WO2001010646A1 - Tete d'enregistrement a jet d'encre, procede de fabrication associe et enregistreur a jet d'encre - Google Patents

Tete d'enregistrement a jet d'encre, procede de fabrication associe et enregistreur a jet d'encre Download PDF

Info

Publication number
WO2001010646A1
WO2001010646A1 PCT/JP2000/005251 JP0005251W WO0110646A1 WO 2001010646 A1 WO2001010646 A1 WO 2001010646A1 JP 0005251 W JP0005251 W JP 0005251W WO 0110646 A1 WO0110646 A1 WO 0110646A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure generating
generating chamber
forming
ink jet
layer
Prior art date
Application number
PCT/JP2000/005251
Other languages
English (en)
French (fr)
Inventor
Masato Shimada
Akira Matsuzawa
Yoshinao Miyata
Tsutomu Nishiwaki
Hiroyuki Kamei
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22206499A external-priority patent/JP3546944B2/ja
Priority claimed from JP35087399A external-priority patent/JP3630050B2/ja
Priority claimed from JP2000007152A external-priority patent/JP3478222B2/ja
Priority claimed from JP2000041495A external-priority patent/JP3419376B2/ja
Priority claimed from JP2000085005A external-priority patent/JP2001270114A/ja
Priority claimed from JP2000108264A external-priority patent/JP3379580B2/ja
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to US09/806,699 priority Critical patent/US6502930B1/en
Priority to DE60045067T priority patent/DE60045067D1/de
Priority to EP00951887A priority patent/EP1116588B1/en
Priority to AT00951887T priority patent/ATE483586T1/de
Publication of WO2001010646A1 publication Critical patent/WO2001010646A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/1437Back shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/13Heads having an integrated circuit

Definitions

  • an ink jet recording head for forming a piezoelectric element via a diaphragm in a part of a pressure generating chamber communicating with a nozzle opening for discharging an ink droplet, and discharging an ink droplet by displacement of the piezoelectric element. And a method of manufacturing the same, and an ink jet recording apparatus.
  • a part of the pressure generating chamber communicating with the nozzle opening for discharging ink droplets is constituted by a diaphragm, and the diaphragm is deformed by a piezoelectric element to pressurize the ink in the pressure generating chamber and discharge the ink droplet from the nozzle opening.
  • ink jet recording heads one using a piezoelectric actuator in the longitudinal vibration mode, in which the piezoelectric element expands and contracts in the axial direction, and the other using a piezoelectric actuator in the flexural vibration mode. Has been put to practical use.
  • the volume of the pressure generating chamber can be changed by bringing the end face of the piezoelectric element into contact with the diaphragm, making it possible to manufacture a head suitable for high-density printing. Difficulty of cutting into the shape of a comb in accordance with the arrangement pitch of the openings and work of positioning and fixing the cut piezoelectric element in the pressure generating chamber are required, which complicates the manufacturing process. is there.
  • the piezoelectric element can be formed on the diaphragm by a relatively simple process of sticking a green sheet of the pressure in conformity with ⁇ ⁇ of the pressure generating chamber and firing the green sheet. Due to the use of vibration, a certain area is required, and there is a P problem that high-density arrangement is difficult.
  • a pressure generating chamber is formed in a thickness direction by penetrating in a thickness direction by, for example, etching from a surface of the fiber opposite to the piezoelectric element, so that dimensional accuracy is high.
  • the pressure generating chambers can be relatively easily and densely arranged.
  • An ink jet that can improve the oka-ij property of a P wall and can arrange pressure generating chambers with high density and reduces crosstalk between pressure generating chambers is provided.
  • An object of the present invention is to provide a type recording head, a method for manufacturing the same, and an ink jet type recording apparatus. Disclosure of the invention
  • An ink jet recording head comprising: a piezoelectric element provided in a region opposed to the pressure generation chamber via a vibration plate constituting a part of the generation chamber to generate a pressure change in the pressure generation chamber.
  • the as force generation chamber is formed without being penetrated by being opened to one side of the shape ⁇ ; and at least the bottom surface facing the one side of the inner surface of the pressure generation chamber is anisotropically etched.
  • the conductive element is provided on the one surface side of the flow path forming substrate by a film formed by odor and odor. It is in the characteristic inkjet recording head.
  • the pressure generating chamber is formed without penetrating the flow path forming substrate, the Oka IJ property of the partition partitioning the pressure generating chamber is maintained, crosstalk is suppressed, and high density is achieved.
  • a large number of ink jet heads having nozzle openings can be jetted relatively easily.
  • the piezoelectric layer is an inkjet type self-recording head in which the crystal is preferentially oriented as TO.
  • the crystals are preferentially oriented.
  • the BJEE electric body layer has a crystal having a columnar shape as ⁇ ().
  • the crystals are columnar.
  • a fourth aspect of the present invention is directed to the ink-jet recording head according to any one of the first to third aspects, wherein the flow path forming substrate comprises only the silicon layer.
  • the pressure generating chamber is defined only by the silicon layer.
  • the brain cell is made of single-crystal silicon having a plane orientation of (110), and the (110) plane formed by half-etching is etched.
  • Inkjet-style self-recording head characterized by a stop surface.
  • the (110) plane of the flow path plate serves as the bottom of the pressure generating chamber, Pressure generation is formed without penetrating the flow path forming substrate.
  • the knitting 3 ⁇ formed curtain has a plane orientation (1
  • the recording head is made of single-crystal silicon of (0 0) and has an (i l l) plane serving as the etching stopper.
  • the (111) plane is a substantial bottom surface of the pressure generating chamber, and the pressure generating chamber is formed without penetrating the flow path forming substrate.
  • a seventh aspect of the present invention is the ink jet recording head according to the sixth aspect, wherein the front B force generation chamber has a substantially triangular I-shaped cross section.
  • the pressure generating chambers can be arranged at a high density, and crosstalk can be prevented.
  • a protruding portion protruding toward the pressure generating chamber is provided in a longitudinal direction.
  • a projection is formed on the diaphragm.
  • the first film including the inner surface of the diaphragm constituting a part of the front 32 pressure generating chamber and the first M ⁇ are formed.
  • the first film has a second film, and the first film has an etching hole for supplying an etching liquid to the surface on one side of the knitting structure when forming the knitting pressure generating chamber.
  • the ink jet type head is formed, wherein the etching hole is closed by the second film.
  • the pressure generation chamber is formed by etching the flow path forming substrate with the etching liquid supplied from the etching hole provided in the first film. It can be formed easily and accurately. Further, the etching hole can be easily and reliably closed by the second film constituting the vibration plate.
  • a tenth aspect of the present invention is the ink jet recording head according to the ninth aspect, wherein the etching hole is formed in a region facing the pressure generating chamber. In the country. In the tenth aspect, the etching liquid is reliably supplied to the surface of the flow path forming substrate through the etching hole.
  • a protective layer having an opening in a region facing the 3E force generation chamber is provided on the flow path forming substrate.
  • the pressure generating chamber can be formed relatively accurately by etching the flow path forming substrate through the opening of the protective layer.
  • a twenty-second aspect of the present invention is the ink-jet type self-recording head according to the eleventh aspect, wherein the protective layer is a polycrystalline silicon layer in which boron is diffused.
  • the protective layer serving as a mask when the pressure generating chamber is formed by etching can be formed relatively easily.
  • the etching hole is provided outside a region facing the power generation chamber, and the etching hole is provided between the first film and the protective film.
  • the ink jet type expression 3 ⁇ head is characterized in that a space communicating with the etching hole is defined.
  • the pressure generation chamber is formed by etching the flow path formation St from the etching hole via the space.
  • the pressure generating chamber is formed in an elongated shape, and the etching hole is formed in the longitudinal direction of the force generating chamber.
  • An ink jet recording head comprising a slit formed along the line.
  • the etching hole is formed of a slit, the square shape can be reliably etched through the etching hole, and the pressure generating chamber can be formed easily and accurately. .
  • a fifteenth aspect of the present invention is the ink jet recording method according to any one of the ninth to thirteenth aspects, wherein the etching holes are formed by a plurality of small holes provided at predetermined intervals. In the head.
  • the etching hole is composed of small holes provided at a plurality of locations, it is possible to reliably etch the shape through the etching hole.
  • the lower Sh odor constituting the BE element is formed in the second _h, and the lower EE is formed in the lower EE.
  • An ink jet recording head is characterized in that a piezoelectric layer constituting an element is formed.
  • the second film constitutes a lower MS that constitutes the piezoelectric element, and a 3E electrode is formed on the second film.
  • An ink jet recording head characterized in that a piezoelectric layer constituting an element is directly formed.
  • the manufacturing process can be simplified.
  • An eighteenth aspect of the present invention is the ink jet method according to any one of the ninth to L7 aspects, wherein the first film is a silicon oxide silicon nitride film or an oxidized zirconium film. The word is in the head.
  • the first film having excellent etching resistance can be formed relatively easily.
  • the second film is formed by stacking any one of a silicon oxide s silicon nitride film and an oxidized zirconium film.
  • the present invention provides an ink jet recording head characterized in that it is a laminated film.
  • the second film constituting a part of the diaphragm can be easily formed. Further, the strength of the diaphragm can be adjusted by using a laminated film.
  • an inner surface of the diaphragm that forms a part of an inner wall surface of the front force generating chamber faces a direction of the piezoelectric element.
  • the diaphragm has a convex shape in the direction of the BE element corresponding to the convexity of the inner surface of the diaphragm.
  • the pressure generating chamber can be formed relatively easily and with high accuracy.
  • the »-shaped cell has a flow channel layer on either side of which is a silicon layer on both sides of the insulator layer.
  • An ink jet recording head wherein the surface of the insulator layer is the etching stop surface.
  • the pressure generating chamber when the pressure generating chamber is formed in the silicon layer by etching, the etching is easily and reliably stopped by the insulator layer. In addition, since the thickness of the flow path forming substrate is increased, handling becomes easy.
  • a reservoir for supplying an ink to the pressure generating chamber is formed on the other surface side of the flow path forming substrate. And ⁇ in the ink jet expression head.
  • a twenty-third aspect of the present invention is the ink jet recording head according to the twenty-second aspect, wherein the reservoir is in direct communication with the pressure generating chamber.
  • the ink is supplied directly from the reservoir to each pressure generating chamber.
  • an ink communication passage communicating with one longitudinal end of the pressure generating chamber is formed on one surface side of the flow path forming substrate.
  • an ink jet recording head characterized by being connected to the ink connection.
  • the ink is supplied from the reservoir to the respective pressure generating chambers via the ink communication, even if the cross-sectional area of the communication portion between the reservoir and the ink communication passage varies, the ink is supplied in the narrow portion. Resistance can be controlled, and variations in the ink discharge characteristics between the pressure generating chambers can be reduced.
  • a twenty-fifth aspect of the present invention is the ink jet recording head according to the twenty-fourth aspect, wherein the ink communication passage is provided for each of the pressure generating chambers.
  • the ink is supplied from the reservoir to each of the pressure generating chambers via the ink communication path provided for each of the pressure generating chambers.
  • a twenty-sixth aspect of the present invention is the ink-jet recording method according to the twenty-fourth aspect, wherein the ink communication path is provided continuously in the direction in which the power generation chambers are arranged in parallel. In the head.
  • ink is supplied from the reservoir to each pressure generating chamber via a common ink communication passage.
  • the pressure generating chambers are juxtaposed along its longitudinal direction, and the reservoirs are juxtaposed along these longitudinal directions.
  • the ink jet recording head is provided between the pressure generating chambers and is connected to both of the pressure generating chambers.
  • the pressure generating chambers communicating with the reservoirs are provided side by side on both sides of the reservoir, a higher density arrangement of the ink supply path and the pressure generating chambers is achieved.
  • a twenty-eighth aspect of the present invention is an ink jet apparatus according to any one of the first to twenty-first aspects, wherein the BEE force generating chamber is formed on both sides of the flow channel forming master. It is in the ceremony record head.
  • the pressure generating chambers can be arranged at a high density without impairing the rigidity of the partition walls of the pressure generating chambers, the density of the heads can be increased.
  • the film constituting the HE element is provided in an I flffi force generation chamber and finally removed.
  • the ink jet recording head is characterized in that the film is formed on the substrate.
  • the sacrifice layer is filled in the pressure generating chamber, so that the piezoelectric element can be easily formed by a thin film process in a region facing the pressure generating chamber.
  • the depth of the BJ force generation chamber is between 20 ⁇ m and 10 °. Inkjet record is in the record head.
  • the rigidity of the partition wall is maintained by forming the pressure generating chamber at a predetermined depth.
  • the ink according to any one of the first to thirty aspects, further comprising a nozzle communication path for communicating the BE force generation chamber with the nozzle opening. It's in the jet-style self-recorded head.
  • ink is ejected from the pressure generating chamber via the nozzle communication passage and the nozzle opening.
  • the nozzle continuous fiber is provided at a longitudinal end side of the knitting self-pressure generating chamber opposite to the laser nozzle.
  • the ink is stably supplied to the pressure generating chamber from the reservoir, and the ink is satisfactorily discharged from the nozzle opening.
  • the self-nozzle is formed by removing the diaphragm. is there.
  • the nozzle series MS ⁇ can be easily formed.
  • a thirty-fourth aspect of the present invention is the ink jet recording head according to the thirty-third aspect, wherein an inner surface of the nozzle communication passage is covered with an adhesive.
  • a thirty-fifth aspect of the present invention is the liquid crystal display device according to any one of the twenty-first to thirty-fourth aspects, wherein the flow path forming member comprises an S 0 I substrate having a silicon layer on both surfaces of an insulator layer.
  • the generation chamber is formed on one of the silicon layers constituting the S0I fiber, and the surface of the front B layer is the etching stop surface. .
  • the etching is easily and reliably stopped by the insulator layer.
  • each of the silicon layers constituting the SOI substrate has a different thickness, and the pressure generating chamber is formed.
  • the ink jet type head is characterized in that the silicon layer is thinner than the thickness of the other silicon layer.
  • the pressure generation chamber is formed relatively shallow, so that the rigidity of the partition that divides the pressure generation chamber is improved and crosstalk is suppressed.
  • a nozzle communication path that communicates the pressure generating chamber with the nozzle opening is one of the silicon elements constituting the S 0 I ⁇ .
  • An ink jet recording head characterized by being formed in a layer. In the thirty-seventh aspect, since the nozzle array is formed in the same layer as the pressure generating chamber, the head can be downsized.
  • a nozzle communication passage that communicates the pressure generating chamber with the nozzle opening is configured so as to form the S 0 I fiber.
  • a nozzle opening formed in the other silicon layer; and the nozzle opening is provided on the surface side of the other silicon layer in the ink jet recording head.
  • an ink jet recording head of a type having a nozzle opening on the surface opposite to the piezoelectric element opposite to the piezoelectric element is realized.
  • a sealing member having a space for sealing the piezoelectric element therein is bonded on the vibration plate.
  • An ink jet recording head characterized in that it is formed.
  • a type of inkjet recording head having a nozzle opening in accordance with the piezoelectric element if rule is realized. Also, a single sheet can perform both the sealing function and the nozzle function.
  • the nozzle connection is extended from a longitudinal end portion of the force generating chamber, and the nozzle opening is formed on an end face side opposite to the flow path type St.
  • the ink jet type recording head is provided with the ink jet recording head.
  • an ink jet recording head of a type having a nozzle opening on the end face side of the flow path forming substrate is realized.
  • the nozzle connection extends to an end face of the flow path, and the nozzle plate having the nozzle opening is provided on an end face of the formation substrate.
  • An ink jet recording head characterized by being joined.
  • the nozzle opening can be relatively easily formed on the end face side of the flow path forming sickle.
  • the nozzle opening is formed by removing a part of the silicon layer in a thickness direction at an end of the nozzle communication passage. It is in the ink jet ceremony 3 heads that are the feature.
  • the nozzle opening can be relatively easily formed in the flow path forming substrate together with the pressure generating chamber.
  • a forty-third aspect of the present invention is the ink jet recording head according to any one of the thirty-ninth to forty-second aspects, wherein an IC is integrally formed on the sealing substrate. It is in.
  • Such a fourth third aspect I. sealing Shahan joined to the passage forming substrate
  • the S ⁇ process is simplified by integrally forming
  • the number of parts can be reduced, and the cost can be reduced.
  • a forty-fourth aspect of the present invention is directed to an ink jet recording head according to any one of the twenty-first to forty-third aspects, wherein the plane orientation of the silicon layer is a (01) plane. You.
  • the reservoir and the like can be formed with high precision even by wet etching.
  • a forty-fifth aspect of the present invention is the ink-jet recording head according to the forty-fourth aspect, wherein the longitudinal direction of the BJ force generating chamber is the ⁇ 110> direction. It is in.
  • the pressure generating chamber can be formed with high accuracy and high density.
  • the main surface of the silicon layer in which the pressure generating chamber is formed has a (110) orientation, and the BE force generation
  • the ink jet recording head is characterized in that the longitudinal direction of the chamber is in the 1-1-2 direction.
  • the pressure generating chamber can be formed with high accuracy and high density.
  • a forty-seventh aspect of the present invention resides in an ink jet recording apparatus including the ink jet recording head according to any one of the first to forty-sixth aspects. According to the aspect of 47, it is possible to realize an ink jet recording apparatus in which the ink ejection performance of the head is improved and the density is increased.
  • an ink jet recording method in which a piezoelectric element that generates a pressure change in the pressure generation chamber via a diaphragm is formed in a region facing the pressure generation chamber formed in the flow path forming substrate.
  • a silicon layer made of single-crystal silicon is formed.On the contrary, a step of forming an I?
  • F3ff force generation chamber without penetrating in a thickness direction thereof, Filling a sacrifice layer, forming the diaphragm on the flow path forming substrate on the sacrifice layer side, and forming a ttri-self piezoelectric element in a region facing the pressure generation chamber; Removing the layer filled in the chamber.
  • the pressure generating chamber can be formed relatively easily without penetrating the flow path forming substrate.
  • the formation layer comprises an SO 1 layer having a silicon layer made of single-crystal silicon on both surfaces of an insulator layer, and a self-pressure-generating nitride is formed.
  • the forming step there is provided a method for manufacturing an ink jet recording head, wherein the pressure generating chamber is formed by patterning one silicon layer of the SOI substrate.
  • the pressure generating chamber can be formed relatively easily without penetrating the flow path plate.
  • a nozzle connecting from the longitudinal end of the pressure generating chamber to the nozzle opening is formed.
  • the pressure generation chamber and the nozzle communication path can be formed simultaneously on the flow path forming substrate.
  • a feature of the invention is a method of manufacturing an ink jet recording head.
  • the sacrificial layer can be relatively easily and reliably removed by performing the edge etching through the ink stream.
  • the sacrificial layer is removed :! ⁇ Is a method for manufacturing an ink jet recording head, which is performed by etching through an opening which penetrates the diaphragm and exposes the sacrificial layer.
  • etching can be performed relatively easily and reliably by etching through the opening.
  • the step of filling the sacrificial layer is performed at least in a region of the flow path forming substrate corresponding to the pressure generating chamber.
  • the sacrificial layer can be easily and reliably filled in the pressure generating chamber.
  • a fifty-fourth aspect of the present invention is the method for producing an ink jet recording head according to the fifty-third aspect, wherein the sacrificial layer is formed by a jet molding method.
  • the sacrifice can be partially formed, and the sacrifice layer can be filled relatively easily.
  • the self-sacrifice layer is Lindoff.
  • BPSG ⁇ Silicon
  • Inkujietsuto type to record Uz de to feature to be selected from the group consisting of silicon oxide (S i O x) and silicon nitride (S i N x).
  • a fifty-sixth aspect of the present invention is the liquid crystal display device according to any one of the forty-eighth to fifty-fifth aspects, wherein an insulating layer is formed as the diaphragm and a piezoelectric layer and a piezoelectric layer are formed on the insulating layer.
  • 3 ⁇ 4®1 The present invention provides a method for manufacturing an ink jet type head characterized in that a semiconductor element is formed by forming the next layer and performing evening.
  • the piezoelectric element in the flexural vibration mode can be formed relatively easily.
  • a fifty-seventh aspect of the present invention is the method for manufacturing an ink jet recording head according to the fifty-sixth aspect, wherein the vibration plate also serves as the lower electrode layer.
  • the structure of the head can be simplified and the number of manufacturing steps can be reduced. ⁇
  • the pressure generation chamber and the ink flow path are formed by anisotropic etching. In the method of manufacturing the head.
  • the pressure generating chamber can be formed with high precision and high density.
  • a fifty-ninth aspect of the present invention is directed to a flow path forming substrate formed of a silicon single crystal substrate and defining a pressure generating chamber communicating with a nozzle opening for discharging ink, and a diaphragm provided on one surface of the flow path forming substrate.
  • a flow path forming substrate formed of a silicon single crystal substrate and defining a pressure generating chamber communicating with a nozzle opening for discharging ink, and a diaphragm provided on one surface of the flow path forming substrate.
  • the pressure generating chambers can be formed relatively easily and with high precision at high density.
  • the step of forming the space portion includes a first sword forming step of forming a polycrystalline silicon film on the one side surface of the flow path forming substrate.
  • an etching hole is formed by removing another part of a region of the vibration plate corresponding to the knitting pressure generating chamber forming portion in the knitting flow path forming portion. ?
  • a portion of the polycrystalline silicon film where boron is diffused is not removed by anisotropic wet etching, so that a pressure chamber having a desired shape can be easily formed with high precision.
  • boron is diffused so as to have an element content density of 1 ⁇ 10 2 Q elements / cm 3 or more.
  • boron is diffused so as to have an element content density of 1 ⁇ 10 2 Q elements / cm 3 or more.
  • the etching is surely stopped at the portion where the boron is diffused.
  • the boron diffusion step is a region of the polycrystalline silicon film corresponding to a force-generating portion in the knitting structure.
  • boron can be diffused relatively easily into a predetermined region.
  • the 63rd aspect of the present invention in any one of the 59th to 62nd aspects, further comprises a reservoir forming step of forming a reservoir from the other side surface of the flow path forming substrate to the pressure generating chamber.
  • the reservoir can be formed relatively easily and with high precision.
  • the destruction formation is entirely It is composed of single-crystal silicon
  • the reservoir formation ⁇ is composed of a third odor that forms a cognition on the other side of the anthropomorphic plate, Forming a hole for etching by removing a region corresponding to the portion where the laser is to be formed, and forming the other side of the substrate by anisotropic wet etching from the hole for etching.
  • a sixty-fifth aspect of the present invention is the S 0 I piece according to the sixty-fourth aspect, wherein the formed fiber is a single-crystal silicon on the other side and an insulating layer in the center.
  • the force generating chamber is formed so that the bottom of the force generating chamber is defined by the insulating layer, and the forming step is performed on the other side of the flow path.
  • the third sword process to form a protective film on the surface, and the flow path shape of the Hosatsu A hole forming step of forming an etching hole by removing a region corresponding to a reservoir forming portion on the opposite side, and insulating the other side surface of the self-flow path forming substrate from the etching hole by anisotropic wet etching.
  • a method of manufacturing an ink jet recording head comprising: an insulating layer removing step of forming a formation portion.
  • the reservoir can be formed relatively easily and reliably, in contrast to the »fij ⁇ pattern consisting of S O I.
  • the protection is selected from the group consisting of silicon nitride, silicon dioxide, and silicon zirconium.
  • Ink jet type head is in the manufacturing method.
  • the holding dragon by forming the holding dragon with a predetermined material, it is possible to surely form the lizano "" using the holding mosquito as a mask.
  • a sixty-seventh aspect of the present invention is directed to the ink according to any one of the sixty-third to sixty-sixth aspects, wherein the pressure generating chamber forming step and the laser and etching step are performed simultaneously.
  • the method of manufacturing a recording head is directed to the ink according to any one of the sixty-third to sixty-sixth aspects, wherein the pressure generating chamber forming step and the laser and etching step are performed simultaneously.
  • the manufacturing process is simplified, and the manufacturing cost can be reduced.
  • a step of forming a protective film for protecting the piezoelectric element is performed. And a method for manufacturing an ink jet recording head.
  • the hole forming step is the other of the elastic film and the protective film, the other one of the regions corresponding to the aforementioned SEE force generating and forming part in the above-mentioned shape.
  • the i3 ⁇ 4g method of the ink jet expression record 3 characterized in that a part is removed.
  • the etching hole can be reliably formed without breaking the piezoelectric element.
  • the step of forming the space portion comprises the step of forming the space portion, wherein the flow path forming substrate is made of a silicon single crystal in a crystal plane direction (100).
  • the flow path forming substrate is made of a silicon single crystal in a crystal plane direction (100).
  • the pressure generating chambers can be formed relatively easily and with high precision at high density.
  • a seventeenth aspect of the present invention is the method for manufacturing an ink jet recording head according to the seventy aspect, wherein the groove is formed to be shallower than the depth of the pressure generating chamber.
  • the pressure generating chamber can be formed more easily and with higher precision by anisotropic etching.
  • a 72nd aspect of the present invention is the 59th aspect, wherein the step of forming the space portion comprises: First etching in which a part of the surface of the flow path forming substrate is etched so that a plurality of columnar portions remain:! ⁇ And altering the chemical properties of the plurality of columnar portions, and altering and flattening a step of flattening a part of the surface, wherein the step of forming the pressure generating chamber comprises: A hole forming step of forming an etching hole by removing another part of the region corresponding to the BE force generation chamber forming portion of the medullar pylon, and anisotropic wet etching from the etching hole. And a second etching I function as a pressure generating chamber by etching the plurality of columnar portions whose chemical characteristics have been altered by the above method.
  • a seventy-third aspect of the present invention is the manufacturing method of an ink jet recording head according to the seventh aspect, wherein the altered flattening step includes a thermal oxidation step of thermally oxidizing the plurality of columnar portions. In the way.
  • the columnar portion can be easily and reliably flattened by thermally oxidizing the columnar portion.
  • a seventy-fourth aspect of the present invention is directed to the ink jet apparatus according to the seventy-third aspect, characterized in that the altered flattening step includes a sacrifice layer filling step of filling a gap between the three-third columnar portions with a sacrifice layer.
  • the expression is in the ⁇ g method of the head.
  • the columnar part can be easily flattened by sacrifice.
  • a fifty-seventh aspect of the present invention is the liquid crystal display device according to any one of the seventy-second to seventy-fourth aspects, wherein the plurality of columnar portions are formed on a part of the surface in a substantially uniform arrangement.
  • the manufacturing method of the ink jet recording head is described below.
  • the columnar portion can be reliably removed by etching.
  • the knitting 3 is such that each of the plurality of columnar portions has a cross-sectional area on the surface side larger than a cross-sectional area on the bottom side. The method is described in the ink jet head.
  • the columnar portion can be relatively easily flattened and etched. Can be reliably removed.
  • a seventy-seventh aspect of the present invention is the method for manufacturing an ink jet recording head according to any one of the seventh to seventh aspects, wherein ⁇ of the pressure generating chamber is substantially a hexahedron. is there.
  • the pressure generating chamber can be formed relatively easily and with high precision by etching.
  • a thirty-eighth aspect of the present invention is a flow channel forming blind, comprising a pressure generating chamber formed of a silicon single crystal ingot having a crystal plane orientation (100) and communicating with a nozzle opening for discharging an ink;
  • a method of manufacturing an ink jet recording head including a lower piezoelectric element, a piezoelectric layer, and a piezoelectric element composed of an upper dielectric element, which are provided on one surface of the opposite side through a diaphragm, Forming a polycrystalline silicon film on the front surface of the flow path forming substrate having a (100) plane orientation including a front surface and a back surface, and excluding a region to be the pressure generating chamber, And a step of diffusing polon in the vicinity of the inner surface of the silicon single crystal substrate; and forming a first film on the knitted polycrystalline silicon film to supply an etching solution to a portion where the pressure generating chamber is formed.
  • a step of forming the pressure generating chamber by etching the surface of the crystal substrate by anisotropic jet etching, and a step of forming a second film on the first film and closing the etching hole A method for manufacturing an ink jet recording head characterized by comprising:
  • the manufacturing process can be simplified, and the pressure generating chamber can be formed accurately.
  • a flow channel forming countermeasure comprising a pressure generating chamber formed of a silicon single crystal rope having a crystal plane orientation (100) and communicating with a nozzle opening for discharging ink.
  • ⁇ ⁇ Form
  • a piezoelectric element composed of a lower layer, a piezoelectric layer, and an upper layer provided on one side through a diaphragm, a front side and a rear side.
  • Bii force generating chamber to form a polycrystalline silicon film of a predetermined pattern; Forming a first film on a silicon film and on the surface of the silicon single crystal substrate, and forming an etching hole in the first film for supplying an etching liquid to a portion where the pressure generating chamber is to be formed; And a step of supplying an etching liquid to a portion where the pressure generating chamber is to be formed through the etching hole, thereby forming the predetermined pattern of the polycrystalline silicon film etched by isotropic wet etching. Forming a pre-BE force generation chamber by etching the surface of the silicon single crystal substrate by anisotropic jet etching, and forming a second film on the first film. I And a step of closing the etching hole by using the above method.
  • the manufacturing process can be simplified, and the pressure generating chamber can be formed accurately.
  • An eightyth aspect of the present invention is a method for forming a flow channel, comprising: a silicon single crystal substrate having a crystal plane orientation (100) and defining a pressure generation chamber communicating with a nozzle opening for discharging ink;
  • a method for manufacturing an ink jet recording head comprising a piezoelectric element comprising a piezoelectric layer and an upper electrode film provided on one side of a surface opposite to the form ⁇ 5 via a vibration plate, Forming a protective layer on the surface of the flow path forming substrate having a (100) plane orientation including a back surface, and forming an opening in a region of the protective layer to be the pressure generating chamber; Forming a first layer on the i3 ⁇ 4 layer; forming a first layer on the i3 ⁇ 4 layer; forming a first layer on the i3 ⁇ 4 layer; The etching hole communicating with the periphery of the sacrificial layer Forming, removing the sacrificial layer by supplying an etching liquid
  • the manufacturing process can be simplified, and the pressure A generation room can be formed.
  • a groove is formed around an opening of the protective layer.
  • the manufacturing process can be simplified, and the pressure generating chamber can be formed with high accuracy.
  • the pressure generation chamber is formed in an elongated shape, and the etching hole is formed in a longitudinal direction of the front BEE force generation chamber.
  • a method of manufacturing an ink jet recording head characterized by comprising a slit formed along the line.
  • the etching hole is formed of a slit, the rectangular shape can be reliably etched through the etching hole, and the pressure generating chamber can be formed easily and accurately.
  • An 83rd aspect of the present invention is the inkjet recording method according to any one of the 76th to 79th aspects, wherein the etching hole comprises a plurality of small holes formed at predetermined intervals. In the head.
  • the etching hole is composed of a plurality of small holes, the shape can be surely etched through the etching hole, and the pressure generating chamber can be easily and accurately formed. Can be.
  • An eighty-fourth aspect of the present invention is directed to a piezoelectric element comprising: a pressure generating chamber formed in a forming fiber; and a piezoelectric element including a lower electrode, a piezoelectric layer, and an upper electrode on one surface side of the flow path forming substrate via a diaphragm.
  • silicon is formed on both sides of a polysilicon layer having etching selectivity by doping boron into a region other than the region where the pressure generating chamber is formed.
  • the pressure When the polysilicon layer in a region serving as the generating chamber Pas evening to-learning Forming the pressure generating chamber by etching the one silicon layer using the polysilicon layer as a mask.
  • the pressure generating chamber can be relatively easily formed by selectively etching the ⁇ shape through the ink inlet. Further, since the pressure generating chamber and the like can be formed by etching from the surface opposite to the piezoelectric element opposite to the shape, the protection of the piezoelectric layer is improved and the working efficiency is improved.
  • At least the pressure is set at a bonding surface side of the other silicon layer with the polysilicon layer.
  • a method according to an ink jet type head comprising a step of doping boron into a surface layer in a region facing the generation chamber.
  • FIG. 1 is an exploded view schematically showing an ink jet recording head according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view showing an inkjet recording head according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a manufacturing process of an ink jet recording head according to Wei Form 1 of the present invention.
  • FIG. 4 is a cross-sectional view showing a step of manufacturing the inkjet recording head according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of an ink jet type head according to Wei Form 1 of the present invention.
  • FIG. 6 is a flowchart illustrating another manufacturing process of the inkjet recording head according to the first embodiment of the present invention.
  • FIG. 7 shows another inkjet recording head according to the fifth mode 1 of the present invention. It is sectional drawing which shows a process.
  • FIG. 8 is a cross-sectional view showing another process of the ink jet head according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing another manufacturing step of the ink jet type head according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing another manufacturing process of the inkjet recording head according to Embodiment 1 of the present invention.
  • FIG. 11 is a cross-sectional view showing another manufacturing step of the inkjet recording head according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing another manufacturing process of the ink jet recording head according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing another manufacturing step of the inkjet recording head according to Embodiment 1 of the present invention.
  • FIG. 14 is a sectional view showing another manufacturing process of the ink jet recording head according to the first recommendation of the present invention.
  • FIG. 15 is a sectional view showing an ink jet recording head according to Embodiment 2 of the present invention.
  • FIG. 16 is a sectional view showing an ink jet recording head according to Embodiment 3 of the present invention.
  • FIG. 17 is an exploded perspective view schematically showing an ink jet recording head according to Embodiment 4 of the present invention.
  • FIG. 18 is a sectional view showing an ink jet recording head according to Embodiment 4 of the present invention.
  • FIG. 19 is a cross-sectional view showing another manufacturing process of the inkjet recording head according to Embodiment 4 of the present invention.
  • FIG. 20 is a sectional view showing another example of the ink jet recording head according to the fourth embodiment of the present invention.
  • FIG. 21 is an exploded perspective view schematically showing an inkjet recording head according to Embodiment 5 of the present invention.
  • 22nd is a sectional view and a top view showing an ink jet recording head according to Embodiment 5 of the present invention.
  • FIG. 23 is a cross-sectional view showing a step of manufacturing an ink jet recording head according to the fifth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing the manufacturing process of the ink jet recording head according to the fifth embodiment of the present invention.
  • FIG. 25 is a cross-sectional view showing a step of manufacturing the ink jet recording head according to Embodiment 5 of the present invention.
  • FIG. 26 is a sectional view showing another example of the ink jet recording head according to Embodiment 5 of the present invention. '
  • FIG. 27 is a flowchart for explaining another manufacturing process of the ink jet recording head according to the real expansion state 5 of the present invention.
  • FIG. 28 is a cross-sectional view showing another manufacturing step of the ink jet recording head according to Example 5 of the present invention.
  • FIG. 29 is a cross-sectional view showing another manufacturing step of the ink jet recording head according to Embodiment 5 of the present invention.
  • FIG. 30 is a sectional view showing another manufacturing step of the ink jet recording head according to the fifth embodiment 5 of the present invention.
  • FIG. 31 is a cross-sectional view showing another manufacturing step of the ink jet recording head according to Embodiment 5 of the present invention.
  • FIG. 32 is a schematic plan view of the ink jet recording head of FIG.
  • FIG. 33 is a plan view showing an arrangement example of a positive resist.
  • FIG. 34 is a schematic diagram showing an example of a cross-sectional shape of a plurality of columns.
  • FIG. 35 is a schematic diagram showing a cross section ⁇ e of a plurality of pillars after thermal oxidation.
  • FIG. 36 is a plan view showing another arrangement example of the positive resist.
  • FIG. 37 is a plan view showing another arrangement example of the positive resist.
  • FIG. 38 is a plan view showing another example of the arrangement of the positive resist.
  • FIG. 39 is a sectional view showing an ink jet recording head according to Embodiment 6 of the present invention.
  • FIG. 40 is an exploded perspective view schematically showing an ink jet recording head according to Embodiment 7 of the present invention.
  • FIG. 41 is a cross-sectional view showing an ink jet recording head according to the seventh aspect of the present invention.
  • FIG. 42 is a cross-sectional view showing a step of the ink jet recording head according to Embodiment 7 of the present invention.
  • FIG. 43 is a cross-sectional view showing a step of manufacturing the ink jet recording head according to Embodiment 7 of the present invention. ⁇
  • FIG. 44 is a schematic perspective view for explaining a manufacturing process of the ink jet recording head according to the seventh embodiment of the present invention.
  • FIG. 45 is a sectional view showing another example of the ink jet recording head according to the seventh embodiment of the present invention. .
  • FIG. 46 is a perspective view schematically showing an ink jet recording head according to Embodiment 8 of the present invention.
  • FIG. 47 is a sectional view showing an ink jet recording head according to Embodiment 8 of the present invention.
  • FIG. 48 is a top view and a cross-sectional view showing a step of an ink jet recording head according to Embodiment 8 of the present invention.
  • FIG. 49 is a top view and a sectional view showing the steps of manufacturing the ink jet recording head according to Embodiment 8 of the present invention.
  • FIG. 50 is a schematic cross-sectional view for explaining the 3t process of the ink jet recording head according to the embodiment W of the present invention.
  • FIG. 51 is a sectional view showing another example of the ink jet recording head according to Embodiment 8 of the present invention.
  • FIG. 52 is a sectional view showing an ink jet recording head according to Embodiment 9 of the present invention.
  • FIG. 53 is a cross-sectional view showing a step of the inkjet recording head according to Embodiment 9 of the present invention.
  • FIG. 54 shows a manufacturing process of the ink jet recording head according to the actual expansion 9 of the present invention.
  • FIG. 55 is a top view showing another example of the inkjet recording head according to the actual JS embodiment 9 of the present invention.
  • FIG. 56 is a sectional view showing an ink jet recording head according to the tenth embodiment of the present invention.
  • FIG. 57 is a cross-sectional view showing a manufacturing process of the inkjet type head according to the UK mode 10 of the present invention.
  • FIG. 58 is a cross-sectional view showing the difficulty of the ink jet recording head according to Embodiment 10 of the present invention.
  • FIG. 59 is a sectional view showing an ink jet recording head according to the eleventh embodiment of the present invention.
  • FIG. 60 is a cross-sectional view showing an S-step of the ink jet recording head according to Embodiment 11 of the present invention.
  • FIG. 61 is a cross-sectional view showing a modified example of the ink jet type head according to the thigh condition 11 of the present invention.
  • FIG. 62 is a cross-sectional view of an ink jet recording head according to another embodiment of the present invention.
  • FIG. 63 is a schematic view of an ink jet recording apparatus according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an exploded perspective view showing an ink jet recording head according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal view of one pressure generating chamber of the ink jet recording head. It is a figure showing a section structure.
  • the flow path forming substrate 10 is a silicon single crystal plate having a plane orientation (110) in the present embodiment B.
  • a material having a thickness of about 150 / m to 1 mm is usually used.
  • ⁇ ⁇ A pressure generating chamber 15 partitioned by a plurality of partition walls 14 is formed on one surface of the formation substrate 10 by anisotropically etching a silicon single crystal substrate. This anisotropic etching may be performed by either wet etching or dry etching.
  • the pressure generating chamber 15 is formed shallow by etching (half-etching) the silicon single crystal plate halfway in the thickness direction. Have been. Half etching is performed by adjusting the etching time.
  • a nozzle 1 hole 16 communicating with a nozzle opening described later and an ink communicating hole 17 communicating with a reservoir described later are formed at the bottom of each longitudinal end of each pressure generating chamber 15. ing.
  • the nozzle communicating sieve 16 and the ink hole 17 are smaller than the width of the pressure generating chamber 15 and have a diameter penetrating to the other surface side, and anisotropically etching from the other surface side. Is formed.
  • the nozzle plate 20 provided with the ink supply communication port 22 is adhered via an adhesive or a heat welding film.
  • the nozzle plate 20 has a thickness of, for example, 0.1 to; L mm and a coefficient of linear expansion of 300 ° C. or less, for example, 2.5 to 4.5 [x10 ” 6 / °.
  • the nozzle plate 20 covers the flow path forming substrate 10 on one side, and also serves as a reinforcing plate for protecting the silicon single crystal substrate from impact and external force.
  • the size of the pressure generating chamber 15 for applying the ink droplet ejection pressure to the ink and the size of the nozzle opening 21 for ejecting the ink droplet are optimal according to the amount of the ejected ink droplet, the ejection speed, and the ejection frequency. Be transformed into For example, when recording 360 ink drops per inch, the nozzle opening 21 needs to be formed with a diameter of several tens of meters with high precision.
  • the common ink chamber 30 forms the peripheral wall of the reservoir 31 which is a common ink chamber common to the plurality of pressure generating chambers 15, and has an appropriate number according to the nozzle opening number and the ink droplet ejection frequency. It is made by punching a stainless steel plate with a thickness. In the present embodiment, the thickness of the common ink 30 is 0.2 mm.
  • the ink chamber side plate 40 is made of stainless steel, and one surface of the ink chamber side plate 40 constitutes one wall surface of the reservoir 31.
  • the ink chamber side plate 40 has a half on a part of the other surface.
  • the thin wall 41 is formed by forming the concave portion 40a by etching.
  • the thin wall 41 absorbs the pressure generated at the time of ink droplet ejection toward the side opposite to the nozzle opening 21, and is connected to the other pressure generating chamber 15 via the reservoir 31. To prevent unnecessary positive or negative pressure from being applied.
  • the thickness of the ink chamber side plate 40 is set to 0.2 mm and a part of the thickness is set to 0.2 mm in consideration of the rigidity required when the ink inlet 23 and the external ink supply means are connected.
  • the thin wall 41 has a thickness of 0.2 mm, the thickness of the ink chamber side plate 40 may be 0.02 mm from the beginning in order to omit the formation of the thin wall 41 by half etching.
  • the reservoir 31 formed by the common ink chamber forming substrate 30 and the ink chamber side plate 40 and the respective pressure generating chambers 15 and the ink supply communication ports 22 formed in the nozzle plate 20 are connected to each other.
  • the ink is supplied from the reservoir 31 to each of the pressure generating chambers 15 through the ink supply communication port 22.
  • the ink supplied to the reservoir 31 is supplied from an ink inlet 23 formed in a region of the nozzle plate 20 facing the reservoir 31.
  • the pressure generating chamber 1 5 is formed, on ⁇ formed ⁇ 1 0 is, for example, made of an insulating layer such as an oxide Jill Koniumu (Z r 0 2), the elastic membrane 5 0 thick L ⁇ 2 m Are provided.
  • the elastic film 50 forms one wall surface of the pressure generating chamber 15 on one surface.
  • the thickness is, for example, approximately 0.5 / 111 lower than 60 mm, and the thickness is, for example, approximately 1/5.
  • a piezoelectric element having a thickness of ⁇ m and a thickness of, for example, about 0.1 ⁇ m are laminated to form a piezoelectric element 300 by a process described later. .
  • the piezoelectric element 300 refers to a portion including the lower electrode 60, the piezoelectric film 70, and the upper electrode film 80.
  • any one of the piezoelectric elements 300 is set to a common # 1, and the other ⁇ and the piezoelectric film 70 are patterned for each of the pressure generating chambers 15.
  • a portion which is constituted by one of the patterned electrodes and the piezoelectric film 70 and in which a piezoelectric strain is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion 320.
  • the lower element 60 is common to the piezoelectric element 300 and the upper element ⁇ S80 is an individual element S for the piezoelectric element 300, but this is reversed for convenience of the drive circuit and wiring. No problem.
  • the piezoelectric active portion is formed for each pressure generating chamber.
  • the piezoelectric The element 300 "0" and the elastic film which is displaced by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator.
  • the step of forming the pressure generating chamber 15 in the first step 10 formed of a silicon single crystal plate and the step of forming the piezoelectric element 300 in the region corresponding to the pressure generating chamber are the third step.
  • FIGS. 3 and 4 are cross-sectional views of the pressure generating chamber 15 in the width direction
  • FIG. 5 is a cross-sectional view of the pressure generating chamber 15 in the longitudinal direction.
  • the pressure is reduced by performing anisotropic etching using a mask of a predetermined shape made of, for example, silicon oxide, on a silicon single crystal plate having a ⁇ formation / reaction of 10 0.
  • a generation chamber 15 is formed.
  • the pressure generating chamber 15 is formed by half-etching the channel shape 10 made of single-crystal silicon having a plane orientation (110). Therefore, the (110) plane constituting the bottom surface of the pressure generating chamber 15 is an etching staff for anisotropic etching.
  • the Nada layer 90 is embedded in the pressure generating chamber 15 formed in the flow path forming substrate 10.
  • the sacrificial layer 9 other than the pressure generating chamber 15 is formed. 0 was formed by chemical mechanical polishing (CMP).
  • the material of such a fall layer 90 is not particularly limited, for example, polysilicon or Lindo Fluoride Silicon (PSG) may be used, and in the present embodiment, PSG having a relatively high etching rate is used.
  • PSG polysilicon or Lindo Fluoride Silicon
  • the method for forming the Nada layer 90 is not particularly limited.
  • a so-called gas destruction is performed by colliding a super-dreadless piece of l ⁇ m or less at high speed with the pressure of a gas such as helium (He).
  • a method called a position method or a jet molding method may be used.
  • the sacrificial layer 90 can be partially formed only in the region corresponding to the pressure generating chamber 15.
  • an elastic film 50 is formed on the formation layer 10 and the sacrificial layer 90.
  • the particles are made of zirconium oxide by thermal oxidation, for example, in a diffusion furnace at 500 to 1200 ° C. ' ⁇ I made 50.
  • the material of the elastic film 50 removes the sacrificial layer 90 to be described later.
  • the material is not particularly limited as long as it is not etched in the process, and may be, for example, silicon oxide.
  • a piezoelectric element 300 is formed on each of the pressure generating chambers 15 at a height of 5 °.
  • a lower layer 60 is formed by sputtering. Platinum or the like is preferable as the material of the lower 60%. This is because the piezoelectric film 70 described later, which is formed by a sputtering method or a sol-gel method, is fired at about 600 to 100 ° C. in an air atmosphere or an oxygen atmosphere after the sword. This is because it is necessary to crystallize. That is, the lower SIS material 60 must be able to maintain conductivity under such high temperature and oxidizing atmosphere.
  • zircon titanate ⁇ ⁇ & ( ⁇ ⁇ ⁇ ) as the piezoelectric film 70 In the case of using Pb, it is desirable that the conductivity is not largely changed by the diffusion of lead oxide. For these reasons, platinum is preferable.
  • the piezoelectric film 70 is sworded.
  • a so-called sol in which a pot organic matter is dissolved and dispersed in a catalyst is applied, dried, gelled, and then fired at a high temperature to obtain a piezoelectric film 70 made of a metal oxide. It was formed using the Rugenore method.
  • the material of the piezoelectric film 7 for example, B a T i O 3, (B a, S r) T i 0 3, PMN- ⁇ ⁇ , ⁇ ⁇ ⁇ - ⁇ ⁇ or S r ⁇ i 2 ⁇ a 2 ⁇ 9, etc.
  • the method of the piezoelectric film 70 is not particularly limited, and may be, for example, a spin coating method or a spin coating method such as a MOD method (organic metal thermal coating decomposition method).
  • a method of crystal growth at a low temperature by a high-pressure treatment method in an aqueous solution of alkali metal may be used.
  • the piezoelectric film 70 is formed of a crystal. Is formed in a columnar shape.
  • the preferred orientation refers to a state in which the crystal orientation direction is not disordered and a specific crystal plane is oriented in a substantially constant direction.
  • a thin film having a columnar crystal means that substantially columnar crystals are gathered in the plane direction with the central axis substantially aligned with the thickness direction. Means a state where a thin film is formed.
  • a thin film formed of preferentially oriented granular crystals may be used. Note that the thickness of the piezoelectric film formed in the thin film process is generally 0.2 to 5 m.
  • the upper electrode 80 may be a material having high conductivity, and may be made of a number of metals such as aluminum, gold, nickel, and platinum, and a conductive oxide. In the present embodiment, platinum has a strong odor due to sputtering.
  • a protective film 100 is formed so as to cover at least the piezoelectric film 70.
  • the nozzle communication hole 16 and the ink communication hole 17 are formed by performing anisotropic etching from the other surface side.
  • the anisotropic etching for forming the nozzle communication holes 16 and the ink holes 17 should be dry etching to make the nozzle communication holes 16 and the ink communication holes 17 vertical. Is desirable. It should be noted that there is no particular problem even if the nozzle communication hole 16 and the ink communication hole 17 are formed before the protection 100 is exposed, that is, after FIG. 4 (d).
  • the sacrificial layer 90 is removed from the nozzle communication hole 16 and the ink hole 17 by gate etching or etching with steam. Remove 0.
  • the sacrificial layer 90 is etched by a fluorine zk solution. It should be noted that etching using polysilicon can be performed using a mixed aqueous solution of hydrofluoric acid and nitric acid or an aqueous solution of potassium hydroxide.
  • the pressure generating chamber 15 and the piezoelectric element 300 are formed.
  • the ink jet recording head configured as described above takes in ink from an ink inlet 23 connected to an external ink supply means (not shown), and fills the inside with ink from the reservoir 31 to the nozzle opening 21. After that, according to the recording signal from an external drive circuit (not shown), 3 ⁇ 4 ⁇ is applied between the lower m® 60 and the upper power 80, and the elasticity 50, the lower power 60, and the piezoelectric film 70 By bending and deforming the pressure, the pressure in the pressure generating chamber 15 increases, and ink droplets are ejected from the nozzle opening 21.
  • each pressure generating chamber 15 is formed without penetrating the substrate, the rigidity of the partition wall 14 of each pressure generating chamber 15 can be sufficiently increased, and Ink droplets can be effectively discharged. For this reason, a large-diameter silicon wafer can be used without being restricted by silicon single crystal ⁇ KiP, and it can be applied to a large head such as a line printer.
  • the depth of the pressure generating chambers 15 can be freely set according to the etching time, the compliance of the partition walls can be controlled, and the time required for manufacturing can be reduced. Therefore, low cost 3 ⁇ 41 can be realized.
  • FIG. 7 is a flowchart illustrating another example of the method, in particular, a step of forming the pressure generating chamber 15.
  • FIGS. 7 to 14 are schematic diagrams for sequentially explaining the steps illustrated in FIG. It is a figure. 7 to 14, (a) is a longitudinal sectional view of the pressure generating chamber, and (b) is a sectional view taken along line bb of (a).
  • a pressure generating chamber is formed without using a sacrificial layer.
  • an object to be processed is first prepared (STEP 1).
  • a single-crystal silicon layer having a crystal orientation of, for example, (100) is used as the template 10.
  • the po-ly-Si (polycrystalline silicon) film 131 is enlarged (STEP 2).
  • the po 1 y—Si film 131 is played until its thickness becomes 0.1 to l zm.
  • a region on the upper surface of the poly-Sifl A mask film 132 is formed in step (STEP 3).
  • the mask film 132 is, for example, a ⁇ Si02 film having a thickness of, for example, 1 to 2 m.
  • a high-concentration boron treatment is performed on the mask film 132 and the poly-Si film 131 (STEP4), and the region of the poly-Si film 131 where the mask film 1'32 is not formed (STEP4).
  • the high-concentration polon is diffused in the region (excluding the region corresponding to the pressure chamber forming portion) in the flow path forming substrate 10.
  • the high-polarization treatment is performed so that the po 1 y-Si film 131 in the region becomes a boron-containing film 131 b having a boron-containing density of 1 ⁇ 10 2 Q / cm 3 or more.
  • the mask film 132 is removed by any known method (STEP 5).
  • the elastic film 50 is formed on the upper surface of the poly-Si film 131 and the film 131b (STEP 6).
  • FIG. 10 (a) and FIG. 10 (b) a part of the area corresponding to the pressure generating chamber forming part in the flow path forming part 10 on the upper surface side of the elastic Similarly to the manufacturing process, the lower layer 60, the piezoelectric film 70 and the upper layer 80 are sequentially reduced and the piezoelectric element 300 is formed (STEP 7).
  • a protective film 100A is formed on the upper surface side of the piezoelectric element 300 (STEP 8).
  • the protective film 100A may be made of, for example, a fluororesin or a paraxylylene resin.
  • an etching hole 133 is formed in a portion where the piezoelectric element 300 is not formed (STEP 9).
  • the etching holes 133 can be formed by, for example, photoresist patterning and dry etching such as ion milling.
  • the etching holes 133 are formed so as to surround the piezoelectric element 300 in a U-shape. It also penetrates the lower membrane 60 provided continuously so as to be shared by a plurality of piezoelectric elements.
  • anisotropic wet etching using an aqueous solution of hydroxide power is performed from the etching hole 133 to remove boron from the poly-Si film 131.
  • the non-diffused portion and the flow path forming substrate 10 below the portion are removed, and a pressure generating chamber 15 having a triangular cross section is formed in accordance with the crystal orientation of the silicon anti-spheroid. (STEP 10).
  • the boron-containing film 13 lb remains without being removed by the potassium hydroxide solution, the progress direction of etching with respect to the flow path forming substrate 10 can be accurately defined.
  • the boron-containing film 131b (the portion of the p01y-Si film 131 in which boron is diffused) is not removed by anisotropic wet etching, so that the desired shape of the film is obtained.
  • the pressure generating chamber 15 can be formed accurately and easily.
  • the present inventors set the boron-containing film 131b to have a boron content density of 1 ⁇ 10 2 Q / cm 3 or more. Is particularly preferable.
  • the thickness of the prepared flow path forming substrate 10 can be freely selected. For this reason, it is easy to handle the flow path formation 10 during manufacturing, and a silicon substrate of a large-diameter wafer can be used.
  • the manufacturing time is significantly reduced because it is not necessary to make the pressure generating chamber thick and thick.
  • the formation of the dragon on the upper surface of the piezoelectric element 300 ensures the protection of the piezoelectric element 300 during the anisotropic wet etching (STEP 10).
  • FIG. 15 (a) is a cross-sectional view in the width direction of the pressure generating chamber of the ink jet recording head according to Embodiment 2
  • FIG. 15 (b) is a cross section taken along line CC of FIG. 15 (a).
  • FIG. Members having the same functions as those described in the above-described ⁇ S mode are denoted by the same reference numerals, and redundant description will be omitted.
  • the present embodiment 5 is an example in which pressure generating chambers 15 are formed on both sides of a flow path shape 10 made of a silicon single crystal substrate, and a shape ⁇ ⁇ The pressure generating chambers 15 on both sides of 0 are provided at positions not opposed to each other.
  • the pressure generating chamber 15 is formed to be shallow by half-etching similarly to ⁇ , and one end in the longitudinal direction of the pressure generating chamber 15 is provided so as to penetrate to the side surface of the flow path forming substrate 10. I have. A nozzle plate 20A having a nozzle opening 21A communicating with the pressure generating chamber 15 is adhered to the side surface of the flow path type m ⁇ t counter 10 through an adhesive or a heat welding film. I have.
  • each of the elastic membranes 50 has ffl 50 on each side, and the region corresponding to the pressure generating chamber 15 of each elastic membrane 50 has the same shape as that of the H type 1 described above.
  • a piezoelectric element 300 is formed. In this difficult mode, the first through hole 51 that connects each pressure generating chamber 15 and the lizano 31 is formed in the bullet 50.
  • a sealing substrate 25 on the elastic film 50, a sealing substrate 25, a common ink chamber type ⁇ anti 30 and an ink chamber side plate 40 are sequentially joined. Almost the entire surface of the sealing member 25 is a reservoir 31.
  • the ink inlet 23 for supplying ink from an external ink supply unit to the reservoir 31 is provided in the ink chamber side plate 40 in the present embodiment.
  • the sealing fiber 25 has a piezoelectric element holding portion 24 that can seal the space while securing a space that does not hinder the movement of the piezoelectric element 300. 0, at least the piezoelectric active portion 320 is sealed in the piezoelectric element holding portion 24. Further, an ink supply hole 26 corresponding to the first through hole 51 of the elastic body 50 is formed in the sealing plate 25, and these first through holes 51 are formed. Ink is supplied from the reservoir 31 to the pressure generating chamber 15 via the reservoir.
  • the head can be reduced in size. Even if the pressure generating chambers 15 are formed at a high density, the rigidity of the partition walls 14 is sufficiently maintained.
  • a nozzle having a nozzle opening 21 on the side surface of the rectangular ⁇ S plate 10 is provided.
  • the chir plate 2OA is joined, the present invention is not limited to this.
  • a nozzle opening communicating with the pressure generating chamber may be formed at an end of the destructed substrate by half etching.
  • FIG. 16 is a sectional view of an ink jet recording head according to the third embodiment.
  • the nozzle opening is provided on the same side of the rectangular plate 10 as the piezoelectric element 3 • 0.
  • the nozzle plate 20 B in which the nozzle openings 21 are formed in place of the sealing substrate 25 of the embodiment 2 on the elastic film 50 is substantially the entire surface of the flow path forming substrate 10. And the nozzle opening 21 B and the pressure generating chamber 15 communicate with each other through a second through hole 52 provided in the elastic film 50.
  • a nozzle plate 200B has a piezoelectric element holding portion 24 that can seal the space in a state where a space that does not hinder the movement of the piezoelectric element 300 is secured.
  • An ink supply hole 26 for supplying ink from the reservoir 31 to the pressure generating chamber 15 is formed in correspondence with the first through hole 51 provided in the nozzle 0.
  • a reservoir 31 is formed on the nozzle plate 20 B by the common ink ⁇ Jf ⁇ ⁇ anti-30 and the ink chamber side plate 40 in the same manner as in the fine form 1 described above.
  • the ink is supplied through an ink inlet 23 formed in the nozzle plate 20B.
  • FIG. 17 is an exploded perspective view showing an ink jet recording head according to the fiber form 4, and FIG. 18 is a sectional view thereof. Note that members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • This male form is the same as male form 3 except that the orchid forming fiber composed of multiple listening is used.
  • the ⁇ -shaped ⁇ ⁇ anti-1OA It has an insulator layer 11 made of silicon and a pair of first silicon layer 12 and second silicon layer 13 provided on both sides of the insulator layer 11 and made of a silicon single crystal substrate.
  • the form of 1A OA does not depend on SOI. You.
  • the Mif of the first silicon layer 12 of the annihilated brain 1OA is formed thinner than the fl Jl of the second silicon layer 13, and in the present embodiment, the thin first silicon layer 12 has a plurality of The pressure generating chambers 15 divided by the partition walls 14 are arranged side by side in the width direction. At the longitudinal end of the pressure generation chamber 15, a nozzle connection 16 A communicating with the nozzle opening 21 and an ink 17 A communicating with the reservoir 31 are provided, respectively. It extends with a width smaller than the width of 5.
  • a bullet 50 is formed on the first silicon layer 12 of the flow path forming substrate 10A on which the pressure generating chambers 15 and the like are formed in the same manner as in the above-mentioned scythe form.
  • a piezoelectric element 300 composed of a lower layer 60, a piezoelectric element S70 and an upper layer 80 is formed.
  • FIG. 19 (a) to 19 (c) are cross-sectional views in the width direction of the pressure generating chamber
  • FIG. 19 (d) is a cross-sectional view in the longitudinal direction of the pressure generating chamber.
  • the first silicon layer 12 of the 3 ⁇ 4 ⁇ 3 ⁇ 4-formed fiber 10A has the principal surface force s (001) orientation, and the longitudinal direction of the pressure generating chamber 15 is ⁇ 1. It is formed to be in the 10> direction. Therefore, the pressure generating chamber 15, the nozzle line 16A, and the ink line 17A are formed by inclined surfaces having a predetermined angle.
  • the pressure generating chamber 15 is formed with relatively high level and dimensional accuracy by anisotropic etching.
  • the pressure generating chambers 15 can be arranged at a high density.
  • the main surface of the first silicon layer 12 may have a (110) orientation, and the pressure generating chamber 15 may be formed so that its longitudinal direction is the ⁇ 111> direction. here, (-1) indicates (bar 1).
  • the pressure generation chamber 15, the nozzle communication passage 16 A, and the ink connection A 17 are configured by a surface substantially perpendicular to the surface of the flow passage type 1 OA.
  • the pressure generating chamber 15 can be formed with high accuracy and high density.
  • the pressure generating chamber 15, the nozzle connection 16 A and the ink communication passage 17 A pass through the first silicon layer 12 of the flow path forming substrate 10 A almost to the insulator layer 11. It is formed by etching until it reaches. Therefore, the etching can be easily stopped by the insulator layer 11, the depth of the pressure generating chamber 15 and the like can be easily controlled, and the density can be increased. It should be noted that the insulator layer 11 has an extremely small amount of being attacked by an alkaline solution that etches the silicon layer 12 made of silicon single crystal.
  • the pressure generating chamber 15 formed in the first silicon layer 12 and the nozzle communication passage 16A and the ink passage 17A are provided with the above-described state.
  • the sacrificial layer 90 is buried by the same method.
  • an elastic film 50 is formed on the first silicon layer 12 and the sacrificial layer 90, and an elastic film 50 is formed on the elastic film 50.
  • the piezoelectric element 300 is formed by sequentially laminating and patterning the piezoelectric film 70 and the upper layer 80. The steps of forming the elastic film 500 and the piezoelectric element 300 are the same as those in the above embodiment.
  • a through hole exposing the viewing layer 90 for example, in the present embodiment, a nozzle communication passage 16 is formed in a region of the elastic film 50 facing the sacrificial layer 90.
  • a first through-hole 51 and a second through-hole 52 are formed in the elastic film 50 in a region corresponding to A and the ink communication passage 17A. Then, the sacrificial layer 90 is removed from the first through hole 51 and the second through hole 52 in the same manner as in the above embodiment.
  • the pressure generating chamber 15 and the piezoelectric element 300 are formed by the steps described above.
  • the pressure generating chambers 15 are formed in the first silicon layer having a small film thickness by using SOI inversion as the Nada-shaped thigh anti-OA 1 OA.
  • the rigidity of the partition walls 14 for partitioning the pressure generating chambers can be increased, and the plurality of pressure generating chambers 15 can be arranged at a high density.
  • the depth of the pressure generating chamber 15 shallow, the compliance of the P-wall 14 can be reduced, and the ink ejection characteristics: improves.
  • the thickness of the first silicon layer 12 in which the pressure generating chamber 15 is formed is thin, since the flow path anti-OA is thick as a whole, it can be easily handled even as a large-sized wafer. Therefore, the number of chips to be taken per wafer can be increased, and the manufacturing cost can be reduced. In addition, since the chip size can be increased, a long head can be manufactured.
  • the ⁇ formed 3 ⁇ 4 anti-abrasive 1 OA is thick, the occurrence of warpage is suppressed, the alignment is easy when joining with other members, and the characteristic change of the piezoelectric element 300 is suppressed even after the joining. As a result, the ink ejection characteristics are stabilized.
  • the SOI device having a silicon layer on both sides of the thread color edge layer made of silicon oxide is used as the shape, but the present invention is not limited to this.
  • a structure in which silicon layers are provided on both surfaces of an insulator layer made of polysilicon or silicon nitride may be used.
  • the silicon layer may be provided on at least one surface of the insulator layer, and the other surface may not be the silicon layer.
  • the first silicon layer 12 of the < < > 10A composed of SO is formed to be thinner than the second silicon layer.
  • the present invention is not limited to this.
  • the thickness may be the same, or the first silicon layer 12 may be thick, and may be appropriately determined in consideration of the size, arrangement, and the like of the pressure generating chambers 15.
  • the nozzle opening 21 is provided on the piezoelectric element 300 side of the flow channel type 100 A, but is not limited to this.
  • the nozzle opening may be It may be provided on the opposite side of the opposite piezoelectric element 300, or may be provided, for example, on the side of the ⁇ plate.
  • a nozzle plate having a nozzle opening formed on the side opposite to the formation may be joined.
  • FIG. As shown in (a), a nozzle opening 21A whose one end communicates with the nozzle communication passage 16A may be formed at an end of the template 10A.
  • a nozzle opening 21 A is formed by anisotropic etching simultaneously with the pressure generating chamber 15, the nozzle proper path 16 A, and the ink connection 17 A.
  • the nozzle opening 21A is formed by an inclined surface as shown by a dotted line in FIG. 20 (b).
  • the etching stops when the inclined surfaces come into contact with each other, and the nozzle opening 21A having a substantially V-shaped cross section is formed. that c that is, by adjusting the width of the nozzle openings 2 1 a, the depth of the nozzle opening 2 1 a can be easily adjusted.
  • the first silicon layer 12 may be formed by halfway etching (half etching). The half etching is performed by adjusting the etching time.
  • FIG. 21 is an exploded view showing an ink jet recording head according to the fiber form 5!
  • FIG. 22 is a diagram showing a cross-sectional structure of one of the pressure generating chambers of the ink jet recording head in the longitudinal direction. Note that members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • the present embodiment is an example in which a reservoir for supplying an ink to each pressure generating chamber is provided on a surface opposite to the pressure generating chamber instead of providing a reservoir on a separate substrate from the flow channel forming.
  • the pressure generating chamber 15 is formed in the flow path type counter 10 and the reservoir 31 A and the pressure are formed at one longitudinal end of each pressure generating chamber 15.
  • An ink communication section 18 which is a relay chamber for connecting the pressure generation chamber 15 to the pressure generation chamber 15 is communicated through a narrow section 19 having a width smaller than that of the pressure generation chamber 15. Further, the ink communication portion 18 and the narrow portion 19 are formed by anisotropic etching together with the pressure generating chamber 15.
  • the narrow portion 18 is for controlling the flow of ink into and out of the pressure generating chamber 15.
  • the ink communication section 18 is provided for each pressure generating chamber 15.
  • the present invention is not limited to this.
  • An ink communication portion 18A communicating with each pressure generating chamber 15 via a narrow portion 19 may be used.
  • the ink communication portion 18A forms a part of the reservoir 31A. You may do it.
  • a reservoir 31A that communicates with each ink communication portion 18 and supplies ink to each pressure generating chamber 15 is formed on the other surface side of the inferior thigh anti-thigh 10.
  • the reservoir 31A is formed by anisotropic etching using a predetermined mask from the other surface side of the anti-reflection substrate 10, and in this embodiment, by wet etching.
  • the reservoir 31A since the reservoir 31A is formed by wet etching, the reservoir 31A has a shape in which the opening area increases toward the other surface of the flow path forming substrate 10, and supplies ink.
  • the pressure is sufficiently larger than the volume of all the pressure generating chambers.
  • a drive IC 110 for driving a piezoelectric element 300 described later is provided in the vicinity of the end of the Nada-shaped anti-tank 10 in advance in a direction in which the pressure generating chambers 15 are arranged. Are formed integrally.
  • a bullet ⁇ 50 is provided on the top of the »shape 10 in the same manner as in the above-described configuration.
  • a piezoelectric element 300 composed of 80 is formed.
  • a lead electrode 120 is provided between the piezoelectric element 300 and the drive IC 110 integrally provided on the top surface of the piezoelectric element 300 with an elastic film.
  • Each lead 3 ⁇ 4 ⁇ 120 and the drive IC 110 are connected to each other through a connection hole 53 provided in a region opposed to the drive IC 110 of 50 mm. And each is electrically connected.
  • the nozzle opening 21 is connected to the nozzle opening 21 by removing the bullet 50 and the lower S 60.
  • a second through hole 52 A is formed to correspond to each pressure generating chamber 15.
  • FIGS. 23 to 25 are cross-sectional views of the pressure generating chamber 15 in the longitudinal direction.
  • anisotropic etching is performed on one surface side of a silicon single crystal plate which is to be formed as a mirror by using, for example, a mask made of silicon oxide.
  • a pressure generating chamber 15, an ink communication section 18 and a narrow section 19 are formed.
  • the driving IC 110 for driving the piezoelectric element is provided on the flow path forming substrate 10. They are formed integrally in advance.
  • the pressure generating chamber 15, the ink communication part 18 and the narrow part 19 formed in the flow path forming substrate 10 have the same structure as the above ⁇ S form. Is filled with a sacrificial layer 90.
  • an elastic film 50 is formed on the fiber-shaped surface 10 and the hard layer 90, and a reservoir 31 is formed on the other surface of the surface 10.
  • a protective mask 55 serving as a mask when forming A is formed.
  • a zirconium layer is formed on both surfaces of the formation substrate 10 and then thermally oxidized in a diffusion furnace at 500 ° C. to 200 ° C., for example. 0 and ⁇ ⁇ ⁇ ⁇ 55.
  • the material of the elastic film 50 and the hot film 55 is not particularly limited, and may be any material that is not etched in the step of forming the reservoir 31A and the step of removing the sacrificial layer 90. Silicon nitride, silicon dioxide, or the like can be used. Further, the elastic film 50 and the protective film 55 may be formed of different materials. Further, the protection layer 55 may be formed by any process as long as it is before forming the reservoir 31A.
  • a piezoelectric element 300 is formed on the elastic member 50 corresponding to each pressure generating chamber 15. That is, as shown in FIG. 24 (a), a Shimodenura Mo 60 is formed over the entire surface of the elastic film 50 and is patterned at a location K, and a piezoelectric film 70 and a The upper mffi film 80 is sequentially laminated. Next, as shown in FIG. 24 (b), only the piezoelectric film 70 and the upper electrode 80 are etched, and the piezoelectric element 300 is patterned. Further, in the present embodiment, by simultaneously removing the elastic film 50 in a region facing the drive IC 110, a connection hole 53 serving as a connection portion with each piezoelectric element 300 is formed. A second through-hole 52A was formed by patterning the elastic 50 and the lower 60 near the end opposite to the ink communication portion 18 in the longitudinal direction of the pressure generating chamber 15. Form.
  • a lead electrode 120 is formed over the entire surface of the flow path forming substrate 10 and is patterned for each piezoelectric element 300 to form a connection hole.
  • the upper part 80 of each piezoelectric element 300 and the driving IC 110 are electrically connected to each other via 53.
  • the pressure generating chamber 15 of the flow path forming substrate 10 is opposite to the pressure generating chamber 15.
  • the area that becomes the reservoir 31A of the protective film 55 provided on the opposite side is removed by polishing to form an opening 56, and the ink communication section 18 is formed from the opening 56.
  • the reservoir 31A is formed by anisotropic etching (wet etching) until the temperature reaches the upper limit.
  • the reservoir 31A is formed after the piezoelectric element 300 is formed.
  • the present invention is not limited to this, and may be formed in any manner.
  • the pressure generating chamber 15 is formed by removing the sacrificial layer 90 from the reservoir 31A by wet etching or etching with steam. You. '
  • the pressure generating chambers 15 are formed in the surface layer on one side of the shape counter 10 and the reservoirs communicating with the respective pressure generating chambers 15 on the other side. Since the pressure generating chambers 31 are formed, the pressure generating chambers 15 can be formed relatively thin, the rigidity of the partition walls 14 that partition each pressure generating chamber 15 can be increased, and a plurality of pressure generating chambers 1 can be formed. 5 can be arranged in high density. Further, the compliance of the partition walls 14 is reduced, and the ink ejection characteristics are improved. Also, when forming the pressure generating chamber 15, the depth of the pressure generating chamber 15 can be freely set depending on the etching time, so that the compliance of the partition can be controlled and the time required for manufacturing can be reduced. Low cost manufacturing can be realized.
  • the thickness of the squeeze arm 10 can be made relatively thick, it is easy to handle even a large-sized wafer. Therefore, the number of chips per wafer can be increased, and the manufacturing cost can be reduced. In addition, since the chip size can be increased, a long head can also be manufactured. Furthermore, the occurrence of warpage during formation is suppressed, and alignment is easy when joining with other members. Even after joining, the characteristic change of the piezoelectric element is suppressed, and the ink discharge characteristics are stable. I do.
  • the volume of the reservoir 31 A can be made sufficiently large with respect to the volume of each pressure generating chamber 15, and the ink in the reservoir 31 A must have compliance. Can be. Therefore, there is no need to separately provide a counter for absorbing the pressure change in the reservoir 31A, and the structure can be simplified and the manufacturing cost can be reduced.
  • the elastic element 50 on which the piezoelectric element 300 is formed as described above and the electric element! As shown in FIGS. 21 and 22, a nozzle opening 21 communicating with each pressure generating chamber 15 through a second through hole 52A is formed, and a piezoelectric element is formed.
  • a nozzle plate 20B provided with a holding portion 24 is provided.
  • Such a nozzle plate 20B is fixed on the elastic film 50 and the lower surface 60 by an adhesive or the like. At this time, the nozzle plate 20B formed on the elastic film 50 and the lower surface 60 is formed. Preferably, the inner surface of the second through-hole 52A is covered with this adhesive. As a result, the inner surface of the second through hole 52A is protected, and peeling of the elastic film 50 or the lower electrode film 60 can be prevented. '
  • each pressure generating chamber 15 and the reservoir 31A are communicated with each other via the ink communication section 18 and the narrow section 19, but the present invention is not limited to this. As shown in FIG. 26 (a), each pressure generating chamber 15 may be directly connected to the reservoir 31A.
  • the narrow portion 19 is formed to have a width smaller than that of the pressure generation chamber 15 so as to control the flow of ink into and out of the pressure generation chamber 15.
  • the present invention is not limited to this.
  • the width may be the same as that of the pressure generating chamber 15 and a narrow portion 19A whose depth is adjusted.
  • the driving IC 110 for driving the piezoelectric element 300 is provided on the ⁇ forming substrate 10 in a ⁇ : pattern.
  • the present invention is not limited to this, and the pressure of the fi3 ⁇ 4S A contact member to be joined to the element 300 side, for example, a nozzle plate or the like may be formed of silicon single crystal at the opposite end, and the driving plate Ic may be provided integrally with the nozzle plate or the like.
  • the method of manufacturing the ink jet: pet expression head according to the present embodiment is not limited to the method described above.
  • an example of another manufacturing method will be described.
  • FIG. 27 is a flow chart of a recording head method according to the present invention in the form of Wei.
  • FIGS. 28 to 31 illustrate the steps shown in FIG. 27 in order.
  • a pressure generation chamber is formed without using a sacrificial layer.
  • a substrate to be processed is first prepared (STEP 1).
  • the crystal orientation is, for example, a (100) single crystal silicon base. A plate is used.
  • the upper and lower surfaces of the flow path forming substrate 10 are thermally oxidized to form Si 2 134a and 134b (STEP 2).
  • 3 on the upper surface side of the «forming fiber 10; 10 2 film 134 and further upper surface of the positive resist 135 is formed (STEP 3).
  • the positive resist 135 is formed, for example, by sequentially performing the steps of applying, masking, exposing, developing, and post-baking a resist agent.
  • the thickness of the positive resist 135 is, for example, 1-2 / m.
  • FIG. 33 is a plan view of FIG. 29 (b), and the hatched portion is the positive resist 135. As shown in FIG. 33, it is preferable that the resist 135 is disposed substantially uniformly in a predetermined region (a portion where the pressure generating chamber and the ink communication portion are formed) 10 a of the formation St 10.
  • the upper surface side of the Zijiang Jianganti 10 is etched in such a manner that a plurality of columnar portions 10b remain as shown in FIG. 29 (a).
  • This dry etching is performed by, for example, an ICP (Inductively Coupled Plasma) dry etching apparatus or an RIE dry etching apparatus until the thickness (height) of the columnar portion 1 Ob becomes 30 to 100 m, preferably 50 zm. Will be Specifically, this is performed, for example, for about 30 minutes.
  • the patterned SiO 2 film 134a does not need to be completely removed. As shown in FIG. 34, as shown in FIG.
  • each of the plurality of columnar portions formed on the upper surface of the shape ⁇ ⁇ 1 ° has a larger cross-sectional area on the surface side than on the bottom side. That is, it is preferable that the dimension b of the gap on the bottom side is larger than the dimension a of the gap on the surface side.
  • a piezoelectric element 300 is formed on the upper surface side of the destruction rectifier 10 (STEP 8) ( specifically, the bullet '
  • a plurality of columnar portions 10c thermally oxidized from the slit-like opening 56 by wet etching with KOH from the underside of the filament 10 Etching proceeds up to the region where there is, and a reservoir 31A is formed (STEP 9).
  • wet etching by HF is performed from both the upper and lower surfaces of the shape 10 (STEP 10: second etching).
  • This etching proceeds from the reservoir 31A formed in the previous step and the predetermined portion 50 of the elastic film 50, and removes the columnar portion 10c whose chemical properties have been altered by thermal oxidation.
  • the pressure generating chamber 15, the ink communication section 18, and the narrow section 19 are formed (see FIG. 32).
  • wet etching with HF for example, fluorine-based resin
  • a gap 10 s as shown in FIG. 35 is left between the plurality of columnar portions 10 c that have been thermally oxidized. Etch the columnar portion of 1 Oc.
  • FIG. 31 (b) a nozzle plate 20B having a nozzle opening 21 and a piezoelectric element holding portion 24 is adhered to the upper surface side of the flow channel cell 10.
  • STEP 1 Do Into the piezoelectric element holding section 24, for example, an inert gas is introduced to protect the piezoelectric element from moisture and the like.
  • FIG. 31 (b) FIG. 32 shows a plan view of this state.
  • the thickness of the prepared layer 10 can be freely selected. For this reason, it is easy to handle the quake-forming male 10 at the time of S ⁇ ⁇ li, and it is possible to use the silicon S substrate of a large-diameter wafer.
  • the chemical properties of the columnar portion 10c are altered after etching so that the plurality of columnar portions 10c remain, there is no need to form a sacrificial layer, and the manufacturing process is not required. Time can be significantly reduced. However, it is also possible to carry out a combination of the step of altering the chemical properties and the step of filling (im) the sacrificial layer.
  • the columnar portions 10c since thermal oxidation is used as a method of altering the chemical properties of the shape 10, flattening is achieved at the same time by expanding a plurality of columnar portions 10 c. Is done. However, some flattening step may be performed separately. Since the plurality of columnar portions 10c to be thermally oxidized are to be removed in the second etching step (wet etching with HF), it is preferable that the columnar portions 10c be configured substantially uniformly as in the present embodiment. In the case of the present embodiment, the arrangement of the columnar portions is determined by the arrangement of the positive resist 135, but in addition to the circular shape shown in FIG. 33, a hexagonal shape as shown in FIGS. It can be a pattern, square pattern or slipper No. As specific examples of the dimensions of each of these patterns, the dimensions a and b shown in each figure can be changed as shown in the table below.
  • a pressure generating chamber of any depth and any shape can be formed extremely easily and in a short time irrespective of the anti-thickness and plane orientation.
  • the recording head itself manufactured according to the present invention is also within the protection scope of the present application.
  • the pressure generating chamber 15 of the recording head manufactured according to the present embodiment it is considered that surface unevenness due to the formation of the columnar portion 10c is observed.
  • FIG. 39 is a sectional view of an ink jet recording head according to Embodiment 6.
  • this sickle form has an insulating layer 11 and first and second silicon layers 12, 1, 2 provided on both sides of the ⁇ layer 11, as a delicate thigh.
  • This is an example using an S 0 I substrate consisting of 3 and the first silicon layer 12 thinner than the second silicon layer 13 is etched until it reaches the layer 11 and pressure is generated.
  • a chamber 15, an ink communication section 18 and a narrow section 19 are formed, and the second silicon layer 13 is etched until it reaches the dignified layer 11 to form a reservoir 31 A and an insulating layer.
  • Embodiment 5 is the same as Embodiment 5, except that a penetrating portion 11a is formed at a portion corresponding to the bottom surface of the reservoir 31A. Even in the configuration of the present difficult embodiment, the same effects as those of the above-described difficult embodiment can be obtained.
  • FIG. 40 is an exploded perspective view showing the ink jet recording head according to the S mode 7, and FIG. 41 is a longitudinal view of one pressure generating chamber of the ink jet recording head.
  • FIG. 2 is a diagram showing a cross-sectional structure in the embodiment.
  • the present embodiment is another example using a flow path forming substrate composed of a plurality of layers.
  • the flow path formation 10 B includes a polysilicon layer 11 A and a polysilicon layer 11 A. It is composed of first and second silicon layers 12 and 13 provided on both sides of 11 A.
  • the one silicon layer constituting the flow path forming substrate 10B, in the present embodiment, the first silicon layer 12 is divided into a plurality of partitions 14 by, for example, anisotropic etching.
  • the pressure generating chambers 15 are arranged side by side in the width direction.
  • a reservoir 31B serving as a common ink chamber for each pressure generating chamber 15 is formed at one end in the longitudinal direction of each pressure generating chamber 15 and one end in the longitudinal direction of each pressure generating chamber 15 and each of them. It communicates through a narrow part 19.
  • the second silicon layer 13 penetrates the second silicon layer 13 in the thickness direction, and a reservoir that communicates with the pressure generating chamber 15.
  • An ink inlet 23A for introducing ink into the bus 31B is formed.
  • a region facing the pressure generating chamber 15, the reservoir 31 B, and the narrow portion 19 on the bonding surface side with the polysilicon layer 11 A, and the portion where the ink inlet 23 A is formed is described.
  • a boron doped silicon layer 13a doped with boron is formed in the region excluding the region.
  • the first and second silicon layers 12 and 13 constituting such a flow path type S3 ⁇ 4S plate 10 B are each formed of a silicon single crystal substrate having a plane orientation (100). .
  • the widthwise side surface 15a of the pressure generation chamber 15 is an inclined surface that is inclined so as to become narrower toward the piezoelectric element 300 side. Is suppressed.
  • a boron-doped polysilicon layer 11 a having a predetermined region doped with boron is provided in the polysilicon layer 11 A sandwiched between the first and second silicon layers 12 and 13. Are formed, and the pressure-generating chamber 15 formed in the first silicon layer 12 has etching selectivity by the polon-doped polysilicon layer 11a. That is, practically, only the boron-doped polysilicon layer 11a is sandwiched between the first and second silicon layers 12 and 13. Note that an oxidized silicon layer may be provided between the polysilicon layer 11A and the first silicon layer 12, so that the polysilicon layer 11A can be etched accurately. Selectivity can be obtained.
  • a piezoelectric element 300 comprising a lower layer 60, a piezoelectric film 70 and an upper layer 80 are formed.
  • the nozzle plate 20 is joined to the defeated 50 and the lower 60 in the same manner as described above.
  • FIGS. 42 to 44 are cross-sectional views of the pressure generating chamber 15 in the longitudinal direction.
  • a channel forming layer 10B having first and second silicon layers on both surfaces of a polysilicon layer is formed.
  • the pressure generating chamber 15 of the second silicon layer 13, the laser chamber 31B and the narrow space are formed.
  • Boron is doped at a depth of, for example, about lm to form a boron-doped silicon layer 13a in a region opposing the portion 19 and excluding a portion where the ink introduction port 23A communicates.
  • a polysilicon layer may be provided on the entire surface of the second silicon layer 13.
  • a polysilicon layer 11A having a thickness of about 0.1 to 3 ⁇ m is formed on the second silicon layer 13 and then the polysilicon layer 11A is formed.
  • 11 A pressure generating chamber 15, reservoir 31 B and a portion other than the narrow area 19 are doped with boron to form a polysilicon layer 11 a and a polysilicon layer.
  • 1 1 A has etching selectivity.
  • a first silicon layer 12 having a thickness of, for example, about 50 m is bonded onto the polysilicon layer 11A, thereby forming ⁇ 5 ⁇ anti 10 B is formed.
  • the method of bonding the polysilicon layer 11 ⁇ to the first silicon layer 12 is not particularly limited.
  • the first silicon layer 12 is adsorbed on the polysilicon layer 11A. Then, they can be bonded by annealing at a high temperature of about 1200 ° C. Further, after bonding the first silicon layer 12, the first silicon layer 12 may be polished to a predetermined thickness.
  • the surface of the thus formed anti-woven fabric 10B that is, the first and second silicon layers 12 constituting the cat forming fiber 10B , 13 are thermally oxidized in a diffusion furnace at about 110 ° C. to form protective films 55, 55 A made of silicon dioxide.
  • an elastic film 50 is formed on the protective film 55A.
  • the elastic film 50 made of zirconium oxide is subjected to thermal oxidation in a diffusion furnace at 500 to 1200 ° C.
  • a lower piezoelectric film 70 and an upper piezoelectric film 80 are sequentially laminated and patterned on the elastic film 50 in the same manner as in the above-described male form to form a piezoelectric element 300.
  • the lower electrode 60 and the elastic film 50 are patterned to form the second through-hole 52A, and the protective film 55 is patterned to correspond to the area corresponding to the ink inlet 23A.
  • An opening 56A is formed in the opening.
  • a dragon 100 made of, for example, fluororesin is formed on the surface of the piezoelectric element 300 below the piezoelectric element 300.
  • the second silicon layer 13 is anisotropically etched using the guard 5 as a mask, for example, wet-etched with an alkaline solution such as K0H, etc. Form 3 A.
  • the polysilicon layer 11A is patterned through the ink inlet 23A.
  • the polysilicon layer 11A has a boron-doped polysilicon layer 11a with boron doped in a predetermined portion, and only the polysilicon layer 11A is etched. Is selectively removed, and only the boron-doped polysilicon layer 1 la remains without being removed. In other words, only the pressure generating chamber 15, the reservoir 31 B, and the region that becomes the narrow portion 19 are removed, and the through portion 11 b is formed, exposing the first silicon layer 12.
  • the polysilicon layer 11A is completely removed at the time of etching, and only the polysilicon layer 11a remains, so that the flow path type ⁇ 3 ⁇ 43 ⁇ 4 plate 10 ⁇ is substantially Polished polysilicon layer 11a and first and second silicon layers It is composed of 1 2 and 1 3.
  • the first seal is formed through the ink inlet 23A.
  • the pressure generating chamber 15, the reservoir 31 B, and the narrow portion 19 are formed by anisotropically etching the recon layer 12.
  • the protective film 55 in a region facing the pressure generating chamber 15 and the reservoir 31B is also removed by etching.
  • the surface of the second silicon layer 13 on the first silicon layer 12 side also comes into contact with the etchant.
  • the region of the second silicon layer 13 facing the pressure generating chamber 15 and the like is not etched because it is the boron-doped silicon layer 13a. That is, in the present embodiment, the surface of the boron-doped silicon layer 13a is an etching stop surface during anisotropic etching.
  • the first silicon layer 12 of the present embodiment is made of a silicon single crystal substrate having a plane orientation (100) as described above, the boron layer is formed as shown in FIG. 44 (a).
  • the inner side surface defining the pressure generating chamber 15, the reservoir 31B, and the narrow portion 19 is formed by a (111) plane. That is, these inner surfaces are formed as inclined surfaces that are inclined so as to become narrower toward the elastic film 50 side. For this reason, as shown in FIG.
  • the pressure generating chamber 15 and the reservoir 31B formed with a relatively large width are etched until they reach the protective film 55A, and the protective film 5 Etching is stopped by 5 A, but in the narrow portion 19 formed with a width smaller than that of the pressure generation chamber 15, the etching stops at the position where the inner surfaces intersect, and the pressure generation chamber 15 It is formed shallower.
  • the pressure generating chamber 15 and the piezoelectric element 300 are formed.
  • the etching preservation layer 100 provided on the surface of the piezoelectric element 300 and the like is removed.
  • the nozzle plate 20 is joined to the side of the piezoelectric element 300 of the shape 10! Opposite to the 100B, thereby forming an ink jet recording head (see FIG. 41).
  • the ink inlet 23A and the pressure generating chamber 15 can be formed collectively by etching. Is improved. Further, since the pressure generating chambers 15 and the like are formed through the ink inlets 23 A provided on the side of the rectangular plate 10 B opposite to the piezoelectric elements 300, the piezoelectric body is formed during etching. It is possible to prevent the film 70 or the like from being adversely affected.
  • the first and second silicon layers 12 and 13 are made of silicon single crystal having a plane orientation (100), the pressure generation chamber 15, the reservoir 31 B, and the narrow Since a (1 1 1) surface having a relatively low etching rate appears on the inner surface of the narrow portion 19, the narrow portion can be formed with high precision. Therefore, the resistance of the ink supplied to the pressure generating chamber 15 can be controlled with high accuracy.
  • the first and second silicon layers 12 and 13 constituting the formation substrate 10B are each formed of a silicon single crystal substrate having a plane orientation (100).
  • the present invention is not limited thereto.
  • a silicon single crystal substrate having a plane orientation (100) and a plane orientation (110) may be used, or a silicon single crystal substrate having a plane orientation (110) may be used. It may be.
  • the same effect as described above can be obtained by such a configuration.
  • first and second silicon layers 12 and 13 are made of silicon single crystals having a plane orientation (110), respectively, as shown in FIG.
  • the inner surface (15a) of the chamber 15, the reservoir 31B, and the narrow portion 19 is formed in a plane substantially perpendicular to the surface of the flow path forming substrate 10B.
  • the resistance of the narrow portion 19 can be controlled by, for example, adjusting the width.
  • FIG. 46 is an exploded view showing the ink jet recording head according to Embodiment 8, and FIG. 47 is a cross-sectional view of FIG. Note that members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • This embodiment has the same configuration as that of the fifth embodiment except that a silicon single crystal Si anti-crystal with a crystal plane orientation (100) is used as the flow path forming anti-flow layer 10.
  • a pressure generating chamber is formed on one surface side of the flow path forming substrate 10, a pressure generating chamber 15 partitioned by a plurality of partition walls 14 is provided side by side in the width direction.
  • the flow path type plate 10 is anisotropically etched from the other side to communicate with a reservoir (not shown) serving as a common ink chamber for each pressure generating chamber 15.
  • the ink communication portion 18 A is formed.
  • a piezoelectric element 300 including a lower electrode film 60, a piezoelectric film 70, and an upper electrode film 80 is formed on the flow path forming substrate 10 via an elastic film 50.
  • the bullet ttfl 50 has a projection 50 a projecting toward the flow path forming substrate 10 in a region facing each pressure generating chamber 15, and a longitudinal direction of the pressure generating chamber 15. Are formed along.
  • the pressure generating chambers 15 are formed in the regions where the pressure generating chambers 15 of the flow path forming substrate 10 made of a silicon single crystal substrate are formed. It is also narrow and wide, for example, with a depth of about 50-: LOO / im Pt & square groove 150 is formed.
  • the width of the groove 150 is preferably about 0.1 to 3 m3 ⁇ 43 ⁇ 4, and in the present embodiment, the width is about 1 ⁇ .
  • the method for forming the groove 150 is not particularly limited, and may be formed by, for example, dry etching.
  • an elastic layer 50 and a protective film 55 are formed on both surfaces of the flow path forming substrate 10, respectively.
  • the elastic film 50 formed on the groove portion 150 side of the flow path forming substrate 10 is formed by partially entering the groove portion 150, so that each pressure generation of the elastic film 50 occurs.
  • a protrusion 50 a protruding toward the flow path forming substrate 10 having substantially the same shape as the groove 150 is formed.
  • the lower electrode 60, the piezoelectric film 70 and the upper electrode film 80 are sequentially laminated and patterned to form the piezoelectric element 300.
  • the silicon single crystal substrate which is the flow path forming substrate 10
  • the lower electrode film 60 is formed at one end in the longitudinal direction of each pressure generating chamber 15.
  • the second through hole 52 communicating with the nozzle opening is formed by removing the ffl 50.
  • an opening 56 is formed by removing the protective film 55 in a region where the ink communication portion 18A is formed.
  • the flow path forming substrate 10 is inserted through the second through-hole 52, for example, KOH or the like.
  • the pressure generating chamber 15 is formed by performing anisotropic etching with the alkaline solution.
  • the alkaline solution flows into the groove 150 through the second through-hole 52, and the flow path forming substrate 10 gradually moves from the groove 150.
  • the pressure generating chamber 15 is formed by erosion.
  • the flow path forming substrate 10 is a silicon single crystal substrate having a crystal plane orientation (100)
  • the inner side surface of the pressure generating chamber 15 is approximately It is formed with a 54 ° inclined (1 1 1) plane.
  • this (111) plane is a substantial bottom surface of the pressure generating chamber 15 and also serves as an etching stop surface during anisotropic etching, and the pressure generating chamber 15 has a substantially triangular cross section. It is formed to have a shape.
  • the strength of the partition walls 14 between the pressure generating chambers 15 is significantly increased. Therefore, even if the pressure generating chambers 15 are arranged at a high density, the crosstalk force S does not occur, and the ink discharge characteristics can be maintained well.
  • the thickness of the flow path forming substrate 10 is set to 220 ⁇ 3 ⁇ 43 ⁇ 4. However, it may be thicker. Therefore, even if the wafer forming the flow path forming substrate 10 has a relatively large diameter, it can be easily handled and cost can be reduced.
  • the groove 150 of the flow path forming substrate 10 is for forming a pressure generating chamber by anisotropic etching as described above, the depth thereof is It is preferable to form them slightly shallower than the depth.
  • the size of the pressure generating chamber 15 is controlled by the size of the second through hole 52. For this reason, if the depth of the groove 150 is formed to be slightly shallower than the depth of the pressure generating chamber 15, as shown in FIG. Stopping is reliably performed at the width of the second through hole 52, and the size of the pressure generating chamber 15 can be easily controlled. On the other hand, if the depth of the groove 150 is formed to be deeper than the depth of the pressure generating chamber 15, as shown in FIG.
  • the etching of the flow path forming substrate 10 is Since it proceeds to the bottom of 150, the opening of the pressure generating chamber 15 is Without stopping at the width of the second through hole 52, it becomes larger than that, and the control force S of the size of the pressure generating chamber 15 becomes difficult.
  • the piezoelectric element 3 is etched from the surface opposite to the surface 0 by etching using the protective film 55 as a mask, that is, by anisotropically etching the flow path forming substrate 10 through the opening 56.
  • An ink communication portion 18 A communicating with 5 is formed.
  • the nozzle plate 20B having the nozzle openings 21 is fixed.
  • the protrusion 50 a is formed in a portion of the elastic film 50 corresponding to each pressure generating chamber 15.
  • the protrusion 50 a is formed in the pressure generating chamber 15. It may be removed at the same time as the etching.
  • a second elastic film 5 OA made of hydridium zirconium or the like is provided on the elastic film 50, and the pressure generating chamber 15 is anisotropically etched.
  • the elastic film 50 in a region facing the pressure generating chamber 15 may be completely removed.
  • FIG. 52 is a longitudinal sectional view and a transverse sectional view showing one pressure generating chamber of the ink-jet self-recording head according to the present embodiment and its periphery in an enlarged manner.
  • the present embodiment is another example in which a pressure generating chamber is formed without using a sacrificial layer using a silicon single crystal substrate having a crystal plane orientation (100) as the flow path formation 10.
  • a polycrystalline silicon film 10 c doped with boron is formed on the surface of the flow path forming substrate 10 except for a region where the pressure generating chamber 15 is formed.
  • the upper space 10d of the pressure generating chamber 15 is a hole formed by removing a polycrystalline silicon film not doped with boron by isotropic etching.
  • a substantially flat elastic film 50B is formed on the upper surface of the polycrystalline silicon film 10c and above the pressure generating chamber 15 so as to cover the pressure generating chamber 15.
  • the inner wall surface of the pressure generating chamber 15 is formed by the ⁇ (111) plane of the silicon single crystal substrate exposed by anisotropic wet etching and the inner surface of the diaphragm.
  • the elastic film 5 OB is composed of a silicon nitride film (first film) 57 and an oxidized zirconium film (second film) 58 laminated on the nitrided film 57. Consists of Further, in the silicon nitride film 57, an etching hole 57a for supplying an etching liquid is formed on the surface of the formation surface when the pressure generating chamber 15 is formed. The hole 57 a is closed by the zirconium film 58.
  • the first film made of the silicon nitride film 57 may be an oxidized silicon film or an oxidized zirconium film instead of the silicon nitride film.
  • the second film composed of the oxidized zirconium film 58 may be a silicon oxide film or a silicon nitride film instead of the oxidized zirconium film, or may be an oxidized silicon film, a silicon nitride film and A laminated film obtained by laminating any one of the zirconium film and the dani zirconium film can also be used.
  • a polycrystalline silicon film 10c is formed on the surface of the anti-flow channel 10 having the (100) plane orientation.
  • high-concentration boron is diffused near the inner surface of the polycrystalline silicon film 10c and the flow path forming substrate 10 except for the region that becomes the pressure generating chamber 15, thereby forming a boron diffusion region 1Of. .
  • the silicon oxide film 140 is removed as shown in FIG. 53 (c).
  • a silicon nitride film- (first film) 57 having excellent etching resistance is formed on the polycrystalline silicon film 10c.
  • a resist film 144 is formed on 57.
  • Holes 142 are formed in the resist film 141 at positions corresponding to the etching holes 57a.
  • etching holes 57a are formed in the silicon nitride film 57 as shown in FIG. 54 (a).
  • an etching liquid for example, KOH
  • KOH etching liquid
  • FIG. 54 (b) an undoped portion of the entire polycrystalline silicon film 10-c where boron is not doped is first etched by isotropic wet etching. Removed.
  • the surface of the formation substrate 10 is etched by anisotropic wet etching by the pattern of the removed undoped portion of the polycrystalline silicon film 10c, thereby forming the pressure generating chamber 15.
  • a zirconium oxide film (second film) 58 is formed on the silicon nitride film 57, and the etching hole 57a is closed.
  • thermal oxidation, chemical vapor deposition (CVD) s sputtering, or the like can be used.
  • the lower moving film 60, the piezoelectric film 7 ° and the upper film 80 were overlaid on the zirconium oxide film 58, and A piezoelectric element 300 is formed in the same manner as in the crane mode.
  • the etching hole 57 a may be a slit formed along the longitudinal direction at the center in the width direction of the pressure generating chamber 15 as shown in FIG. 55 (a), As shown in FIG. 55 (b), a plurality of parallel slits can be formed along the longitudinal direction. The slit may be formed inside or outside the area where the piezoelectric film 70 is projected. Further, as shown in FIG. 55 (c), an etching hole 57a can be formed as a plurality of small holes formed in the region where the pressure generating chamber 15 is formed. The size and shape of the slit ⁇ small hole constituting the etching hole 57 a are set so that they can be filled with the second film made of the zirconium oxide film 58.
  • the pressure generating chamber 15 is formed by anisotropic etching of the ⁇ 100 ⁇ face formed of silicon single crystal fiber having the (100) face orientation. Therefore, the thickness of the partition wall between the pressure generating chambers 15 can be sufficiently ensured, and the rigidity of the partition wall can be maintained sufficiently high even when the thickness of the flow path formation counterpart 10 increases. And high-density nozzle arrangement becomes possible. Further, the pressure generating chamber can be formed with high accuracy by a simple process.
  • the pressure generating chamber 15 is formed by wet etching, it is not necessary to protect the piezoelectric film 70 from an etching solution because the piezoelectric film 70 has not been formed yet.
  • FIG. 6 is an enlarged longitudinal sectional view showing one pressure generating chamber of the ink jet recording head according to the tenth embodiment and its periphery.
  • the inner surface of the diaphragm forming a part of the inner wall surface of the pressure generating chamber 15 is oriented in the direction of the piezoelectric film 70.
  • the diaphragm has a convex shape toward the direction of the piezoelectric film 70 corresponding to the convex shape of the inner surface of the diaphragm.
  • the space portion 15b formed by the convex inner surface 57b is formed by injecting an etching solution from the etching hole 57a and jet-etching the polycrystalline silicon film. It is.
  • the ink jet recording head according to the present embodiment does not have a portion corresponding to the polycrystalline silicon Ji 10a to which the pop in FIG. 9 is doped. This is because the above-mentioned space portion 15b determines the etching rate of the pressure generating chamber 15.
  • a polycrystalline silicon film 160 is formed on the surface of the flow channel plate 10 having the (100) plane orientation.
  • the polycrystalline silicon film 160 is removed by the etching, and a polycrystalline silicon film 160 having a predetermined pattern is formed as shown in FIG. 57 (c).
  • a silicon nitride film (first film) 57 having excellent etching resistance is formed on the polycrystalline silicon film 160 having a predetermined pattern and on the surface of the Nada-shaped female plate 10.
  • a resist film 141 is formed on the silicon film 57. Holes 142 are formed in the resist film 141 at positions corresponding to the etching holes 57a. By etching using the holes 142 of the resist film 141, etching holes 57a are formed in the silicon nitride film 57 as shown in FIG. 58 (b).
  • an etching liquid for example, KOH
  • KOH etching liquid
  • a zirconium oxide film (second film) 58 is formed on the silicon nitride film 57, and the etching hole 57a is closed.
  • thermal oxidation, chemical efficiency growth (CVD), sputtering, or the like can be used.
  • the lower film 60, the piezoelectric lake Mo 70 and the upper Mo 80 are sequentially formed on the zirconium oxide film 58 and patterned.
  • the piezoelectric element 300 is formed in the same manner as in the above embodiment.
  • the pressure generation chamber 15 is formed by anisotropic etching of the surface of the flow path formation 10 with the (100) plane orientation, the pressure generation chamber 1 It is possible to ensure a sufficient thickness of the partition wall between the five, and even if the thickness of the flow path formation 10 increases, the rigidity of the partition wall can be maintained sufficiently high, and a high-density nozzle arrangement is possible. Become. Further, the pressure generating chamber can be formed accurately with a simple process.
  • the pressure generating chamber 15 is formed by wet etching, it is not necessary to protect the piezoelectric film 70 from the etching solution because the piezoelectric film 70 has not been formed yet.
  • the pressure generation chamber 15 is formed by wet etching using the space of the predetermined pattern formed by removing the polycrystalline silicon film formed in the predetermined pattern.
  • the boron doping step (FIG. 53 (b)) required in the manufacturing process of Embodiment 9 described above can be omitted.
  • FIG. 59 is an enlarged longitudinal sectional view showing one pressure generating chamber of the ink jet recording head according to Embodiment 11 and the periphery thereof.
  • the surface of the forming substrate 10 is made of, for example, silicon nitride and has a region facing the pressure generating chamber 15.
  • a protective layer 170 having an opening 171 in the region is provided.
  • the etching hole 57 a is provided in a region of the first film 57 opposite to the peripheral portion of the pressure generating chamber 15, and a protective layer is provided on the opening side peripheral portion of the pressure generating chamber 15. This is the same as Wei Form 9, except that a space 15c is formed between 170 and the first film 57 so as to communicate with the etching hole 57a.
  • the space 15c is formed by injecting an etching solution from the etching hole 57a and removing the sacrificial layer by wet etching.
  • a protective layer 170 is formed on the surface of the (100) plane orientation 3 ⁇ 4 ⁇ 3 ⁇ 4 formation 10.
  • the region to become the pressure generating chamber 15 of the protective layer 170 is removed by, for example, etching using a predetermined mask pattern to remove the opening.
  • a spirit layer 9OA made of, for example, polysilicon is formed on the protective layer 170, and etching is performed using, for example, a predetermined mask pattern or the like. As a result, a region covering the opening 17 1 of the protective layer 170 is left as a residual portion 91. In the present embodiment, the region other than the remaining portion 91 is completely removed. '
  • a silicon nitride film having excellent etching resistance (first film) is formed on the remaining portion 91 of the sacrificial layer 90A and on the surface of the anti-fiber figSt.
  • An etching hole 57a is formed in the silicon nitride film 57 by using a resist film or the like in the same manner as in the above-described ⁇ M ⁇ state. Specifically, an etching hole 57a is formed in a region of the silicon nitride film 57 outside the region serving as the pressure generating chamber 15.
  • an etching liquid for example, KOH
  • KOH etching liquid
  • FIG. 60 (e) first, the remaining portion 91 of the sacrificial layer 90A is removed by isotropic wet etching, and a space portion 15c is formed.
  • the opening 171 of the protective layer 170 is exposed.
  • the surface of the plate 10 is anisotropic through the opening 17 1.
  • the pressure generating chamber 15 is formed by etching.
  • a zirconium oxide film (second film) 58 is formed on the silicon nitride film 57, and the etching hole 57a is closed.
  • thermal oxidation, chemical vapor deposition (CVD), sputtering, or the like can be used as a method for forming the second film.
  • the lower electrode film 6 ⁇ , the piezoelectric film 70, and the upper electrode film 80 are sequentially formed on the zirconium oxide film 58 by successively increasing and decreasing the power.
  • the piezoelectric element 300 is formed.
  • the thickness of the partition wall between the pressure generating chambers 15 can be sufficiently ensured, and the thickness of the flow path forming substrate 10 is increased.
  • the rigidity of the partition walls can be maintained sufficiently high, and a high-density nozzle arrangement can be realized.
  • the pressure generating chamber can be accurately formed by a simple process.
  • the sacrificial layer 9OA is finally completely removed.
  • the present invention is not limited to this. For example, as shown in FIG. 61, a region outside the space 15c is formed. Alternatively, a residual portion 92 that is not removed when etching the residual portion 91 may be left. In the case of such a configuration, when patterning the fourth layer 9OA, a groove is formed over the periphery of the opening 171, so that the residual portion 91 and the residual portion 92 are completely formed. What is necessary is just to separate it.
  • the basic structure of the ink jet recording head is not limited to the above-described one.
  • a plurality of pressure generating chambers are arranged in a row on a female female plate.
  • the present invention is not limited to this.
  • a plurality of pressure generating chambers May be provided.
  • the reservoir 31B is provided in a region between the rows of the pressure generating chambers 15 of the flow path forming substrate 10 so as to provide a plurality of pressures in two rows. It may be common to the generation chamber 15.
  • FIG. 62 shows an example in which S O I is used as the 3 ⁇ 4 forming fiber, but the ⁇ shaped plate may be a single crystal silicon substrate or the like. .
  • the present invention is not limited to the ink jets having various structures unless contrary to the gist thereof. It can be applied to ceremony heads.
  • the ink jet recording head according to each of the embodiments constitutes a part of a recording head having an ink communicating with an ink cartridge or the like, and is mounted on an ink jet recording apparatus.
  • FIG. 63 is a schematic view showing an example of the ink jet recording apparatus.
  • the recording head units 1A and 1B having the ink jet type self-recording head are provided with detachable cartridges 2A and 2B constituting an ink supply means.
  • the carriage 3 on which the recording head units 1A and 1B are mounted is provided movably in the axial direction on a carriage shaft 5 attached to the apparatus main body 4.
  • the recording head units 1A and 1B discharge, for example, black ink and color inks, respectively.
  • the driving force of the driving motor 6 is transmitted to the carriage 3 via a plurality of gears and a timing pel 7 (not shown), so that the carriage 3 equipped with the head units 1A and 1B moves along the carriage axis 5.
  • the apparatus main body 4 is provided with a platen 8 along a carriage axis 5, and a recording sheet S, which is a recording medium such as paper fed by a paper feed roller (not shown), is wound around the platen 8. It can be hung and transported.
  • the pressure generation chamber is formed shallowly, the rigidity of the P wall can be sufficiently ensured. Therefore, even if a plurality of pressure generation chambers are arranged at high density, the crosstalk can be reduced. It can be reliably prevented. Also, by changing the depth of the pressure generating chamber, the compliance of the partition can be freely set. Furthermore, by forming a pressure generating chamber and a piezoelectric element on two surfaces of a silicon single crystal substrate, the head can be reduced in size. Also, when a reservoir is formed on a ⁇ -shaped plate, the reservoir can be formed with a relatively large volume, so the pressure change in the reservoir is absorbed by the ink itself in the reservoir, and a separate compliance section is provided. No need. Therefore, the structure of the head can be simplified, and the manufacturing cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Facsimile Heads (AREA)

Description

明 細 書 インクジェット式記録へッド及びその製造方法並びにインクジェット式記録装
技術分野
本発明は、ィンク滴を吐出するノズル開口と連通する圧力発生室の一部に振動板 を介して圧電素子を形成して、圧電素子の変位によりインク滴を吐出させるィンク ジエツト式記録へッド及びその製造方法並びにインクジエツト式記録装置に関す る。 背景技術
インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、 この振動板を圧電素子により変形させて圧力発生室のィンクを加圧してノズル開 口からィンク滴を吐出させるィンクジエツト式記録へヅドには、圧電素子が軸方向 に伸長、収縮する縦振動モードの圧電ァクチユエ一夕を使用したものと、 たわみ振 動モードの圧電ァクチユエ一夕を使用したものの 2種類が実用化されている。
前者は圧電素子の端面を振動板に当接させることにより圧力発生室の容積を変 化させることができて、高密度印刷に適したへッドの製作が可能である反面、圧電 素子をノズル開口の配列ピヅチに一致させて櫛歯状に切り分けるという困難なェ 程や、切り分けられた圧電素子を圧力発生室に位置決めして固定する作業が必要と なり、 製造工程が複雑であるという問題がある。
これに対して後者は、圧 料のグリーンシートを圧力発生室の开狱に合わせて 貼付し、これを焼成するという比較的簡単な工程で振動板に圧電素子を作り付ける ことができるものの、 たわみ振動を利用する関係上、ある程度の面積が必要となり、 高密度配列が困難であるという P題がある。
一方、後者の言 へヅドの不都合を解消すべく、特開平 5— 2 8 6 1 3 1号公報 に見られるように、振動板の表面全体に亙って劍莫技術により均一な圧電材料層を 形成し、この圧電材料層をリソグラフィ法により圧力発生室に対応する形状に切り 分けて各圧力発生室毎に独立するように圧電素子を形成したものが提案されてい る。
これによれば圧電素子を振動板に貼付ける作業が不要となって、 リソグラフィ法 という精密で、かつ簡便な手法で圧電素子を作り付けることができるばかりでなく、 圧電素子の厚みを簿くできて高速駆動が可能になるという利点がある。
また、 このようなインクジヱット式言 へッドでは、纖の圧電素子とは反対側 の面からエッチングすることなどにより厚さ方向に貫通して圧力発生室を形成し ているため、寸法精度の高い圧力発生室を比較的容易且つ高密度に配設することが できる。
しかしながら、 このようなインクジエツト式記録へッドでは、圧力発生室を形成 する基板として、例えば、直径が 6〜1 2インチ程度の比較的大きなものを用いよ うとする場合、ハンドリング等の問題により 反の厚さを厚くせざるを得ず、 それ に伴い圧力発生室の深さも深くなつてしまう。そのため、各圧力発生室を区画する 隔壁の厚さを厚くしないと、 十分な剛性が得られず、 クロストークが発生し、所望 の吐出特性が得られない等という問題がある。 また、 隔壁の厚さを厚くすると、 高 レ、配列密度でノズルを並べられないため、高解像度の印字品質を達成できないとい う問題がある。
一方、縦振動モードの圧電ァクチユエ一夕では、圧力発生室の振動板側に幅広部 を設け、それ以外の部分の圧力発生室の幅を小さくして隔壁の厚さを大きくする構 造が考えられているが、 この場合には、圧力発生室の幅広部の加工や貼り合わせ等 の作業が必要で作業性及び精度が問題である。
本発明は、 このような事情に鑑み、 P鬲壁の岡 ij性を向上すると共に圧力発生室を高 密度に配設することができ、且つ各圧力発生室間のクロストークを低減したインク ジエツト式記録へヅド及びその製造方法並びにインクジヱット式記録装置を提供 することを課題とする。 発明の開示
上記課題を解決する本発明の第 1の態様は、ノズル開口に連通する圧力発生室が 画成される単結晶シリコンからなるシリコン層を有する «形 板と、編 BE力 発生室の一部を構成する振動板を介して前記圧力発生室に対向する領域に設けら れて前記圧力発生室内に圧力変化を生じさせる圧電素子とを具備するインクジェ ヅト式記録へッドにおいて、前言 as力発生室が前記 形^;反の一方面側に開口 して貫通することなく形成されると共に前記圧力発生室の内面の前記一方面側に 対向する少なくとも底面が異方性エッチングの停止した面であるエッチングスト ヅプ面で構成され、且つ前 §3Ε電素子が劇臭及びリソグラフィ法により形成された 膜によって前記流路形成基板の前記一方面側に設けられていることを特徴とする ィンクジエツト式記録へッドにある。 '
かかる第 1の態様では、圧力発生室が流路形成基板を貫通することなく形成され ているため、圧力発生室を区画する隔壁の岡 IJ性が維持さ クロストークが抑えら れると共に高密度のノズル開口を有するインクジェット式言凝へッドを大量に且 つ比較的容易に jtすることができる。
本発明の第 2の態様は、 第 1の態様において、前記圧電体層は、 結晶が優先配向 していることを TOとするインクジエツト式言己録へッドにある。
かかる第 2の態様では、圧電体層が薄膜工程で成膜された結果、結晶が優先配向 している。
本発明の第 3の態様は、 第 2の態様において、 前言 BJEE電体層は、 結晶が柱状とな つていることを ^(とするインクジエツト式言己録へッドにある。
かかる第3の態様では、圧電体層が薄膜工程で劍莫された結果、結晶が柱状とな つている。
本発明の第 4の態様は、第 1〜 3の何れかの態様において、前記流路形成基板が、 前記シリコン層のみからなることを特徴とするインクジェット式記録へッドにあ かかる第 4の態様では、 圧力発生室がシリコン層のみで画成される。
本発明の第 5の態様は、 第 4の態様において、 前記 形腦反が、 面方位 ( 1 1 0 ) の単結晶シリコンからなり、 ハーフエッチングにより形成された (1 1 0 ) 面が前記エッチングストップ面となっていることを特徴とするインクジエツト式 言己録へッドにある。
かかる第 5の態様では、 流路形«板の(1 1 0 )面が圧力発生室の底面となり、 圧力発生 ½が流路形成基板を貫通することなく形成される。
本発明の第 6の態様は、 第 4の態様において、 編 3鹏形成簾が、 面方位 ( 1
0 0 ) の単結晶シリコンからなり、 (i l l ) 面が前記エッチングストツ とな つていることを^^とするインクジエツト式記録へッドにある。
かかる第 6の態様では、 ( 1 1 1 ) 面が圧力発生室の実質的な底面となり、 圧力 発生室が流路形成基板を貫通することなく形成される。
本発明の第 7の態様は、第 6の態様において、前 B 力発生室の横断面が略三角 形 I犬を有することを特徴とするインクジエツト式記録へッドにある。
かかる第 7の態様では、各圧力発生室間の隔壁の強度が著しく向上するため、圧 力発生室を高密度に配設することができ、 且つクロストークを防止できる。 . 本発明の第 8の態様は、第 6又は 7の態様において、編 3振動板の各圧力発生窒 に対向する領域には、当該圧力発生室側に突出する突出部が長手方向に亘つて形成 されていることを特徴とするインクジェット式記録へッドにある。
かかる第 8の態様では、圧力発生室を異方性ェヅチングによって形成 Lた結果、 振動板に突出部が形成される。
本発明の第 9の態様は、第 6又は 7の態様において、前 32圧力発生室の一部を構 成する前記振動板の内面を含む第 1膜と、前記第 1 M±に形成された第 2膜とを有 し、 151己第 1膜には、編己圧力発生室を形成する際に前記«形成勘反の編己一方 面側表面にェツチング液を供給するためのェツチング用孔が形成されており、前記 第 2膜によって前記エッチング用孔が閉鎖されていることを特徴とするィンクジ ェヅト式言 へッドにある。
かかる第 9の態様では、第 1膜に設けられたエツチング用孔から供給されるエツ チング液によって流路形成基板をエッチングすることにより、圧力発生室が形成さ れるため、圧力発生室を比較的容易且つ精度よく形成することができる。 また、 振 動板の構成する第 2膜によってエッチング用孔を容易且つ確実に閉鎖することが できる。
本発明の第 1 0の態様は、 第 9の態様において、前記エッチング用孔が、前記圧 力発生室に対向する領域に形成されていることを特徴とするインクジ Xット式記 録へッドにある。 かかる第 1 0の態様では、エッチング用孔を介してエッチング液が流路形成基板 の表面に確実に供給される。
本発明の第 1 1の態様は、第 8〜: L 0の何れかの態様において、前記流路形成基 板上には、前言 3E力発生室に対向する領域に開口部を有する保護層を有し、編己圧 力発生室が、 保護層の開口部を介して前記流路形成基板をエッチングすること により形成されていることを特徴とするインクジエツト式記録へッドにある。 かかる第 1 1の態様では、保護層の開口部を介して流路形成基板をエッチングす ることにより、 圧力発生室を比較的精度よく形成することができる。
本発明の第 1 2の態様は、 第 1 1の態様において、前記保護層は、 ボロンが拡散 された多結晶シリコン層であることを とするインクジエツト式言己録へッドに ある。
かかる第 1 2の態様では、エッチングによって圧力発生室を形成する際のマスク となる保護層を比較的容易に形成することができる。
本発明の第 1 3の態様は、第 1 1又は 1 2の態様において、前記エッチング用孔 が前言 力発生室に対向する領域の外側に設けら 且つ前記第 1膜と前記保護膜 との間にこのエッチング用孔に連通する空間部が画成されていることを特徴とす るインクジエツト式言 3^へヅドにある。
かかる第 1 3の態様では、エッチング用孔から空間部を介して流路形成 St反がェ ッチングされて圧力発生室が形成される。
本発明の第 1 4の態様は、第 9 ~ 1 3の何れかの態様において、前言 3圧力発生室 は細長状に形成されており、前記エッチング用孔は、前言 3ΙΪ力発生室の長手方向に 沿って形成されたスリツ卜からなることを特徴とするインクジエツト式記録へッ ドにある。
かかる第 1 4の態様では、エッチング用孔がスリツ卜からなるため、エッチング 用孔を介して、∞形 反を確実にェツチングすることができ、圧力発生室を容易 且つ精度よく形成することができる。
本発明の第 1 5の態様は、第 9〜1 3の何れかの態様において、前記エッチング 用孔は、所定間隔で設けられた複数の小孔ょりなることを特徴とするインクジエツ ト式記録へッドにある。 かかる 1 5の態様では、エツチング用孔が複数の箇所に設けられた小孔からな るため、 エツチング用孔を介して «形^ ^反を確実にエツチングできる。
本発明の第 1 6の態様は、第 9〜1 5の何れかの態様において、前記第 2 _hに 前言 BE電素子を構成する下 S¾臭が形成されており、前記下 莫上に前言 3EE電素 子を構成する圧電体層が形成されていることを特徴とするインクジエツト式記録 へッドにある。
かかる第 1 6の態様では、第 2膜上に下電«莫が形成されるため、振動板の強度 が向上する。 '
本発明の第 1 7の態様は、第 9〜1 5の何れかの態様において、前記第 2膜は前 記圧電素子を構成する下 MS莫を構成し、前記第 2膜上に編 3E電素子を構成する 圧電体層が直接形成されていることを特徴とするインクジエツト式記録へッドに ある。
かかる第 1 7の態様では、下 臭が振動板を構成する第 2膜を兼ねるため、製 造工程を簡 匕できる。
本発明の第 1 8の態様は、第 9〜: L 7の何れかの態様において、前記第 1膜は、 酸化珪素 窒化珪素膜又は酸ィ匕ジルコニウム膜であることを特徴とするィンクジ エツト式言 ヘッドにある。
かかる第 1 8の態様では、エッチング耐性に優れた第 1膜を比較的容易に形成で ぎる。
本発明の第 1 9の態様は、第 9〜 1.8の何れかの態様において、前記第 2膜は、 酸化珪素 s窒化珪素膜又は酸ィ匕ジルコニウム膜の何れかの膜、あるいは何れかを 積層した積層膜であることを特徴とするインクジエツト式記録へヅドにある。
かかる第 1 9の態様では、振動板の一部を構成する第 2膜を容易にできる。また、 積層膜とすることにより振動板の強度を調整できる。
本発明の第 2 0の態様は、第 9〜: L 9の何れかの態様において、前 Ϊ3Ε力発生室 の内壁面の一部を形成する前記振動板の内面は前記圧電素子の方向に向かって凸 形状を成しており、前記振動板の内面の凸开 に対応して前記振動板が前言 BE電素 子の方向に向かって凸开狱を成していることを特徴とするインクジエツ卜式記録 へッドにある。 かかる第 2 0の態様では、圧力発生室を比較的容易且つ高精度に形成することが できる。
本発明の第 2 1の態様は、第 1〜3の何れかの態様において、前記 »形腦反 が、絶縁体層の両面に何れか一方がシリコン層である流路層を有するものであり、 前記絶縁体層の表面が前記エッチングストップ面となっていることを特徴とする インクジェット式記録ヘッドにある。
かかる第 2 1の態様では、シリコン層にエッチングによって圧力発生室を形成す る際、絶縁体層によって容易且つ確実にエッチングが停止する。 また、 流路形成基 板の厚さが厚くなるので、 取り扱いが容易となる。
本発明の第 2 2の態様は、第 1〜 2 1の何れかの態様において、前記圧力発生室 にィンクを供給するリザ一バが前記流路形成基板の他方面側に形成されているこ とを^^とするインクジヱット式言 へッドにある。
かかる第 2 2の態様では、圧力発生寒の容積に対して、十分に大きい体積のリザ —バが設けら t リザーバ内のィンク自体によって内部圧力の変ィ匕が吸収される。 本発明の第 2 3の態様は、第 2 2の態様において、前記リザ一パが前記圧力発生 室に直接連通していることを特徴とするインクジエツト式記録へヅドにある。
かかる第 2 3の態様では、 リザーバから各圧力発生室に直接インクが供給される。 本発明の第 2 4の態様は、第 2 2の態様において、前記流路形成基板の一方面側 には、前記圧力発生室の長手方向一端部に連通するインク連通路が形成さ 前記 リザーバが、前記インク連 ¾¾に¾¾されていることを特徴とするインクジエツト 式記録ヘッドにある。
かかる第 2 4の態様では、リザーバからインク連 ¾を介して各圧力発生室にィ ンクが供給されるため、リザーバとィンク連通路との連通部の断面積がばらついて も狭隘部でィンクの抵抗を制御でき、各圧力発生室間でのィンク吐出特性のばらつ きを低減できる。
本発明の第 2 5の態様は、第 2 4の態様において、前記ィンク連通路が前記圧力 発生室毎に設けられていることを特徴とするインクジエツト式記録へッドにある。 かかる第 2 5の態様では、リザーバから各圧力発生室毎に設けられたインク連通 路を介して各圧力発生室にィンクが供給される。 本発明の第 2 6の態様は、第 2 4の態様において、前記インク連通路が前言 力 発生室の並設方向に亘つて連続的に設けられていることを特徴とするインクジェ ヅト式記録へヅドにある。
かかる第 2 6の態様では、リザーバから共通するインク連通路を介して各圧力発 生室にインクが供給される。
本発明の第 2 7の態様は、第 2 2〜 2 6の何れかの態様において、前記圧力発生 室が、その長手方向に沿って並設され、前記リザーバがこれら長手方向に沿って並 設された圧力発生室の間に設けられると共に両方の圧力発生室に連通しているこ とを 致とするインクジヱット式記録ヘッドにある。
かかる第 2 7の態様では、リザーバの両側に当該リザ一パと連通する圧力発生室 が並設されているため、ィンク供給路及び圧力発生室のより高密度な配置が達成さ れる。
本発明の第 2 8の態様は、第 1〜2 1の何れかの態様おい ί:、前言 BEE力発生室が、 前記流路形成親反の両面に形成されていることを特徴とするィンクジエツト式記 録へッドにある。
かかる第 2 8の態様では、圧力発生室の隔壁の剛性を損なうことなく、圧力発生 室を高密度に配設できるため、 へッドの高密度化が可能である。
本発明の第 2 9の態様は、第 1〜2 8の何れかの態様において、前言 HE電素子を 構成する前記膜は、 I flffi力発生室に設けられると共に最終的に除去される 層 上に形成された膜であることを特徴とするインクジェヅト式記録へッドにある。 かかる第 2 9の態様では、犠牲層が圧力発生室に充填されることにより、圧力発 生室に対向する領域に薄膜プロセスで圧電素子を容易に形成することができる。 本発明の第 3 0の態様は、第 1〜2 9の何れかの態様において、前 §BJ£力発生室 の深さが、 2 0〃mから 1 0 の間であることを特徴とするィンクジエツト式 記録へヅドにある。
かかる第 3 0の態様では、圧力発生室を所定の深さで形成することにより、隔壁 の剛性が維持される。
本発明の第 3 1の態様は、第 1〜3 0の何れかの態様において、前 §BE力発生室 と前記ノズル開口とを連通するノズル連通路を具備することを特徴とするインク ジエツト式言己録へッドにある。
かかる第 3 1の態様では、圧力発生室からノズル連通路及びノズル開口を介して インクが吐出される。
本発明の第 3 2の態様は、第 3 1の態様において、 前記ノズル連纖が、編己圧 力発生室の前記リザ一ノ とは反対側の長手方向端部側に設けられていることを特 徴とするインクジェヅト式言 へヅ ドにある。
かかる第 3 2の態様では、圧力発生室にリザ一バから安定してィンクが供給され、 且つノズル開口からインクが良好に吐出される。 '
本発明の第 3 3の態様は、第 1 9又は 2 0の態様において、 l己ノズル が、 前記振動板を除去することにより形成されていることを特徴とするインクジエツ ト式記録へッドにある。
かかる第 3 3の態様では、 ノズル連 MS§を容易に形成することができる。
本発明の第 3 4の態様は、第 3 3の態様において、前記ノズル連通路の内面が、 接着剤で覆われていることを特徴とするインクジェヅト式記録へヅドにある。
かかる第 3 4の態様では、ノズル連 を通過するインクによる振動板の剥がれ が防止される。
本発明の第 3 5の態様は、第 2 1〜3 4の何れかの態様において、前記流路形成 ¾1反が絶縁体層の両面にシリコン層を有する S 0 I基板からなり、前 ¾ΕΕ力発生室 が 己 S 0 I繊を構成する一方のシリコン層に形成さ 前君 B fe縁体層の表面が 前記エッチングストップ面となっていることを特徴とするインクジエツ卜式記録 へッドにある。
かかる第 3 5の態様では、シリコン層にエッチングによって圧力発生室を形成す る際、 絶縁体層によって容易且つ確実にエッチングが停止する。
本発明の第 3 6の態様は、第 3 5の態様において、前記 S O I基板を構成する前 記シリコン層のそれそれが異なる厚さを有し、前記圧力発生室が形成される Ιϊΐ3— 方のシリコン層は、他方のシリコン層の厚さよりも薄いことを特徴とするインクジ ェヅ ト式言 Ξ ^ヘッドにある。 '
かかる第 3 6の態様では、圧力発生室が比較的浅く形成され、圧力発生室を区画 する隔壁の剛性が向上すると共にクロストークが抑えられる。 本発明の第 3 7の態様は、第 3 5又は 3 6の態様において、前記圧力発生室と前 記ノズル開口とを連通するノズル連通路が、前記 S 0 I舰を構成する一方のシリ コン層内に形成されていることを特徴とするインクジェヅト式記録へヅドにある。 かかる第 3 7の態様では、ノズル連 ®¾が圧力発生室と同一層に形成されるため、 ヘッドを小型化することができる。
本発明の第 3 8の態様は、第 3 5又は 3 6の態様において、前記圧力発生室と前 記ノズル開口とを連通するノズル連通路が、前記 S 0 I繊を構成する前言 觸体 層を貫通して他方のシリコン層に形成さ; 前記ノズル開口が編 3他方のシリコン 層の表面側に設けられていることを特徴とするインクジヱット式記録へヅドにあ る。
かかる第 3 8の態様では、 形成 反の圧電素子とは反対側の面にノズル開口 を有するタイプのインクジエツト式記録へッドが実現される。
本発明の第 3 9の態様は、第 3 7の態様において、前記振動板上に前記圧電素子 を内部に封止する空間を有する封止 反が接合さ 該封止基板に前記ノズル閧口 が形成されていることを特徴とするインクジエツト式記録へッドにある。
かかる第 3 9の態様では、 形成 ¾|及の圧電素 if則にノズル開口を有するタイ プのィンクジエツ卜式記録へヅドが実現される。また、一枚の ¾反で封止機能とノ ズル機能とを兼ねることができる。
本発明の第 4 0の態様は、第 3 7の態様において、前記ノズル連舰が前 ΪΒΒΕ力 発生室の長手方向端部から延設さ 前記ノズル開口が前記流路形^ St反の端面側 に設けられていることを特徴とするインクジエツト式記録へッドにある。
かかる第 4 0の態様では、流路形成基板の端面側にノズル開口を有するタイプの ィンクジエツト式記録へッドが実現される。
本発明の第 4 1の態様は、第 4 0の態様において、前記ノズノレ連 が前記流路 形 反の端面まで延設さ 当該»形成基板の端面には前記ノズル開口を有す るノズルプレートが接合されていることを特徴とするインクジエツト式記録へッ ドにある。
かかる第 4 1の態様では、流路形成鎌の端面側に比較的容易にノズル開口を形 成することができる。 本発明の第 4 2の態様は、第 4 0の態様において、前記ノズル開口が前記ノズル 連通路の端部に前記シリコン層の厚さ方向の一部を除去することにより形成され ていることを特徴とするインクジエツト式言 3録へッドにある。
かかる第 4 2の態様では、ノズル開口を流路形成基板に圧力発生室と共に比較的 容易に形成できる。
本発明の第 4 3の態様は、第 3 9〜4 2の何れかの態様において、前記封止基板 には I Cがー体的に形成されていることを特徴とするインクジェット式記録へヅ ドにある。
かかる第4 3の態様では、流路形成基板に接合される封止謝反に I。を一体的に 形成することにより、 S ^工程を簡! ^匕できると共に部品点数を削減でき、 コスト を低減することができる。
本発明の第 4 4の態様は、第 2 1〜4 3の何れかの態様において、前記シリコン 層の面方位が、 (0 0 1 ) 面であることを特徴とするインクジェット式記録ヘッド にめる。
かかる第 4 4の態様では、 ウエットエッチングによっても、 リザ一バ等を高精度 に形成することができる。
本発明の第 4 5の態様は、第 4 4の態様において、前 §BJ£力発生室の長手方向が、 < 1 1 0 >方向となっていることを特徴とするインクジェヅト式記録へッドにあ る。
かかる第 4 5の態様では、圧力発生室を高精度且つ高密度に形成することができ る。
本発明の第 4 6の態様は、第 2 1〜4 3の何れかの態様において、前記圧力発生 室が形成されるシリコン層の主面が(1 1 0 )方位であり、前言 BE力発生室の長手 方向がく 1— 1 2〉方向となっていることを特徴とするインクジエツ卜式記録へ ッドにある。
かかる第 4 6の態様では、圧力発生室を高精度且つ高密度に形成することができ る。
本発明の第 4 7の態様は、第 1〜 4 6の何れかの態様のィンクジ ±ッ卜式記録へ ッドを具備することを特徴とするインクジェッ卜式記録装置にある。 かかる 4 7の態様では、へッドのインク吐出性能を向上すると共に高密度化し たインクジエツト式記録装置を実現することができる。
本発明の第 4 8の態様は、流路形成基板に形成された圧力発生室に対向する領域 に振動板を介して前記圧力発生室に圧力変化を発生させる圧電素子を形成するィ ンクジエツト式記録へヅドの製造方法において、単結晶シリコンからなるシリコン 層を少なくとも有する、 形成 反に、その厚さ方向に貫通することなく I?f3ff力 発生室を形成する工程と、編己圧力発生室に犠牲層を充填する工程と、前記犠牲層 側の前記流路形成基板上に前記振動板を形成すると共に前記圧力発生室に対向す る領域に ttri己圧電素子を形成する工程と、前記圧力発生室に充填した前記 層を 除去する工程とを有することを特徴とするインクジェット式記録へッドの製造方 法にある。
かかる第 4 8の態様では、圧力発生室を流路形成基板を貫通することなく比較的 容易に形成することができる。
本発明の第 4 9の態様は、第 4 8の態様において、前記 «形成 反が絶縁体層 の両面に単結晶シリコンからなるシリコン層を有する S O 1 反からなり、 ΙΪΪ己圧 力発生窒を形成する工程では、前記 S 0 I基板の一方のシリコン層をパ夕一ニング して前記圧力発生室を形成することを とするインクジエツト式記録へッドの 製造方法にある。
かかる第 4 9の態様では、圧力発生室を流路形 板を貫通することなく比較的 容易に形成することができる。
本発明の第 5 0の態様は、第 4 8又は 4 9の態様において、前記圧力発生室を形 成する工程で、当該圧力発生室の長手方向端部から前記ノズル開口に ¾1するノズ ル連通路を形成することを特徴とするインクジェッ卜式記録へッドの製造方法に ある。
かかる第 5 0の態様では、圧力発生室とノズル連通路とを流路形成基板に同時に 形成することができる。
本発明の第 5 1の態様は、第 5 0の態様において、前記シリコン層の一側面と前 記圧力発生室とを連通するインク連通路を形成し、編己 層を除去する工程では、 該インク連通路を介してゥエツ卜エッチングにより前記犠牲層を除去することを 特徴とするィンクジエツト式記録へッドの製造方法にある。
かかる第 5 1の態様では、インク連 を介してゥエツトエッチングすることに より、 比較的容易且つ確実に犠牲層を除去することができる。
本発明の第 5 2の態様は、第 4 8〜 5 0の何れかの態様において、前記犠牲層を 除去する:!^は、前記振動板を貫通して前記犠牲層を露出する開口部を介してエツ チングにより行うことを特徴とするインクジエツト式記録へッドの製造方法にあ る。
かかる第 5 2の態様では、開口部を介してエッチングすることにより、比較的容 易且つ確実に! ¾ϋを除去することができる。
本発明の第 5 3の態様は、第 4 8 ~ 5 2の何れかの態様において、前記犠牲層を 充填する工程は、前記流路形成基板の前記圧力発生室に対応する領域に少なくとも 前言 力発生室の深さと略同一の厚さで前記犠牲層を形成する工程と、前言 BflE力発 ^室以外の前記犠牲層をポリツシングによって除去する工程とを含むことを特徴 とするインクジエツト式記録へヅドの製造方法にある。
かかる第 5 3の態様では、圧力発生室内に犠牲層を容易且つ確実に充填すること ができる。
本発明の第 5 4の態様は、第 5 3の態様において、前記犠牲層をジエツトモ一ル ディング法によつて形成することを特徴とするィンクジェット式記録へッドの製 造方法にある。 、
かかる第 5 4の態様では、犠 を部分的形成することができ、比較的容易に犠 牲層を充填することができる。
本発明の第 5 5の態様は、第 4 8〜 5 4の何れかの態様において、編己犠牲層は、 リンドーフ。 ^化シリコン ( P S G)、 ボロン ' リンドーフ。^化シリコン (B P S G)、 酸化珪素(S i Ox )及び窒化珪素(S i Nx ) からなる群から選択されることを特 徴とするインクジエツト式記録へヅドの it方法にある。
かかる第 5 5の態様では、犠牲層に所定の材料を用いることにより、容易且つ確 実に除去することができる。
本発明の第 5 6の態様は、第 4 8〜 5 5の何れかの態様において、前記振動板と' して絶縁層を形成すると共に、該絶縁層上に下 ¾®1、圧電体層及び上 ¾®1を順 次積層形成し 夕一ニングすることにより前 ΪΒΚ電素子を形成することを特徴と するインクジエツト式言 へッドの製造方法にある。
かかる第 5 6の態様では、たわみ振動モ一ドの圧電素子を比較的容易に形成でき る
本発明の第 5 7の態様は、第 5 6の態様において、前記振動板が前記下電極層を 兼ねていることを特徴とするインクジェヅト式記録へッドの製造方法にある。 かかる第 5 7の態様では、へッドの構造を簡^匕できると共に、製造工程を減少 することができる。 ·
本発明の第 5 8の態様は、第 4 8〜 5 7の何れかの態様において、前記圧力発生 室及びィンク流路を異方性ェツチングによつて形成することを特徴とするインク ジエツト式記録へッドの製造方法にある。
かかる第 5 8の態様では、圧力発生室を高精度且つ高密度に形成することができ る。
本発明の第 5 9の態様は、シリコン単結晶基板からなりインクを吐出するノズル 開口に連通する圧力発生室が画成された流路形成基板と、該流路形成基板の一方面 に振動板を介して設けられた下 s® 、圧電体層及び上 ¾¾莫からなる圧電素子と を備えたインクジェヅト式言 へッドの 方法において、前記、^ &形成 si反の前 記振動板が形成される側に、当該振動板との間の空間部となる領域を形成する工程 と、編己灘形細反の表面に編己振動板を形成する工程と、編 3振動板上に前記 下《ai、前言 BE電体層及び前記上 ma莫を順次積層及びパ夕一エングして前記圧 電素子を形成する工程と、前記空間部を介して前記、»形 反を前 ΪΒΕ電素子側 から異方性ェツチングすることにより前記圧力発生室を形成する工程とを有する ことを特徴とするインクジエツト式記録へッドの製造方法。
かかる第 5 9の態様では、比較的容易且 ό高精度に圧力発生室を高密度に形成す ることができる。
本発明の第 6 0の態様は、第 5 9の態様において、前記空間部を形成する工程は、 前記流路形成基板の当該一側面上に多結晶シリコン膜を形成する第 1劍莫工程と、 前記多結晶シリコン膜の、前 Ϊ己流路形成基板における圧力発生室形成部分に対応す る領域を除いた領域に、高濃度のボロンを拡散させるボロン拡散工程とを含み、前 記圧力発生室を形成する工程は、前記振動板の、編己流路形成細における編己圧 力発生室形成部分に対応する領域の他の一部を除去してエツチング用孔を形成す る? L¾成工程と、 前記エッチング用孔から、 異方性显式エッチングによって、 多結 晶シリコン膜のポロンが拡散されていない部分及び当該部分の下方の流路形成基 板の一側面部分を除去する工程とを含むことを特徴とするインクジェット式記録 ヘッドの製造方法にある。
かかる第 6 0の態様では、多結晶シリコン膜のボロンが拡散された部分が、異方 • 性湿式ェツチングによって除去されないため、所望の形状の圧力室を精度良く容易 に形成することができる。
本発明の第 6 1の態様は、第 6 0の態様において、 ボロン拡散工程は、 1 x 1 0 2 Q個/ c m3以上の元素含有密度となるようにボロンを拡散させることを特徴と するインクジエツ卜式記録へヅドの製造方法にある。
かかる第 6 1の態様では、 ボロンを所定量拡散させることにより、多結晶シリコ ン膜をエッチングにより除去する際、このボロンが拡散された部分よつてエツチン グが確実に停止する。
本発明の第 6 2の態様は、第 6 0及び 6 1の態様において、 ボロン拡散工程は、 前記多結晶シリコン膜の、編己¾¾形 反における前 §ΒΕ力発生 成部分に対 応する領域の上面に、マスク膜を形成するマスク形成工程と、 Ιίί¾多結晶シリコン 膜の上面の略全面に向けてポロンを付与するポロン付与工程と、前記マスク膜を除 去するマスク除去工程とを有することを特徴とするインクジヱット式記録へッド の製造方法にある。
かかる第 6 2の態様では、所定の領域に比較的容易にボロンを拡散させることが できる。
本発明の第 6 3の態様は、第 5 9〜6 2の何れかの態様において、前記流路形成 基板の他側面から前記圧力発生室に至るリザーバを形成するリザーバ形成工程を 更に備えたことを特徴とするインクジヱット式記録へッドの製造方法にある。 かかる第 6 3の態様では、リザーバを比較的容易且つ高精度に形成することがで ぎる。
本発明の第 6 4の態様は、 第 6 3の態様において、 前記、滅形成細は、 全体が 単結晶シリコンで構成されており、 リザーバ形成 ϋは、前記滅形驢板の他側 面上に保識莫を形成する第 3劇臭 と、前記保簾莫の、編己 «形,反におけ るリザ一ノ、'形成部分に対応する領域を除去して、エッチング用孔を形成する¾¾成 工程と、 前記エッチング用孔から、 異方性湿式エッチングによって、前記、∞形成 基板の他側面から前記圧力発生室に至るリザ一バ形成部分を除去するリザ一バエ ツチング工程とを有していることを特徴とするインクジェヅト式記録へッドの製 造方法にある。
かかる第 6 4の態様では、単結晶シリコンからなる流路形成 ¾|反にリザ一バを比 較的容易且つ確実に形成することができる。 .
本発明の第 6 5の態様は、 第 6 4の態様において、前記 «形成纖 ίま、他側面 が単結晶シリコンで構成されると共に中央部が絶縁層で構成された S 0 I 反で あり、圧力発生 成工程は、前言 3ΕΕ力発生室の底部が絶縁層によって規定される ように前言脏力発生室を形成し、 リザ一ノ '形成工程は、前記流路形腿反の他側面 上に保護膜を形成する第 3劍莫工程と、前記保薩の、前記流路形^!反における リザーバ形成部分に対応する領域を除去してエッチング用孔を形成する孔形成ェ 程と、 前記エッチング用孔から、異方性湿式エッチングによって、 Ιίίϊ己流路形成基 板の他側面から絶縁層に至る第 1リザ一ノ、"形成部分を除去するリザ一バエツチン グ工程と、絶縁層の一部を除去して、編脏カ発生室と第 1リザ一バ形成部分とを 連通する第 2リザ一ノ、'形成部分を形成する絶縁層除去工程とを有していることを 特徴とするィンクジエツト式記録へッドの製造方法にある。
かかる第 6 5の態様では、 S O I勘反からなる »形 fij ^反に、 リザーバを比較 的容易且つ確実に形成することができる。
本発明の第 6 6の態様は、 第 6 4又は 6 5において、前記保讕莫が、窒ィ匕シリコ ン、二酸ィ匕シリコン及び酸ィ匕ジルコニウムからなる群から選択されることを特徴と するインクジエツト式言 へッドの製造方法にある。
かかる第 6 6の態様では、保龍莫を所定材料で形成することにより、保議莫をマ スクとしてリザーノ、"を確実に形成することができる。
本発明の第 6 7の態様は、第 6 3〜 6 6の何れかの態様において、圧力発生室形 成工程とリザ一ノ、"ェッチング工程とは、同時に されることを特徴とするインク ジエツト^;記録へッドの製造方法にある。
かかる第 6 7の態様では、 製造工程が簡^匕さ 製造コストを低減できる。 本発明の第 6 8の態様は、第 5 9〜6 7の何れかの態様において、前記圧電素子 を形成する工程の後に、当該圧電素子を保護する保讖莫を形成する保齣離成工程 を更に備えていることを特徴とするインクジエツト式記録へッドの製造方法にあ る。
かかる第 6 8の態様では、 エッチングによる圧電素子の破壊が防止される。 本発明の第 6 9の態様は、 第 6 8の態様において、孔形成工程は、 弾性膜と保護 膜との、前記、 形 反における前言 SEE力発生^成部分に対応する領域の他の 一部を除去するようになっていることを特徴とするインクジエツト式言 3録へッド の i¾g方法にある。
かかる 6 9の態様では、圧電素子を破壊することなく、エッチング用孔を確実に 形成できる。
本発明の第 7 0の態様は、第 5 9の態様において、前記流路形成基板が結晶面方 位( 1 0 0 )のシリコン単結晶 反からなり、 前記空間部を形成する工程が、 前記 «形成基板の前記圧力発生室が形成される領域に当該圧力発生室よりも狭い幅 で溝部を形成する工程を含み、前言 3SE力発生室を形成する ®が、前記振動板をパ 夕一ニングして前記溝部のそれそれに対向する領域に当該溝部に連通する連通孔 を形成する工程と、該連通孔を介して前記流路形鍾反を異方性ェツチングするこ とにより前記圧力発生室を横断面略三角开 に形成する工程とを含むことを特徴 とするインクジエツト式記録へッドの $¾g方法にある。
かかる第 7 0の態様では、比較的容易且つ高精度に圧力発生室を高密度に形成す ることができる。
本発明の第 7 1の態様は、第 7 0の態様において、前記溝部を前記圧力発生室の 深さよりも浅く形成することを特徴とするインクジエツト式記録へッドの製造方 法にある。
かかる第.7 1の態様では、異方性ェヅチングによって圧力発生室をより容易且つ 高精度に形成することができる。
本発明の第 7 2の態様は、第 5 9の態様において、前記空間部を形成する工程は、 前記流路 成基板の表面の一部を、複数の柱状部分が残るようにエッチングする第 1エッチング:!^と、前記複数の柱状部分の化学的特性を変質させると共に、前記 表面の一部を平坦ィ匕する変質平坦化工程とを含み、前記圧力発生室を形成する工程 は、編己振動板の、前記髓形幽反における前言 BE力発生室形成部分に対応する 領域の他の一部を除去してエッチング用孔を形成する孔形成工程と、前記エツチン グ用孔から、異方性湿式エッチングによって化学的特性を変質された前記複数の柱 状部分をエッチングして圧力発生室とする第 2エッチング I呈とを備えたことを 特徴とするィンクジエツト式記録へッドの製造方法にある。
かかる第 7 2の態様では、犠牲層を新たに成膜する必要が無いため、製造時間が 著しく短縮される。
本発明の第 7 3の態様は、 第 7 2の態様において、 変質平坦化工程は、 前記複数 の柱状部分を熱酸化させる熱酸化工程を有することを特徴とするィンクジエツト 式記録へッドの製造方法にある。
かかる第 7 3の態様では、柱状部分を熱酸ィ匕させることにより、柱状部分を容易 且つ確実に平坦化することができる。
本発明の第 7 4の態様は、第 7 3の態様において、 変質平坦化工程は、前 Ϊ3¾数 の柱状部分の隙間に犠牲層を充填させる犠牲層充填工程を有することを特徴とす るインクジエツト式言 へッドの^ g方法にある。
かかる第 7 4の態様では、犠 によって柱状部分を容易に平坦ィ匕することがで さる。
本発明の第 7 5の態様は、第 7 2〜7 4の何れかの態様において、前記複数の柱 状部分は、前記表面の一部に、略均等の配置で形成されることを特徴とするインク ジエツト式記録へッドの製造方法にある。
かかる第 7 5の態様では、柱状部分をェヅチングによって確実に除去することが できる。
本発明の 7 6の態様は、第 7 2〜7 5の何れかの態様において、編 3複数の柱状 部分の各々は、底部側の断面積よりも、表面側の断面積の方が大きくなつているこ とを とするインクジエツト式言腿へヅドの ii方法にある。
かかる第 7 6の態様は、柱状部分を比較的容易に平坦化できると共にエツチン グによって確実に除去することができる。
本発明の第 7 7の態様は、第 7 2〜7 6の何れかの態様において、前記圧力発生 室の赚は、略六面体であることを特徴とするインクジエツト式記録へッドの製造 方法にある。
かかる第 7 7の態様では、圧力発生室をエッチングによって比較的容易且つ高精 度に形成することができる。
本発明の第 7 8の態様は、 結晶面方位(1 0 0 )のシリコン単結晶勘反からなり ィンクを吐出するノズル開口に連通する圧力発生室が画成された流路形成簾と、 該、 形^^反の一方面に振動板を介して設けられた下 ®a莫、圧電体層及び上電 和 莫からなる圧電素子とを備えたインクジエツト式記録へッドの製造方法におい て、表面及び裏面を含む ( 1 0 0 )面方位の前記流路形成基板の前記表面上に多結 晶シリコン膜を形成する工程と、前記圧力発生室となる領域を残して、前記多結晶 シリコン膜及び前記シリコン単結晶基板の内部表面付近にポロンを拡散する工程 と、編己多結晶シリコン膜上に第 1膜を形成する と、前記圧力発生室を形成す る部分にエッチング液を供給するためのェヅチング用孔を t?f3第 1膜に形成する 工程と、前記ェッチング用孔を介して前記圧力発生室を形成する部分にェツチング 液を供給し、これによる等方性のゥエツトエッチングによりエッチングされた前記 多結晶シリコン膜のアンド一プ部分のパターンによって、前記シリコン単結晶 反 の前記表面を異方性のゥエツトエッチングによりエッチングして前記圧力発生室 を形成する工程と、編 3第 1膜上に第 2膜を形成して前記エッチング用孔を閉鎖す る工程とを備えたことを特徴とするインクジエツト式記録へッドの製造方法にあ る
かかる第 7 8の態様では、製造工程を簡 匕することができ、且つ精度よく圧力 発生室を形成することができる。
本発明の第 7 9の態様は、 結晶面方位( 1 0 0 )のシリコン単結晶繩からなり インクを吐出するノズル開口に連通する圧力発生室が画成された流路形成勘反と、 該^ §形 反の一方面に振動板を介して設けられた下 莫、圧電体層及び上電 ¾莫からなる圧電素子とを備えたインクジエツト式記録へッドの製造方法におい て、 表面及び裏面を含む ( 1 0 0 )面方位の前記流路形成基板の前記表面に多結晶 シリコン膜を形成する工程と、 tif!Bii力発生室となる領域を残して前記多結晶シリ コン膜を除去して所定パターンの多結晶シリコン膜を形成する工程と、前記所定パ ターンの多結晶シリコン膜上及び前記シリコン単結晶基板の前記表面上に第 1膜 を形成する工程と、前記圧力発生室を形成する部分にエツチング液を供給するため のエッチング用孔を前記第 1膜に形成する工程と、前記エッチング用孔を介して前 記圧力発生室を形成する部分にェッチング液を供給し、これによる等方性のゥエツ トエッチングによりエツチングされた前記多結晶シリコン膜の前記所定のパ夕一 ンによって、前記シリコン単結晶基板の前記表面を異方性のゥェヅトエツチングに よりエッチングして前 BE力発生室を形成する工程と、前記第 1膜上に第 2膜を形 成して前記エッチング用孔を閉鎖する工程とを備えたことを特徴とするインクジ エツト式記録へッドの製造方法にある。
かかる第 7 9の態様では、製造工程を簡 匕することができ、且つ精度よく圧力 発生室を形成することができる。
本発明の第 8 0の態様は、 結晶面方位(1 0 0 )のシリコン単結晶基板からなり インクを吐出するノズル開口に連通する圧力発生室が画成された流路形成 反と、 該 k¾形 β5»反の一方面に振動板を介して設けられた下 «»、圧電体層及び上電 極膜からなる圧電素子とを備えたインクジエツト式記録へッドの製造方法におい て、 表面及び裏面を含む(1 0 0 )面方位の前記流路形成基板の前記表面に保護層 を形成すると共に当該保護層の前記圧力発生室となる領域に開口部を形成するェ 程と、この保 上に墜層を形成すると共に当該犠牲層をパ夕一ニングすること により少なくとも前記開口部を覆う領域を残留部として残す工程と、このi¾層上 に第 1膜を形成する工程と、前記保護層上に形成された編 3犠牲層の周縁部に連通 するエツチング用孔を形成する工程と、前記ェツチング用孔を介してエツチング液 を供給して前記犠牲層を除去すると共に前記保護層の前記所定ノ、'ターンによって 前記 形成勘反を前記表面側から異方性ェツチングすることにより前記圧力発 生室を形成する工程と、前記第 1膜上に第 2膜を形成して ΙΪΪ己エッチング用孔を閉 鎖する工程とを備えたことを特徴とするインクジエツト式言 へッドの製造方法 ある。
かかる第 8 0の態様では、製造工程を簡 匕することができ、且つ精度よく圧力 発生室を 成することができる。
本発明の第 8 1の態様は、第 8 0の態様において、前記犠牲層をパ夕一ニングす る工程では、前記保護層の開口部の周囲に豆って溝部を形成することを特徴とする ィンクジエツト式記録へッドの製造方法にある。
かかる第 8 1の態様では、製造工程をより簡晰匕することができ、且つ圧力発生 室を精度よく形成することができる。
本発明の第 8 2の態様は、第 7 8〜8 1の何れかの態様において、前記圧力発生 室は細長状に形成されており、前記エッチング用孔は、前 BEE力発生室の長手方向 に沿って形成されたスリットから成ることを特徴とするィンクジェヅト式記録へ ッドの製造方法にある。
かかる第 8 2の態様では、エツチング用孔がスリットからなるため、エツチング 用孔を介して ¾形 反を確実にェツチングすることができ、圧力発生室を容易 且つ精度よく形成することができる。
本発明の第 8 3の態様は、第 7 6〜7 9の何れか態様において、前記エッチング 用孔は、所定間隔で形成された複数の小孔ょり成ることを麵とするインクジエツ ト式記録へッドにある。
かかる第 8 3の態様では、エッチング用孔が複数の小孔からなるため、エツチン グ用孔を介して «形 を確実にエッチングすることができ、圧力発生室を容 易且つ精度よく形成することができる。
' 本発明の第 8 4の態様は、 形成繊に圧力発生室を形成すると共に、前記流 路形成基板の一方面側に振動板を介して下電極、圧電体層及び上電極からなる压電 素子を形成するインクジエツト式記録へッドの製造方法において、前記圧力発生室 が形成される領域以外にボロンをド一ビングすることによりエツチングの選択性 を持たせたポリシリコン層の両面にシリコン単結晶 ffl反からなるシリコン層を有 する Ιΐί¾ 形成基板を形成する工程と、前記流路形成基板の一方のシリコン層側 に振動板を介して前記下鬈極、圧電体層及び上 S¾を順次積層及びパ夕一二ングし て前言 BE電素子を形成する工程と、前記 形 反の他方のシリコン層を前記ポ リシリコン層に達するまでエッチングしてインク導入口を形成し、該インク導入口 を介して前記圧力発生室となる領域の前記ポリシリコン層をパ夕一ニングすると 共に当該—ポリシリコン層をマスクとして前記一方のシリコン層をエッチングして 前記圧力発生室を形成する工程とを有することを特徴とするインクジェット式記 録へヅドの製造方法にある。
かかる第 8 4の態様では、ィンク導入口を介して、 ^形 ¾¾¾|反を選択的にエッチ ングして、圧力発生室を比較的容易に形成することができる。 また、 形 反 の圧電素子とは反対側の面からエッチングして圧力発生室等を形成できるため、圧 電体層の保護性が向上すると共に作業効率が向上する。
本発明の第 8 5の態様は、第 8 4の態様において、前記流路形成基板を形成する 工程では、前記他方のシリコン層の前記ポリシリコン層との接合面側で、少なくと も前記圧力発生室に対向する領域の表層にボロンをドービングする工程を含むこ とを特徴とするインクジエツト式言 へッドの » ^方法にある。
かかる第 8 5の態様では、インク導入口を介して一方のシリコン層をエッチング する際に、他方のシリコン層がエッチングされることがなく、圧力発生室を比較的 容易に形成することができる。 図面の簡単な説明
第 1図は、本発明の実施形態 1に係るインクジヱット式記録へッドの概略を示す 分解 図である。
第 2図は、本発明の実施形態 1に係るインクジヱット式記録へッドを示す断面図 である。
第 3図は、本発明の魏形態 1に係るインクジェット式記録へッドの製造工程を 示す断面図である。
第 4図は、本発明の実施形態 1に係るインクジエツト式記録へヅドの製造工程を 示す断面図である。
第 5図は、本発明の魏形態 1に係るインクジ Iット式言 へッドの製造工程を 示す断面図である。
第 6図は、本発明の実施形態 1に係るインクジエツ卜式記録へッドの他の製造ェ 程を説明するフローチャートである。
第 7図は、本発明の ¾5¾形態 1に係るインクジエツ卜式記録へッドの他の S^tェ 程を示す断面図である。
第 8図は、本発明の 形態 1に係るインクジェット式君 へッドの他の!^ェ 程を示す断面図である。
第 9図は、本発明の 形態 1に係るインクジエツト式言 へッドの他の製造ェ 程を示す断面図である。
第 1 0図は、本発明の錢形態 1に係るインクジェッ卜式記録へッドの他の製造 工程を示す断面図である。
第 1 1図は、本発明の 態 1に係るインクジエツト式記録へヅドの他の製造 工程を示す断面図である。
第 1 2図は、本発明の 態 1に係るインクジエツト式記録へッドの他の製造 工程を示す断面図である。
第 1 3図は、本発明の実施形態 1に係るインクジエツト式記録へヅドの他の製造 工程を示す断面図である。
第 1 4図は、本発明の実薦態 1に係るィンクジェット式記録へッドの他の製造 工程を示す断面図である。
第 1 5図は、本発明の実 態 2に係るインクジェヅト式記録へッドを示す断面 図である。
第 1 6図は、本発明の実施形態 3に係るインクジエツト式記録へッドを示す断面 図である。
第 1 7図は、本発明の実施形態 4に係るインクジェット式記録へヅドの概略を示 す分解斜視図である。
第 1 8図は、本発明の実 «態 4に係るインクジェット式記録へッドを示す断面 図である。
第 1 9図は、本発明の ¾¾¾態 4に係るインクジェヅ卜式記録へヅドの他の製造 工程を示す断面図である。
第 2 0図は、本発明の 態 4に係るインクジェット式記録へヅドの他の例を 示す断面図である。
第 2 1図は、本発明の実»態 5に係るインクジェヅ卜式記録へヅドの概略を示 す分解斜視図である。 第 2 2囪は、本発明の実«態 5に係るインクジエツト式記録へッドを示す断面 図及び上面図である。
第 2 3図は、本発明の実鐘態 5に係るインクジエツト式記録へッドの製造工程 を示す断面図である。
. 第 2 4図は、本発明の実歸態 5に係るインクジェット式記録ヘッドの製造工程 を示す断面図である。
第 2 5図は、本発明の実 態 5に係るインクジェット式記録へッドの製造工程 を示す断面図である。
第 2 6図は、本発明の実 態 5に係るインクジェット式記録へッドの他の例を 示す断面図である。 '
第 2 7図は、本発明の実膨態 5に係るインクジェット式記録へッドの他の製造 工程を説明するフローチャートである。
第 2 8図は、本発明の実 5©杉態 5に係るインクジエツト式記録ヘッドの他の製造 工程を示す断面図である。
第 2 9図は、本発明の^ »態 5に係るインクジエツト式記録へッドの他の製造 工程を示す断面図である。
第 3 0図は、本発明の ¾5 ^態 5に係るインクジェット式記録へッドの他の製造 工程を示す断面図である。
第 3 1図は、本発明の実 «態 5に係るインクジェット式記録へヅドの他の製造 工程を示す断面図である。
第 3 2図は、 第 3 1図のインクジエツト式記録へッドの概略平面図である。 第 3 3図は、 ポジレジストの配置例を示す平面図である。
第 3 4図は、 複数の柱の断面形状の一例を示す概略図である。
第 3 5図は、 熱酸化後の複数の柱の断面开娥を示す概略図である。
第 3 6図は、 ポジレジストの他の配置例を示す平面図である。
第 3 7図は、 ポジレジストの他の配置例を示す平面図である。
第 3 8図は、 ポジレジス卜の他の配置例を示す平面図である。
第 3 9図は、本発明の実 «態 6に係るインクジヱット式記録へヅドを示す断面 図である。 第 4 0図は、本発明の実 «態 7に係るィンクジエツト式記録へヅドの概略を示 す分解斜視図である。
第 4 1図は、本発明の実謹態 7に係るインクジェヅト式記録へヅドを示す断面 図である。
第 4 2図は、本発明の実脑態 7に係るインクジエツト式記録へッドの 工程 を示す断面図である。
第 4 3図は、本発明の実 態 7に係るインクジェット式記録へッドの製造工程 を示す断面図である。 ·
第 4 4図は、本発明の実«態 7に係るインクジェット式記録へッドの製造工程 を説明する概略斜視図である。
. 第 4 5図は、本発明の実«態 7に係るインクジエツト式記録へヅドの他の例を 示す断面図である。 .
第 4 6図は、本発明の実 «態 8に係るインクジエツト式記録へヅドの概略を示 す余†見図である。
第 4 7図は、本発明の実 «態 8に係るィンクジエツト式記録へヅドを示す断面 図である。
第 4 8図は、本発明の実 «態 8に係るィンクジエツト式記録へヅドの 工程 を示す上面図及び断面図である。
第 4 9図は、本発明の実«態 8に係るインクジェット式記録へッドの製造工程 を示す上面図及び断面図である。
第 5 0図は、本発明の実; W態 8に係るインクジエツト式記録へヅドの 3t工程 を説明する概略断面図である。
第 5 1図は、本発明の実施形態 8に係るインクジヱット式記録へッドの他の例を 示す断面図である。
第 5 2図は、本発明の実施形態 9に係るインクジエツト式記録へッドを示す断面 図である。
第 5 3図は、本発明の ¾¾ 態 9に係るインクジェット式記録へッドの 工程 を示す断面図である。
第 5 4図は、本発明の実膨態 9に係るインクジェット式記録へヅドの製造工程 を示す断面図である。
第 5 5図は、本発明の実 JS¾態 9に係るインクジェヅト式記録へヅドの他の例を 示す上面図である。
第 5 6図は、本発明の実 «態 1 0に係るインクジエツト式記録へッドを示す断 面図である。
第 5 7図は、本発明の UK態 1 0に係るインクジェット式言 へッドの製造ェ 程を示す断面図である。
第 5 8図は、本発明の実施形態 1 0に係るインクジェヅト式記録へッドの難ェ 程を示す断面図である。
第 5 9図は、本発明の 態 1 1に係るインクジエツト式記録へッドを示す断 面図である。
第 6 0図は、本発明の実«態 1 1に係るインクジェット式記録へッドの S ^ェ 程を示す断面図である。
第 6 1図は、本発明の実腿態 1 1に係るィンクジエツト式言 へッドの変形例 を示す断面図である。
第 6 2図は、本発明の他の実«態に係るィンクジエツト式記録へッドの断面図 である。
第 6 3図は、本発明の一 形態に係るィンクジエツト式記録装置の概略図であ る。 本発明を実施するための最良の形態
以下に本発明を H»態に基づいて詳細に説明する。
(鍾形態 1 )
第 1図は、本発明の謹形態 1に係るインクジエツト式記録へッドを示す分解斜 視図であり、第 2図は、インクジエツト式記録へヅドの 1つの圧力発生室の長手方 向における断面構造を示す図である。
図示するように、 流路形成基板 1 0は、 本実 ½B態では面方位( 1 1 0 )のシリ コン単結晶板からなる。 形 反 1 0としては、通常、 1 5 0 /m〜 1 mm程 度の厚さのものが用いられる。 ∞形成基板 1 0の一方の面には、シリコン単結晶基板を異方性エッチングする ことにより複数の隔壁 1 4により区画された圧力発生室 1 5が形成されている。 この異方性ェッチングは、ウエットエツチング又はドライエツチングの何れの方 法を用いてもよく、 シリコン単結晶板を厚さ方向に途中までエッチング(ハーフエ ツチング)することにより圧力発生室 1 5は浅く形成されている。なお、 ハーフエ ッチングはェッチング時間の調整により行われる。
また、各圧力発生室 1 5の長手方向両端部の底部には、後述するノズル開口に連 通するノズル ¾1孔 1 6、及び後述するリザ一バに連通するィンク連通孔 1 7が開 口している。このノズル連通孑し 1 6及びインク ¾ 孔1 7は、圧力発生室 1 5の幅 より小さ 、径で他方面側まで貫通して設けられており、他方面側から異方性ェッチ ングすることにより形成されている。
∞形成基板 1 0のノズル連通孔 1 6及びィンク連通孔 1 7が開口する面には、 各ノズル^!路 1 6に ^ilするノズル開口 2 1と、各ィンク連通子し 1 Ίに連通する インク供給連通口 2 2とが穿設されたノズルプレート 2 0が接着剤や熱溶着フィ ルムを介して接着されている。 なお、 ノズルプレート 2 0は、 厚さが例えば、 0 . 1〜; L mmで、 線膨張係数が 3 0 0 °C以下で、 例えば 2 . 5〜4 . 5 [ x 1 0 " 6 /°C]であるガラスセラミックスからなる。 ノズルプレ.ート 2 0は、一方の面で流 路形成基板 1 0を覆い、シリコン単結晶基板を衝撃や外力から保護する補強板の役 目も果たしている。
ここで、 インク滴吐出圧力をインクに与える圧力発生室 1 5の大きさと、インク 滴を吐出するノズル開口 2 1の大きさとは、吐出するインク滴の量、吐出スピード、 吐出周波数に応じて最適化される。例えば、 1ィンチ当たり 3 6 0個のィンク滴を 記録する 、 ノズル開口 2 1は数十〃 mの直径で精度よく形成する必要がある。 共通ィンク魏成繊 3 0は、複数の圧力発生室 1 5に共通する共通ィンク室で あるリザ一バ 3 1の周壁を形成するものであり、 ノズル開口数、 インク滴吐出周波 数に応じた適正な厚みのステンレス板を打ち抜レ、て作製されたものである。本実施 形態では、 共通インク 反 3 0の厚さは、 0 . 2 mmとしている。
インク室側板 4 0は、ステンレス 反からなり、一方の面でリザ一ノ、' 3 1の一壁 面を構成するものである。 また、 インク室側板 4 0には、他方の面の一部にハーフ エッチングにより凹部 4 0 aを形成することにより薄肉壁 4 1が形成されている。 なお、薄肉壁 4 1は、インク滴吐出の際に発生するノズル開口 2 1と反対側へ向か う圧力を吸収するためのもので、他の圧力発生室 1 5に、 リザーバ 3 1を経由して 不要な正又は負の圧力が力□わるのを防止する。本実層態では、 ィンク導入口 2 3 と外部のィンク供給手段との接続時等に必要な剛性を考慮して、ィンク室側板 4 0 を 0 . 2 mmとし、 その一部を厚さ 0 . 0 2 mmの薄肉壁 4 1としているが、 ハー フエッチングによる薄肉壁 4 1の形成を省略するために、ィンク室側板 4 0の厚さ を初めから 0 . 0 2 mmとしてもよい。
これら共通ィンク室形成基板 3 0及びィンク室側板 4 0等で形成されたリザ一 バ 3 1と各圧力発生室 1 5とは、ノズルプレート 2 0に形成されたィンク供給連通 口 2 2を介して連通されており、インクはこのインク供給連通口 2 2を介してリザ ーパ 3 1から各圧力発生室 1 5に供給される。また、 リザーパ 3 1に供給されるィ ンクは、ノズルプレート 2 0のリザーバ 3 1に対向する領域に形成されたインク導 入口 2 3により供給される。
一方、圧力発生室 1 5が形成された、∞形成纖 1 0上には、例えば、 酸化ジル コニゥム (Z r 02 ) 等の絶縁層からなる、 厚さ l〜2 mの弾性膜 5 0が設けら れている。この弾性膜 5 0は、一方の面で圧力発生室 1 5の一壁面を構成している。 このような弾性膜 5 0上の各圧力発生室 1 5に相対向する領域には、厚さが例え ば、 約 0 . 5 /111の下¾¾莫6 0と、 厚さが例えば、約 1〃mの圧電体莫 7 0と、 厚さが例えば、 約 0 . 1〃mの上翻莫8 0とが、後述するプロセスで積層形成さ れて、圧電素子 3 0 0を構成している。 ここで、 圧電素子 3 0 0は、 下電纏 6 0、 圧電体膜 7 0及び上電極膜 8 0を含む部分をいう。一般的には、圧電素子 3 0 0の 何れか一方の を共通 ¾1とし、他方の^及び圧電体膜 7 0を各圧力発生室 1 5毎にパターニングして構成する。そして、 ここではパターニングされた何れか一 方の電極及び圧電体膜 7 0から構成さ 両電極への電圧の印加により圧電歪みが 生じる部分を圧電体能動部 3 2 0という。本 ¾½B態では、下 莫 6 0は圧電素 子 3 0 0の共通 とし、上 ¾{S8 0を圧電素子 3 0 0の個別 ¾Sとしているが、 駆動回路や配線の都合でこれを逆にしても支障はない。何れの場合においても、各 圧力発生室毎に圧電体能動部が形成されている とになる。 また、 ここでは、圧電 素子 3 0 "0と当該圧電素子 3 0 0の駆動により.変位が生じる弾性膜とを合わせて 圧電ァクチユエ一夕と称する。
ここで、シリコン単結晶板からなる、»形成 ¾1反 1 0に圧力発生室 1 5を形成す る工程及び、この圧力発生室に対応する領域に圧電素子 3 0 0を形成するプロセス を第 3図〜第 5図を参照しながら説明する。なお、 第 3図及び第 4図は、圧力発生 室 1 5の幅方向の断面図、 第 5図は、圧力発生室 1 5の長手方向の断面図である。 まず、 第 3図(a ) に示すように、 ∞形成 ¾反 1 0となるシリコン単結晶板上 に、例えば、酸化シリコンからなる所定形状のマスクを用いて異方性エッチングす ることにより圧力発生室 1 5を形成する。 ここで、 本¾«態では、 面方位(1 1 0 )の単結晶シリコンからなる流路形 反 1 0をハーフエッチングすることによ り圧力発生室 1 5を形成する。 したがって、圧力発生室 1 5の底面を構成する (1 1 0 ) 面が異方性エッチングのエッチングストツフ となっている。
次に、 第 3図(b ) に示すように、 流路形成基板 1 0に形成された圧力発生室 1 5に灘層 9 0を埋め込む。例えば、 本難形態では、 ∞形麟反 1 0の全面に 亘つて犠牲層 9 0を圧力発生室 1 5の深さと略同一厚さで形成した後、圧力発生室 1 5以外の犠牲層 9 0をケミカル ·メカニカル 'ポリッシュ (CMP ) により除去 することにより形成した。
このような墜層 9 0の材料は、特に限定されないが、例えば、 ポリシリコン又 はリンドーフ ¾化シリコン ( P S G)等を用いればよく、 本 H»態では、 エッチ ングレートが比較的速い P S Gを用いた。
なお、灘層 9 0の形成方法は特に限定されず、例えば l〃m以下の超簾子を ヘリウム( H e )等のガスの圧力によって高速で勘反に衝突させることにより劍莫 するいわゆるガスデポジション法あるいはジェットモールディング法と呼ばれる 方法を用いてもよい。この方法では、圧力発生室 1 5に対応する領域のみに犠牲層 9 0を部分的に形成することができる。
次に、 第 3図(c ) に示すように、 »形成續 1 0及び犠牲層 9 0上に弾性膜 5 0を形成する。例えば、 本鍾形態では、 流路形腦反 1 0上にジルコニウム層 を形成後、例えば、 5 0 0〜 1 2 0 0 °Cの拡散炉で熱酸ィ匕して酸化ジルコニウムか らなる弾' ^莫 5 0とした。 なお、弾性膜 5 0の材料は、 後の犠牲層 9 0を除去する 工程でエッチングされない材料であれば特に限定されず、例えば、酸化シリコン等 であってもよい。
次に各圧力発生室 1 5に対応して弹 莫 5◦上に圧電素子 3 0 0を形成する。 圧電素子 3 0 0を形成する工程としては、 まず、 第 4図(a) に示すように、 ス パッ夕リングで下 莫 6 0を形成する。この下 ¾¾莫6 0の材料として'は、 白金 等が好適である。これは、 スパヅ夕リング法やゾル一ゲル法で劍莫する後述の圧電 体膜 7 0は、劍莫後に大気雰囲気下又は酸素雰囲気下で 6 0 0〜 1 0 0 0 °C程度の で焼成して結晶化させる必要があるからである。すなわち、下 SIS莫 6 0の材 料は、 このような高温、酸化雰囲気下で導電性を保持できなければならず、殊に、 圧電体膜 7 0としてチタン酸ジルコン^ ί& ( Ρ Ζ Τ)を用いた場合には、 酸化鉛の 拡散による導電性の変ィ匕が少ないことが望ましく、これらの理由から白金が好適で ある。
次に、 第 4図(b ) に示すように、 圧電体膜 7 0を劍莫する。例えば、 本観形 態では、鍋有機物を触媒に溶解 '分散したいわゆるゾルを塗布乾燥してゲルイ匕し、 さらに高温で焼成することで金属酸化物からなる圧電体膜 7 0を得る、いわゆるゾ ルーゲノレ法を用いて形成した。圧電体膜 7 0の材料としては、例えば、 B a T i O 3、 (B a、 S r ) T i 03、 PMN— Ρ Τ、 Ρ Ζ Ν— Ρ Τまたは S r Β i 2 Τ a 29等が挙げら 特に チタン酸ジルコン 系の材料がインクジェット式記録へ ッドに使用する場合には好適である。 なお、 この圧電体膜 7 0の 法は、特に 限定されず、 例えば、 スパッ夕リング法又は MOD法(有機金属熱塗布分解法)等 のスピンコ一ト法により媚莫してもよい。
さらにゾルーゲル法又はスパッ夕リング法もしくは MOD法等によりチタン酸 ジルコン酸鉛の前駆体膜を形成後、アル力リ水溶液中での高圧処理法にて低温で結 晶成長させる方法を用いてもよい。
何れにしても、 このように 莫された圧電体膜 7 0は、ノ レクの圧電体とは異な り結晶が優先配向しており、 且つ本¾»態では、圧電体膜 7 0は、結晶が柱状に 形成されている。なお、 優先配向とは、 結晶の配向方向が無秩序ではなく、特定の 結晶面がほぼ一定の方向に向いている状態をいう。また、結晶が柱状の薄膜とは、 略円柱体の結晶が中心軸を厚さ方向に略一致させた状態で面方向に亘つて集合し て薄膜を 成している状態をいう。勿論、優先配向した粒状の結晶で形成された薄 膜であってもよい。 なお、 このように薄膜工程で された圧電体膜の厚さは、 一 般的に 0 . 2〜5 mである。
次に、 第 4図 (c ) に示すように、 上 莫 8 0を 莫する。上電纏莫 8 0は、 導電性の高い材料であればよく、 アルミニウム、 金、 ニッケル、 白金等の多くの金 属ゃ、 導電性酸化物等を使用できる。本実施形態では、 白金をスパッタリングによ り劇臭している。
次いで、下 ¾a莫 6 o、圧電体膜 7 0及び上 莫 8◦を一緒にエッチングして 下 莫 6 0の全体パターンをパ夕一ニングした後、 第 4図(d)に示すように、 圧電体膜 7 0及び上電浦莫 8 0のみをエッチングして圧電体能動部 3 2 0のパ夕 一二ングを行う。
次に、 第 5図(a) に示すように、 少なくとも圧電体膜 7 0を覆うように保護膜 1 0 0を劇莫する。その後、他方面側から異方性エッチングすることによりノズル 連通孔 1 6及びィンク連通孔 1 7を形成する。ノズル連通孔 1 6及びィンク ¾ 1子し 1 7を形成する際の異方性エッチングは、これらノズル連通孔 1 6及びィンク連通 孔 1 7 ¾垂直な貫通孔とするためにドライエッチングであることが望ましい。なお、 ノズル連通孔 1 6及びインク連通孔 1 7は、保瞧 1 0 0を舰する前、 すなわち 第 4図 (d) の後に形成しても特に問題はない。
その後、 第 5図(b) に示すように、 ノズル連通孔 1 6及びインク ¾ 孔 1 7か らゥェヅトエッチングまたは蒸気によるエッチングによって犠牲層 9 0を除去し、 その後、 保護膜 1 0 0を除去する。本 態では、 犠牲層 9 0の材料として、 P S Gを用いているため、 弗^ zk溶液によってエッチングした。なお、 ポリシリコン を用いた^ ·には、 弗酸及び硝酸の混合水溶液、あるいは水酸化カリウム水溶液に よってエッチングすることができる。
以上のような工程で、 圧力発生室 1 5及び圧電素子 3 0 0が形成される。
以上説明した一連の膜形成及び異方性エッチングでは、一枚のウェハ上に多数の チップを同時に形成し、 プロセス終了後、第 1図に示すような一つのチップサイズ の灘形 反 1 0毎に分割する。又、分割した满形腦反 1 0を、 ノズルプレ ―卜 2 0、共通ィンク室形^^反 3 0及びィンク室側板 4 0と順次接着して一体化 し、 イン—クジエツト式言 へヅドとする.。 .
このように構成したインクジエツト式記録へッドは、図示しない外部インク供給 手段と接続したインク導入口 2 3からインクを取り込み、リザ一バ 3 1からノズル 開口 2 1に至るまで内部をィンクで満たした後、図示しない外部の駆動回路からの 記録信号に従い、下 m® 6 0と上 莫 8 0との間に ¾Εを印加し、弾倒莫 5 0、 下 莫 6 0及び圧電体膜 7 0をたわみ変形させることにより、圧力発生室 1 5内 の圧力が高まりノズル開口 2 1からインク滴が吐出する。
このような本 «形態では、各圧力発生室 1 5を、基板を貫通することなく形成 しているので、各圧力発生室 1 5の隔壁 1 4の剛性を十分高くすることができ、且 つ有効にインク滴を吐出することができる。 このため、 シリコン単結晶^ KiPの制 約を受けることなく大口径のシリコンウェハを用いることもでき、ラインプリンタ —などの大型へッドへの適用も可能となる。
また、、«形 β¾¾反 1 0にノズルプレート 2 0を貝占り付ける際、貼り付けに用い られる接着剤が弾性膜 5 0側に流出するのことがないため、弾' 莫 5 0の動きを拘 束してインク吐出不良が生じることがない。
さらに、圧力発生室 1 5を形成する際、圧力発生室 1 5の深さをエッチングの時 間によつて自由に設定でき、合わせて隔壁のコンプライアンスを制御できると共に、 製造にかかる時間を減らすことができるので、 低コスト ¾ 1が実現できる。
また、圧力発生室 1 5等の形成方法は、上述した方法に限定されるものではない。 以下に、 その一例について説明する。 なお、 第 6図は、 インクジエツト式言己録へッ ドの! ^方法の他の例、特に、圧力発生室 1 5の形成工程を説明するフローチヤ一 トであり、第 7図〜第 1 4図は、第 6図に示す各工程を順に説明するための概略図 である。 また、 第 7図〜第 1 4図において、 ( a) は圧力発生室の長手方向の断面 図であり、 (b) は (a) の b— b線断面図である。
本例は、 犠牲層を用いることなく圧力発生室を形成した例であり、 まず、第 6図 に示すように、 まず加工対象となる 反が用意される (S T E P 1 )。 なお、 この 例では、 、»形 板 1 0として、 結晶方位が、 例えば(1 0 0 ) の単結晶シリコ ン«を用いている。
次に、 第 7図(a)及び第 7図(b ) に示すように、 滅形) 板 1 0の上面に po ly— S i (多結晶シリコン) 膜 131が 莫される (STEP 2)。 po 1 y— S i膜 131は、 例えば、 その厚みが 0. l〜l zmとなるまで劇莫される。 続いて、 第 8図 (a)及び第 8図 (b) に示すように、 po ly— S ifl莫 131 のさらに上面の、流路形成基板 10における圧力発生室形成部分に対応する領域に、 マスク膜 132がパ夕一ニング形成される (STEP 3)。 マスク膜 132は、 ,こ の^ S i 02膜であり、 その厚みは例えば l〜2 mである。 そして、 マスク膜 132及び po ly— S i膜 131に対して高濃度ボロンド一プ処理が施され( S TEP4)、po ly— S i膜 131のマスク膜 1 '32が形成されていない領域 (流 路形成基板 10における圧力室形成部分に対応する領域を除いた領域)に、高濃度 のポロンが拡散される。この場合の高 ポロンド一プ処理は、前記領域の p o 1 y— S i膜 131が 1 X 102Q個 /c m3以上のボロン含有密度を有するボロン 含有膜 131 bとなるように行われる。
続いて、 第 9図(a)及び第 9図 (b) に示すように、 マスク膜 132が何れか の公知の方法によって除去される (STEP 5)。 そして、 po ly— S i膜 13 1及びポ口ン含有膜 131 bの上面に、 弾性膜 50が成膜される ( S T E P 6 )。 次に、 第 10図(a)及び第 10図 (b) に示すように、 弾性膜 50の上面側の 流路形成 反 10における圧力発生室形成部分に対応する領域の一部に、上述した 製造工程と同様に下 «®莫 60、圧電体膜 70及び上 β莫 80を順次 莫及びノ 夕一ニングされて圧電素子 300が形成される (STEP 7)。
続いて、 第 11図 (a)及び第 1 1図 (b) に示すように、 圧電素子 300の上 面側に、 保護膜 100 Aが形成される ( S T E P 8 )。 保護膜 100 Aは、 例えば フッ素系樹脂またはパラキシリレン樹^^で構成され得る。
続いて、 第 12図 (a)及び第 12図 (b) に示すように、 弾性膜 50及び保護 膜 1◦ 0 Aの、、»形 反 10における圧力発生室形成部分に対応する領域であ つて、 かつ、圧電素子 300が形成されていない部分に、 エッチング用孔 133が 形成される (STEP 9)。 エッチング用孔 133は、 例えばフォトレジストパ夕 一二ングと、 イオンミリングなどのドライエッチングとによって形成され得る。 本実施形態では、 第 12図 (a)及び第 12図 (b) に示すように、 エッチング 用孔 133は、圧電素子 300の周囲をコの字形に取り囲むように形成されており、 複数の圧—電素子に共用されるべく連続に設けられている下 ®ϋ膜 60をも貫通し ている。
そして、 第 13図 (a)及び第 13図(b) に示すように、 エッチング用孔 13 3から水酸化力リゥム水溶液による異方性湿式エッチングが実施さ o ly- S i膜 131のボロンが拡散されていない部分及び当該部分の下方の流路形成基 板 10が除去され、 形^ S反 10であるシリコン 反の結晶方位に従って、 こ の 断面三角开狱の圧力発生室 15が形成される (STEP 10)。 この時、 ボ ロン含有膜 13 l bが水酸ィ匕カリウム水溶液によって除去されずに残存すること によって、流路形成基板 10に対するエッチングの進行方向が精度良く規定され得 る。
続いて、 第 14図 (a)及び第 14図 (b) に示すように、 保護膜 10 OAが除 去される (STEP 1 1)。
, 以上のように本雄の形態によれば、ボロン含有膜 131 b (p 01 y— S i膜 131のボロンが拡散された部分)が異方性湿式ェヅチングによって除去されない ため、 所望の形状の圧力発生室 15が精度良く容易に形成され得る。
ここで本件発明者らは、異方性湿式エッチングに対するボロン含有膜 131 bの 耐性を確実にするためには、 ボロン含有膜 131 bのボロン含有密度が、 1 x 10 2Q個/ cm3以上であることが特に好ましいことを ¾ した。
また、本実 «態によれば、圧力発生室 15の深さを浅く形成する場合であって も、用意する流路形成基板 10の厚みを自由に選択することができる。このため、 製造時の流路形成 «10の取り扱いが容易であり、大径ウェハのシリコン基板を 利用することができる。
また、本 ¾¾B態によれば、圧力発生室の厚みの墜層を 莫する必要が無いた め、 製造時間が著しく短縮される。
さらに、圧電素子 300の上面に保龍莫を形成したことにより、異方性湿式ェッ チング (STEP 10) の間、 圧電素子 300が確実に保護される。
(鎌形態 2)
第 15図(a)は、実施形態 2に係るインクジエツト式記録へッドの圧力発生室 の幅方向の断面図、 第 15図 (b) は、 第 15図(a) の C— C, 断面図である。 なお、前述した^ S形態で説明したものと同様の機能を有する部材には同一の符号 を付して重複する説明は省略する。
第 1 5図(a) に示すように、 本実 5¾¾態は、 シリコン単結晶基板からなる流路 形 反 1 0の両面に圧力発生室 1 5を形成した例であり、 形 β ^反 1 0の両 面の圧力発生室 1 5は互いに相対向しない位置に設けられている。
圧力発生室 1 5は、 ιと同様にハーフエッチングをすることにより浅く 形成されており、圧力発生室 1 5の長手方向一端は、流路形成基板 1 0の側面まで 貫通するように設けられている。そして、 流路形 m¾t反 1 0の側面には、圧力発生 室 1 5と連通するノズル開口 2 1 Aが穿設されたノズルプレート 2 0 Aが接着剤 や熱溶着フィルムを介して接着されている。
また、 «形讓反 1 0の両面にはそれそれ弾' ffl莫 5 0が形成され、各弾性膜 5 0の圧力発生室 1 5に対応する領域には、上述した H¾形態 1と同様に圧電素子 3 0 0が形成されている。なお、 本難形態では、 弾' 莫 5 0に各圧力発生室 1 5と リザーノ 3 1とを連通する第 1の貫通孔 5 1が形成されている。
また、 第 1 5図(b) に示すように、 弾性膜 5 0上には、 封止基板 2 5、 共通ィ ンク室形^^反 3 0及びィンク室側板 4 0が順次接合されており、封止 反 2 5上 の略全面がリザ一バ 3 1となっている。なお、外部のィンク供給手段からリザーバ 3 1にインクを供給するインク導入口 2 3は、本 ¾K ^態では、インク室側板 4 0 に設けるようにした。
また、封止纖 2 5は、圧電素子 3 0 0の運動を阻害しない程度の空間を確保し た状態でその空間を密封可能な圧電素子保持部 2 4を有しており、圧電素子 3 0 0 の少なくとも圧電体能動部 3 2 0は、この圧電素子保持部 2 4内に密封されている。 また、 この封止 ¾反 2 5には、弾†«5 0の第 1の貫通孔 5 1に対応してインク供 給孔 2 6が形成されており、 これら第 1の貫通孔 5 1を介して、 リザーパ 3 1から 圧力発生室 1 5にインクを供給している。
このような本実施形態の構成では、一つの流路形成基板 1 0の両面に圧力発生室 1 5を有することから、 へッドの小型化が可能である。 また、 高密度で圧力発生室 1 5を形成しても隔壁 1 4の剛性が十分に保たれる。
なお、本実 «態では、∞形^ S板 1 0の側面側にノズル開口 2 1を有するノ ズルプレート 2 O Aを接合するようにしたが、 これに限定されず、例えば、 滅形 成基板の端部に圧力発生室に連通するノズル開口をハーフエッチングにより形成 するようにしてもよい。
(難形態 3 )
第 1 6図は、 実施形態 3に係るインクジェット式記録へッドの断面図である。 本 形態は、第 1 6図に示すように、 ノズル開口を ¾形^ ¾板 1 0の圧電素 子 3◦ 0と同じ側に設けた例である。
すなわち、本実施形態では、弾性膜 5 0上に実 態 2の封止基板 2 5の替わり にノズル開口 2 1が穿設されたノズルプレート 2 0 Bが流路形成基板 1 0の略全 面を覆うように接合されており、ノズル開口 2 1 Bと圧力発生室 1 5とが弾性膜 5 0に設けられた第 2の貫通孔 5 2を介して連通している。
また、 このようなノズルプレート 2 0 Bは、圧電素子 3 0 0の運動を阻害しない 程度の空間を確保した状態でその空間を密封可能な圧電素子保持部 2 4を有し、弹 性膜 5 0に設けられた第 1の貫通孔 5 1に対応して、リザーバ 3 1から圧力発生室 1 5にインクを供給するインク供給孔 2 6が形成されている。
なお、 ノズルプレート 2 0 B上には、共通ィンク ¾Jf¾ ^反 3 0及びィンク室側 板 4 0によって、前述した細形態 1と同様にリザ一バ 3 1が形成さ このリザ ーバ 3 1には、ノズルプレート 2 0 Bに形成されたィンク導入口 2 3を介してイン クが供給されるようになっている。
このような構成によっても、 勿論、 上述の実施形態と同様の効果が得られる。 (難形態 4 )
第 1 7図は、纖形態 4に係るインクジェット式記録へッドを示す分解余 ^見図で あり、 第 1 8図は、 その断面図である。 なお、 上述した 態で説明したものと 同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
本雄形態は、複聽で構成される蘭形成纖を用いた以外は、雄形態 3と 同様であり、 図示するように、 ∞形 β ^反 1 O Aは、 本 形態では、 例えば、 酸ィ匕シリコンからなる絶縁体層 1 1とこの絶縁体層 1 1の両面に設けられると共 にシリコン単結晶基板からなる一対の第 1シリコン層 1 2及び第 2シリコン層 1 3とを有する。すなわち、 本 態の 形 反 1 O Aは、 S O I 反からな る。
滅形腦反 1 O Aの第 1シリコン層 1 2の Mifは、第 2シリコン層 1 3の fl Jl よりも薄く形成され、本実鐘態では、 この の薄い第 1シリコン層 1 2に複数 の隔壁 1 4により区画された圧力発生室 1 5が幅方向に並設されている。 また、圧 力発生室 1 5の長手方向端部側には、 それそれ、 ノズル開口 2 1に連通するノズル 連舰 1 6 A及びリザーバ 3 1に連通するィンク 1 7 Aが、圧力発生室 1 5 の幅よりも狭い幅で延設されている。
なお、このように圧力発生室 1 5等が形成された流路形成基板 1 0 Aの第 1シリ コン層 1 2上には、 上述の鎌形態と同様に 弾'隱 5 0が形成さ k この弾性膜 5 0上に下 莫 6 0、圧電体 S莫 7 0及び上 «I莫 8 0からなる圧電素子 3 0 0が 形成されている。
ここで、本¾»態に係るインクジエツト式言 へッドの製造工程、具体的には、 S O I基板からなる流路形成基板 1 O Aに圧力発生室 1 5等を形成する工程を第 1 9図を参照しながら説明する。 なお、 第 1 9図(a) 〜 (c ) は、 圧力発生室の 幅方向の断面図であり、 第 1 9図(d )は、 圧力発生室の長手方向の断面図である。 まず、 第 1 9図(a) に示すように、、 形扁反 1 0 Aとなる S O I纖のゥ ェハの第 1シリコン層 1 2上に、例えば、酸ィ匕シリコンからなる所^ Kのマスク を用いて、水酸化力リウム等のアル力リ水溶液によって異方性エッチングすること' により、圧力発生室 1 5及びその長手方向端部側にそれそれノズル連通路 1 6 A及 びインク連通路 1 7 Aを形成する。
ここで、 本雄形態では、 ¾ί¾形成纖 1 0 Aの第 1シリコン層 1 2は、 その主 面力 s ( 0 0 1 )方位であり、且つ圧力発生室 1 5をその長手方向が < 1 1 0 >方向 となるように形成している。そのため、圧力発生室 1 5、 ノズル連 1 6 A及び インク連 1 7 Aは、 所定角度の傾斜面で構成されている。
こめように第 1シリコン層 1 2を所定の面方位として圧力発生室 1 5を形成す ることにより、異方性ェッチングによつて圧力発生室 1 5を比較的高レ、寸法精度で 形成することができる.と共に、圧力発生室 1 5を高密度に配列することができる。 なお、 第 1シリコン層 1 2の主面を (1 1 0 )方位とし、圧力発生室 1 5をその 長手方向が < 1一 1 2 >方向となるように形成するよゔにしてもよい。 ここで、 (- 1 ) は (バー 1 ) を示す。
この場合には、圧力発生室 1 5、 ノズル連通路 1 6 A及びィンク連鹏 A 1 7は、 流路形讓反 1 O Aの表面に略垂直な面で構成されるが、上述の場合と同様に、高 精度及び高密度に圧力発生室 1 5を形成することができる。
また、 この圧力発生室 1 5、 ノズル連 ®½ 1 6 A及びィンク連通路 1 7 Aは、 流 路形成基板 1 0 Aの第 1シリコン層 1 2をほぼ貫通して絶縁体層 1 1に達するま でエッチングすることにより形成されている。 したがって、絶縁体層 1 1によって エッチングの停止が容易となり、圧力発生室 1 5等の深さを容易に制御でき、且つ 高密度に形成することができる。なお、絶縁体層 1 1は、 シリコン単結晶 反から なる 1シリコン層 1 2をェヅチングするアル力リ溶液に侵される量がきわめて 小さい。
次に、 第 1 9図(b) に示すように、 第 1シリコン層 1 2に形成された圧力発生 室 1 5、 ノズル連通路 1 6 A及びィンク舰路 1 7 Aに、上述の 態と同様の 方法で犠牲層 9 0を埋め込む。
次に、 第 1 9図( c ) に示すように、 第 1シリコン層 1 2及び犠牲層 9 0上に弾 性膜 5 0を形成し、 この弾性膜 5 0上に下 ¾¾莫6 0、圧電体膜 7 0及び上 «¾莫 8 0を順次積層及びパ夕一ニングすることにより圧電素子 3 0 0を形成する。なお、 この弾性膜 5 0及び圧電素子 3 0 0の形成工程は、上述の 形態と同様である。 その後、 第 1 9図( d ) に示すように、 弾性膜 5 0の犠牲層 9 0に対向する領域 に、 觀層 9 0を露出する貫通孔、例えば、 本 態では、 ノズル連通路 1 6 A 及びインク連通路 1 7 Aにそれそれ対応する領域の弾性膜 5 0に第 1の貫通孔 5 1及び第 2の貫通孔 5 2を形成する。そして、 これら第 1の貫通孔 5 1及び第 2の 貫通孔 5 2から、 上述の実 «態と同様に、 犠牲層 9 0を除去する。
以上のような工程によって圧力発生室 1 5及び圧電素子 3 0 0が形成される。 このように、 本¾«態では、灘形腿反 1 O Aとして S O I翻を用い、膜 厚の薄い第 1シリコン層に圧力発生室 1 5を形成するようにしたので、各圧力発生 室 1 5を区画する隔壁 1 4の剛性を高めることができ、且つ複数の圧力発生室 1 5 を高密度に配列することができる。また、圧力発生室 1 5の深さを浅くすることに より、 P鬲壁 1 4のコンプライアンスを小さくすることができ、インクの吐出特½:が 向上する。
また、圧力発生室 1 5が形成される第 1シリコン層 1 2の膜厚は薄いものの、流 路形 反 1 O A全体の厚さは厚いため、大きなサイズのウェハとしても取り扱い が容易となる。 したがって、 ウェハー枚当たりのチップの取り数を増カ卩することが でき、製造コストを低減することができる。 また、 チップサイズを大きくできるの で、 長尺のヘッドも製造することができる。
さらに、 、∞形成 ¾反 1 O Aが厚いため、反りの発生が抑えられ、他の部材と接 合する際に位 合わせが容易となり、接合後も、圧電素子 3 0 0の特性変化が抑え られてインク吐出特性が安定する。
なお、本実 態では、 形 反として酸化シリコンからなる糸色縁体層の両 面にシリコン層を有する S O I 反を用いるようにしたが、これに限定されるわけ ではない。例えば、ポロンド一プポリシリコン又は窒化シリコン等からなる 縁体 層の両面にシリコン層を有する構造であってもよい。 また、例えば、 シリコン層は、 絶縁体層の少なくとも一方面に設けてあればよく、他方面側はシリコン層でなくて もよい。
また、本実«態では、 S O 反からなる^ &形成 ¾|反1 0 Aの第 1シリコン 層 1 2を第 2シリコン層の駒享よりも薄く形成するようにしたが、これに限定され ず、 勿論、 同じ厚さとしてもよいし、 第 1シリコン層 1 2が厚くてもよく、圧力発 生室 1 5の大きさ、 及び配列等を考慮して、 適宜决定されればよい。
また、本実歸態では、 ノズル開口 2 1を流路形疆反 1 0 Aの圧電素子 3 0 0 側に設けるようにしたが、 これに限定されず、例えば、 ノズル開口を、 «形扁反 の圧電素子 3 0 0とは反対側に設けるようにしてもよいし、例えば、 形 β¾¾板 の側面側に設けるようにしてもよい。また、流路形^ 反の側面側にノズル開口を 設ける場合には、 »形成 反の側面にノズル開口を穿設したノズルプレートを接 合するようにしてもよいし、 例えば、 第 2 0図 (a) に示すように、 形 板 1 0 Aの端部に一端がノズル連通路 1 6 Aに連通するノズル開口 2 1 Aを形成す るようにしてもよい。
なお、 このようなノズル開口 2 1 Aは、圧力発生室 1 5及びノズル適路 1 6 A 及びインク連 1 7 Aと同時に異方性エッチングによって形成されているため、 例えば、 1シリコン層 1 2の主面が (0 0 1 )方位である場合には、 ノズル開口 2 1 Aは、 第 2 0図 (b ) に点線で示すように傾斜面で構成される。 この場合、 所 定幅でノズル開口 2 1 Aを異方性エッチングにより形成すると、傾斜面同士が当接 した時点でエッチングが停止して、断面略 V字状のノズル開口 2 1 Aが形成される c すなわち、 ノズル開口 2 1 Aの幅を調整することにより、 ノズル開口 2 1 Aの深さ を容易に調整することができる。
また、 第 1シリコン層 1 2の主面が(1 1 0 )方位である場合には、 ノズル開口 2 1 Aは、上述した圧力発生室 1 5等と同様に、 «形 反 1 0の表面に対して 略垂直な面で構成されるため、第 1シリコン層 1 2を途中までエッチング(ハーフ エッチング) することにより形成すればよい。 なお、 ハーフエッチングは、 エッチ ング時間の調整により行われる。
(難形態 5 )
第 2 1図は、纖形態 5に係るインクジエツト式記録へッドを示す分解!^見図で あり、第 2 2図は、 インクジエツト式記録へッドの 1つの圧力発生室の長手方向に おげる断面構造を示す図である。なお、上述した実 態で説明したものと同様の 機能を有する部材には同一の符号を付して重複する説明は省略する。
本実施形態は、各圧力発生室にィンクを供給するリザーバを流路形成 反とは別 の基板に設ける替わりに流路形成^ =反の圧力発生室とは反対側の面に設けた例で あり、 図示するように、 流路形^ 反 1 0には、圧力発生室 1 5が形成されると共 に、各圧力発生室 1 5の長手方向一端部には、 リザーバ 3 1 Aと圧力発生室 1 5と を接続するための中継室であるインク連通部 1 8が圧力発生室 1 5よりも幅の狭 い狭隘部 1 9を介して連通されている。また、 これらインク連通部 1 8及び狭隘部 1 9は、圧力発生室 1 5と共に異方性エッチングによって形成されている。なお、 狭隘部 1 8は、 圧力発生室 1 5のインクの流出入を制御するためのものである。 なお、本¾»態では、インク連通部 1 8を各圧力発生室 1 5毎に設けるように したが、 これに限定されず、 例えば、 第 2 2図 (c ) に示すように、 全部の各圧力 発生室 1 5に狭隘部 1 9を介して連通するインク連通部 1 8 Aとしてもよく、この 場合、このィンク連通部 1 8 Aがリザ一バ 3 1 Aの一部を構成するようにしてもよ い。 一方、 滅形腿反 1 0の他方面側には、 各インク連通部 1 8に連通し、各圧力 発生室 1 5にインクを供給するリザ一バ 3 1 Aが形成されている。このリザ一バ 3 1 Aは、 »形¾反 1 0の他方面側から、所定のマスクを用いて異方性エツチン グ、 本¾»態では、 ウエットエッチングによって形成されている。 このリザ一バ 3 1 Aは、 本実 J¾¾態では、 ゥエツトエッチングによって形成されているため、 流 路形成基板 1 0の他方面側ほど開口面積が大きくなる形状を有し、ィンクを供給す るすべての圧力発生室の容積に対して、それよりも十分に大きい容積となっている。 また、 本実艇態では、 灘形腦反 1 0の端部近傍には、 予め、後述する圧電 素子 3 0 0を駆動するための駆動 I C 1 1 0が圧力発生室 1 5の並設方向に亘っ て一体的に形成されている。
このような、 »形 反1 0上には、上述の^ 態と同様に、弾 ¾Μ 5 0が設 けら この弾 ' 莫 5 0の上には下 莫 6 0、圧電体月莫 7 0及び上 ¾¾莫8 0か らなる圧電素子 3 0 0が形成されている。
また、各圧電素子 3 0 0の上 «f®莫 8 0と »形 反 1 0に一体的に設けられ た駆動 I C 1 1 0との間には、それそれリード電極 1 2 0が弾性膜 5 0上に延設さ れており、各リード ¾ϋ 1 2 0と駆動 I C 1 1 0とは、弾 莫 5 0の駆動 I C 1 1 0に対向する領域に設けられた接続孔 5 3を介して、それそれ電気的に接続されて いる。
なお、圧力発生室 1 5の長手方向のィンク連通部 1 8とは反対側の端部近傍には、 弾' 莫 5 0及び下 S莫 6 0を除去することにより、ノズル開口 2 1に連通する第 2の貫通孔 5 2 Aが、 各圧力発生室 1 5に対応するように形成されている。
ここで、 本 ^形態のインクジエツト式記録へッドの製造工程、 詳しくは、 シリ コン単結晶板からなる流路形成 ¾反 1 0に圧力発生室 1 5を形成する工程を第 2 3図〜第 2 5図を参照しながら説明する。なお、第 2 3図〜第 2 5図は、圧力発生 室 1 5の長手方向の断面図である。
まず、 第 2 3図(a) に示すように、 »形腦反 1 0となるシリコン単結晶板 の一方面側に、例えば、酸化シリコンからなる所 狱のマスクを用いて異方性ェ ツチングすることにより圧力発生室 1 5、インク連通部 1 8及び狭隘部 1 9を形成 する。なお、圧電素子を駆動するための駆動用 I C 1 1 0は、 流路形成基板 1 0に 予め一体的に形成されている。
次に、 第 2 3図(b) に示すように、 流路形成基板 1 0に形成された圧力発生室 1 5、 ィンク連通部 1 8及び狭隘部 1 9に、 上述の^ S形態と同様に、犠牲層 9 0 を充填する。
次に、 第 2 3図( c ) に示すように、纖形^ ¾反 1 0及び難層 9 0上に弾性 膜 5 0を形成すると共に、 形 反 1 0の他方面 に、 リザーバ 3 1 Aを形成 する際のマスクとなる保護莫 5 5を形成する。例えば、 本 形態では、 «形成 基板 1 0の両面にジルコニウム層を形成後、例えば、 5 0 0〜: I 2 0 0 °Cの拡散炉 で熱酸化して酸化ジルコニウムからなる弹'性莫 5 0及び保觀莫 5 5とした。
なお、 弾性膜 5 0及び保藤 5 5の材料は、特に限定されず、 リザ一バ 3 1 Aを 形成する工程及び犠牲層 9 0を除去する工程でエッチングされない材料であれば よく、例えば、窒化シリコン又は二酸ィ匕シリコン等を用いることができる。 また、 これら弾性膜 5 0及び保護膜 5 5は、異なる材料で形成するようにしてもよい。さ らに、保讕莫 5 5は、 リザ一バ 3 1 Aを形成する前であれば、何れの工程で形成し てもよい。
次に、各圧力発生室 1 5に対応して弾 ¾莫 5 0上に圧電素子 3 0 0を形成する。 すなわち、 第 2 4図(a) に示すように、 弾性膜 5 0上に下電浦莫 6 0を全面に亘 つて形成すると共に所^ Kにパターニングし、その上に圧電体膜 7 0及び上 mffi 膜 8 0を順次積層する。次いで、 第 2 4図(b ) に示すように、圧電体膜 7 0及び 上電 莫 8 0のみをエッチングして圧電素子 3 0 0のパ夕一ニングを行う。また、 本実施形態では、 同時に、駆動 I C 1 1 0に対向する領域の弾性膜 5 0を除去する ことにより、各圧電素子 3 0 0との接続部となる接続孔 5 3を形成すると共に、圧 力発生室 1 5の長手方向のィンク連通部 1 8とは反対側の端部近傍の弾性莫 5 0 及び下 ¾¾莫6 0をパ夕一ニングして第 2の貫通孔 5 2 Aを形成する。
次に、 第 2 4図(c ) に示すように、 リード電極 1 2 0を流路形成基板 1 0の全 面に亘つて形成すると共に、各圧電素子 3 0 0毎にパターニングし、接続孔 5 3を 介して、各圧電素子 3 0 0の上 ¾¾莫8 0と,駆動 I C 1 1 0とをそれぞれ電気的に 接続する。
次に、 第 2 5図(a) に示すように、 流路形成基板 1 0の圧力発生室 1 5とは反 対側の面に設けられた保護膜 5 5のリザーパ 3 1 Aとなる領域をパ夕一ニングに より除去して開口部 5 6を形成すると共に、この開口部 5 6からインク連通部 1 8 に達するまで異方性エッチング(ウエットエッチング)することにより、 リザ一バ 3 1 Aを形成する。なお、 本実施形態では、圧電素子 3 0 0を形成後にリザーパ 3 1 Aを形成するようにしたが、 これに限定されず、何れの 呈で形成してもよい。 , その後、 第 2 5図 (b) に示すように、 リザ一バ 3 1 Aからゥエツトエッチング 又は蒸気によるエッチングによつて犠牲層 9 0を除去することにより、圧力発生室 1 5が形成される。 '
このように、本実«態の構成では、、»形 反 1 0の一方面側の表層部に圧 力発生室 1 5を形成し、他方面側に各圧力発生室 1 5に連通するリザーバ 3 1 Aを 形成するようにしたので、圧力発生室 1 5を比較的薄く形成でき、各圧力発生室 1 5を区画する隔壁 1 4の剛性を高めることができると共に、複数の圧力発生室 1 5 を高密度に配列することができる。さらに、隔壁 1 4のコンプライアンスが小さく なり、 インクの吐出特性が向上する。 また、 圧力発生室 1 5を形成する際、圧力発 生室 1 5の深さをエッチングの時間によって自由に設定できるので隔壁のコンプ ライアンスを制御でき、且つ製造にかかる時間を減らすことができるので低コスト 製造が実現できる。
また、猶形腦反 1 0の厚さを比較的厚くできるため、大きなサイズのウェハ としても取り扱いが容易となる。 したがって、 ゥェハ^ ·枚当たりのチップの取り数 を増加することができ、製造コストを低減することができる。 また、 チップサイズ を大きくできるので、 長尺のへッドも製造することができる。さらには、 形成 勘反の反りの発生も抑えら 他の部材と接合する際に位置合わせが容易となり、 接合後も、 圧電素子の特性変ィ匕が抑えられてィンク吐出特 I"生が安定する。
さらには、各圧力発生室 1 5の容積に対して、 リザ一バ 3 1 Aの容積を十分に大 きくすることができ、リザ一バ 3 1 A内のインク自体にコンプライアンスを持たせ ることができる。 したがって、別途、 リザーバ 3 1 A内の圧力変ィ匕を吸収するため の 反等を設ける必要がなく、構造を簡 匕して製造コストを低減することができ る。
なお、上述のように圧電素子 3 0 0が形成された弾性莫 5 0及び下電! ¾莫 6 0上 には、第 2 1図及び第 2 2図に示すように、各圧力発生室 1 5と第 2の貫通孔 5 2 Aを介して連通するノズル開口 2 1が穿設されると共に、圧電素子保持部 2 4が設 けられたノズルプレート 2 0 Bが設けられている。
• このようなノズルプレート 2 0 Bは、弾性膜 5 0及び下翻莫 6 0上に接着剤等 によって固着されるが、その際、弾性膜 5 0及び下電 莫6 0に形成された第 2の 貫通孔 5 2 Aの内面がこの接着剤で覆われるようにするのが好ましい。これにより、 第 2の貫通孔 5 2 Aの内面が保護され、弾性膜 5 0又は下電極膜 6 0の剥がれ等を 防止することができる。 '
なお、本実舰態では、 インク連通部 1 8及び狭隘部 1 9を介して各圧力発生室 1 5とリザーパ 3 1 Aとを連通するようにしたが、 これに限定されず、例えば、 第 2 6図(a) に示すように、各圧力発生室 1 5とリザ一バ 3 1 Aとを直接連通する ようにしてもよい。
また、本実施形態では、狭隘部 1 9を圧力発生室 1 5よりも細い幅で形成して、 圧力発生室 1 5のインクの流出入を制御するようにレたが、 これに限定されず、例 えば、 第 2 6図 (b) に示すように、 庄カ発生室 1 5と同一幅として、 深さを調整 した狭隘部 1 9 Aとしてもよい。
また、本 態では、圧電素子 3 0 0を駆動する駆動 I C 1 1 0を∞形成基 板 1 0に^:的に設けるようにしたが、 これに限定されず、 形 fi¾S反 1 0の圧 電素子 3 0 0側に接合される接^材、例えば、 ノズルプレート等をシリコン単結 晶 at反で形成し、このノズルプレート等に駆動 I cを一体的に設けるようにしても よい。
また、本実謹態のインクジ: ϋット式言 へッドの製造方法は、上述したものに 限定されるものではない。 以下に、 他の製造方法の一例について説明する。
なお、第 2 7図は、本発明による記録へッドの 方法のー魏の形態のフロー チャートであり、第 2 8図〜第 3 1図は、第 2 7図に示す各工程を順に説明するた めの概略断面図である。
本例は、犠牲層を用いることなく圧力発生室を形成した例であり、第 2 7図に示 すように、 まず加工対象となる基板が用意される (S T E P 1 )。 なお、 この例で は、 ∞形成 ¾1反 1 0として、 結晶方位が、 例えば(1 0 0 )の単結晶シリコン基 板を用いている。
次に 第 28図(a)に示すように、 流路形成基板 10の上下両面が熱酸化され て、 Si〇2 134a、 134bが形成される (STEP 2)。続いて、 第 28図 (b)に示すように、 «形成繊10の上面側の3;102膜134&のさらに上 面に、 ポジレジスト 135が形成される (STEP 3)。 ポジレジスト 135は、 例えば、 レジスト剤の塗布、 マスキング、 露光、 現像、 ポストべ一クの各工程を順 に^することによって形成される。ポジレジスト 135の厚みは、例えば 1〜2 /mである。
ポジレジスト 135の配置の一例を、第 33図に示す。第 33図は、第 29図(b) の平面図であり、 斜線部がポジレジスト 135である。第 33図に示すように、 ポ ジレジスト 135は、 形成 St反 10の所定の領域(圧力発生室及びィンク連通 部形成部分) 10 aに、 略均等に配置されることが好ましい。
続いて、 第 28図(c)に示すように、 流路形腿反 10の上面側からドライエ ツチングが実施されて、ポジレジスト 135及びポジレジスト 135が被覆されて いない部分の S i02膜 134 aがエッチングされて除去される (STEP 4)。 これにより、 流路形^^反 10の上面側に、 Si02膜 134aがパ夕一ニング される。 このドライエッチングは、 例えば R IE (Reactive Ion Etching) ドライ エッチング装置によって行われる。
次に、 第 29図(a)に示すように、、灘形扁反 10の上面側からドライエツ チングが実施されて、 パ夕ーニングされた3:102膜134&と、 パターニングに より S i 02膜 134 aが被覆されていない «形成勘反 10の表面部分とが、 ェ ヅチングされて除去される (STEP 5:第 1エッチング工程)。
これにより、 ∞形疆反 10の上面側は、 第 29図 (a)に示すように、 複数 の柱状部分 10 bが残るような態様でエツチングされる。このドライエツチングは、 例えば I CP (Inductively Coupled Plasma) ドライエッチング装置または R I E ドライエッチング装置によって、柱状部分 1 Obの厚み(高さ)が 30〜100〃 m、 好ましくは 50 zmとなる程度にまで行われる。具体的には、 例えば約 30分 間行われる。 ここで、 パターニングされた S i 02膜 134 aは、 完全に除去され る必要はない。 なお、第 34図に示すように、、 形 β ^反 1◦の上面に形成される複数の柱状 部分の各々は、底部側の断面積よりも表面側の断面積の方が大きくなつている、す なわち、底部側の間隙の寸法 bの方が表面側の間隙の寸法 aよりも大きくなってい ることが好ましい。
次に、 第 29図(b)に示すように、 形腦反 10の上下両面が熱酸化され て、 S i02膜 134 c及び保齣莫 55となる 134 dが形成される(STEP 6), この時、 第 29図(b)に示すように、複数の柱状部分 1 Obが熱酸ィ匕による酸ィ匕 膜の形成によって見かけ上膨張し、結果的に流路形成基板 10の上面側が平坦とな る。 この熱酸化工程は、 約 2〜 3時間で完了する。
続いて、 第 29図 (c) に示すように、 Si〇2膜 134 c部分が完全に除去で きるまで、.流路形成基板 10上面の S i〇2を全面にわたってエッチングする。 あ るいは、 領域 10 aを除いた部分の S i02膜 134をパ夕一ニング除去する (S
Figure imgf000048_0001
次に、滅形鍾反 10の上面側に、圧電素子 300が形成される( S T E P 8 )( 具体的には、 弾 '|«50、 下 莫 60、 圧電体膜 70及び上 ¾¾莫80が、 流路 形成基板 10の上面側に順に成膜され積層される。そして、 第 30図(a)に示す ように、 上 莫 80、圧電体膜 70、 下 莫 60及び弾性膜 50がパ夕一ニン グされる。一方、 形成勘反 10の下面側についても、圧力発生室幅方向につな がるスリット状の開口部 56が形成される。
次に、 第 30図(b)に示すように、 繊形扁反 10の下面側から KOHによ る湿式エッチングが^さ スリヅト状の開口部 56から熱酸化された複数の柱 状部分 10 cが存在する領域まで、エッチングが進行し、 リザ一バ 31 Aが形成さ れる (STEP9)。
続いて、 第 31図(a).に示すように、 、«形^ «10の上下両面側から HF による湿式エッチングが実施される (STEP 10:第 2ェヅチング)。 このエツ チングは、先の工程で形成されたリザーバ 31 Aと弾性膜 50の所定部分 50 と から進行し、熱酸化により化学的性質が変質している柱状部分 10 cを除去する。 これにより、圧力発生室 15、 インク連通部 18及び狭隘部 19とが形成される (第 32図参照)。 なお、 HFによる湿式エッチングに際し、 例えばフヅ素系樹脂 またはパラキシリレン樹脂等で圧電素子を保護し、エッチング後に除去することが 望ましい。
本実施形態の場合、熱酸化された複数の柱状部分 1 0 cの間には、第 3 5図に示 すような間隙 1 0 sが残されているため、 H F液がより効果的に複数の柱状部分 1 O cをエッチングする。 また、 形成^!反上面に対応する領域の S i 02膜 (弾 性膜) 1 3 4が険去されているため、 S i 02膜のサイドエッチングによる圧電素 子構造の剥離が防止できる。
続いて、 第 3 1図 (b) に示すように、 流路形腦反 1 0の上面側に、 ノズル開 口 2 1、及び圧電素子保持部 2 4を有するノズルプレート 2 0 Bが接着される(S T E P 1 Do この圧電素子保持部 2 4内には、例えば、 不活性ガスが導入されて、 圧電素子が湿気等から保護されるようになっている。 なお、 第 3 1図(b )の状態 の平面図を、 第 3 2図に示す。
以上のように本実施の形態によれば、圧力発生室 1 5の深さを浅く形成する場合 であっても、用意する 形成 ¾1反 1 0の厚みを自由に選択することができる。こ のため、 S¾li時の震形成雄 1 0の取り扱いが容易であり、大径ウェハのシリコ ン S反を利用することができる。
また、本¾«態によれば、複数の柱状部分 1 0 cが残るようにエッチングした 後に当該柱状部分 1 0 cの化学的性質を変質させるため、犠牲層を成膜する必要が 無く、製造時間を著しく短縮することができる。 もっとも、化学的性質を変質させ る工程と、 犠牲層を充填 (im) させる工程とを、組み合わせで実施することも可 能である。
本 の形態の場合、 «形 反 1 0の化学的性質を変質させる手法として熱 酸ィ匕を採用しているため、複数の柱状部分 1 0 cが膨張することによって、平坦ィ匕 も同時に達成される。 もっとも、 何らかの平坦化工程を、 別途に行ってもよい。 熱酸化される複数の柱状部分 1 0 cは、第 2のエッチング工程(H Fによる湿式 エッチング) によって除去されるものであるため、 本実 態のように、 略均等に 構成されることが好ましい。柱状部分の配置は、本 ¾¾の形態の場合にはポジレジ スト 1 3 5の配置によって決まるが、第 3 3図に示す円形の他、第 3 6図乃至第 3 8図に示すように、 六角パターン、四角パターンあるいはスリツトパ夕一ンでもよ い。これらの各パターンの寸法の具体例として、各図に示す a寸法、 b寸法につい て、 下表のようなデ一夕が可能である。
【表 1】
Figure imgf000050_0001
また、本実 «態では、熱酸ィ匕された複数の柱状部分 1 0 cの間に間隙 1 0 sが 残されているため、 複数の柱状部分がより効果的にエッチングされる。
本謹形態によれば、 形^!反 1 0の厚み及び面方位と無関係に任意の深 さかつ任意の形状の圧力発生室を極めて容易かつ短時間に形成することが可能で ある。記録へッドのノズル間隔の高密度ィ匕等の要請から、特に略六面体の圧力室を 構成することが好ましい。
なお、本発明によって製造された記録へッド自体も、本件出願の保護範囲のもの である。例えば、本実 1 ^態によって製造された記録へッドの圧力発生室 1 5には、 柱状部分 1 0 c形成したことによる面ムラが観察されると考えられる。
(纖形態 6 )
第 3 9図は、 実施形態 6に係るインクジェヅト式記録へッドの断面図である。 本鎌形態は、第 3 9図に示すように、繊形腿反として、絶縁層 1 1と、 こ の ^層 1 1の両側に設けられた第 1及び第 2のシリコン層 1 2 , 1 3とからなる S 0 I基板を用いた例であり、第 2のシリコン層 1 3よりも膜厚の薄い第 1のシリ コン層 1 2を糸椽層 1 1に達するまでエッチングして圧力発生室 1 5、インク連通 部 1 8及び狭隘部 1 9を形成し、第 2のシリコン層 1 3を絶禄層 1 1に達するまで エッチングしてリザ一バ 3 1 Aを形成すると共に、絶縁層 1 1のリザーバ 3 1 Aの 底面に対応する部分に貫通部 1 1 aを形成した以外は、実«態 5と同様である。 このような本難形態の構成においても、勿論、上述の難形態と同様の効果を 得ることができる。
(雄形態 7 )
第 4 0図は、 ¾S形態 7に係るインクジエツト式記録へッドを示す分解斜視図で あり、第 4 1図は、インクジエツト式言 へッドの 1つの圧力発生室の長手方向に おける断面構造を示す図である。
本実施形態は、複数層で構成される流路形成基板を用いた他の例であり、図示す るように、 流路形成 1 0 Bは、 ポリシリコン層 1 1 Aと、 このポリシリコン層 1 1 Aの両面に設けられた第 1及び第 2のシリコン層 1 2, 1 3とからなる。 この流路形成基板 1 0 Bを構成する一方のシリコン層、本実 態では第 1のシ リコン層 1 2には、例えば、異方性エッチングすることにより複数の隔壁 1 4によ .り区画された圧力発生室 1 5が幅方向に並設されている。また、各圧力発生室 1 5 の長手方向一端部には、各圧力発生室 1 5の共通のインク室となるリザーバ 3 1 B が形成さ 各圧力発生室 1 5の長手方向一端部とそれそれ狭隘部 1 9を介して連 通している。
また、 他方のシリコン層、 本実¾¾態では、 第 2のシリコン層 1 3には、 この第 2のシリコン層 1 3を厚さ方向に貫通して、圧力発生室 1 5に連通するリザ一バ 3 1 Bにインクを導入するためのインク導入口 2 3 Aが形成されている。また、ポリ シリコン層 1 1 Aとの接合面側の圧力発生室 1 5、リザ一バ 3 1 B及び狭隘部 1 9 に対向する領域で、且つィンク導入口 2 3 Aが ¾ される部分を除く領域には、 ボ ロンがドーピングされたポロンド一プシリコン層 1 3 aが形成されている。
このような流路形 S¾S板 1 0 Bを構成する第 1及び第 2のシリコン層 1 2 , 1 3 は、 本実 態では、 それそれ面方位 ( 1 0 0 )のシリコン単結晶基板からなる。 このため、圧力発生室 1 5の幅方向側面 1 5 aが、圧電素子 3 0 0側ほど幅狭とな るように傾斜する傾斜面となっており、圧力発生室 1 5内の流路抵抗が抑えられて いる。
一方、 これら第 1及び第 2のシリコン層 1 2, 1 3に挟持されているポリシリコ ン層 1 1 Aには、本実 ¾¾¾態では、所定の領域にボロンをドーピングしたボロンド ープポリシリコン層 1 1 aが形成されており、このポロンドープポリシリコン層 1 1 aにより第 1のシリコン層 1 2に形成する圧力発生室 1 5のエッチング選択性 を持たせている。すなわち、 第 1及び第 2のシリコン層 1 2, 1 3との間には、 実 質的にボロンド一プポリシリコン層 1 1 aのみが挟持されていることになる。なお、 このポリシリコン層 1 1 Aと第 1のシリコン層 1 2との間に酸ィ匕シリコン層を設 けるようにしてもよく、 これにより、 精度なポリシリコン層 1 1 Aのエッチング 選択性を得ることができる。
また、流路形成基板 1 0 Bを構成する第 1のシリコン層 1 2の表面には、第 1の シリコン層 1 2を予め熱酸化することにより形成した保龍莫 5 5 Aが形成さ こ の保齣莫 5 5 A上に、 上述の実膨態と同様に、 弾性膜 5 0を介して、下 莫 6 0、 圧電体膜 7 0及び上 ¾¾莫8 0からなる圧電素子 3 0 0が形成されている。 また、 、滅形腿反 1 0の圧電素子 3 0 0側、 本魏形態では、弾倒莫 5 0及び 下 莫 6 0上には、上述の 態と同様、 ノズルプレート 2 0が接合されてい る。 ·
ここで、 本 態のインクジェヅト式記録へヅドの S¾g工程、 具体的には、流 路形腦反 1 0に圧力発生室 1 5等を形成する工程について説明する。なお、第 4 2図〜第 4 4図は、 圧力発生室 1 5の長手方向の断面図である。
まず、ポリシリコン層の両面に第 1及び第 2のシリコン層を有する流路形成^反 1 0 Bを形成する。
詳しくは、 第 4 2図 (a) に示すように、 まず、 酸化膜等のマスクを用いて第 2 のシリコン層 1 3の ¾ ^の圧力発生室 1 5、 リザ一ノ 3 1 B及び狭隘部 1 9に対向 する領域で、 且つインク導入口 2 3 Aが連通する部分を除く領域に例えば、 l m程度の深さでボロンをドービングしてボロンドープシリコン層 1 3 aを形成す る。なお、 少なくともインク導入口 2 3 Aが連通する部分を除けば、第 2のシリコ ン層 1 3の全面にポロンド一プシリコン層を設けるようにしてもよい。
次いで、 第 4 2図 (b) に示すように、 第 2のシリコン層 1 3上に、 0 . 1〜3 〃m程度の厚さでポリシリコン層 1 1 Aを形成後、このポリシリコン層 1 1 Aの圧 力発生室 1 5、リザーバ 3 1 B及び狭隘部 1 9となる領域以外の部分にボロンをド 一ビングしてポロンド一プポリシリコン層 1 1 aを形成し、ポリシリコン層 1 1 A にエッチングの選択性を持たせる。
次いで、 第 4 2図 (c ) に示すように、 このポリシリコン層 1 1 A上に、 例えば、 厚さが 5 0 m程度の第 1のシリコン層 1 2を接着することにより、、»形 β5 ^反 1 0 Bが形成される。
なお、 ポリシリコン層 1 1 Αと第 1のシリコン層 1 2との接着方法は、特に限定 されないが、例えば、ポリシリコン層 1 1 A上に第 1のシリコン層 1 2を吸着させ て、 1 2 0 0 °C程度の高温でァニール処理することにより接着させることができる。 また、第 1のシリコン層 1 2を接着してから、第 1のシリコン層 1 2を研磨して所 定'の厚さとしてもよい。
次に 第 4 2図(d) に示すように、 このように形成した «形編反 1 0 Bの 表面、 すなわち、猫形成繊 1 0 Bを構成する第 1及び第 2のシリコン層 1 2 , 1 3の表面を約 1 1 0 0 °Cの拡散炉で熱酸ィ匕して二酸化シリコンからなる保護膜 5 5 , 5 5 Aを形成する。
次に 第 4 3図(a) に示すように、 保護膜 5 5 A上に弾性膜 5 0を形成する。 例えば、 本¾»態では、保護膜 5 5 A上にジルコニウム層を形成後、 5 0 0〜1 2 0 0°Cの拡散炉で熱酸ィ匕して酸化ジルコニウムからなる弾性膜 5 0とし、この弾 性膜 5 0上に、 上述の雄形態と同様に、 下 m«莫 6 0、圧電体膜 7 0及び上 «® 膜 8 0を順次積層及びパターニングして圧電素子 3 0 0を形成する。また、同時に 下電極莫 6 0及び弾性膜 5 0をパターニングして第 2の貫通孔 5 2 Aを形成する と共に保護膜 5 5をパ夕一ニングしてインク導入口 2 3 Aに対応する領域に開口 部 5 6 Aを形成する。
次に、 第 4 3図(b) に示すように、圧電素子 3 0 0を下 «» 6 0の表面に、 例えば、 フッ素樹脂等からなる保龍莫 1 0 0を形成し、 次いで、第 4 3図 (c ) に 示すように保醒 5 5をマスクとして第 2のシリコン層 1 3を異方性ェッチング、 例えば、 K 0 H等のアルカリ溶液によるウエットエッチングすることによってイン ク導入口 2 3 Aを形成する。その後、 このインク導入口 2 3 Aを介してポリシリコ ン層 1 1 Aをパターニングする。
ここで、 ポリシリコン層 1 1 Aは、 上述のように、所定部分にボロンがド一ピン グされてボロンド一プポリシリコン層 1 1 aとなっており、エッチングによってポ リシリコン層 1 1 Aのみが選択的に除去され、ボロンド一プポリシリコン層 1 l a のみが除去されずに残る。すなわち、圧力発生室 1 5、 リザ一バ 3 1 B及び狭隘部 1 9となる領域のみが除去されて貫通部 1 1 bが形成さ 第 1のシリコン層 1 2 が露出する。 また、 このように、 ポリシリコン層 1 1 Aは、 エッチングの際に完全 に除去されてポロンド一プポリシリコン層 1 1 aのみが残るため、流路形 β¾¾板 1 0 Βは、実質的にポロンド一ブポリシリコン層 1 1 aと第 1及び第 2のシリコン層 1 2 , 1 3とで構成されることになる。
次いで、 第 4 3図 (d) に示すように、 流路形成基板 1 0 Bを構成するボロンド —プポリシリコン層 1 1 aをマスクとして、インク導入口 2 3 Aを介して第 1のシ リコン層 1 2を異方性エッチングすることにより、圧力発生室 1 5、 リザーバ 3 1 B及び狭隘部 1 9を形成する。 また同時に、 本実 ί¾¾態では、圧力発生室 1 5及び リザ一バ 3 1 Bに対向する領域の保護膜 5 5 Αもエッチングによって除去するよ ラにした。
なお、第 1のシリコン層 1 2をエッチングして圧力発生室 1 5等を形成する際、 第 2のシリコン層 1 3の第 1のシリコン層 1 2側表面もエッチヤントに触れるこ とになるが、上述のように、第 2のシリコン層 1 3の圧力発生室 1 5等に対向する 領域は、ボロンドープシリコン層 1 3 aとなっているためエッチングされることが ない。すなわち、本実施形態では、 このボロンド一プシリコン層 1 3 aの表面は、 異方性エッチングの際のエッチングストップ面となっている。
ここで、本実施形態の第 1のシリコン層 1 2は、上述のように、面方位 ( 1 0 0 ) のシリコン単結晶基板からなるため、 第 4 4図(a) に示すように、 ボロンドーブ ポリシリコン層 1 1 aをマスクとしてエッチングすると、圧力発生室 1 5、 リザー バ 3 1 B及び狭隘部 1 9を画成する内側面は、 ( 1 1 1 ) 面で形成される。 すなわ ち、これらの内側面は弾性膜 5 0側ほど幅狭となるように傾斜する傾斜面で形成さ れる。 このため、 第 4 4図 (b ) に示すように、 比較的広い幅で形成される圧力発 生室 1 5及びリザーバ 3 1 Bは、保護膜 5 5 Aに達するまでエッチングされて保護 膜 5 5 Aによってエッチングが停止するが、圧力発生室 1 5よりも狭い幅で形成さ れている狭隘部 1 9は、 その内側面同士が交差する位置でエッチングが停止し、圧 力発生室 1 5よりも浅く形成される。
以上のような工程で、圧力発生室 1 5及び圧電素子 3 0 0等が形成され、その後 は、圧電素子 3 0 0等の表面に設けられたエッチング保識莫 1 0 0を除去し、 « 形^!反 1 0 Bの圧電素子 3 0 0側にノズルプレート 2 0を接合して、インクジェ ヅト式記録へッドとする (第 4 1図参照)。
このような本実施形態のインクジエツト式記録へッドでは、インク導入口 2 3 A と圧力発生室 1 5等とをエッチングによつて一括で形成することができ、製造効率 が向上する。また、 ¾形 板 1 0 Bの圧電素子 3 0 0とは反対側に設けられた インク導入口 2 3 Aを介して圧力発生室 1 5等を形成するため、エッチングの際に、 圧鼋体膜 7 0等に悪影響を及ぼすのを防止することができる。
さらに、 本実施形態では、 第 1及び第 2のシリコン層 1 2 , 1 3が面方位(1 0 0 )のシリコン単結晶 ¾反からなるため、圧力発生室 1 5、 リザーバ 3 1 B及び狭 隘部 1 9の内面にエッチングレートの比較的遅い (1 1 1 )面が現れるため、狭隘 部を精度良く形成することができる。 したがって、圧力発生室 1 5に供給されるィ ンクの ¾抵抗を高精度に制御することができる。
なお、本実施形態では、、«形成基板 1 0 Bを構成する第 1及び第 2のシリコン 層 1 2 , 1 3は、 それそれ面方位( 1 0 0 ) のシリコン単結晶基板からなるが、 こ れに限定されず、 例えば、 面方位(1 0 0 ) と面方位 ( 1 1 0 )のシリコン単結晶 基板であってもよいし、 それそれ面方位 ( 1 1 0 )のシリコン単結晶基板であって もよい。 勿論、 このような構成によっても、 上述と同様の効果が得られる。
また、 第 1及び第 2のシリコン層 1 2, 1 3が、 それそれ面方位( 1 1 0 ) のシ リコン単結晶 »反からなる場合には、 第 4 5図に示すように、圧力発生室 1 5、 リ ザ一バ 3 1 B及び狭隘部 1 9の内側面( 1 5 a )は、流路形成基板 1 0 Bの表面に 対して略垂直な面で形成される。 また、 この構成の場合、狭隘部 1 9の 潞抵抗は、 例えば、 その幅を調整することにより制御することができる。
(難形態 8 )
第 4 6図は、赚形態 8に係るインクジエツト式記録へッドを示す分解观図で あり、 第 4 7図は、 第 4 6図の断面図である。 なお、 上述した実 «態で説明した ものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。 本 形態は、 流路形成 反 1 0として、 結晶面方位( 1 0 0 )のシリコン単結 晶 Si反を用いた以外は実施形態 5と同様の構成であるが、樣牲層を用いることなく 圧力発生室を形成した例であり、この流路形成基板 1 0の一方面側には、複数の隔 壁 1 4により区画された圧力発生室 1 5が幅方向に並設さ その長手方向一端部 近傍には、流路形 ^¾板 1 0をその他方面側から異方性エッチングすることにより、 各圧力発生室 1 5の共通のインク室となるリザ一バ(図示なし) -に連通するインク 連通部 1 8 Aが形成されている。 なお、 流路形成基板 1 0上には、 弾性膜 5 0を介して下電極膜 6 0、圧電体膜 7 0及び上電極膜 8 0からなる圧電素子 3 0 0が形成されている。 また、本実施形態 では、弾 ttfl莫 5 0は、各圧力発生室 1 5に対向する領域に流路形成基板 1 0側に突 出する突出部 5 0 aが圧力発生室 1 5の長手方向に沿って形成されている。
ここで、本実施形態のィンクジェット式記録へッドの製造方法、 特に、 流路形成 基板 1 0に圧力発生室 1 5を形成するプロセスについて第 4 8図及び第 4 9図を 参照しながら説明する。
まず、 第 4 8図 (a ) 及び (b ) に示すように、 シリコン単結晶基板からなる流 路形成基板 1 0の各圧力発生室 1 5が形成される領域に、圧力発生室 1 5よりも狭 レ、幅で、例えば、深さが約 5 0〜: L O O /i mの Pt&¾方形の溝部 1 5 0を形成する。 この溝部 1 5 0の幅は、約 0 . 1〜 3 m¾¾であることが好ましく、本実施形態 では、約 1 μ ΐηの幅で形成した。 なお、 この溝部 1 5 0の形成方法は、特に限定さ れず、 例えば、 ドライエッチング等で形成すればよレ、。
次に、 第 4 8図 (c ) 及び (d ) に示すように、 流路形成基板 1 0の両面にそれ ぞれ、 弾侧莫 5 0及び保護膜 5 5を形成する。
ここで、流路形成基板 1 0の溝部 1 5 0側に形成される弾性膜 5 0は、その一部 は溝部 1 5 0内に入り込んで形成されるため、弾性膜 5 0の各圧力発生室 1 5に対 向する領域には、溝部 1 5 0と略同形状で流路形成基板 1 0側に突出する突出部 5 0 aが形成される。
次に、 第 4 8図 (e ) 及び (f ) に示すように、 下電謹 6 0、 圧電体膜 7 0及 び上電極膜 8 0を順次積層及びパターニングして圧電素子 3 0 0を形成する。 その後、流路形成基板 1 0であるシリコン単結晶基板をアル力リ激夜等により異 方性エッチングして、 圧力発生室 1 5等を形成する。
詳しくは、 まず、 第 4 9図 (a ) 及びその e _ e ' 断面図である (b ) に示すよ うに、各圧力発生室 1 5の長手方向一端部となる領域の下電極膜 6 0及び弾' ffl莫 5 0を除去して、 ノズル開口に連通する第 2の貫通孔 5 2を形成する。 これにより、 流路形成基板 1 0の表面及び溝部 1 5 0の長手方向一端部が露出される。 また、同 時に、インク連通部 1 8 Aが形成される領域の保護膜 5 5を除 *して開口部 5 6を 形成する。 その後、 第 4 9図 (c ) 及びその e— e ' 断面図である (d ) に示すように、 第 2の貫通孔 5 2を介して流路形成基板 1 0を、例えば、 KO H等のアルカリ溶液で 異方性ェッチングすることにより圧力発生室 1 5を形成する。 ここで、異方性ェッ チングの際、 アル力リ溶液は、第 2の貫通孔 5 2を介して溝部 1 5 0に流れ込み、 流路形成基板 1 0は、この溝部 1 5 0から徐々に浸食されて圧力発生室 1 5が形成 される。 また、 流路形成基板 1 0は、 結晶面方位 ( 1 0 0 ) のシリコン単結晶基板 であるため、圧力発生室 1 5の内側面は、流路形成基板 1 0の表面に対して、約 5 4 ° 傾斜した (1 1 1 ) 面で形成される。 すなわち、 この (1 1 1 ) 面は、 圧力発 生室 1 5の実質的な底面であると共に、異方性ェツチングの際のェツチングストッ プ面となり、 圧力発生室 1 5はその横断面が略三角形状となるよう形成される。 このように、圧力発生室 1 5を横断面略三角形状となるように形成することによ り、各圧力発生室 1 5間の隔壁 1 4の強度が著しく増加する。 したがって、圧力発 生室 1 5を高密度に配設しても、 クロストーク力 S発生することが無く、インク吐出 特性を良好に保持することができる。
また、流路形成基板 1 0をエッチングによって貫通すること無く圧力発生室 1 5 を形成することができるため、本実施形態では、流路形成基板 1 0の厚さを 2 2 0 μ πι¾¾としたが、 それよりも厚いものであってもよい。 したがって、流路形成基 板 1 0を形成するウェハを比較的大径としても、容易に取り扱うことができてコス トダウンを図ることができる。
なお、流路形成基板 1 0の溝部 1 5 0は、上述のように異方性ェツチングによつ て圧力発生室を形成するためのものであるため、その深さは、圧力発生室 1 5の深 さよりも若干浅く形成しておくことが好ましい。
詳しくは、本実施形態では、第 2の貫通孔 5 2の大きさによって圧力発生室 1 5 の大きさを制御している。 このため、溝部 1 5 0の深さを圧力発生室 1 5の深さよ りも若干浅く形成しておけば、 第 5 0図 ( a ) に示すように、 流路形成基板 1 0の ェツチングは第 2の貫通孔 5 2の幅で確実に停止し、圧力発生室 1 5の大きさを容 易に制御することができる。一方、溝部 1 5 0の深さを圧力発生室 1 5の深さより も深く形成していると、 第 5 0図 (b ) に示すように、 流路形成基板 1 0のエッチ ングは、溝部 1 5 0の底面部まで進んでしまうため、圧力発生室 1 5の開口部は、 第 2の貫通孔 5 2の幅で停止せずにそれよりも大きくなり、圧力発生室 1 5の大き さの制御力 S難しくなつてしまう。
また、 このように圧力発生室 1 5等を形成後、 第 4 9図 (e ) 及びその f — Γ · 断面図である ( f ) に示すように、流路形成基板 1 0の圧電素子 3 0 0とは反対側 の面から、保護膜 5 5をマスクとしてエッチングすることにより、すなわち、 開口 部 5 6を介して流路形成基板 1 0を異方性ェツチングすることにより、圧力発生室 1 5に連通するインク連通部 1 8 Aを形成する。
なお、以上のような工程で圧力発生室 1 5等が形成された流路形成基板 1 0の弾 性膜 5 0側には、 さらに、 第 4 6図及び第 4 7図に示すように、 上述の実施形態と 同様に、 ノズル開口 2 1が穿設されたノズルプレート 2 0 Bが固着される。
また、本実施形態では、弾性膜 5 0の各圧力発生室 1 5に対応する部分に突出部 5 0 aが形成されているが、 この突出部 5 0 aは、例えば、圧力発生室 1 5のエツ チングと同時に除去するようにしてもよレ、。 さらに、例えば、 第 5 1図に示すよう に、弾性膜 5 0上に、酸ィヒジルコニウム等からなる第 2の弾性膜 5 O Aを設けてお き、圧力発生室 1 5を異方性ェツチングで形成する際に、圧力発生室 1 5に対向す る領域の弾性膜 5 0を完全に除去するようにしてもよい。
(実施形態 9 )
第 5 2図は、本実施形態によるインクジェット^ f己録へッドの 1つの圧力発生室 及びその周辺.を拡大して示した縦断面図及び横断面図である。
本実施形態は、 流路形成 « 1 0として、 結晶面方位 (1 0 0 ) のシリコン単結 晶基板を用い、犠牲層を用いることなく圧力発生室を形成した他の例であり、第 5 2図に示すように、流路形成基板 1 0の表面には、圧力発生室 1 5の形成領域を除 いて、ボロンがドーピングされた多結晶シリコン膜 1 0 cが形成されている。 なお、 圧力発生室 1 5の上部空間 1 0 dは、ボロンがドーピングされていない多結晶シリ コン膜を等方性のェツチングにより除去して形成した孔の部分である。多結晶シリ - コン膜 1 0 cの上面及び圧力発生室 1 5の上方には、圧力発生室 1 5を覆うように して略平板状の弾性膜 5 0 Bが形成されている。圧力発生室 1 5の内壁面は、異方 性のウエットエッチングにより露出したシリコン単結晶基板の- ( 1 1 1 ) 面と振動 板の内面とによって形成されている。 なお、 弾性膜 5 O Bは、 本実舰態では、 窒化珪素膜(第 1膜) 5 7と、 この窒 化 膜 5 7上に積層された酸ィ匕ジルコニウム膜(第 2膜) 5 8とからなる。 また、 窒ィ匕珪素膜 5 7には、圧力発生室 1 5を形成する際に 形成勘反の表面にエッチ ング液を供給するためのエッチング用孔 5 7 aが形成されており、このエッチング 用孔 5 7 aは酸ィ匕ジルコニウム膜 5 8によって閉鎖されている。
なお、窒化珪素膜 5 7から成る第 1膜は、窒化珪素膜に代えて酸ィ匕珪素膜或いは 酸ィ匕ジルコニウム膜とすることもできる。また、酸ィ匕ジルコニウム膜 5 8から成る 第 2膜は、酸ィ匕ジルコニウム膜に代えて酸化珪素膜或いは窒化珪素膜とすることも できるし、或いは酸ィ匕珪素膜と窒化珪素膜と酸ィ匕ジルコニウム膜とのいずれかを積 層した積層膜とすることもできる。
ここで、本実 «態によるインクジエツト式記録へッドの製造方法について図面 を参照して説明する。
まず初めに第 5 3図 (a ) に示すように、 ( 1 0 0 ) 面方位の流路形成 反 1 0 の表面上に、 多結晶シリコン膜 1 0 cを形成する。次に、 第 5 3図 (b ) に示すよ うに圧力発生室 1 5となる領域にシリコン酸化膜 (S i 02 ) 1 4 0を形成し、 こ のシリコン酸化膜 1 4 0をマスクとして、圧力発生室 1 5となる領域を除いて多結 晶シリコン膜 1 0 c及び流路形成基板 1 0の内部表面付近に高濃度のポロンを拡 散し、 ボロン拡散領域 1 O fを形成する。 ボロンの拡散工程の後、 第 5 3図 (c ) に示したようにシリコン酸化膜 1 4 0を除去する。
次に、 第 5 3図(d ) に示すように多結晶シリコン膜 1 0 c上に、 エッチング耐 性に優れた窒化珪素膜- (第 1膜) 5 7を形成し、 さらに、窒化珪素膜 5 7上にレジ スト膜 1 4 1を形成する。 レジスト膜 1 4 1には、エッチング用孔 5 7 aに対応す る位置に孔 1 4 2が形成されている。このレジスト膜 1 4 1の孔 1 4 2を利用した エッチングにより、 第 5 4図(a) に示すように窒ィ匕珪素膜 5 7にェヅチング用孔 5 7 aを形成する。
次に、エツチング用孔 5 7 aを介して圧力発生室 1 5を形成する部分にェッチン グ液(例えば K O H) を供給する。 すると、 第 5 4図(b ) に示すように、 まず初 めに等方性のゥェットエッチングにより多結晶シリコン膜 1 0- c全体のうちのボ ロンがドービングされていないアンドープ部分がエッチングされて除去される。続 いて、除去されたアンドープ部分の多結晶シリコン膜 1 0 cのパターンによって、 »形成基板 1 0の表面が異方性のゥヱットエッチングによりエッチングされて 圧力発生室 1 5が形成される。
次に 第 5 4図 (c ) に示すように、 酸化ジルコニウム膜(第 2膜) 5 8を窒ィ匕 珪素膜 5 7上に形成してエッチング用孔 5 7 aを閉鎖する。なお、第 2膜の形成方 法としては、 熱酸化、 化学気相成長 ( C VD )s スパッタリング等を用いることが できる。次に 第 5 4図(d ) に示すように 酸化ジルコニウム膜 5 8上に下動 膜 6 0、圧電体膜 7◦及び上 ®¾莫 8 0を 莫及びパ夕一ニングして、上述の鶴 形態と同様に、 圧電素子 3 0 0を形成する。
なお、.エッチング用孔 5 7 aは、 第 5 5図 (a) に示すように圧力発生室 1 5の 幅方向の中心にて長手方向に沿って形成されたスリットとすることもできるし、第 5 5図(b)に示すように複数本の平行なスリットを長手方向に沿って形成するこ ともできる。スリッ卜の形成位置は、圧電体膜 7 0を投射した領域の内側でも外側 でも良い。 また、 第 5 5図(c )に示したように圧力発生室 1 5の形成領域に形成 された複数の小孔としてエッチング用孔 5 7 aを形成することもできる。エツチン グ用孔 5 7 aを構成するスリットゃ小孔の大きさや形状は、酸化ジルコニウム膜 5 8より成る第 2膜によって埋めることができるように設定される。
以上述べたように本実施形態によれば、 ( 1 0 0 ) 面方位のシリコン単結晶纖 からなる «形 反 1 0の ¾面に対する異方性ェッチングにより圧力発生室 1 5を形成するようにしたので、圧力発生室 1 5間の隔壁の厚みを十分に確保するこ とが可能であり、流路形成 反 1 0の厚みが増した場合でも隔壁の剛性を十分に高 く維持することができ、高密度のノズル配列が可能となる。 また、 簡単な工程によ り精度よく圧力 生室を形成することができる。
また、 ゥヱットエッチングにより圧力発生室 1 5を形成する際には、 まだ圧電体 膜 7 0が形成されていないので、エッチング液から圧電体膜 7 0を保護する必要が ない。
(難形態 1 0 )
A oのインクジエツト式記録へッドは、鎌形態 9の構成を一部変更し たものであり、 以下では、 ^形態 9と異なる部分について説明する。なお、 第 5 6図は、実施形態 1 0に係るインクジェット式記録へヅ ドの 1つの圧力発生室及び その周辺を拡大して示した縦断面図である。
第 5 6図に示すように、本実 ίδ¾態のインクジエツト式記録へッドでは、圧力発 生室 1 5の内壁面の一部を形成する振動板の内面は圧電体膜 7 0の方向に向かつ て凸形状を成しており、振動板の内面の凸形状に対応して振動板が圧電体膜 7 0の 方向に向かって凸形状を成している。この凸形状の内面 5 7 bにより形成された空 間部分 1 5 bは、ェヅチング用孔 5 7 aからェヅチング液を注入して多結晶シリコ . ン膜をゥエツトエッチングすることにより形成されたものである。
また、本 W¾態によるインクジヱット式記録へッドは、 態 9におけるポ 口ンがドービングされた多結晶シリコン Ji莫 1 0 aに相当する部分を備えていない。 これは、上述した空間部分 1 5 bが圧力発生室 1 5のエッチング幵狱を決めるから であ 。
次に、本実施形態によるインクジヱット式記録へッドの製造方法について図面を 参照して説明する。
まず初めに第 5 7図 (a ) に示すように、 ( 1 0 0 ) 面方位の流路形 ¾¾板 1 0 の表面に多結晶シリコン膜 1 6 0を形成する。次に、 第 5 7図(b ) に示すように 圧力発生室 1 5となる領域にシリコン酸化膜 (S i 02 ) 1 4 0を形成し、 このシ リコン酸化膜 1 4 0をマスクとしたエッチングにより多結晶シリコン月莫 1 6 0を 除去し、 第 5 7図(c )に示すように所定パターンの多結晶シリコン膜 1 6 0を形 成する。
次に、所定パターンの多結晶シリコン膜 1 6 0上及び灘形雌板 1 0の表面上 に、 エッチング耐性に優れた窒化珪素膜(第 1膜) 5 7を形成し、 さらに、 窒ィ匕珪 素膜 5 7上にレジスト膜 1 4 1を形成する。 レジスト膜 1 4 1には、エッチング用 孔 5 7 aに対応する位置に孔 1 4 2が形成されている。このレジスト膜 1 4 1の孔 1 4 2を利用したエッチングにより、 第 5 8図(b )に示すように窒化诖素膜 5 7 にエッチング用孔 5 7 aを形成する。
次に、エッチング用孔 5 7 aを介して圧力発生室 1 5を形成する部分にエツチン グ液 (例えば K O H ) を供給する。 すると、 第 5 8図 (c ) に示すように、 まず初 めに等方性のウエットエッチングにより多結晶シリコン膜が除去される。続いて、 除去された多結晶シリコン膜 1 6 0のパターンによって、流路形成基板 1 0の表面 が異方性のゥエツトエッチングによりエッチングされて圧力発生室 1 5が形成さ れ 0。
次に、 第 5 8図(d ) に示すように、 酸化ジルコニウム膜(第 2膜) 5 8を窒ィ匕 珪素膜 5 7上に形成してエッチング用孔 5 7 aを閉鎖する。なお、第 2膜の形成方 法としては、 熱酸化、 化学 ffi成長 (C VD )、 スパッタリング等を用いることが できる。 次に、 第 5 8図 (d) に示すように、 酸化ジルコニウム膜 5 8上に下 ¾® 膜 6 0、圧電湖莫 7 0及び上 莫 8 0を順次調 Μ¾びパターニングすることによ り、 上述の実 «態と同様に圧電素子 3 0 0を形成する。
以上述べたように本錢形態によれば、 ( 1 0 0 ) 面方位の流路形成纏 1 0の 表面に対する異方性ェッチングにより圧力発生室 1 5を形成するようにしたので、 圧力発生室 1 5間の隔壁の厚みを十分に確保することが可能であり、流路形成 1 0の厚みが増した場合でも隔壁の剛性を十分に高く維持することができ、高密度 のノズル配列が可能となる。また、簡単な工程により精度よく圧力発生室を形成す ることができる。
また、 ゥエツトエッチングにより圧力発生室 1 5を形成する際には、 まだ圧電体 膜 7 0が形成されていないので、エッチング液から圧電体膜 7 0を保護する必要が ない。
さらに、本難形態においては、所定パターンで形成された多結晶シリコン膜を 除去して形成された所定パターンの空間を利用したゥエツトエッチングにより圧 力発生室 1 5を形成するようにしたので、上述した実施形態 9の製造工程において 必要であったボロンのドーピング工程(第 5 3図(b)) を省略することができる。
(鎌形態 1 1 )
rnm .1 1のインクジエツト式記録へッドは、鎌形態 9の構成を一部変更し たものであり、 以下では、 形態 9と異なる部分について説明する。 なお、 第 5 9図は、実施形態 1 1に係るインクジェット式記録へヅ ドの 1つの圧力発生室及び その周辺を拡大して示した縦断面図である。
第 5 9図に示すように、本実5¾¾態のインクジェヅ卜式記録へヅドでは、 形 成基板 1 0の表面には、 例えば、窒化珪素からなり、圧力発生室 1 5に対向する領 域に開口部 1 7 1を有する保護層 1 7 0が設けられている。
また、エッチング用孔 5 7 aは、第 1膜 5 7の圧力発生室 1 5の周縁部に対向す る領域に設けられており、圧力発生室 1 5の開口側周縁部には、保護層 1 7 0と第 1膜 5 7との間に、エッチング用孔 5 7 aが連通する空間部 1 5 cが画成されてい る以外、 魏形態 9と同様である。
なお、 この空間部 1 5 cは、 詳しくは後述するが、 エッチング用孔 5 7 aからェ ツチング液を注入して犠牲層をゥヱッ卜エッチングによって除去することにより 形成されたものである。
以下に、本実層態によるインクジヱヅト式記録へッドの製造方法について図面 を参照して説明する。
まず、 第 6 0図 (a) に示すように、 (1 0 0 ) 面方位の ¾ί¾形成翻 1 0の表 面に保護層 1 7 0を形成する。 次に、 第 6 0図(b) に示すように、 保護層 1 7 0 の圧力発生室 1 5となる領域を、例えば、所定のマスクパターンを用いてエツチン グすることにより除去して開口部 1 7 1を形成する。
次に、 第 6 0図( c ) に示すように、 保護層 1 7 0上に、 例えば、 ポリシリコン からなる靈層 9 O Aを形成すると共に、例えば、所定のマスクパターン等を用い てエッチングすることにより、保護層 1 7 0の開口部 1 7 1を覆う領域を残留部 9 1として残す。なお、本^ 態では、残留部 9 1以外の領域を完全に除去するよ うにした。 '
次に、 第 6 0図( d ) に示すように、 この犠牲層 9 0 Aの残留部 9 1上及び纖 形 figSt反 1 0の表面上に エッチング耐性に優れた窒化珪素膜(第 1膜) 5 7を形 成し、 この窒ィ匕珪素膜 5 7に、 上述の ¾M¾態と同様、 レジスト膜等を用いてエツ チング用孔 5 7 aを形成する。具体的には、窒化珪素膜 5 7の圧力発生室 1 5とな る領域の外側に対応する領域にエッチング用孔 5 7 aを形成する。
次に、エッチング用孔 5 7 aを介して圧力発生室 1 5を形成する部分にエツチン グ液(例えば K O H) を供給する。 すると、 第 6 0図 (e ) に示すように、 初めに 等方性のウエットエッチングにより犠牲層 9 0 Aの残留部 9 1が除去され、空間部 1 5 cが形成されて、 これにより、保護層 1 7 0の開口部 1 7 1が露出される。続 いて、この開口部 1 7 1を介して «形! ¾¾¾板 1 0の表面が異方性のゥェヅトェヅ チングによりエッチングされて圧力発生室 1 5が形成される。
次に、 第 6 0図(f ) に示すように、 酸ィ匕ジルコニウム膜(第 2膜) 5 8を窒ィ匕 珪素膜 5 7上に形成してエッチング用孔 5 7 aを閉鎖する。なお、第 2膜の形成方 法としては、 熱酸化、 化学 m¾成長 (CVD)、 スパッタリング等を用いることが できる。
なお、 その後は、 上述の実施形態と同様に、 この酸化ジルコニウム膜 5 8上に下 電極膜 6◦、圧電体膜 7 0及び上電極膜 8 0を順次媚莫及びパ夕一ニングすること により圧電素子 3 0 0を形成する。
このような本鐘形態においても、上述の実鐘態と同様に、圧力発生室 1 5間 の隔壁の厚みを十分に確保することが可能であり、流路形成基板 1 0の厚みが増し た^でも隔壁の剛性を十分に高く維持することができ、高密度のノズル配列が可 能となる。 また、簡単な工程により精度よく圧力発生室を形成することができる。 なお、本 態では、最終的に犠牲層 9 O Aが完全に除去されるようにしたが、 これに限定されず、 例えば、第 6 1図に示すように、 空間部 1 5 cの外側の領域に、 残留部 9 1をエッチングする際には除去されない残留部 9 2を残すようにしても よい。 このような構成とする場合には、 犧 4ί層 9 O Aをパターングする際に、 開口 部 1 7 1の周縁部に亘つて溝部を形成して残留部 9 1と残留部 9 2とを完全に分 離するようにすればよい。
(他の «形態)
以上、本発明の各 ¾¾¾態を説明したが、 ィンクジヱット式記録へッドの基本的 構成は上述したものに限定されるものではない。
例えば、上述の実施形態では、、«形雌板に複数の圧力発生室を一列に並設し た例を説明したが、 これに限定されず、例えば、 形 反に複数の圧力発生室 の列を設けるようにしてもよい。 また、 この場合には、 第 6 2図に示すように、 リ ザーバ 3 1 Bを流路形成基板 1 0の圧力発生室 1 5の列間に対応する領域に設け、 2列の複数の圧力発生室 1 5に共通するようにしてもよい。なお、第 6 2図には、 ¾形成繊として S O I翻を用いた例を図示しているが、勿論、鹏形戯板 は、 単結晶シリコン基板等であってもよい。 .
このように、 本発明は、 その趣旨に反しない限り、種々の構造のインクジェヅト 式言 へッドに応用することができる。
また、 これら各実施形態のインクジヱット式記録へッドは、 インクカートリッジ 等と連通するインク »を具備する記録へッドュニヅ卜の一部を構成して、インク ジエツト式記録装置に搭載される。第 6 3図は、 そのィンクジエツト式記録装置の 一例を示す概略図である。
第 6 3図に示すように、インクジェット式言己録へヅドを有する記録へッドュニッ ト 1 A及び 1 Bは、ィンク供給手段を構成するカートリッジ 2 A及び 2 Bが着脱可 能に設けられ、この記録へッド.ュニヅト 1 A及び 1 Bを搭載したキヤリッジ 3は、 装置本体 4に取り付けられたキャリッジ軸 5に軸方向移動自在に設けられている。 この記録へッドュニット 1 A及び 1 Bは、例えば、それそれブラックインク糸滅物 及びカラ一インク «物を吐出するものとしている。
そして、駆動モー夕 6の駆動力が図示しない複数の歯車およびタイミングペルト 7を介してキヤリッジ 3に伝達されることで、言 へッドュニット 1 A及び 1 Bを 搭載したキヤリッジ 3はキヤリッジ軸 5に沿って移動される。一方、装置本体 4に はキヤリッジ軸 5に沿ってブラテン 8が設けられており、図示しない給紙ローラな どにより給紙された紙等の記録媒体である記録シ一ト Sがプラテン 8に巻き掛け られて搬送ざれるようになつている。
このように、 本発明では、圧力発生室を浅く形成するため、 P鬲壁の剛性を十分に 確保することができるため、複数の圧力発生室を高密度に配設しても、 クロストー クを確実に防止することができる。また、圧力発生室の深さを変えることによって、 隔壁のコンプライアンスを自由に設定できる。さらに、 シリコン単結晶基板の 2面 に圧力発生室及び圧電素子を形成することによりへッドの小型化が可能である。 また、满形麟板にリザーバを形成する場合には、 リザーバを比較的大きい体 積で形成できるため、リザ一バ内のィンク自体に'リザーバ内の圧力変化が吸収され 別途、 コンプライアンス部を設ける必要がない。 したがって、 ヘッドの構造を簡略 化することができ、 製造コストを低減することができる。

Claims

請 求 の 範 囲
1 . ノズル開口に連通する圧力発生室が画成される単結晶シリコンからなるシリ コン層を有する »形 反と、 151己圧力発生室の一部を構成する振動板を介して 前記圧力発生室に対向する領域に設けられて前記圧力発生室内に圧力変化を生じ させる圧電素子とを具備するインクジエツト式記録へッドにおいて、
前記圧力発生室が前記流路形成基板の一方面側に開口して貫通することなく形 成されると共に前記圧力発生室の内面の前記一方面側に対向する少なくとも底面 が異方性ェッチングの停止した面であるエツチングストッフ面で構成され、且つ前 記圧電素子が劍莫及びリソグラフィ法により形成された膜によって前記流路形成
¾|反の前記一方面側に設けられていることを特徴とするインクジェット式記録へ ッド。
2 . 請求の範囲 1において、 IifBEE電体層は、 結晶が優先配向していることを特 徴とするインクジェット式記録ヘッド。
3 . 請求の範囲 2において、 前言 BEE電体層は、 結晶が柱状となっていることを特 徴とするインクジェット式記録ヘッド。
4 . 請求の範囲 1〜 3の何れかにおいて、 前記流路形成 ¾反が、前記シリコン層 のみからなることを特徴とするィンクジェット式言 3録へッド。
5 . 請求の範囲 4において、 前記流路形成基板が、 面方位(1 1 0 )の単結晶シ リコンからなり、 ハーフエッチングにより形成された (1 1 0 )面が前記エツチン グストツフ¾となっていることを特徴とするインクジエツト式言 へヅド。
6 . 請求の範囲 4において、 前記流路形成基板が、 面方位 ( 1 0 0 )の単結晶シ リコンからなり、 (1 1 1 ) 面が前記エッチングストップ面となっていることを特 徴とするインクジエツト式記録へッド。
7 . 請求の範囲 6において、前言 Bii力発生室の横断面が略三角形状を有すること を特徴とするインクジェット式記録ヘッド。
8 . 請求の範囲 6又は Ίにおいて、前記振動板の各圧力発生室に対向する領域に は、当該圧力発生室側に突出する突出部が長手方向に亘つて形成されていることを 特徴とするインクジェヅト式記録へッド。
9 . 請求の範囲 6又は 7において、前記圧力発生室の一部を構成する前記振動板 の内面を含む第 1膜と、前記第 1 M±に形成された第 2膜とを有し、前記第 1膜に は、前記圧力発生室を形成する際に前記流路形成基板の前記一方面側表面にエッチ ング液を供給するためのェヅチング用孔が形成されており、前記第 2臭によって前 記ェッチング用孔が閉鎖されていることを特徴とするインクジェット式記録へッ ド。
1 0 . 請求の範囲 9において、前記エッチング用孔が、編己圧力発生室に対向す る領域に形成されていることを特徴とするインクジエツト式記録へッド。
1 1 . 請求の範囲 8〜; 1 0の何れかにおいて、前記蘭形成鎌上には、前記圧 力発生室に対向する領域に開口部を有する保護層を有し、前記圧力発生室が、前記 保護層の開口部を介して前記流路形成 反をェツチングすることにより形成され ていることを とするインクジエツト式記録へッド。
1 2 . 請求の範囲 1 1において、前記保護層は、 ポロンが拡散された多結晶シリ コン層であることを特徴とするインクジエツト式言 へッド。
1 3 . 請求の範囲 1 1又は 1 2において、前記エッチング用孔が前 §ΒΕ力発生室 に対向する領域の外側に設けられ、且つ Ιίίί己第 1膜と前記保護膜との間にこのエツ チング用孔に連通する空間部が画成されていることを特徴とするィンクジエツト 式記録へヅド。
1 4. 請求の範囲 9〜 1 3の何れかにおいて、前言 BE力発生室は細長状に形成さ れており、前記エッチング用孔は、前言 3EE力発生室の長手方向に沿って形成された スリヅ卜からなることを特徴とするインクジエツト式言己録へッド。
1 5 . 請求の範囲 9 ~ 1 3の何れかにおいて、 前記ェヅチング用孔は、所定間隔 で設けられた複数の小孔よりなることを特徴とするインクジエツト式記録へッド。
1 6 . 請求の範囲 9 ~ 1 5の何れかにおいて、前記第 2膜上に前言 BE電素子を構 成する下 莫が形成されており、前記下 莫上に前言 BBE電素子を構成する圧電 体層が形成されていることを特徴とするインクジエツト式記録へッド。
1 7. 請求の範囲 9〜 1 5の何れかにおいて、前記第 2膜は前記圧電素子を構成 する下 ma莫を構成し、前記第 2 m±に前記圧電素子を構成する圧電体層が直接形 成されていることを特徴とするインクジエツト式記録へヅド。
1 8 . 請求の範囲 9〜 1 7の何れかにおいて、 前記第 1膜は、 i m , 窒ィ匕 珪素膜又は酸化ジルコニウム膜であることを特徴とするインクジェット式記録へ ッド。
1 9 . 請求の範囲 9〜1 8の何れかにおいて、 前記第 2膜は、 酸化珪素膜、 窒ィ匕 珪素膜又は酸ィ匕ジルコニゥム膜の何れかの膜、ある 、は何れかを積層した積層膜で あることを特徴とするインクジエツト式記録べッド。
2 0 . 請求の範囲 9〜 1 9の何れかにおいて、前記圧力発生室の内壁面の一部を 形成する前記振動板の内面は前言 3E電素子の方向に向かって凸形状を成しており、 前記振動板の内面の凸形状に対応して前記振動板が前記圧電素子の方向に向かつ て凸形 I犬を成していることを特徴とするインクジエツト式記録へッド。
2 1 . 請求の範囲 1〜 3の何れかにおいて、 前記流路形成 反が、絶縁 ί本層の両 面に何れか一方がシリコン層である流路層を有するものであり、前言 B S縁体層の表 面が前記エッチングストップ面となつ Tいることを特徴とするインクジエツト式 記録へッド。
2 2 . 請求の範囲 1 ~ 2 1の何れかにおいて、前 ΪΒΕ力発生室にインクを供給す るリザーバが前記 «形成基板の他方面側に形成されていることを特徴とするィ ンクジェヅ卜式記録へッド。
2 3 . 請求の範囲 2 2において、前記リザ一バが前記圧力発生室に直接連通して いることを特徴とするインクジエツト式言 へッド。
2 4. 請求の範囲 2 2において、前記∞形腿反の一方面側には、前 ΐΒΕ力発 生室の長手方向一端部に連通するインク舰路が形成され、前記リザーバが、前記 インク連 asmこ されていることを特徴とするインクジエツト式言 へヅ ド。
2 5 . 請求の範囲 2 4において、前記インク連通路が前記圧力発生室毎に設けら れていることを特徴とするインクジエツト式記録へヅド。
2 6 . 請求の範囲 2 4において、前記ィンク連通路が前言 HE力発生室の並設方向 に亘つて連镜的に設けられていることを とするインク エツト式記録へッド。
2 7 . 請求の範囲 2 2〜 2 6の何れかにおいて、前記圧力発生室が、 その長手方 向に沿って並設され、 Ιϊί己リザーパがこれら長手方向に沿って並設された圧力発生 室の間に設けられると共に両方の圧力発生室に連通していることを特徴とずるィ ンクジェット式記録へッド。
2 8 . 請求の範囲 1 ~ 2 1の何れかにおいて、前言 BE力発生室が、前記流路形成 基板の両面に形成されていることを特徴とするインクジエツト式記録へヅド。
2 9 . 請求の範囲 1〜 2 8の何れかにおいて、前言 BE電素子を構成する前言己膜は、 前記圧力発生室に設けられると共に最終的に除去される犠牲層上に形成された膜 であることを特徴とするインクジエツト式言己録へヅド。
3 0 . 請求の範囲 1〜 2 9の何れかにおいて、前記圧力発生室の深さが、 2 0 // mから 1 0 0 mの間であることを特徴とするインクジエツト式言 3録へッド。
3 1 . 請求の範囲 1 ~ 3 0の何れかにおいて、前言 力発生室と 己ノズル開口 とを連通するノズル連通路を具備することを特徴とするィンクジヱット式記録へ ッド。
3 2 . 請求の範囲 3 1において、前記ノズル連 が、編己圧力発生室の前記リ ザーノ とは反対側の長手方向端部側に設けられていることを特徴とするインクジ ェヅト式記録へッド。
3 3 . 請求の範囲 3 1又は 3 2において、 前記ノズル連 が、 前記振動板を除 去することにより形成されていることを特徴とするインクジエツト式記録へッド。
3 4. 請求の範囲 3 3において、前記ノズル連通路の内面が、接着剤で覆われて いることを特徴とするインクジェット式記録ヘッド。
3 5 . 請求の範囲 2 1〜 3 4の何れかにおいて、前記流路形成基板が絶縁体層の 両面にシリコン層を有する S〇 I勘反からなり、前言 H 力発生室が編3 S 0 I 反 を構成する一方のシリコン層に形成さ 前記絶縁体層の表面が前記エッチングス トツフ¾となっていることを特徴とするインクジエツト式言 へヅド。
3 6 · 請求の範囲 3 5において、前記 S◦ I基板を構成する前記シリコン層のそ れそれが異なる厚さを有し、前記圧力発生室が形成される前記一方のシリコン層は、 他方のシリコン層の厚さよりも薄いことを特徴とするィンクジエツト式記録へッ
3 7 . 請求の範囲 3 4又は 3 6において、前言 BE力発生室と前記ノズル開口とを 連通するノズル連通路が、前言己 S 0 I纖を構成する一方のシリコン層内に形成さ れていることを特徴とするインクジエツト式記録へッド。
3 8. 請求の範囲 3 5又は 3 6において、前言 BE力発生室と 己ノズル開口とを 連通するノズル連通路が、前記 S 0 I 反を構成する前言 B fe縁体層を貫通して他方 のシリコン層に形成され、 lift己ノズル開口が前記他方のシリコン層の表面側に設け られていることを特徴とするインクジエツト式言 へッド。
3 9 . 請求の範囲 3 7において、前記振動板上に 己圧電素子を内部に封止する 空間を有する封止翻が接合さ 該封止纏に前記ノズル開口が形成されている ことを特徴とするインクジエツト式記録へッド。
4 0. 請求の範囲 3 7において、前記ノズル連通路が前言己圧力発生室の長手方向 端部から延設さ Ιίίϊ己ノズル開口が f?f己 形 反の端面側に設けられている ことを特徴とするインクジヱヅト式記録へヅド。
4 1 . 請求の範囲 4 0において、前記ノズル連 ii¾が前記 «形 反の端面ま で延設さ 当該流路形成 S反の端面には前記ノズル開口を有するノズルプレート が接合されていることを特徴とするインクジエツト式記録へヅド。
4 2 . 請求の範囲 4 0において、前記ノズル閧口が前記ノズル連 の端部に前 記シリコン層の厚さ方向の一部を除去することにより形成されていることを特徴 とするインクジェット式記録ヘッド。
4 3. 請求の範囲 3 9〜 4 2の何れかにおいて、前記封止基板には I Cがー体的 に形成されていることを特徴とするインクジェヅト式記録へッド。
4 4. 請求の範囲 2 1〜 4 3の何れかにおいて、前記シリコン層の面方位が、 ( 0 0 1 ) 面であることを特徴とするインクジエツト式 ΐ己録へッド。
4 5 . 請求の範囲 4 4において、前言 BEE力発生室の長手方向が、 < 1 1 0 >方向 となっていることを特徴とするインクジエツト式言 へッド。 4 6 . 請求の範囲 2 1〜 4 3の何れかにおいて、前記圧力発生室が形成されるシ リコン層の主面が(1 1 0 )方位であり、前記圧力発生室の長手方向がく 1一 1 2 >方向となっていることを特徴とするインクジエツト式言 3^へッド。
4 7. 請求の範囲 1〜 4 6の何れかのィンクジェット式記録へッドを具備するこ とを とするインクジエツト式記録装置。
4 8 . »形 に形成された圧力発生室に対向する領域に振動板を介して前 記圧力発生室に圧力変化を発生させる圧電素子を形成するインクジエツト式記録 へッドの製造方法において、
単結晶シリコンからなるシリコン層を少なくとも有する ¾¾形¾ ^反に、その厚 さ方向に貫通することなく前記圧力発生室を形成する工程と、前記圧力発生室に犠 牲層を充填する工程と、前記犠牲層側の前記 形驢板上に編己振動板を形成す ると共に前記圧力発生室に対向する領域に前記圧電素子を形成する工程と、前記圧 力発生室に充填した前記樣牲層を除去する工程とを有することを特徴とするイン クジェット式記録へッドの製造方法。
4 9. 請求の範囲 4 8において、前記流路形成基板が絶縁体層の両面に単結晶シ リコンからなるシリコン層を有する S 0 I勘反からなり、 .
前記圧力発生室を形成する工程では、前記 S 0 I基板の一方のシリコン層をパ夕 一二ングして前記圧力発生室を形成することを特徴とするィンクジェット式記録 へッドの製造方法。
5 0. 請求の範囲 4 8又は 4 9において、 前記圧力発生室を形成する工程で、 当 該圧力発生室の長手方向端部から前記ノズル開口に連通するノズル連通路を形成 することを特徴とするインクジエツト式記録へッドの製造方法。
5 1 . 請求の範囲 5 0において、前記シリコン層の一側面と前記圧力発生室とを 連通するインク連通路を形成し、編己觀層を除去する工程では、該インク連通路 を介してゥエツトエッチングにより前記犠牲層を除去することを特徴とするイン クジェット式記録へッ 'ドの ii方法。
5 2. 請求の範囲 4 8 ~ 5 0の何れかにおいて、 層を除去する工程は、 前記振動板を貫通して前記犠牲層を露出する開口部を介してエッチングにより行 うことを特徴とするインクジエツト式記録へッドの製造方法。
5 3. 請求の範囲 4 8〜5 2の何れかにおいて、前記 層を充填する工程は、 前記流路形成基板の前記圧力発生室に対応する領域に少なくとも前記圧力発生室 の深さと略同一の厚さで前記犠牲層を形成する工程と、前記圧力発生室以外の前記 犠牲層をポリッシングによって除去する工程とを含むことを特徴とするインクジ ェヅト式記録へヅドの製造方法。
5 4. 請求の範囲 5 3において、前記犠牲層をジェットモールディング法によつ て形成することを特徴とするインクジェット式記録へッドの製造方法。
5 5 . 請求の範囲 4 8〜5 4の何れかにおいて、 前記i¾層は、 リンド一フ ィ匕 シリコン (p s G)ヽ ボロン 'リンド一フ 化シリコン (B P S G)、 酸化 ¾^ ( S i〇x )及び窒化珪素( S i Nx )からなる群から選択されることを特徴とするイン クジヱット式記録へヅドの 方法。
5 6 . 請求の範囲 4 8〜5 5の何れかにおいて、前記振動板として絶縁層を形成 すると共に、 該絶縁層上に下《»1、圧電体層及び上電 «1を順次積層形成し、 パ 夕一ニングすることにより前記圧電素子を形成することを特徴とするインクジェ ヅト式記録ヘッドの製造方法。
5 7 . 請求の範囲 5 6において、前記振動板が前記下電極層を兼ねていることを 特徴とするインクジェヅト式記録へッドの製造方法。
5 8 . 請求の範囲 4 8〜 5 7の何れかにおいて、前記圧力発生室及びィンク流路 を異方性エッチングによって形成することを特徴とするインクジエツト式記録へ ッドの製造方法。
5 9 . シリコン単結晶基板からなりインクを吐出するノズル開口に連通する圧力 発生室が画成された流路形成基板と、該流路形成基板の一方面に振動板を介して設 けられた下 莫、圧電体層及び上 m¾莫からなる圧電素子とを備えたインクジェ ット式記録へッドの製造方法において、
前記«形 反の前記振動板が形成される側に、当該振動板との間の空間部と なる領域を形成する工程と、前記猶形 板の表面に 己振動板を形成する工程 と、編己振動板上に前記下 sais前言 BE電体層及び前記上 ma莫を順次積層及び パ夕一ニングして前 E電素子を形成する工程と、前記空間部を介して前記 «形 成 反を前記圧電素子側から異方性ェツチングすることにより前記圧力発生室を 形成する工程とを有することを特徴とするインクジエツト式記録へッドの製造方
6 0 . 請求の範囲 5 9において、 前記空間部を形成する工程は、 前記滅形成基 板の当該一側面上に多結晶シリコン膜を形成する第 1成膜工程と、前記多結晶シリ コン膜の、前記流路形成基板における圧力発生室形成部分に対応する領域を除いた 領域に、高濃度のボロンを拡散させるボロン拡散工程とを含み、前言 BEE力発生室を 形成する工程は、前記振動板の、前記 形成 ¾反における前言 Bffi力発生 成部 分に対応する領域の他の一部を除去してェッチング用孔を形成する孑し形成工程と、 前記エッチング用孔から、異方性湿式エッチングによって、多結晶シリコン J3莫のボ ロンが拡散されていない部分及び当該部分の下方の流路形成基板の一側面部分を 除去する工程とを含むことを特徴とするインクジエツト式記録へッドの製造方法。
6 1 . 請求の範囲 6 0において、 ポロン拡散工程は、 1 X 1 0 2 Q個/ c m3以上 の元素含有密度となるようにボロンを拡散させることを特徴とするインクジェヅ ト式言 へッドの製造方法。
6 2 . 請求の範囲 6 0及び 6 1において、 ボロン拡散工程は、 前記多結晶シリコ ン膜の、前記流路形成 反における前記圧力発生室形成部分に対応する領域の上面 に、マスク膜を形成するマスク形成工程と、前記多結晶シリコン膜の上面の略全面 に向けてボロンを付与するボロン付与工程と、前記マスク膜を除去するマスク除去 工程とを有することを特徴とするインクジェット式言 へッドの製造方法。
6 3. 請求の範囲 5 9 ~ 6 2の何れかにおいて、前記、 ¾SS形 板の他側面から 前記圧力発生室に至るリザ一バを形成するリザ一ノ形成工程を更に備えたことを 特徴とするィンクジヱット式記録へッドの製造方法。
6 4. 請求の範囲 6 3において、前記、 «形腿反は、全体が単結晶シリコンで 構成されており、 リザ一バ形成工程は、前記流路形成基板の他側面上に保議莫を形 成する第 3«ェ程と、前記保護膜の、前記流路形成 «におけるリザーノ形成部 分に対応する領域を除去して、 エッチング用孔を形成する孑 成工程と、編己エツ チング用孔から、 方性湿式エッチングによって、前記 形 反の他側面から 前記圧力発生室に至るリザーバ形成部分を除去するリザーパエッチング工程とを 有していることを特徴とするインクジエツト式記録へッドの製造方法。
6 5 . 請求の範囲 6 3において、 前記藝形腦反は、他側面が単結晶シリコン で構成されると共に中央部が絶縁層で構成された S 0 I基板であり、圧力発生室形 成工程は、前記圧力発生室の底部が絶縁層によって規定されるように前記圧力発生 室を形成し、 リザーノ、'形成工程は、前記蘭形疆反の他側面上に保籠莫を形成す る第 3疆工程と、編己保讖莫の、前記 «形腦反におけるリザーパ形成部分に 対応する領域を除去してエッチング用孔を形成する孔形成工程と、前記エッチング 用孔から、異方性湿式エッチングによって、前記∞形 反の他側面から絶縁層 に至る第 1リザ一ノ 形成部分を除去するリザ一ノ ェヅチング工程と、絶縁層の一部 を除去して、 ΜΙΒΙί力発生室と第 1リザーノ、'形成部分とを連通する第 2リザーノ、'形 成部分を形成する絶縁層除去工程とを有していることを特徴とするインクジエツ ト式記録へッドの製造方法。
6 6 . 請求項 6 4又は 6 5において、 前記保護膜が、 窒化シリコス 二酸化シリ コン及び酸化ジルコニウムからなる群から選択されることを特徴とするィンクジ エツト式記録へッドの $¾i方法。
6 7 . 請求の範囲 6 3 - 6 6の何れかにおいて、圧力発生室形成工程とリザーバ エツチング工程とは、同時に実施されることを特徴とするィンクジェット式言凝へ ッドの製造方法。
6 8 . 請求の範囲 5 9〜 6 7の何れかにおいて、前記圧電素子を形成する工程の 後に、当 電素子を保護する保觀莫を形成する保誕 IB成工程を更に備えている ことを特徴とするインクジェヅト式記録へヅドの製造方法。
6 9 . 請求の範囲 6 8において、 孔形成工程は、 弾性膜と保画との、 前記 « 形成基板における前記圧力発生室形成部分に対応する領域の他の一部を除去する ようになつていることを特徴とするインクジエツト式記録へッドの it方法。
7 0 · 請求の範囲 5 9において、 前記流路形成基板が結晶面方位( 1 0 0 )のシ リコン単結晶 反からなり、前記空間部を形成する工程が、前記 ¾j¾形成 ¾|反の前 記圧力発生室が形成される領域に当該圧力発生室よりも狭い幅で溝部を形成する 工程を含み、 l己圧力発生室を形成する工程が、 tiff己振動板をパターニングして前 記溝部のそれそれに対向する領域に当該溝部に連通する連通孔を形成する工程と、 該連通孔を介して前記 形成 S反を異方性ェヅチングすることにより前記圧力 発生室を横断面略三角开狱に形成する工程とを含むことを特徴とするインクジェ ット式記録へッドの製造方法。
7 1 . 請求の範囲 7 0において、前記溝部を編己圧力発生室の深さよりも浅く形 成することを特徴とするインクジェヅト式記録へヅドの S¾g方法。
7 2. 請求の範囲 5 9において、前記空間部を形成する工程は、 己流路形成基 板の表面の一部を、複数の柱状部分が残るようにエツチングする第 1エッチングェ 程と、前言 ¾ 数の柱状部分の化学的特性を変質させると共に、前記表面の一部を平 坦ィ匕する変質平坦化工程とを含み、前記圧力発生室を形成する工程は、前記振動板 の、編 3»形 figSI反における前言 BE力発生室形成部分に対応する領域の他の一部 を除去してエッチング用孔を形成する孔形成工程と、前記エッチング用孔から、異 方性湿式ェツチングによって化学的特性を変質された前記複数の柱状部分をェッ チングして圧力発生室とする第 2エッチング工程とを備えたことを特徴とするィ ンクジェット式言 3^へッドの製造方法。
7 3 . 請求の範囲 7 ·2にお tヽて、 変質平坦化工程は、 編 B¾数の柱状部分を熱酸 化させる熱酸ィ匕工程を有することを特徴とするインクジエツト式記録へッドの製 造方法。
7 4. 請求の範囲 Ί 3において、 変質平坦化工程は、 前記複数の柱状部分の隙間 に犠牲層を充填させる犠牲層充填工程を有することを特徴とするインクジエツト 式言^へッドの!^方法。
7 5 . 請求の範囲 7 2〜 7 4の何れかにおいて、前記複数の柱状部分は、前記表 面の一部に、略均等の配置で形成されることを特徴とするィンクジエツト式記録へ ッドの製造方法。
7 6 . 請求の範囲 7 2〜 7 5の何れかにおいて、 it己複数の柱状部分の各々.は、 底部側の断面積よりも、表面側の断面積の方が大きくなっていることを特徴とする ;ェヅト式記録へヅドの ^方法。
7 7 . 請求の範囲 7 2 ~ 7 6の何れかにおいて、 前記圧力発生室の職は、 略六 面体であることを特徴とするインクジェヅト式記録へッドの製造方法。
7 8 . 結晶面方位(1 0 0 )のシリコン単結晶 反からなりインクを吐出するノ ズル閧口に連通する圧力発生室が画成された、 ¾形¾ ^反と、該流路形成 ¾|反の一 方面に振動板を介して設けられた下 ma 圧電体層及び上 ¾¾莫からなる圧電素 子とを備えたインクジエツト式記録へッドの製造方法において、
表面及び裏面を含む(1 0 0 )面方位の前記流路形成基板の前記表面上に多結晶 シリコン膜を形成する工程と、編 BE力発生室となる領域を残して、前記多結晶シ リコン膜及び前記シリコン単結晶基板の内部表面付近にボロンを拡散する工程と、 前記多結晶シリコン膜上に第 1膜を形成する工程と、前記圧力発生室を形成する部 分にエツチング液を供給するためのェッチング用孔を前記第 1膜に形成する工程 と、前記ェッチング用孔を介 て前記圧力発生室を形成する部分にェッチング液を 供給し、これによる等方性のゥエツトエッチングによりエッチングされた編己多結 晶シリコン膜のアンド一プ部分のパターンによって、前記シリコン単結晶 反の前 記表面を異方性のウエットエッチングによりエッチングして前記圧力発生室を形 成する工程と、 ΙίίΙ己第 1膜上に第 2膜を形成して前記エッチング用孔を閉鎖するェ 程とを備えたことを特徴とするインクジエツト式記録へッドの 方法。
7 9 . 結晶面方位( 1 0 0 )のシリコン単結晶 反からなりインクを吐出するノ ズル開口に連通する圧力発生室が画成された流路形 板と、該 形成鋭反の一 方面に振動板を介して設けられた下 ma莫、圧電体層及び上¾¾莫からなる圧電素 子とを備えたインクジエツト式記録へッドの製造方法において、
表面及び裏面を含む(1 0 0 )面方位の前記流路形成基板の前記表面に多結晶シ リコン膜を形成する工程と、前言 力発生室となる領域を残して前記多結晶シリコ ン膜を除去して所定パターンの多結晶シリコン膜を形成する工程と、前記所定パ夕 —ンの多結晶シリコン膜上及び前記シリコン単結晶基板の tiif己表面上に第 1膜を 形成する工程と、前記圧力発生室を形成する部分にェヅチング液を供給するための エッチング用孔を前記第 1膜に形成する工程と、前記エッチング用孔を介して前記 圧力発生室を形成する部分にエッチング液を供給し、これによる等方性のゥェヅト エッチングによりエッチングされた前記多結晶シリコン膜の前記所定のノ 夕一ン によって、前記シリコン単結晶 ¾|反の前記表面を異方性のゥエツトエッチングによ りエッチングして前 ΪΒΕ力発生室を形成する工程と、前記第 1 fll±に第 2膜を形成 して前記エッチング用孔を閉鎖する工程とを備えたことを特徴とするインクジェ ヅト式記録へヅドの S¾ii方法。 7 8 . 結晶面方位( 1 0 0 )のシリコン単結晶 反からなりインクを吐出するノ ズル開口に連通する圧力発生室が画成された流路形成基板と、該流路形成基板の一 方面に振動板を介して設けられた下 圧電体層及び上 ¾¾莫からなる圧電素 子とを備えたィンクジエツト式記録へッドの製造方法において、
表面及び裏面を含む( 1 0 0 )面方位の前記流路形成基板の編己表面に保護層を 形成すると共に当該保護層の前記圧力発生室となる領域に開口部を形成する工程 と、この保護層上に 層を形成すると共に当該犠牲層をパターニングすることに より少なく 'とも前記開口部を覆う領域を残留部として残す工程と、この犠牲層上に 第 1膜を形成する工程と、前記保護層上に形成された前記犠牲層の周縁部に連通す るエツチング用孔を形成する工程と、前記ェッチング用孔を介してエッチング液を 供給して前記犠牲層を除去すると共に前記保護層の前記所定パターンによって前 記流路形成基板を前記表面側から異方性ェツチングすることにより前記圧力発生 室を形成する工程と、前記第 1 J3I±に第 2膜を形成して 己エッチング用孔を閉鎖 する工程とを備えたことを特徴とするインクジェット式記録へ—ッドの製造方法。
8 1 . 請求の範囲 8 0において、前記犠牲層をパ夕一ニングする工程では、前記 保護層の開口部の周囲に亘つて溝部を形成することを特徴とするインクジエツト 式言 ヘッドの製造方法。 8 2. 請求の範囲 7 8〜 8 1の何れかにおいて、 tiff己圧力発生室は細長状に形成 されており、前記エッチング用孔は、前言 力発生室の長手方向に沿って形成され たスリツ卜から成ることを特徴とするインクジエツト式記録へッドの製造方法。
8 3. 請求の範囲 7 6〜7 9の何れかにおいて、 Ιίί己エッチング用孔は、所定間 隔で形成された複数の小孔より成ることを特徴とするインクジヱット式記録へッ
8 4. 流路形成基板に圧力発生室を形成すると共に、前記流路形成基板の一方面 側に振動板を介して下 «ϋ、圧電体層及び上 β@からなる圧電素子を形成するィン クジエツト式記録へッドの製造方法において、
編己圧力発生室が形成される領域以外にポロンをドーピングすることによりェ ツチングの選択性を持たせたポリシリコン層の両面にシリコン単結晶基板からな るシリコン層を有する l己 形扁反を形成する工程と、前記 形成謹の一 方のシリコン層側に振動板を介して前記下電極、圧電体層及び上電極を順次積層及 びパターニングして!? gBE電素子を形成する工程と、前記∞形成 反の他方のシ リコン層を前記ポリシリコン層に達するまでエッチングしてィンク導入口を形成 し、該ィンク導入口を介して前 力発生室となる領域の編 3ポリシリコン層をパ 夕一ニングすると共に当該ポリシリコン層をマスクと.して前記一方のシリコン層 をエッチングして前記圧力発生室を形成する工程とを有することを特徴とするィ ンクジェット式言 へッドの製造方法。
8 5 . 請求の範囲 8 4において、前記、 形腿反を形成する工程では、前記他 方のシリコン層の前記ポリシリコン層との接合面側で、少なく も 力発生室 に対向する領域の表層にボロンをドーピングする工程を含むことを特徴とするィ ンクジエツト式記録へヅドの製造方法。
PCT/JP2000/005251 1999-08-04 2000-08-04 Tete d'enregistrement a jet d'encre, procede de fabrication associe et enregistreur a jet d'encre WO2001010646A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/806,699 US6502930B1 (en) 1999-08-04 2000-08-04 Ink jet recording head, method for manufacturing the same, and ink jet recorder
DE60045067T DE60045067D1 (de) 1999-08-04 2000-08-04 Tintenstrahlaufzeichnungskopf, verfahren zur herstellung und vorrichtung zum tintenstrahlaufzeichnen
EP00951887A EP1116588B1 (en) 1999-08-04 2000-08-04 Ink jet recording head, method for manufacturing the same, and ink jet recorder
AT00951887T ATE483586T1 (de) 1999-08-04 2000-08-04 Tintenstrahlaufzeichnungskopf, verfahren zur herstellung und vorrichtung zum tintenstrahlaufzeichnen

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP11/221801 1999-08-04
JP22180199 1999-08-04
JP11/222064 1999-08-05
JP22206499A JP3546944B2 (ja) 1999-08-05 1999-08-05 インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP32461699 1999-11-15
JP11/324616 1999-11-15
JP35087399A JP3630050B2 (ja) 1999-12-09 1999-12-09 インクジェット式記録ヘッド及びインクジェット式記録装置
JP11/350873 1999-12-09
JP2000/7152 2000-01-14
JP2000007152A JP3478222B2 (ja) 2000-01-14 2000-01-14 記録ヘッドの製造方法
JP2000041164 2000-02-18
JP2000/41164 2000-02-18
JP2000041495A JP3419376B2 (ja) 2000-02-18 2000-02-18 インクジェット式記録ヘッド
JP2000/41495 2000-02-18
JP2000085005A JP2001270114A (ja) 2000-03-24 2000-03-24 インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2000/85005 2000-03-24
JP2000/108264 2000-04-10
JP2000108264A JP3379580B2 (ja) 2000-04-10 2000-04-10 インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2000110795 2000-04-12
JP2000/110795 2000-04-12

Publications (1)

Publication Number Publication Date
WO2001010646A1 true WO2001010646A1 (fr) 2001-02-15

Family

ID=27580418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005251 WO2001010646A1 (fr) 1999-08-04 2000-08-04 Tete d'enregistrement a jet d'encre, procede de fabrication associe et enregistreur a jet d'encre

Country Status (5)

Country Link
US (1) US6502930B1 (ja)
EP (1) EP1116588B1 (ja)
AT (1) ATE483586T1 (ja)
DE (1) DE60045067D1 (ja)
WO (1) WO2001010646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246888B2 (en) 2001-12-27 2007-07-24 Seiko Epson Corporation Liquid jetting head and method of manufacturing the same

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103618A (ja) * 2000-01-17 2002-04-09 Seiko Epson Corp インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2003246065A (ja) * 2001-12-20 2003-09-02 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置
JP4272381B2 (ja) * 2002-02-22 2009-06-03 パナソニック株式会社 インクジェットヘッド及び記録装置
JP3998254B2 (ja) * 2003-02-07 2007-10-24 キヤノン株式会社 インクジェットヘッドの製造方法
US7111928B2 (en) 2003-05-23 2006-09-26 Kyocera Corporation Piezoelectric ink jet head
US7270403B2 (en) 2003-09-01 2007-09-18 Fujifilm Corporation Inkjet head and inkjet recording apparatus
JP3952048B2 (ja) 2003-09-29 2007-08-01 ブラザー工業株式会社 液体移送装置及び液体移送装置の製造方法
US20060009038A1 (en) 2004-07-12 2006-01-12 International Business Machines Corporation Processing for overcoming extreme topography
US7354522B2 (en) * 2004-08-04 2008-04-08 Eastman Kodak Company Substrate etching method for forming connected features
US7634855B2 (en) * 2004-08-06 2009-12-22 Canon Kabushiki Kaisha Method for producing ink jet recording head
US7497962B2 (en) * 2004-08-06 2009-03-03 Canon Kabushiki Kaisha Method of manufacturing liquid discharge head and method of manufacturing substrate for liquid discharge head
JP2006069152A (ja) * 2004-09-06 2006-03-16 Canon Inc インクジェットヘッド及びその製造方法
US7767103B2 (en) * 2004-09-14 2010-08-03 Lexmark International, Inc. Micro-fluid ejection assemblies
TWI343323B (en) * 2004-12-17 2011-06-11 Fujifilm Dimatix Inc Printhead module
JP2006310235A (ja) * 2005-05-02 2006-11-09 Okutekku:Kk パターン形成装置およびパターン形成装置の製造方法
JP4636378B2 (ja) * 2005-09-16 2011-02-23 富士フイルム株式会社 液体吐出ヘッドおよびその製造方法
CN101370662B (zh) * 2006-01-17 2010-08-25 精工爱普生株式会社 喷墨打印机的喷头驱动装置及喷墨打印机
JP4877234B2 (ja) * 2006-01-20 2012-02-15 セイコーエプソン株式会社 インクジェットプリンタのヘッド駆動装置およびインクジェットプリンタ
KR101153562B1 (ko) * 2006-01-26 2012-06-11 삼성전기주식회사 압전 방식의 잉크젯 프린트헤드 및 그 제조방법
JP4258668B2 (ja) * 2006-05-08 2009-04-30 セイコーエプソン株式会社 液体噴射ヘッド及び液体噴射装置
JP5141117B2 (ja) * 2006-07-24 2013-02-13 セイコーエプソン株式会社 液体噴射装置および印刷装置
US7914125B2 (en) * 2006-09-14 2011-03-29 Hewlett-Packard Development Company, L.P. Fluid ejection device with deflective flexible membrane
US8042913B2 (en) * 2006-09-14 2011-10-25 Hewlett-Packard Development Company, L.P. Fluid ejection device with deflective flexible membrane
JP4986216B2 (ja) * 2006-09-22 2012-07-25 富士フイルム株式会社 液体吐出ヘッドの製造方法及び画像形成装置
US7731317B2 (en) * 2007-01-12 2010-06-08 Seiko Epson Corporation Liquid jetting device
US7768178B2 (en) * 2007-07-27 2010-08-03 Fujifilm Corporation Piezoelectric device, piezoelectric actuator, and liquid discharge device having piezoelectric films
JP5046819B2 (ja) 2007-09-13 2012-10-10 キヤノン株式会社 スルーホールの形成方法およびインクジェットヘッド
JP4645668B2 (ja) * 2008-03-24 2011-03-09 セイコーエプソン株式会社 インクジェット式記録ヘッドの製造方法
JP4572351B2 (ja) * 2008-03-24 2010-11-04 セイコーエプソン株式会社 インクジェット式記録ヘッドの製造方法
EP2296897B1 (en) 2008-05-22 2022-05-04 FUJIFILM Corporation Actuatable device with die and integrated circuit element
JP6158346B2 (ja) * 2013-11-29 2017-07-05 株式会社日立産機システム 補給容器及びこれを備えたインクジェット記録装置
TW201625425A (zh) 2014-09-17 2016-07-16 滿捷特科技公司 具有連接至橫向驅動電路之頂式致動器的噴墨噴嘴裝置
JP7087413B2 (ja) 2018-01-31 2022-06-21 セイコーエプソン株式会社 圧電デバイス、液体噴射ヘッド、および、液体噴射装置
IT201900007196A1 (it) 2019-05-24 2020-11-24 St Microelectronics Srl Dispositivo microfluidico per l'espulsione continua di fluidi, in particolare per la stampa con inchiostri, e relativo procedimento di fabbricazione
JP7321785B2 (ja) * 2019-06-17 2023-08-07 キヤノン株式会社 基板および液体吐出ヘッドとそれらの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628330A (en) * 1981-12-14 1986-12-09 Nec Ink-jet recording apparatus
JPH05286131A (ja) 1992-04-15 1993-11-02 Rohm Co Ltd インクジェットプリントヘッドの製造方法及びインクジェットプリントヘッド
JPH0848038A (ja) * 1994-08-08 1996-02-20 Canon Inc 液体噴射記録ヘッド用基体及びその製造方法及び液体噴射記録装置
EP0738599A2 (en) * 1995-04-19 1996-10-23 Seiko Epson Corporation Ink Jet recording head and method of producing same
WO1997034769A1 (fr) * 1996-03-18 1997-09-25 Seiko Epson Corporation Tete a jet d'encre et son procede de fabrication
EP0838336A2 (en) * 1996-10-24 1998-04-29 Seiko Epson Corporation Ink jet head and a method of manufacturing the same
JPH10290033A (ja) * 1997-04-16 1998-10-27 Seiko Epson Corp 圧電体薄膜素子、これを用いたアクチュエータ、インクジェット式記録ヘッド、並びに圧電体薄膜素子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295655A (ja) * 1990-04-13 1991-12-26 Seiko Epson Corp 液体噴射ヘッド
JPH04185348A (ja) 1990-11-17 1992-07-02 Seiko Epson Corp 液体噴射ヘッド及びその製造方法
US5265315A (en) 1990-11-20 1993-11-30 Spectra, Inc. Method of making a thin-film transducer ink jet head
JPH0548235A (ja) 1991-08-15 1993-02-26 Omron Corp 回路基板
JP3239274B2 (ja) 1992-02-26 2001-12-17 富士通株式会社 インクジェットヘッドの製造方法
JPH06143566A (ja) 1992-11-05 1994-05-24 Ricoh Co Ltd インクジェット記録ヘッドおよびその製造方法
JP3230017B2 (ja) 1993-01-11 2001-11-19 富士通株式会社 インクジェットヘッドの製造方法
JP3407514B2 (ja) 1995-12-08 2003-05-19 セイコーエプソン株式会社 液体吐出装置
JP3525612B2 (ja) 1996-03-12 2004-05-10 セイコーエプソン株式会社 シリコンウェハーの加工方法及びそのシリコンウェハーを用いた電子機器
JP3365224B2 (ja) * 1996-10-24 2003-01-08 セイコーエプソン株式会社 インクジェット式記録ヘッドの製造方法
EP1033037B1 (en) 1997-06-30 2006-12-13 Daewoo Electronics Corporation Thin film actuated mirror including a seeding member and an electrodisplacive member made of materials having the same crystal structure and growth direction
JPH11207954A (ja) 1998-01-23 1999-08-03 Seiko Epson Corp インクジェット式記録ヘッド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628330A (en) * 1981-12-14 1986-12-09 Nec Ink-jet recording apparatus
JPH05286131A (ja) 1992-04-15 1993-11-02 Rohm Co Ltd インクジェットプリントヘッドの製造方法及びインクジェットプリントヘッド
JPH0848038A (ja) * 1994-08-08 1996-02-20 Canon Inc 液体噴射記録ヘッド用基体及びその製造方法及び液体噴射記録装置
EP0738599A2 (en) * 1995-04-19 1996-10-23 Seiko Epson Corporation Ink Jet recording head and method of producing same
WO1997034769A1 (fr) * 1996-03-18 1997-09-25 Seiko Epson Corporation Tete a jet d'encre et son procede de fabrication
EP0838336A2 (en) * 1996-10-24 1998-04-29 Seiko Epson Corporation Ink jet head and a method of manufacturing the same
JPH10290033A (ja) * 1997-04-16 1998-10-27 Seiko Epson Corp 圧電体薄膜素子、これを用いたアクチュエータ、インクジェット式記録ヘッド、並びに圧電体薄膜素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246888B2 (en) 2001-12-27 2007-07-24 Seiko Epson Corporation Liquid jetting head and method of manufacturing the same

Also Published As

Publication number Publication date
DE60045067D1 (de) 2010-11-18
EP1116588A1 (en) 2001-07-18
ATE483586T1 (de) 2010-10-15
US6502930B1 (en) 2003-01-07
EP1116588B1 (en) 2010-10-06
EP1116588A4 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
WO2001010646A1 (fr) Tete d&#39;enregistrement a jet d&#39;encre, procede de fabrication associe et enregistreur a jet d&#39;encre
JP2002103618A (ja) インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2005295786A (ja) アクチュエータ装置の製造方法及び液体噴射装置
JP2002316417A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP3661775B2 (ja) インクジェット式記録ヘッドの製造方法
JP2001260357A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP2008044385A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP2011037053A (ja) ノズルプレートの製造方法
JP3384456B2 (ja) インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2007067358A (ja) エッチング液及びエッチング加工方法並びに液体噴射ヘッドの製造方法
JP2008132733A (ja) 液滴吐出ヘッド、液滴吐出装置及び液滴吐出ヘッドの製造方法
JP2010228272A (ja) 液体噴射ヘッドの製造方法、液体噴射ヘッド及び液体噴射装置
JP5038065B2 (ja) 液体吐出ヘッド及びその製造方法
JP2007001297A (ja) 液体吐出ヘッドおよびその製造方法
JPH11309867A (ja) インクジェット式記録ヘッドの製造方法
JP2000246895A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP2001205808A (ja) インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP2000127382A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP5690476B2 (ja) 液体噴射ヘッドの製造方法、液体噴射ヘッド及び液体噴射装置
JP5024509B2 (ja) マイクロデバイスの製造方法及び液体噴射ヘッドの製造方法
JP2008142966A (ja) インクジェット記録ヘッド
JP2008143160A (ja) 液体噴射ヘッド及びその製造方法並びに液体噴射装置
JP2002210962A (ja) インクジェット式記録ヘッド及びインクジェット式記録装置
JP2007210176A (ja) シリコン基板の加工方法及び液体噴射ヘッドの製造方法
JP2008168552A (ja) マイクロデバイスの製造方法及び液体噴射ヘッドの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000951887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09806699

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000951887

Country of ref document: EP