WO2001016408A1 - Plaquette de silicium epitaxiale - Google Patents
Plaquette de silicium epitaxiale Download PDFInfo
- Publication number
- WO2001016408A1 WO2001016408A1 PCT/JP2000/004216 JP0004216W WO0116408A1 WO 2001016408 A1 WO2001016408 A1 WO 2001016408A1 JP 0004216 W JP0004216 W JP 0004216W WO 0116408 A1 WO0116408 A1 WO 0116408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- atoms
- concentration
- oxygen concentration
- silicon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/02—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
- C30B15/04—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to an epitaxial silicon wafer, particularly to an epitaxial silicon wafer obtained by epitaxially growing a nitrogen-doped silicon wafer.
- Substrates for ordinary resistance epitaxy lose oxygen precipitate nuclei below the critical size during the initial high-temperature process in the epitaxy process, and the gettering ability is reduced due to the delay in deposition. Device yield decreases.
- nitrogen doping increases the size of oxygen precipitates after single crystal growth by the CZ method, nitrogen-doped silicon wafers are not suitable as underlying silicon wafers for epitaxy growth.
- the present invention has been made in view of the above problems, and has as its object to find out the conditions of a nitrogen-doped silicon wafer that does not cause defects in the surface layer of the epi that degrades device characteristics.
- An object is to provide an epitaxial silicon wafer having sufficient characteristics for a device.
- the present inventors may increase the nitrogen concentration when the oxygen concentration is low, while decreasing the nitrogen concentration when the oxygen concentration is high, so as not to cause defects in the epi surface layer.
- the nitrogen concentration and the oxygen concentration had to be considered in correspondence with each other.
- the present invention provides the following wafer and method.
- An epitaxial silicon wafer in which an epitaxial film is formed on a nitrogen-doped base silicon wafer, wherein no hill-like defects are observed on the epitaxial film.
- An epitaxial silicon wafer in which an epitaxial film is formed on a nitrogen-doped base silicon wafer, and crystal defects observed as LPD of 120 nm or more on the epitaxial film are Epitaxy silicon wafers with a size of 20 or less Z200mm wafers.
- Nitrogen-doped silicon wafers cannot be said to have the characteristics suitable for commercialization as they are, but the nitrogen and oxygen concentrations of the underlying silicon wafer are adjusted to the above-mentioned ranges. It is suitable for commercialization because there are no or very few surface defects. According to the study of the present inventors, defects appearing on the surface layer of an epitaxial silicon wafer in which an epitaxial silicon wafer is loaded with a nitrogen-doped base silicon wafer have a width of about 10 ⁇ m as shown in FIG. m, a hill-like defect with a height of about 10 nm (A Observed by FM).
- this is referred to as a “hill-shaped defect.” 1 Since this hill-shaped defect is observed as an LPD (Light Point Defect) on the surface of the epi-wafer, the defect observed as an LPD is Some of these will include this hill-shaped defect.
- LPD Light Point Defect
- FIG. 1 is a diagram for explaining the shape of a “hill-shaped defect” discovered by the present inventors.
- FIG. 2 is a diagram for explaining a change in nitrogen concentration and a change in oxygen concentration in a silicon ingot due to crystal growth.
- FIG. 3 is a graph showing a plot of the relationship between the nitrogen concentration and LPD (Ligh t Point t Defect).
- FIG. 4 is a graph showing a plot of the relationship between the nitrogen concentration and the oxygen concentration.
- the underlying silicon wafer is manufactured by the Czochralski method (CZ method).
- CZ method Czochralski method
- the silicon single crystal is pulled up by doping with nitrogen by the Czochralski method to produce a silicon ingot, from which a portion where the nitrogen concentration and the oxygen concentration are within the above ranges is cut out, and the underlying silicon is removed. Wafer.
- a method of applying a magnetic field to the melt MCZ method
- Methods for doping nitrogen include mixing nitrogen into argon gas passed through a furnace during crystal growth, or dissolving silicon nitride in a raw material melt and pulling it into a single crystal. All known methods, including methods for introducing nitrogen atoms, and Any method that will be discovered in the future can be used.
- the nitrogen concentration fluctuations due to nitrogen segregation are taken in as shown in FIG. Oxygen concentration fluctuations occur. More specifically, the nitrogen concentration increases from the beginning (shoulder) to the end (tail), while the oxygen concentration decreases. Therefore, by setting the nitrogen concentration to be the upper limit of the nitrogen concentration at the end portion of the straight body portion showing the highest nitrogen concentration in the product acquisition target region, the nitrogen concentration in the entire silicon ingot is reduced to 3%.
- X 1 0 15 at omS / / C m can 3 below and the child is, the oxygen concentration was controlled appropriately in response to changes in the nitrogen concentration in the silicon ingot, oxygen concentration, nitrogen concentration in the above (6) By ensuring that it is within the indicated range, all of the straight body part of the pulled silicon ingot is used as a product acquisition area without forming a useless part in the straight body part. It can be a silicon ingot capable of performing such operations.
- the oxygen concentration can be set relatively freely as compared with the nitrogen concentration, almost all of the straight body portion of the silicon ingot is used as a silicon wafer manufacturing target area.
- the oxygen concentration may be controlled in order to obtain an ingot, or the oxygen concentration may be appropriately controlled according to the oxygen concentration and the nitrogen concentration of the base wafer to be obtained.
- a silicon wafer was cut from a CZ-Si single crystal grown under various conditions, mirror-polished and then epi-grown to investigate the oxygen precipitation behavior of the epi substrate and defects on the epi layer surface. did.
- the crystal was 200 mm in diameter, p-type, with crystal orientation of 100> with boron added as a dopant, and the oxygen concentration was 8 X 10 17 to 16 X 10 17 atoms Z controls such that the cm 3, the nitrogen concentration is 4. 9 X 1 0 1 3 ⁇ 1 2 4 X 1 0 1 5 atoms by adding nitrogen to the Z cm 3, no nitrogen added as compared crystals Also prepared.
- Epi-growth uses trichlorosilane as a growth gas, The growth was performed at a temperature of 110 ° C. and an epi film thickness of 6 ⁇ m.
- FIGS. Fig. 3 shows the relationship between the nitrogen concentration and the number of defects (the number of defects observed as LPD).
- Fig. 4 shows the relationship between the nitrogen concentration and the oxygen concentration based on the same data. Is to be understood.
- FIG. 3 suggests that there is a predetermined correlation between the oxygen concentration and the nitrogen concentration, such that when the oxygen concentration is high, the nitrogen concentration must be lowered.
- a nitrogen-doped base silicon wafer suitable for the production of an epitaxial silicon wafer must be formed on the left side of the solid line (more specifically, when the oxygen concentration is 7 ⁇ 10 ′′ atoms / cm 2).
- 6 X 1 0 18 atoms of nitrogen concentration when the cm 3 of about 3 X 1 0 14 atomsZ cm 3 or less Pull up the silicon single crystal so that You just have to do it.
- the nitrogen concentration is about 1 ⁇ 10 15 atoms / cm 3 or less and the oxygen concentration is 1 ⁇ 10 15 atoms / cm 3 or less.
- the silicon single crystal should be pulled up so that the nitrogen concentration at 5 ⁇ 10 18 atoms / cm 3 is within about 1 ⁇ 10 I4 atoms Z cm 3 or less.
- the lower limit of the oxygen concentration and the lower limit of the nitrogen concentration are defined as the lower limit of the amount of nitrogen added as a function of the initial oxygen concentration of the underlying silicon wafer in order to secure a sufficient oxygen precipitate density as a gettering site for the product. What is necessary is just to decide. Industrial applicability
- the silicon wafer according to the present invention has excellent characteristics without being affected by surface defects that degrade device characteristics. That is, a product obtained by growing an epi film on a silicon wafer manufactured under the conditions according to the present invention has excellent characteristics for a leading-edge semiconductor device.
- a nitrogen-doped epitaxial silicon wafer having high gettering ability can be manufactured because the gettering site has not disappeared.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00939172A EP1231301A4 (en) | 1999-08-27 | 2000-06-26 | EPITAXIAL SILICON PLATEBOARD |
US10/679,031 US20040065250A1 (en) | 1999-08-27 | 2003-10-03 | Epitaxial silicon wafer |
US11/653,309 US20070113778A1 (en) | 1999-08-27 | 2007-01-16 | Epitaxial silicon wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11/241187 | 1999-08-27 | ||
JP24118799A JP2001068477A (ja) | 1999-08-27 | 1999-08-27 | エピタキシャルシリコンウエハ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001016408A1 true WO2001016408A1 (fr) | 2001-03-08 |
Family
ID=17070528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/004216 WO2001016408A1 (fr) | 1999-08-27 | 2000-06-26 | Plaquette de silicium epitaxiale |
Country Status (6)
Country | Link |
---|---|
US (2) | US20040065250A1 (ja) |
EP (1) | EP1231301A4 (ja) |
JP (1) | JP2001068477A (ja) |
KR (1) | KR100753169B1 (ja) |
TW (1) | TW503472B (ja) |
WO (1) | WO2001016408A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100445190B1 (ko) * | 2001-11-13 | 2004-08-21 | 주식회사 실트론 | 단결정 실리콘 잉곳 제조 방법 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3589119B2 (ja) * | 1999-10-07 | 2004-11-17 | 三菱住友シリコン株式会社 | エピタキシャルウェーハの製造方法 |
WO2005076333A1 (ja) * | 2004-02-03 | 2005-08-18 | Shin-Etsu Handotai Co., Ltd. | 半導体ウエーハの製造方法及び半導体インゴットの切断位置決定システム |
JP2006054350A (ja) * | 2004-08-12 | 2006-02-23 | Komatsu Electronic Metals Co Ltd | 窒素ドープシリコンウェーハとその製造方法 |
KR100676407B1 (ko) * | 2005-02-03 | 2007-01-30 | 신공항하이웨이 주식회사 | 차량용 액상 제설제 살포장치 |
JP5188673B2 (ja) * | 2005-06-09 | 2013-04-24 | 株式会社Sumco | Igbt用のシリコンウェーハ及びその製造方法 |
DE102005045338B4 (de) * | 2005-09-22 | 2009-04-02 | Siltronic Ag | Epitaxierte Siliciumscheibe und Verfahren zur Herstellung von epitaxierten Siliciumscheiben |
DE102005045339B4 (de) * | 2005-09-22 | 2009-04-02 | Siltronic Ag | Epitaxierte Siliciumscheibe und Verfahren zur Herstellung von epitaxierten Siliciumscheiben |
DE102005045337B4 (de) * | 2005-09-22 | 2008-08-21 | Siltronic Ag | Epitaxierte Siliciumscheibe und Verfahren zur Herstellung von epitaxierten Siliciumscheiben |
JP4760729B2 (ja) * | 2006-02-21 | 2011-08-31 | 株式会社Sumco | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 |
JP6007892B2 (ja) * | 2013-12-20 | 2016-10-19 | 信越半導体株式会社 | シリコン単結晶の製造方法 |
JP6652959B2 (ja) * | 2014-07-31 | 2020-02-26 | グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. | 窒素ドープされた空孔優勢であるシリコンインゴット、およびそれから形成された半径方向に均一に分布した酸素析出の密度およびサイズを有する熱処理されたウエハ |
US10026843B2 (en) | 2015-11-30 | 2018-07-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin structure of semiconductor device, manufacturing method thereof, and manufacturing method of active region of semiconductor device |
JP6459944B2 (ja) * | 2015-12-10 | 2019-01-30 | 株式会社Sumco | シリコン単結晶の製造方法 |
JP7006517B2 (ja) * | 2018-06-12 | 2022-01-24 | 信越半導体株式会社 | シリコン単結晶基板中の欠陥密度の制御方法 |
JP2022144977A (ja) * | 2021-03-19 | 2022-10-03 | キオクシア株式会社 | 半導体装置の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11189493A (ja) * | 1997-12-25 | 1999-07-13 | Sumitomo Metal Ind Ltd | シリコン単結晶およびエピタキシャルウェーハ |
WO1999057344A1 (fr) * | 1998-05-01 | 1999-11-11 | Nippon Steel Corporation | Plaquette de semi-conducteur en silicium et son procede de fabrication |
JP2000044389A (ja) * | 1998-05-22 | 2000-02-15 | Shin Etsu Handotai Co Ltd | エピタキシャルシリコン単結晶ウエ―ハの製造方法及びエピタキシャルシリコン単結晶ウエ―ハ |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4591409A (en) * | 1984-05-03 | 1986-05-27 | Texas Instruments Incorporated | Control of nitrogen and/or oxygen in silicon via nitride oxide pressure during crystal growth |
US5571373A (en) * | 1994-05-18 | 1996-11-05 | Memc Electronic Materials, Inc. | Method of rough polishing semiconductor wafers to reduce surface roughness |
JP3120825B2 (ja) * | 1994-11-14 | 2000-12-25 | 信越半導体株式会社 | エピタキシャルウエーハ及びその製造方法 |
US5611855A (en) * | 1995-01-31 | 1997-03-18 | Seh America, Inc. | Method for manufacturing a calibration wafer having a microdefect-free layer of a precisely predetermined depth |
US5796190A (en) * | 1995-05-29 | 1998-08-18 | Denyo Kabushiki Kaisha | Engine-driven permanent magnetic type welding generator |
JPH1079393A (ja) * | 1996-07-12 | 1998-03-24 | Hitachi Ltd | エピタキシャル成長層を持つシリコンウエハ及びその製造方法ならびにそのウエハを用いた半導体装置 |
DE19637182A1 (de) * | 1996-09-12 | 1998-03-19 | Wacker Siltronic Halbleitermat | Verfahren zur Herstellung von Halbleiterscheiben aus Silicium mit geringer Defektdichte |
JPH1190803A (ja) * | 1997-09-11 | 1999-04-06 | Speedfam Co Ltd | ワークエッジの鏡面研磨装置 |
DE69942263D1 (de) * | 1998-05-22 | 2010-06-02 | Shinetsu Handotai Kk | Einkristalline epitaktische Siliciumscheibe und Verfahren zu ihrer Herstellung |
JP3746153B2 (ja) * | 1998-06-09 | 2006-02-15 | 信越半導体株式会社 | シリコンウエーハの熱処理方法 |
US6284384B1 (en) * | 1998-12-09 | 2001-09-04 | Memc Electronic Materials, Inc. | Epitaxial silicon wafer with intrinsic gettering |
JP3988307B2 (ja) * | 1999-03-26 | 2007-10-10 | 株式会社Sumco | シリコン単結晶、シリコンウェーハ及びエピタキシャルウェーハ |
-
1999
- 1999-08-27 JP JP24118799A patent/JP2001068477A/ja active Pending
-
2000
- 2000-06-26 WO PCT/JP2000/004216 patent/WO2001016408A1/ja active Application Filing
- 2000-06-26 KR KR1020027001765A patent/KR100753169B1/ko active IP Right Grant
- 2000-06-26 EP EP00939172A patent/EP1231301A4/en not_active Withdrawn
- 2000-08-15 TW TW089116434A patent/TW503472B/zh not_active IP Right Cessation
-
2003
- 2003-10-03 US US10/679,031 patent/US20040065250A1/en not_active Abandoned
-
2007
- 2007-01-16 US US11/653,309 patent/US20070113778A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11189493A (ja) * | 1997-12-25 | 1999-07-13 | Sumitomo Metal Ind Ltd | シリコン単結晶およびエピタキシャルウェーハ |
WO1999057344A1 (fr) * | 1998-05-01 | 1999-11-11 | Nippon Steel Corporation | Plaquette de semi-conducteur en silicium et son procede de fabrication |
JP2000044389A (ja) * | 1998-05-22 | 2000-02-15 | Shin Etsu Handotai Co Ltd | エピタキシャルシリコン単結晶ウエ―ハの製造方法及びエピタキシャルシリコン単結晶ウエ―ハ |
Non-Patent Citations (1)
Title |
---|
See also references of EP1231301A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100445190B1 (ko) * | 2001-11-13 | 2004-08-21 | 주식회사 실트론 | 단결정 실리콘 잉곳 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20070113778A1 (en) | 2007-05-24 |
EP1231301A4 (en) | 2008-12-17 |
EP1231301A1 (en) | 2002-08-14 |
JP2001068477A (ja) | 2001-03-16 |
KR20020026567A (ko) | 2002-04-10 |
US20040065250A1 (en) | 2004-04-08 |
TW503472B (en) | 2002-09-21 |
KR100753169B1 (ko) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW505709B (en) | A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer | |
TW546422B (en) | Method of producing silicon wafer and silicon wafer | |
TW526297B (en) | Silicon wafer and silicon epitaxial wafer and production methods thereof | |
US20070113778A1 (en) | Epitaxial silicon wafer | |
JP3846627B2 (ja) | シリコンウエーハ、シリコンエピタキシャルウエーハ、アニールウエーハならびにこれらの製造方法 | |
JP2003124219A (ja) | シリコンウエーハおよびエピタキシャルシリコンウエーハ | |
JP2002353225A (ja) | 窒素ドープアニールウエーハの製造方法及び窒素ドープアニールウエーハ | |
KR100847925B1 (ko) | 어닐웨이퍼의 제조방법 및 어닐웨이퍼 | |
JP4656788B2 (ja) | シリコンエピタキシャルウェーハの製造方法 | |
JP3771737B2 (ja) | シリコン単結晶ウエーハの製造方法 | |
JPWO2018186248A1 (ja) | エピタキシャルシリコンウェーハの製造方法およびエピタキシャルシリコンウェーハ | |
JP2006188423A (ja) | シリコンエピタキシャルウエーハ、アニールウエーハならびにこれらの製造方法 | |
EP1475829A1 (en) | Silicon epitaxial wafer and its production method | |
KR100774070B1 (ko) | 실리콘 에피텍셜 웨이퍼의 제조방법 | |
JPH10223641A (ja) | 半導体シリコンエピタキシャルウェーハ及び半導体デバイスの製造方法 | |
JPH1192283A (ja) | シリコンウエハ及びその製造方法 | |
WO2001056071A1 (fr) | Procede de production d'une tranche epitaxiale de silicium | |
JP3412531B2 (ja) | リンドープシリコン単結晶ウエーハ及びエピタキシャルシリコンウエーハ及びこれらの製造方法 | |
JP2001237247A (ja) | エピタキシャルウエーハの製造方法及びエピタキシャルウエーハ、並びにエピタキシャル成長用czシリコンウエーハ | |
JP4978396B2 (ja) | エピタキシャルウェーハの製造方法 | |
JP2000072593A (ja) | アンチモンドープシリコン単結晶ウエーハ及びエピタキシャルシリコンウエーハ並びにこれらの製造方法 | |
KR100500394B1 (ko) | 에피택셜 실리콘웨이퍼의 제조 방법 | |
WO2001018285A1 (fr) | Plaquette et procede de fabrication de la plaquette | |
KR100734615B1 (ko) | N-형 반도체 잉곳 및 그 제조 방법 | |
KR20060077811A (ko) | 에피택셜 실리콘 웨이퍼 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE IT |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020027001765 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10049971 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000939172 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027001765 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2000939172 Country of ref document: EP |