WO2000079524A1 - Support d'enregistrement magnetique et film de base associe - Google Patents

Support d'enregistrement magnetique et film de base associe Download PDF

Info

Publication number
WO2000079524A1
WO2000079524A1 PCT/JP2000/003905 JP0003905W WO0079524A1 WO 2000079524 A1 WO2000079524 A1 WO 2000079524A1 JP 0003905 W JP0003905 W JP 0003905W WO 0079524 A1 WO0079524 A1 WO 0079524A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
thermoplastic resin
polyester
particles
Prior art date
Application number
PCT/JP2000/003905
Other languages
English (en)
French (fr)
Inventor
Makoto Handa
Hirofumi Murooka
Toshifumi Osawa
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17482199A external-priority patent/JP2001006157A/ja
Priority claimed from JP17615599A external-priority patent/JP3616731B2/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE2000623298 priority Critical patent/DE60023298T2/de
Priority to US10/018,746 priority patent/US6713155B1/en
Priority to EP20000937247 priority patent/EP1195748B1/en
Publication of WO2000079524A1 publication Critical patent/WO2000079524A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73931Two or more layers, at least one layer being polyester
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73935Polyester substrates, e.g. polyethylene terephthalate characterised by roughness or surface features, e.g. by added particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2429/00Carriers for sound or information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a magnetic recording medium and a base film therefor. More specifically, the present invention relates to a magnetic recording medium having excellent electromagnetic conversion characteristics and a small decrease in output during repeated use, and a base film therefor.
  • a ferromagnetic metal thin film magnetic recording method in which a ferromagnetic metal thin film is formed on a non-magnetic support by a physical deposition method such as vacuum evaporation or sputtering or a plating method.
  • a physical deposition method such as vacuum evaporation or sputtering or a plating method.
  • a vapor deposition tape of Co see Japanese Patent Application Laid-Open No. 54-147010
  • a perpendicular magnetic recording medium made of a Co_Cr alloy Japanese Patent Application Laid-Open No. 52-134770
  • Magnetic recording media in which magnetic powder is mixed with an organic polymer binder and applied to a non-magnetic support
  • a metal thin film formed by a thin film forming means such as vacuum evaporation, sputtering, or ion plating has a very small thickness of 0.2 m or less.
  • the surface condition of the non-magnetic support (base film) has a great influence on the surface properties of the magnetic recording layer. That is, the surface state of the non-magnetic support is directly expressed as irregularities on the surface of the magnetic recording layer, which causes noise in recording / reproducing signals. Therefore, it is desirable that the surface of the non-magnetic support is as smooth as possible.
  • the surface of the non-magnetic support is preferably as rough as possible from the viewpoint of production cost.
  • the surface of the nonmagnetic support is required to be smooth from the viewpoint of electromagnetic conversion characteristics, and is required to be rough from the viewpoint of handling properties and manufacturing costs.
  • the surface of the base film is activated by ions, called an ion bombardment process, before forming the metal thin film. Is performed.
  • the back surface is cooled so that high-temperature heat is applied to the film surface and the base film does not melt or physical properties such as mechanical properties do not deteriorate.
  • the backside cooling method is often performed by winding a base film around a drum-shaped cooling body. At this time, both ends of the base film are masked so that a thin metal film is not formed on the drum surface.
  • JP-A-9-1207290 and JP-A-9-226603 disclose that two layers A and B are provided. A laminated film with a rougher surface on the layer B than on the surface has been proposed.
  • a certain balance between the electromagnetic conversion characteristics and the handling property and the winding property can be obtained, it is not possible to suppress the output reduction and the occurrence of the above-mentioned blocking during repeated use.
  • An object of the present invention is to eliminate such disadvantages of the prior art, to excel in electromagnetic conversion characteristics, Another object of the present invention is to provide a base polyester film for a magnetic recording medium, which has a small output reduction upon repeated use and excellent running durability.
  • Another object of the present invention is to eliminate the drawbacks of the prior art, to provide excellent blocking resistance, excellent winding property and processability, and to provide excellent electromagnetic conversion characteristics when used as a metal-deposited thin film magnetic recording medium.
  • An object of the present invention is to provide a base laminated thermoplastic resin film for a magnetic recording medium.
  • Still another object of the present invention is to provide a magnetic recording medium having a magnetic layer provided on the base film of the present invention and having the above various characteristics such as electromagnetic conversion characteristics.
  • the primary particles have an average particle size of 30 to 120 nm and a volume shape factor of 0.1 to / 6.
  • the first polyester fine particles have a particle agglomeration ratio of 4 to 20%, which is achieved by a base polyester film for a magnetic recording medium (hereinafter sometimes referred to as a first base film of the present invention). Is done.
  • the above object and advantages of the present invention are, secondly, the first thermoplastic resin layer having an exposed surface having a surface roughness WRa of 0.1 to 4 nm and an average of primary particles.
  • Third inert fine particles having a particle size of 0.1 to 2.0 m 0.01 to 5% by weight and an ester wax of an aliphatic monocarboxylic acid having 8 or more carbon atoms and a polyhydric alcohol 0.00
  • a second thermoplastic resin layer containing 1 to 10% by weight and having a water contact angle with the exposed surface of 70 to 90 °, and the first thermoplastic resin layer and the second thermoplastic resin layer It is achieved by a base laminated thermoplastic resin film for a magnetic recording medium (hereinafter, sometimes referred to as a second base film of the present invention) which is laminated on each other.
  • either one of the first base film or the second base film of the present invention is used as a base film and the magnetic layer Is achieved by a magnetic recording medium provided thereon.
  • polyester in the present invention an aliphatic, alicyclic or aromatic polyester can be exemplified. Of these, aromatic polyesters are particularly preferred.
  • aromatic polyester examples include polyethylene terephthalate, polyethylene terephthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, and polyethylene 1,2,6-naphthalenedicarboxylate. can do. Of these, polyethylene terephthalate and polyethylene-1,6-naphthylene carboxylate are preferred. These polyesters may be homopolyesters or copolyesters.
  • copolymerization components of polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate include, for example, diethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, Polyethylene glycol, 1,4-cyclohexanedimethanol, other diol components such as p-xylylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid (however, polyethylene 1, 2, 6 —In the case of naphthalenedicarboxylate), 2,6-naphthalenedicarboxylic acid (however, in the case of polyethylene terephthalate), 5 —Other dicarboxylic acid components such as sodium sulfoisophthalic acid, p-oxoxoxybenzoic acid Such Such Okishikarubon acid components.
  • the amount of these copolymer components is not more than 20 mol% with respect to the total amount of the diol component and the total amount of the dicarboxylic acid and the oxycarboxylic acid of the dicarboxylic acid and the oxycarboxylic acid component. More preferably, it is at most 10 mol%.
  • polyester film of the present invention contains first inert fine particles (hereinafter sometimes referred to as inert particles A).
  • Inert particles A include, for example, crosslinked silicone resin, crosslinked polystyrene, crosslinked styrene-divinylbenzene copolymer, polymethyl methacrylate, methyl methacrylate copolymer, crosslinked methyl methacrylate copolymer, polytetrafluoroethylene, poly Fine particles made of heat-resistant organic polymers such as vinylidene fluoride, polyacrylonitrile, and benzoguanamine resin, silica, alumina, titanium dioxide, potassium, talc, graphite, calcium carbonate, feldspar, molybdenum disulfide, sodium bonfire, sulfuric acid Fine particles made of an inorganic compound such as barium are used.
  • the average particle size of the primary particles of the inert particles A is from 30 to L20 nm, preferably from 35 to 110 nm, more preferably from 40 to L00 nm. If the average particle diameter is less than 30 nm, sufficient running durability cannot be obtained, while if it exceeds 120 nm, the electromagnetic conversion characteristics deteriorate.
  • the shape of the inert particles A is such that the volume shape factor (f) represented by the following formula (I) is 0.1 to ⁇ /, preferably 0.3 to ⁇ / 6, more preferably 0.4 to ⁇ . It is / 6.
  • f is the volume shape factor
  • V is the volume m 3 of the particles
  • R is the average particle size (m) of the particles.
  • the shape whose volume shape factor (f) is ⁇ 6 is a sphere (true sphere). That is, the volume shape factor ( ⁇ is 0.4 or more; those of uZ6 substantially include a sphere or a true sphere or an elliptical sphere such as a rugby ball, and these are particularly preferable. Particles having f) of less than 0.1, for example, flaky particles, are not preferred because the running durability is reduced.
  • the frequency of protrusions derived from the inert particles A on the surface of the polyester layer A is 0.50000 to 500000 Zmm 2 , preferably 0.75 to 450,000 / mm 2 , and more preferably 1 . it is 00,000 to 40,000 pieces Zmm 2.
  • the projection frequency is less than 05,000 pieces ZMM 2 derived from the inert particles A on the surface, high vs. magnetic head friction of the magnetic layer, Repetitive magnetic layer c 05
  • the adjustment of the protrusion frequency can be performed by adjusting the concentration of the glycol slurry and the Z or the amount of the particles added when the polyester is polymerized.
  • the particle agglomeration rate of the inert particles A on the surface of the polyester layer A is 4 to 20%, preferably 5 to 18%, more preferably 6 to 16%, and particularly preferably 7 to 14%.
  • the adjustment of the particle agglomeration rate can be achieved by adjusting the pH of the slurry when the particles are added as a glycol slurry during the polyester polymerization reaction, or by adjusting the reaction step and temperature conditions for charging the slurry and the charging speed.
  • the first base film of the present invention includes a coating layer or another polyester as long as it does not impair the object of the present invention, for the purpose of improving handling properties during production and processing, and various properties when used as a magnetic tape. It is possible to laminate another layer, such as a layer, on one or both sides.
  • the average particle size is reduced on the side where the magnetic layer of the polyester layer A containing the inert particles A is provided.
  • a first coating layer (hereinafter sometimes referred to as layer ⁇ ) containing second inert fine particles (hereinafter sometimes referred to as inert particles ⁇ ) having a volume shape factor of 0.1 to ⁇ 6 having a volume shape coefficient of 10 to 50 nm; ) laminating said projections frequency coating layer ⁇ is derived from ⁇ inert particles in the surface 2 0 00 000 to 2, 0 0 0 thousands 111111 2, the surface roughness of the surface (R a) Is preferably 0.1 to 2.0 nm.
  • the inert particles B contained in the coating layer B those having a relatively low specific gravity, which do not easily settle in the coating liquid, are preferable.
  • heat-resistant polymer particles such as crosslinked silicone resin, crosslinked acrylic resin, crosslinked polystyrene, melamine 'formaldehyde resin, aromatic polyamide resin, polyamideimide resin, crosslinked polyester, wholly aromatic polyester, silicon dioxide (silica), Calcium carbonate is preferred It is well-known.
  • Particularly preferred are crosslinked silicone resin particles, core-shell type organic particles (core: crosslinked polystyrene, shell: polymethyl methacrylate, etc.), and silicone.
  • the primary particles of the inert particles B have an average particle size of 10 to 50 nm, preferably 15 to 45 nm, and more preferably 20 to 40 nm. If the average particle size is less than 10 nm, the slipperiness of the film may be poor. On the other hand, if it exceeds 50 nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor, which is not preferable.
  • the shape of the inert particles B is such that the volume shape factor (f) is 0.1 to ⁇ Z6, preferably 0.2 to ⁇ / etc., More preferably 0.3 to ⁇ ⁇ ⁇ ⁇ ⁇ 6, and particularly preferably 0.4 to ⁇ 6. It is something that is. Particles having a volume shape factor (f) of less than 0.1, for example, flaky particles, are difficult to obtain an effect on the slipperiness of the film.
  • the frequency of protrusions derived from the inert particles B on the surface of the coating layer B is 2 to 20 million Zmm 2 , preferably 3 to 15 million / mm 2 , and more preferably 3 to 15 million / mm 2 .
  • the frequency of protrusions on the surface of the coating layer B is less than 2 million pieces / mm 2 , the slipperiness of the film may be poor. On the other hand, if the frequency of protrusions exceeds 20 million pieces Zmm 2 , the magnetic recording medium It is not preferable because the electromagnetic conversion characteristics may be poor.
  • the surface roughness (Ra) of the coating layer B is 0.1 to 2.0 nm, preferably 0.2 to: L.
  • the slipperiness of the film may be poor, while if it exceeds 2.0 nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor. Therefore, it is not preferable.
  • the adjustment of the surface roughness (Ra) can be performed by adjusting the particle size and / or amount of the inert particles B contained in the coating layer B.
  • a binder resin is used to fix the inert particles B.
  • the binder resin for example, an aqueous polyester resin, a 7-acrylic resin, an aqueous polyurethane resin and the like are preferably exemplified, and an aqueous polyester resin is particularly preferred.
  • acid components include, for example, isophthalic acid, phthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, sebacin Polyvalents such as acid, dodecanedicarboxylic acid, succinic acid, 5-sodium sulfoisophthalate, 2-sulfoterephthalic acid potassium, trimellitic acid, trimesic acid, monopotassium trimellitate, and P-hydroxybenzoic acid Consists of one or more carboxylic acids, and the glycol component is, for example, ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, p-xylylene Glycol, dimethylolpropane, bisphenol A
  • acrylic-modified polyester resins that have formed a specific physical configuration (such as an IPN (interpenetrating polymer network) type, core-shell type, etc.).
  • IPN interpenetrating polymer network
  • aqueous polyester resin any of the types that dissolve, emulsify, or finely disperse in water can be used. These may have, for example, a sulfonate group, a carboxylate group, a polyether unit, or the like introduced in the molecule to impart hydrophilicity.
  • the surface opposite to the side on which the magnetic layer is provided is coated with a coating layer and / or another film for the purpose of improving the handleability during film production and processing. It is also possible to provide a polyester layer, which is preferred.
  • the surface opposite to the side on which the magnetic layer is provided has a fourth particle having an average primary particle size of 20 to 8 O nm.
  • a second coating layer (hereinafter sometimes referred to as “coating layer C”) containing inert fine particles (hereinafter sometimes referred to as “inert particles C”) is laminated, and the coating layer “C” has a surface roughness of the surface. It is preferable that (R a) is 2.5 to 10.0 nm and its thickness is 8 to 50 nm, because the effect of the present invention can be improved without impairing the effects of the present invention. No.
  • the inert particles C contained in the coating layer C the same particles as those exemplified as the inert particles B can be similarly used.
  • the primary particles of the inert particles C have an average particle size of 20 to 80 nm, preferably 30 to 70 nm, and more preferably 40 to 60 nm. If the average particle size is less than 20 nm, the slipperiness of the film may be poor. On the other hand, if it exceeds 80 nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor, which is not preferable.
  • the surface roughness (Ra) of the coating layer C is 2.5 to 10.0 nm, preferably 3.0 to 9.0 nm, and more preferably 3.5 to 8.0 nm. If the surface roughness (Ra) is less than 2.5 nm, the slipperiness of the film may be poor, while if it exceeds 10.0 nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor.
  • the thickness of the good coating layer C is 8 to 50 nm, preferably 9 to 40 nm, and more preferably 10 to 30 nm. If the thickness of the coating layer C is less than 8 nm, the inert particles may fall off. On the other hand, if it exceeds 50 nm, the running durability of the tape may be poor, which is not preferable.
  • the binder resin for fixing the inert particles C the same resin as exemplified as the binder resin for fixing the inert particles B can be used.
  • an alkyl cellulose, a siloxane copolymerized acrylic resin, or the like may be added for the purpose of further improving the strength of the coating and further improving the blocking property.
  • the same purpose can be achieved by using another polyester layer instead of the coating layer C.
  • the average primary particle size of the polyester layer A (flat layer) containing the inert particles A on the surface opposite to the side on which the magnetic layer is provided in the case of a magnetic tape is 0.1 to 2.
  • a second polyester layer (hereinafter sometimes referred to as polyester layer D (rough surface layer)) containing 0 m third inert fine particles (hereinafter sometimes referred to as inert particles D) is laminated, and the polyester layer D is formed.
  • Surface roughness of the surface (Ra) f. 5-10.
  • the polyester of the polyester layer D include the same polyesters as those of the polyester layer A.
  • the polyester in the polyester layer D may be different from that used in the polyester layer A, but is preferably the same.
  • the same particles as those exemplified as the inert particles A can be similarly used.
  • the average particle size of the inert particles D is from 1 to 2.0 m, preferably from 0.2 to 1.5 n, more preferably from 0.3 to 1.0. If the average particle size is less than 0.1 m, the slipperiness of the film may be poor, while if it exceeds 2.0 m, the electromagnetic conversion characteristics of the magnetic recording medium may be poor, which is not preferable. .
  • the inert particles D may be used alone or in combination of two or more. When it is composed of two or more types of particles, in addition to those having an average primary particle size of 0.1 to 2.0 m, fine particles having an average primary particle size of 0.01 to 0.1, for example, Fine particles such as colloidal silica, alumina, and alumina having a crystal morphology such as (5, etc.) can be preferably used.
  • the average primary particles Fine particles having a diameter of 0.01 to 0.1 / zm may also be used, and the content of the fine particles may be 0.001 to 5% by weight, more preferably 0.005 to 1% by weight, particularly 0.1 to 5% by weight. It is preferably from 0.01 to 0.5% by weight.
  • the surface roughness (Ra) of the polyester layer D is 2.5 to 10.0 nm, preferably 3.0 to 9.0 nm, and more preferably 4.0 to 8.5 nm. If the surface roughness (R a) is less than 2.5 nm, the slipperiness of the film may be poor, while if it exceeds 10 O nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor. This is not preferred because of the fact.
  • the thickness of the polyester layer D is preferably 0.1 to 2.0 m, more preferably 0.2 to 1.5 wm, and still more preferably 0.3 to 1.2 ⁇ m. If the thickness is less than 0.1 lm, the inert particles may fall off, while the thickness exceeds 2.0 im U is not preferable because the running durability of the tape may be poor.
  • the first base film of the present invention can be manufactured by a conventionally known method or a method accumulated in the art.
  • polyester is melted at a temperature of melting point (Tm) to (Tm + 70) ° C to obtain an unstretched film having a specific viscosity of 0.35 to 0.9 d1 Zg. (Tg ⁇ 10) to (Tg + 70) ° C (Tg: glass transition temperature of polyester) at a ratio of 2.5 to 5.5 times in the direction or the transverse direction.
  • Tm melting point
  • Tg + 70 glass transition temperature of polyester
  • a biaxially oriented film can be produced by stretching at twice the magnification.
  • the area stretching magnification is preferably 9 to 25 times, more preferably 12 to 25 times.
  • the stretching means may be either simultaneous biaxial stretching or sequential biaxial stretching.
  • the biaxially oriented film can be heat-set at a temperature of (Tg + 70) to (Tm) ° C.
  • Tg + 70 to (Tm) ° C.
  • Tm ° C.
  • the polyethylene terephthalate film is heat-set at 190 to 230.
  • the heat fixing time is, for example, 1 to 60 seconds.
  • the polyester may optionally contain additives other than the above-mentioned inert particles, for example, a stabilizer, a colorant, and a specific resistance modifier for the molten polymer.
  • additives other than the above-mentioned inert particles, for example, a stabilizer, a colorant, and a specific resistance modifier for the molten polymer.
  • the laminate of the polyester layer A and the polyester layer D can be manufactured by a conventionally known method or a method accumulated in the art. Especially, it is preferable to manufacture by a co-extrusion method.
  • a flat layer containing the inert particles A is formed in or before the extrusion die (generally, the former is called a multi-manifold system, and the latter is called a feed block system).
  • Polyester (Polyester A) and a polyester (polyester D) containing inert particles D and forming a rough surface layer are laminated and compounded in a molten state to form a laminated structure having the above-mentioned preferred thickness ratio, and then the melting point (Tm) to After co-extruding into a film at a temperature of (Tm + 70) ° C., it is quenched and solidified to obtain an unstretched laminated film.
  • Lamination of the coating layer B and the coating layer C on the polyester layer of the present invention can be performed by a method of applying an aqueous coating solution.
  • the coating is preferably performed on the surface of the polyester layer before the final stretching treatment, and after the coating, the film is preferably stretched in at least one axial direction. Before or during the stretching, the coating film is dried. Among them, the coating is preferably performed on an unstretched laminated film or a longitudinally (uniaxially) stretched laminated film, particularly a longitudinally (uniaxially) stretched laminated film.
  • the coating method is not particularly limited, and examples thereof include a roll coating method and a die coating method.
  • the solid content of the coating liquid, especially the aqueous coating liquid is preferably 0.2 to 8% by weight, more preferably 0.3 to 6% by weight, particularly preferably 0.5 to 4% by weight.
  • the coating liquid (preferably an aqueous coating liquid) contains other components such as other surfactants, stabilizers, dispersants, ultraviolet absorbers, and thickeners as long as the effects of the present invention are not impaired. Agents and the like can be added.
  • the Young's modulus of the laminated film is changed in each of a longitudinal direction and a lateral direction.
  • the crystallinity of the polyester layer is 30 to 50% when the polyester is polyethylene terephthalate, and 28 to 38% when the polyester is polyethylene 2,6-naphthylene dicarboxylate. Desirably. In any case, below the lower limit, the heat shrinkage tends to increase, while above the upper limit, the abrasion resistance of the film decreases, and white powder is likely to be generated when sliding on the roll or guide bin surface. .
  • the first base film of the present invention comprises a polyester layer A (flat layer), preferably a coated layer.
  • a ferromagnetic metal thin film layer made of iron, cobalt, chromium, or an alloy or oxide containing these as a main component is formed by a method such as vacuum evaporation, sputtering, or ion plating.
  • a protective layer such as diamond-like carbon (DLC) and a fluorinated carboxylic acid-based lubricating layer are sequentially provided on the surface, if necessary, and if necessary, a polyester layer A on the side opposite to the ferromagnetic layer.
  • DLC diamond-like carbon
  • a fluorinated carboxylic acid-based lubricating layer are sequentially provided on the surface, if necessary, and if necessary, a polyester layer A on the side opposite to the ferromagnetic layer.
  • the output in the short wavelength region the electromagnetic conversion characteristics such as SZN and CZN are particularly excellent, and the dropout is achieved.
  • a vapor-deposited magnetic recording medium for high-density recording with a low error rate can be obtained.
  • This deposited magnetic recording medium is extremely useful as a magnetic tape medium for Hi 8 for analog signal recording, digital video cassette recorder (DVC) for digital signal recording, 8 mm data, and DDSIV.
  • the first base film of the present invention is characterized in that iron or a needle-like fine magnetic powder (metal powder) containing iron as a main component is coated on the surface of the polyester layer A (flat layer), preferably the coating layer B. It is uniformly dispersed in a binder such as a vinyl chloride / vinyl acetate copolymer, and is applied so that the thickness of the magnetic layer is 1 or less, preferably 0.1 to 1. Is provided on the opposite side, preferably on the surface of the coating layer C or the polyester layer D by a known method, so that output in the short wavelength region, electromagnetic conversion of SZN, CZN, etc. It is a metal-coated magnetic recording medium for high-density recording with excellent characteristics, low dropout and low error rate.
  • a binder such as a vinyl chloride / vinyl acetate copolymer
  • a nonmagnetic layer containing fine titanium oxide particles or the like may be formed on the surface of the polyester layer A, preferably the ⁇ M layer B, as an underlayer of the metal powder-containing magnetic layer. It can be dispersed and applied in a binder.
  • This metal-coated magnetic recording medium uses 8mm video for recording analog signals, Hi 8, i3 cam SP, W-VHS, digital video cassette recorder (DVC) for recording digital signals, 8mm data, DDSIV, Digital) Very useful for magnetic tape media such as 3 cams, D2, D3, SX.
  • the first base film of the present invention comprises a needle-shaped fine magnetic powder such as iron oxide or chromium oxide on the surface of the polyester layer A (flat surface side), preferably the surface of the ⁇ m layer B; ⁇
  • a plate-like fine magnetic powder such as vacuum ferrite is uniformly dispersed in a binder such as polyvinyl chloride, vinyl chloride / vinyl acetate copolymer, and the magnetic layer thickness is 1 m or less, preferably 0.1
  • a back coat layer by a known method on the opposite side of the magnetic layer of the polyester layer A, preferably on the surface of the coating layer C or the polyester layer D, if necessary.
  • S short wavelength range
  • oxide-coated magnetic recording medium for high-density recording with excellent electromagnetic conversion characteristics such as ZN and CZN, and low dropout and error rate.
  • a non-magnetic layer containing fine titanium oxide particles or the like as a base layer of the oxide powder-containing magnetic layer may be provided on the surface of the polyester layer A, preferably the coating layer B, as a magnetic layer. It can be dispersed in the same organic binder and coated.
  • This oxide-coated magnetic recording medium is useful as an oxide-coated magnetic recording medium for high-density recording such as QIC for data streamers for digital signal recording.
  • VHS is a VTR for recording an analog HD TV signal
  • DVC is applicable for recording a digital HD TV signal.
  • Base film which is extremely useful for magnetic recording media.
  • the magnetic recording medium using the first base film of the present invention in the aspect using the magnetic layer as described above,
  • a magnetic recording medium comprising a film, and a magnetic layer on the 1 mm layer of the base film;
  • a base polyester film (polyester layer A), the first coating layer laminated on one surface of the base polyester film, and a second coating layer laminated on the other surface of the base polyester film And a magnetic recording medium comprising a magnetic layer on the first M layer of the base film.
  • thermoplastic resin forming the first thermoplastic resin layer (also referred to as a thermoplastic resin layer B or B layer) and the second thermoplastic resin layer (also referred to as a thermoplastic resin layer A or A layer) includes: Examples thereof include polyester resins, polyamide resins, polyimide resins, polyether resins, polycarbonate resins, polyvinyl resins, and polyolefin resins. Of these, polyester resins, particularly aromatic polyesters, are preferred.
  • thermoplastic resin B thermoplastic resin layer
  • thermoplastic resin A thermoplastic resin forming the second thermoplastic resin layer
  • aromatic polyester examples include polyethylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, and polyethylene 1,6-naphthalate ( Polyethylene-1,2,6-naphthalenedicarboxylate) and the like. Of these, polyethylene terephthalate and polyethylene 1,2,6-naphtholate are preferred.
  • polyesters may be homopolyesters or copolyesters.
  • copolyester for example, the copolymerization component of polyethylene terephthalate or polyethylene 1,2,6-naphthylate is, for example, diethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, polyethylene glycol.
  • 1,4-cyclohexanedimethanol other diol components such as p-xylylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid (however, Other dicarboxylic acid components such as 2,6-naphthylene dicarboxylic acid (for polyethylene terephthalate), 2,6-naphthylene dicarboxylic acid (for polyethylene terephthalate), and oxy acids such as P-oxetoxybenzoic acid Such as the sulfuric acid component It is below.
  • the amount of these copolymer components is It is preferably at most 20 mol%, more preferably at most 10 mol%, based on the total amount of the dicarboxylic acid component and the oxycarboxylic acid component, based on the total amount of the dicarboxylic acid component and the oxycarboxylic acid component. .
  • trifunctional or higher polyfunctional compounds such as trimellitic acid and pyromellitic acid can be copolymerized.
  • the polyester is known per se and can be produced by a method known per se.
  • thermoplastic resin layer A third inactive particles having an average primary particle diameter of 100 to 2,000 nm (hereinafter, sometimes referred to as inactive particles D) are added to the A layer at a ratio of 0.0. 0 Contains 1 to 5% by weight.
  • Preferable particles as the inert particles D include, for example, (1) heat-resistant polymer particles (crosslinked silicone resin, crosslinked polystyrene, crosslinked acrylic resin, melamine monoformaldehyde resin, aromatic polyamide resin, polyimide resin, polyamideimide resin, crosslinked (2) Metal oxides (such as aluminum trioxide, titanium dioxide, silicon dioxide, magnesium oxide, zinc oxide, zirconium oxide), (3) metal carbonates (magnesium carbonate, (4) metal sulfates (calcium sulfate, barium sulfate, etc.), (5) carbon (carbon black, graphite, diamond, etc.), and (6) clay minerals (forced clay, clay, etc.). Fine particles made of inorganic compounds such as bentonite). It is.
  • heat-resistant polymer particles crosslinked silicone resin, crosslinked polystyrene, crosslinked acrylic resin, melamine monoformaldehyde resin, aromatic polyamide resin, polyimide resin, polyamideimide resin, crosslinked
  • Metal oxides such
  • crosslinked silicone resin particles crosslinked polystyrene resin particles, melamine monoformaldehyde resin particles, polyamideimide resin particles, other aluminum trioxide (alumina), titanium dioxide, silicon dioxide, zirconium oxide, synthetic calcium carbonate, barium sulfate, Fine particles composed of diamond and kaolin are preferred. More preferably, crosslinked silicone resin particles, crosslinked polystyrene resin particles, other aluminum tridioxide (alumina), titanium dioxide, ketone dioxide Fine particles consisting of silicon and calcium carbonate.
  • the average particle size (dD) of the primary particles of the inert particles D is 100 to 2,000 nm, preferably 200 to 1,500 nm, more preferably 200 to 1,000 nm, and particularly preferably 200 to 800 nm. nm.
  • the content of the inert particles D is 0.001 to 5% by weight, preferably 0.01 to 4% by weight, more preferably 0.03 to 3% by weight, particularly preferably 0.05 to 5% by weight, based on the layer A. ⁇ 2.0% by weight.
  • the winding property and the blocking resistance become poor.
  • the average particle size of the primary particles of the inert particles D is less than 100 nm or the content is less than 0.001% by weight with respect to the layer A, the winding property and the blocking resistance become poor.
  • the average particle size exceeds 2,000 Onm or the content exceeds 5% by weight with respect to the layer A the shape of the protrusions is transferred to the opposite surface of the layer B, The surface of the layer B becomes rough due to the protrusion of the protrusion, and the electromagnetic conversion characteristics are deteriorated.
  • the inert particles D may be used alone or in combination of two or more.
  • the second and third particles (fine particles) having an average primary particle diameter smaller than the average primary particle diameter dD of the inert particles D described above are composed of two or more types of particles.
  • fine particles such as colloidal silica, alumina, and alumina having a crystal morphology such as ⁇ , ⁇ , and ⁇ can be preferably used.
  • fine particles having a small average particle diameter can also be used as the second and third particles (fine particles).
  • the average particle size of the fine particles is preferably in the range of 5 to 400 nm, more preferably 10 to 300 nm, particularly preferably 30 to 250 nm, and more than 5 Onm than the average particle size dD. It is preferably smaller than 100 nm, especially smaller than 150 nm.
  • the content of the second and third particles (fine particles) is preferably 0.005 to 1% by weight, more preferably 0.01 to 0.7% by weight, particularly preferably It is 0.05 to 0.5% by weight.
  • the thermoplastic resin layer A contains 0.001 to 10% by weight, based on the A layer, of an ester wax with an aliphatic monocarboxylic acid having 8 or more carbon atoms and a polyhydric alcohol.
  • the aliphatic monocarboxylic acid has 8 or more carbon atoms, preferably 8 to 34 carbon atoms. You. If the number of carbons is less than 8, the heat resistance of the obtained ester wax is insufficient, and the aliphatic monocarboxylic acid is easily decomposed under the heating conditions when dispersing in the thermoplastic resin A. , Is inappropriate.
  • Aliphatic monocarboxylic acids having 8 or more carbon atoms include, for example, pelargonic acid, acetic acid, pentadecyl acid, lauric acid, tridecyl acid, myristic acid, penic acid decyl acid, palmitic acid, heptane decyl acid, stearin Acids, nonadecanoic acid, arachinic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melicic acid, hentriacontanic acid, petroseric acid, oleic acid, erlic acid, linoleic acid and acid mixtures containing these.
  • the alcohol component of the ester wax of the present invention is a polyhydric alcohol having 2 or more hydroxyl groups.
  • a polyhydric alcohol having three or more hydroxyl groups is preferable. If monoalcohol is used, the heat resistance of the produced ester wax will be insufficient.
  • the polyhydric alcohol having two hydroxyl groups include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,7-heptanediol.
  • 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, triethylene glycol, polyethylene glycol and the like are preferred examples.
  • Examples of the polyhydric alcohol having three or more acid groups include glycerin, erythrit, trait, penis erythritol, arabit, xylit, evening lit, sorbit, mannitol and the like.
  • ester mixture obtained from the aliphatic monocarboxylic acid and the polyhydric alcohol examples include a monoester, a diester, and a triester depending on the number of hydroxyl groups of the polyhydric alcohol. From the viewpoint of heat resistance, diesters are preferable to monoesters and triesters are preferable to diesters.
  • Preferred esters include sorbitan tristearate, pentaerythritol tribenate, glycerin tripalmitate, and the like.
  • the ester wax may be a partially saponified ester wax comprising an aliphatic monocarboxylic acid and a polyhydric alcohol.
  • Partially saponified ester waxes are obtained by partially esterifying higher fatty acids having 8 or more carbon atoms with polyhydric alcohols and then saponifying them with dihydric or higher metal hydroxides.
  • Specific examples include Wax E, Wax 0P, Wax II, Wax OM, Wax FL (all trade names manufactured by Hoechst Co., Ltd.) obtained by saponifying montanic acid diol ester with calcium hydroxide. .
  • ester waxes may be used alone or in combination of two or more.
  • the ester wax is used in an amount of 0.0001% by weight, preferably 0.015% by weight, more preferably 0.052% by weight, particularly preferably 0.1% by weight, based on the layer A. Contains 1% by weight. If the content of the ester wax is less than 0.001% by weight in the layer A, the effect of improving the blocking cannot be obtained. On the other hand, if the content exceeds 10% by weight, a large amount of the wax component is transferred by bleed-out on the opposite side that comes into contact with the film when it is wound on a roll in the film manufacturing process. Therefore, for example, there are adverse effects such as hindering the adhesion between the metal deposition layer and the base film.
  • the water contact angle of the surface of the thermoplastic resin layer A which is not in contact with the layer B is 70 90 °, preferably 71 to 89 °, more preferably 7288 °, and particularly preferably 7486 °. .
  • the water contact angle is less than 70 °, the effect of improving the blocking cannot be obtained as described above.
  • it exceeds 90 ° problems such as uneven coating may occur in the process of applying the back coat layer.
  • the polyester film of the present invention has, for the purpose of improving the handleability during the production and processing of the film and the various characteristics when a magnetic tape is formed, a surface provided with a magnetic layer when a magnetic tape is formed. 1
  • thermoplastic resin layer B There is a thermoplastic resin layer (hereinafter sometimes referred to as thermoplastic resin layer B).
  • the surface roughness WRa of the thermoplastic resin layer B is 0.1411111, preferably 0.23.5 nm, more preferably 0.33.0 nm, and particularly preferably 0.42.5 nm. If the WRa force is less than 0.1 nm, film production becomes extremely difficult. On the other hand, if WRa exceeds 4 nm, the electromagnetic conversion characteristics deteriorate.
  • the surface roughness (WRa) can be adjusted by adjusting the particle size and Z or the amount of the inert particles contained in the thermoplastic resin layer B.
  • the thermoplastic resin layer B may be substantially free of particles or may contain inert fine particles (hereinafter sometimes referred to as inert particles E).
  • thermoplastic resin layer B does not substantially contain particles, because it has excellent electromagnetic conversion characteristics when used as a magnetic recording medium.
  • thermoplastic resin layer B contains 0.001 to 0.2% by weight of inert particles having a volume shape factor of 0.1 to 6 and an average primary particle size of 30 to 400 nm. Is preferred.
  • Preferred types of the inert particles E include those similar to the inert particles A described above.
  • the shape of the inert particles E is such that the volume shape factor ( ⁇ ) represented by the following formula (I) is 0.1 to ⁇ 6, preferably 0.2 to ⁇ 6, and more preferably 0.4 to ⁇ 6. is there.
  • V is the volume of the particle (m 3 )
  • R is the average particle size of the particle (m).
  • the shape of the particles whose volume shape factor (f) is 6 is a sphere (true sphere). That is, those having a volume shape factor (f) of 0.4 or more; Z6 substantially include spheres or true spheres, or elliptical spheres such as rugby poles, and are preferred as inert particles E. Particles having a volume shape factor (of less than 0.1, for example, flaky particles, are not preferred because the running durability is reduced.
  • the average particle size dE of the inert particles E is 30 to 400 nm, preferably 40 to 200 nm, and more preferably 50 to 100 nm. If the average particle size dE is less than 30 nm, the film may have poor slipperiness, while if it exceeds 400 nm, the electromagnetic recording characteristics of the magnetic recording medium may be poor. Therefore, it is not preferable.
  • the inert particles E may be used alone or in combination of two or more.
  • the content of the inert particles E in the thermoplastic resin layer B when incorporated into the thermoplastic resin layer B is 0.01 to 0.2% by weight, preferably 0.01 to 0.1% by weight, and Preferably, it is present in an amount of from 0.02 to 0.05% by weight. If the amount is less than 0.01% by weight, the slipperiness of the film may be poor. On the other hand, if it exceeds 0.2% by weight, the electromagnetic conversion characteristics of the magnetic recording medium may be poor. Not preferred.
  • thermoplastic resin layer B On the surface of the thermoplastic resin layer B which is not in contact with the thermoplastic resin layer A, second inert fine particles having an average particle diameter of 10 to 50 nm and a volume shape coefficient of 0.1 to ⁇ Z 6 (hereinafter referred to as inert particles) ) Is preferred because the running durability of a metal-deposited magnetic recording medium is excellent when the first coating layer containing 0.5 to 30% by weight is used. .
  • Preferred examples of the resin forming the first coating layer include an aqueous polyester resin, an aqueous acrylic resin, an aqueous polyurethane resin, and the like, and an aqueous polyester resin is particularly preferable.
  • aqueous polyester resin the same one as described for the first base film of the present invention is used.
  • particles having a relatively low specific gravity that are difficult to settle in the coating liquid are preferable.
  • particles made of a heat-resistant polymer for example, a crosslinked silicone resin, a crosslinked acrylic resin, a crosslinked polystyrene, a melamine-formaldehyde resin, an aromatic polyamide resin, a polyamideimide resin, a crosslinked polyester, a wholly aromatic polyester, etc.
  • silicon dioxide Preferred are particles composed of silica), calcium carbonate, and the like.
  • crosslinked silicone resin particles, silica particles, and core-shell organic particles core: crosslinked polystyrene, shell: particles of polymethyl methacrylate, etc.
  • the average particle diameter d of the primary particles of the inert particles ⁇ is 10 to 50 nm, preferably 15 to 45 nm, and more preferably 18 to 40 nm. If the average particle diameter is less than 10 nm, the slipperiness of the film may be poor. On the other hand, if it exceeds 50 nm, the electromagnetic conversion characteristics of the magnetic recording medium may be poor, which is not preferable.
  • the shape of the inert particles B is such that the volume shape factor (f) represented by the above formula (I) is 0.1 to preferably 0.2 to ⁇ / 6, and more preferably 0.4 to ⁇ 6. is there. For particles having a volume shape factor (f) of less than 0.1, for example, flaky particles, it is difficult to obtain sufficient running durability.
  • the content of the inert particles B is 0.5 to 30% by weight, preferably 2 to 20% by weight, more preferably 3 to 10% by weight based on the solid content of the first coating layer. If the content is less than 0.5% by weight, the slipperiness of the film may be poor, while if it exceeds 30% by weight, the electromagnetic conversion characteristics of the magnetic recording medium may be poor. Not preferred.
  • the total thickness of the laminated thermoplastic resin film as the second base film of the present invention is usually 2.5 to 20 m, preferably 3.0 to 10 m, and more preferably 4.0 to 10 m.
  • the layer thickness of the thermoplastic resin layer A is preferably 1/2 or less, more preferably 1Z3 or less, particularly preferably 144 or less of the total thickness of the laminated thermoplastic resin film.
  • the thickness of the thermoplastic resin layer B is preferably 1 to 2 or more, more preferably 2/3 or more, and particularly preferably 3Z4 or more of the total thickness of the laminated thermoplastic resin film.
  • the thickness of the coating layer C is usually 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 10 nm, and particularly preferably 3 to 8 nm.
  • the laminated thermoplastic resin film of the present invention can be produced according to a conventionally known method or a method accumulated in the art.
  • the laminated structure of the thermoplastic resin layer A and the thermoplastic resin layer B is preferably manufactured by a co-extrusion method, and the lamination of the first coating layer is preferably performed by a coating method.
  • the inert particles D and the ester wax are finely dispersed in the extrusion die or before the die (generally, the former is called a multi-manifold system, and the latter is called a feed block system).
  • the thermoplastic resin A and the thermoplastic resin B containing the inert particles E, if necessary, are each further subjected to high-precision filtration, and then laminated and composited in a molten state. No co-extrusion from the die into a film at a temperature between (Tm) and (Tm + 70), then rapidly solidified with a cooling roll at 40-90 ° C and undrawn Obtain a laminated film. Thereafter, the unstretched laminated film is uniaxially stretched according to a conventional method.
  • the film is stretched at a ratio of 2.5 to 8.0 times, preferably at a ratio of 3.0 to 7.5 times, at a temperature of (where Tg is a glass transition temperature of the polyester). (Tg) to (Tg + 70) in the perpendicular direction (if the first stage stretching is longitudinal, the second stage stretching is horizontal).
  • the film is stretched at a magnification of preferably 3.0 to 7.5 times, and if necessary, may be stretched again in the machine direction and / or the transverse direction.
  • the total elongation ratio is usually 9 times or more, preferably 12 to 35 times, and more preferably 15 to 30 times.
  • the biaxially oriented film has excellent dimensional stability by being heat-set and crystallized at a temperature of (Tg + 70) to (Tm-10), for example, 180 to 250 in the case of a polyethylene terephthalate film. Granted.
  • the heat setting time is preferably 1 to 60 seconds.
  • thermoplastic resins A and B may optionally contain additives other than the above-mentioned inert particles, such as a stabilizer, a coloring agent, and a specific resistance modifier for the molten polymer. Can be.
  • the lamination of the first coating layer on the thermoplastic resin layer B of the present invention can be performed by a method of applying an aqueous coating liquid.
  • the coating is preferably performed on the surface of the thermoplastic resin layer B before the final stretching treatment, and after the coating, the film is preferably stretched in at least one direction. Before or during this stretching, the coating film is dried. Among them, the coating is preferably performed on an unstretched laminated film or a longitudinally (uniaxially) stretched laminated film, particularly a longitudinally (uniaxially) stretched laminated film.
  • the application method is not particularly limited, and examples thereof include a roll coating method and a die coating method.
  • the solid content of the above coating liquid, especially the aqueous coating liquid is preferably from 0.2 to 8% by weight, more preferably from 0.3 to 6% by weight, particularly preferably from 0.5 to 4% by weight.
  • the coating liquid (preferably an aqueous coating liquid) contains other components such as other fields as long as the effects of the present invention are not impaired. Surfactants, stabilizers, dispersants, ultraviolet absorbers, thickeners and the like can be added.
  • the Young's modulus of the laminated film is increased in each of the longitudinal direction and the transverse direction.
  • the crystallinity of the thermoplastic resins A and B is 30 to 50% when the thermoplastic resin is polyethylene terephthalate, and 28 to 38% when the thermoplastic resin is polyethylene 1,2,6-naphthalate. Desirably.
  • the value is below the lower limit, the heat shrinkage increases.
  • the value exceeds the upper limit the abrasion resistance of the film deteriorates, and white powder is easily generated when the film slides on the roll or the guide pin surface.
  • thermoplastic resin film in which the thermoplastic resin layer A is laminated on one surface of the thermoplastic resin layer B, and not in contact with the thermoplastic resin layer A of the thermoplastic resin layer B
  • a magnetic recording medium having a base film made of each of the laminated thermoplastic resin films having the first coating layer laminated on the surface.
  • a magnetic recording medium comprising a magnetic layer on the first coating layer of the base film is preferred.
  • Embodiments, applications, and magnetic layers to be used for manufacturing a magnetic recording medium from the second base film of the present invention are applied as they are for the first base film or with obvious changes to those skilled in the art. Should be understood.
  • the measurement was performed using An a 1 y z e r) j. From the integrated curve of particles of each particle size and its abundance calculated based on the obtained centrifugal sedimentation curve, the particle size “equivalent sphere diameter” corresponding to 50% by mass was read, and this value was calculated as the above average particle size ( (“Granularity measurement technology” published by Nikkan Kogyo Shimbun, 1975, pp. 242 to 247).
  • Average particle size ( ⁇ ) (average particle size: less than 60 nm)
  • Particles having an average particle diameter of less than 60 nm forming small projections were measured by a light scattering method. That is, 50% of the total particles obtained by the product name “NI COMP MODEL 270 SUBM I CRON PART I CLE SIZER” manufactured by Nikon Pimp Instrument Inc.
  • the “equivalent sphere diameter” of the particle at the point is defined as the average particle diameter (nm).
  • the frequency of protrusions derived from the inert fine particles on the surface of the base film was measured by a scanning electron microscope. Twenty visual fields were randomly photographed at a 45.degree. Angle from the surface of the base film at a magnification of 5.000. Two of the surface photos taken Those in which the above particles gathered to form one protrusion were referred to as “agglomerated protrusions” and were distinguished from “independent protrusions” formed by a single particle.
  • the “number of aggregated protrusions” and “number of independent protrusions” in the above surface photograph were counted, and the sum of the “number of aggregated protrusions” and “number of independent protrusions” per 1 mm 2 was defined as the surface protrusion frequency.
  • the particle agglomeration rate of the inert fine particles on the surface of the base film is defined by the following equation (m).
  • the frequency of the protrusions derived from the inert fine particles on the surface of the coating layer was measured by scanning electron microscopy, except that a surface photograph was taken at random at a magnification of 35,000 times and a visual field of 30 from directly above. The measurement was performed in the same manner as in the above (a) Measurement method of base film.
  • the thickness of the entire film was randomly measured at 10 points with a micrometer, and the average value was used.
  • the layer thickness of the thin layer was measured by the method described below, and the layer thickness of the thick layer was obtained by subtracting the layer thicknesses of the coating layer and the thin layer from the total thickness.
  • the metal element originating from the particles with the highest concentration among the particles in the film with a depth of 50,000 nm from the surface layer excluding the coating layer (SIMS)
  • concentration ratio (M + ZC +) of the hydrocarbon (C + ) of the thermoplastic resin (polyester) (M +) to the particle concentration was analyzed in the thickness direction from the surface to a depth of 500 nm. .
  • the particle concentration is low due to the surface interface, and the particle concentration increases as the distance from the surface increases.
  • the particle concentration once reaches a stable value of 1 and then rises to a stable value of 2, or may decrease monotonically.
  • the measurement conditions are as follows. (a) Measuring device
  • S IMS Secondary ion mass spectrometer
  • a small piece of the film was fixedly molded with epoxy resin, and an ultra-thin section (cut in parallel to the film flow direction) with a thickness of about 600 angstroms was created using a microtome. This sample was observed with a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.), and the thickness (nm) of the coating layer was determined by searching for the boundary surface of the coating layer.
  • H-800 transmission electron microscope
  • Surface roughness (Ra) is defined by JIS-B0601 as center line average roughness (Ra). In the present invention, it was measured using a stylus type surface roughness meter (Surffcorder SE-30C) manufactured by Kosaka Laboratory Co., Ltd. The measurement conditions are as follows.
  • Z jk is the three-dimensional roughness at the j-th and k-th positions in each direction when the measurement direction (242 iim) and the direction orthogonal to it (239 iim) are divided into M and N, respectively. It is the height above the chart.
  • is the Young's modulus (kgZmm 2 )
  • is the stress difference due to the original average cross-sectional area between two points on the straight line
  • is the strain difference between the same two points.
  • the corona treatment was performed under the following conditions using a high-frequency power source of the product name “CG-102” manufactured by Kasuga Electric Co., Ltd.
  • Processing time 1. Processing was performed by passing between electrodes at a speed of 1.2 m / min.
  • the surface of the second thermoplastic resin layer after application of the back coat was visually observed and evaluated according to the following criteria.
  • a ferromagnetic thin film of 100% cobalt On the flat surface side of the film of the present invention, two layers (each layer thickness of about 0.2 lim) of a ferromagnetic thin film of 100% cobalt were formed to a thickness of 0.2 m by a vacuum evaporation method.
  • a diamond-like carbon (DLC) film and a fluorine-containing carboxylic acid-based lubricating layer are sequentially provided on the surface, and a back coat layer is formed on the film surface opposite to the ferromagnetic thin film layer by a known method. Provided. After that, it was slit into 8 mm width, and was loaded into a commercially available 8 mm video cassette. Next, the properties of the tape were measured using the following commercially available equipment.
  • DLC diamond-like carbon
  • a signal with a recording wavelength of 0.5 m (frequency: about 7.4 MHz) is recorded, and the ratio of the value of the reproduced signal to the CZN of the tape is defined as the CZN of the tape.
  • / N is set to 0 dB and expressed as a relative value.
  • the obtained polyethylene terephthalate pellet was dried at 170 for 3 hours, fed to an extruder hopper, melted at a melting temperature of 300, filtered through a steel wire filter with an average aperture of 1 lm, and then filtered with high precision. It was melt-extruded through a die, and was solidified on a rotating cooling drum with a surface finish of about 0.3 S and a surface temperature of 20 using a linear electrode to obtain an unstretched film with a thickness of 89.
  • the obtained unstretched film is preheated, stretched 3.3 times at a film temperature of 100 between low-speed and high-speed rolls, quenched, and then placed on the upper and lower surfaces of the longitudinally stretched film, respectively.
  • An aqueous solution of the composition (total solid concentration: 1.0%) was applied by a kiss coat method.
  • Binder Acrylic-modified polyester (manufactured by Takamatsu Yushi Co., Ltd., IN-170-6); 68 parts (solid content conversion)
  • Second inert fine particles (inert particles B): core-shell filler (core; cross-linked polystyrene, shell; polymethyl methacrylate) (average particle size 30 nm) (volume shape factor 0.47) (manufactured by JSR Corporation) SX8721 (D) — 12); 5 copies Surfactant X: (Nonion NS—208.5), manufactured by NOF Corporation; 1 part Surfactant Y: (Nonion NS—240, manufactured by NOF Corporation); 26 ⁇ G thickness (after drying) : 4nm
  • Inert particles C silica particles (average particle size 60 nm); 10 parts
  • Surfactant X (Nonion NS—208.5, manufactured by NOF Corporation); 10 parts Thickness (after drying): 15 nm
  • the obtained biaxially stretched film was heat-set with hot air at 220 for 4 seconds to obtain a polyester film having a total thickness of 6.4 ⁇ .
  • the frequency of protrusions derived from the inactive particles ⁇ on the surface of the film was 420,000 / mm 2 , and the particle aggregation rate of the inactive particles A was 15%.
  • the surface roughness (Ra) is 0.7 nm on the upper surface (first layer), 6 nm on the lower surface (second coating layer), and the Young's modulus is 500 kg / mm 2 in the vertical direction and 700 kgZ mm 2 in the horizontal direction.
  • the frequency of protrusions derived from the inert particles B on the upper surface (first coating layer) was 11,000,000 Zmm.
  • Table 2 shows the other properties of this film and the properties of a ferromagnetic thin film-deposited magnetic tape using this film.
  • the flat surface (first coating layer) was used as the deposition surface. Examples 2 and 4
  • a polyester film was obtained in the same manner as in Example 1, except that the type, the average particle size, and the amount of the inert particles A were changed as shown in Table 1.
  • the surface roughness (Ra) of the obtained polyester film was 0.8 nm on the upper surface and 6.5 nm on the lower surface in Example 2 and 1. Onm on the upper surface and 6.7 nm on the lower surface in Example 4. there were.
  • Table 2 shows the properties of the obtained film and the ferromagnetic thin film deposited magnetic tape using the film.
  • Example 3 Dimethyl terephthalate and ethylene glycol were polymerized in the usual manner by adding manganese acetate as a transesterification catalyst, antimony trioxide as a polymerization catalyst, and phosphorous acid as a stabilizer.
  • silicone particles having an average particle diameter of 0.7 wm and 6-alumina particles having an average particle diameter of 0.2 m were used as the third inert fine particles (inert particles D) in a final concentration of 0.05 in the polymer. % And 0.3%.
  • PET polyethylene terephthalate
  • resin D1 having an intrinsic viscosity of 0.60 for the second polyester layer was obtained.
  • resin Al polyethylene terephthalate
  • resin D1 used in Example 1 were each dried at 170 ° C. for 3 hours, and then supplied to two extruders to obtain a melt temperature of 300 ° C.
  • the resin A1 layer was laminated on one side of the resin A1 layer using a multi-manifold type coextrusion die, and quenched to obtain an unstretched laminated film having a thickness of 89.
  • the obtained unstretched film is preheated, stretched 3.3 times between low and high speed rolls at a film temperature of 100 at a film temperature of 100, quenched, and then on the upper surface side of the longitudinally stretched film (resin A1 layer side).
  • the coating liquid used in Example 1 was applied to the upper surface side in Example 1, and the I-th layer was laminated. Subsequently, it was supplied to a stenter, and a laminated polyester film having a total thickness of 6.4 m was obtained in the same manner as in Example 1.
  • the surface roughness (Ra) of this film is 1.7 nm on the top surface (first coating layer), 7.8 nm on the bottom surface (1st resin D side), Young's modulus is 500 kgZmm 2 in vertical direction, 700 k in horizontal direction It was gZmm 2. The thickness of one layer of resin D was 0.9. Table 2 shows the characteristics of the obtained film and the ferromagnetic thin film-deposited magnetic tape using the film.
  • Example 1 was repeated except that the type, average particle size, and amount of the inert particles A were changed as shown in Table 1 and that the same molar amount of dimethyl 2,6-naphthalenedicarboxylate was used instead of dimethyl terephthalate.
  • Polyethylene-1,6-naphtholate polyethylene-1,6-naphthylene carboxylate
  • PEN polyethylene-1,6-naphthylene carboxylate
  • resin A2 resin D2 resin D2
  • Resin A 2 and Resin D 2 were dried at 170 each for 6 hours. _
  • each layer was adjusted in the same manner as in Example 3 to obtain an unstretched laminated film composed of two layers of resin A and two layers of resin D.
  • the obtained unstretched film is preheated, stretched 3.6 times at a film temperature of 135 ° C between low-speed and high-speed rolls, quenched, and then the upper surface side of the longitudinally stretched film (resin A 2 layer side)
  • An aqueous solution having the following composition was applied to the lower surface (resin D 2 layer side) in the same manner as in Example 1 to obtain a first coating layer and a second coating layer.
  • Binder Acryl-modified polyester (Tamatsu Oil & Fat Co., Ltd., IN-170-6); 63 parts (solid content conversion)
  • Inert particles B Acrylic filler (average particle diameter 25 nm) (Volume shape factor 0.42) (Nippon Shokubai Co., Ltd., MA02W); 6.5 parts
  • Surfactant X (Nonion NS—208.5, manufactured by NOF Corporation) 0.5 part Surfactant Y: (Nonion NS—270, manufactured by NOF Corporation) 20 parts Thickness (after drying) ): 6 nm
  • Acrylic modified polyester manufactured by Takamatsu Yushi Co., Ltd., SH551BK
  • Surfactant X (Nonion NS-208.5, manufactured by NOF CORPORATION); 10 parts siloxane copolymer acryl (X22-8053, manufactured by Shin-Etsu Chemical Co., Ltd.); 10 parts Thickness (after drying): 2 Onm
  • Example 5 the surface roughness (Ra) of the film was 0.6 nm on the upper surface (first coating layer), 6.2 nm on the lower surface (second coating layer), and in Example 6, the upper surface (im O. 5 nm, the lower surface (second layer) 6.
  • Particle agglomeration rate (%) 15 8 10 12 7 13 First coating layer surface projection frequency 1, 100 1, 100 1, 100 1, 100 1, 100 1,050 1,050
  • a polyester film was obtained in the same manner as in Example 1, except that the inert particles A were not added.
  • the surface roughness (R a) of this film was 0.6 nm on the upper surface (first coating layer) and 6.2 nm on the lower surface (second coating layer).
  • Table 4 shows the other properties of this film and the properties of the ferromagnetic thin film deposited magnetic tape using this film. Magnetic tapes using this film were inferior in running durability.
  • a polyester film was obtained in the same manner as in Example 2 except that the pH of the ethylene glycol slurry of the inert particles A was set to 7 and the addition amount of trimethyl phosphate was set to 15 mm0 1%.
  • Table 4 shows the characteristics of this film and the characteristics of a ferromagnetic thin film-deposited magnetic tape using this film. The magnetic tape using this film had poor running durability.
  • Example 5 In the same manner as in Example 5, except that the type, the average particle size, and the amount of the inert particles A were changed as shown in Table 3, and the pH of the ethylene glycol slurry of the inert particles A was set to 12. A polyester film was obtained. Table 4 shows the properties of this film and the properties of a ferromagnetic thin film-deposited magnetic tape using this film. The degree of aggregation of the inert particles A of this film was extremely high, and the magnetic tape using this film had poor electromagnetic conversion characteristics.
  • a polyester film was obtained in the same manner as in Example 5, except that the type, the average particle size, and the amount of the inert particles A were changed as shown in Table 3.
  • Table 4 shows the characteristics of this film and the characteristics of a ferromagnetic thin film-deposited magnetic tape using this film. The protrusion frequency of the obtained film was high, and the electromagnetic conversion characteristics of the magnetic tape using this film were poor.
  • the magnetic tape using the film of the present invention has excellent electromagnetic conversion characteristics and running durability, whereas the magnetic tape obtained from a material outside the scope of the present invention. Tapes cannot meet both of the above properties.
  • Resin + 1 PET PET PEN PEN Inactive particles A Silica Silica Silica Average particle size (nm) 80 40 60 Volume shape factor 0.5 () .5 0.5 Addition amount (%) 0.025 0.040 0.070 Inactive particles B Core shell Core shell Acrylic filler-Acrylic filler- Average particle size (nm) 30 30 25 25 Volume shape factor 0.47 0.47 0.42 0.42 Addition amount (%) 5 5 6.5 6.5 Inactive particles C Silica Silica Acrylic filler-Acrylic filler-Average particle size (rim) 60 60 40 40 Addition amount (% ) 10 10 15 15 Layer thickness (nm) 15 15 20 20 Inert particles D Silicon Alumina Silicon / Alumina Average particle size (/ m) 0.7 / 0.2 0.7 / 0.2 Addition amount (%) 0.05 / 0.3 0.05 / 0.3 layer thickness (/ m) 0.9 0.9 0.9 0.9 0.9
  • Particle aggregation rate (%) 1 30 10 First coating layer surface protrusion frequency (10,000 Zmm 2 ) 1, 100 1, 100 1,050 1,050 Surface roughness (Ra) (nm)
  • PET stands for polyethylene terephthalate
  • PEN polyethylene-1,6-naphthalate (polyethylene 1,2,6-naphthylene dicarboxylate). 5 and Table 7).
  • the first base film of the present invention is a polyester film for a magnetic recording medium which is excellent in electromagnetic conversion characteristics, has a small output reduction upon repeated use, and is particularly excellent in running durability.
  • Spherical silica average particle size 600 nm
  • Spherical silica average particle size 400 nm
  • Type 0 alumina average particle size 60 nm
  • Vaterite crystalline calcium carbonate average particle size 200 nm
  • the following particles were used as the inert particles E.
  • Spherical silica average particle size 60 nm (volume shape factor; 0.5)
  • Example 7 Dimethyl terephthalate and ethylene glycol, manganese acetate as a transesterification catalyst, titanium trimellitate as a polymerization catalyst, phosphorous acid as a stabilizer, and spherical particles with an average particle size of 60 nm as a lubricant (inactive particles E) Silica (volume shape coefficient 0.5) is added to the resin by 0.03%, polymerized by a conventional method, and used for the first thermoplastic resin layer (thermoplastic resin layer B) having an intrinsic viscosity of 0.60. Polyethylene terephthalate (resin B1) was obtained.
  • a spherical silica having an average particle diameter of 600 nm and a 0-type alumina having an average particle diameter of 60 nm as a lubricant (third inert particle or inactive particle D) were added to the resin. And 0.1% and 0.2%, respectively, and polymerized in a conventional manner to obtain polyethylene terephthalate having an intrinsic viscosity of ⁇ .60.
  • thermoplastic resin layer A thermoplastic resin layer with an intrinsic viscosity of 0.59
  • the obtained resin A 1 and resin B 1 were dried at 170 ° C for 3 hours, respectively, and then fed to two extruders and melted at a melting temperature of 280 to 300, and a steel wire with an average aperture of 11
  • the resin layer B is laminated on one side of the resin layer A using a multi-manifold type coextrusion die, quenched and then unstretched laminated thermoplastic resin film of 89 i / m thickness I got
  • the obtained unstretched film was preheated, stretched 3.3 times at a film temperature of 100 ° C between low-speed and high-speed rolls, and rapidly cooled to obtain a vertically stretched film.
  • an aqueous coating solution (total solid concentration: 1.0%) having the following composition (solid content) was applied to the layer B side of the longitudinally stretched film by a kiss coat method to form a first coating film layer. .
  • 2nd inert particle (Inert particle B): Acrylic filler (Average particle size 30 nm) (Volume shape factor 0.40) (Nippon Shokubai Co., Ltd., MA02W), 6%
  • Surfactant X (Nonion NS—208.5, manufactured by NOF Corporation), 1% _
  • Surfactant Y (Nonion NS-240, manufactured by NOF Corporation), 26% Thickness of first coating layer (after drying): 5 nm
  • thermoplastic resin layer A a base layer (thermoplastic resin layer A) thickness of 1.0 im.
  • the thickness of the thermoplastic resin layers A and B of this film was adjusted by the discharge rates of two extruders.
  • Table 6 shows the other properties of this laminated film and the properties of a ferromagnetic thin film-deposited magnetic tape using this film.
  • thermoplastic resin layer A The type, average particle size, amount added, and (partially saponified) ester wax of inert particles D contained in thermoplastic resin layer A, and type and amount of ester wax were changed as shown in Table 5, and the first thermoplastic resin A laminated thermoplastic resin film was obtained in the same manner as in Example 7, except that the resin did not contain particles.
  • Table 6 shows the characteristics of the obtained film and the characteristics of the ferromagnetic thin film-deposited magnetic tape using the film.
  • the type, average particle size, and amount of the inert particles D to be contained in the thermoplastic resin layer A were changed as shown in Table 5, and the inert particles B to be contained in the first coating layer were changed to a core-shell filler ( Core: cross-linked polystyrene, shell: polymethyl methacrylate) (Average particle size: 30 nm, volume shape factor 0.45) Manufactured by JSR Corporation, except that the product name was changed to “S X8721 (D) — 12” In the same manner as in Example 7, a laminated thermoplastic resin film was obtained. Table 6 shows the characteristics of the obtained film and the characteristics of a ferromagnetic thin film-deposited magnetic tape using the film.
  • thermoplastic resin layer A The type, average particle size, addition amount, and (partially saponified) ester wax type and addition amount of the inert particles D contained in the thermoplastic resin layer A were changed as shown in Table 5, and instead of dimethyl terephthalate.
  • thermoplastic resin layers A and B were obtained in the same manner as in Example 7, except that the same molar amount was used.
  • the resins A2 and B2 were each dried at 170 for 6 hours, and the thickness of each layer was adjusted in the same manner as in Example 7 to obtain an unstretched laminated thermoplastic resin film having a thickness of 89.
  • the obtained unstretched film was preheated, stretched 3.6 times at a film temperature of 135 ° C between low-speed and high-speed rolls, and quenched to obtain a longitudinally stretched film.
  • an aqueous coating liquid (total solid concentration: 1.0%) having the composition (in terms of solid content) shown in Table 5 was applied to the layer B side of the longitudinally stretched film in the same manner as in Example 7.
  • thermoplastic resin layer A thermoplastic resin layer A
  • Example 12 the Young's modulus of the film longitudinal direction 55 0 k gZmm 2, laterally 1, 050 k gZmm 2 there were.
  • the surface roughness WR a of the thermoplastic resin layer B of the film 1. l nm
  • the Young's modulus of the fill beam is longitudinally 550 k gZmm 2, filed laterally 1, 050 k gZmm 2
  • Table 6 shows the other characteristics of this laminated film and the characteristics of the ferromagnetic thin film-deposited magnetic tape using this film.
  • Electromagnetic conversion characteristics (IB) +8 +9 +7 110 +9 18
  • thermoplastic resin film was obtained in the same manner as in Example 7, except that the (partially saponified) ester wax was not contained in the thermoplastic resin layer A.
  • the resulting film was in close contact with the film when the blocking peeling force was measured, and the film was torn when peeled off.
  • Table 8 shows the other characteristics and the characteristics of the ferromagnetic thin film-deposited magnetic tape using the film.
  • thermoplastic resin film was obtained in the same manner as in Example 7, except that the amount of sorbitan tristearate (a-1) was changed to 12%.
  • a-1 sorbitan tristearate
  • Table 8 shows the other characteristics and the characteristics of the ferromagnetic thin film deposited magnetic tape using the film.
  • Example 7 Same as Example 7 except that 0.2% of spherical spherical silica (volume shape factor: 0.5) having an average particle diameter of 200 nm was added as inert particles E to be added to the thermoplastic resin layer B. To obtain a laminated thermoplastic resin film. The resulting film had a surface roughness WRa of the thermoplastic resin layer B outside the range of the present invention, and was inferior in electromagnetic conversion characteristics. Table 8 shows the other properties and the properties of the ferromagnetic thin film deposited magnetic tape using the film.
  • spherical spherical silica volume shape factor: 0.5
  • thermoplastic resin film was obtained in the same manner as in Example 11 except that the inert particles D were not added to the thermoplastic resin layer A.
  • the obtained film was not able to be measured because the film was in close contact with the film when the blocking peeling force was measured.
  • Table 8 shows the other properties and the properties of the ferromagnetic thin film deposited magnetic tape using the film.
  • thermoplastic resin film was obtained in the same manner as in Example 11, except that 0.2% of sorbitan monoacetate was contained in the thermoplastic resin layer B.
  • the film was in close contact with the film when the blocking peeling force was measured. I got it.
  • Table 8 shows the other characteristics, and the characteristics of the ferromagnetic thin film deposited magnetic tape.
  • the laminated thermoplastic resin film of the present invention has a very flat one side, excellent electromagnetic characteristics, excellent winding property, and good blocking resistance. It is. On the other hand, as is clear from Table 8, those that do not satisfy the requirements of the present invention cannot simultaneously satisfy these characteristics.
  • the second base film of the present invention is a laminated thermoplastic resin film having excellent blocking resistance, winding property, and workability, and particularly having excellent electromagnetic conversion characteristics when used as a metal-deposited thin film magnetic recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Description

λ P /03905 明 細 書 磁気記録媒体およびそのためのベースフィルム 技術分野
本発明は磁気記録媒体およびそのためのべ一スフイルムに関する。 さらに詳し くは、 電磁変換特性に優れかつ繰返し使用時の出力低下の小さい磁気記録媒体お よびそのためのベースフィルムに関する。
従来の技術
近年、 磁気記録媒体の高密度化の進歩はめざましく、 強磁性金属薄膜を真空蒸 着やスパッタリングなどの物理沈着法またはメツキ法により非磁性支持体上に形 成させた強磁性金属薄膜型磁気記録媒体の開発実用化が、 進められている。 例え ば、 C oの蒸着テープ(特開昭 5 4— 1 4 7 0 1 0号公報参照)、 C o _ C r合金 からなる垂直磁気記録媒体 (特開昭 5 2 - 1 3 4 7 0 6号公報参照) が知られて いる。
従来の塗布型磁気記録媒体 (磁性粉末を有機高分子バインダ一に混入させて非 磁性支持体上に塗布してなる磁気記録媒体) は、 記録密度が低く、 記録波長も長 いために、 磁性層の厚みが 2 / m程度以上と厚い。 これに対し、 真空蒸着、 スパ ッ夕リングまたはイオンプレーティングなどの薄膜形成手段によって形成される 金属薄膜は、 厚みが 0 . 2 m以下と非常に薄くなつている。
このため、 上記の高密度磁気記録媒体においては、 非磁性支持体 (ベースフィ ルム)の表面状態が磁気記録層の表面性に大きな影響を及ぼしている。すなわち、 非磁性支持体の表面状態が、 そのまま磁気記録層表面の凹凸として表現し、 それ が記録 ·再生信号の雑音の原因となる。 従って、 非磁性支持体の表面は、 できる だけ平滑であることが望ましい。
一方、 非磁性支持体の製膜、 製膜工程での搬送、 傷つき、 巻取り、 巻出しとい つたハンドリングの観点からは、 フィルム表面が平滑過ぎるとフィルム--フィル ム相互の滑り性が悪化し、 製品歩留りの低下、 ひいては、 製品の製造コストの上 昇をきたす。 従って、 製造コストという観点では、 非磁性支持体の表面は、 でき るだけ粗いことが好ましい。
このように、 非磁性支持体の表面は、 電磁変換特性という観点からは平滑であ ることが要求され、 ハンドリング性、 製造コストの観点からは、 粗いことが要求 される。
さらに、 金属薄膜型磁気記録媒体の場合には、 金属薄膜とベースフィルムとの 密着性を良好にするため、金属薄膜成形前に、イオンボンバ一ド処理と呼ばれる、 ベースフィルム表面をイオンにより活性化する処理が施される。
この金属薄膜成形時には、 フィルム表面に高温の熱がかかり、 ベースフィルム が融解してしまったり、 あるいは機械特性などの物性の低下を招かぬように、 背 面冷却を施している。 背面冷却の方法としては、 ドラム状冷却体にベースフィル ムを巻付けて実施する場合が多く、 その際、 ドラム表面に金属薄膜が形成されな いようにベースフィルム両端をマスキングしている。
従って、 上記蒸着工程を通過したサンプルロールの両端部には、 イオンボンバ —ド処理によって表面が活性化され、 かつ金属薄膜が形成されない部分が、 長手 方向に連続的に存在している。 この部分は、 ロール状に巻上げられた状態では、 反対面側と高い圧力で接触することになり、 ブロッキングを引き起こしやすくな る。 金属薄膜型磁気記録媒体を製造する際には、 金属薄膜を蒸着した後に、 バッ クコート層および必要に応じてトップコ一ト層を設けるが、 これらの加工工程に おいて上記ブロッキングが発生していると、 ベースフィルムの切断やシヮが発生 しゃすくなり、 収率が大幅に低下してしまうという問題がある。
上記のような問題を解決するために、 特開平 9一 2 0 7 2 9 0号公報、 特開平 9— 2 2 6 0 6 3号公報には、 A、 Bの 2層からなり、 A層表面よりも B層表面 の方が粗い積層フィルムが提案されている。 しかしながら、 このような方法では、 電磁変換特性とハンドリング性、 巻取性のバランスはある程度取れるものの、 繰 返し使用時の出力低下および上記ブロッキングの発生を抑制することができない。
発明の開示
本発明の目的は、 このような従来技術の欠点を解消し、 電磁変換特性に優れ、 かつ、 繰返し使用時の出力低下が小さくて走行耐久性に優れた磁気記録媒体用べ —スポリエステルフィルムを提供することにある。
本発明の他の目的は、 このような従来技術の欠点を解消し、耐ブロッキング性、 巻取性、 加工適性に優れ、 金属蒸着薄膜型磁気記録媒体としたときに電磁変換特 性に優れた磁気記録媒体用ベース積層熱可塑性樹脂フィルムを提供することにあ る。
本発明のさらに他の目的は、 本発明の上記べ一スフィルムの上に磁性層を備え た、 電磁変換特性のごとき上記種々の特性に優れた磁気記録媒体を提供すること にある。
本発明のさらに他の目的および利点は以下の説明から明らかになろう。
本発明によれば、 本発明の上記目的および利点は第 1に、 一次粒子の平均粒径 が 3 0〜 1 2 0 nmでありそして体積形状係数が 0 . 1〜冗/ 6でぁる第1不活 性微粒子を含有するポリエステルフィルムであって、 フィルム面の第 1不活性微 粒子に由来する突起密度が 0 . 5万〜 5 . 0万個 Zmm2でありかつフィルム面 に突起を形成している第 1不活性微粒子の粒子凝集率が 4〜 2 0 %であることを 特徴とする磁気記録媒体用ベースポリエステルフィルム (以下、 本発明の第 1ベ —スフイルムということがある) によって達成される。
また、 本発明によれば、 本発明の上記目的および利点は、 第 2に、 露出表面の 表面粗さ WR aが 0 . 1〜 4 nmである第 1熱可塑性樹脂層並びに一次粒子の平 均粒径が 0 . 1〜2 . 0 mの第 3不活性微粒子 0 . 0 0 1〜5重量%および炭 素数が 8以上の脂肪族モノカルボン酸と多価アルコールとのエステルワックス 0 . 0 0 1〜1 0重量%を含有しかつ露出表面との水接触角が 7 0〜9 0 ° である 第 2熱可塑性樹脂層からなりそして第 1熱可塑性樹脂層と第 2熱可塑性樹脂層と は互いに積層されている、 ことを特徴とする磁気記録媒体用ベース積層熱可塑性 樹脂フィルム (以下本発明の第 2ベースフィルムということがある) によって達 成される。
さらに、 本発明の上記目的および利点は、 第 3に、 本発明の第 1ベースフィル ムまたは第 2ベースフィルムのいずれか一方をベースフィルムとしそして磁性層 をその上に備えた磁気記録媒体によって達成される。
本発明の好ましレ ^実施態様
以下まず本発明の第 1ベースフィルムについて説明する。
本発明におけるポリエステルとしては、 脂肪族、 脂環族または芳香族ポリエス テルを例示することができる。 これらのうち、 特に芳香族ポリエステルが好まし い。
芳香族ポリエステルとしては、 ポリエチレンテレフ夕レート、 ポリエチレンィ ソフタレート、 ポリテ卜ラメチレンテレフ夕レート、 ポリー 1, 4ーシクロへキ シレンジメチレンテレフ夕レート、 ポリエチレン一 2 , 6 —ナフタレンジカルボ キシレートなどを例示することができる。 これらのうち、 ポリエチレンテレフタ レート、 ポリエチレン一 2, 6—ナフ夕レンジカルボキシレートが好ましい。 これらポリエステルは、 ホモポリエステルであっても、 コポリエステルであつ てもよい。 コポリエステルの場合、 例えばポリエチレンテレフタレートまたはポ リエチレン— 2 , 6—ナフタレンジカルポキシレートの共重合成分としては、 例 えばジエチレングリコール、 プロピレングリコール、テ卜ラメチレングリコール、 へキサメチレングリコール、 ネオペンチルダリコール、ポリエチレングリコール、 1, 4ーシクロへキサンジメタノール、 : p—キシリレングリコールなどの他のジ オール成分、 アジピン酸、 セバシン酸、 フタル酸、 イソフ夕ル酸、 テレフタル酸 (ただし、 ポリエチレン一 2, 6—ナフタレンジカルボキシレー卜の場合)、 2 , 6—ナフタレンジカルボン酸(ただし、 ポリエチレンテレフ夕レートの場合)、 5 —ナトリゥムスルホイソフタル酸などの他のジカルボン酸成分、 p—ォキシェト キシ安息香酸などのォキシカルボン酸成分などが挙げられる。 これら共重合成分 の量は、 ジオール成分にあっては全ジオール成分に対し、 またジカルボン酸およ びォキシカルボン酸成分にあっては全ジカルボン酸およびォキシカルボン酸の合 計に対し 2 0モル%以下、 さらには 1 0モル%以下であることが好ましい。
さらに、 トリメリット酸、 ピロメリット酸などの 3官能以上の多官能化合物を 共重合させることもできる。 この場合、 ポリマーが実質的に線状である量、 例え ば全ジカルボン酸成分に対し 2モル%以下で共重合させるのがよい。 本発明のポリエステルフィルム(以下ポリエステル層 Aということがある)は、 第 1不活性微粒子 (以下不活性粒子 Aということがある) を含有する。 不活性粒 子 Aとしては、 例えば架橋シリコーン樹脂、 架橋ポリスチレン、 架橋スチレン一 ジビニルベンゼン共重合体、 ポリメチルメタクリレート、 メチルメタクリレート 共重合体、 架橋メチルメタクリレート共重合体、 ポリテトラフルォロエチレン、 ポリビニリデンフルオライド、 ポリアクリロニトリル、 ベンゾグアナミン樹脂の ごとき耐熱性有機高分子からなる微粒子、 シリカ、 アルミナ、 二酸化チタン、 力 ォリン、 タルク、 グラフアイト、 炭酸カルシウム、 長石、 二硫化モリブデン、 力 一ボンブラック、硫酸バリウムのごとき無機化合物からなる微粒子が用いられる。 不活性粒子 Aの一次粒子の平均粒径は、 30〜; L 20 nm、 好ましくは 35〜 1 1 0 nm、 さらに好ましくは 40〜; L 00 nmである。 平均粒径が 30 nm未 満では、 十分な走行耐久性が得られず、 一方、 120nmを超えると、 電磁変換 特性が悪化する。
不活性粒子 Aの形状は、 下式 (I) で表される体積形状係数 (f) が 0. 1〜 π/ら、 好ましくは 0. 3〜π/6、 さらに好ましくは 0. 4〜π/6であるも のである。
f =V/R3 (I)
ここで、 ; f は体積形状係数、 Vは粒子の体積 m3)、 Rは粒子の平均 粒径 ( m) である。
なお、 体積形状係数 (f) が πΖ 6である形状は、 球 (真球) である。 すなわ ち、 体積形状係数 (Π が 0. 4〜; uZ6のものは、 実質的に球ないしは真球、 ラグビーボールのような楕円球を含むものであり、 これらが特に好ましい。 体積 形状係数 (f) が 0. 1未満の粒子、 例えば薄片状の粒子では、 走行耐久性が低 下してしまうので好ましくない。
ポリエステル層 Aの表面の不活性粒子 Aに由来する突起頻度は、 0. 5万〜 5. 0万個 Zmm2、 好ましくは 0. 75万〜 4. 5万個/ mm2、 さらに好ましくは 1. 0万〜 4. 0万個 Zmm2である。 表面の不活性粒子 Aに由来する突起頻度 が 0. 5万個 Zmm2未満では、 磁性層の対磁気ヘッド摩擦が高く、 磁性層の繰 c 05
6
返し時の走行耐久性が悪く好ましくない。 一方、 この突起頻度が 5 . 0万個 Zm m2を超えると、 突起の脱落の増加、 ひいてはドロップアウトの上昇をきたし、 好ましくない。
この突起頻度の調整は、 ポリエステルを重合する際に添加する、 粒子のグリコ 一ルスラリー濃度および Zまたは量により行うことができる。
ポリエステル層 A表面の不活性粒子 Aの粒子凝集率は、 4〜2 0 %、 好ましく は 5〜1 8 %、 さらに好ましくは 6〜1 6 %、特に好ましくは 7〜1 4 %である。 粒子凝集率が 4 %未満では、 繰返し使用時の走行耐久性が不十分であり、 顕著な 出力低下が見られる。 一方、 2 0 %を超えると、 電磁変換特性が悪化してしまう。 この粒子凝集率の調整は、 粒子をグリコールスラリーとしてポリエステル重合 反応時に添加する際の上記スラリーの P Hの調整、 または上記スラリーを投入す る反応工程および温度条件、 投入速度の調整によって可能である。
本発明の第 1ベースフィルムには、製造時および加工時のハンドリング性向上、 磁気テープとした時の諸特性を目的として、 本発明の目的を損わない範囲で、 塗 膜層あるいは別のポリエステル層のごとき別の層を片面または両面に積層するこ とが可能である。
例えば、 磁気テープとした場合に、 磁気ヘッドとの繰返し接触による出力低下 (スチル特性低下) を避ける目的で、 不活性粒子 Aを含有するポリエステル層 A の磁性層を設ける側に、 平均粒径が 1 0〜5 0 nm、 体積形状係数が 0 . 1〜π 6の第 2不活性微粒子 (以下不活性粒子 Βということがある) を含有する第 1 塗膜層 (以下 層 Βということがある) を積層し、 上記塗膜層 Βはその表面で の不活性粒子 Βに由来する突起頻度が 2 0 0万〜 2, 0 0 0万個 1111112、 その 表面の表面粗さ (R a ) が 0 . 1〜2 . 0 nmであることが好ましい。
上記塗膜層 Bに含有される不活性粒子 Bとしては、 塗液中で沈降しにくい、 比 較的低比重のものが好ましい。例えば、 架橋シリコーン樹脂、 架橋アクリル樹脂、 架橋ポリスチレン、 メラミン 'ホルムアルデヒド樹脂、 芳香族ポリアミド樹脂、 ポリアミドイミド樹脂、 架橋ポリエステル、 全芳香族ポリエステルのごとき素材 力 なる耐熱性ポリマー粒子、 二酸化ケイ素 (シリカ)、 炭酸カルシウムなどが好 ましく挙げられる。 特に好ましくは架橋シリコーン樹脂粒子、 コアシェル型有機 粒子 (コア:架橋ポリスチレン、 シェル:ポリメチルメタクリレートなど)、 シリ 力が挙げられる。
不活性粒子 Bの一次粒子の平均粒径は、 10〜50 nm、 好ましくは 1 5〜 4 5 nm、 さらに好ましくは 20〜40 nmである。平均粒径が 1 0 nm未満では、 フィルムの滑り性力不良となることがあり、 一方、 50 nmを超えると、 磁気記 録媒体の電磁変換特性が不良となることがあるため好ましくない。
不活性粒子 Bの形状は、 体積形状係数 ( f )が 0. 1〜 π Z 6、 好ましくは 0. 2〜π/ら、 さらに好ましくは 0. 3〜πΖ6、 特に好ましくは 0. 4〜ττΖ6 であるものである。 体積形状係数 (f) が 0. 1未満の粒子、 例えば薄片状の粒 子では、 フィルムの滑り性に対する効果が得られ難い。
塗膜層 B表面の不活性粒子 Bに由来する突起頻度は、 200万〜 2, 000万 個 Zmm2、 好ましくは 300万〜 1, 500万個/ mm2、 さらに好ましくは 3
50万〜 1, 200万個 Zmm2である。 塗膜層 B表面の突起頻度が 200万個 /mm2未満では、 フィルムの滑り性が不良となることがあり、 一方、 突起頻度 が 2, 000万個 Zmm2を超えると、 磁気記録媒体の電磁変換特性が不良とな ることがあるため好ましくない。
塗膜層 Bの表面粗さ (Ra) は、 0. 1〜2. 0 nm、 好ましくは 0. 2〜: L.
8 nm、 さらに好ましくは 0. 3〜1. 6 nmである。 表面粗さ (Ra) が 0. l nm未満では、 フィルムの滑り性が不良となることがあり、 一方、 2. 0 nm を超えると、 磁気記録媒体の電磁変換特性が不良となることがあるため好ましく ない。
この表面粗さ (Ra) の調整は、 塗膜層 Bに含有させる不活性粒子 Bの粒径お よび/または量により行うことができる。
塗膜層 Bでは、不活性粒子 Bを固着させるためにバインダー樹脂が用いられる。 このバインダー樹脂としては、例えば水性ポリエステル樹脂、 7 性アクリル樹脂、 水性ポリウレタン樹脂などが好ましく挙げられ、 とりわけ水性ポリエステル樹脂 が特に好ましい。 β 水性ポリエステル樹脂としては、 酸成分が例えばイソフタル酸、 フ夕ル酸、 1, 4ーシクロへキサンジカルボン酸、 2 , 6—ナフタレンジカルボン酸、 4 , 4 ' ージフエニルジカルボン酸、 アジピン酸、 セバシン酸、 ドデカンジカルボン酸、 コハク酸、 5 —スルホイソフ夕ル酸ナトリウム、 2—スルホテレフタル酸力リウ ム、 トリメリット酸、 トリメシン酸、 トリメリット酸モノカリウム塩、 P—ヒド ロキシ安息香酸などの多価カルボン酸の 1種以上よりなり、 グリコール成分が例 えばエチレングリコール、 ジエチレングリコール、 プロピレングリコール、 1, 4一ブタンジオール、 1 , 6—へキサンジオール、 1, 4—シクロへキサンジメ タノール、 p—キシリレングリコール、 ジメチロールプロパン、 ビスフエノール Aのエチレンォキサイド付加物などの多価ヒドロキシ化合物の 1種以上より主と してなるポリエステル樹脂;ポリエステル鎖にアクリル重合体鎖を結合させたグ ラフトポリマーまたはブロックコポリマー;あるいは 2種のポリマーがミクロな 粒子内で特定の物理的構成 (I P N (相互侵入高分子網目) 型、 コアシェル型な ど) を形成したアクリル変性ポリエステル樹脂を挙げることができる。 水性ポリ エステル樹脂としては、 水に溶解、 乳化、 微分散するタイプのいずれをも用いる ことができる。 またこれらは親水性を付与するため分子内に例えばスルホン酸塩 基、 カルボン酸塩基、 ポリエーテル単位などが導入されていてもよい。
本発明のポリエステルフィルムを磁気テープとした場合に、 磁性層を設ける側 とは反対側の面に、 フィルムの製造、 加工時のハンドリング性を良好にする目的 で、 塗膜層および/または別のポリエステル層を設けることも可能であり、 好ま しい。
例えば、 不活性粒子 Aを含有するポリエステル層 Aの、 磁気テープとした場合 に、 磁性層を設ける側とは反対側の面に、 一次粒子の平均粒径が 2 0〜8 O n m の第 4不活性微粒子 (以下不活性粒子 Cということがある) を含有する第 2塗膜 層 (以下塗膜層 Cということがある) を積層し、 そして上記塗膜層 Cがその表面 の表面粗さ (R a ) が 2 . 5〜1 0 . 0 nm、 その厚みが 8〜5 0 nmであると、 本発明の効果を損わずに、 ノ、ンドリング性を向上させることができるので好まし い。 上記塗膜層 Cに含有される不活性粒子 Cとしては、 上記不活性粒子 Bとして例 示したものと同じものが同様に使用できる。
不活性粒子 Cの一次粒子の平均粒径は、 20〜80nm、 好ましくは 30〜7 0 nm、 さらに好ましくは 40〜60 nmである。平均粒径が 20 nm未満では、 フィルムの滑り性力不良となることがあり、 一方、 80nmを超えると、 磁気記 録媒体の電磁変換特性が不良となることがあるため好ましくない。
塗膜層 Cの表面粗さ (Ra) は、 2. 5〜10. 0 nm、 好ましくは 3. 0〜 9. 0nm、 さらに好ましくは 3. 5〜8. 0 nmである。 表面粗さ (Ra) が 2. 5nm未満では、 フィルムの滑り性力不良となることがあり、 一方、 10. 0 nmを超えると、 磁気記録媒体の電磁変換特性が不良となることがあるため好 塗膜層 Cの厚みは、 8〜50nm、 好ましくは 9〜40nm、 さらに好ましく は 10〜 30n mである。 塗膜層 Cの厚みが 8 nm未満では、 不活性粒子の脱落 が生じることがあり、 一方、 50nmを超えると、 テープの走行耐久性が不良と なることがあるため好ましくない。
上記不活性粒子 Cを固着させるためのバインダ一樹脂は、 上記不活性粒子 Bを 固着させるためのバインダー樹脂として例示したものと同じものが同様に使用で きる。
また、 塗膜層 Cには、 塗膜の強度をさらに向上させたり、 ブロッキング性をさ らに向上させる目的で、 アルキルセルロース、 シロキサン共重合アクリル系樹脂 などを添加させてもよい。
上記塗膜層 Cの代わりに、 別のポリエステル層を用いて、 同様の目的を達成す ることもできる。
例えば、 不活性粒子 Aを含有するポリエステル層 A (平坦層) の、 磁気テープ とした場合に磁性層を設ける側とは反対側の面に、 一次粒子の平均粒径が 0. 1 〜2. 0 mの第 3不活性微粒子 (以下不活性粒子 Dということがある) を含有 する第 2ポリエステル層 (以下ポリエステル層 D (粗面層) ということがある) を積層し、 上記ポリエステル層 Dがその表面の表面粗さ (Ra) カ^. 5〜10. 0 nmでありそしてその厚みが好ましくは 0. 1〜2. O ^mであると、 本発明 の効果を損わずに、 ハンドリング性を向上させることができるので好ましい。 上記ポリエステル層 Dのポリエステルの具体例としては、 上記ポリエステル層 Aで挙げられたものと同じものが挙げられる。 ポリエステル層 Dのポリエステル は、 ポリエステル層 Aで使用されるものと異なっていてもよいが、 同種類のもの が好ましい。
上記ポリエステル層 Dに含有される不活性粒子 Dとしては、 上記不活性粒子 A として例示したものと同じものが同様に使用できる。
不活性粒子 Dの平均粒径は、 ◦· 1〜2. 0 m、 好ましくは 0. 2〜1. 5 n , さらに好ましくは 0. 3〜1. 0 である。 平均粒径が 0. 1 m未満 では、 フィルムの滑り性力不良となることがあり、 一方、 2. 0 mを超えると、 磁気記録媒体の電磁変換特性が不良となることがあるため好ましくない。
不活性粒子 Dは、 1種または 2種以上のものを混合して使用してもよい。 2種 以上の粒子からなる場合、 一次粒子の平均粒径が 0. 1〜2. 0 mのもののほ かに、 一次粒子の平均粒径が 0. 0 1〜0. 1 の微細粒子、 例えばコロイダ ルシリカ、 ひ、 ァ、 (5、 などの結晶形態を有するアルミナなどの微細粒子を好 ましく用いることができる。 また、 不活性粒子 Aをして例示したもののうち、 一 次粒子の平均粒径が 0. 01〜0. 1 /zmの微細粒子も用いることができる。 この微細粒子の含有量は、 0. 001〜5重量%、 さらには 0. 005〜1重 量%、 特に 0. 01〜0. 5重量%であることが好ましい。
ポリエステル層 Dの表面粗さ (Ra) は、 2. 5~10. 0 nm、 好ましくは 3. 0〜9. 0 nm、 さらに好ましくは 4. 0〜8. 5 nmである。表面粗さ (R a) が 2. 5nm未満では、 フィルムの滑り性が不良となることがあり、 一方、 1 0. O nmを超えると、 磁気記録媒体の電磁変換特性が不良となることがある ため好ましくない。
ポリエステル層 Dの厚みは、 好ましくは 0. 1〜2. 0 m, より好ましくは 0. 2〜1. 5 wm、 さらに好ましくは 0. 3〜1. 2 ^mである。 厚みが 0. l m未満では、 不活性粒子の脱落が生じることがあり、 一方、 2. 0 imを超 U えると、 テープの走行耐久性が不良となることがあるため好ましくない。
なお、 上記ポリエステル層 Aに積層したポリエステル層 Dの表面 (ポリエステ ルフィルムを磁気テープとした場合に、 磁性層を設ける側とは反対側の面) に、 上記塗膜層 Cを設けることも可能であり、 好ましい。
本発明の第 1ベ一スフイルムは、 従来から知られている、 または当業界に蓄積 されている方法で製造することができる。
例えば、 融点 (Tm) 〜 (Tm+70) °Cの温度でポリエステルを溶融して固 有粘度 0. 35〜0. 9 d 1 Zgの未延伸フィルムとし、 上記未延伸フィルムを 一軸方向 (縦方向または横方向) に (Tg— 10) 〜 (Tg + 70) °Cの温度(た だし、 Tg :ポリエステルのガラス転移温度) で 2. 5〜5. 5倍の倍率で延伸 し、 次いで上記延伸方向とは直角方向 (一段目延伸が縦方向の場合には、 二段目 延伸は横方向となる) に (Tg) 〜 (Tg + 70) °Cの温度で 2. 5〜5. 5倍 の倍率で延伸することで二軸配向フィルムを製造できる。 この場合、 面積延伸倍 率は 9〜25倍、 さらには 12〜25倍にするのが好ましい。 延伸手段は、 同時 二軸延伸、 逐次二軸延伸のいずれでもよい。
さらに、 上記二軸配向フィルムは、 (Tg+70) 〜 (Tm) °Cの温度で熱固定 することができる。 例えば、 ポリエチレンテレフ夕レートフィルムについては、 190〜 230 で熱固定することが好ましい。 熱固定時間は、 例えば 1~60 秒である。
なお、 ポリエステルフィルムの製造に際し、 ポリエステルに所望により上記不 活性粒子以外の添加剤、 例えば安定剤、 着色剤、 溶融ポリマーの固有抵抗調整剤 などを添加含有させることができる。
ポリエステル層 Aとポリエステル層 Dとの積層体は、 従来から知られている方 法あるいは当業界に蓄積されている方法で製造することができる。 中でも、 共押 出法により製造するのが好ましい。
例えば、 二軸配向ポリエステルフィルムで説明すると、 押出口金内または口金 以前 (一般に前者はマルチマ二ホールド方式、 後者はフィードブロック方式と呼 ぶ) で上記不活性粒子 Aを含有し平坦層を形成するポリエステル (ポリエステル A) と不活性粒子 Dを含有し粗面層を形成するポリエステル (ポリエステル D) を溶融状態にて積層複合し、 上記好適な厚み比の積層構造となし、 次いで口金よ り融点 (Tm) 〜 (Tm+ 7 0 ) °Cの温度でフィルム状に共押出したのち、 急冷 固ィ匕し、 未延伸積層フィルムを得る。
本発明のポリエステル層への、 塗膜層 B、 塗膜層 Cの積層は、 水性塗液を塗布 する方法で行うことができる。
塗布は最終延伸処理を施す以前のポリエステル層の表面に行い、 塗布後にはフ イルムを少なくとも一軸方向に延伸するのが好ましい。 この延伸の前ないし途中 で塗膜は乾燥される。 その中で、 塗布は未延伸積層フィルムまたは縦 (一軸) 延 伸積層フィルム、 特に縦 (一軸) 延伸積層フィルムに行うのが好ましい。 塗布方 法としては特に限定されなレが、 例えば、 ロールコート法、 ダイコート法などが 挙げられる。
上記塗液、 特に水性塗液の固形分濃度は、 0 . 2〜8重量%、 さらに 0 . 3〜 6重量%、 特に 0 . 5〜4重量%であることが好ましい。 そして、 塗液 (好まし くは水性塗液) には、 本発明の効果を妨げない範囲で、 他の成分、 例えば他の界 面活性剤、 安定剤、 分散剤、 紫外線吸収剤、 増粘剤などを添加することができる。 本発明において、 磁気記録媒体としてのヘッド夕ツチ、 走行耐久性を始めとす る各種性能を向上させ、 同時に薄膜化を達成するには、 積層フィルムのヤング率 を縦方向および横方向のそれぞれで 4 5 0 k g Zmm2以上および 6 0 0 k g / mm2以上、 さらには 4 8 0 k g Zmm2以上および 6 8 0 k g Zmm2以上、 特 に 5 5 0 k gZmm2以上および 8 0 0 k gZmm2以上、 なかんずく 5 5 0 k g Zmm2以上および 1 , 0 0 0 k gZmm2以上とするのが好ましい。
また、 ポリエステル層の結晶化度は、 ポリエステルがポリエチレンテレフタレ ートの場合は 3 0〜5 0 %、 ポリエチレンー2, 6—ナフ夕レンジカルボキシレ —卜の場合は 2 8〜3 8 %であることが望ましい。 いずれも、 下限を下回ると、 熱収縮率が大きくなる傾向があり、 一方、 上限を上回ると、 フィルムの耐摩耗性 が低下し、 ロールやガイドビン表面と摺動した場合に白粉が生じやすくなる。 本発明の第 1ベースフィルムは、 ポリエステル層 A (平坦層)、好ましくは塗膜 層 Bの表面に、 真空蒸着、 スパッタリング、 イオンプレーティングなどの方法に より、 鉄、 コバルト、 クロムまたはこれらを主成分とする合金もしくは酸化物よ りなる強磁性金属薄膜層を形成し、 またその表面に、 目的、 用途、 必要に応じて ダイアモンドライクカーボン (D L C) などの保護層、 含フッ素カルボン酸系潤 滑層を順次設け、 さらに必要によりポリエステル層 Aの強磁性層とは反対側、 好 ましくは塗膜層 Cまたはポリエステル層 Dの表面に、 公知の方法でバックコート 層を設けることにより、 特に短波長領域での出力、 S ZN、 CZNなどの電磁変 換特性に優れ、 ドロップアウト、 エラーレートの少ない高密度記録用蒸着型磁気 記録媒体とすることができる。 この蒸着型磁気記録媒体は、 アナログ信号記録用 H i 8、ディジタル信号記録用ディジタルビデオカセットレコーダ一(D V C)、 データ 8ミリ、 D D S I V用磁気テープ媒体として極めて有用である。
また、 本発明の第 1ベースフィルムは、 ポリエステル層 A (平坦層)、 好ましく は塗膜層 Bの表面に、 鉄または鉄を主成分とする針状微細磁性粉 (メタル粉) を ポリ塩化ビニル、 塩化ビニル ·酢酸ビニル共重合体などのバインダーに均一に分 散し、磁性層厚みが 1 以下、好ましくは 0 . 1〜 1 となるように塗布し、 さらに必要によりポリエステル層 Aの磁性層とは反対側、 好ましくは塗膜層 Cま たはポリエステル層 Dの表面に、 公知の方法でノ ックコート層を設けることによ り、 特に短波長領域での出力、 S ZN、 CZNなどの電磁変換特性に優れ、 ドロ ップアゥト、 エラーレートの少ない高密度記録用メタル塗布型磁気記録媒体とす ることができる。 また、 必要に応じて、 ポリエステル層 A、 好ましくは^ M層 B の表面に、 上記メタル粉含有磁性層の下地層として微細な酸化チタン粒子などを 含有する非磁性層を磁性層と同様の有機バインダ一中に分散し、 塗設することも できる。 このメタル塗布型磁気記録媒体は、 アナログ信号記録用 8ミリビデオ、 H i 8、 i3カム S P、 W—VH S、 ディジタル信号記録用ディジタルビデオカセ ッ卜レコーダー (D V C)、 データ 8ミリ、 D D S I V、 ディジタル )3カム、 D 2、 D 3、 S Xなどの磁気テープ媒体用として極めて有用である。
さらに、 本発明の第 1ベ--スフイルムは、 ポリエステル層 A (平坦面側)、 好ま しくは^ m層 Bの表面に、 酸化鉄または酸ィ匕クロムなどの針状微細磁性粉、 また Λ
14
はバリゥムフェライトなどの板状微細磁性粉をポリ塩化ビニル、 塩化ビニル ·酢 酸ビニル共重合体などのバインダ一に均一分散し、 磁性層厚みが 1 m以下、 好 ましくは 0 . 1〜 1 mとなるように塗布し、 さらに必要によりポリエステル層 Aの磁性層とは反対側、 好ましくは塗膜層 Cまたはポリエステル層 Dの表面に、 公知の方法でバックコート層を設けることにより、 特に短波長領域での出力、 S
ZN、 C ZNなどの電磁変換特性に優れ、 ドロップアウト、 エラ一レートの少な い高密度記録用酸化物塗布型磁気記録媒体とすることができる。 また、 必要に応 じて、 ポリエステル層 A、 好ましくは塗膜層 Bの表面に、 上記酸化物粉末含有磁 性層の下地層として微細な酸化チタン粒子などを含有する非磁性層を磁性層と同 様の有機バインダー中に分散し、 塗設することもできる。 この酸化物塗布型磁気 記録媒体は、 ディジ夕ル信号記録用データストリーマ一用 Q I Cなどの高密度記 録用酸化物塗布型磁気記録媒体として有用である。
上記の W— VH Sは、 アナログの HD T V信号記録用 V T Rであり、 また D V Cは、 ディジタルの HD T V信号記録用として適用可能なものであり、 本発明の フィルムは、 これら HD T V対応 VT R用磁気記録媒体に極めて有用なベースフ イルムということができる。
本発明の第 1ベースフィルムを用いた磁気記録媒体は、 上記のごとき磁性層を 用いる態様において、
( i ) ベースポリエステルフィルム (ポリエステル層 A)、 このベースポリエステ ルフィルムの一方の表面上に積層された前記第 1塗膜層およびこのベースポリェ ステルフィルムのもう一方の表面上に積層された第 2ポリエステル層からなるベ
—スフイルム、 並びにこのベースフィルムの第 1 mm層上の磁性層からなる磁気 記録媒体および
( ii ) ベースポリエステルフィルム (ポリエステル層 A)、 このベースポリエステ ルフィルムの一方の表面上に積層された前記第 1塗膜層およびこのベースポリエ ステルフィルムのもう一方の表面上に積層された第 2塗膜層からなるベースフィ ルム、並びにこのベースフィルムの第 1 M層上の磁性層からなる磁気記録媒体、 であるのが好ましい。 次に、 本発明の第 2ベースフィルムについて説明する。
本発明において、第 1熱可塑性樹脂層(熱可塑性樹脂層 Bまたは B層とも呼ぶ) および第 2熱可塑性樹脂層 (熱可塑性樹脂層 Aまたは A層とも呼ぶ) を形成する 熱可塑性樹脂としては、 ポリエステル系樹脂、 ポリアミド樹脂、 ポリイミド樹脂、 ポリエーテル系樹脂、 ポリカーボネート系樹脂、 ポリビニル系樹脂、 ポリオレフ イン系樹脂などを例示することができる。 これらのうち、 ポリエステル系樹脂、 特に芳香族ポリエステルが好ましい。
第 1熱可塑性樹脂層を形成する熱可塑性樹脂 (以下熱可塑性樹脂 Bということ がある) および第 2熱可塑性樹脂層を形成する熱可塑性樹脂 (以下熱可塑性樹脂 Aということがある) としては異なる種類を用いてもよいが、 同種類を用いる方 が好ましい。
上記芳香族ポリエステルとしては、 例えばポリエチレンテレフタレート、 ポリ エチレンイソフタレート、 ポリテ卜ラメチレンテレフ夕レート、 ポリ一 1, 4— シクロへキシレンジメチレンテレフタレ一卜、 ポリエチレン一 2, 6—ナフタレ ート (ポリエチレン一 2 , 6—ナフタレンジカルボキシレート) などを例示する ことができる。 これらのうち、 ポリエチレンテレフタレート、 ポリエチレン一 2 , 6 一ナフ夕レートが好ましい。
これらポリエステルは、 ホモポリエステルであっても、 コポリエステルであつ てもよい。 コポリエステルの場合、 例えば、 ポリエチレンテレフ夕レートまたは ポリエチレン一 2 , 6 —ナフ夕レートの共重合成分としては、 例えばジエチレン グリコール、 プロピレングリコール、 テトラメチレングリコール、 へキサメチレ ングリコール、 ネオペンチルグリコール、 ポリエチレングリコール、 1 , 4ーシ クロへキサンジメタノール、 p—キシリレングリコールなどの他のジオール成分、 アジピン酸、 セバシン酸、 フタル酸、 イソフ夕ル酸、 テレフタル酸 (ただし、 ポ リエチレン一 2, 6 _ナフタレートの場合)、 2, 6 _ナフ夕レンジカルボン酸(た だし、ポリエチレンテレフ夕レートの場合)、 5—ナトリウムスルホイソフ夕ル酸 などの他のジカルボン酸成分、 P—ォキシェトキシ安息香酸などのォキシ力ルポ ン酸成分などが挙げられる。 これら共重合成分の量は、 ジオール成分にあっては 全ジオール成分に対し、 またジカルボン酸成分およびォキシカルボン酸成分にあ つては全ジカルボン酸成分とォキシカルボン酸成分の合計に対し、 2 0モル%以 下、 さらには 1 0モル%以下であることが好ましい。
さらにトリメリット酸、 ピロメリット酸などの 3官能以上の多官能化合物を、 共重合させることもできる。 この場合、 ポリマーが実質的に線状である量、 例え ば 2モル%以下で、 共重合させるのがよい。
ポリエチレンテレフ夕レート、 ポリエチレン一 2, 6—ナフタレート以外の他 のポリエステルの場合の共重合成分についても、 上記と同様である。
上記ポリエステルは、 それ自体公知であり、 かつそれ自体公知の方法で製造す ることができる。
熱可塑性樹脂層 Aは、 一次粒子の平均粒径 1 0 0〜 2, 0 0 0 nmの第 3不活 性粒子 (以下不活性粒子 Dということがある) を A層に対して 0 . 0 0 1〜5重 量%含有する。
不活性粒子 Dとして好ましい粒子としては、例えば、 (1 )耐熱性ポリマー粒子 (架橋シリコーン樹脂、 架橋ポリスチレン、 架橋アクリル樹脂、 メラミン一ホル ムアルデヒド樹脂、 芳香族ポリアミド樹脂、 ポリイミド樹脂、 ポリアミドイミド 樹脂、 架橋ポリエステルなどからなる粒子)、 ( 2 ) 金属酸化物 (三二酸化アルミ 二ゥム、 二酸化チタン、 二酸化ケイ素、 酸化マグネシウム、 酸化亜鉛、 酸化ジル コニゥムなど)、 ( 3 ) 金属の炭酸塩(炭酸マグネシウム、 炭酸カルシウムなど)、 ( 4 ) 金属の硫酸塩 (硫酸カルシウム、 硫酸バリウムなど)、 ( 5 ) 炭素 (カーボ ンブラック、 グラフアイト、 ダイァモンドなど)、 および (6 ) 粘土鉱物 (力オリ ン、 クレー、 ベントナイトなど) などのような無機化合物からなる微粒子が挙げ られる。 これらのうち、 架橋シリコーン樹脂粒子、 架橋ポリスチレン樹脂粒子、 メラミン一ホルムアルデヒド樹脂粒子、 ポリアミドイミド樹脂粒子、 その他三二 酸化アルミニウム (アルミナ)、 二酸化チタン、 二酸化ケイ素、 酸化ジルコニウム、 合成炭酸カルシウム、 硫酸バリウム、 ダイアモンド、 およびカオリンからなる微 粒子が好ましい。 さらに好ましくは、 架橋シリコーン樹脂粒子、 架橋ポリスチレ ン樹脂粒子、 その他三二酸ィヒアルミニウム (アルミナ)、 二酸化チタン、 二酸化ケ ィ素、 および炭酸カルシウムからなる微粒子である。
不活性粒子 Dの一次粒子の平均粒径 (dD) は、 100〜2, 000 nm、 好 ましくは 200〜1, 500 nm、 さらに好ましくは 200〜 1, 000 nm、 特に好ましくは 200〜800 nmである。
不活性粒子 Dの含有量は、 A層に対して 0. 001〜5重量%、好ましくは◦. 01〜4重量%、 さらに好ましくは 0. 03〜3重量%、 特に好ましくは 0. 0 5~2. 0重量%である。
不活性粒子 Dの一次粒子の平均粒径が 100 nm未満、 または含有量が A層に 対して 0. 001重量%未満の場合、 巻取性、 耐ブロッキング性が不良となる。 一方、 平均粒径が 2, 00 Onmを超える力、 または含有量が A層に対して 5重 量%を超えると、 反対面の B層表面への突起の形状転写や、 B層の下からの突起 の突き上げによって B層表面が粗くなつてしまい、 電磁変換特性を悪化させる。 不活性粒子 Dは、 1種または 2種以上のものを混合して使用してもよい。 不活 性粒子 Dが 2種以上の粒子からなる場合、 上記不活性粒子 Dの一次粒子の平均粒 径 dDよりも小さい一次粒子の平均粒径を持つ第 2、 第 3の粒子 (微細粒子) と して、 例えば、 コロイダルシリカ、 ひ、 了、 δ、 Θなどの結晶形態を有するアル ミナなどの微粒子を好ましく用いることができる。 また、 平均粒径 dDを有する 不活性粒子 Dとして例示した粒子種のうち、平均粒径の小さい微細粒子も、第 2、 第 3の粒子 (微細粒子) として用いることができる。
この微細粒子の平均粒径は、 好ましくは 5〜400 nm、 さらに好ましくは 1 0〜300 nm、 特に好ましくは 30〜250 nmの範囲にあり、 かつ上記平均 粒径 dDよりも 5 Onm以上さらには 100 nm以上、 特に 150 nm以上小さ いことが好ましい。 第 2、 第 3の粒子 (微細粒子) の含有量は、 A層に対して好 ましくは 0. 005〜1重量%、 さらに好ましくは 0. 01〜0. 7重量%、 特 に好ましくは 0. 05〜0. 5重量%である。
熱可塑性樹脂層 Aは、 炭素数が 8個以上の脂肪族モノカルボン酸および多価ァ ルコールとのエステルワックスを A層に対して 0.001〜10重量%含有する。 上記脂肪族モノカルボン酸の炭素数は、 8個以上、 好ましくは 8〜34個であ る。炭素数が 8個未満であると、得られたエステルワックスの耐熱性が不十分で、 熱可塑性樹脂 Aに分散させる際の加熱条件で、 脂肪族モノカルボン酸が容易に分 解されてしまうため、 不適切である。
炭素数が 8個以上の脂肪族モノカルボン酸としては、 例えばペラルゴン酸、 力 プリン酸、 ゥンデシル酸、 ラウリン酸、 トリデシル酸、 ミリスチン酸、 ペン夕デ シル酸、 パルミチン酸、 ヘプ夕デシル酸、 ステアリン酸、 ノナデカン酸、 ァラキ ン酸、 ベヘン酸、 リグノセリン酸、 セロチン酸、 モンタン酸、 メリシン酸、 ヘン トリアコンタン酸、 ペトロセリン酸、 ォレイン酸、 エル力酸、 リノール酸および これらを含む酸混合物などが挙げられる。
本発明のエステルワックスのアルコール成分は、 水酸基を 2偭以上有する多価 アルコールである。 耐熱性の観点から、 水酸基を 3個以上有する多価アルコール が好ましい。 モノアルコールを用いたのでは、 生成したエステルワックスの耐熱 性が不足する。 水酸基を 2個有する多価アルコールとしては、 例えばエチレング リコール、 プロピレングリコール、 トリメチレングリコール、 1 , 4一ブタンジ オール、 1 , 5—ペンタンジオール、 1, 6—へキサンジオール、 1 , 7—ヘプ タンジオール、 1 , 8—オクタンジオール、 1, 9ーノナンジオール、 1, 1 0 —デカンジオール、 ジエチレングリコール、 トリエチレングリコール、 ポリェチ レングリコ一ルなどを好ましい例として挙げられる。 7]酸基を 3個以上有する多 価アルコールとしては、 例えばグリセリン、 エリスリット、 トレイット、 ペン夕 エリスリツ卜、 ァラビット、 キシリット、 夕リット、 ソルビット、 マンニットな どが挙げられる。
上記脂肪族モノカルボン酸および多価アルコールから得られるエステルヮック スとしては、 多価アルコールの水酸基の数にもよるが、 モノエステル、 ジエステ ル、 トリエステルなどが挙げられる。 耐熱性の観点から、 モノエステルよりもジ エステルが、 ジエステルよりもトリエステルが好ましい。 好ましいエステルヮッ クスとしては、 具体的にはソルビタン卜リステアレート、 ペンタエリスリツ卜卜 リベへネー-卜、 グリセリントリパルミテート、
卜などが挙げられる。 上記エステルワックスは脂肪族モノカルボン酸および多価アルコールからなる 部分ケン化エステルワックスであってもよい。 部分ケン化エステルワックスは炭 素数が 8個以上の高級脂肪酸を、 多価アルコールで部分エステル化したのち、 2 価以上の金属水酸化物でケン化することにより得られる。 具体的には、 モンタン 酸ジオールエステルを水酸化カルシウムでケン化した、 ワックス E、 ワックス 0 P、 ワックス〇、 ワックス OM、 ワックス FL (全て、 へキスト (株) 社製商品 名) などが挙げられる。
上記エステルワックスは、 1種単独で使用してもよいし、 2種以上を一緒に使 用してもよい。
熱可塑性樹脂層 Aは、 上記エステルワックスを、 A層に対して 0. 001 1 0重量%、好ましくは 0. 01 5重量%、 さらに好ましくは 0. 05 2重量%、 特に好ましくは 0. 1 1重量%含有する。 エステルワックスの含有量が、 A層 中に 0. 001重量%未満であると、 ブロッキング改良効果が得られない。一方、 10重量%を超えると、 フィルム製造工程で、 ロール上に巻上げたときに接する 反対面側に、 ブリードアウトによってワックス成分が多量に転写される。 そのた め、 例えば、 金属蒸着層とベースフィルムの接着性を妨げるなどの弊害がある。 また、 上記熱可塑性樹脂層 Aの B層と接していない表面の水接触角は、 70 90° 、 好ましくは 71~89° 、 さらに好ましくは 72 88° 、 特に好まし くは 74 86° である。 水接触角が 70° 未満では、 上記同様、 ブロッキング 改良効果が得られない。 一方、 90° を超えると、 バックコート層を塗布するェ 程で、 塗布斑などの問題が発生する。
本発明のポリエステルフィルムには、 フィルムの製造時および加工時のハンド リング性向上、 磁気テープとしたときの諸特性向上を目的として、 磁気テープと した場合に磁性層を設ける側の面に、 第 1熱可塑性樹脂層 (以下熱可塑性樹脂層 Bということがある) が存在する。
熱可塑性樹脂層 Bの表面粗さ WR aは、 0. 1 411111、 好ましくは0. 2 3. 5nm、 さらに好ましくは 0. 3 3. 0 nm、 特に好ましくは 0. 4 2. 5nmである。 WRa力 0. l nm未満であると、 フィルムの製造が極めて困 難であり、 一方、 WRaが 4nmを超えると、 電磁変換特性が悪化する。
この表面粗さ (WRa) の調整は、 熱可塑性樹脂層 Bに含有させる不活性粒子 の粒径および Zまたは量によつて可能である。
熱可塑性樹脂層 Bは、 実質的に粒子を含有しないことができあるいは不活性微 粒子 (以下不活性粒子 Eということがある) を含有することもできる。
熱可塑性樹脂層 Bが、 実質的に粒子を含有しない場合、 磁気記録媒体としたと きの電磁変換特性に優れるので好ましい。
また、 熱可塑性樹脂層 Bに、 電磁変換特性に悪影響を与えない範囲の粒子を添 加すると、 走行耐久性向上の観点から好ましい。 具体的には、 体積形状係数 0. 1 ~ 6、 一次粒子の平均粒径 30〜 400 n mの不活性粒子 Εを、 熱可塑性 樹脂層 Bに対して 0. 001〜0. 2重量%含有させることが好ましい。
好ましい不活性粒子 Eの種類としては、 上記不活性粒子 Aと同様のものが挙げ られる。
不活性粒子 Eの形状は、 下式 (I) で表される体積形状係数 (ί) が 0. 1〜 πΖ6、 好ましくは 0. 2〜πΖ6、 さらに好ましくは 0. 4〜πΖ6であるも のである。
f =V/R3 · · · (I)
ここで、 fは体積形状係数、 Vは粒子の体積 ( m3)、 Rは粒子の平均 粒径 ( m) である。
なお、 体積形状係数 (f) が 6である粒子の形状は、 球 (真球) である。 すなわち、 体積形状係数 ( f ) が 0. 4〜; Z6のものは、 実質的に球ないしは 真球、 ラグビーポールのような楕円球を含むものであり、 不活性粒子 Eとして好 ましい。 体積形状係数 ( が 0. 1未満の粒子、 例えば薄片状の粒子では、 走 行耐久性が低下してしまうので好ましくない。
不活性粒子 Eの平均粒径 dEは、 30〜400 nm、 好ましくは 40〜200 nm、 さらに好ましくは 50〜100 nmである。 平均粒径 dEが、 30 nm未 満であると、 フィルムの滑り性カ坏良となることがあり、 一方、 400 nmを超 えると、磁気記録媒体の電磁変換特性力不良となることがあるため好ましくない。 不活性粒子 Eは、 1種または 2種以上一緒にして使用してもよい。
不活性粒子 Eを熱可塑性樹脂層 Bに配合する場合の含有量は、 B層に対して 0 . 0 0 1〜0 . 2重量%、 好ましくは 0 . 0 1〜0 . 1重量%、 さらに好ましくは 0 . 0 2〜0 . 0 5重量%でぁる。 0 . 0 0 1重量%未満であると、 フィルムの 滑り性が不良となることがあり、 一方、 0 . 2重量%を超えると、 磁気記録媒体 の電磁変換特性が不良となることがあるため好ましくない。
熱可塑性樹脂層 Bの、 熱可塑性樹脂層 Aと接していない表面に、 平均粒径 1 0 〜 5 0 n m、 体積形状係数 0 . 1〜 π Z 6の第 2不活性微粒子 (以下不活性粒子 Βということがある) を 0 . 5〜3 0重量%含有している第 1塗膜層が積層され ていると、 金属蒸着型磁気記録媒体としたときの走行耐久性に優れるので好まし い。
第 1塗膜層を形成する樹脂としては、 例えば、 水性ポリエステル樹脂、 水性ァ クリル樹脂、 水性ポリウレタン樹脂などが好ましく挙げられ、 特に水性ポリエス テル樹脂が好ましい。
この水性ポリエステル樹脂としては、 本発明の第 1ベースフィルムについて記 載したものと同じものが用いられる。
第 1塗膜層に含有される不活性粒子 Βとしては、 塗液中で沈降しにくレ 比較 的低比重のものが好ましい。 例えば、 耐熱性ポリマー (例えば、 架橋シリコーン 樹脂、 架橋アクリル樹脂、 架橋ポリスチレン、 メラミン—ホルムアルデヒド樹脂、 芳香族ポリアミド樹脂、 ポリアミドイミド樹脂、 架橋ポリエステル、 全芳香族ポ リエステルなど) からなる粒子、 二酸化ケイ素 (シリカ)、 炭酸カルシウムなどか らなる粒子が好ましく挙げられる。 なかでも、 特に好ましくは架橋シリコーン樹 脂粒子、 シリカ粒子、 コアシェル型有機粒子(コア:架橋ポリスチレン、 シェル: ポリメチルメタクリレートの粒子など) が挙げられる。
不活性粒子 Βの一次粒子の平均粒径 d Βは、 1 0〜 5 0 n m、 好ましくは 1 5 〜4 5 nm、 さらに好ましくは 1 8〜4 0 nmである。 平均粒径が 1 0 nm未満 では、 フィルムの滑り性が不良となることがあり、 一方、 5 0 nmを超えると、 磁気記録媒体の電磁変換特性が不良となることがあるため好ましくない。 不活性粒子 Bの形状は、 上式 (I) で表される体積形状係数 (f) が 0. 1〜 好ましくは 0. 2〜ττ/6、 さらに好ましくは 0. 4〜πΖ6であるも のである。 体積形状係数 (f) が 0. 1未満の粒子、 例えば薄片状の粒子では、 十分な走行耐久性を得るのが難しい。
不活性粒子 Bの含有量は、 第 1塗膜層の固形分に対して 0. 5〜30重量%、 好ましくは 2〜 20重量%、 さらに好ましくは 3〜10重量%である。含有量が、 0. 5重量%未満であると、 フィルムの滑り性が不良となることがあり、 一方、 30重量%を超えると、 磁気記録媒体の電磁変換特性が不良となることがあるた め好ましくない。
本発明の第 2ベースフィルムである積層熱可塑性樹脂フィルムの全厚みは、 通 常 2. 5〜20 m、 好ましくは 3. 0〜 1 0 m、 さらに好ましくは 4. 0〜 10 mである。 熱可塑性樹脂層 Aの層厚みは、 好ましくは積層熱可塑性樹脂フ イルムの全厚みの 1/2以下、 さらに好ましくは 1Z3以下、 特に好ましくは 1 ノ4以下である。 熱可塑性樹脂層 Bの厚みは、 好ましくは積層熱可塑性樹脂フィ ルムの全厚みの 1ノ 2以上、 さらに好ましくは 2/3以上、 特に好ましくは 3Z 4以上である。 塗膜層 Cの厚みは、 通常 l〜100nm、 好ましくは 2〜50n m、 さらに好ましくは 3〜10nm、 特に好ましくは 3〜 8 nmである。
本発明の積層熱可塑性樹脂フィルムは、 従来から知られている方法または当業 界に蓄積されている方法に準じて製造することができる。 そのうち、 熱可塑性樹 脂層 Aと熱可塑性樹脂層 Bとの積層構造は、 共押出法により製造するのが好まし く、 第 1塗膜層の積層は、 塗布法により行うのが好ましい。
例えば、 二軸配向ポリエステルフィルムで説明すると、 押出口金内または口金 以前 (一般に前者はマルチマ二ホールド方式、 後者はフィードブロック方式と呼 ぶ) において、 上記不活性粒子 Dおよびエステルワックスを微分散して含有させ た熱可塑性樹脂 Aと、必要に応じて不活性粒子 Eを含有する熱可塑性樹脂 Bとを、 それぞれさらに高精度ろ過したのち、 溶融状態にて積層複合し、 上記好適な厚み 比の積層構造となし、 次いで口金より融点 (Tm) 〜 (Tm+70) での温度で フィルム状に共押出したのち、 40〜90°Cの冷却ロールで急冷固化し、 未延伸 積層フィルムを得る。 その後、 上記未延伸積層フィルムを常法に従い、 一軸方向
(縦方向または横方向) に (Tg— 10) 〜 (Tg + 70) 。(:の温度 (ただし、 Tg :ポリエステルのガラス転移温度) で 2. 5〜8. 0倍の倍率で、 好ましく は 3. 0〜7. 5倍の倍率で延伸し、 次いで上記延伸方向とは直角方向 (一段目 延伸が縦方向の場合には、 二段目延伸は横方向となる) に (Tg) 〜 (Tg+7 0) 。(:の温度で 2. 5〜8. 0倍の倍率で、 好ましくは 3. 0〜7. 5倍の倍率 で延伸する。 さらに、 必要に応じて、 縦方向および/または横方向に再度延伸し てもよい。 すなわち、 2段、 3段、 4段あるいは多段の延伸を行うとよい。 全延 伸倍率としては、 通常 9倍以上、 好ましくは 12〜35倍、 さらに好ましくは 1 5〜 30倍である。
さらに、 上記二軸配向フィルムは、 (Tg + 70)〜(Tm— 10) の温度、 例えば、 ポリエチレンテレフタレートフィルムの場合、 180〜250 で熱固 定結晶化することによって、 優れた寸法安定性が付与される。 また、 熱固定時間 は、 1〜60秒が好ましい。
なお、 積層熱可塑性樹脂フィルムの製造に際し、 熱可塑性樹脂 A、 Bに所望に より上記不活性粒子以外の添加剤、 例えば安定剤、 着色剤、 溶融ポリマーの固有 抵抗調整剤などを添加含有させることができる。
本発明の熱可塑性樹脂層 Bへの、 第 1塗膜層の積層は、 水性塗液を塗布する方 法で行うことができる。
塗布は、 最終延伸処理を施す以前の熱可塑性樹脂層 Bの表面に行い、 塗布後に はフィルムを少なくとも一軸方向に延伸するのが好ましい。 この延伸の前ないし 途中で塗膜は乾燥される。 その中で、 塗布は、 未延伸積層フィルムまたは縦 (一 軸) 延伸積層フィルム、 特に縦 (一軸) 延伸積層フィルムに行うのが好ましい。 塗布方法としては特に限定されないが、 例えば、 ロールコート法、 ダイコート法 などが挙げられる。
上記塗液、 特に水性塗液の固形分濃度は、 0. 2〜8重量%、 さらに 0. 3〜 6重量%、 特に 0. 5〜4重量%であることが好ましい。 そして、 塗液 (好まし くは水性塗液) には、 本発明の効果を妨げない範囲で、 他の成分、 例えば他の界 面活性剤、 安定剤、 分散剤、 紫外線吸収剤、 増粘剤などを添加することができる。 本発明において、 磁気記録媒体としてのヘッド夕ツチ、 走行耐久性を始めとす る各種性能を向上させ、 同時に薄膜化を達成するには、 積層フィルムのヤング率 を、 縦方向および横方向のそれぞれで、 通常、 4 5 0 k g /mm2以上および 6 0 0 k gZmm2以上、 好ましくは 4 8 0 k gZmm2以上および 6 8 0 k gZm m2以上、 さらに好ましくは 5 5 0 k g Zmm2以上および 8 0 0 k g Zmm2以 上、 特に好ましくは 5 5 0 k g/mm2以上および 1, 0 0 0 k gノ mm2以上と する。
また、 熱可塑性樹脂 A、 Bの結晶化度は、 熱可塑性樹脂がポリエチレンテレフ タレ一卜の場合は 3 0〜5 0 %、 ポリエチレン一 2 , 6 —ナフタレートの場合は 2 8〜3 8 %であることが望ましい。 いずれも下限を下回ると、 熱収縮率が大き くなるし、 一方、 上限を上回るとフィルムの耐摩耗性が悪化し、 ロールやガイド ピン表面と摺動した場合に白粉が生じやすくなる。
本発明によれば、 上記熱可塑性樹脂層 Bの片面に上記熱可塑性樹脂層 Aが積層 されてなる積層熱可塑性樹脂フィルム、 および、 熱可塑性樹脂層 Bの熱可塑性樹 脂層 Aと接していない表面に第 1塗膜層が積層されている積層熱可塑性樹脂フィ ルムのそれぞれをベースフィルムとする磁気記録媒体が、 同様に提供される。 これらのうち、 本発明の第 2ベースフィルムであるベース積層熱可塑性樹脂フ ィルムおよびその第 2熱可塑性樹脂層と非接触の第 1熱可塑性樹脂層の表面上に 積層された前記第 1塗膜層からなるベ一スフイルム並びに
このベースフィルムの第 1塗膜層上の磁性層からなる磁気記録媒体が好ましい。 本発明の第 2ベースフィルムから磁気記録媒体を製造する実施態様、 用途、 使 用する磁性層等は、 第 1ベースフィルムについての記載がそのままあるいは当業 者に自明の変更を伴って適用されると理解されるべきである。
実施例
以下、 実施例を挙げ、 本発明をさらに具体的に説明するが、 本発明はこれら実 施例により限定されるものではない。 なお、 実施例および比較例における 「部」 および 「%」 は、 特に断らない限り重量部および重量%である。 また、 本発明に おける物性値および特性は、 それぞれ下記の方法で測定し、 かつ、 定義されるも のである。
( 1 ) 固有粘度
オルソクロロフエノール溶媒中 3 δ °Cで測定した値から求めた。
(2) 粒子の平均粒径 ( I ) (平均粒径: 6 0 nm以上)
(株) 島津製作所製 「CP— 50型セントリフユダル パーティクル サイズ アナライザ一 (C e n t r i f u g a l P a r t i c l e S i z e
An a 1 y z e r)jを用いて測定した。得られる遠心沈降曲線を基に算出した各 粒径の粒子とその存在量との積算曲線から、 5 0マスパーセントに相当する粒径 「等価球直径」 を読み取り、 この値を上記平均粒径 (nm) とした (「粒度測定技 術」 日刊工業新聞社発行、 1 9 7 5年、 頁 242〜247)。
(3) 粒子の平均粒径 (Π) (平均粒径: 6 0 nm未満)
小突起を形成する平均粒径 60 nm未満の粒子は、光散乱法を用いて測定した。 すなわち、 ニコンプィンストウルメント (株) (N i c omp I n s t r ume n t s I n c.)製の商品名「N I COMP MODEL 2 7 0 SUBM I CRON PART I CLE S I Z E R」 により求められる全粒子の 50 %の 点にある粒子の 「等価球直径」 をもって、 平均粒径 (nm) とした。
(4) 体積形状係数 (f )
走査型電子顕微鏡により、 用いたサイズに応じた倍率にて各粒子の写真を撮影 し、 画像解析処理装置ルーゼックス 5 00 (日本レギユレ一ター社製) を用い、 投影面最大径(D) ( m)および粒子の体積 (V) m3) を算出し、下式(Π) により計算した。
f =V/D3 · · · (!)
(5) 表面突起頻度、 粒子凝集率
(a) ベースフィルム
ベースフィルムの表面の不活性微粒子に由来する突起頻度の測定は、 走査型電 子顕微鏡により行った。 ベースフィルムの表面写真を表面から 45° の角度で倍 率 5, 0 0 0倍にてランダムに 20視野を撮影した。 撮影した表面写真中、 2個 以上の粒子が寄り集まって一つの突起を形成しているものを 「凝集突起」 とし、 単独の粒子による 「独立突起」 と区別した。 上記表面写真中の 「凝集突起数」 と 「独立突起数」 を数え、 1 mm 2当りの 「凝集突起数」 と 「独立突起数」 の和を 表面突起頻度とした。
また、 ベースフィルムの表面の不活性微粒子の粒子凝集率は、 下式 (m) で定 義される。
粒子凝集率 (%) =
〔(凝集突起数) / (凝集突起数 +独立突起数)〕 X 1 0 0 · · - (m)
( b ) 讓層
塗膜層表面の不活性微粒子に由来する突起頻度の測定は、 走査型電子顕微鏡に より表面写真を真上から倍率 3 5 , 0 0 0倍にてランダムに 3 0視野を撮影した 以外は、 上記 (a ) ベースフィルムの測定方法と同様に行った。
( 6 ) 積層フィルムの各層の厚み、 および、 フィルム全体の厚み
フィルム全体の厚みはマイクロメーターにてランダムに 1 0点測定し、 その平 均値を用いた。層厚については、薄い層の層厚みを下記に述べる方法にて測定し、 厚い層の層厚みは、 全厚みより塗膜層および薄い層の層厚を引き算して求めた。 すなわち、 二次イオン質量分析装置 (S I M S ) を用いて、 被覆層を除いた表層 から深さ 5, 0 0 0 nmの範囲のフィルム中の粒子の内最も高濃度の粒子に起因 する金属元素 (M+) と熱可塑性樹脂 (ポリエステル) の炭化水素 (C +) の濃度 比 (M+ZC +) を粒子濃度とし、 表面から深さ 5, 0 0 O nmまで厚さ方向の分 析を行った。 表層では表面という界面のために粒子濃度は低く、 表面から遠ざか るにつれて粒子濃度は高くなる。 本発明の場合、 粒子濃度は一旦安定値 1になつ たのち、 上昇して安定値 2になる場合と、 単調に減少する場合とがある。 この分 布曲線をもとに、前者の場合は、 (安定値 1 +安定値 2 ) Z 2の粒子濃度を与える 深さをもって、 また後者の場合は粒子濃度が安定値 1の 1ノ 2になる深さ (この 深さは安定値 1を与える深さよりも深い) をもって、 薄い層の厚み ( m) とし た。
測定条件は、 以下のとおりである。 (a) 測定装置
二次イオン質量分析装置 (S IMS) ;パーキン ·エルマ一 (株) (PERKI N ELMER I NC.) 製、 「6300」
(b) 測定条件
一次イオン種:〇
一次イオン加速電圧: 12KV
一次イオン電流: 200 n A
ラスタ一領域: 400 口
分析領域:ゲート 30 %
測定真空度: 6. 0 X 10— 9To r r
E-GUNN: 0. 5KV- 3. OA
なお、 表層から 5, 000 nmの範囲に最も多く存在する粒子がシリコーン樹 脂以外の有機高分子粒子の場合は S IMSでは測定が難しいので、 表面からエツ チングしながら FT— I R (フーリエトランスフォーム赤外分光法)、粒子によつ ては XP S (X線光電分光法)などで上記同様の濃度分布曲線を測定し、層厚(/X m) を求めた。
(7) 塗膜層の厚み
フィルムの小片をエポキシ樹脂にて固定成形し、 ミクロトームにて約 600ォ ングストロームの厚みの超薄切片 (フィルムの流れ方向に平行に切断する) を作 成した。 この試料を透過型電子顕微鏡((株) 日立製作所製: H— 800型) にて 観察し、 塗膜層の境界面を探して塗膜層の厚み (nm) を求めた。
(8) 接触角
協和化学 (株) 製、 接触角測定装置を用いて測定した。 フィルムサンプルを、 温度 25°C、 湿度 50%の環境下に 24時間置いたのち、 フィルム上に蒸留水を 5mg滴下し、 水平の方向から 20秒後に写真を撮影した。 フィルムと水滴の接 線が形成する、 7滴の存在する方の角度を接触角 (° ) とした。
(9) フィルム表面粗さ (Ra)
表面粗さ (Ra) は、 中心線平均粗さ (Ra) として J I S— B0601で定 0 義される値であり、 本発明では (株) 小坂研究所製触針式表面粗さ計 (Su r f c o r d e r SE—30 C) を用いて測定した。 測定条件は、 次のとおりであ る。
(a) 触針先端半径: 2 /m
(b) 測定圧力: 3 Omg
(c) カツトオフ: 0. 08mm
( d ) 測定長: 1. 0 mm
(e) データのまとめ方:同一試料について 5回繰返し測定し、 最も大きい値 を 1つ除き、 残りの 4つのデータの平均値の小数点以下 5桁目を四捨五入し、 小 数点以下 4桁目まで表示した。
(10) 中心面平均粗さ (表面粗さ) (WRa)
WYKO (株) 製の非接触三次元粗さ計、 商品名 「TOP〇一 3D」 を用いて、 測定倍率 40倍、 測定面積 242 239 / m (0. 058mm2) の条件 にて測定を行い、 表面粗さのプロフィル (オリジナルデータ) を得た。 上記粗さ 計内蔵ソフトによる表面解析により、 下式 (IV) および (V) によって定義され る中心面平均粗さ (WRa) を得た。
Figure imgf000029_0001
_ M N
ここで、 ∑ ∑ Zjk/(M - N) (V)
k=l j=l
M=256
N=256 また、 Zj kは、 測定方向 (242 iim)、 それと直交する方向 (239 iim) を、 それぞれ M分割、 N分割したときの各方向の j番目、 k番目の位置における 三次元粗さチヤ一ト上の高さである。
(11) ヤング率
東洋ポールドウイン (株)製の引張り試験機、 商品名 「テンシロン」 を用いて、 温度 20°C、 湿度 50 %に調節された室内において、 長さ 300mm、 幅 12. 7 mmの試料フィルムを 10%Zm i nのひずみ速度で引張り、 引張り応力一ひ ずみ曲線の初めの直線部分を用いて下式 (VI) によって計算した。
Figure imgf000030_0001
ここで、 Εはヤング率 (kgZmm2)、 △ σは直線上の 2点間の元の平均断面 積による応力差、 · Δ εは同じ 2点間のひずみ差である。
(12) 第 2ベースフィルムについてのブロッキング剥離力
ロール状フィルムの長手方向に 10 Omm、 幅方向に 20 Ommの長方形にサ ンプリングし、 第 2熱可塑性樹脂層側に、 室温 20±2°C、 湿度 40± 5%の環 境下で、 コロナ処理を施した。
上記コロナ処理は、 春日電気 (株) 製、 商品名 「CG— 102」 型の高周波電 源を用いて、 以下の条件にて処理した。
電流; 4. 5 A
電極間距離; 1. 0 mm
処理時間; 1. 2 m/m i nの速度で、 電極間を通過させて処理した。
フィルムの処理した面を、 直ちにフィルムの第 2熱可塑性樹脂層と反対側の面 と接触させ、 100 k gZcm2の圧力にて温度 60t:、 湿度 80%の環境下で 17時間エイジングさせたのち、 上記引張り試験機、 商品名 「テンシロン」 を用 いて、 幅 100 mm当りの剥離力を求めた。
(13) 巻取性
スリット時の卷取条件を最適化したのち、 幅 600mmX 12, 000mのサ ィズで、 30ロールを速度 10 OmZm i nでスリットし、 スリット後のフィル ム表面に、 ブッ状、 突起ゃシヮのないロールを良品として、 以下の基準にて巻取 性を評価した。
◎;良品ロールの本数 28本以上
〇;良品ロールの本数 25〜27本
X ;良品ロールの本数 16〜24本
X X ;良品ロールの本数 15本以下 ( 1 4) バックコート塗布適性 (加工適性)
磁気テープの製造加工工程において、 バックコート塗布後の第 2熱可塑性樹脂 層の表面を目視観察し、 以下の基準にて評価した。
〇;バックコート層に、 塗布斑、 ハジキがない。
X ;バックコート層に、 塗布斑か、 ハジキが認められる。
(15) 磁気テープの製造および特性評価
本発明のフィルムの平坦面側の表面に、 真空蒸着法により、 コバルト 100% の強磁性薄膜を 0. 2 mの厚みになるように 2層 (各層厚約 0. l i m) 形成 した。 次に、 その表面にダイヤモンドライクカーボン (DLC) 膜、 さらに含フ ッ素カルボン酸系潤滑層を順次設け、 さらに強磁性薄膜層とは反対側のフィルム 表面に、公知の方法でバックコート層を設けた。その後、 8 mm幅にスリツ卜し、 市販の 8mmビデオカセットに口一ディングした。 次いで、 以下の市販の機器を 用いてテープの特性を測定した。
使用機器
8 mmビデオテープレコーダー、 ソニー (株) 製 EDV— 6000
C/N測定: (株) シバソク製ノイズメーター
(a) CZN測定 (電磁変換特性)
記録波長 0. 5 m (周波数約 7. 4 MHz) の信号を記録し、 その再生信号 のら . 4MHzと 7. 4MHzの値の比をそのテープの CZNとし、 市販 8mm ビデオ用蒸着テープの C/Nを 0 dBとし、 相対値で表した。
(b) 走行耐久性
40 °C、 湿度 80 %でテープ走行速度 85 c / i nで記録再生を 1 , 00 0回繰返した後、 C/Nを測定し、 初期値からのずれを下記の基準で判定した。 ◎:基準値に対して+Ο. O dBを超える。
〇:基準値に対して一 1· 5〜十 0. OdB
X:基準値に対して一 1. 5 d B未満。
(16) pH測定
HOR I BA社製、 pHメーター F— 14を用いて、 溶媒温度 25での際の p Hを測定した。
実施例 1
ジメチルテレフ夕レート 100部とエチレングリコール 70部、 酢酸カルシゥ ム、 酢酸マグネシウムをジメチルテレフ夕レートに対してそれぞれ 35mmo 1 %ずつ添加し、 常法に従ってエステル交換反応させ、 その後トリメチルホスフ エートを、 ジメチルテレフ夕レートに対して 4 Ommo 1 %添加しエステル交換 反応を終了させた。 第 1不活性微粒子 (不活性粒子 A) として平均粒径 45 nm かつ p Hが 9である球状シリ力を含むエチレングリコールスラリーを、 エステル 交換反応終了直後に、 ポリマー中の球状シリカの濃度が 0. 03%となるように 添加した。 その後、 トリメリット酸チタンを、 ジメチルテレフタレートに対して 2mmo l %添加し、 上記混合物を重合反応器に写し、 290°Cまで昇温し、 2 6. 7 P a以下の高真空下にて常法通り重縮合反応を行って、 固有粘度 0. 60 のポリエチレンテレフタレ一卜を得た。
得られたポリエチレンテレフタレートのペレツトを 170でで 3時間乾燥後、 押出機ホッパーに供給し、 溶融温度 300でにて溶融し、 平均目開き 1 l mの 鋼線フィルターで高精度ろ過した後、 スリット用ダイを通して溶融押出し、 線状 電極を用いて表面仕上げ 0. 3 S程度、 表面温度 20 の回転冷却ドラム上に密 着固化し、 厚み 89 の未延伸フィルムを得た。
得られた未延伸フィルムを予熱し、 さらに低速 ·高速のロール間でフィルム温 度 100 にて 3. 3倍に延伸し、 急冷し、 次いで縦延伸フィルムの上面側、 下 面側にそれぞれ次の組成の水性溶液 (全固形分濃度 1. 0%) をキスコート法に より塗布した。
(a) 上面側 (第 1塗膜層)
バインダー:アクリル変性ポリエステル (高松油脂 (株) 製、 IN— 170— 6) ; 68部 (固形分換算)
第 2不活性微粒子 (不活性粒子 B):コアシェルフィラー (コア;架橋ポリスチ レン、 シェル;ポリメチルメタクリレート) (平均粒径 30 nm) (体積形状係数 0. 47) (ジエイエスアール (株) 製、 SX8721 (D) — 12) ; 5部 界面活性剤 X : (日本油脂 (株) 製、 ノニオン NS— 208. 5) ; 1部 界面活性剤 Y: (日本油脂 (株) 製、 ノニオン NS— 240); 26咅 G 厚み (乾燥後) : 4nm
(b) 下面側 (第 2塗膜層)
共重合ポリエステル (テレフタル酸 Zイソフタル酸 Z5—ナトリウムスルホイ ソフタル酸/ェチレングリコ一ル Zビスフエノ一ル A—プロピオンォキサイド 2 モル付加体 =97/1/2/60/40); 60
不活性粒子 C :シリカ粒子 (平均粒径 60 nm) ; 1 0部
ヒドロキシプロピルメチルセルロース; 20咅 β
界面活性剤 X: (日本油脂 (株) 製、 ノニオン NS— 208. 5) ; 10部 厚み (乾燥後) : 15 nm
続いて、 ステン夕一に供給し、 120°Cにて横方向に 4. 2倍に延伸した。 得 られた二軸延伸フィルムを 220での熱風で 4秒間熱固定し、 全厚み 6. 4 τ のポリエステルフィルムを得た。 このフィルムの表面の不活性粒子 Αに由来する 突起頻度は 4. 2万個/ mm2でありまた不活性粒子 Aの粒子凝集率は 1 5%で あった。 また、 表面粗さ (Ra) は、 上面 (第 1謹層) 0. 7 nm、 下面 (第 2塗膜層) 6 nm、 ヤング率は縦方向 500 k g/mm2、 横方向 700 kgZ mm2、 上面 (第 1塗膜層) 表面の不活性粒子 Bに由来する突起頻度は、 1, 1 00万個 Zmmであった。 このフィルムのその他の特性、 およびこのフィルムを 用いた強磁性薄膜蒸着型磁気テープの特性を、 表 2に示す。 なお、 強磁性薄膜蒸 着型磁気テープの製造に際しては、 平坦な面 (第 1塗膜層) を蒸着面とした。 実施例 2および 4
不活性粒子 Aの種類、 平均粒径、 添加量を表 1に示すとおり変更した以外は、 実施例 1と同様にしてポリエステルフィルムを、 得た。 得られたポリエステルフ イルムの表面粗さ (Ra) は、 実施例 2が上面側 0. 8 nm、 下面側 6. 5 nm, 実施例 4が上面側 1. Onm、 下面側 6. 7 nmであった。 得られたフィルムお よびそのフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を、 表 2に示す。 実施例 3 ジメチルテレフタレートとエチレングリコールとを、 エステル交換触媒として 酢酸マンガン、 重合触媒として三酸化アンチモン、 安定剤として亜リン酸を添加 して常法により重合した。 この際、 第 3不活性微粒子 (不活性粒子 D) として平 均粒径 0. 7 wmのシリコーン粒子と平均粒径 0. 2 mの 6—アルミナ粒子を それぞれポリマー中の最終濃度が 0. 05%、 0. 3%となるように添加した。 重合により、 固有粘度 0. 60の第 2ポリエステル層用のポリエチレンテレフ夕 レート (PET) (樹脂 D 1) を得た。
実施例 1で用いたポリエチレンテレフタレ一ト (以下 「樹脂 Al」 という) と 樹脂 D 1を、 それぞれ 170°Cで 3時間乾燥後、 2台の押出機に供給し、 溶融温 度 300°Cにて溶融し、 マルチマ二ホールド型共押出ダイを用いて、 樹脂 A1層 の片面に樹脂 D 1層を積層させ、 急冷して厚さ 89 の未延伸積層フィルムを 得た。
得られた未延伸フィルムを予熱し、 さらに低速 ·高速のロール間でフィルム温 度 100でにて 3. 3倍に延伸し、 急冷し、 次いで縦延伸フィルムの上面側 (樹 脂 A1層側)に実施例 1で上面側に用いた塗液を塗布し、第 I,層を積層した。 続いて、 ステンターに供給し、 実施例 1と同様にして、 全厚み 6. 4 mの積層 ポリエステルフィルムを得た。 このフィルムの表面粗さ (Ra) は、 上面 (第 1 塗膜層) 1. 7nm、 下面 (樹脂 D 1層側) 7. 8 nm、 ヤング率は縦方向 50 0 kgZmm2、 横方向 700 k gZmm2であった。 樹脂 D 1層の厚みは 0. 9 であった。 得られたフィルムおよびそのフィルムを用いた強磁性薄膜蒸着型 磁気テープの特性を、 表 2に示す。
実施例 5および 6
不活性粒子 Aの種類、 平均粒径、 添加量を表 1に示すとおり変更し、 ジメチル テレフ夕レートの代わりに 2, 6一ナフタレンジカルボン酸ジメチルを同モル量 使用した以外は、 実施例 1のポリエステル製造方法と同様の方法で、 2層形成用 のポリエチレン一 2, 6—ナフ夕レート (ポリエチレン一 2, 6—ナフ夕レンジ カルボキシレート) (PEN) (樹脂 A2、 樹脂 D2) を得た。
得られた樹脂 A 2および樹脂 D 2を、 それぞれ 170 で 6時間乾燥後、 実施 _
34
例 3と同様にして各層厚みを調整し、 樹脂 A 2層および樹脂 D 2層からなる未延 伸積層フィルムを得た。 得られた未延伸フィルムを予熱し、 さらに低速 ·高速の ロール間でフィルム温度 135°Cにて 3. 6倍に延伸し、 急冷し、 次いで縦延伸 フィルムの上面側 (樹脂 A 2層側)、 下面側 (樹脂 D 2層側) にそれぞれ次の組成 の水溶液を、 実施例 1と同様に塗布し、 第 1塗膜層および第 2塗膜層とした。
(a) 上面側 (第 1塗膜層)
バインダ一:ァクリル変性ポリエステル (高松油脂 (株) 製、 I N— 170— 6) ; 63部 (固形分換算)
不活性粒子 B:アクリルフイラ一(平均粒径 25 nm) (体積形状係数 0. 42) (日本触媒 (株) 製、 MA02W) ; 6. 5部
界面活性剤 X: (日本油脂 (株) 製、 ノニオン NS— 208. 5); 0. 5部 界面活性剤 Y: (日本油脂 (株) 製、 ノニオン NS— 270); 20部 厚み (乾燥後) : 6 nm
(b) 下面側 (第 2塗膜層)
アクリル変性ポリエステル (高松油脂 (株) 製、 SH551BK); 50部 第 4不活性微粒子(不活性粒子 C):ァクリル系樹脂フイラ一(平均粒径 40 n m) (日本触媒 (株) 製 ME— 6U) ; 15部
ヒドロキシプロピルメチルセルロース; 15部
界面活性剤 X: (日本油脂 (株) 製、 ノニオン NS— 208. 5); 10部 シロキサン共重合ァクリル (信越化学工業 (株) 製 X 22— 8053 ); 10部 厚み (乾燥後) : 2 Onm
続いて、 ステン夕一に供給し、 150°Cにて横方向に 4. 9倍に延伸し、 さら に 200°Cで 1. 14倍横延伸しながら熱処理し、 全厚み 4. 4 mの二軸配向 フィルムを得た。 このフィルムの表面粗さ (Ra) は、 実施例 5では、 上面 (第 1塗膜層) 0. 6nm、 下面 (第 2塗膜層) 6. 2 nm、 実施例 6では、 上面 (第 i m O. 5 nm, 下面 (第 2 層) 6. 2nm、 ヤング率は縦方向 56 0 kg/mm2, 横方向 1, 100 kg/mm2, 上面 (第 1塗膜層) 表面の不活 性粒子 Bに由来する突起頻度は、 実施例 5は 1, 050万個 Zmm、 実施例 6は 1, 0 5 0万個 Zmmであった。 これらのフィルムのその他の特性、 およびこの フィルムを用いた強磁性薄膜蒸着型磁気テープの特性を、 表 2に示す。
表 1 実施例 1 2 3 4 5 6 ホ。リエステルフィルム層
樹脂" PET PET PET PET PEN PEN 不活性粒子 A シリカ シリカ シリカ シリコーン 架橋ホ"リスチレン シリカ 平均 fez^ (nm) 45 80 60 100 70 60 体積形状係数 0.5 0.5 0.5 0.5 0.45 0.5 添加量 (%) 0.030 0.025 0.030 0.050 0.015 0.020 不活性粒子 B コアシェル コアシェル コアシェル コアシェル アクリルフイラ- アクリルフィラ 平 t ネ te nm 0 30 30 30 25 25 体積形状係数 0.47 0.47 0.47 0.47 0.42 (). 2 添加量 (%) 5 5 5 5 6.5 6.5 不活性粒子 C シリカ シリカ シリ力 アクリルフィラ- アクリルフイラ- 平均粒径 (nm) 60 60 60 40 40 添加量 (%) 10 10 10 15 15 層厚み (nm) 15 15 15 20 20 不活性粒子 D シリコ-ン Zアルミナ シリコ-ンノアルミナ シリコ ン Zアルミナ 平均粒径 ( ) 0.7/0.2 0.7/0.2 0.7/0.2 添加量 (%) 0.05/0.3 0.05/0.3 0.05/0.3 層厚み ( im) 0.9 0.9 0.9
表 2 実施例 1 2 3 4 5 6 フィルム特性
ホ リヱスァルフィルム層表面突起頻度 4.2 2.1 3.5 2.3 3.0 2. Γ)
(万個 Zmm2)
粒子凝集率 (%) 15 8 10 12 7 13 第 1塗膜層表面突起頻度 1, 100 1, 100 1, 100 1, 100 1,050 1,050
(万個 Zmm2)
表面粗さ (Ra) (nm)
磁性層 (上) 側 0.7 0.8 1.7 1.0 0.6 0.5 裏面 (下) 側 6 6.5 7.8 6.7 6.2 6.2 テープ特性
電磁変換特性 (dB) +7.3 13.4 +6.5 H.0 +4.5 +7.2 走行耐久性 〇 〇 ◎ ◎ 〇 〇
比較例 1
不活性粒子 Aを添加しない以外は、 実施例 1と同様にしてポリエステルフィル ムを得た。 このフィルムの表面粗さ (R a ) は、 上面 (第 1塗膜層) 0 . 6 n m、 下面 (第 2塗膜層) 6 . 2 n mであった。 このフィルムのその他の特性、 および このフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を、 表 4に示す。 この フィルムを用いた磁気テープは、 走行耐久性に劣っていた。
比較例 2
不活性粒子 Aのエチレングリコ一ルスラリーの p Hを 7として、 トリメチルホ スフェートの添加量を 1 5 mm o 1 %とする以外は、 実施例 2と同様にしてポリ エステルフィルムを得た。 このフィルムの特性、 およびこのフィルムを用いた強 磁性薄膜蒸着型磁気テープの特性を、 表 4に示す。 このフィルムを用いた磁気テ ープは、 走行耐久性に劣っていた。
比較例 3
不活性粒子 Aの種類、 平均粒径、 添加量を表 3に示すとおりに変更し、 不活性 粒子 Aのエチレングリコールスラリーの p Hを 1 2とした以外は、 実施例 5と同 様にしてポリエステルフィルムを得た。 このフィルムの特性、 およびこのフィル ムを用いた強磁性薄膜蒸着型磁気テープの特性を、 表 4に示す。 このフィルムの 不活性粒子粒子 Aの凝集度は極めて高く、 このフィルムを用いた磁気テープは、 電磁変換特性が劣つていた。
比較例 4
不活性粒子 Aの種類、平均粒径、添加量を表 3に示すとおりに変更した以外は、 実施例 5と同様にしてポリエステルフィルムを得た。 このフィルムの特性、 およ びこのフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を表 4に示す。 得ら れたフィルムの突起頻度が多く、 このフィルムを用いた磁気テープの電磁変換特 性は、 不良であった。
表 1〜4から明らかなように、 本発明のフィルムを用いた磁気テープは、 優れ た電磁変換特性と走行耐久性を有しているのに対し、 本発明の範囲外のものから 得られる磁気テープは、 上記両方の特性を満たすことができない。 表 3 比較例 1 2 3 4 ホ。リエステルフィルム層
樹脂 + 1 PET PET PEN PEN 不活性粒子 A シリカ シリカ シリカ 平均粒径 (nm) 80 40 60 体積形状係数 0.5 ().5 0.5 添加量 (%) 0.025 0.040 0.070 不活性粒子 B コアシェル コアシェル アクリルフイラ- アクリルフイラ- 平均粒径 (nm) 30 30 25 25 体積形状係数 0.47 0.47 0.42 0.42 添加量 (%) 5 5 6.5 6.5 不活性粒子 C シリカ シリカ アクリルフイラ - アクリルフイラ - 平均粒径 (rim) 60 60 40 40 添加量 (%) 10 10 15 15 層厚 (nm) 15 15 20 20 不活性粒子 D シリコ-ン アルミナ シリコ-ン /アルミナ 平均粒径 (/ m) 0.7/0.2 0.7/0.2 添加量 (%) 0.05/0.3 0.05/0.3 層厚み (/ m) 0.9 0.9
表 4 比較例 1 2 3 4 フィルム特性
ホ°リ Iステルフィルム層表面突起頻度 2.3 3.8 8.5
(万個 Zmm2)
粒子凝集率 (%) 1 30 10 第 1塗膜層表面突起頻度 (万個 Zmm2) 1, 100 1, 100 1,050 1,050 表面粗さ (Ra) (nm)
磁性層 (上) 側 0.6 0.8 1.9 2.0 裏面 (下) 側 6.2 0.5 6.2 6.2 テープ特性
電磁変換特性 (dB) +8.0 +3.8 -1.5 1.0 走行耐久性 X X 〇 〇
なお、 表 1および表 3中、 * 1) PETはボリエチレンテレフ夕レート、 PE Nはポリエチレン一 2, 6—ナフタレート (ポリエチレン一 2, 6—ナフ夕レン ジカルボキシレート) を表す (以下の表 5および表 7についても同じ)。
本発明の第 1ベースフィルムは、 電磁変換特性に優れ、 かつ繰返し使用時の出 力低下が小さく走行耐久性に特に優れた磁気記録媒体用ボリエステルフィルムで ある。
次に、 本発明の第 2ベースフィルムについての実施例 7〜 12および比較例 5 〜 9を示すが、 これらの実施例および比較例で用いた不活性粒子 D、 Eおよびェ ステルワックスは次のとおりである。
不活性粒子 Dとして、 下記のものを使用した。
真球状シリカ ;平均粒径 600 nm
球状シリカ ;平均粒径 400 nm
0型アルミナ;平均粒径 60 nm
シリコーン;平均粒径 500 nm
架橋ポリスチレン;平均粒径 800 nm
バテライト結晶系炭酸カルシウム;平均粒径 200 nm
不活性粒子 Eとして、 下記のものを使用した。
真球状シリ力;平均粒径 20 Onm (体積形状係数; 0. 5)
球状シリカ;平均粒径 60 nm (体積形状係数; 0. 5)
エステルワックスとして下記のものを使用した。
(a— 1) ;ソルビタントリステアレート (融点 55°C)
( a— 2);モン夕ン酸ジオールエステルを水酸化カルシウムでケン化したもの、 へキスト (株) 製、 商品名 「ワックス E」、 (融点 86°C)
(a- 3) ; グリセリントリパルミタート
( a一 4);モンタン酸ジオールエステルを水酸ィヒカルシウムでケン化したもの、 へキスト (株) 製、 商品名 「ワックス OP」、 (融点 81°C)
(a - 5) ;ペン夕エリスリットトリぺへネート
実施例 7 ジメチルテレフタレ一トとエチレングリコールとを、 エステル交換触媒として 酢酸マンガン、重合触媒としてトリメリット酸チタン、安定剤として亜リン酸を、 さらに滑剤 (不活性粒子 E) として平均粒径 60 nmの球状シリカ (体積形状係 数 0. 5) を、 樹脂中に 0. 03%添加して、 常法により重合し、 固有粘度 0. 60の第 1熱可塑性樹脂層 (熱可塑性樹脂層 B ) 用のポリエチレンテレフタレ一 ト (樹脂 B 1) を得た。
さらに、 上記と同様の方法で、 滑剤 (第 3不活性粒子または不活性粒子 D) と して、 平均粒径 600 nmの真球状シリカおよび平均粒径 60 nmの 0型アルミ ナを、 樹脂中にそれぞれ 0. 12%および 0. 2 %添加して、 常法により重合し、 固有粘度◦. 60のポリエチレンテレフ夕レートを得た。
—ト (融点 55°C) (a- 1) の粉末 0. 3%をまぶし、 ベント付き二軸ルーダー にて練り込み、 固有粘度 0. 59の第 2熱可塑性樹脂層 (熱可塑性樹脂層 A) 用 のポリエチレンテレフタレート (樹脂 A1) を得た。
得られた樹脂 A 1、 樹脂 B 1を、 それぞれ 170 °Cで 3時間乾燥後、 2台の押 出機に供給し、 溶融温度 280〜300 にて溶融し、 平均目開き 1 1 の鋼 線フィルターで高精度ろ過したのち、マルチマ二ホールド型共押出ダイを用いて、 樹脂層 Aの片面に樹脂層 Bを積層させ、 急冷して厚さ 89 i/mの未延伸積層熱可 塑性樹脂フィルムを得た。
得られた未延伸フィルムを予熱し、 さらに低速 '高速のロール間でフィルム温 度 100°Cにて 3. 3倍に延伸し、 急冷して縦延伸フィルムを得た。 次いで縦延 伸フィルムの層 B面側に下記に示す組成 (固形分換算) の水性塗液 (全固形分濃 度 1. 0%) をキスコート法により塗布して第 1塗膜層を形成した。
ノ ィンダー:ァクリル変性ポリエステル (高松油脂 (株) 製、 I N— 170— 6)、 67%
第 2不活性粒子 (不活性粒子 B):アクリルフィラー (平均粒径 30 nm) (体 積形状係数 0. 40) (日本触媒 (株) 製、 MA02W)、 6%
界面活性剤 X: (日本油脂 (株) 製、 ノニオン NS— 208. 5)、 1% _
43
界面活性剤 Y: (日本油脂 (株) 製、 ノニオン NS— 240)、 26% 第 1塗膜層厚み (乾燥後) : 5 nm
続いてステンターに供給し、 110°Cにて横方向に 4. 2倍に延伸した。 得ら れたニ軸延伸フィルムを、 220°Cの熱風で 4秒間熱固定し、 全厚み 6. 4 で、 ベース層 (熱可塑性樹脂層 A) 厚み 1. 0 imの積層二軸配向ポリエステル フィルムを得た。 このフィルムの熱可塑性樹脂層 A、 Bの厚みについては、 2台 の押出機の吐出量により調整した。 このフィルムの熱可塑性樹脂層 Bの表面粗さ WRaは、 1. 7 nm、 このフィルムのヤング率は縦方向 500 k gZmm2、 横方向 700 k gZmm2であった。 この積層フィルムのその他の特性、 および このフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を表 6に示す。
実施例 8および 10
熱可塑性樹脂層 Aに含有させる不活性粒子 Dの種類、 平均粒径、 添加量、 およ び (部分ケン化) エステルワックスの種類、 添加量を表 5に示すとおり変更し、 第 1熱可塑性樹脂に粒子を含有させない以外は、 実施例 7と同様にして積層熱可 塑性樹脂フィルムを得た。 得られたフィルムの特性、 およびそのフィルムを用い た強磁性薄膜蒸着型磁気テープの特性を表 6に示す。
実施例 9
熱可塑性樹脂層 Aに含有させる不活性粒子 Dの種類、 平均粒径、 添加量を表 5 に示すとおり変更し、 第 1塗膜層中に含有させる不活性粒子 Bを、 コアシェルフ イラ一 (コア;架橋ポリスチレン、 シェル;ポリメチルメタクリレート) (平均粒 径; 30nm、 体積形状係数 0. 45) ジェイエスアール (株) 製、 商品名 「S X8721 (D) — 12」 に変更した以外は、 実施例 7と同様にして積層熱可塑 性樹脂フィルムを得た。 得られたフィルムの特性、 およびそのフィルムを用いた 強磁性薄膜蒸着型磁気テープの特性を表 6に示す。
実施例 1 1および 12
熱可塑性樹脂層 Aに含有させる不活性粒子 Dの種類、 平均粒径、 添加量、 およ び (部分ケン化) エステルワックスの種類、 添加量を表 5に示すとおり変更し、 ジメチルテレフタレートの代わりに 2, 6一ナフタレンジカルボン酸ジメチルを Δ&
44
同モル量使用した以外は、 実施例 7と同様にして熱可塑性樹脂層 A、 B用のポリ エチレン一 2, 6—ナフ夕レート (PE: (樹脂 A 2、 B 2) を得た。
この樹脂 A 2、 B 2を、 それぞれ 1 70 で 6時間乾燥後、 実施例 7と同様に して、 各層厚みを調整し、 厚さ 89 の未延伸積層熱可塑性樹脂フィルムを得 た。
得られた未延伸フィルムを予熱し、 さらに低速 ·高速のロール間でフィルム温 度 1 35°Cにて 3. 6倍に延伸し、 急冷して縦延伸フィルムを得た。 次いで縦延 伸フィルムの層 B面側に表 5に示す組成 (固形分換算) の水性塗液 (全固形分濃 度 1. 0%) を実施例 7と同様に塗布した。
続いてステンターに供給し、 155°Cにて横方向に 5. 7倍に延伸した。 得ら れたニ軸延伸フィルムを、 200°Cの熱風で 4秒間熱固定し、 全厚み 4. 4 nm, ベース層 (熱可塑性樹脂層 A) 厚み 6 /imの積層二軸配向ポリエステルフィ ルムを得た。 このフィルムの熱可塑性樹脂層 A、 Bの厚みについては、 2台の押 出機の吐出量により調整した。 実施例 1 1において、 このフィルムの熱可塑性樹 脂層 Bの表面粗さ WR aは、 0. 9nm、 このフィルムのヤング率は縦方向 55 0 k gZmm2、 横方向 1, 050 k gZmm2であった。 実施例 12において、 このフィルムの熱可塑性樹脂層 Bの表面粗さ WR aは、 1. l nm、 このフィル ムのヤング率は縦方向 550 k gZmm2、 横方向 1, 050 k gZmm2であつ た。 この積層フィルムのその他の特性、 およびこのフィルムを用いた強磁性薄膜 蒸着型磁気テープの特性を表 6に示す。
表 5
Figure imgf000046_0001
表 6 実施例 7 8 9 10 1 1 12 フィルム特性
層 A水接触角 ( ) 78 86 78 74 84 80 層 B表面粗さ (nm) 1.7 1.1 1.3 1.2 0.9 1.1 ブロッキング剥離力 5 4 7 10 3 4 巻取性
ックコート塗布適性 ◎ 〇 ◎ 〇
バ 〇 ◎
〇 ◎
〇 〇 〇 〇 テープ特性
電磁変換特性 ((IB) +8 +9 +7 110 +9 18
比較例 5
熱可塑性樹脂層 Aに (部分ケン化) エステルワックスを含有させない以外は、 実施例 7と同様にして積層熱可塑性樹脂フィルムを得た。 得られたフィルムは、 ブロッキング剥離力を測定する際に、 フィルムが密着しており、 むりやり剥がそ うとすると破れてしまった。 その他の特性、 およびそのフィルムを用いた強磁性 薄膜蒸着型磁気テープの特性を表 8に示す。
比較例 6
ソルビタントリステアレート (a— 1 ) の添加量を 1 2 %にした以外は、 実施 例 7と同様にして積層熱可塑性樹脂フィルムを得た。 得られたフィルムは、 磁気 テープの製造工程においてバックコートに塗布する際、八ジキが発生してしまい、 通常の塗布ができなかった。 その他の特性、 およびそのフィルムを用いた強磁性 薄膜蒸着型磁気テープの特性を表 8に示す。
比較例 7
熱可塑性樹脂層 Bに添加する不活性粒子 Eとして、 平均粒径 2 0 0 nmの真球 状シリカ (体積形状係数; 0 . 5 ) を 0 . 2 %添加する以外は、 実施例 7と同様 にして積層熱可塑性樹脂フィルムを得た。 得られたフィルムは、 熱可塑性樹脂層 B表面粗さ WR aが本発明の範囲外となり、 電磁変換特性に劣っていた。 その他 の特性、 およびそのフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を表 8 に示す。
比較例 8
熱可塑性樹脂層 Aに不活性粒子 Dを添加しない以外は、 実施例 1 1と同様にし て積層熱可塑性樹脂フィルムを得た。 得られたフィルムは、 ブロッキング剥離力 の測定の際、 フィルムが密着しており、 測定不能であった。 その他の特性、 およ びそのフィルムを用いた強磁性薄膜蒸着型磁気テープの特性を表 8に示す。
比較例 9
熱可塑性樹脂層 B中に、 ソルビタンモノアセテート 0 . 2 %を含有させる以外 は、 実施例 1 1と同様にして積層熱可塑性樹脂フィルムを得た。 得られたフィル ムは、 ブロッキング剥離力の測定の際、 フィルムが密着しており、 測定不能であ つた。 その他の特性、 ^た強磁性薄膜蒸着型磁気テープ の特性を表 8に示す。
聲 表 7 比較例 5 6 7 8 9 ポリエステルフィルム層
PET PET PET PEN PEN
不活性粒子 D シリカ Zアルミナ シリカ Zアルミナ シリカ1 ί// ア^ r ナ シ 1ソ Jつ 1一 z、ノ 平均粒径 (nm) 600/60 600/60 600/60 一 500 添加量 (%) 0.12/0.2 0.12/0.2 0.12/0.2 一 0.05 ワックス a - 1 a-1 a-1 a - 1 添加量 (%) 12.00 0.30 0.50 0.50 不活性粒子 E 球状シリカ 球状シリカ 真球状シリカ 球状シリカ 球状シリカ 平均粒径 (nm) 60 60 200 60 60 体積形状係数 0.5 0.5 0.5 0.5 0.5 添加量 (%) 0.03 0.03 0.2 0.03 0.03 不活性粒子 B アクリルフイラ- アクリルフイラ- アクリルフイラ- アクリルフイラ- アクリルフ ίラ- 平均粒径 (nm) 30 30 30 30 30 体積形状係数 0.40 0.40 0.40 0.40 0.40 添加量 (%) 6 6 6 6 6 層厚み (nm) 5 5 5 5 5
表 8 比較例 5 6 7 8 9 フィルム特性
層 A水接触角 (° ) 68 95 80 84 69 層 B表面粗さ (nm) 1.7 1.7 5.0 0.9 0.9 ブロッキング剥離力 破断 2 3 破断 破断 巻取性 〇
ート塗布適性 ◎ ◎ X X 〇 バックコ 〇 X 〇 〇 〇 ァープ特性
電磁変換特性 (dB) +8 +8 - 3 +9 +9
表 6から明らかなように、 本発明による積層熱可塑性樹脂フィルムは、 片面が 非常に平坦で、優れた電磁変換特性を示すとともに、巻取性が極めて良好であり、 力っ耐ブロッキング性が良好である。 一方、 表 8から明らかなように、 本発明の 要件を満たさないものは、 これらの特性を同時に満足できない。
本発明の第 2ベースフィルムは、 耐ブロッキング性、 巻取性、 加工適性に優れ、 特に金属蒸着薄膜型磁気記録媒体としたときに電磁変換特性に優れた積層熱可塑 性樹脂フィルムである。

Claims

請求の範囲
1. 一次粒子の平均粒径が 30〜 120 n mでありそして体積形状係数が 0. 1 〜πΖ 6である第 1不活性微粒子を含有するポリエステルフィルムであって、 フ イルム面の第 1不活性微粒子に由来する突起密度が 0. 5万〜 5. 0万個 Zmm 2でありかつフィルム面に突起を形成している第 1不活性微粒子の粒子凝集率が 4〜 20%であることを特徴とする磁気記録媒体用ベースポリエステルフィルム。
2. 上記ポリエステルフィルムの片面上に、 一次粒子の平均粒径が 10〜 50 n mでありそして体積形状係数が 0. 1〜πΖ6である第 2不活性微粒子を含有す る第 1塗膜層が積層されており、 そして第 1塗装膜の露出表面の第 2不活性微粒 子に由来する突起密度が 200万〜 2, 000万個 Zmm2でありかつ該露出表 面の表面粗さ (Ra) が 0. 1〜2. 0 nmである請求項 1に記載のベースポリ エステルフィルム。
3. 上記ポリエステルフィルムの片面上に、 一次粒子の平均粒径が 0. 1〜2. 0 mである第 3不活性微粒子を含有しかつ露出表面の表面粗さ (Ra) が 2. 5〜1 0. Onmである第 2ポリエステル層が積層されている請求項 1または 2 に記載のベースポリエステルフィルム。
4. 第 2ポリエステル層の厚みが 0. 1〜2. 0 mである請求項 3に記載のベ —スポリエステルフィルム。
5. 上記ポリエステルフィルムの片面上に、 一次粒子の平均粒径が 20〜80 n mである第 4不活性微粒子を含有しかつ露出表面の表面粗さ (Ra) が 2. 5〜 10. O nmである第 2塗膜層が積層されている請求項 1または 2に記載のベ一 スポリエステルフィルム。 53
6. 上記第 2ポリエステル層のポリエステルフィルムとの非接触表面上に、 一次 粒子の平均粒径が 20〜80 nmである第 4不活性微粒子を含有しかつ露出表面 の表面粗さ (R a) が 2. 5〜10. 0 nmである第 2塗膜層がさらに積層され ている請求項 3に記載のベー:
7. 第 2塗膜層の厚みが 8〜 50 nmである請求項 5に記載のベースポリエステ
8. 第 2塗膜層の厚みが 8〜 50 nmである請求項 6に記載のベースポリエステ ルフィルム。
9. ポリエチレンテレフ夕レートまたはポリエチレン一 2, 6—ナフタレンジ力 ルポキシレートをポリエステル素材としてなる請求項 1に記載のベースポリエス テルフィルム。
10. 露出表面の表面粗さ WR aが 0. l〜4nmである第 1熱可塑性樹脂層並 びに
一次粒子の平均粒径が 0. 1〜 2. 0 U. mの第 3不活性微粒子 0. 001〜 5 重量%および炭素数が 8以上の脂 モノカルボン酸と多価アルコールとのエス テルワックス 0. 001〜10重量%を含有しかつ露出表面の水接触角が 70〜 90° である第 2熱可塑性樹脂層
からなりそして第 1熱可塑性樹脂層と第 2熱可塑性樹脂層とは互いに積層さ れている、 ことを特徴とする磁気記録媒体用ベース積層熱可塑性樹脂フィルム。
11. 第 1熱可塑性樹脂層の第 2熱可塑性樹脂層と非接触の表面上に、 一次粒子 の平均粒径が 10〜50 nmでありそして体積形状係数が 0. 1〜π/6である 第 2不活性微粒子を 0. 5〜30重量%含有する第 1塗膜層が積層されている請 求項 10に記載のフィルム。
12. 第 1熱可塑性樹脂層が実質的に外部添加不活性微粒子を含有しない請求項 10に記載のフィルム。
13. 第 1熱可塑性樹脂層が一次粒子の平均粒径が 30〜 400 n mでありそし て体積形状係数が 0. 1〜; Z 6である不活性微粒子を 0. 001〜0. 2重量% で含有する請求項 10に記載のフィルム。
14. 第 1熱可塑性樹脂層がポリエステルを素材としてなる請求項 10に記載の フイリレム。
15. 第 1熱可塑性樹脂層がポリエチレンテレフタレートまたはポリエチレン一 2, 6—ナフタレンジカルボキシレートを素材としてなる請求項 10に記載のフ イルム。
16. 第 2熱可塑性樹脂層がポリエステルを素材としてなる請求項 10に記載の フィルム。
17. 第 2熱可塑' 14樹脂層がポリエチレンテレフ夕レートまたはポリエチレン— 2, 6—ナフ夕レンジカルボキシレートを素材としてなる請求項 10に記載のフ イルム。
18. 請求項 1のベースポリエステルフィルム、 このベースポリエステルフィル ムの一方の表面上に積層された請求項 2に記載の第 1塗膜層およびこのベースポ リエステルフィルムのもう一方の表面上に積層された第 2ポリエステル層からな るべ一スフイルム、 並びにこのベースフィルムの第 1■層上の磁性層からなる 磁気記録媒体。
1 9 . 請求項 1のベースポリエステルフィルム、 このベースポリエステルフィル ムの一方の表面上に積層された請求項 2に記載の第 1塗膜層およびこのベースポ リエステルフィルムのもう一方の表面上に積層された第 2塗膜層からなるベース フィルム、 並びにこのベースフィルムの第 1 層上の磁性層からなる磁気記録 媒体 c
2 0 . 請求項 1 0のベース積層熱可塑性樹脂フィルムおよびその第 2熱可塑性樹 脂層と非接触の第 1熱可塑性樹脂層の表面上に積層された請求項 1 1に記載の第 1 ^^層からなるベースフィルム並びにこのベースフィルムの第 1 層上の磁 性層からなる磁気記録媒体。
PCT/JP2000/003905 1999-06-22 2000-06-15 Support d'enregistrement magnetique et film de base associe WO2000079524A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2000623298 DE60023298T2 (de) 1999-06-22 2000-06-15 Magnetaufzeichnungsfilm und basisfilm dafür
US10/018,746 US6713155B1 (en) 1999-06-22 2000-06-15 Magnetic recording medium and base film for the same
EP20000937247 EP1195748B1 (en) 1999-06-22 2000-06-15 Magnetic recording medium and base film therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/174821 1999-06-22
JP17482199A JP2001006157A (ja) 1999-06-22 1999-06-22 磁気記録媒体用ポリエステルフィルム
JP17615599A JP3616731B2 (ja) 1999-06-23 1999-06-23 積層熱可塑性樹脂フィルム
JP11/176155 1999-06-23

Publications (1)

Publication Number Publication Date
WO2000079524A1 true WO2000079524A1 (fr) 2000-12-28

Family

ID=26496303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003905 WO2000079524A1 (fr) 1999-06-22 2000-06-15 Support d'enregistrement magnetique et film de base associe

Country Status (6)

Country Link
US (1) US6713155B1 (ja)
EP (1) EP1195748B1 (ja)
KR (1) KR100626129B1 (ja)
DE (1) DE60023298T2 (ja)
TW (1) TW580696B (ja)
WO (1) WO2000079524A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369229A4 (en) * 2001-02-23 2006-02-08 Teijin Ltd LAMINATED POLYESTER FOIL AND MAGNETIC RECORDING MEDIUM
US7048994B2 (en) 2001-02-23 2006-05-23 Teijin Limited Laminated polyester film and magnetic recording medium
US7368188B2 (en) * 2004-01-30 2008-05-06 Fujifilm Corporation Magnetic recording medium
US7381484B2 (en) * 2004-01-30 2008-06-03 Fujifilm Corporation Magnetic recording tape
US7438983B2 (en) * 2004-01-30 2008-10-21 Fujifilm Corporation Magnetic recording medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0208506D0 (en) 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
JP2005222602A (ja) * 2004-02-05 2005-08-18 Fuji Photo Film Co Ltd 磁気記録媒体
JP2006040334A (ja) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd 磁気記録媒体
JP2006114152A (ja) * 2004-10-15 2006-04-27 Fuji Photo Film Co Ltd 磁気記録媒体
US9139661B2 (en) * 2012-06-25 2015-09-22 Yagna Limited Methods for biocompatible derivitization of cellulosic surfaces
MY189231A (en) * 2016-06-24 2022-01-31 Toray Industries Biaxially oriented thermoplastic resin film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234842A (ja) * 1996-02-28 1997-09-09 Toray Ind Inc 積層フィルム
JPH09239829A (ja) * 1996-03-13 1997-09-16 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH09248879A (ja) * 1996-03-14 1997-09-22 Teijin Ltd 積層フイルム
JPH10157039A (ja) * 1996-11-29 1998-06-16 Teijin Ltd 積層フイルム
JPH10261218A (ja) * 1997-03-18 1998-09-29 Toray Ind Inc 磁気テープ
JPH10308012A (ja) * 1997-05-07 1998-11-17 Toray Ind Inc 磁気記録媒体用ポリエステルフィルム及び磁気記録テープ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147010A (en) 1978-05-10 1979-11-16 Matsushita Electric Ind Co Ltd Magnetic recording medium
EP0568008A1 (en) * 1992-04-30 1993-11-03 Diafoil Hoechst Co., Ltd Laminated polyethylene 2,6-naphthalate film
DE69322550T2 (de) * 1992-07-13 1999-07-15 Diafoil Hoechst Co Ltd Polyesterfilm
JP3195219B2 (ja) 1996-02-22 2001-08-06 帝人株式会社 積層フイルム
JP3200347B2 (ja) * 1996-02-05 2001-08-20 帝人株式会社 積層フイルム
EP0787579B1 (en) * 1996-02-05 2002-10-09 Teijin Limited Biaxially oriented laminate films and magnetic recording media
EP0811478B1 (en) * 1996-06-06 2002-04-24 Teijin Limited Laminate film and magnetic recording medium using the same
DE69726801T2 (de) * 1996-07-31 2004-10-07 Teijin Ltd Verbundfilm
KR100448034B1 (ko) * 1997-05-20 2005-06-01 데이진 가부시키가이샤 이축배향적층전방향족폴리아미드막및자기기록매체
DE69927458T2 (de) * 1998-05-06 2006-07-13 Teijin Ltd. Biaxial orientierte polyesterverbundfolie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234842A (ja) * 1996-02-28 1997-09-09 Toray Ind Inc 積層フィルム
JPH09239829A (ja) * 1996-03-13 1997-09-16 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH09248879A (ja) * 1996-03-14 1997-09-22 Teijin Ltd 積層フイルム
JPH10157039A (ja) * 1996-11-29 1998-06-16 Teijin Ltd 積層フイルム
JPH10261218A (ja) * 1997-03-18 1998-09-29 Toray Ind Inc 磁気テープ
JPH10308012A (ja) * 1997-05-07 1998-11-17 Toray Ind Inc 磁気記録媒体用ポリエステルフィルム及び磁気記録テープ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1195748A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369229A4 (en) * 2001-02-23 2006-02-08 Teijin Ltd LAMINATED POLYESTER FOIL AND MAGNETIC RECORDING MEDIUM
US7048994B2 (en) 2001-02-23 2006-05-23 Teijin Limited Laminated polyester film and magnetic recording medium
US7368188B2 (en) * 2004-01-30 2008-05-06 Fujifilm Corporation Magnetic recording medium
US7381484B2 (en) * 2004-01-30 2008-06-03 Fujifilm Corporation Magnetic recording tape
US7438983B2 (en) * 2004-01-30 2008-10-21 Fujifilm Corporation Magnetic recording medium

Also Published As

Publication number Publication date
TW580696B (en) 2004-03-21
US6713155B1 (en) 2004-03-30
DE60023298D1 (de) 2006-03-02
DE60023298T2 (de) 2006-07-20
EP1195748A4 (en) 2003-07-16
EP1195748A1 (en) 2002-04-10
KR100626129B1 (ko) 2006-09-20
EP1195748B1 (en) 2005-10-19
KR20020022704A (ko) 2002-03-27

Similar Documents

Publication Publication Date Title
WO2000079524A1 (fr) Support d'enregistrement magnetique et film de base associe
KR100488228B1 (ko) 적층필름
JP3920033B2 (ja) 積層ポリエステルフィルム
JP3195219B2 (ja) 積層フイルム
JP3616731B2 (ja) 積層熱可塑性樹脂フィルム
JP4266528B2 (ja) 積層ポリエステルフィルム
JP2001006157A (ja) 磁気記録媒体用ポリエステルフィルム
JP2006027097A (ja) 二軸配向積層ポリエステルフィルム
JP2002160337A (ja) ポリエステルフィルム
JP2002248722A (ja) 積層ポリエステルフィルム
JP3626587B2 (ja) 磁気記録媒体用ポリエステルフイルム
JP3195235B2 (ja) 積層フィルム
JP3797903B2 (ja) 2軸配向ポリエステルフィルムの製造方法および磁気記録媒体の製造方法
JP3942410B2 (ja) 積層ポリエステルフィルムおよび磁気記録媒体
JP4014392B2 (ja) 積層ポリエステルフィルム
JP4097503B2 (ja) 積層ポリエステルフィルム
JP3598016B2 (ja) 磁気記録媒体用複合ポリエステルフィルムおよび磁気記録媒体
JP3856630B2 (ja) 積層熱可塑性樹脂フィルム
JP3856626B2 (ja) 積層熱可塑性樹脂フィルム
JP3933360B2 (ja) 積層熱可塑性樹脂フィルム
JP2003103739A (ja) 積層ポリエステルフィルムおよび磁気記録媒体
JP4746163B2 (ja) 積層フィルム
JP2004195825A (ja) 積層ポリエステルフィルム、フィルムロールおよび磁気記録媒体
JP2003136656A (ja) 積層ポリエステルフィルム
JPH106449A (ja) 積層フイルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017016117

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018746

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000937247

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017016117

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000937247

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000937247

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017016117

Country of ref document: KR