmの矩形状の 孔 252を穿設して、 該孔 252の両側にそれぞれ支持部 254及び 256が配 された矩形の環状構造を有する基体 258を作製する。
その後、 基体 258の各支持部 254及び 256上に接着剤 200 (例えばェ ポキシ樹脂製接着剤) をスクリーン印刷によって形成する。 その後、 図 38に示すように、 各支持部 254及び 256の一方の面上に接着 剤 200を介して縦 1. 6mmx横 1 Ommx厚み 0. 05mmの第 1のステン レス薄板 260を接着し、 各支持部 254及び 256の他方の面上に接着剤 20 0を介して縦 1. 6mmx横 1 OmmX厚み 0. 02 mmの第 2のステンレス薄 板 262を接着し、 更に、 これら第 1及び第 2のステンレス薄板 260及び 26 2を基体 258を挟む方向に加圧する。 なお、 加圧力は 0. l〜10kg fZc m2である。
その後、 第 1のステンレス薄板 260の上面のうち、 積層型圧電 Z電歪素子 2 4が形成される部分に接着剤 202 (例えばエポキシ樹脂製接着剤) をスクリ一 ン印刷によって形成する。
その後、 図 40に示すように、 第 1のステンレス薄板 260に接着剤 202を 介して積層型圧電ノ電歪素子 24を接着してデバイス原盤 270を作製する。 その後、 図 36に示すように、 デバイス原盤 270を切断線 272の部分で切 断して、 図 25に示すような、 個々の圧電ノ電歪デバイス 10 Bに分離する。 これら第 3及び第 4の製造方法にて作製された圧電 Z電歪デバイス 10Bの一 部 (例えば固定部 22) を固定し、 積層型圧電 Z電歪素子 24の一対の電極 28 及び 30間にバイアス電圧 15 V、 正弦波電圧 ± 15 Vを印加して、 可動部 20 の変位を測定したところ、 ±1. 2 mであった。 また、 正弦波電圧土 0. 5V として、 周波数を掃引して変位の最大を示す最低共振周波数を測定したところ、 50 kHzであった。
上述の第 3及び第 4の製造方法では、 基体 258の構成として、 後に可動部 2 0となる支持部 254と後に固定部 22となる支持部 256を有する矩形の環状 構造としたが、 その他、 図 41に示すように、 孔 252を広くし、 第 1及び第 2 のステンレス薄板 260及び 262を支持する枠状の部分 254 a (少なくとも 後に可動部 20が介在する部分の厚みを実質的に規定する部分) と後に固定部 2 2となる支持部 256を有する矩形の環状構造としてもよい。
この場合、 基体 258を第 1及び第 2のステンレス薄板 260及び 262で挟 むように接着剤 200を介して固着して図 36に示すものと同様のデバイス原盤 2 7 0を作製し、 更に、 図 3 6で示すような切断線 2 7 2に沿って切断すること により、 例えば図 4 4に示すように、 薄板部 1 6 a及び 1 6 bの先端部間に可動 部 2 0が存在しない圧電/電歪デバイスを作製することができる。
また、 その他の製造方法としては、 例えば図 4 4に示すように、 各薄板部 1 6 a及び 1 6 bの後端部間にそれぞれ接着剤 2 0 0と固定部 2 2を配置し、 二点鎖 線で示すように、 各薄板部 1 6 a及び 1 6 bの先端部間にそれぞれ接着剤 2 0 0 と可動部 2 0並びに加圧用スぺ一サ 3 1 0を配置し、 その後、 例えば各薄板部 1 6 a及び 1 6 bの両側から加圧することによって、 各薄板部 1 6 a及び 1 6 の 後端部間に固定部 2 2が接着剤 2 0 0を介して固着され、 各薄板部 1 6 a及び 1 6 bの先端部にそれぞれ接着剤 2 0 0を介して可動部 2 0が固着される。 この場 合、 加圧用スぺ一サ 3 1 0は、 可動部 2 0に対して接着剤等で固着されていない ため、 切断線 2 7 2に沿った切断後は、 簡単に取り外すことができる。 なお、 固 定部 2 2と各薄板部 1 6 a及び 1 6 bとの間に、 厚み (固定部 2 2と各薄板部 1 6 a及び 1 6 bとの間の距離) を調整するため、 可動部 2 0とほぼ同じ厚みの第 2の固定部 (図示せず) をその両側に接着剤 2 0 0を介して固定部 2 2と各薄板 部 1 6 a及び 1 6 bの間に固定してもよい。
次に、 上述した第 3及び第 4の製造方法とは異なる第 5の製造方法について図 4 2〜図 4 6を参照しながら説明する。
この第 5の製造方法は、 上述した第 3及び第 4の製造方法と同様に、 第 1のス テンレス薄板 2 6 0と第 2のステンレス薄板 2 6 2に、 支持部 2 5 4及び 2 5 6 を接着してデバイス原盤 2 7 0を作製し、 その後、 個々の圧電 電歪デバイス 1 0 Bに分離する場合にも適用できるし、 薄板部 1 6 a及び 1 6 bに積層型圧電 電歪素子 2 4 a及び 2 4 bを形成してなる各ァクチユエ一夕部 2 0 4に分離形成 された単位を、 同様に分離して用意された固定部 2 2 (及び適宜に可動部 2 0 ) と固着することで圧電 Z電歪デバイス 1 0 Bを作製する場合にも適用できる。 以下の説明では、 後に固定部 2 2となる支持部 2 5 6並びに固定部 2 2を便宜 的に 「固定部 2 2」 と記し、 後に薄板部 1 6 a及び 1 6 bとなる第 1及び第 2の ステンレス薄板 2 6 0及び 2 6 2並びに薄板部 1 6 a及び 1 6 bを便宜的に 「薄 板部 1 6 a及び 1 6 b」 と記す。
そして、 図 4 2に示すように、 固定部 2 2に接着剤 2 0 0を介して薄板部 1 6 a及び 1 6 bを接着する際に、 流動性のある接着剤を用いる場合は、 接着剤 2 0 0の形成場所を規定するために、 各薄板部 1 6 a及び 1 6 bに段差 2 8 0 a m及 び 2 8 0 b mを設けることが好ましい。 もちろん、 粘性の高い接着剤を用いる場 合は、 このような段差を設ける必要はない。 また、 この例では、 各薄板部 1 6 a 及び 1 6 bの開放端の間に図示しない物体を接着する際に、 流動性のある接着剤 を使用することを想定して、 各薄板部 1 6 a及び 1 6 bの開放端の互いに対向す る面にも段差 2 8 0 a n及び 2 8 0 b nを設けるようにしている。 なお、 段差 2 8 0 a m及び 2 8 0 a n並びに 2 8 0 b m及び 2 8 0 b nは、 板状物の積層によ つて形成してもよい。
図 4 3は、 固定部 2 2と各薄板部 1 6 a及び 1 6 bとの接着に用いる接着剤 2 0 0として粘性の高い接着剤を用いた場合であって、 少なくとも前記固定部 2 2 が接着される部分に上述のような段差 2 8 0 a m及び 2 8 0 b mを設けない例を 示す。
図 4 4は、 固定部 2 2と各薄板部 1 6 a及び 1 6 bとの接着に用いる接着剤 2 0 0として共に粘性の高い接着剤を用いた場合を示し、 上述のような段差 2 8 0 a m及び 2 8 0 b mを設けていない構造を示す。 また、 この例では、 各薄板部 1 6 a及び 1 6 bの開放端の間に図示しない物体を接着する際に、 粘性の高い接着 剤を使用することを想定して、 各薄板部 1 6 a及び 1 6 bの開放端の互いに対向 する面にも段差 2 8 0 a n及び 2 8 0 b nを設けないようにしている。
図 4 5は、 固定部 2 2と各薄板部 1 6 a及び 1 6 bとの接着に用いる接着剤 2 0 0を流動性の高い接着剤とした場合であって、 特に、 各薄板部 1 6 a及び 1 6 bに接着剤 2 0 0の形成領域を区画するための突起 2 8 2 a m及び 2 8 2 b mを 設けた例を示す。 また、 この例では、 各薄板部 1 6 a及び 1 6 bの開放端の間に 図示しない物体を接着する際に、 流動性のある接着剤を使用することを想定して、 各薄板部 1 6 a及び 1 6 bの開放端の互いに対向する面にも突起 2 8 2 a n及び 2 8 2 b nを設けるようにしている。 図 46に示すように、 図 42に示す例において、 固定部 22の大きさ、 特に、 薄板部 16 a及び 16 bの段差 280と対向する面の面積を段差 280 am及び 280 bmの面積よりも大きくするようにしてもよい。 これにより、 例えば薄板 部 16 a及び 16 bのうち、 実質的な駆動部分 (段差 280 am及び 280 an 間の部分並びに 280 bm及び 280 b n間の部分) を、 段差 280 am及び 2 80 bmによって規定することができる。 図 42に示すように、 固定部 22にお ける各薄板部 16 a及び 16 bの段差 280 am及び 280 bmと対向する面の 面積を段差 280 am及び 280 bmの面積とほぼ同じにした場合は、 固定部 2 2と段差 280 am及び 280 bmとの大きさのばらつきが前記実質的駆動部分 の長さに影響するおそれがある。 なお、 図 46では、 固定部 22を薄板部 16 a 及び 16 bの開放端の方向に向けて大きくさせた例を示したが、 前記方向とは反 対方向に向けて大きくするようにしてもよい。
図 42〜図 46では、 段差 280 am、 280 bm, 280 an及び 280 b nや突起 282 am、 282 bm, 282 a n及び 282 b nと、 薄板部 16 a 及び 16 bとが一体化しているが、 適宜加工した板を図 19や図 23と同様に、 接着剤を介して積層して設けてもよい。 一体化して設ける場合は、 板部材をエツ チングゃ切削等で薄くすることによって薄板部 16 a及び 16 bを形成すると同 時に前記段差 280 am、 280 bm、 280 a n及び 280 b nや突起 282 am、 282 bm, 282 a n及び 282 b nを一体的に設けることができる。 なお、 上述の例では、 接着剤 200及び 202の形成をスクリーン印刷により 行った例を示したが、 その他、 デッビング、 デイスペンザ、 転写等を用いること ができる。
次に、 例えば薄板部 16 aと積層型圧電 電歪素子 24との間に介在する接着 剤 202並びに各薄板部 16 a及び 16 bと固定部 22との間に介在する接着剤 200に関する様々な構成例について図 47〜図 52を参照しながら説明する。 まず、 図 47に示す第 1の手法においては、 薄板部 16 aに多数の孔 290を 設け、 これら孔 290が設けられた部分に接着剤 202を介して積層型圧電/電 歪素子 24を接着するようにする。 この場合、 孔 290内に接着剤 202が入り 込むことから、 接着面積が実質的に大きくなると共に、 接着剤 202の厚みを薄 くすることが可能となる。 前記接着剤 202の厚みとしては、 積層型圧電 Z電歪 素子 24の総厚の 5%以下であって、 薄板部 16 aと接着剤 202の熱膨張率の 差による熱ストレスを吸収できる程度の厚み以上であることが好ましい。
孔 290の径としては、 5 m〜 100 mが好ましく、 その配列パターンは マトリクス状でもよいし、 千鳥配列でもよい。 もちろん、 複数の孔 290を 1列 に配列させてもよい。 孔 290の配列ピッチとしては、 10 111〜200 111が 好ましい。 また、 孔 290の代わりに凹部 (穴) であってもよい。 この場合、 穴 の径は、 5 m〜 100 imが好ましく、 その配列パターンはマトリクス状でも よいし、 千鳥配列でもよい。 穴の配列ピッチとしては、 10 ^m〜200 rr^ 好ましい。 特に、 凹部 (穴) の場合は、 例えば平面矩形状とし、 その開口面積を 圧電 Z電歪素子 24の薄板部 16 aに対する投影面積よりも僅かに小さくするよ うにしてもよい。 なお、 薄板部 16 aに孔 290や穴を形成する手法としては、 例えばエッチングやレーザ加工、 打抜き、 ドリル加工、 放電加工、 超音波加工等 を採用することができる。
図 48に示す第 2の手法においては、 薄板部 16 aのうち、 積層型圧電 電歪 素子 24が形成される部分の表面 292を、 ブラス卜処理、 エッチング処理ある いはめつき処理によって粗くする。 この場合、 積層型圧電/電歪素子 24の下面 294も粗くする。 これにより、 接着面積が実質的に大きくなるため、 接着剤 2 02の厚みを薄くすることが可能となる。
図 48では、 薄板部 16 aの表面と圧電 Z電歪素子 24の下面 (薄板部 16 a と対向する面) を粗くした例を示したが、 接着剤 202との接着力が小さい方の 面を粗くすればよく、 例えば薄板部 16 aの表面のみを粗くしただけでも十分に 効果がある。 表面粗さとしては、 例えば中心線平均粗さでみたとき、 Ra = 0. 1 zm〜5 /mが好ましく、 より好ましくは、 0. 3 zm〜 2 zmである。 図 49に示す第 3の手法においては、 接着剤 200のはみ出し形状、 特に、 固 定部 22の内壁 22 aへの接着剤 200のはみ出し形状に曲率 296を持たせる ようにする。 この場合、 曲率半径を 0. 05mm以上とし、 はみ出し形状が直線 状になる、 あるいは直線部分を含むようにすることが好ましい。 接着剤 2 0 0の 前記はみ出し部分に対する曲率 2 9 6の形成は、 接着剤 2 0 0の硬化前に例えば 円筒状の心材を、 薄板部 1 6 a及び 1 6 bと固定部 2 2の内壁 2 2 aにて形成さ れる空間に揷通させることで実現させることができる。 実際には、 接着剤 2 0 0 の物性、 塗布量によって制御し、 少なくともはみ出し形状が凸状にならないよう にする。
これにより、 固定部 2 2の内壁 2 2 aや各薄板部 1 6 a及び 1 6 bの内壁も接 着面として利用されることから、 接着面積が大きくなり、 接着強度を大きくする ことができる。 また、 固定部 2 2の内壁 2 2 aと各薄板部 1 6 a及び 1 6 bの内 壁との接合部分 (角部) への応力集中を効果的に分散させることができる。
図 5 0に示す第 4の手法は、 固定部 2 2の内壁 2 2 aにおける角部をそれぞれ 面取りしてテーパ面 2 9 8とすることである。 面取りの角度や曲率半径を適宜調 整することにより、 接着剤 2 0 0のはみ出し量を安定化することができ、 接着強 度の局部的なばらつきを抑制することができ、 歩留まりの向上を図ることができ る。
前記角部を面取りする方法としては、 例えば、 組立前において、 支持部 2 5 6 の前記角部となる部分に対して事前に研削 ·研磨を行ってテーパ面 2 9 8として おくことが好ましい。 もちろん、 組立後において、 前記面取りを行ってもよい。 この場合は、 レーザ加工や超音波加工、 サンドブラスト等が好ましく採用される。 図 5 1に示す第 5の手法は、 例えば薄板部 1 6 a及び 1 6 bを作製する際に、 通常、 打抜き加工を行うが、 この場合、 ばり 3 0 0が発生することになる。 発生 したばり 3 0 0を組立前に除去するようにしてもよいが、 そのまま残すようにし てもよい。 その場合、 発生するばり 3 0 0の方向をハンドリングや各部材の接着 方向、 接着剤の量に対する制御の容易さ等を考慮して規定することが好ましい。 図 5 1の例では、 薄板部 1 6 a及び 1 6 bのばり 3 0 0を外方に向けた状態を示 す。
図 5 2に示す第 6の手法は、 上述したように、 一方の薄板部 1 6 aの厚みを、 他方の薄板部 1 6 bの厚みよりも大きくする。 そして、 ァクチユエ一夕部 2 0 4 として使用する場合には、 一方の薄板部 1 6 a上に積層型圧電 電歪素子 2 4を 形成することが好ましい。 センサとして使用する場合においても一方の薄板部 1 6 a上に積層型圧電ノ電歪素子 2 4を形成することが好ましい。
なお、 その他の手法としては、 例えば積層型圧電 Z電歪素子 2 4を薄板部 1 6 a及び 1 6 bに接着剤 2 0 2を介して接着する際に、 積層型圧電 電歪素子 2 4 の下面に例えば Z r 02層を下地層として介在させるようにしてもよい。
また、 ステンレス薄板 2 6 0及び 2 6 2 (図 3 3等参照) を薄板部 1 6 a及び 1 6 bとして使用する場合は、 薄板部 1 6 a及び 1 6 bの長手方向とステンレス 薄板 2 6 0及び 2 6 2の冷間圧延方向とがほぼ一致するようにすることが好まし い。
なお、 積層型圧電 電歪素子 2 を構成する庄電ノ電歪層 2 6は、 3層〜 1 0 層ほど積層することが好ましい。
上述した圧電/電歪デバイス 1 O A及び 1 0 Bによれば、 各種トランスデュー サ、 各種ァクチユエ一夕、 周波数領域機能部品 (フィルタ) 、 トランス、 通信用 や動力用の振動子や共振子、 発振子、 ディスクリミネ一夕等の能動素子のほか、 超音波センサや加速度センサ、 角速度センサや衝撃センサ、 質量センサ等の各種 センサ用のセンサ素子として利用することができ、 特に、 光学機器、 精密機器等 の各種精密部品等の変位や位置決め調整、 角度調整の機構に用いられる各種ァク チユエ一夕に好適に利用することができる。
なお、 この発明に係る圧電 電歪デバイス及びその製造方法は、 上述の実施の 形態に限らず、 この発明の要旨を逸脱することなく、 種々の構成を採り得ること はもちろんである。

Claims

請求の範囲
1. 相対向する一対の金属製の薄板部(16a, 16b)と、 これら薄板部(lea.lSb) に対して接着剤(200)を介して固着された固定部(22)とを具備し、
前記一対の薄板部( 16a, 16b)の先端部に可動部( 20 )を有し、
前記一対の薄板部(16a, 16b)のうち、 少なくとも 1つの薄板部(16a, 16b)に
1以上の圧電 電歪素子(24a, 24b)が配設された圧電 Z電歪デバイスであって、 前記可動部(20)又は固定部(22)のいずれか一方は、 互いに対向する端面
(36a, 36b)を有し、
前記端面(36a, 36b)間の距離が前記可動部(20)の長さ以上であることを特徴 とする圧電 Z電歪デバイス。
2. 請求項 1記載の圧電 Z電歪デバイスにおいて、
前記圧電ノ電歪素子( 24a, 24D)は膜状であって、 前記薄板部( 16a, 16b)に接 着剤(202)を介して固着されていることを特徴とする圧電 電歪デバイス。
3. 請求項 2記載の圧電 電歪デバイスにおいて、
前記圧電 Z電歪素子(24a, 24b)は、
圧電 Z電歪層( 26 )と、 該圧電 電歪層( 26 )に形成された一対の電極( 28 ,30) とを有することを特徴とする圧電ノ電歪デバイス。
4. 請求項 3記載の圧電 電歪デバイスにおいて、
前記圧電ノ電歪素子( 24a, 24b)は、
前記圧電/電歪層( 26 )と前記一対の電極(28,30)の複数が積層形態で構成さ れていることを特徴とする圧電ノ電歪デバイス。
5. 請求項 1〜 4のいずれか 1項に記載の圧電 Z電歪デバイスにおいて、
前記接着剤(200,202)が有機樹脂からなることを特徴とする圧電/電歪デバ イス。
6. 請求項 1〜 4のいずれか 1項に記載の圧電ノ電歪デバイスにおいて、
前記接着剤(200, 202)がガラス、 ロウ材又は半田からなることを特徴とする 圧電ノ電歪デバイス。
7. 請求項 1〜 6のいずれか 1項に記載の圧電 Z電歪デバイスにおいて、
前記可動部(20)又は固定部(22)のいずれか一方に切除部を有し、
前記切除部の一部が前記互いに対向する端面(36a, 36b)を構成することを特 徴とする圧電ノ電歪デバイス。
8. 請求項 1〜 7のいずれか 1項に記載の圧電/電歪デバイスにおいて、
前記互いに対向する端面(36a, 36b)の間に空隙(38)が形成されていることを 特徴とする圧電ノ電歪デバイス。
9. 請求項 1〜 7のいずれか 1項に記載の圧電 電歪デバイスにおいて、
前記互いに対向する端面(36a, 36b)の間に前記可動部(20)又は固定部(22) のいずれか一方の構成部材と同じ部材(40)あるいは異なる複数の部材(40)が介 在され、
前記部材(40)における前記端面(36a, 36b)と対向する面の面積が前記端面 (36a, 36b)の面積とほぼ同じであることを特徴とする圧電ノ電歪デバイス。
10. 請求項 9記載の圧電 電歪デバイスにおいて、
前記複数の部材(40)のうち、 少なくとも 1つの部材が有機樹脂であることを 特徴とする圧電ノ電歪デバイス。
1 1. 請求項 9又は 10記載の圧電ノ電歪デバイスにおいて、
前記一対の薄板部(16a, 16b)の両内壁と前記可動部(20)の内壁(20a)と前記 複数の部材(40)の内壁と前記固定部(22)の内壁(20a)とにより形成された孔部 (12)内に、 ゲル状の材料が充填されていることを特徴とする圧電 電歪デバイ ス。
12. 請求項 1〜1 1のいずれか 1項に記載の圧電 Z電歪デバイスにおいて、 前記可動部(20)と前記固定部(22)は、 セラミックグリーン積層体(58)を焼 成することによって一体化し、 更に不要な部分を切除してなるセラミック基体 (14D)で構成されていることを特徴とする圧電ノ電歪デバイス。
13. 請求項 1〜12のいずれか 1項に記載の圧電/電歪デバイスにおいて、 製造時に前記薄板部(16a, 16b)及び Z又は前記圧電 Z電歪素子(24a, 24b)に 生じていた内部残留応力が、 前記互いに対向する端面(36a, 36b)が形成される ことによつて解放された構造を有することを特徴とする圧電 Z電歪デバイス。
1 4. 相対向する一対の金属製の薄板部(16a, 16b)と、 これら薄板部 (16a, 16b)に対して接着剤(200)を介して固着された固定部(22)とを具備し、 前記一対の薄板部(16a, 16b)の先端部に可動部(20)を有し、
前記一対の薄板部(16a, 16b)のうち、 少なくとも 1つの薄板部(16a, 16b)に
1以上の圧電ノ電歪素子(24a, 24b)が配設された圧電 電歪デバイスの製造方 法であって、
第 1の基体(160)に、 後に薄板部(163,161))となる金属板(152 ,1528)を固 着して第 2の基体(162)を作製する第 1の工程と、
前記第 2の基体(162)に対する少なくとも 1回の切除処理によって、 互いに対 向する端面(36a, 36b)を有し、 かつ、 前記端面(36a, 36b)間の距離が前記可動 部(20)の長さ以上とされた前記可動部(20)又は固定部(22)を形成する第 2の 工程とを有することを特徴とする圧電 Z電歪デバイスの製造方法。
15. 請求項 14記載の圧電 Z電歪デバイスの製造方法において、
後に薄板部( 16a, 16b)となる前記金属板(152A, 152B)の外表面に前記圧電/ 電歪素子(24a, 24b)を接着剤(202)を介して固着する工程を有することを特徴 とする圧電 Z電歪デバイスの製造方法。
16. 請求項 15記載の圧電 /電歪デバイスの製造方法において、
前記第 1の基体(160)に、 後に前記薄板部(16a, 16b)となる前記金属板 (152A,152B)を固着する前に、 予め前記金属板( 152A, 152B)の外表面に前記 圧電 電歪素子(24a, 24b)を固着しておくことを特徴とする圧電 電歪デバイ スの製造方法。
17. 請求項 14〜16のいずれか 1項に記載の圧電ノ電歪デバイスの製造方法 において、
前記第 1の基体(160)がセラミック積層体(160)にて構成されるものであって、 少なくとも窓部(54)を有する 1以上のセラミックグリーンシート(50A〜 50D)を積層焼成して、 セラミック積層体( 160)を作製するセラミック積層体作 製工程と、
前記セラミック積層体(160)に後に前記薄板部(16a,16b)となる金属板 (152A,152B)を接着剤(200)を介して固着してハイプリッド積層体(162)を作 製するハイプリッド積層体作製工程とを有することを特徴とする圧電ノ電歪デバ イスの製造方法。
18. 請求項 17記載の圧電ノ電歪デバイスの製造方法において、
前記セラミック積層体作製工程は、
少なくとも互いに対向する端面(36a, 36b)を有する前記可動部(20)又は固定 部(22)を形成するための窓部(100)を有する複数のセラミックグリーンシート (102)を焼成して、 前記セラミック積層体(160)を作製することを特徴とする圧 電 Z電歪デバイスの製造方法。
19. 請求項 14〜16のいずれか 1項に記載の圧電 /電歪デバイスの製造方法 において、
前記第 1の基体(160)が金属にて構成されるものであって、
少なくとも窓部(54)を有する 1以上の金属シ一トを積層して前記第 1の基体 ( 160 )を作製する工程を有することを特徴とする圧電 Z電歪デバイスの製造方法。
20. 請求項 14〜16のいずれか 1項に記載の圧電 Z電歪デバイスの製造方法 において、
前記第 1の基体( 160 )がバルクの金属部材にて構成されていることを特徴とす る圧電ノ電歪デバイスの製造方法。
21. 請求項 14〜20のいずれか 1項に記載の圧電 電歪デバイスの製造方法 において、
前記互いに対向する端面(36a, 36b)の間に、 前記可動部(20)又は固定部 (22)の構成部材と異なる複数の部材(40)を介在させる工程を有することを特徴 とする圧電 Z電歪デバイスの製造方法。
22. 請求項 21記載の圧電ノ電歪デバイスの製造方法において、
前記複数の部材(40)のうち、 少なくとも 1つの部材として有機樹脂を用いる ことを特徴とする圧電 Z電歪デバイスの製造方法。
23. 請求項 14〜 22のいずれか 1項に記載の圧電 Z電歪デバイスの製造方法 において、
前記接着剤(200, 202)として、 有機樹脂からなる接着剤を用いることを特徴 とする圧電ノ電歪デバイスの製造方法。
24. 請求項 14〜 22のいずれか 1項に記載の圧電 /電歪デバイスの製造方法 において、
前記接着剤(200, 202)として、 ガラス、 ロウ材又は半田からなる接着剤を用 いることを特徴とする圧電 電歪デバイスの製造方法。
PCT/JP2000/006747 1999-10-01 2000-09-29 Dispositif piezo-electrique / electrostrictif et procede de fabrication correspondant WO2001026167A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00962961A EP1148560B1 (en) 1999-10-01 2000-09-29 Piezoelectric / electrostrictive device and method of manufacture thereof
DE60044666T DE60044666D1 (de) 1999-10-01 2000-09-29 Piezoelektrisches/elektrostriktives bauelement und verfahren zu dessen herstellung

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP28152299 1999-10-01
JP11/281522 1999-10-01
JP30784499 1999-10-28
JP11/307844 1999-10-28
JP11/326195 1999-11-16
JP32619599 1999-11-16
JP11/371967 1999-12-27
JP37196799 1999-12-27
JP2000013576 2000-01-21
JP2000/13576 2000-01-21
JP2000/15123 2000-01-24
JP2000015123 2000-01-24
JP2000/56434 2000-03-01
JP2000056434 2000-03-01
US09/524,042 2000-03-13
US09/524,042 US6498419B1 (en) 1999-10-01 2000-03-13 Piezoelectric/electrostrictive device having mutually opposing end surfaces and method of manufacturing the same
JP2000/133012 2000-05-01
JP2000133012 2000-05-01

Publications (1)

Publication Number Publication Date
WO2001026167A1 true WO2001026167A1 (fr) 2001-04-12

Family

ID=27577722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006747 WO2001026167A1 (fr) 1999-10-01 2000-09-29 Dispositif piezo-electrique / electrostrictif et procede de fabrication correspondant

Country Status (4)

Country Link
US (5) US6534899B1 (ja)
EP (3) EP1089357B1 (ja)
DE (1) DE60035932T2 (ja)
WO (1) WO2001026167A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291931A2 (en) * 2001-09-07 2003-03-12 Matsushita Electric Industrial Co., Ltd. A piezoelectric thin-film element and a manufacturing method thereof
WO2003105245A1 (ja) * 2002-06-10 2003-12-18 日本碍子株式会社 圧電/電歪デバイスとその製造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845543B2 (ja) * 1999-10-01 2006-11-15 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
JP4058223B2 (ja) * 1999-10-01 2008-03-05 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
US7164221B1 (en) * 1999-10-01 2007-01-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
EP1306908A4 (en) * 2000-06-16 2006-10-04 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
US6617762B2 (en) * 2000-08-03 2003-09-09 Nec Tokin Ceramics Corporation Microactuator device with a countermeasure for particles on a cut face thereof
JP4007767B2 (ja) * 2001-01-18 2007-11-14 日本碍子株式会社 圧電/電歪デバイスおよびその製造方法
US7345406B2 (en) * 2001-01-18 2008-03-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
JP4015820B2 (ja) 2001-04-11 2007-11-28 日本碍子株式会社 配線基板及びその製造方法
JP4033643B2 (ja) * 2001-06-18 2008-01-16 日本碍子株式会社 圧電/電歪デバイスおよびその製造方法
JP4038400B2 (ja) 2001-09-11 2008-01-23 日本碍子株式会社 セラミック積層体、セラミック積層体の製造方法、圧電/電歪デバイス、圧電/電歪デバイスの製造方法及びセラミック焼結体
WO2003023874A1 (fr) 2001-09-11 2003-03-20 Ngk Insulators, Ltd. Procede de fabrication d'un dispositif piezo-electrique/electrostrictif
AU2003201862A1 (en) 2002-01-11 2003-07-30 Ngk Insulators, Ltd. Piezoelectric/ electrostrictive device and its production method
CN1288068C (zh) * 2002-01-16 2006-12-06 松下电器产业株式会社 微型器件
JP2004015767A (ja) * 2002-06-12 2004-01-15 Murata Mfg Co Ltd 圧電発音体およびこの圧電発音体を用いた圧電型電気音響変換器
US6992422B2 (en) * 2003-06-11 2006-01-31 Texas Instruments Incorporated Position sensor for a pivoting platform
US7487537B2 (en) * 2003-10-14 2009-02-03 International Business Machines Corporation Method and apparatus for pervasive authentication domains
US7471443B2 (en) * 2004-03-02 2008-12-30 Hewlett-Packard Development Company, L.P. Piezoelectric flexures for light modulator
CN100568568C (zh) * 2004-04-23 2009-12-09 新加坡科技研究局 微机电装置
DE112005002645T5 (de) * 2004-10-26 2009-03-05 Koichi Hirama Komplexer Resonanzkreis und Schwingkreis, der denselben Verwendet
JP2007267488A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 駆動装置、それに用いられる電気機械変換素子、撮像装置、及び携帯電話
US8044557B2 (en) * 2007-04-24 2011-10-25 Panasonic Corporation Piezoelectric device and its manufacturing method
US20110221312A1 (en) * 2010-03-12 2011-09-15 Seiko Epson Corporation Vibrator element, vibrator, sensor, and electronic apparatus
CN202094851U (zh) * 2011-04-04 2011-12-28 瑞声光电科技(常州)有限公司 压电振动器件
US9330698B1 (en) 2013-03-18 2016-05-03 Magnecomp Corporation DSA suspension having multi-layer PZT microactuator with active PZT constraining layers
US10607642B2 (en) 2013-03-18 2020-03-31 Magnecomp Corporation Multi-layer PZT microactuator with active PZT constraining layers for a DSA suspension
US11205449B2 (en) 2013-03-18 2021-12-21 Magnecomp Corporation Multi-layer PZT microacuator with active PZT constraining layers for a DSA suspension
US9117468B1 (en) 2013-03-18 2015-08-25 Magnecomp Corporation Hard drive suspension microactuator with restraining layer for control of bending
US9741376B1 (en) 2013-03-18 2017-08-22 Magnecomp Corporation Multi-layer PZT microactuator having a poled but inactive PZT constraining layer
FR3018632B1 (fr) * 2014-03-13 2018-03-23 Hager Electro S.A. Dispositif piezoelectrique de generation de tension electrique
US10128431B1 (en) 2015-06-20 2018-11-13 Magnecomp Corporation Method of manufacturing a multi-layer PZT microactuator using wafer-level processing
US12000740B2 (en) * 2020-11-17 2024-06-04 Board Of Trustees Of Michigan State University Sensor apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183981A (ja) * 1985-02-08 1986-08-16 Japan Storage Battery Co Ltd 圧電体変位装置
JPS62168535U (ja) * 1985-12-28 1987-10-26
JPH01107997U (ja) * 1988-01-12 1989-07-20
JPH02159982A (ja) * 1988-12-13 1990-06-20 Marcon Electron Co Ltd 圧電アクチュエータ

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB789336A (en) 1954-12-27 1958-01-22 Erie Resistor Corp Method of making thin flat electroded ceramic elements
US3597642A (en) * 1968-12-13 1971-08-03 Suwa Seikosha Kk Electrostrictively driven tuning fork
US3614485A (en) * 1969-08-05 1971-10-19 Austron Inc Electromechanical reed system
DE2045108C3 (de) * 1970-09-11 1978-05-03 Braun Ag, 6000 Frankfurt Piezoelektrischer Antrieb
GB1328931A (en) * 1972-03-23 1973-09-05 Creed Co Ltd Piezoelectric transducer motor arrangement
JPS5823921B2 (ja) 1978-02-10 1983-05-18 日本電気株式会社 電圧非直線抵抗器
DE3142684A1 (de) * 1981-10-28 1983-05-05 Philips Patentverwaltung Gmbh, 2000 Hamburg "elektromechanischer wandler"
JPS58151077A (ja) * 1982-03-03 1983-09-08 Seiko Epson Corp 圧電効果装置
JPS5963782A (ja) * 1982-10-05 1984-04-11 Tohoku Metal Ind Ltd 圧電バイモルフ
DE3332949A1 (de) * 1983-09-13 1985-04-04 Finnigan MAT GmbH, 2800 Bremen Vorrichtung zur einstellung von spaltweiten bei spektrometern
JPS60134700A (ja) * 1983-12-23 1985-07-17 Nippon Denso Co Ltd 発音装置
US4523120A (en) * 1984-06-04 1985-06-11 The United States Of America As Represented By The Secretary Of The Navy Precise bearing support ditherer with piezoelectric drive means
DE3424005A1 (de) 1984-06-29 1986-01-02 Robert Bosch Gmbh, 7000 Stuttgart Ausloesevorrichtung fuer rueckhaltsysteme in kraftfahrzeugen
JPS61205100A (ja) * 1985-03-08 1986-09-11 Murata Mfg Co Ltd 圧電発音体
JPS6289285A (ja) * 1985-10-15 1987-04-23 Nec Corp 負圧浮動ヘツドセルフロ−デイングアクチユエ−タ機構
JPS62168535A (ja) 1986-01-20 1987-07-24 Oki Electric Ind Co Ltd 樹脂の吐出量制御方法及びその装置
JPS62250681A (ja) 1986-04-23 1987-10-31 Murata Mfg Co Ltd 磁気ヘツドが一端側に、他端側に支持部材が取付けられた積層バイモルフ
JPS62259485A (ja) 1986-05-02 1987-11-11 Hiroshi Shimizu 圧電駆動装置
JPS6364640A (ja) 1986-09-06 1988-03-23 Olympus Optical Co Ltd アクチユエ−タ
US5166571A (en) 1987-08-28 1992-11-24 Nec Home Electronics, Ltd. Vibration gyro having an H-shaped vibrator
JPH01107997A (ja) 1987-10-20 1989-04-25 Citizen Watch Co Ltd Ni基合金ロー材
US5049775A (en) * 1988-09-30 1991-09-17 Boston University Integrated micromechanical piezoelectric motor
JPH02119278A (ja) * 1988-10-28 1990-05-07 Ricoh Co Ltd バイモルフ型圧電アクチユエータ
DD293918A5 (de) * 1990-04-20 1991-09-12 ��������@��������@����������@���k�� Elektromechanischer wandler in multimorphanordnung
US5319626A (en) * 1990-08-27 1994-06-07 Mitsubishi Electric Corporation Method for rewriting defect management areas on optical disk according to ECMA standard
DE69223096T2 (de) 1991-07-18 1998-05-28 Ngk Insulators Ltd Piezoelektrischer/elektrostriktiver Element mit einem keramischen Substrat aus stabilisiertem Zirkoniumdioxid
DE4218368A1 (de) * 1992-06-04 1993-12-09 Tridelta Ag Piezoelektrisches Multimorph-Biegeelement
JP3162584B2 (ja) * 1994-02-14 2001-05-08 日本碍子株式会社 圧電/電歪膜型素子及びその製造方法
US6049158A (en) 1994-02-14 2000-04-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film element having convex diaphragm portions and method of producing the same
JP3192323B2 (ja) * 1994-07-29 2001-07-23 沖電気工業株式会社 電力制御回路
DE69525612T2 (de) * 1994-11-07 2002-08-01 Matsushita Electric Industrial Co., Ltd. Piezoelektrischer aktuator und ein pyroelektrischer infrarotsensor, der diesen benutzt
FR2734051B1 (fr) * 1995-05-10 1997-06-20 France Etat Transducteur a bilames piezolectriques
JP3103965B2 (ja) * 1996-02-09 2000-10-30 株式会社セラテック 直進移動機構
EP0829703A4 (en) * 1996-03-29 2000-04-19 Ngk Insulators Ltd GYROSCOPIC OSCILLATION SENSOR, COMPOSITE SENSOR AND METHOD FOR PRODUCING A GYROSCOPIC SENSOR
US5747915A (en) * 1996-08-19 1998-05-05 Sandia Corporation Bent shaft motor
JPH10136665A (ja) 1996-10-31 1998-05-22 Tdk Corp 圧電アクチュエータ
US6246552B1 (en) 1996-10-31 2001-06-12 Tdk Corporation Read/write head including displacement generating means that elongates and contracts by inverse piezoelectric effect of electrostrictive effect
US5831371A (en) * 1996-11-22 1998-11-03 Face International Corp. Snap-action ferroelectric transducer
US6018212A (en) 1996-11-26 2000-01-25 Ngk Insulators, Ltd. Vibrator, vibratory gyroscope, and vibration adjusting method
EP0886264B1 (en) * 1997-06-19 2001-02-07 STMicroelectronics S.r.l. A suspension arm for a head of a disk storage device
JPH1126834A (ja) * 1997-07-04 1999-01-29 Toshio Fukuda Pzt薄膜バイモルフ形の平行平板構造体、及びその製造方法
JPH1151959A (ja) * 1997-08-06 1999-02-26 Murata Mfg Co Ltd 圧電振動子
US6169911B1 (en) * 1997-09-26 2001-01-02 Sun Microsystems, Inc. Graphical user interface for a portable telephone
JPH11344341A (ja) 1998-05-29 1999-12-14 Tokai Rika Co Ltd 平行平板型振動ジャイロ及び平行平板型振動ジャイロ装置
JP2000002539A (ja) 1998-06-15 2000-01-07 Tokai Rika Co Ltd 平行平板型振動ジャイロ及び平行平板型振動ジャイロ装置
JP3875492B2 (ja) * 1998-09-14 2007-01-31 株式会社東芝 情報記録媒体、情報記録装置、情報記録方法、情報再生装置、及び情報再生方法
US6742147B1 (en) * 1998-10-22 2004-05-25 Matsushita Electric Industrial Co., Ltd. Information recording medium, and method and apparatus for managing defect thereof
US6342751B1 (en) * 1998-12-28 2002-01-29 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and production method thereof
US6715192B2 (en) 1998-12-28 2004-04-06 Ngk Insulators, Ltd. Method for manufacturing a piezoelectric/electrostrictive device
US6329740B1 (en) * 1998-12-28 2001-12-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and production method thereof
US6335586B1 (en) * 1998-12-28 2002-01-01 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and production method thereof
JP3206657B2 (ja) * 1999-02-05 2001-09-10 日本電気株式会社 交替処理方法および情報記録再生装置
JP3845544B2 (ja) 1999-10-01 2006-11-15 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
US6404109B1 (en) * 1999-10-01 2002-06-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device having increased strength
US6455981B1 (en) * 1999-10-01 2002-09-24 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6570297B1 (en) * 1999-10-01 2003-05-27 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
US6323582B1 (en) * 1999-10-01 2001-11-27 Ngk Insulators, Ltd. Piezoelectric/Electrostrictive device
US6476539B1 (en) * 1999-10-01 2002-11-05 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
US6333681B1 (en) * 1999-10-01 2001-12-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
US6525448B1 (en) * 1999-10-01 2003-02-25 Ngk Insulators Ltd Piezoelectric/electrostrictive device
JP3436735B2 (ja) 1999-10-01 2003-08-18 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
US6452309B1 (en) * 1999-10-01 2002-09-17 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
US6396193B1 (en) * 1999-10-01 2002-05-28 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device having mutually opposing thin plate portions
JP4058223B2 (ja) 1999-10-01 2008-03-05 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
EP1139450A4 (en) * 1999-10-01 2007-04-04 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE DEVICE
JP3436727B2 (ja) 1999-10-01 2003-08-18 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
JP3845543B2 (ja) 1999-10-01 2006-11-15 日本碍子株式会社 圧電/電歪デバイス及びその製造方法
JP3466550B2 (ja) 1999-10-01 2003-11-10 日本碍子株式会社 圧電/電歪デバイス
US6351056B1 (en) * 1999-10-01 2002-02-26 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device having mutually opposing thin plate portions
EP1306908A4 (en) * 2000-06-16 2006-10-04 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
CN1164871C (zh) * 2000-10-23 2004-09-01 Lg电子株式会社 涡卷压缩机
JP4007767B2 (ja) 2001-01-18 2007-11-14 日本碍子株式会社 圧電/電歪デバイスおよびその製造方法
US6788642B2 (en) * 2001-04-06 2004-09-07 Hitachi, Ltd. Optical recording medium having unrecordable restricted block(s), and systems incorporating same
JP4033643B2 (ja) * 2001-06-18 2008-01-16 日本碍子株式会社 圧電/電歪デバイスおよびその製造方法
JP4038400B2 (ja) * 2001-09-11 2008-01-23 日本碍子株式会社 セラミック積層体、セラミック積層体の製造方法、圧電/電歪デバイス、圧電/電歪デバイスの製造方法及びセラミック焼結体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183981A (ja) * 1985-02-08 1986-08-16 Japan Storage Battery Co Ltd 圧電体変位装置
JPS62168535U (ja) * 1985-12-28 1987-10-26
JPH01107997U (ja) * 1988-01-12 1989-07-20
JPH02159982A (ja) * 1988-12-13 1990-06-20 Marcon Electron Co Ltd 圧電アクチュエータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1148560A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291931A2 (en) * 2001-09-07 2003-03-12 Matsushita Electric Industrial Co., Ltd. A piezoelectric thin-film element and a manufacturing method thereof
EP1291931A3 (en) * 2001-09-07 2005-11-16 Matsushita Electric Industrial Co., Ltd. A piezoelectric thin-film element and a manufacturing method thereof
US7042136B2 (en) 2001-09-07 2006-05-09 Matsushita Electric Industrial Co., Ltd. Piezoelectric thin-film element and a manufacturing method thereof
WO2003105245A1 (ja) * 2002-06-10 2003-12-18 日本碍子株式会社 圧電/電歪デバイスとその製造方法
US7126261B2 (en) 2002-06-10 2006-10-24 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method for manufacturing the same

Also Published As

Publication number Publication date
US7245064B2 (en) 2007-07-17
US20030208892A1 (en) 2003-11-13
DE60035932D1 (de) 2007-09-27
US6534899B1 (en) 2003-03-18
DE60035932T2 (de) 2008-05-15
US7358647B2 (en) 2008-04-15
EP1089357A2 (en) 2001-04-04
EP1148560B1 (en) 2010-07-14
EP1148560A1 (en) 2001-10-24
EP1089357B1 (en) 2007-08-15
US20070228872A1 (en) 2007-10-04
EP1148560A4 (en) 2007-04-04
EP1089357A3 (en) 2005-03-09
US6817072B2 (en) 2004-11-16
US6933658B2 (en) 2005-08-23
EP1833102A3 (en) 2009-04-08
US20050062366A1 (en) 2005-03-24
US20060006763A1 (en) 2006-01-12
EP1833102A2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
WO2001026167A1 (fr) Dispositif piezo-electrique / electrostrictif et procede de fabrication correspondant
JP4460742B2 (ja) 圧電/電歪デバイス及びその製造方法
US6476538B2 (en) Piezoelectric/electrostrictive device and method of manufacturing same
US6455984B1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP4851476B2 (ja) 圧電/電歪デバイス
JP2002033530A (ja) 圧電/電歪デバイス及びその製造方法
US7336021B2 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP2001320101A (ja) 圧電/電歪デバイス及びその製造方法
JP3845543B2 (ja) 圧電/電歪デバイス及びその製造方法
US6657364B1 (en) Piezoelectric/electrostrictive device
US6915547B2 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP2002026411A (ja) 圧電/電歪デバイス及びその製造方法
JP3851485B2 (ja) 圧電/電歪デバイス及びその製造方法
JP2001320100A (ja) 圧電/電歪デバイス及びその製造方法
JP2006340597A (ja) 圧電/電歪デバイス及びその製造方法

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 2000962961

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000962961

Country of ref document: EP