WO2000003396A2 - Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram) - Google Patents

Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram) Download PDF

Info

Publication number
WO2000003396A2
WO2000003396A2 PCT/DE1999/001931 DE9901931W WO0003396A2 WO 2000003396 A2 WO2000003396 A2 WO 2000003396A2 DE 9901931 W DE9901931 W DE 9901931W WO 0003396 A2 WO0003396 A2 WO 0003396A2
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
series
transistor
storage cells
transistors
Prior art date
Application number
PCT/DE1999/001931
Other languages
English (en)
French (fr)
Other versions
WO2000003396A3 (de
Inventor
Ronny Schneider
Georg Braun
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to DE59905208T priority Critical patent/DE59905208D1/de
Priority to EP99942749A priority patent/EP1099222B1/de
Priority to JP2000559568A priority patent/JP2002520764A/ja
Publication of WO2000003396A2 publication Critical patent/WO2000003396A2/de
Publication of WO2000003396A3 publication Critical patent/WO2000003396A3/de
Priority to US09/758,300 priority patent/US6697279B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements

Definitions

  • Ferroelectric read / write memory with memory cells connected in series (CFRAM).
  • the invention relates to a read / write memory which has a ferroelectric capacitor and at least one transistor per memory cell.
  • ferroelectric memories the remanence states of the electrical polarization of the dielectric are used to store two logical states. There are various effects that affect the polarization of other cells on the same bit or word line, possibly destroying their stored information. If there are no fixed potentials in a polarized capacitor, a voltage builds up due to leakage currents to the substrate, which may be opposite to the polarization. If the capacitor is not read out or written to, it is therefore necessary to keep the capacitor at the same potential as far as possible.
  • a ferroelectric memory is known from the Digest of Technical Papers for the Symposium on VLSI Circuits 1997, pages 83 and 84, in which a plurality of memory cells or ferroelectric capacitors are connected in series and the respective capacitors can be short-circuited by an associated transistor. This ensures that both electrodes of a ferroelectric capacitor are kept at the same potential, which, if not read or written, is even constant. If a cell is read or written, the corresponding transistor is switched off. In addition, a voltage is applied to the bit line that differs significantly from the voltage on the capacitor plate that cannot be connected to the bit line. The difference between the two voltages causes the ferroelectric capacitor to be charged to saturation.
  • All other transistors in a respective series connection of Memory cells or in each case selected memory cell block remain conductive during this, thereby ensuring that the charge or discharge current can flow through the selected cell capacitor via the transistors short-circuiting the remaining capacitors of a memory cell block. Due to the on-resistance of the switched-on transistors, however, a voltage drops, which is also present at the associated ferroelectric capacitor and which favors or weakens polarization after polarization of the ferroelectric capacitor and in the direction of the charging or discharging current. In the latter case, said voltage drops occur as interference impulses which, with sufficient amplitude and / or frequency, change the polarization in such a way that the stored information of the ferroelectronic capacitor is destroyed.
  • the object on which the invention is based is now to specify a ferroelectric write / read memory with m series-connected memory cells, at which interference voltages on ferroelectric capacitors of unselected memory cher cells and the circuitry complexity are as low as possible.
  • FIG. 1 shows a first exemplary embodiment of the ferroelectric read / write memory according to the invention
  • FIG. 2 shows a second exemplary embodiment of a ferroelectric read / write memory according to the invention
  • FIG. 3 shows a time diagram of the interference voltage in a known memory cell
  • Figure 4 is a timing diagram of the interference voltage in a memory according to Figure 1 and
  • FIG. 5 shows a time diagram of the interference voltage in a memory according to FIG. 2.
  • the invention consists essentially in the fact that a resistor or a specially controlled transistor is connected in series with the ferroelectric capacitor of a respective memory cell and in this way storage pulses, which are generated by reading out the respective addressed memory cell, on ferroelectric capacitors of currently unaddressed memory cells , be reduced or eliminated, whereby the access time is not increased inadmissibly.
  • FIG. 1 shows a first exemplary embodiment in the form of a memory block with four ferroelectric memory cells connected in series
  • the series connection of the four memory cells can be connected to a bit line BL via a selection transistor MIO, which can be controlled via a word line WLO.
  • All four memory cells connected in series are constructed, such as a first memory cell ZI.
  • the cell ZI has a ferroelectric capacitor ZF11, a resistor Rl connected in series therewith, and this series connection has a transistor Mll connected in parallel, the gate of which is connected to a word line WL1.
  • the bit line BL can be connected via the selection transistor MIO and the series connection from the transistors M11 ... M14 to a node PL, which typically has a voltage level of approximately VDD / 2.
  • the transistors MIO ... M14 advantageously have a common bulk substrate connection.
  • a cell in a selected block can be read out on the bit line BL by means of a corresponding signal on the word line WLO. If, for example, the cell ZI is read out, the word lines WL2 ... WL4 receive a corresponding signal that the transistors M12 ... M14 are conducting and the unselected cells, in this case the respective series connections from the ferroelectric capacitors and Resistors, are bridged by these transistors and the transistor Mll is controlled by a signal on the word line WL1 such that it blocks. This has the effect that the bit line BL is connected to the voltage level PL via the selection transistor MIO via the resistor R1 and the ferroelectric capacitor ZU and via the conductive transistors M12 ... M14.
  • the voltage drops caused by the on-resistances of the transistors M12 ... M14 lie above the series connection of the respective ferroelectric capacitor and the associated resistor, for example ZF12 and R2, where by the interference voltages V12 ... V14 across the actual ferroelectric capacitors ZF12 ... ZF14 due to the read current of the cell ZI compared to the prior art is significantly reduced.
  • FIG. 2 shows a further exemplary embodiment of the invention, which differs from the exemplary embodiment shown in FIG. 1 essentially in that the resistors Rl ... R4 connected in series to the ferroelectric capacitors are replaced by further transistors M31 ... M34, whose gate connections can be controlled via a control device CTRL as a function of the signals on the word lines WL1 ... WL4.
  • a cell ZI which is connected to the bit line via the transistor MIO
  • a cell ZI ' is provided here, which is connected to the bit line via a transistor M20 and whose ferroelectric capacitor ZF21 is connected in series with the transistor M31 and this series connection a transistor M21 can be bridged.
  • the substrate connections of all transistors are advantageously connected here to a common connection bulk.
  • the mode of operation is similar to the arrangement in FIG. 1, with the aid of the control unit CTRL the transistor connected in series with the capacitor of the selected cell, for. B. transistor M31, is turned on and the transistors connected in series to the capacitors of the unselected cells, for example transistors M32 ... M34, are controlled by the unit CTRL so that they are not yet completely blocking. If the transistors connected in series to the capacitors of the unselected cells, for example transistors M32 ... M34, were completely blocked, then the storage pulses were greater than in the case of transistors which were not completely blocking, since the diffusion capacitances, the gate-source capacitances and the drain-source capacitances of these transistors with the ferroelectric capacitors were to form capacitive voltage dividers.
  • a diagram shows interference voltages V02 ... V04 for the known case that the ferroelectric capacitors, without a resistor or transistor connected in series, are connected directly in parallel to the respective transistor, the interference voltage levels here, for example, at approx 0.4 volts, which is already in the order of magnitude of the coercive voltage of conventional ferroelectric capacitors.
  • the interference voltages V12 ... V14 at the ferroelectric capacitances ZF12 ... ZF14 of non-selected memory cells are shown in a time diagram, the resistances R1 ... R4 in FIG. 1 being, for example, m on the order of 100 k ⁇ .
  • the interference voltages V12 ... VI4 each have a value below - 0.1 volts, which is significantly lower than the coercive voltage with conventional ferroelectronic capacitors.
  • the interference voltages V22... V24 at the ferroelectric capacitors of the non-selected memory cells are shown in FIG. 5, the values of the interference voltages being again considerably smaller than in a memory with the resistors connected in series with the ferroelectric capacitors, the loss of time in access time not being significantly worse than in known ferroelectric memories of this type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

Der Anmeldungsgegenstand betrifft in Reihe geschaltete ferroelektrische Speicherzellen, bei denen eine Reihenschaltung eines Widerstandes bzw. eines Transistors zum ferroelektrischen Kondensator einer jeweiligen Speicherzelle vorhanden ist. Dadurch wird, ohne unzulässige Erhöhung der Zugriffszeit, erreicht, daß die Störimpulse an den ferroelektrischen Kapazitäten der gerade nicht adressierten Speicherzellen, die durch das Auslesen oder Beschreiben der adressierten Speicherzelle erzeugt werden, derart verringert werden, daß sie praktisch keinen Einfluß mehr auf die nicht adressierten Speicherzellen haben.

Description

Beschreibung
Ferroelektrischer Schreib-/Lesespeicher mit in Reihe geschalteten Speicherzellen (CFRAM) .
Die Erfindung betrifft einen Schreib-/Lesespeicher, der pro Speicherzelle einen ferroelektrischen Kondensator und mindestens einen Transistor aufweist. Bei ferroelektrischen Speichern werden die Remanenzzustände der elektrischen Polarisa- tion des Dielektrikums zum Speichern von zwei logischen Zuständen genutzt. Es treten hierbei verschiedene Effekte auf, die die Polarisation anderer Zellen an der gleichen Bit- oder Wortleitung beeinflussen, wobei eventuell deren gespeicherte Information zerstört wird. Liegen bei einem polarisierten Kondensator keine festen Potentiale an, so baut sich aufgrund von Leckströmen zum Substrat eine Spannung auf, die der Polarisation eventuell entgegengerichtet ist. Es ist also notwendig, den Kondensator, sofern er nicht ausgelesen oder beschrieben wird, beidseitig möglichst auf gleichem Potential zu halten.
Aus dem Digest of Technical Papers zum Symposium on VLSI Circuits 1997, Seiten 83 und 84, ist ein ferroelektrischer Speicher bekannt, bei dem eine Mehrzahl von Speicherzellen bzw. ferroelektrischen Kondensatoren in Reihe geschaltet und die jeweiligen Kondensatoren durch jeweils einen zugehörigen Transistor kurzschließbar sind. Damit wird erreicht, daß beide Elektroden eines ferroelektrischen Kondensators auf gleichem Potential gehalten werden, welches, wenn nicht gelesen oder beschrieben wird, sogar konstant ist. Wird eine Zelle gelesen bzw. beschrieben, wird der entsprechende Transistor abgeschaltet. Außerdem wird an die Bitleitung eine Spannung angelegt, die von der Spannung an der nicht mit der Bitleitung verbindbaren Kondensatorplatte deutlich abweicht. Die Differenz der beiden Spannungen bewirkt, daß der ferroelek- trische Kondensator bis zur Sättigung geladen wird. Alle anderen Transistoren in einer jeweiligen Reihenschaltung von Speicherzellen bzw. m einem jeweils ausgewählten Speicher- zellenblock bleiben wahrend dessen leitend, wodurch sichergestellt wird, daß der Lade- oder Entladestrom durch den ausgewählten Zellenkondensator über die die restlichen Kondensato- ren eines Speicherzellenblockes kurzschließenden Transistoren fließen kann. Durch den On-Widerstand der eingeschalteten Transistoren fallt jedoch eine Spannung ab, die auch am zugehörigen ferroelektrischen Kondensator anliegt und e nach Polarisation des ferroelektrischen Kondensators und nach Rich- tung des Lade- bzw. Entladestroms eine Polarisation begünstigt oder schwächt. Im letzteren Fall treten besagte Span- nungsabfalle als Storimpulse m Erscheinung, die bei ausreichender Amplitude und/oder Häufigkeit, die Polarisation derart verandern, daß die gespeicherte Information des ferroelek- frischen Kondensators zerstört wird. Durch eine Reihenschaltung möglichst vieler solcher ferroelektrischen Speicherzellen wird der Gesamtwiderstand des Strompfades vergrößert und die Hohe des Stromes verringert, wodurch auch die unerwünschten Storimpulse an den ferroelektrischen Kondensatoren der nicht ausgewählten Speicherzellen verkleinert werden. Dies hat jedoch den Nachteil, daß der Lade- und Entladevorgang des ferroelektrischen Kondensators, der gelesen und beschrieben wird deutlich langer dauert. Aus diesem Grunde werden beim oben angegebenen Stand der Technik mehrere Speicherzellen- blocke, mit beispielsweise aus 16 Einzelzellen bestehenden Reihenschaltungen, vorgesehen. Nachteilig ist hierbei, daß die Storimpulse oftmals unzulässig hoch sind und ein Datenverlust auftritt, weil der On-Widerstand der Transistoren, wegen der hierfür erforderlichen sehr großen Transistorweite bzw. sehr hohen Ladungstragerbeweglichkeit , nicht beliebig gesenkt werden kann.
Die der Erfindung zugrundeliegende Aufgabe besteht nun darin, einen ferroelektrischen Schreιb-/Lesespe cher mit m Reihe geschalteten Speicherzellen anzugeben, be dem Storspannungen an ferroelektrischen Kondensatoren nicht ausgewählter Spei- cherzellen und der schaltungstechnische Aufwand möglichst gering sind.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Pa- tentanspruchs 1 gelost. Bevorzugte Weiterbildungen ergeben sich aus den weiteren Ansprüchen.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Beispiels näher erläutert. Dabei zeigen
Figur 1 ein erstes Ausfuhrungsbeispiel des erfindungsgemäßen ferroelektrischen Schreib-/Lesespeichers,
Figur 2 ein zweites Ausfuhrungsbeispiel eines erfindungsgema- ßen ferroelektrischen Schreib-/Lesespeichers,
Figur 3 ein Zeitdiagramm der Storspannung bei einer bekannten Speicherzelle,
Figur 4 ein Zeitdiagramm der Storspannung bei einem Speicher nach Figur 1 und
Figur 5 ein Zeitdiagramm der Storspannung bei einem Speicher nach Figur 2.
Die Erfindung besteht im wesentlichen darin, daß zum ferroelektrischen Kondensator einer jeweiligen Speicherzelle ein Widerstand bzw. ein speziell angesteuerter Transistors in Reihe geschaltet wird und auf diese Weise Storimpulse, die durch das Auslesen der jeweiligen adressierten Speicherzelle erzeugt werden, an ferroelektrischen Kondensatoren gerade nicht adressierter Speicherzellen, verringert bzw. beseitigt werden, wobei die Zugriffszeit nicht unzulässig erhöht wird.
In Figur 1 ist ein erstes Ausfuhrungsbeispiel in Form eines Speicherblockes mit vier in Reihe geschalteten ferroelektrischen Speicherzellen dargestellt, wobei die Reihenschaltung der vier Speicherzellen über einen Auswahltransistor MIO, der über eine Wortleitung WLO ansteuerbar ist, mit einer Bitleitung BL verbindbar ist. Alle vier in Reihe geschalteten Speicherzellen sind, wie beispielsweise eine erste Speicherzelle ZI aufgebaut. Die Zelle ZI weist einen ferroelektrischen Kondensator ZF11, einen dazu in Reihe geschalteten Widerstand Rl auf und dieser Reihenschaltung ist ein Transistor Mll parallel geschaltet, dessen Gate mit einer Wortleitung WL1 verbunden ist. In entsprechender Weise sind in den anderen drei Zellen weitere ferroelektrische Kondensatoren ZF12 ... ZF14, weitere Widerstände R2 ... R4 und weitere Transistoren M12 ... M14 vorgesehen, beschaltet und über weitere Wortleitungen WL2 ... WL4 ansteuerbar. Die Bitleitung BL ist über den Auswahltransistor MIO und die Reihenschaltung aus den Transisto- ren Mll ... M14 mit einem Knoten PL verbindbar, der typischerweise einen Spannungspegel von etwa VDD/2 aufweist. Die Transistoren MIO ... M14 weisen vorteilhafterweise einen gemeinsamen Substratanschluß Bulk auf.
Durch ein entsprechendes Signal auf der Wortleitung WLO kann eine Zelle eines ausgewählten Blocks auf die Bitleitung BL ausgelesen werden. Wird beispielweise die Zelle ZI ausgelesen, so erhalten die Wortleitungen WL2 ... WL4 ein entsprechendes Signal, daß die Transistoren M12 ... M14 leitend wer- den und die nicht ausgewählten Zellen, also in diesem Fall die jeweiligen Reihenschaltungen aus den ferroelektrischen Kondensatoren und Widerständen, durch diese Transistoren überbrückt werden und der Transistor Mll durch ein Signal auf der Wortleitung WL1 derart angesteuert wird, daß dieser sperrt. Hierdurch wird bewirkt, daß die Bitleitung BL über den Auswahltransistor MIO über den Widerstand Rl und den ferroelektrischen Kondensator ZU sowie über die leitenden Transistoren M12 ... M14 mit dem Spannungspegel PL verbunden ist. Die durch die On-Widerstände der Transistoren M12 ... M14 hervorgerufenen Spannungsabfälle liegen jeweils über der Reihenschaltung aus dem jeweiligen ferroelektrischen Kondensator und dem zugehörigen Widerstand, zum Beispiel ZF12 und R2, wo- durch die Störspannungen V12 ... V14 über den eigentlichen ferroelektrischen Kondensatoren ZF12 ... ZF14 aufgrund des Lesestromes der Zelle ZI gegenüber dem Stand der Technik wesentlich verringert wird.
In Figur 2 ist ein weiteres Ausführungsbeispiel der Erfindung dargestellt, das sich von dem in Figur 1 dargestellten Ausführungsbeispiel im wesentlichen dadurch unterscheidet, daß die den ferroelektrischen Kondensatoren in Reihe geschalteten Widerstände Rl ... R4 durch weitere Transistoren M31 ... M34 ersetzt sind, deren Gateanschlüsse über eine Steuereinrichtung CTRL in Abhängigkeit der Signale auf den Wortleitungen WL1 ... WL4 ansteuerbar sind. Anstelle der Zelle ZI die über den Transistor MIO mit der Bitleitung verbunden ist, ist hier eine Zelle ZI' vorgesehen, die über einen Transistor M20 mit der Bitleitung verbunden ist und deren ferroelektrischer Kondensator ZF21 mit dem Transistor M31 in Reihe geschaltet ist und diese Reihenschaltung durch einen Transistor M21 überbrückbar ist. In entsprechender Weise sind die Transistoren M12 ... M14 von Figur 1 in Figur 2 mit M22 ... M24, die Kondensatoren ZF12 ... ZF14 von Figur 1 in Figur 2 mit ZF22 ... ZF24 bezeichnet. Desweiteren liegen über den ferroelektrischen Kondensatoren ZF22 ... ZF24 die Störspannungen V22 ... V24 an.
Vorteilhafterweise sind hier die Substratanschlüsse aller Transistoren mit einem gemeinsamen Anschluß Bulk verbunden.
Die Funktionsweise ist ähnlich wie bei der Anordnung von Fi- gur 1, wobei mit Hilfe der Steuereinheit CTRL der zum Kondensator der ausgewählten Zelle in Reihe geschaltete Transistor, z. B. Transistor M31, leitend geschaltet wird und die zu den Kondensatoren der nicht ausgewählten Zellen in Reihe geschalteten Transistoren, z.B. die Transistoren M32 ... M34, durch die Einheit CTRL so angesteuert werden, daß sie gerade noch nicht ganz sperren. Wurden die zu den Kondensatoren der nicht ausgewählten Zellen in Reihe geschalteten Transistoren, z.B. die Transistoren M32 ... M34, ganz sperren, dann waren die Storimpulse großer als bei nicht ganz sperrendenTransistoren, da die Diffusionskapa- Zitaten, die Gate-Source-Kapazitaten und die Drain-Source- Kapazitaten dieser Transistoren mit den ferroelektrischen Kondensatoren kapazitive Spannungsteiler bilden wurden.
In Figur 3 sind m einem Diagramm Storspannungen V02 ... V04 für den bekannten Fall angegeben, daß die ferroelektrischen Kondensatoren, ohne einen jeweils in Reihe geschalteten Widerstand bzw. Transistor, direkt parallel zum jeweiligen Transistor geschaltet sind, wobei die Storspannungspegel hier beispielsweise bei ca. - 0,4 Volt liegen, was bereits m der Größenordnung der Koerzitivspannung übliche ferroelektrischer Kondensatoren liegt.
In Figur 4 sind m einem Zeitdiagramm die Storspannungen V12 ... V14 an den ferroelektrischen Kapazitäten ZF12 ... ZF14 von nicht ausgewählten Speicherzellen dargestellt, wobei die Widerstände Rl ... R4 in Figur 1 zum Beispiel m der Größenordnung von 100 kΩ sind. Die Storspannungen V12 ... VI4 weisen jeweils einen Wert unter - 0,1 Volt auf, was deutlich geringer ist als die Koerzitivspannung bei üblichen ferroelek- frischen Kondensatoren.
Für einen ferroelektrischen Speicher gemäß Figur 2, also mit zu den ferroelektrischen Kondensatoren jeweils in Reihe geschaltete Transistoren, sind m Figur 5 die Storspannungen V22 ... V24 an den ferroelektrischen Kondensatoren der nicht ausgewählten Speicherzellen dargestellt, wobei die Werte der Storspannungen nochmals erheblich kleiner sind als bei einem Speicher mit den zu den ferroelektrischen Kondensatoren in Reihe geschalteten Widerstanden, wobei der Zeitverlust m der Zugriffszeit nicht wesentlich schlechter ist als bei bekannten ferroelektrischen Speichern dieser Art.

Claims

Patentansprüche
1. Ferroelektrischer Schreib-/Lesespeicher mit einer Mehrzahl von in Reihe geschalteten Speicherzellen (ZI), bei dem eine jeweilige Speicherzelle (ZI) einen jeweiligen ferroelektrischen Kondensator (ZF11) , einen Widerstand (Rl) und einen Transistor (Mll) aufweist, bei dem dem jeweiligen ferroelektrischen Kondensator der jeweilige Widerstand in Reihe geschaltet ist und die Reihen- Schaltung aus dem ferroelektrischen Kondensator und dem jeweiligen Widerstand durch den jeweiligen Transistor in Abhängigkeit eines Signals einer jeweiligen Wortleitung (WL1) die mit einem Gate des jeweiligen Transistors verbunden ist, nie- derohmig verbindbar ist.
2. Ferroelektrischer Schreib-/Lesespeicher nach Anspruch 1, bei dem der jeweilige Widerstand (Rl) durch einen jeweiligen weiteren Transistor (M31) ersetzt ist und in Abhängigkeit des Signals der jeweiligen Wortleitung in seiner Leitfähigkeit beeinflußbar ist.
3. Ferroelektrischer Schreib-/Lesespeicher nach Anspruch 2, bei der eine Steuereinheit (CTRL) derart vorhanden ist, daß die durch das Signal der jeweiligen Wortleitung (WL1) ausge- wählte Speicherzelle (ZI' ) in Abhängigkeit dieses Signals den jeweiligen weiteren Transistor (M31) dieser ausgewählten Speicherzelle leitend schaltet und alle anderen weiteren Transistoren (M32 ... M34) der nicht ausgewählten Speicherzellen so ansteuert, daß diese gerade noch nicht sperren.
PCT/DE1999/001931 1998-07-10 1999-07-01 Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram) WO2000003396A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59905208T DE59905208D1 (de) 1998-07-10 1999-07-01 Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram)
EP99942749A EP1099222B1 (de) 1998-07-10 1999-07-01 Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram)
JP2000559568A JP2002520764A (ja) 1998-07-10 1999-07-01 直列接続されたメモリセルを有する強誘電体書き込み/読み出しメモリ(cfram)
US09/758,300 US6697279B2 (en) 1998-07-10 2001-01-10 Ferroelectric read/write memory with series-connected memory cells (CFRAM)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19830963 1998-07-10
DE19830963.5 1998-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/758,300 Continuation US6697279B2 (en) 1998-07-10 2001-01-10 Ferroelectric read/write memory with series-connected memory cells (CFRAM)

Publications (2)

Publication Number Publication Date
WO2000003396A2 true WO2000003396A2 (de) 2000-01-20
WO2000003396A3 WO2000003396A3 (de) 2000-02-24

Family

ID=7873627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001931 WO2000003396A2 (de) 1998-07-10 1999-07-01 Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram)

Country Status (8)

Country Link
US (1) US6697279B2 (de)
EP (1) EP1099222B1 (de)
JP (1) JP2002520764A (de)
KR (1) KR100615746B1 (de)
CN (1) CN1154115C (de)
DE (1) DE59905208D1 (de)
TW (1) TW434539B (de)
WO (1) WO2000003396A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913451B2 (ja) * 2000-08-23 2007-05-09 株式会社東芝 半導体記憶装置
JP2008102982A (ja) * 2006-10-17 2008-05-01 Toshiba Corp 強誘電体メモリ
JP2008108355A (ja) * 2006-10-25 2008-05-08 Toshiba Corp 強誘電体半導体記憶装置及び強誘電体半導体記憶装置の読み出し方法
JP6749021B2 (ja) * 2015-05-15 2020-09-02 国立大学法人東北大学 抵抗変化型素子を備えた記憶回路
DE102018215881B3 (de) * 2018-09-19 2020-02-06 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Koppeln zweier Gleichstromnetze

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724449A1 (de) * 1996-06-10 1997-12-11 Toshiba Kawasaki Kk Halbleiterspeichereinrichtung und verschiedene Systeme für deren Anbringung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320782B1 (en) * 1996-06-10 2001-11-20 Kabushiki Kaisha Toshiba Semiconductor memory device and various systems mounting them
JP3766181B2 (ja) * 1996-06-10 2006-04-12 株式会社東芝 半導体記憶装置とそれを搭載したシステム
US5892728A (en) * 1997-11-14 1999-04-06 Ramtron International Corporation Column decoder configuration for a 1T/1C ferroelectric memory
US5898609A (en) * 1998-05-29 1999-04-27 Samsung Electronics Co., Ltd. Ferroelectric memory having circuit for discharging pyroelectric charges

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724449A1 (de) * 1996-06-10 1997-12-11 Toshiba Kawasaki Kk Halbleiterspeichereinrichtung und verschiedene Systeme für deren Anbringung

Also Published As

Publication number Publication date
KR20010053482A (ko) 2001-06-25
CN1154115C (zh) 2004-06-16
KR100615746B1 (ko) 2006-08-25
US6697279B2 (en) 2004-02-24
EP1099222A2 (de) 2001-05-16
TW434539B (en) 2001-05-16
EP1099222B1 (de) 2003-04-23
US20010015906A1 (en) 2001-08-23
WO2000003396A3 (de) 2000-02-24
JP2002520764A (ja) 2002-07-09
CN1308763A (zh) 2001-08-15
DE59905208D1 (de) 2003-05-28

Similar Documents

Publication Publication Date Title
DE3123611C2 (de)
DE2727419C3 (de) Halbleiterspeichersystem
DE4036973C2 (de) Schaltung zur Erzeugung einer gegenüber einer extern zugeführten Versorgungsspannung erhöhten Lösch- oder Programmierspannung in einer Halbleiter-Speicherschaltung
DE3249671C2 (de)
DE3041176C2 (de)
DE69624155T2 (de) Ferroelektrischer Speicher und Verfahren für seine Betriebswirkung
WO2006058647A1 (de) Speicherschaltung wie verfahren zum bewerten eines speicherdatums einer cbram-widerstandsspeicherzelle
DE2527486B2 (de) Verfahren zur Prüfung bistabiler Speicherzellen
EP1204120A2 (de) Magnetoresistiver Speicher und Verfahren zu seinem Auslesen
EP0991079B1 (de) Integrierter Speicher
EP0100772B1 (de) Elektrisch programmierbare Speichermatrix
DE2041959A1 (de) Randomspeicher
EP1099222B1 (de) Ferroelektrischer schreib-/lesespeicher mit in reihe geschalteten speicherzellen (cfram)
DE69029791T2 (de) Nichtflüchtige Speicheranordnung und Betriebsverfahren
DE2609714A1 (de) Speicherzellenanordnung
EP1085517B1 (de) Integrierter Speicher mit wenigstens zwei Plattensegmenten
EP1163678B1 (de) Integrierter speicher mit speicherzellen, die je einen ferroelektrischen speichertransistor aufweisen
DE19952311A1 (de) Integrierter Speicher mit Speicherzellen vom 2-Transistor/2-Kondensator-Typ
EP1126470B1 (de) Integrierter Halbleiterspeicher mit Speicherzellen mit ferroelektrischem Speichereffekt
DE19919360C2 (de) Integrierter Speicher mit Bitleitungen, Wortleitungen und Plattenleitungen sowie Betriebsverfahren für einen entsprechenden Speicher
DE19919359C2 (de) Integrierter Speicher mit an gegenüberliegenden Seiten eines Zellenfeldes angeordneten Leseverstärkern
DE2251640A1 (de) Elektronisches speicherelement und dieses verwendendes speicherwerk
DE2131939A1 (de) Logisch gesteuerte Inverterstufe
EP0404995B1 (de) Integrierte Schaltungsanordnung
DE2639507C3 (de) Bistabiler Multivibrator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99808496.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999942749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 559568

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017000423

Country of ref document: KR

Ref document number: 09758300

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999942749

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017000423

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999942749

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017000423

Country of ref document: KR