WO2000030165A1 - Procede et dispositif d'elimination d'un film de photoresine - Google Patents

Procede et dispositif d'elimination d'un film de photoresine Download PDF

Info

Publication number
WO2000030165A1
WO2000030165A1 PCT/JP1999/006324 JP9906324W WO0030165A1 WO 2000030165 A1 WO2000030165 A1 WO 2000030165A1 JP 9906324 W JP9906324 W JP 9906324W WO 0030165 A1 WO0030165 A1 WO 0030165A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist film
film removing
substrate
gas
solution
Prior art date
Application number
PCT/JP1999/006324
Other languages
English (en)
French (fr)
Inventor
Seiji Noda
Masaki Kuzumoto
Izumi Oya
Makoto Miyamoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE69936131T priority Critical patent/DE69936131T9/de
Priority to KR1020007007697A priority patent/KR20010034087A/ko
Priority to EP99972372A priority patent/EP1049142B1/en
Publication of WO2000030165A1 publication Critical patent/WO2000030165A1/ja
Priority to US09/614,252 priority patent/US6517998B1/en
Priority to US10/134,508 priority patent/US7965372B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor

Definitions

  • the present invention relates to a method for removing an organic film, and more particularly to a method for removing a photoresist film, which is an organic polymer compound used in a lithography process of a semiconductor device or the like, and an apparatus therefor.
  • Photoresist materials are generally used in the manufacturing process of semiconductors such as integrated circuits, transistors, liquid crystals or diodes to form photolithography steps to form fine patterns and to form Z or subsequent electrode patterns. Used in the etching process.
  • a silicon oxide film is formed in a desired pattern on a semiconductor substrate such as a silicon substrate (especially, a silicon substrate is referred to as a wafer)
  • a silicon substrate especially, a silicon substrate is referred to as a wafer
  • a photoresist material suitable for the pattern is applied on the oxide film to form a photoresist film.
  • a photomask corresponding to a desired pattern is disposed on the photoresist film and exposed.
  • a photoresist film having a desired pattern is obtained.
  • the oxide film is removed according to the obtained photoresist film pattern.
  • the desired oxide film pattern is formed by cleaning the surface of the wafer.
  • oxygen gas plasma is generally generated by injecting oxygen gas under vacuum and high voltage, and the photoresist film is formed by the reaction between the gas plasma and the photoresist film. Decompose and remove.
  • this method is expensive because an oxygen gas plasma is generated. There are problems such as the necessity of a generator and the damage of the wafer itself including the element due to the charged particles present in the plasma.
  • a mixture of hot concentrated sulfuric acid and hydrogen peroxide releases oxidatively decomposed substances according to the following scheme.
  • hydrogen peroxide is added to hot sulfuric acid heated to around 140 ° C. At this time, the formula:
  • Peruokiso sulfate H 2 S 0 5: - in general, also referred to as Caro's acid
  • oxygen atom O
  • JP-A-57-180132 As a method for overcoming the problems (1) and (2), a method of removing a photoresist film using an ozone gas acid as an oxidizing agent has been proposed (JP-A-57-180132, etc.).
  • the method described in JP-A-57-180132 discloses an ozone-containing gas.
  • the inside of a quartz container 7 provided on a heater 11 is filled with hot concentrated sulfuric acid 5 heated to about 110 ° C., and a plurality of gas jets are provided.
  • a quartz air supply tube 112 having an orifice 3 is provided.
  • the raw material gas (usually oxygen gas) supplied from the gas introduction pipe 111 outside the quartz container 7 is converted into oxygenated ozone by the ozone generator 1, and the hot concentrated sulfuric acid 5 is ejected through the quartz air supply pipe 112.
  • ozone gas and concentrated sulfuric acid react with each other to generate peroxosulfuric acid and oxygen atoms. Due to these strong oxidizing properties, the photoresist film on the surface of the processing substrate 8 (which is held by the substrate cassette 9) immersed in hot concentrated sulfuric acid is removed.
  • the method described in this publication is characterized by the fact that water is not generated during oxidative decomposition, so that the sulfuric acid concentration does not change and the frequency of sulfuric acid exchange can be reduced.However, since a large amount of concentrated sulfuric acid is used, There was another problem that the cost was high. In addition, this method and apparatus use high-temperature concentrated sulfuric acid, so there is a high danger in operation, as in the conventional method, and oxidizing agent vapor is generated by bubbling of ozonized oxygen. Strong ventilation was required.
  • the present invention solves the above-mentioned problems in the conventionally known photoresist film removing method and apparatus by reducing the amount of raw materials used and the cost for ventilating equipment, and is environmentally friendly and reduces the photoresist film thickness. It is an object of the present invention to provide a method of removing a photoresist film having an improved removal rate and an apparatus used for the method.
  • ozonated gas J used in the present invention refers to a gas containing oxygen containing a specific amount of ozone gas
  • sealed system used herein means a thermodynamically open system ( open system), meaning that the introduced gases and liquids and the gas or vapor generated in the photoresist film removal process of the present invention do not release or scatter out of the system as they are during operation. I do.
  • a method in which The photoresist film removing agent containing the ozonized gas and the photoresist film removing solution is evenly and continuously supplied from the photoresist film removing agent supply plate disposed opposite to the photoresist film.
  • a method of removing the photoresist film by supplying the photoresist film intermittently.
  • Ozonized gas used in the present invention at least 5 moles of the entire O zone Ngasu 0/0, preferably in an amount of 5 to 100 mol%.
  • the distance between the photoresist film surface on the substrate and the photoresist film removing agent supply plate may be 1-5 mm.
  • the ozonized gas and the photoresist film removing solution can be supplied separately or as a mixture.
  • the ozonized gas is: It can be supplied in the state of a high-pressure gas of up to 5 atm.
  • the photoresist film removing solution suitable in the present invention can be selected from organic solvents having low reactivity with ozone, including saturated alcohols, ketones, and carboxylic acids.
  • the temperature of the photoresist film removing solution to be used and the temperature at a point 5 mm or more from the substrate are set lower than the temperature of the substrate surface.
  • the method of the present invention may include means for generating an electric field between the photoresist film removing agent supply plate and the substrate.
  • the photoresist film removing solution can be atomized.
  • the present invention relates to a photoresist film removing apparatus including a resist film removing agent supply plate. Ozone gas and photoresist film removal solution used as a photoresist film remover are supplied to the substrate surface continuously or intermittently from the same or separate supply ports provided on the photoresist film remover supply plate. can do.
  • the reaction vessel may be composed of stainless steel or Teflon-coated stainless steel, Teflon resin, ceramic or Teflon-coated ceramic, or a combination thereof.
  • the ozonized gas used is at least 5 moles of ozone gas. / 0 , preferably 5-100 mol. / 0 content.
  • the ozonized gas and the photoresist film removing solution can be mixed in advance and used as a photoresist film removing agent.
  • the ozonized gas and the photoresist film removing solution are mixed in advance. Supply to the supply port of the photoresist film remover supply plate.
  • the distance between the photoresist film surface and the photoresist film removing agent supply plate is between 1 and 5 mm.
  • the apparatus may include means for heating the substrate stage and means for cooling the Z or photoresist film removal solution. By making full use of these, the temperature of the photoresist film removing solution used and the temperature at a point 5 mm or more from above the substrate can be set lower than the temperature on the substrate surface.
  • the apparatus of the present invention may include means for heating the substrate stage and means for cooling the Z or photoresist film removing solution.
  • the ozonized gas introduced into the apparatus of the present invention is preferably a high-pressure gas of 1 to 5 atm.
  • Suitable photoresist film removal solutions for use in the apparatus of the present invention are selected from organic solvents with low reactivity with ozone, including saturated alcohols, ketones, and carboxylic acids.
  • the apparatus of the present invention may also include means for generating an electric field between the photoresist film remover supply plate and the substrate.
  • FIG. 1 is a schematic sectional view showing a photoresist film removing apparatus (A 1) according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing the maximum removal rate with respect to the thickness of a photoresist film removal solution in the method of the present invention.
  • FIG. 3 is a graph showing the maximum removal rate with respect to the distance ( ⁇ ) between the photoresist film and the photoresist film removing agent supply plate and the uniformity on the substrate surface ⁇ ⁇ ⁇ ⁇ in the method of the present invention.
  • FIG. 4 is a schematic cross section showing a photoresist film removing apparatus ( ⁇ 2) of the present invention capable of generating an electric field between a photoresist film and a photoresist film removing agent supply plate according to the second embodiment.
  • ⁇ 2 a photoresist film removing apparatus
  • FIG. 5 is a schematic sectional view showing a photoresist film removing apparatus (A 3) according to the third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a photoresist film removing apparatus (4) of the present invention for supplying an ozonized gas-photoresist film removing solution mixed system according to the fourth embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a photoresist film removing apparatus (5) of the present invention for supplying an ozonized gas-photoresist film removing solution mixed system according to the fourth embodiment.
  • FIG. 8 is a schematic sectional view showing a photoresist film removing apparatus ( ⁇ 6) of the present invention according to the fifth embodiment.
  • Figure 9 shows the cleaning equipment used in the method described in JP-A-57-180132, in which the ozone-containing gas is bubbled in hot sulfuric acid to remove the photoresist film coated on the substrate or the insulating layer. It is a typical sectional view showing.
  • FIG. 1 shows one embodiment of the apparatus used in the method of the present invention.
  • This is an example of an apparatus (usually referred to as a “single-wafer processing apparatus" in this field) that inserts and processes a substrate having a photoresist film on its surface one by one.
  • the photoresist film removed in the present invention is a film formed from a resist material containing an organic polymer compound used in a semiconductor element manufacturing process.
  • it includes a film modified by heat, a film whose surface has been modified by high concentration doping, and a film having an inorganic substance adhered to the surface in an etching step.
  • the substrate having the above photoresist film on its surface is not particularly limited as long as it is generally used for the production of semiconductor devices. For example, silicon wafers, glass substrates for liquid crystal display devices, glass substrates for electronic substrates Epoxy substrates and the like can be mentioned.
  • the apparatus (A 1) of the present invention comprises a substrate stage 40 in which a substrate 8 is fixed and whose axis can rotate around its center of gravity, in a space enclosed by a reaction vessel 6, and A gas Z solution supply plate 30 arranged opposite to the substrate stage 40 is provided.
  • a heating means 41 capable of heating the substrate is provided inside the substrate stage 40.
  • the rotation and heating of the substrate stage 40 can be controlled by a controller 42 arranged below the reaction tank 6.
  • an ozonized gas supply pipe 31 is provided at the center, and a photoresist film removing solution reservoir 32 is provided around the ozonized gas supply pipe 31, and a photoresist is provided below the solution reservoir 32.
  • a film removing solution injection hole 33 is provided.
  • a gas containing oxygen which is a raw material gas, is supplied from a supply pipe 111, and is at least 5 mol%, preferably 5 mol% of the gas containing oxygen via the ozone generator 1. /. It is obtained by ozonizing up to 100 mol%.
  • the supply amount of the gas containing oxygen to be introduced into the ozone generator may vary depending on the required introduction amount of the ozonized gas and the subsequent supply amount of the ozonized gas to the substrate.
  • the ozonized gas is adjusted to a predetermined pressure and supplied toward the substrate 8 via the supply pipes 112 and 31.
  • the photoresist film removing solution that can be used in the present invention is: pure water; an acidic aqueous solution such as sulfuric acid, hydrochloric acid, nitric acid, acetic acid, and hydrogen peroxide; an alkaline aqueous solution such as ammonium hydroxide; ketones such as acetone, Organic solvents containing alcohols such as propanol; and mixtures thereof, which are poorly reactive with ozone. It is most desirable to use pure water because of problems such as waste liquid treatment. To improve the film removal rate or to remove contaminants on the deteriorated film or substrate after high-concentration ion doping, a solvent other than pure water or a mixture of the above solvents may be used.
  • the photoresist film removing solution is introduced into the photoresist film removing solution reservoir 32 in the reaction layer 6 through the supply pipe 114, and is ejected toward the substrate 8 from the lower ejection hole 33 as necessary.
  • the substrate is fixed to the substrate stage 40.
  • the ozonized gas and the photoresist film removing solution are supplied toward the substrate 8 from the supply pipe 31 and the injection hole 33, respectively.
  • the ozonized gas and the solution supplied from the supply pipe 31 spread from the center of the substrate 8 toward the end and come into contact with all the photoresist films.
  • the photoresist film on the substrate surface in contact with the ozonized gas is oxidatively decomposed and first reduced in molecular weight.
  • a film of the photoresist film removing solution is formed on the photoresist film.
  • the photoresist film having a reduced molecular weight is dissolved in the photoresist film removing solution film, and is washed away with the supply of a further solution, whereby the photoresist film can be removed from the substrate surface.
  • the ozonized gas is supplied as a constant-pressure high-pressure gas from a position corresponding to the center of the substrate.
  • the present inventors have found that there is a correlation between the pressure of the supplied ozonized gas and the photoresist film removal rate. It was found that as pressure increased, the removal rate improved almost proportionally. Therefore, in the present invention, the zonized gas is preferably used as a high-pressure gas having a constant pressure in the range of 1 to 5 atm, in consideration of the reliability and safety of the equipment used.
  • the ozonized gas it is preferable to continuously supply the ozonized gas.
  • the ozone gas By continuously supplying the ozonized gas, even if the ozone gas in the ozonized gas comes into contact with the photoresist film at each part of the substrate to cause an oxidative decomposition reaction and is consumed, the ozone gas is supplied uniformly over the entire substrate. The amount can be maintained, and as a result, uniform photoresist film removal can be achieved. It is desirable that the ozone gas in the ozonized gas is consumed only in the reaction of removing the photoresist film. However, since the ozone gas has high reactivity, it is used with materials other than the photoresist film (for example, the inner wall of the reaction tank and equipment parts).
  • the reactor parts are made of stainless steel or Teflon-coated stainless steel, Teflon resin, ceramic or Teflon-coated ceramic, or a combination thereof. Constitute.
  • a photoresist film removing solution is supplied from a plurality of photoresist film removing solution injection holes 33 provided on the gas Z solution supply plate 30.
  • the injection holes 33 have a diameter of about 1 m or less and 10 or more per substrate area.
  • Figure 2 shows the relationship between the thickness (mm) of this solution and the maximum photoresist film removal rate.
  • the film thickness of the solution was measured by visual observation. From FIG. 2, it can be seen that a sufficient photoresist film removal rate can be obtained when the solution thickness is 1 mm or less. This is considered to be because the thinner the solution film formed on the photoresist film, the easier the ozone gas permeates.
  • the photoresist film removing solution is preferably intermittently (most preferably: every! To 360 seconds). Supply.
  • the present inventors have set the distance between the gas Z solution supply plate 30 including the ozonized gas supply pipe 31 and the surface of the substrate 8 (represented by ⁇ in FIG. 1). I also found things to be affected.
  • FIG. 3 shows the change in the in-plane uniformity of the maximum removal rate of the photoresist film and the removal rate on the substrate with respect to the distance (mm). From Fig. 3, it can be seen that the maximum removal rate is higher as the distance is shorter, and the in-plane uniformity is higher as the distance is wider. This means that referring to FIG. 1, the shorter the distance between the gas solution supply plate 30 and the surface of the substrate 8, the faster the flow rate of the ozonized gas flowing through the gap becomes, and the apparent This is considered to be because the rate of oxidative decomposition of the film increases due to the increase in the supply amount of ozone gas.
  • the distance ( ⁇ ) between the gas Z solution supply plate 30 and the surface of the substrate 8 is preferably set in a range of about:!
  • the substrate may be heated.
  • the heating of the substrate 8 is performed by a heating means 41 provided inside the substrate stage 40 (FIG. 1).
  • the temperature of the heating means 41 can be adjusted by a control device 42 arranged below the reaction vessel 6.
  • the higher the heating temperature of the substrate the more the oxidative decomposition reaction between the photoresist film and the ozone gas is accelerated.
  • the heating temperature of the substrate may be changed depending on the type of the substrate to be used. However, it is usually preferable to set the temperature to about 300 ° C. or less for a silicon wafer and to about 100 ° C. or less for a glass substrate.
  • the decomposition of ozone gas is also promoted, the release of highly oxidatively reactive oxygen atoms is increased, and the decomposition and removal rate of the photoresist film is accelerated.
  • the temperature rise near the substrate increases The temperature of the ozonated gas supply pipe can also increase. As a result, the ozone gas is thermally decomposed inside the supply pipe, and active oxygen atoms may not reach the substrate surface.
  • the temperature of the photoresist film removing solution to be used is lowered by the cooler 115 and introduced into the solution reservoir 32, so that the ozonized gas adjacent to the solution reservoir 32 is removed.
  • the supply pipe 31 is cooled, and the thermal decomposition of the ozone gas other than near the surface of the substrate 8 can be prevented.
  • the substrate in order to more easily supply the ozonized gas and the photoresist film removing solution to the entire surface of the substrate, the substrate is rotated about the center of gravity of the substrate by rotating the substrate stage 40 in FIG. Is also good.
  • the rotation of the substrate stage 40 can be controlled to an arbitrary speed by the control device 42.
  • the supplied excess photoresist film removing solution 5 may be recirculated after being collected at the bottom of the reaction tank 6.
  • the recovered solution is After removing the photoresist film residue and the like in the solution through a filter (not shown) or the like, the solution can be reused through the supply pipe 114 from the cooler 115 and the pump 4.
  • the excess ozonized gas is introduced into the exhausted ozonizer 13 through the ozonized gas exhaust pipe 112 ', and the remaining ozone gas is returned to oxygen and then discharged to the atmosphere.
  • Environmental pollution can be prevented (see Figure 1).
  • ADVANTAGE OF THE INVENTION According to this invention, since a film
  • the removal rate of the photoresist film can be greatly improved by reducing the thickness of the supplied photoresist film removal solution.
  • an electric field may be formed between the gas Z solution supply plate 30 and the substrate as shown in FIG.
  • FIG. 4 shows an example of an apparatus (A 2) including a means for generating an electric field between the supply plate 30 and the substrate 8 on the substrate stage 40.
  • a high voltage of several kV or more can be applied to the gas / solution supply plate 30, and the substrate stage 40 is grounded.
  • the photoresist film removing solution is supplied continuously or intermittently, preferably intermittently. It is desirable to apply the high voltage to the gas Z solution supply plate 30 when supplying the photoresist film removing solution from the injection holes 33.
  • the means for generating the electric field shown in FIG. 4 is merely an example, and the present invention is not limited to this. Also, in the device (A 2) in FIG. Except for the described means, parts, and functions, it may be the same as the device (A 1) described in the first embodiment.
  • the ozonized gas is supplied from the supply pipe 31 at the center of the substrate, and the photoresist film removing solution is supplied from the injection holes 33 around the supply pipe 31.
  • the supply apparatus (A1 and A2 shown in FIGS. 1 and 2) has been described, the supply positions of the ozonized gas and the photoresist film removing solution may be switched as necessary.
  • a photoresist film removing solution is supplied from a supply pipe 31 at the center of the substrate, and an zoning gas is supplied from an injection hole 33 disposed around the supply pipe 31. May be supplied.
  • Embodiment 1 it is desirable to supply the ozonized gas continuously and the photoresist film removing solution intermittently.
  • the conditions for forming the ozonized gas and the type of the photoresist film removing solution are described in Embodiment 1. May be the same as
  • the apparatus used in the third embodiment may be the same as the first embodiment except for the means and conditions related to the supply described above.
  • the ozonized gas and the photoresist film removing solution can be supplied to the reaction vessel separately or as a mixture.
  • Embodiments 1 to 3 have described the method and apparatus for separately supplying the ozonized gas and the photoresist film removing solution.
  • a method of mixing the ozonized gas and the photoresist film removing solution and supplying the mixed solution to the reaction tank, and The equipment for this is described ( Figures 6 and 7).
  • the ozonized gas generated by the ozone generator 1 is supplied to the ejector 12 through the supply pipe 111, and at the same time, the solution for removing the photoresist film is also supplied. It is introduced into ejector 2 through pipe 114. After mixing the ozonized gas and the photoresist film removing solution in the ejector 12, the ozonized gas mixed liquid is supplied to the supply plate 30, (FIG. 6) or 31 ′ (FIG. 7) via the supply pipe 112. I do. That is, in the device (A4) of FIG.
  • a solution reservoir 32 ′ and an injection hole 33 ′ similar to the device (A 1) are provided, and an ozonized gas-mixed liquid can be ejected toward the substrate from the injection hole 33 ′. Further, in the apparatus (A5) shown in FIG. 7, the ozonized gas-mixed liquid can be supplied directly from the supply pipe 31 'arranged at a position corresponding to the central part of the substrate.
  • the concentration of ozonized gas mixed into the photoresist film removing solution varies depending on the ozone gas content in the ozonized gas and the type of solution used.
  • the solution is pure water, it is preferably saturated and may range from about 10 to 200 ppm at 20 ° C.
  • the ozonized gas in order to increase the removal rate of the photoresist film, it is desirable to supply the ozonized gas continuously and the photoresist film removal solution intermittently. That is, in the apparatus (A4 and A5) of the present invention, for example, an ozonized gas mixed solution and a resist removal solution containing no ozonized gas can be alternately supplied to the substrate surface.
  • the substrate can be rotated around the center of gravity, similarly to the first embodiment, in order to facilitate the diffusion of the solution throughout the substrate.
  • the devices, functions, conditions, and the like other than those specially described in the fourth embodiment may be the same as those described in the first embodiment.
  • the apparatus (A 6) of the present invention when the amount of the ozonized gas supplied from the ozone generator 1 can be secured in a sufficiently large amount, the apparatus (A 6) of the present invention As shown in FIG. 8, the end opening of the ozonized gas supply pipe 31 may have a trumpet shape toward the substrate 8.
  • the tip opening of the ozonized gas supply pipe 31 gradually spreads radially toward the substrate at a gradient of about lZr. May be.
  • the radial spread may have a curved surface portion such as a trumpet shape.
  • a spray hole (not shown) for spraying the photoresist film removing solution onto the substrate 8 can be provided along the opening at the front end.
  • the photoresist film removing solution can be circulated, the cost for the ventilation equipment and the cost of the raw materials are significantly reduced. Can be reduced. In addition, since it is equipped with an exhaust device, environmental pollution due to excessive ozone gas emission can be prevented.
  • the removal rate of the photoresist can be improved by several steps as compared with the conventional method.
  • the ozonized gas and the photoresist film removing solution can be supplied separately or as a mixture, and in each case, the ozonized gas is supplied continuously and the photoresist film removing solution is intermittent (ie, intermittent). Since it is possible to supply the photoresist, the removal rate of the photoresist can be further increased.
  • the device according to the second aspect of the present invention is made of a material that does not react with ozone gas, the ozonized gas can be effectively consumed only for removing the photoresist film.
  • the ozonized gas and the photoresist film removing solution used as the photoresist film removing agent are continuously or intermittently supplied from the same or separate supply ports provided on the photoresist film removing agent supply plate. Can be supplied to the substrate surface.
  • Ozonized gas used is at least 5 moles of the total ozone 0/0, Preferably 5 to 100 moles. / o content.
  • the ozone gas and the photoresist film removing solution are mixed beforehand and then act on the photoresist film, whereby the film removing speed can be further increased.
  • the apparatus of the present invention includes a means for heating the substrate stage and a means for cooling the Z or photoresist film removing solution, the temperature of the used photoresist film removing solution and the point at least 5 mm away from the substrate. Can be set lower than the temperature of the substrate surface, and the film removal rate can be further improved. Since the apparatus of the present invention can supply the ozonized gas in the state of a high-pressure gas of 1 to 5 atm, it is possible to cause a sufficient amount of the ozone gas to act on the photoresist film. Further, a suitable photoresist film removing solution used in the present invention can be selected from general-purpose solutions.
  • means for generating an electric field between the photoresist film removing agent supply plate and the substrate to atomize the photoresist film removing solution can be incorporated in the apparatus of the present invention. It promotes the oxidative decomposition rate of ozone, resulting in higher film removal rates.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Weting (AREA)

Description

明 細 書 フォトレジスト膜除去方法および装置 技術分野
本発明は、 有機物被膜の除去方法、 特に半導体装置等のリソグラフィー工程に 使用されている有機高分子化合物であるフォトレジスト膜の除去方法およびその 装置に関するものである。
背景技術
フォトレジスト材料は、 一般に、 集積回路、 トランジスタ、 液晶あるいはダイ ォード等の半導体の製造プロセスにおいて、 微細なパターンを形成するためのフ ォトリソグラフィー工程および Zまたはそれに後続する電極パターンを形成する ためのエツチング工程で使用されている。
例えば、 シリコン基板等の半導体基板 (特に、 シリコン基板はゥエーハと呼ば れる。 ) 上に所望のパターンでシリコン酸ィ匕膜を形成する場合、 先ず、 基板表面 に酸化膜を形成し、 清浄化した後、 その酸化膜上にパターンに適したフォトレジ スト材料を塗布し、 フォトレジスト被膜を形成する。 次に、 所望のパターンに対 応したフォトマスクをフォトレジスト被膜上に配し、 露光する。 次いで、 現像ェ 程に付すことにより、 所望のパターンのフォトレジスト膜が得られる。 その後、 エッチング工程において、 得られたフォトレジスト膜パターンに従って酸化膜を 除去する。 最後に、 フォトレジスト膜を取り除いた後、 ゥエーハ表面の清浄化を 行うことにより、 所望の酸化膜パターンが形成される。
上記エッチング工程において、 ゥェ一ハ表面から不要なフォトレジスト膜を除 去する方法としては、 ①酸素ガスプラズマによる方法;および②種々の酸化剤を 用いた方法が知られている。
酸素ガスプラズマによる方法 (①) は、 一般に、 真空および高電圧下に酸素ガ スを注入することにより、 酸素ガスプラズマを発生させ、 そのガスプラズマとフ オトレジスト膜との反応により、 フォトレジスト膜を分解し、 除去するものであ る。 しかしながら、 この方法では、 酸素ガスプラズマを発生させるために高価な 発生装置が必要であること、 および前記プラズマ中に存在する荷電粒子により、 素子を含むゥエーハ自体がダメージを受けること等の問題があった。
フォトレジスト材料を分解するための種々の酸化剤を用いる方法 (②) として は、 熱濃硫酸あるいは熱濃硫酸と過酸化水素との混合液を酸化剤として用いる方 法が既知である。
しかしながら、 熱濃硫酸を用いる場合、 濃硫酸を 1 5 0 °C程度まで加熱する必 要があるため、 非常に危険性が高いという不利益がある。
熱濃硫酸と過酸化水素との混合液は、 以下のスキームに従って酸化分解物質を 放出する。 先ず、 1 4 0 °C付近に加熱した熱硫酸に過酸化水素を添加する。 この 際、 式:
H 2 S 04 + H z 02 ^ H 2 S O s + H 20 (1)
H 202 → O + H 20 (2)
により、 ペルォキソ硫酸 (H 2 S 0 5 :—般に、 カロ酸とも呼ばれる) と酸素原 子 (O) が発生する。 これら両者の強い酸化性により、 有機フォトレジスト膜が 灰化処理されて無機物質と化し、 剥離除去されるものである。
しかしながら、 上記の 2式から分かるように、 この方法では、 熱硫酸に過酸化 水素を添加する度に水が生成して硫酸媒体を希釈するため、 混合後の熱濃硫酸の 濃度が経時的に低下するという問題があった。 また、 この方法は、 前者と同様に、 高温の濃硫酸の使用および過酸化水素との混合時に発熱が生じることなど、 非常 に危険性の高い方法であること、 さらにはクリーンルーム内で強い換気が必要で あるため空調設備費用が高いこと等の不利益があった。
上記 »L酸等以外のフォトレジスト膜酸化分解剤としては、 1 0 6液と呼ばれ る非水混和性のフォトレジスト膜除去専用液 (ジメチルスルホキシド 3 0 %:モ ノエタノールアミン 7 0 %) 等も開発されているが、 これらは、 前記熱濃硫酸や 硫酸/過酸化水素混合液に比べて酸化分解性が低レ、こと、 および非水混和性であ るために廃液処理が困難であることなどの問題点を有して ヽた。
上記①および②に関する問題点を克服する方法として、 酸化剤としてオゾンガ ス 酸系を用いるフォトレジスト膜除去方法が提案されている (特開昭 57 - 180132号公報等) 。 前記特開昭 57- 180132号公報に記載の方法は、 オゾン含有ガ スを熱硫酸中でパブリングさせて、 基板または絶縁物層上に被覆した有機物質
(いわゆる、 レジスト膜) あるいは無機物質を剥離する方法であり、 その方法に 使用する洗浄装置 (断面図:図 9 ) も開示されている。
図 9に示す前記公報記載の洗浄装置は、 ヒーター 11上に設置された石英容器 7 内部には、 約 1 1 0 °Cに加熱された熱濃硫酸 5が満たされ、 かつ複数個のガス噴 射孔 3を有する石英送気管 112が装備されている。 石英容器 7外部のガス導入管 111 から供給された原料ガス (通常、 酸素ガス) をオゾン発生器 1によりオゾン化酸 素に変換し、 それを石英送気管 112を通じて熱濃硫酸 5を中に噴出することにより、 オゾンガスと濃硫酸が反応し、 ペルォキソ硫酸と酸素原子が生成される。 これら の強い酸化性により、 熱濃硫酸中に浸漬された処理基板 8 (これは基板カセット 9 により保持されている) 表面のフォトレジスト膜を除去する。
この公報に記載の方法では、 酸化分解時に水が発生しないため、 硫酸濃度が変 化しないことから、 硫酸の交換頻度を低減できることを特徴としているが、 濃硫 酸を多量に使用するため、 原料コストが高いという問題点もあった。 また、 この 方法および装置では、 高温の濃硫酸を使用するため、 従来法と同様に、 作業上の 危険性が高く、 かつオゾン化酸素のバブリングにより酸化剤の蒸気が発生するた め、 非常に強い換気が必要であった。
したがって、 本発明は、 従来既知のフォトレジスト膜除去方法や装置における 上記問題点を解決するために、 原料の使用量や換気設備のためのコストが低減で き、 環境に優しくかつフォトレジスト膜の除去速度の向上したフォトレジスト膜 除去方法おょぴそれに使用する装置を提供することを目的とする。
用語の定義
本発明において使用する 「オゾン化ガス J とは、 特定の量のオゾンガスを含有 する酸素を含むガスをいう。 また、 ここにおいて、 「密閉された系」 は、 熱力学 的には開いた系 (open system) であるが、 導入された気体および液体並びに本 発明のフォトレジスト膜の除去工程において発生するガスまたは蒸気等が、 作業 中に、 そのままの形態で系外へ放出 ·飛散しないものを意味する。
発明の開示
本発明は、 第 1の態様として、 密閉された系内において、 基板表面上に塗布さ れたフォトレジスト膜に、 該フォトレジスト膜と対向して配置されたフォトレジ スト膜除去剤供給板から、 オゾン化ガスおよびフォトレジスト膜除去溶液を含む フォトレジスト膜除去剤を均等にかつ連続的または断続的に供給して該フォトレ ジスト膜を除去する方法を提供する。 本発明で使用されるオゾン化ガスは、 ォゾ ンガスを全体の少なくとも 5モル0 /0、 好ましくは 5〜100モル%の量で含有する。 本発明の方法では、 基板上のフォトレジスト膜表面とフォトレジスト膜除去剤 供給板との間の距離は、 l〜5 mmであってよい。 両者の距離を前記の範囲とす ることで、 本発明の方法によるフォトレジスト膜の除去速度をより高めることが できる。
本発明の方法では、 オゾン化ガスとフォトレジスト膜除去溶液を別個にまたは 混合して供給できる。 また、 オゾン化ガスは、 :!〜 5気圧の高圧ガスの状態で供 給され得る。
本発明において好適なフォトレジスト膜除去溶液は、 飽和アルコール、 ケトン、 カルボン酸を含むオゾンとの反応性の乏しい有機溶媒から選択できる。
本発明の方法では、 使用するフォトレジスト膜除去溶液の温度および基板上か ら 5 mm以上離れた点における温度が基板表面の温度よりも低く設定することが 好ましい。
本発明では、 オゾン化ガスは連続して供給し、 フォトレジスト膜除去溶液は断 続的に供給するのが最も好ましい。
さらに、 本発明の方法は、 フォ トレジスト膜除去剤供給板と基板との間に電界 を生じさせる手段を含んでもよい。 この手段により、 フォトレジスト膜除去溶液 が微粒化し得る。
本発明の第 2の態様は、 オゾン発生器および排気処理装置を装備した反応槽内 に、 フォトレジスト膜を表面に有する基板を固定する基板ステージおよび前記基 板ステージと対向して配置されたフォトレジスト膜除去剤供給板を含むフォトレ ジスト膜除去装置に関する。 フォトレジスト膜除去剤として使用されるオゾンィ匕 ガスおよぴフォトレジスト膜除去溶液は、 フォトレジスト膜除去剤供給板に設け られた同一または別個の供給口から連続的または断続的に基板表面に供給するこ とができる。 本発明の装置において、 反応槽は、 ステンレス鋼またはテフロン被覆されたス テンレス鋼、 テフロン樹脂、 セラミックまたはテフロン被覆されたセラミックま たはそれらの組み合わせから構成され得る。
この装置において、 使用されるオゾン化ガスは、 オゾンガスを全体の少なくと も 5モル。 /0、 好ましくは 5〜100モル。 /0の量で含有する。
また、 オゾン化ガスとフォトレジスト膜除去溶液を予め混合してフォトレジス ト膜除去剤として使用することもでき、 この場合、 好ましくは、 オゾン化ガスと フォトレジスト膜除去溶液を予め混合してからフォトレジスト膜除去剤供給板の 供給口へ供給する。
本発明の装置において、 フォトレジスト膜表面とフォトレジスト膜除去剤供給 板との距離は、 l〜5 mmの間である。 この装置は、 基板ステージを加熱する手 段および Zまたはフォトレジスト膜除去溶液を冷却する手段を含んでいてよい。 これらを駆使することにより、 使用されるフォトレジスト膜除去溶液の温度およ び基板上から 5 mm以上離れた点における温度を基板表面の温度よりも低く設定 することができる。
本発明の装置には、 基板ステージを加熱する手段および Zまたはフォトレジス ト膜除去溶液を冷却する手段が含まれていてもよい。
本発明の装置に導入されるオゾン化ガスは、 1〜 5気圧の高圧ガスの状態であ ることが好ましい。
本発明の装置において使用するのに好適なフォトレジスト膜除去溶液は、 飽和 アルコール、 ケトン、 カルボン酸を含むオゾンとの反応性の乏しい有機溶媒から 選択さ;^寻る。
本発明の装置には、 フォトレジスト膜除去剤供給板と基板との間に電界を生じ させる手段も含み得る。
図面の簡単な説明
図 1は、 実施の形態 1に係る本発明のフォトレジスト膜除去装置 (A 1 ) を表 す模式的な断面図である。
図 2は、 本発明の方法における、 フォトレジスト膜除去溶液膜厚に対する最大 除去速度を表すグラフである。 図 3は、 本発明の方法における、 フォトレジスト膜とフォトレジスト膜除去剤 供給板との間の距離 (δ ) に対する最大除去速度およびその基板面內での均一度 を表すグラフである。
図 4は、 実施の形態 2に係る、 フォトレジスト膜とフォトレジスト膜除去剤供 給板との間に電界を発生できる本発明のフォトレジスト膜除去装置 (Α 2 ) を表 す模式的な断面図である。
図 5は、 実施の形態 3に係る本発明のフォトレジスト膜除去装置 (A 3 ) を表 す模式的な断面図である。
図 6は、 実施の形態 4に係る、 オゾン化ガス—フォトレジスト膜除去溶液混合 系を供給する本発明のフォトレジスト膜除去装置 (Α 4 ) を表す模式的な断面図 である。
図 7は、 実施の形態 4に係る、 オゾン化ガスーフォトレジスト膜除去溶液混合 系を供給する本発明のフォトレジスト膜除去装置 (Α 5 ) を表す模式的な断面図 である。
図 8は、 実施の形態 5に係る本発明のフォトレジスト膜除去装置 (Α 6 ) を表 す模式的な断面図である。
図 9は、 特開昭 57- 180132号に記載のオゾン含有ガスを熱硫酸中でバブリング させて、 基板または絶縁物層上に被覆したフォトレジスト膜を剥離する方法に使 用する洗浄装匱を表す模式的な断面図である。
発明を実施するための最良の形態
本発明の方法およびそれに使用する装置を、 以下の各実施の形態に従ってより 詳細に説明するが、 本発明はこれらに限定されるものではなく、 当該分野におい て既知の技術により、 容易に変更できるものと解されるべきである。
実施の形態 1
図 1は、 本発明の方法に使用される装置の一態様を表す。 これは、 フォトレジ スト膜を表面に有する基板を 1枚ずつ挿入して処理する装置 (当該分野では、 通 常 「枚葉処理装置」 と呼ばれる) の一例である。
本発明において除去されるフォトレジスト膜とは、 半導体素子製造工程におい て使用される有機高分子化合物を含有するレジスト材料から形成される被膜であ り、 熱により変性した被膜や高濃度のドーピングにより表面が変質された被膜、 さらにはエッチング工程において無機物質が表面に付着した被膜も包含する。 上記フォトレジスト膜を表面に有する基板は、 半導体素子の製造に通常使用さ れるものであれば特に限定されるものではなく、 例えば、 シリコンゥエーハ、 液 晶表示素子用ガラス基板、 電子基板用ガラスエポキシ基板等が挙げられる。
図 1によれば、 本発明の装置 (A 1 ) は、 反応槽 6で密閉された空間内に、 基 板 8を固定しかつその重心を中心とした軸回転が可能な基板ステージ 40、 および 基板ステージ 40と対向して配置されたガス Z溶液供給板 30を装備している。
基板ステージ 40内部には基板を加熱できる加熱手段 41を具備している。 基板ス テージ 40の回転および加熱は、 反応槽 6下方に配置した制御装置 42によって制御 できる。
ガス Z溶液供給板 30には、 中央にオゾン化ガス供給管 31を、 およびオゾン化ガ ス供給管 31周辺にフォトレジスト膜除去溶液溜め 32を設け、 さらに前記溶液溜め 32下方には、 フォ トレジスト膜除去溶液噴射孔 33が設けられている。
ここで、 オゾン化ガスは、 原料ガスである酸素を含むガスを供給管 111から供 給し、 オゾン発生器 1を介して酸素を含むガスの少なくとも 5モル%、 好ましく は 5モル。/。〜 1 0 0モル%までをオゾン化することにより得られる。
オゾン化ガス中に含まれるオゾンガスの量は、 高いほどフォトレジスト膜除去 速度が高くなるが、 この量は処理する基板の大きさおよびフォトレジストの種類 等に依存して変化してよい。 オゾン発生器へ導入される酸素を含むガスの供給量 は、 必要とされるオゾン化ガス導入量およびその後の基板へのオゾン化ガス供給 量に依存して変化してよい。
図 1の装置 (A 1 ) では、 オゾン化ガスは、 所定の圧力に調節されて、 供給管 112および 31を介して基板 8に向かって供給される。
本発明で使用できるフォトレジスト膜除去溶液は、 純水;硫酸、 塩酸、 硝酸、 酢酸、 過酸化水素等の酸性水溶液;水酸化アンモ-ゥム等のアルカリ性水溶液; ァセトン等のケトン類およびィソプロパノール等のアルコール類を含む有機溶 媒;およびそれらの混合物から成るオゾンとの反応性の乏しい群より選択できる。 廃液処理等の問題点から、 純水を使用するのが最も望ましいが、 フォトレジスト 膜除去速度を向上させたり、 高濃度イオンドープ後の変質膜または基板上の汚染 物質を除去使用とする場合は、 純水以外の溶媒または前記溶媒の混合液を使用し てよい。
フォトレジスト膜除去溶液は、 供給管 114を介して反応層 6中のフォトレジスト 膜除去溶液溜め 32へ導入され、 必要に応じて、 下方の噴射孔 33から基板 8に向け て噴出される。
図 1に表す装置 (A 1 ) を用いたフォトレジスト膜の除去プロセスを以下に説 明する。
まず、 基板を基板ステージ 40に固定する。 その後、 オゾン化ガスおよびフォト レジスト膜除去溶液をそれぞれ、 供給管 31および噴射孔 33から基板 8に向けて供 給する。 供給管 31から供給されるオゾン化ガスおよび溶液は、 基板 8中央から端 部に向かって広がって、 全フォトレジスト膜と接触する。
オゾン化ガスと接触した基板表面のフォトレジスト膜は酸化分解されて、 先ず 低分子量化される。 それと同時に、 フォトレジスト膜上に、 フォトレジスト膜除 去溶液の被膜が形成される。 低分子量化されたフォトレジスト膜は、 このフォト レジスト膜除去溶液被膜中に溶解され、 更なる溶液の供給と共に洗い流されるこ とにより、 基板表面からフォトレジスト膜を除去することができる。
本発明にかかる図 1の装置 (A 1 ) おいて、 オゾン化ガスは、 定圧の高圧ガス として、 基板中央部に相当する位置から供給する。
本発明者らは、 供給されるオゾン化ガスの圧力とフォトレジスト膜除去速度と の間に相関関係があることを見出した。 それによると、 圧力が増大すると、 前記 除去速度はほぼ比例的に改善されることが分かった。 従って、 本発明では、 ォゾ ン化ガスを、 使用する装置の信頼性や安全性を考慮して、 好ましくは 1 〜 5気圧 の範囲の定圧の高圧ガスとして使用する。
さらに、 本発明では、 オゾン化ガスを連続的に供給することが好ましい。 ォゾ ン化ガスを連続的に供給することにより、 オゾン化ガス中のオゾンガスが基板各 部でフォトレジスト膜と接触して酸化分解反応を生じ、 消費されても、 基板全体 において均一なオゾンガス供給量を維持することが可能となり、 結果として、 均 一なフォトレジスト膜除去が達成できる。 オゾン化ガス中のオゾンガスは、 フォトレジスト膜の除去反応でのみ消費され ることが望ましいが、 オゾンガスは反応性が高いためにフォトレジスト膜以外の 材料 (例えば、 反応槽内壁や装置部品等) と反応して消費されることがある。 こ のようなオゾンガスの無駄な消費を回避するために、 より好ましくは、 反応槽ゃ 装置部品をステンレス鋼またはテフロン被覆されたステンレス鋼、 テフロン樹脂、 セラミックまたはテフロン被覆されたセラミックまたはそれらの組み合わせから 構成する。
上記オゾン化ガスの供給と共に、 フォトレジスト膜除去溶液を、 ガス Z溶液供 給板 30に設けられた複数のフォトレジスト膜除去溶液噴射孔 33から供給する。 有効なフォトレジスト膜除去を達成するために、 前記噴射孔 33は、 直径約 1 讓 以下のものを、 基板面積当たり 1 0個以上設けることが望ましい。
前述の如く、 フォトレジスト膜除去溶液を供給すると、 フォトレジスト膜表面 に厚い溶液の被膜の生成が観察される。 図 2に、 この溶液の膜厚 (mm) と最大 フォトレジスト膜除去速度との関係を示す。 ここで、 溶液の膜厚は、 目視観察に より測定したものである。 図 2より、 溶液の膜厚が l mm以下において、 十分な フォトレジスト膜除去速度が得られることが分かる。 これは、 フォトレジスト膜 上に形成される溶液被膜が薄レ、ほど、 オゾンガスが浸透し易いためであると考え られる。
しかしながら、 膜厚 l mm以下の溶液の薄膜は、 連続供給では形成し難いため、 本発明では、 フォトレジスト膜除去溶液を、 好ましくは、 断続的 (最も好ましく は、 :!〜 360秒置き) に供給する。
本発明者らは、 前記装置において、 オゾン化ガス供給管 31を含むガス Z溶液供 給板 30と基板 8表面との距離 (図 1中、 δで表す) 力 フォトレジスト膜除去速 度を大きく左右することも見出した。
図 3に、 前記距離 (mm) に対するフォトレジスト膜の最大除去速度および基 板上での除去速度の面内均一度の変化を示す。 図 3より、 最大除去速度は、 距離 が狭いほど高く、 その面内均一度は、 広いほど高いことが分かる。 このことは、 図 1を参照すると、 ガス 溶液供給板 30と基板 8表面との距離が短かくなるほど、 その間隙中を流動するオゾン化ガスの流速が速くなり、 基板表面上への見かけの オゾンガス供給量が増加するため膜の酸化分解速度も高くなるが、 狭すぎると基 板表面上でォゾン化ガスの流れが不均一となる場所が存在し得るためであると考 えられる。
以上の点を考慮して、 ガス Z溶液供給板 30と基板 8表面との距離 (δ ) は、 約 :!〜 5 mmの範囲に設定することが好ましい。
本発明の方法によるフォトレジスト膜除去をより高い効率で行なうために、 基 板を加熱してもよレ、。 基板 8の加熱は、 基板ステージ 40内部に具備された加熱手 段 41により行なう (図 1 ) 。 加熱手段 41は、 反応槽 6下方に配置された制御装置 42により、 その温度を調節できる。
基板の加熱温度が高いほど、 フォトレジスト膜とオゾンガスとの酸化分解反応 は促進されるが、 高すぎると、 加熱によって基板がダメージを受けることがある。 そのため、 基板の加熱温度は、 使用される基板の種類によって変えてよいが、 シ リコンゥエーハでは通常、 約 300°C以下、 およびガラス基板では、 約 100°C以下に 設定することが好ましい。
上記のような基板の加熱により、 オゾンガスの分解も促進されて、 酸化反応性 の高い酸素原子の放出を高め、 フォトレジスト膜の分解除去速度を加速できる力 その反面、 基板付近の温度上昇により、 オゾン化ガス供給管の温度も上昇し得る。 それにより、 供給管内部でオゾンガスが熱分解して、 基板表面へ活性な酸素原子 が到達できないことがある。
そのため、 本発明の装置 (A l、 図 1 ) では、 使用するフォ トレジスト膜除去 溶液の温度を冷却機 115で低下させて溶液溜め 32に導入することで、 溶液溜め 32 と隣接するオゾン化ガス供給管 31を冷却し、 基板 8表面付近以外でのオゾンガス の熱分解を阻止できる。
本発明では、 オゾン化ガスおよびフォトレジスト膜除去溶液の基板全面への供 給をより容易にするために、 図 1中の基板ステージ 40の回転により、 基板の重心 を中心として軸回転させてもよい。 基板ステージ 40の回転は、 制御装置 42によつ て、 任意の速度に制御できる。
本発明の装置 (A 1 ) において、 操作中、 供給された余剰のフォトレジスト膜 除去溶液 5は、 反応槽 6底部に回収された後、 再循環してよい。 回収された溶液は、 フィルター (図示せず) 等を介して溶液中のフォトレジスト膜残渣等を取り除い た後、 冷却機 115およぴポンプ 4から供給管 114を通じて再使用することが可能で ある。
本発明の装置では、 余剰のオゾン化ガスは、 オゾン化ガス排出管 112'を通じて 排オゾン処理器 13へ導入され、 残存するオゾンガスを酸素に戻した後、 大気に排 出されるため、 過剰なオゾンガスによる環境汚染も防止できる (図 1参照) 。 本発明によれば、 密閉容器中で膜の除去作業を行うため、 有害なガスが大気中 に飛散せずかつ大規模な換気設備が不要である。 また、 作業後にフォトレジスト 膜除去溶液を循環するため、 原料コストの削滅も可能である。
実施の形態 2
本発明によれば、 供給されるフォトレジスト膜除去溶液の被膜を薄くすること により、 フォトレジスト膜の除去速度を大幅に向上できることを説明したが、 前 記溶液の被膜を薄くする手段としては、 実施の形態 1に記載の如く溶液を断続的 に供給すること以外に、 図 4に示すように、 ガス Z溶液供給板 30と基板との間に 電界を形成してもよい。
図 4には、 供給板 30と基板ステージ 40上の基板 8との間に電界を生じさせる手 段を含む装置 (A 2 ) の一例を示す。 装置 (A 2 ) において、 ガス/溶液供給板 30には数 k V以上の高電圧を印加することが可能であり、 基板ステージ 40は接地 されている。 フォトレジスト膜除去溶液は、 連続的または断続的に、 好ましくは 断続的に供給する。 ガス Z溶液供給板 30への高電圧の印加は、 フォトレジスト膜 除去溶液を噴射孔 33から供給する時に行なうのが望ましい。
フォトレジスト膜除去溶液を供給する際に供給板 30と基板 8との間で電界が生 じると、 噴射孔 33から噴出された溶液が、 電界の作用により小さな粒状と化して 飛散する。 粒状の溶液は、 基板表面のフォトレジスト膜上に付着すると、 非常に 薄い被膜を形成し得る。 溶液の被膜を非常に薄く形成することにより、 オゾンガ スとの酸化分解反応速度が促進され、 結果として、 フォトレジスト膜除去速度も 向上する。
ここで、 図 4に示す電界を生じさせる手段は、 単なる一例であって、 本発明は これに限定されるものではない。 また、 図 4の装置 (A 2 ) において、 上記に特 記した手段、 部品および機能以外は、 実施の形態 1に記載の装置 (A 1 ) と同様 であってよい。
実施の形態 3
本発明の方法に使用する装置において、 実施の形態 1および 2では、 基板中央 部の供給管 31からオゾン化ガスを、 および前記供給管 31の周辺の噴射孔 33からフ ォ トレジスト膜除去溶液を供給する装置 (図 1および 2に示す A 1および A 2 ) について説明したが、 必要に応じてオゾン化ガスおよびフォトレジスト膜除去溶 液の供給位置を入れ替えてもよい。
例えば、 図 5に示す装置 (A 3 ) のように、 基板中央部の供給管 31からフォト レジスト膜除去溶液を、 および前記供給管 31の周辺に配置した噴射孔 33からォゾ ン化ガスを供給してもよい。
この場合も、 オゾン化ガスは連続的に、 フォトレジスト膜除去溶液は断続的に 供給することが望ましいが、 オゾン化ガスの形成条件およびフォトレジスト膜除 去溶液種は、 実施の形態 1に記載のものと同じであってよい。
この実施の形態 3で使用する装置は、 上記の供給にかかる手段および条件以外 は全て実施の形態 1と同様であってよい。
実施の形態 4
本発明では、 オゾン化ガスとフォトレジスト膜除去溶液を別個にまたは混合し て反応槽へ供給できる。 実施の形態 1〜 3は、 オゾン化ガスとフォトレジスト膜 除去溶液を別個に供給する方法および装置について説明した。 この実施の形態 4 では、 オゾン化ガスおよびフォトレジスト膜除去溶液の基板全面への供給をより 容易にするために、 オゾン化ガスとフォトレジスト膜除去溶液を混合して反応槽 へ供給する方法およびそのための装置について説明する (図 6および 7 ) 。
図 6および図 7の装置 (A 4および A 5 ) では、 オゾン発生器 1で生成された オゾン化ガスを供給管 111を介してェジェクタ一 2に送気すると同時に、 フオトレ ジスト膜除去溶液も供給管 114を通じてェジェクター2に導入する。 ェジェクタ一 2においてオゾン化ガスとフォトレジスト膜除去溶液を混合した後、 そのオゾン 化ガス混入液を供給管 112を介して、 供給板 30, (図 6 ) または 31' (図 7 ) へ供 給する。 すなわち、 図 6の装置 (A 4 ) では、 供給板 30'内に実施の形態 1の装 置 (A l ) と同様の溶液溜め 32 'および噴射孔 33'が具備されており、 この噴射孔 33'からオゾン化ガス混入液を基板に向けて噴出できる。 また、 図 7の装置 (A 5 ) では、 基板中央部に相当する位置に配置された供給管 31 'から直接オゾン化 ガス混入液を供給することができる。
この実施の形態 4において、 フォトレジスト膜除去溶液中へのオゾン化ガスの 混入の濃度、 特に有効なオゾン化ガス混入濃度は、 オゾン化ガス中のオゾンガス 含有量および使用される溶液種によって変化してよく、 例えば、 溶液が純水であ る場合、 好ましくは飽和状態であって、 2 0 °Cにおいて、 約 1 0〜2 0 0 p p m の範囲であり得る。
この実施の形態 4の方法および装置においても、 フォトレジスト膜の除去速度 を高めるために、 オゾン化ガスは連続的に、 またフォトレジスト膜除去溶液は断 続的に供給することが望ましい。 すなわち、 本発明の装置 (A 4および A 5 ) で は、 例えば、 オゾン化ガス混入液とオゾン化ガスを含まないレジスト除去溶液を 交互に基板表面へ供給することができる。
図 6および 7のいずれの装置も、 溶液の基板全体への拡散を容易にするために、 実施の形態 1と同様に、 基板を重心を中心とした軸回転が可能である。
この実施の形態 4において特記した以外の装置や機能および条件などについて は、 実施の形態 1に記載したものと同様であってよい。
実施の形態 5
本発明において、 実施の形態 1〜3に示した装置の更なる改良として、 オゾン 発生器 1から供給されるオゾン化ガスの量が十分大量に確保できる場合、 本発明 の装置 (A 6 ) は、 図 8に示すように、 オゾン化ガス供給管 31の先端開口部が、 基板 8に向けてラッパ状の形であってもよい。
オゾン化ガス供給管 31の先端開口部は、 例えば、 基板の半径 (または長尺方向 の長さ) を rとすると、 約 l Z rの勾配で基板に向かって放射線状に徐々に広が つていてよい。 放射線状の広がりは、 例えばラッパ状のように曲面部を有してい てもよい。
このような構造とすることで、 基板全体へのオゾン化ガスをより均一にかつよ り効率良く供給することができる。 この実施の形態 5において、 フォトレジスト膜除去溶液を基板 8に噴射する噴 射孔 (図示せず) は、 前記先端開口部に沿って設けることができる。
発明の効果
本発明の方法によれば、 密閉された系内でフォトレジスト膜の除去作業を行な い、 さらにはフォトレジスト膜除去溶液を循環できることから、 換気設備のため のコストや原料のコストを顕著に低減することができる。 また、 排気装置を具備 しているため、 余剰のオゾンガスの排出による環境汚染も防止できる。
本発明によれば、
①オゾン化ガスおよびフォトレジスト膜除去溶液をフォトレジスト膜に対し て均等にかつ連続的または断続的に供給すること ;
②フォトレジスト膜を酸化分解するためのオゾンガスを通常よりも大量に含 有するオゾン化ガスを使用すること ;
③基板表面上に塗布されたフォトレジスト膜表面と、 それと対向して配置さ れたフォトレジスト膜除去剤供給板との距離を最も有効な範囲 (特に、 l〜5 m m) に設定すること ;および
④オゾン化ガスを 1〜 5気圧の高圧ガスの状態で供給すること
が可能となることから、 フォトレジストの除去速度が従来の方法に比べて数段向 上し得る。
本発明では、 オゾン化ガスとフォトレジスト膜除去溶液を別個にまたは混合し て供給することもでき、 いずれの場合もオゾン化ガスは連続的におよびフオトレ ジスト膜除去溶液は断続的 (すなわち、 間欠的) に供給できることから、 フォト レジストの除去速度をより一層高めることが可能である。
さらに、 本発明の第 2の態様である装置は、 オゾンガスと反応しない素材から 構成されているため、 オゾン化ガスは、 フォトレジスト膜の除去にのみ有効に消 費され得る。
本発明の装置において、 フォトレジスト膜除去剤として使用されるオゾン化ガ スおよびフォトレジスト膜除去溶液は、 フォトレジスト膜除去剤供給板に設けら れた同一または別個の供給口から連続的または断続的に基板表面に供給すること ができる。 使用されるオゾン化ガスは、 オゾンガスを全体の少なくとも 5モル0 /0、 好ましくは 5〜 100モル。 /oの量で含有する。
本発明の装置では、 オゾン化ガスとフォトレジスト膜除去溶液を予め混合して からフォトレジスト膜に作用させることで、 膜の除去速度をより高めることがで さる。
本発明の装置は、 基板ステージを加熱する手段および Zまたはフォトレジスト 膜除去溶液を冷却する手段を含むことから、 使用されるフォトレジスト膜除去溶 液の温度および基板上から 5 mm以上離れた点における温度を基板表面の温度よ りも低く設定することができ、 膜の除去速度をさらに向上することができる。 本発明の装置は、 オゾン化ガスを 1〜 5気圧の高圧ガスの状態で供給できるた め、 十分な量のオゾンガスをフォトレジスト膜と作用させることが可能である。 また、 本発明で使用される好適なフォトレジスト膜除去溶液は、 汎用のものから 選択できる。
さらに、 本発明によれば、 フォトレジスト膜除去剤供給板と基板との間に電界 を生じさせてフォトレジスト膜除去溶液を微粒化する手段を本発明の装置に組み 込むことができ、 それによりオゾンの酸化分解速度を促進し、 結果としてより高 い膜の除去速度が得られる。

Claims

請 求 の 範 囲
1 . 密閉された系内において、 基板表面上に塗布されたフォ トレジスト膜に、 該フォトレジスト膜と対向して配置されたフォトレジスト膜除去剤供給板から、 オゾン化ガスおよびフォトレジスト膜除去溶液を含むフォトレジスト膜除去剤を 均等にかつ連続的または断続的に供給して該フォトレジスト膜を除去する方法。
2 . オゾン化ガスが、 オゾンガスを少なくとも 5モル%含有することを特徴と する請求項 1記載の方法。
3 . フォトレジスト膜表面とフォトレジスト膜除去剤供給板との間の距離が 1 〜 5 mmの間であることを特徴とする請求項 1記載の方法。
4 . オゾン化ガスとフォトレジスト膜除去溶液を別個にまたは混合して供給す る請求項 1記載の方法。
5 . オゾン化ガスを 1〜 5気圧の高圧ガスの状態で供給する請求項 1記載の方 法。
6 . フォトレジスト膜除去溶液が、 飽和アルコール、 ケトン、 カルボン酸を含 むォゾンとの反応性の乏しレ、有機溶媒から選択されたものである請求項 1記載の 方法。
7 . フォトレジスト膜除去溶液の温度および基板上から 5 mm以上離れた点に おける温度が基板表面の温度よりも低いことを特徴とする請求項 1記載の方法。
8 . オゾン化ガスを連続して供給しかつフォ トレジスト膜除去溶液を断続的に 供給することを特徴とする請求項 1記載の方法。
9 . フォトレジスト膜除去剤供給板と基板との間に電界を生じさせることでフ ォトレジスト膜除去溶液を微粒化する手段を含む請求項 1記載の方法。
1 0 . オゾン発生器および排気処理装置を装備した反応槽内に、 フォトレジス ト膜を表面に有する基板を固定する基板ステージおよび前記基板ステージと対向 して配置されたフォトレジスト膜除去剤供給板を含む請求項 1記載の方法に使用 するためのフォ トレジスト膜除去装置であって、 フォトレジスト膜除去剤として のオゾン化ガスおよびフォトレジスト膜除去溶液を、 フォトレジスト膜除去剤供 給板に設けられた同一または別個の供給口から連続的または断続的に基板表面に 供給することを特徴とするフォトレジスト膜除去装置。
1 1 . 反応装置がステンレス鋼またはテフロン被覆されたステンレス鋼、 テフ ロン樹脂、 セラミックまたはテフロン被覆されたセラミックまたはそれらの組み 合わせから構成されていることを特徴とする請求項 1 0記載のフォトレジスト膜 除去装置。
1 2 . オゾン化ガスが、 オゾンガスを少なくとも 5モル%含有することを特徴 とする請求項 1 0記載のフォトレジスト膜除去装置。
1 3 . オゾン化ガスとフォトレジスト膜除去溶液を予め混合してから供給する 請求項 1 0記載のフォトレジスト膜除去装置。
1 4 . フォトレジスト膜表面とフォトレジスト膜除去剤供給板との距離が 1〜 5 m mの間であることを特徴とする請求項 1 0記載のフォトレジスト膜除去装置。
1 5 . 基板ステージを加熱する手段および /またはフォトレジスト膜除去溶液 を冷却する手段を含む請求項 1 0記載のフォトレジスト膜除去装置。
1 6 . オゾン化ガスが 1〜 5気圧の高圧ガスの状態で供給されることを特徴と する請求項 1 0記載のフォトレジスト膜除去装置。
1 7 . フォトレジスト膜除去溶液が、 飽和アルコール、 ケトン、 カルボン酸を 含むオゾンとの反応性の乏しレ、有機溶媒から選択されたものである請求項 1 0記 載のフォトレジスト膜除去装置。
1 8 . フォトレジスト膜除去剤供給板と基板との間に電界を生じさせる手段を 含む請求項 1 0記載のフォトレジスト膜除去装置。
PCT/JP1999/006324 1998-11-13 1999-11-12 Procede et dispositif d'elimination d'un film de photoresine WO2000030165A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69936131T DE69936131T9 (de) 1998-11-13 1999-11-12 Verfahren und vorrichtung zur entfernung eines photoresistfilms
KR1020007007697A KR20010034087A (ko) 1998-11-13 1999-11-12 포토레지스트막 제거방법 및 장치
EP99972372A EP1049142B1 (en) 1998-11-13 1999-11-12 Method and device for removing photoresist film
US09/614,252 US6517998B1 (en) 1998-11-13 2000-07-12 Method for removing photoresist film and apparatus used therefor
US10/134,508 US7965372B2 (en) 1998-11-13 2002-04-30 Apparatus for removing photoresist film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/323503 1998-11-13
JP32350398A JP3869566B2 (ja) 1998-11-13 1998-11-13 フォトレジスト膜除去方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/614,252 Continuation US6517998B1 (en) 1998-11-12 2000-07-12 Method for removing photoresist film and apparatus used therefor

Publications (1)

Publication Number Publication Date
WO2000030165A1 true WO2000030165A1 (fr) 2000-05-25

Family

ID=18155429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006324 WO2000030165A1 (fr) 1998-11-13 1999-11-12 Procede et dispositif d'elimination d'un film de photoresine

Country Status (7)

Country Link
US (2) US6517998B1 (ja)
EP (1) EP1049142B1 (ja)
JP (1) JP3869566B2 (ja)
KR (2) KR20010034087A (ja)
DE (1) DE69936131T9 (ja)
TW (1) TW451335B (ja)
WO (1) WO2000030165A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779136A (zh) * 2014-01-10 2015-07-15 上海和辉光电有限公司 一种去除光致抗蚀剂的方法和设备

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982006B1 (en) * 1999-10-19 2006-01-03 Boyers David G Method and apparatus for treating a substrate with an ozone-solvent solution
US6440871B1 (en) 2000-08-16 2002-08-27 Micron Technology, Inc. Gas assisted method for applying resist stripper and gas-resist stripper combinations
WO2002027775A1 (fr) * 2000-09-28 2002-04-04 Mitsubishi Denki Kabushiki Kaisha Procede et appareil de traitement de plaquettes
JP4844912B2 (ja) * 2001-08-01 2011-12-28 野村マイクロ・サイエンス株式会社 フォトレジストの除去方法及び除去装置
JP3914842B2 (ja) * 2001-10-23 2007-05-16 有限会社ユーエムエス 有機被膜の除去方法および除去装置
KR100869880B1 (ko) * 2002-03-18 2008-11-24 스미토모 세이미츠 고교 가부시키가이샤 오존 처리 방법 및 오존 처리 장치
JP4334844B2 (ja) * 2002-06-26 2009-09-30 東京エレクトロン株式会社 デバイス用溝構造体の製造方法
WO2004095550A1 (ja) * 2003-04-21 2004-11-04 Sekisui Chemical Co. Ltd. 有機物除去装置、有機物除去方法、オゾン水噴射ノズル、及び、マスク基板用有機物除去装置
JP4351862B2 (ja) * 2003-04-21 2009-10-28 積水化学工業株式会社 レジスト除去方法及びレジスト除去装置
EP1635960A2 (en) 2003-06-06 2006-03-22 P.C.T. Systems, Inc. Method and apparatus to process substrates with megasonic energy
US7202175B2 (en) * 2003-11-07 2007-04-10 Industrial Technology Research Institute Method and apparatus for treating a substrate surface by bubbling
US20060005856A1 (en) * 2004-06-29 2006-01-12 Applied Materials, Inc. Reduction of reactive gas attack on substrate heater
JP4438709B2 (ja) * 2005-07-19 2010-03-24 株式会社Sumco ウェーハの枚葉式エッチング方法
JP4787038B2 (ja) * 2006-03-03 2011-10-05 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
US8303797B2 (en) 2006-06-16 2012-11-06 Kabushiki Kaisha Toshiba Cleaning system and cleaning method
CN101211125B (zh) * 2006-12-25 2010-08-11 中芯国际集成电路制造(上海)有限公司 光刻胶的去除方法
DE102007058503B4 (de) * 2007-12-05 2011-08-25 Siltronic AG, 81737 Verfahren zur nasschemischen Behandlung einer Halbleiterscheibe
JP2009170554A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 半導体装置の製造方法
KR100992269B1 (ko) * 2008-06-02 2010-11-05 삼성전기주식회사 도금층 형성 방법
JP2011145530A (ja) * 2010-01-15 2011-07-28 Hitachi Displays Ltd 表示装置、及び、表示装置の製造方法
US9748120B2 (en) 2013-07-01 2017-08-29 Lam Research Ag Apparatus for liquid treatment of disc-shaped articles and heating system for use in such apparatus
US9620383B2 (en) * 2014-07-10 2017-04-11 Tokyo Electron Limited Method for uncovering underlying alignment patterns
TWI595332B (zh) * 2014-08-05 2017-08-11 頎邦科技股份有限公司 光阻剝離方法
US10490426B2 (en) 2014-08-26 2019-11-26 Lam Research Ag Method and apparatus for processing wafer-shaped articles
KR101847086B1 (ko) * 2014-11-18 2018-04-10 주식회사 엘지화학 포토레지스트 박리 장치 및 이를 이용한 포토레지스트 박리 방법
US10395928B2 (en) * 2016-06-15 2019-08-27 Nanomedical Diagnostics, Inc. Depositing a passivation layer on a graphene sheet
US11056343B2 (en) 2016-06-15 2021-07-06 Cardea Bio, Inc. Providing a temporary protective layer on a graphene sheet
US10903319B2 (en) * 2016-06-15 2021-01-26 Nanomedical Diagnostics, Inc. Patterning graphene with a hard mask coating
US10759157B2 (en) 2016-06-15 2020-09-01 Nanomedical Diagnostics, Inc. Systems and methods for transferring graphene
JP2022131171A (ja) * 2021-02-26 2022-09-07 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2022169174A (ja) * 2021-04-27 2022-11-09 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN116759348B (zh) * 2023-08-18 2023-11-14 合肥晶合集成电路股份有限公司 补充h2o2液体的控制方法、其控制装置和其控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259139A (ja) * 1992-03-16 1993-10-08 Hitachi Ltd 洗浄装置
US5632847A (en) * 1994-04-26 1997-05-27 Chlorine Engineers Corp., Ltd. Film removing method and film removing agent
JPH11165136A (ja) * 1997-12-05 1999-06-22 Sony Corp レジスト除去方法およびレジスト除去装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341592A (en) * 1975-08-04 1982-07-27 Texas Instruments Incorporated Method for removing photoresist layer from substrate by ozone treatment
JPS57180132A (en) 1981-04-30 1982-11-06 Fujitsu Ltd Washing method of substrate
JPS6236826A (ja) * 1985-08-09 1987-02-17 Tokyo Electron Ltd アツシング方法
US4812201A (en) * 1986-07-25 1989-03-14 Tokyo Electron Limited Method of ashing layers, and apparatus for ashing layers
JPH01206624A (ja) * 1988-02-15 1989-08-18 Koujiyundo Kagaku Kenkyusho:Kk レジストのドライエッチング法
JPH0724265B2 (ja) * 1988-04-13 1995-03-15 日本電気株式会社 半導体基板の洗浄装置
US5378317A (en) * 1990-10-09 1995-01-03 Chlorine Engineers Corp., Ltd. Method for removing organic film
JP2891578B2 (ja) * 1991-11-29 1999-05-17 クロリンエンジニアズ株式会社 基板処理方法
JP3150509B2 (ja) * 1992-11-27 2001-03-26 株式会社日立製作所 有機物除去方法及びその方法を使用するための装置
KR940012061A (ko) * 1992-11-27 1994-06-22 가나이 쯔또무 유기물제거방법 및 그 방법을 이용하기 위한 유기물제거장치
US5464480A (en) * 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
KR970053127A (ko) * 1995-12-30 1997-07-29 김주용 반도체 기판의 세정방법
US6701941B1 (en) * 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
TW385489B (en) * 1997-08-26 2000-03-21 Tokyo Electron Ltd Method for processing substrate and device of processing device
US6080531A (en) * 1998-03-30 2000-06-27 Fsi International, Inc. Organic removal process
JP3348695B2 (ja) * 1999-06-04 2002-11-20 日本電気株式会社 半導体ウェーハ上のフォトレジスト除去方法及び除去装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259139A (ja) * 1992-03-16 1993-10-08 Hitachi Ltd 洗浄装置
US5632847A (en) * 1994-04-26 1997-05-27 Chlorine Engineers Corp., Ltd. Film removing method and film removing agent
JPH11165136A (ja) * 1997-12-05 1999-06-22 Sony Corp レジスト除去方法およびレジスト除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1049142A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779136A (zh) * 2014-01-10 2015-07-15 上海和辉光电有限公司 一种去除光致抗蚀剂的方法和设备

Also Published As

Publication number Publication date
KR20010034087A (ko) 2001-04-25
US20020115025A1 (en) 2002-08-22
DE69936131D1 (de) 2007-07-05
EP1049142B1 (en) 2007-05-23
US6517998B1 (en) 2003-02-11
DE69936131T2 (de) 2008-01-17
EP1049142A4 (en) 2003-01-02
EP1049142A1 (en) 2000-11-02
US7965372B2 (en) 2011-06-21
KR20030024727A (ko) 2003-03-26
JP3869566B2 (ja) 2007-01-17
KR100514598B1 (ko) 2005-09-13
JP2000150349A (ja) 2000-05-30
TW451335B (en) 2001-08-21
DE69936131T9 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2000030165A1 (fr) Procede et dispositif d'elimination d'un film de photoresine
WO2000030164A1 (fr) Procede d'elimination d'un film de photoresine
JP4038556B2 (ja) レジスト膜除去装置及びレジスト膜除去方法、並びに有機物除去装置及び有機物除去方法
US5378317A (en) Method for removing organic film
JP3671389B2 (ja) 基板処理方法および装置
US6983756B2 (en) Substrate treatment process and apparatus
JP4157185B2 (ja) 洗浄液及び洗浄方法
JPH05152203A (ja) 基板処理方法および処理装置
KR980010639A (ko) 세정방법 및 세정장치
JP2005183937A (ja) 半導体装置の製造方法およびレジスト除去用洗浄装置
JP2002110611A (ja) 半導体ウェハの洗浄方法及び装置
JPWO2002027776A1 (ja) 基板処理方法およびその装置
WO1992006489A1 (en) Method of removing organic coating
TW200308011A (en) Substrate processing apparatus and substrate processing method
US6715944B2 (en) Apparatus for removing photoresist film
JP2005136439A (ja) 基板処理方法
TW282565B (ja)
JP2891578B2 (ja) 基板処理方法
JP2001345304A (ja) 電子工業用基板表面の付着物の除去方法及び除去装置
JP3910190B2 (ja) 洗浄装置
JP3852627B2 (ja) 紫外線処理装置
JP2005005351A (ja) ウェット剥離洗浄方法およびウェット剥離洗浄装置
WO1996020498A1 (fr) Couche d'oxyde, son procede de formation et dispositif a semi-conducteurs
KR20000015549A (ko) 반도체 제조용 식각장치
JP2004002992A (ja) 表面処理方法及びその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

WWE Wipo information: entry into national phase

Ref document number: 1999972372

Country of ref document: EP

Ref document number: 09614252

Country of ref document: US

Ref document number: 1020007007697

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999972372

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007697

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007007697

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999972372

Country of ref document: EP