WO1999061163A1 - Dispositif de pulverisation de liquide et procede de decoupe - Google Patents

Dispositif de pulverisation de liquide et procede de decoupe Download PDF

Info

Publication number
WO1999061163A1
WO1999061163A1 PCT/JP1999/001234 JP9901234W WO9961163A1 WO 1999061163 A1 WO1999061163 A1 WO 1999061163A1 JP 9901234 W JP9901234 W JP 9901234W WO 9961163 A1 WO9961163 A1 WO 9961163A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
spray
liquid
gas
pressure
Prior art date
Application number
PCT/JP1999/001234
Other languages
English (en)
French (fr)
Inventor
Tsutomu Inoue
Original Assignee
Fuji Koeki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26474542&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999061163(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Koeki Co., Ltd. filed Critical Fuji Koeki Co., Ltd.
Priority to JP2000550607A priority Critical patent/JP3219753B2/ja
Priority to DE69934984T priority patent/DE69934984T2/de
Priority to KR1020007013294A priority patent/KR20010052402A/ko
Priority to EP99953308A priority patent/EP1090690B1/en
Priority to US09/700,830 priority patent/US6659370B1/en
Priority to IL13988299A priority patent/IL139882A0/xx
Publication of WO1999061163A1 publication Critical patent/WO1999061163A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber

Definitions

  • the present invention relates to a liquid applying apparatus for conveying a spray (liquid fine particles) in a container and applying a liquid to an object, and a cutting method using the same.
  • the present invention relates to a liquid applying apparatus for supplying cutting oil to a cutting tool of a machine tool such as a machining center, a grinder, or a lathe, and a cutting method using the same.
  • the spray generating section requires a casing for a fall section, a high-speed gas passage, a bench lily nozzle, and the like, and a pump and an oil tank are formed separately. Therefore, the structure was complicated. Further, in the above-described oil supply device, the internal pressure of the main body depends on the primary supply pressure and the diameter (cross-sectional area) of the spray discharge portion at the front end. Was changing. For this reason, for example, when a tool provided with a discharge outlet is used as a spray discharge part, the internal pressure of the main body increases when the tool is replaced with a tool having a smaller discharge diameter. In this case, there is no problem in securing the discharge flow rate, but since the differential pressure between the primary supply pressure and the internal pressure of the main unit is reduced, effective spray may not be sufficiently generated in the spray generating section.
  • the present invention solves the above-mentioned problems, and a liquid coating apparatus and a cutting method capable of reliably generating a fine spray with a simple structure, generating a stable spray, and securing a discharge flow rate.
  • the purpose is to provide.
  • a first liquid application device of the present invention comprises: a container; a spray discharge nozzle for discharging a spray into the container; and conveying the spray in the container out of the container.
  • a liquid transport device including a spray transport passage for storing liquid in the container, having a gas discharge port in the liquid, and discharging gas into the liquid to spray from the liquid. It is characterized by having a submerged nozzle to generate.
  • the liquid application device by including the submerged nozzle, Since the internal pressure of the container can be increased and a spray can be generated separately from the spray from the spray discharge nozzle, the flow rate of the spray at the outlet of the spray transport passage can be increased, and the spray amount can be increased. Can be.
  • the spray discharge nozzle collides with a wall surface in the container before being carried into the spray transport passage.
  • sprays and droplets having a large particle diameter tend to adhere to the wall surface when colliding with the wall surface, so that the sprays and droplets having a large particle diameter are carried into the spray transport pipe. Can be prevented.
  • the wall surface is a liquid surface of the liquid. According to the liquid application apparatus as described above, sprays and droplets having a large particle diameter are easily absorbed by the liquid surface when colliding with the liquid surface. Can be prevented.
  • a pressure control means for controlling the inside of the container to a constant pressure is provided in a passage for supplying the gas to the submerged nozzle. If the internal pressure of the container is constant, the differential pressure between the primary pressure of gas supply into the container and the internal pressure of the container will be constant, so the gas flow rate for generating spray in the container will also be constant, and a stable spray Can be generated. Furthermore, since a constant flow velocity can be secured also at the discharge section, the spray can be changed into an oil droplet and discharged.
  • a gas discharge nozzle having a tip portion in the air in the container to discharge gas is provided. According to the liquid applying apparatus as described above, since the internal pressure of the container can be increased, the flow rate of the spray at the outlet of the spray transport passage can be increased.
  • pressure control means for controlling the pressure to a constant pressure. If the internal pressure of the container is constant, the differential pressure between the primary pressure of gas supply into the container and the internal pressure of the container will be constant, so the gas flow rate for generating the spray in the container will also be constant, and a stable spray Can be generated. Furthermore, since a constant flow velocity can be secured in the discharge section, the spray can be changed into an oil droplet and discharged.
  • a discharge portion having a tapered tip is connected to a tip of the spray transport passage. According to the liquid application apparatus as described above, the flow rate of the spray is increased in the discharge section, so that the spray can be changed into droplets and taken out.
  • a gas and a liquid are supplied to the spray discharge nozzle, and the gas and the liquid are mixed in the spray discharge nozzle, so that the spray is discharged into the container.
  • the liquid stored in the container flows into the liquid supply means, and the liquid flowing out from the liquid supply means is supplied to the spray discharge nozzle.
  • the liquid supply means is a liquid pump.
  • the liquid supply means is a siphon tube having a tip portion in the liquid stored in the container and sucking up the liquid stored in the container.
  • a pressure control means for controlling the inside of the container to a constant pressure is provided in a passage for supplying the gas to the spray discharge nozzle. If the internal pressure of the container is constant, the differential pressure between the primary pressure of the gas supply into the container and the internal pressure of the container is constant, so the gas flow rate for generating the spray in the container is also constant and stable. It is possible to generate a spray that has been made. In addition, discharge Since a constant flow velocity can be ensured also in the part, the spray can be changed into an oil droplet and discharged.
  • a second liquid application device of the present invention includes: a container; a spray discharge nozzle for discharging a spray into the container; and a spray transfer passage for transferring the spray in the container to the outside of the container.
  • a liquid application device provided with the spraying device wherein most of the discharge flow from the spray discharge nozzle collides with a wall surface in the container before being carried into the spray transport passage. According to the liquid coating apparatus as described above, sprays and droplets having a large particle diameter tend to adhere to the wall surface when they collide with the wall surface, so that the sprays and droplets having a large particle diameter are carried into the spray transport pipe. Can be prevented.
  • the interior of the container is separated into an upper space and a lower space by the wall surface, and a discharge port of the spray discharge nozzle is disposed in the lower space. Is preferred.
  • sprays and droplets having a large particle diameter are likely to adhere to the wall surface when they collide with the wall surface, and most of the matter attached to the wall surface falls by gravity to the lower part of the container in the lower space. Therefore, most of the liquid carried into the upper space becomes fine spray, and it is possible to prevent large diameter sprays and droplets from being carried into the spray transport pipe.
  • the inside of the container is separated into an upper space and a lower space by the wall surface, and a discharge port of the spray discharge nozzle is disposed in the upper space.
  • the liquid coating apparatus As described above, most of the large particle size sprays and droplets adhere to the wall surface when they collide with the wall surface, or fall into the lower space along the wall surface. For this reason, most of the liquid carried into the upper space becomes fine spray, and it is possible to prevent large diameter sprays and droplets from being carried into the spray transport pipe. Further, it is preferable that the lower surface of the wall is an inner wall of the dome-shaped member having an opening. According to the liquid coating apparatus as described above, it is easy to cause the spray or the droplet having a large particle diameter to drop to the lower part of the container in the lower space.
  • the wall surface is an outer wall surface of a dome-shaped member having an opening on the lower side. According to the liquid coating apparatus as described above, it is easy to cause the spray or the droplet having a large particle diameter to drop to the lower part of the container in the lower space.
  • the wall surface is a liquid surface of the liquid stored in the container. According to the liquid coating apparatus as described above, sprays and droplets having a large particle diameter tend to adhere to the wall surface when they collide with the wall surface, so that sprays and droplets having a large particle diameter are carried into the spray transport pipe. Can be prevented.
  • a discharge flow transfer passage is formed in the wall surface, and most of the discharge flow from the spray discharge nozzle can be directly taken out of the container by opening a valve connected to the discharge flow transfer passage. According to the liquid application apparatus as described above, the discharge flow from the spray discharge nozzle can be directly taken out of the container when it is not necessary to select the particle size of the spray.
  • the discharge flow before being carried into the spray transport passage collides with a wall surface formed separately from the wall surface.
  • the liquid coating apparatus as described above, it is possible to thoroughly prevent the spraying of large particle diameter or droplets into the spray transport pipe.
  • a gas discharge nozzle having a tip portion in the air in the container to discharge gas is provided. According to the liquid applying apparatus as described above, since the internal pressure of the container can be increased, the flow rate of the spray at the outlet of the spray transport passage can be increased.
  • a pressure control means for controlling the inside of the container to a constant pressure is provided in a passage for supplying the gas to the gas discharge nozzle.
  • Container If the internal pressure is constant, the differential pressure between the primary pressure of the gas supply into the container and the internal pressure of the container is constant, so the gas flow rate for generating the spray in the container is also constant, and stable spray generation is achieved. Will be possible. Furthermore, since a constant flow velocity can be secured in the discharge section, the spray can be changed into an oil droplet and discharged.
  • a discharge portion having a tapered tip is connected to a tip of the spray transport passage. According to the liquid application apparatus as described above, the flow rate of the spray is increased in the discharge section, so that the spray can be changed into droplets and taken out.
  • a gas and a liquid are supplied to the spray discharge nozzle, and the gas and the liquid are mixed in the spray discharge nozzle, so that the spray is discharged into the container.
  • the liquid stored in the container flows into the liquid supply means, and the liquid flowing out from the liquid supply means is supplied to the spray discharge nozzle.
  • the liquid supply means is a liquid pump.
  • the liquid supply means is a siphon tube having a tip portion in the liquid stored in the container and sucking up the liquid stored in the container.
  • a pressure control means for controlling the inside of the container to a constant pressure is provided in a passage for supplying the gas to the spray discharge nozzle. If the internal pressure of the container is constant, the differential pressure between the primary pressure of the gas supply into the container and the internal pressure of the container is constant, so the gas flow rate for generating the spray in the container is also constant and stable. It is possible to generate a spray that has been made. In addition, since a constant flow rate can be secured at the discharge section, the spray is changed to oil droplets. Can be ejected.
  • the third liquid application device of the present invention is characterized in that the spray in the container is moved by the gas pressure of the gas supplied into the container through the spray transfer passage, and the liquid is transferred out of the container.
  • a coating apparatus characterized by comprising pressure control means for controlling the inside of the container to a constant pressure.
  • a spray having a large particle diameter can be trapped in the container, the spray can be transported quickly, and the internal pressure in the container can be controlled at a constant level.
  • the differential pressure between the primary pressure of the supply and the internal pressure of the container becomes constant, the gas flow rate for generating the spray in the container becomes constant, and stable spray can be generated.
  • the spray can be changed into an oil droplet and discharged, and a change in the flow rate of the spray can be prevented, so that the spray discharge amount can be stabilized.
  • the spray is supplied by a spray discharge nozzle that discharges a spray into the container, and a gas and a liquid are supplied to the spray discharge nozzle. It is preferable that the spray is discharged into the container by mixing in the spray discharge nozzle.
  • the pressure control unit is provided in a passage for supplying the gas to the spray discharge nozzle.
  • a liquid is stored in the container, and a submerged nozzle having a gas discharge port in the liquid is provided.
  • the gas is discharged into the liquid by the submerged nozzle, whereby the liquid is sprayed from the liquid. Preferably, it is generated.
  • the passage for supplying the gas to the submerged nozzle is provided with the pressure control means.
  • the pressure control means includes a pressure regulator connected to the gas supply passage.
  • the pressure regulating valve When the pressure in the container rises to a set value, the pressure regulating valve is closed to stop the supply of the gas, and when the pressure in the container falls to a constant pressure, the pressure regulating valve is provided. It is preferable to open the gas supply and restart the supply of the gas. According to the liquid applying apparatus as described above, since the structure is simple, the cost can be reduced and the mounting operation is also easy.
  • the set value can be changed.
  • the apparatus can be used for a plurality of purposes, for example, for cutting and air blow.
  • the pressure control means includes: an electromagnetic valve connected to the gas supply passage; and a pressure switch having a pressure detection unit disposed in the container, wherein the pressure in the container increases to an upper limit set value. Then, the supply of the gas is stopped by closing the electromagnetic valve by the pressure switch, and when the pressure in the container falls to a lower limit set value, the supply of the gas is performed by opening the electromagnetic valve by the pressure switch. Is preferably restarted. According to the liquid applying apparatus as described above, the operation becomes more reliable, and the accuracy of pressure control can be improved.
  • the pressure switch has a plurality of combinations of the set value of the upper limit and the set value of the lower limit, each having a different value, and is capable of switching between the combinations.
  • the apparatus can be used for a plurality of purposes, for example, for cutting and air blowing.
  • the pressure control means includes: a valve provided in the gas supply passage; a pressure sensor for detecting a pressure of the gas after passing through the valve; and a control unit.
  • the detected pressure is converted to an electric signal, and the electric signal is subjected to arithmetic processing in the control unit.
  • the control unit determines that the detected pressure has reached an upper limit set value
  • the control unit issues a signal to close the valve, Preferably, the supply of gas is stopped, and when it is determined that the detected pressure has reached the lower limit set value, a signal to open the valve is issued, and the supply of the gas is restarted.
  • the operation is more reliable, and the accuracy of the pressure control can be improved.
  • the pressure sensor is disposed in the container.
  • the pressure sensor is disposed between the valve and the container in the gas supply passage.
  • the pressure sensor is disposed in the spray transport passage.
  • the set value of the upper limit and the set value of the lower limit can be changed.
  • the apparatus can be used for a plurality of purposes, for example, for cutting and air pro.
  • a discharge portion having a tapered tip is connected to a tip of the spray transport passage. According to the liquid application apparatus as described above, the flow rate of the spray is increased in the discharge section, so that the spray can be changed into droplets and taken out.
  • the first cutting method of the present invention comprises: a container; a spray discharge nozzle for discharging a spray into the container; and a spray transfer passage for transferring the spray in the container to the outside of the container.
  • the cutting method as described above since the workpiece is cut by supplying a spray, the amount of application can be minimized, and the productivity is improved. In addition, work environment deterioration can be prevented. Furthermore, since the liquid applicator is equipped with a submerged nozzle, the internal pressure of the container can be increased and a spray can be generated separately from the spray from the spray discharge nozzle. The flow rate can be increased, and the spray amount can be increased.
  • the first cutting method it is preferable that most of the discharge flow from the spray discharge nozzle collides with a wall surface in the container before being carried into the spray transport passage. According to the cutting method as described above, sprays and droplets having a large particle diameter are liable to adhere to the wall surface when colliding with the wall surface, so that sprays and droplets having a large particle diameter are carried into the spray transport pipe. Can be prevented.
  • a second cutting method includes a container, a spray discharge nozzle for discharging a spray into the container, and a spray transfer passage for transferring the spray in the container to the outside of the container.
  • a liquid application device that collides with a wall surface in the container is attached to an oil supply section of a machine tool, and It is characterized in that the workpiece is cut by supplying the spray to the workpiece.
  • the cutting method as described above since the object to be processed is subjected to cutting by supplying a spray, the amount of application can be minimized, and in addition to improving the productivity, the working environment can be prevented from deteriorating. Furthermore, sprays and droplets having a large particle diameter tend to adhere to the wall surface when they collide with the wall surface, so that sprays and droplets having a large particle diameter can be prevented from being carried into the spray transport pipe.
  • the interior of the container is separated into an upper space and a lower space by the wall surface, and a discharge port of the spray discharge nozzle is disposed in the lower space. Is preferred.
  • sprays and droplets with a large particle size tend to adhere to the wall surface when they collide with the wall surface, and most of those that adhere to the wall surface fall by gravity to the lower part of the container in the lower space.
  • Most of the incoming material is fine spray, which prevents large-size sprays and droplets from entering the spray transport pipe.
  • the inside of the container is separated into an upper space and a lower space by the wall surface, and a discharge port of the spray discharge nozzle is disposed in the upper space.
  • a liquid application device having a pressure control means for controlling the inside of the container to a constant pressure, the liquid application device being attached to an oil supply section of a machine tool, and supplying the spray toward a cutting tool to cut a workpiece. It is characterized by doing.
  • the cutting method as described above since the object to be processed is subjected to cutting by supplying a spray, the amount of application can be minimized, and in addition to improving the productivity, the working environment can be prevented from deteriorating.
  • large particle size sprays can be trapped in the container, spray transport is excellent in responsiveness, and the internal pressure in the container can be controlled at a constant level, so the primary pressure of gas supply into the container and the internal pressure of the container
  • the differential pressure is constant, the gas flow rate for spray generation in the container is also constant, and stable spray generation is possible.
  • the discharge section since a constant flow rate can be secured, the spray can be changed into an oil droplet and discharged, and a change in the flow rate of the spray can be prevented, so that the spray discharge amount can be stabilized.
  • the pressure control means includes a pressure adjusting valve connected to the gas supply passage, and closes the pressure adjusting valve when the pressure in the container increases to a set value.
  • the supply of the gas is stopped, and when the pressure in the container drops to a constant pressure, the pressure regulating valve is opened to restart the supply of the gas.
  • the structure of the liquid application device is simple, so that the cost can be reduced and the work of mounting the pressure adjusting valve is also easy.
  • the pressure control means includes: an electromagnetic valve connected to the gas supply passage; and a pressure switch having a pressure detection unit disposed in the container, wherein the pressure in the container increases to an upper limit set value. Then, the supply of the gas is stopped by closing the electromagnetic valve by the pressure switch, and when the pressure in the container falls to a lower limit set value, the supply of the gas is performed by opening the electromagnetic valve by the pressure switch. Is preferably restarted. According to the above, the operation of the liquid applying apparatus becomes more reliable, and the accuracy of pressure control can be improved.
  • the pressure control means includes: a valve provided in the gas supply passage; a pressure sensor for detecting a pressure of the gas after passing through the valve; and a control unit.
  • the detected pressure is converted into an electric signal, and the electric signal is arithmetically processed by the control unit.
  • the control unit determines that the detected pressure has reached an upper limit set value, the control unit issues a signal to close the valve, and outputs the signal of the gas.
  • the supply is stopped and it is determined that the detected pressure has reached the lower limit set value, it is preferable to issue a signal to open the valve and restart the supply of the gas.
  • FIG. 1 is a vertical sectional view of a liquid application device according to Embodiment 1 of the present invention.
  • FIG. 2 is a horizontal sectional view of a liquid application device according to a second embodiment of the present invention.
  • FIG. 3 is a vertical sectional view of a liquid application device according to Embodiment 3 of the present invention.
  • FIG. 4 is a vertical sectional view of a liquid application device according to Embodiment 4 of the present invention.
  • FIG. 5 is a vertical sectional view of a liquid application apparatus according to Embodiment 5 of the present invention.
  • FIG. 6 is a vertical sectional view of a liquid application device according to Embodiment 6 of the present invention.
  • FIG. 7 is a vertical sectional view of a liquid application apparatus according to Embodiment 7 of the present invention.
  • FIG. 8A shows a pressure control circuit according to Embodiment 8 of the present invention.
  • FIG. 8B shows a pressure control circuit according to Embodiment 9 of the present invention.
  • FIG. 8C shows a pressure control circuit according to Embodiment 10 of the present invention.
  • FIG. 9 is a pressure control circuit according to Embodiment 11 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • liquid application device according to the present invention is used as an oil supply device.
  • FIG. 1 is a vertical sectional view of the liquid application device according to the first embodiment.
  • the container 1 is provided with a spray discharge nozzle 2, a gas discharge nozzle 3, a submerged nozzle 4, and a spray transfer pipe 5.
  • the spray discharge nozzle 2 is formed of a gas tube 6 and an oil tube 7 passing therethrough.
  • Gas tube 6 is connected to gas source 8
  • the discharge flow rate can be adjusted by the gas flow rate adjustment valve 9a.
  • the oil tube 7 is connected to the oil pump 10.
  • the tip of the oil tube 7 enters the inside of the gas tube 6.
  • the oil supplied from the oil pump 10 and the gas supplied from the gas source 8 are mixed and discharged into the container 1 as an oil spray.
  • the gas discharge nozzle 3 is for supplying gas into the container 1, is connected to the gas source 8, and can adjust the discharge flow rate by the gas flow rate control valve 9b.
  • the submerged nozzle 4 is immersed in a fixed amount of oil 11 filled in the container 1.
  • the submerged nozzle 4 is connected to a gas source 8, and the discharge flow rate can be adjusted by a gas flow rate adjustment valve 9c.
  • gas is discharged from the submerged nozzle 4 into the oil 11, the oil 11 is entrained by the discharged gas and is sprayed and diffused from above the liquid surface as an oil spray.
  • the spray transport pipe 5 is for transporting the spray in the container 1 to the outside of the container 1.
  • the spray transport pipe 5 is connected to a spray transport outer pipe 12 for transporting the oil spray to the lubrication target.
  • the spray transport outer pipe 12 is connected to a tip end of the spray transport outer pipe 12 to a tapered discharge section 13. ing.
  • the spray transport outer pipe 12 it is better to connect the spray transport outer pipe 12 to a spindle with an oil hole on the machining center, and attach a drill with a small-diameter discharge port at the tip as the discharge section 13 to the spindle with the oil hole. it can.
  • the oil 11 in the container 1 can be replenished from the oil filler port 15 by removing the oil filler cap 14. Oil 11 flows to pump 10 via supply port 16 Enter.
  • Both oil spray discharged from the nozzle tip 6a of the spray discharge nozzle 2 and oil spray generated from the liquid surface of the nozzle 11 by the submerged nozzle 4 can be supplied into the container 1. is there.
  • Oil droplets are also ejected instead of sprays. Oil sprays and oil droplets with large particle diameters are easy to fall by gravity, whereas the speed of fine oil sprays is slow and the residence time in the container 1 is long. In the following, a fine oil spray is a smoke-like thing that can float in the air.
  • the fine oil spray remaining in the container 1 moves in the direction of the arrow a under the influence of this pressurization and is conveyed by the spray. It is carried into pipe 5.
  • Oil sprays and oil droplets with large particle diameters tend to fall by gravity in the liquid surface direction of the oil 11, so they are not easily affected by air pressure. Sprays and oil droplets are difficult to flow.
  • Most of the oil spray conveyed in the spray conveying outer pipe 12 is a fine oil spray as described above, so that it can be conveyed at a high speed and hardly adheres to the inner wall surface of the pipe. Therefore, even if the distance to the refueling target is long and the length of the transport pipe is long, it can be passed through the transport pipe in a short time.
  • the oil spray After passing through the outer pipe for spray transport 1 2, the oil spray The flow velocity is increased by passing through the discharge section 13 having a reduced diameter. As the flow velocity increases, the particle size of the oil spray increases, and if a constant flow velocity can be secured, it can be changed into oil droplets.
  • the oil spray is changed into oil droplets even if it is discharged with a fine oil spray, that is, an oil spray that is large enough to float in the air in the form of smoke. This is because they do not attach to
  • the oil is discharged from the drill tip as oil droplets. Can be easily attached to the workpiece and can be processed smoothly.
  • the fine particles having a small particle diameter flow into the spindle with oil holes from the spray transport pipe 12 and are hardly affected by centrifugal force caused by the high-speed rotation of the spindles. Adhesion can be prevented.
  • the flow rate of the oil spray increases as it passes through the discharge section 13 having a reduced diameter.
  • the flow rate increases as the internal pressure of the container 1 increases.
  • the internal pressure of the container 1 also depends on the diameter of the discharge unit 13, and the smaller the diameter of the discharge unit 13, the higher the internal pressure of the container 1.
  • the diameter of the discharge section 13 is larger than a certain diameter, a sufficient flow velocity cannot be secured, and the oil spray may not be sufficiently large in particle diameter, and may not change into an effective oil droplet shape.
  • the spray discharge nozzle 2 has a small effective area for spray generation. There are certain limits to increasing the discharge gas pressure.
  • the gas discharge nozzle 3 is used.
  • the internal pressure of the container 1 can be increased by the gas discharged from the gas discharge nozzle 3 and the flow rate of the oil spray is secured at the final outlet. it can. Since the gas discharge nozzle 3 is intended only for gas supply, the effective cross-sectional area can be increased as compared with the gas tube 6 of the spray discharge nozzle 2, and the variable range of the discharge gas pressure can be sufficiently widened.
  • the device in which the oil spray in the container 1 is only the oil spray from the spray discharge nozzle 2 can function as an oil supply device.
  • the amount of heat generated is large, as in the case of high-speed heavy cutting, and a larger amount of lubrication may be required.
  • the submerged nozzle 4 immersed in the oil 11 in the container 1 plays a role in increasing the internal pressure of the container 1 and increasing the amount of the oil spray in the container 1.
  • the gas spray from the submerged nozzle 4 causes the oil spray to be sprayed and diffused from above the liquid surface of the oil 11.
  • the internal pressure of the container 1 increases, and oil spray can be generated separately from the oil spray from the spray discharge nozzle 2. For this reason, the internal pressure of container 1 increases.
  • the accompanying decrease in oil spray from the spray discharge nozzle 2 can be compensated for by the oil spray from above the liquid surface of the oil 11.
  • the internal pressure of the container 1 can be increased by discharging the gas from the submerged nozzle 4, so that the gas discharge from the gas discharge nozzle 3 can be stopped and used. If the gas discharge from the gas discharge nozzle 3 is also used, the variable range of the internal pressure of the container 1 can be further widened. Therefore, when the required internal pressure of the container 1 can be ensured only by gas discharge from the submerged nozzle 4, a device without the gas discharge nozzle 3 may be used.
  • the discharge pressure from the submerged nozzle 4 is set to a constant pressure in advance, for example, every day, even if a tool such as a drill at the tip is changed, the outlet cross-sectional area will change. No fine adjustment is required. For example, when the outlet cross-sectional area becomes narrow and the internal pressure of the container 1 becomes equal to or higher than a certain pressure, the gas discharge from the submerged nozzle 4 is stopped, so that unnecessary gas supply can be prevented. In this case, only the oil spray from the spray discharge nozzle 2 is discharged into the container 1.
  • the discharge gas from the submerged nozzle 4 is supplied according to the pressure difference between the discharge pressure from the submerged nozzle 4 and the internal pressure of the container 1, and the container 1 The necessary internal pressure will be secured.
  • the oil spray can also be generated by discharging the gas from the submerged nozzle 4 separately from the oil spray from the spray discharge nozzle 2, so that the same amount of oil spray can be generated only from the spray discharge nozzle 2.
  • the load on the oil pump 10 is lighter than when discharging can do.
  • the gas discharge pressure can be confirmed by installing a pressure switch in the container 1, and the virtual flow velocity of the oil spray at the outlet can be determined from the discharge pressure, and it can be determined whether the state of the oil spray is effective.
  • a pressure switch in the container 1
  • the virtual flow velocity of the oil spray at the outlet can be determined from the discharge pressure, and it can be determined whether the state of the oil spray is effective.
  • the spray transport outer pipe 12 may be branched and connected to a plurality of pipes instead of one. In this case, a single device can apply liquid to multiple locations.
  • the shape of the container may be designed in consideration of the improvement in commercial properties, ease of production, maintainability, and the like, and is not limited to a cylindrical shape, and may be a prismatic shape. For example, if emphasis is placed on merchantability, a tank made in a box may be used.
  • the second embodiment is the same as the first embodiment, but is characterized by the positional relationship between the tip of the spray discharge nozzle 2 and the inner wall surface of the container 1.
  • the oil spray with a large particle diameter and the drop of the oil level of the oil droplets can be more reliably prevented.
  • the second embodiment is effective when the container is relatively small and a sufficient distance cannot be secured between the tip of the spray discharge nozzle 2 and the tip of the spray transport pipe 5.
  • FIG. 2 shows a horizontal sectional view of the liquid application apparatus according to the second embodiment.
  • the tip of the spray discharge nozzle 2 is arranged so that most of the discharge flow from the spray discharge nozzle 2 collides with the inner wall surface 1 a before being carried into the spray transport pipe 5. That is, most of the discharge flow from the spray discharge nozzle 2 collides directly with the inner wall surface la without passing through the center of the container 1 (arrow b).
  • the fine oil spray hardly adheres to the wall even if it collides with the wall, and the oil spray or oil droplet having a large particle diameter easily adheres to the wall when colliding with the wall.
  • the larger the particle size the easier it is to adhere to the wall surface, especially for oil droplets.
  • the oil spray and oil droplets having a large particle diameter adhere to the inner wall surface 1a.
  • the tip of the spray discharge nozzle 2 and the inner wall 1a facing it should be such that most of the discharge flow from the spray discharge nozzle directly collides with the inner wall surface 1a before being carried into the spray transport pipe 5.
  • the positional relationship may be such that the discharge flow collides in the vertical direction, or the discharge flow collides obliquely.
  • the device according to the third embodiment is the same as the device according to the first embodiment except for the positional relationship between the tip of the spray discharge nozzle and the liquid level of the oil in the container.
  • FIG. 3 shows a vertical sectional view of the liquid application apparatus according to the third embodiment. Except for the positions of the spray discharge nozzle 2 and the gas discharge nozzle 3, the configuration is the same as that of the first embodiment shown in FIG. 1, so that illustration of the gas circuit diagram and the like is omitted.
  • the tip of the spray discharge nozzle 2 faces the liquid surface of the oil 11 and the distance between the tip of the spray discharge nozzle 2 and the liquid surface is such that the oil 11 can be prevented from rising from the liquid surface. Close to. Therefore, most of the discharge flow from the spray discharge nozzle collides directly with the liquid surface before being carried into the spray transport pipe 5.
  • Oil sprays and oil droplets with large particle diameters are ejected on the liquid surface side in addition to the drop in gravity, so if they collide with the liquid surface, they are easily absorbed by the liquid surface. The larger the particle size, the more easily it is absorbed by the liquid surface, especially in the case of oil droplets.
  • This embodiment is effective when the container is relatively small and a sufficient distance cannot be secured between the tip of the spray discharge nozzle 2 and the tip of the spray transport pipe 5, as in the second embodiment.
  • the positional relationship between the tip of the spray discharge nozzle 2 and the liquid surface facing the spray discharge nozzle is such that most of the discharge flow from the spray discharge nozzle 2 directly collides with the liquid surface before being carried into the spray transport pipe 5.
  • the positional relationship may be such that the discharge flow collides with the liquid surface in the vertical direction, or may be the positional relationship where the discharge flow collides with the liquid surface at an angle.
  • FIG. 4 is a vertical sectional view of a liquid application device according to the fourth embodiment. Except for the oil supply method, the configuration is the same as that of the first embodiment, and the gas circuit diagrams of the gas discharge nozzle 3 and the submerged nozzle 4 are omitted.
  • a siphon tube 18 and a gas tube 19 are connected to the spray discharge nozzle 11.
  • the gas tube 19 is connected to the air source 8, and the flow rate can be adjusted by the gas flow rate control valve 9d.
  • gas is supplied from the gas tube 19 to A pressure difference occurs between the pressure and the pressure in the container.
  • the oil 11 is sucked up from the lower end of the siphon tube 18 and mixed with the gas supplied from the gas tube 19 at the spray discharge nozzle 17 to be discharged into the container 1 as an oil spray. If a throttle valve such as a 21 dollar valve is provided in the middle of the siphon tube 18, the oil flow can be adjusted.
  • a gravity method may be used.
  • a separate oil tank is provided, and oil is supplied to the nozzle by gravity dropping the oil into the tube. In this case, no oil pump is required.
  • FIG. 5 is a vertical sectional view of a liquid application apparatus according to the fifth embodiment.
  • the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a dome-shaped member 20 having an opening directed downward is provided.
  • a spray discharge nozzle 2 having a front end portion facing the inner wall surface 20 a is arranged.
  • Oil spray is discharged into the container 1 from the nozzle tip 6a of the spray discharge nozzle 2 as in the first embodiment.
  • the fine oil spray hardly adheres to the wall surface even if the oil spray collides with the wall surface.
  • large diameter oil sprays and oil droplets tend to adhere to the wall surface when they collide with the wall surface.
  • oil sprays and oil droplets with large particle diameters collide with the inner wall surface 20a. Some adhere to the inner wall surface 20a, while others adhere to the inner wall surface 20a while flowing in the directions of arrows d and e on the inner wall surface 20a. In addition, after adhering to the inner wall surface 20a, some of them may fall by gravity as they are. Some fall to the surface side.
  • the upward flow includes oil spray or oil droplets having a large particle diameter
  • the upward flow collides with and adheres to the flange 21. That is, the flange 21 is for thoroughly preventing a large particle size oil spray or oil droplet from being carried into the spray transport pipe 5.
  • the inlet at the tip of the spray transport pipe 5 is not particularly limited as long as it is in the upper space.
  • the loading entrance may be downward, sideways, or inclined.
  • the outer wall surface 20b of the dome-shaped member 20 has an inclined surface from the top to the lower side, and this inclined surface is connected to a vertical surface. For this reason, even when oil is replenished from the oil supply port 15, the oil flows down the dome-shaped member 20 and falls to the liquid surface, thereby preventing the replenished oil from being carried into the spray transport pipe 5. be able to.
  • the example in which the nozzle tip 6a of the spray discharge nozzle 2 is disposed on the inner wall surface 20a side of the dome-shaped member 20 has been described. May be provided so that the nozzle tip 6a and the outer wall surface 20b face each other. In this case, most of the large-sized oil sprays and oil droplets adhere to the outer wall 20b by colliding with the outer wall 20b, or the oil level of the oil 11 along the outer wall 20b. Fall to the side. For this reason, the oil spray having a large particle diameter and the oil droplets hardly flow upward, and most of the oil spray carried into the spray transport pipe 5 is a fine oil spray.
  • the provision of the flange 21 prevents the oil spray or oil droplets of large particle diameter from being carried into the spray transfer pipe 5. Can be thorough.
  • the shape of the dome-shaped member 20 is not limited to the example shown in FIG. 5 and may be any shape having an opening on the lower side, such as a hemisphere, a cone, a cylinder, or a prism. Or a combination thereof. Also, it may be a flat plate instead of a dome. In this case, care should be taken, for example, to provide an oil filler port 15 below the flat plate so that the replenished oil does not remain on the flat plate.
  • FIG. 6 is a vertical sectional view of a liquid application device according to the sixth embodiment. Since the lower portion has the same configuration as that of the fifth embodiment shown in FIG. 5, it is not shown.
  • the tip of the spray discharge nozzle 2 is directed to the side surface 22 a of the inner wall of the dome-shaped member 22. For this reason, most of the discharge flow collides with the side surface 22a and turns along the side surface 22a (arrows h, i, j). Collision with 2a not only attaches to side 2 2a, but also pivots on side 2 2a while side 2 2a Will adhere to. Also, what adheres to the side surface 22a is pushed down by the swirling flow in addition to its own weight, and falls to the liquid surface side.
  • FIG. 7 is a vertical sectional view of a liquid application device according to the seventh embodiment. Since the lower portion has the same configuration as that of the fifth embodiment shown in FIG. 5, it is not shown.
  • the basic operation of the liquid coating apparatus according to the seventh embodiment is the same as that of the liquid coating apparatus according to the fifth embodiment. However, the liquid coating apparatus according to the seventh embodiment generates the most part of the discharge flow from the spray discharge nozzle 2. You can choose to use the tank after it collides with the wall and take it out of the container, or you can take most of the discharge flow directly out of the container.
  • the method of extracting the discharge flow can be selected by opening and closing the valves 25 and 26 connected to the discharge flow transfer pipe 23 and the spray transfer pipe 24.
  • a fine oil spray is carried into the spray transport pipe 24.
  • both the valves 25 and 26 may be closed according to the application.
  • the discharge flow from the spray discharge nozzle 2 is directly transported in the spray transport pipe 23, and a fine oil spray is transported in the spray transport pipe 24. Therefore, the use of the liquid application device as in the present embodiment makes it possible to use the liquid application device according to the lubrication target.
  • the nozzle tip 6 a of the spray discharge nozzle 2 is arranged on the inner wall surface side of the dome-shaped member 20. However, the nozzle tip 6 a is located above the dome-shaped member 20. May be arranged so that the nozzle tip 6a and the outer wall surface of the dome-shaped member face each other.
  • the discharge flow transfer pipe 23 is disposed inside the dome-shaped member 20, and the discharge flow flowing into the discharge flow transfer pipe 23 from the nozzle tip 6 a is discharged once. It will descend in the flow conveying pipe 23.
  • the example in which the submerged nozzle is not provided has been described.
  • the submerged nozzle may be provided.
  • the internal pressure of the container can be adjusted by adjusting the gas flow rate adjusting valves 9a, 9b, 9c in the example shown in FIG. Further, as described in Embodiment 1, when the submerged nozzle is used in addition to the spray discharge nozzle, even if the outlet cross-sectional area of the discharge portion 13 changes. It is automatically adjusted to keep the internal pressure constant. In this embodiment, the internal pressure is not directly controlled, but as a result, the internal pressure of the container 1 is kept constant.
  • Embodiments 8 to 10 described below can control the internal pressure in the container to be constant regardless of the presence or absence of the submerged nozzle. That is, by directly controlling the internal pressure in the container using the pressure control means, the internal pressure in the container is automatically controlled to be constant even if the outlet cross-sectional area of the discharge section changes.
  • the differential pressure between the primary pressure of gas supply into the container and the internal pressure of the container is constant, so the gas flow rate for generating spray in the container is also constant and stable Spray generation is possible. Furthermore, since a constant flow velocity can be secured even in the discharge section having a narrow exit cross-sectional area, the spray can be changed into an oil droplet and discharged.
  • FIG. 8 shows circuit diagrams according to the eighth to tenth embodiments.
  • the structure in the container 1 may be any of the structures shown in the above embodiments. That is, the gas supply nozzle into the container 1 may be a spray discharge nozzle, a submerged nozzle, or a gas discharge nozzle, or may be a spray discharge nozzle or a submerged nozzle. Further, only the gas discharge nozzle may be used.
  • the embodiment shown in FIG. 8A uses a pressure regulating valve as the pressure control means.
  • the present embodiment is based on mechanical control, and a pressure reducing valve that opens and closes the valve by, for example, spring pressure can be used as the pressure adjusting valve.
  • the primary side supply gas from the gas source 8 is supplied into the container 1 via the pressure regulating valve 27.
  • the pressure regulating valve 27 For example, when the outlet section is reduced by replacing the discharge section 13, the internal pressure of the container 1 increases.
  • the secondary pressure pressure on the vessel 1 side with respect to the pressure control valve 27
  • the gas flowing from the pilot circuit closes the pressure control valve 27 and stops gas supply.
  • the pressure in the container 1 drops to a certain value
  • the pressure regulating valve 27 is opened by the restoring action of the spring, and the gas supply is restarted.
  • the pressure in the container 1 can be kept within a certain range by opening and closing the pressure regulating valve 27. According to the mechanical control as in the present embodiment, since the structure is simple, the cost can be reduced and the mounting operation is also easy.
  • the set value of the pressure adjusting valve 27 can be adjusted by adjusting the spring pressure. For example, if you want to increase the flow velocity in the discharge section, increase the set value. In this case, the differential pressure between the primary pressure and the internal pressure of the container decreases, which is disadvantageous in terms of stable oil spray generation, but increases the discharge flow rate. This is effective when you want to prioritize the removal of cuttings over the spray application to the cutting part during cutting. Also, after cutting, the set value can be adjusted as necessary, and it can be used for removing chips by air blow.
  • Embodiment 9 in which the pressure control circuit is shown in FIG. 8 (b) electrically controls the internal pressure of the container 1, and uses an electromagnetic valve 28 and a pressure switch 29 as pressure control means.
  • the pressure switch 29 includes a pressure detecting section. The primary side supply gas from the gas source 8 is supplied into the container 1 via the solenoid valve 28.
  • the secondary pressure (the internal pressure of the container 1) is detected by the pressure detecting section of the pressure switch 29.
  • the pressure switch 29 operates and the coil of the solenoid valve 28 is energized (or de-energized), and the solenoid valve 28 Closes the valve and shuts off the gas supply.
  • the pressure switch 29 When the internal pressure of the container 1 falls to a certain value (lower limit set value), the pressure switch 29 operates and the coil of the solenoid valve 28 stops energizing (or energizing). ), Solenoid valve 28 opens the valve and resumes gas supply. Therefore, even if the outlet cross-sectional area of the discharge portion 13 changes, the pressure in the container 1 can be kept within a certain range by opening and closing the solenoid valve 28. According to the electric control as in the present embodiment, the structure is more complicated than the mechanical control and the cost is higher, but the operation is more reliable and the accuracy of the pressure control can be improved.
  • the pressure switch 29 preferably has a plurality of combinations of upper and lower set values having different values, and particularly preferably has two combinations.
  • the use of such a pressure switch allows the device to be used for two different purposes, for example for cutting and air blowing.
  • the pressure setting for cutting should be set so that the spray adheres to the tool and the workpiece, and the pressure setting for air-blowing should be set so that the flow velocity is high enough to blow off the chips produced by cutting.
  • the pressure switch is used as the setting value for the cutting process, and after the cutting process, the pressure switch is switched to the setting value for the air blowing process to perform the air blowing process. To blow off the swarf.
  • two sets of set values may be set as values during cutting.
  • one set of set values is a set value that gives priority to the spray amount
  • the other set value is a set value that increases the gas flow rate in the discharge section. At the higher gas flow settings, the spray-coating amount will decrease, but this is effective when you want to prioritize the removal of cuttings over spraying to the cutting part.
  • the primary pressure is set to 0.6 MPa
  • the pressure set value at which the pressure switch operates is set to 0.3 MPa
  • the final outlet diameter is set to a diameter of 1.0 to 4.0 mm. Range, the variation in the internal pressure of the container is very small. It was confirmed that the internal pressure of the container was stable.
  • Embodiment 10 in which the pressure control circuit is shown in FIG. 8 (c) is for electrically controlling the internal pressure of the container 1, and includes a solenoid valve 30 as a pressure control means, a pressure sensor 1 (not shown), Part 31 is used.
  • Embodiment 9 is the same as Embodiment 9 in that the opening and closing of the solenoid valve is electrically controlled, but differs from Embodiment 9 in that a pressure switch is not used and a control unit is used.
  • the primary side supply gas from the gas source 8 is supplied into the container 1 via the solenoid valve 30.
  • the secondary pressure (the internal pressure of the container 1) is detected by the pressure sensor 1 and converted into an electric (voltage or current) signal.
  • the electric signal is input to the control unit 31 and the difference between the electric signal and a set value (a voltage value or a current value corresponding to the set pressure) is calculated.
  • the controller 31 issues a signal to the solenoid valve 30 to close the valve, and the coil of the solenoid valve 30 When power is supplied (or power supply is stopped), the solenoid valve 30 closes, and the gas supply is stopped.
  • the controller 31 issues a signal to the solenoid valve 30 to open the valve, and the coil of the solenoid valve 30 stops energizing ( Or by energizing), the solenoid valve 30 opens the valve and resumes gas supply. Therefore, even if the outlet cross-sectional area of the discharge section 13 changes, the solenoid valve 30 opens and closes, so The pressure can be kept within a certain range.
  • an electric signal obtained by the pressure sensor is processed and a command is issued to the solenoid valve 30 according to the result, so that the necessary pressure value can be arbitrarily set by, for example, an internal pressure changing program. .
  • the tenth embodiment requires control equipment and control software, and is more expensive than the ninth embodiment, but enables more accurate pressure control.
  • a valve may be provided in the gas supply passage to the container 1, and the opening and closing of this valve may be performed by the solenoid valve.
  • an electromagnetic valve is provided in a passage branched from the gas supply passage, and if the detected pressure is equal to or higher than a set value (upper limit set value), the controller 31 issues a signal to close the electromagnetic valve. As a result, the supply of gas from the solenoid valve to the valve in the gas supply passage is stopped, and the valve in the gas supply passage is closed.
  • the controller 31 issues a signal to open the solenoid valve.
  • gas supply from the solenoid valve to the valve in the gas supply passage is restarted, and the valve in the gas supply passage is opened.
  • the solenoid valve is closed, the valve in the gas supply passage is closed, and when the solenoid valve is opened, the valve in the gas supply passage is opened.However, when the solenoid valve is closed, the valve in the gas supply passage is opened and the solenoid valve is opened. If opened, the valve of the gas supply passage may be closed. In this case, the command signal is reversed.
  • the primary pressure is 0.6 MPa
  • the set pressure value is 0.3 MPa
  • the final outlet diameter is 1.0 to 5.0 mm (5.0 mm).
  • the number of discharge ports was changed in the range of 2). Compared with the example of the ninth embodiment, it was confirmed that the variation in the internal pressure of the container was small and the internal pressure of the container was stable.
  • the electric control according to the set value can be selectively used, for example, for cutting and air blow.
  • Embodiment 10 shows an example in which pressure detection by a pressure sensor is performed in the container 1.However, in Embodiment 11 in which a pressure control circuit is shown in FIG. 9, the pressure detection by the pressure sensor 1 is performed by an electromagnetic valve 30. This is performed in the gas supply passage between the container 1 and the container. Detected in the gas supply passage between solenoid valve 30 and container 1 The pressure is converted into an electric (voltage or current) signal, and the electric signal is input to the control unit 31 via the path 32.
  • the pressure detection by the pressure sensor 1 may be performed in the spray transport outer pipe 12 between the container 1 and the discharge section 13. Such an arrangement of the pressure sensor is effective when the transfer outer pipe 12 is too long or has a complicated bend, and the pressure loss of the pipe is large.
  • Embodiments 10 and 11 are suitable for improving the accuracy of the internal pressure control.
  • the control methods as in Embodiments 8 and 9 are suitable in terms of cost and simplification of equipment.
  • Embodiments 8 to 11 when there are a plurality of gas supply nozzles into the container, it is necessary to provide the pressure control means as described above in at least one piping path of each gas supply nozzle. Pressure control means may be provided in a plurality of piping paths.
  • the oil supply may be stopped in conjunction with the stop of the gas supply.
  • a pulse generator or a solenoid valve that is a pulse generation source is stopped in conjunction with the stop of gas supply.
  • a valve is installed in the oil supply pipe to stop or stop the flow of gas that creates negative pressure.
  • an apparatus was used in which a gas discharge nozzle and a submerged nozzle as shown in FIG. 1 were added to the embodiment shown in FIG.
  • the tip of the spray transfer tube is connected to a high-speed rotating and center-through machining center. Then, a nozzle was connected to this machining center, and experiments were performed under the following conditions.
  • Container 4 inch stainless steel tube (outer diameter 11.3 mm,
  • Dome-shaped member 3 inch weld cap (outside diameter 89 mm)
  • Spray transfer tube nylon tube (inside diameter 9 mm x outside diameter 12 mm)
  • Example 1 Example 2 Spray-discharge bar A flow S (NL / min) 6 5 52 0 52 55 5Nozzle flow in liquid 1 (NL / min) 0 0 1 1 0 40 3 5 Gas discharge nozzle flow rate (NL / min) 0 6 0 0 0 2 0
  • Comparative Example 3 is a case where air was discharged only from the submerged nozzle. In this case, oil could be taken out from the nozzle connected to the machining center. This proves that oil spray can be generated from stored oil by air discharge from the submerged nozzle.
  • Example 1 the air discharge from the gas discharge nozzle was stopped, and the confirmation was performed while increasing the air flow rate from the submerged nozzle.
  • the flow rate of the spray discharge nozzle was set to 52 NLZmin which was the same as in Comparative Example 2.
  • the air flow rate of the nozzle in the liquid was 40 N L Zmin, the oil could be taken out from the nozzle connected to the machining center in the form of oil droplets, and the amount of oil increased visually as compared with Comparative Example 2. This confirms that the oil spray generated from the liquid surface is useful for increasing the amount of oil discharged.
  • the confirmation was performed while increasing the air flow rate of the gas discharge nozzle from the state of the first embodiment.
  • the container internal pressure became the same as in Comparative Example 2.
  • the total air flow of Comparative Example 2 (1 12 NL / min) and the total air flow rate of Example 2 (1 10 NLZmin) were almost the same, but the amount of oil droplets from the nozzle connected to the machining center was visually confirmed. There were many. This indicates that a sufficient amount of oil droplets can be secured even by adjusting the air flow rates of both the submerged nozzle and the gas discharge nozzle.
  • the liquid application apparatus of the present invention can transport a spray in a container and apply a liquid to a target object, so that cutting oil is applied to a cutting tool of a machine tool such as a machining center, a grinder, or a lathe. It can be used as a liquid application device for supplying liquid.
  • the cutting method of the present invention uses a liquid application device that transports a spray in a container and applies a liquid to an object, so that the object is machined using a machining center, a polishing machine, a lathe, or the like. It can be used as a cutting method.

Landscapes

  • Nozzles (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Description

明 細 液体塗布装置及び切削加工方法 技術分野
この発明は、 容器内のスプレー (液体微粒子) を搬送して、 目的物に 液体を塗布する液体塗布装置及びこれを用いた切削加工方法に関する。 特に、 マシニングセンター、 研磨機、 または旋盤等の工作機械の刃具に 切削油を供給する液体塗布装置及びこれを用いた切削加工方法に関する。 背景技術
従来より、 機械加工においては、 加工精度を向上させたり、 工具の寿 命を延長させたりするために被加工物や工具等の目的物にオイルを塗布 していた。液体状のオイルを直接、 目的物に向かって塗布する方法では、 塗布量が多くなり過ぎ、 余分なオイルを除去するのに時間がかかり、 生 産性を落としていた。 また、 余分なオイルは、 装置周辺に舞い上がるの で、 作業環境悪化を防止する対策が必要であった。
オイルを油滴状にして塗布すれば、 必要最小限の微量なオイル量で機 械加工が行えるので、 加工精度や生産性を向上できるだけでなく、 作業 環境の向上、 工場設備の簡素化等にもつながることになる。 オイルを油 滴状にして塗布できる装置の一例が実開平 5 - 9 2 5 9 6号公報に提案 されている。
しかしながら、 前記のような給油装置では、 スプレー発生部では、 ォ ィル落下部用のケーシング、 高速ガス用通路、 ベンチユリノズル等が必 要であり、 またポンプ、 オイル槽を別体に形成しているため、 構造が複 雑であった。 また、 前記のような給油装置では、 本体の内圧は、 一次供給圧力と先 端のスプレー吐出部の口径 (断面積) に依存しており、 スプレー吐出部 の口径の変化に伴い、 本体の内圧が変化していた。 このため、 例えば吐 出口を設けた工具をスプレー吐出部として用いる場合、 吐出口径の小さ い工具に交換すると、 本体の内圧は上昇する。 この場合、 吐出流速確保 の点では問題はないが、 一次供給圧力と本体内圧との差圧が減少するの で、 スプレー発生部で有効なスプレーが十分に発生できない場合があつ た。
逆に、 吐出口径の大きい工具に交換すると、 本体の内圧は下降する。 この場合、 一次供給圧力と本体内圧との差圧を確保できるので、 有効な スプレー発生の点では問題ないが、 吐出流速が十分に確保できない場合 があった。 実際の生産工場では、 無人化されたものも少なくなく、 吐出 口径の変わる毎に、 供給圧力を調節することは事実上不可能であった。 発明の開示
本発明は前記のような問題を解決するものであり、 簡単な構造で細か いスプレー確実に発生させることができ、 安定したスプレー発生が可能 でかつ吐出流速の確保できる液体塗布装置及び切削加工方法を提供する ことを目的とする。
前記目的を達成するために、 本発明の第 1番目の液体塗布装置は、 容 器と、 前記容器内にスプレーを吐出するスプレー吐出ノズルと、 前記容 器内の前記スプレーを前記容器外へ搬送するスプレー搬送通路とを含む 液体塗布装置であって、 前記容器内に液体が貯留され、 ガス吐出口を前 記液体中に有し前記液体内にガスを吐出することにより前記液体からス プレーを発生させる液中ノズルを備えたことを特徴とする。
前記のような液体塗布装置によれば、液中ノズルを備えることにより、 容器の内圧を高め、 かつスプレー吐出ノズルによるスプレーとは別にス プレーを発生させることができるので、 スプレー搬送通路の出口部にお けるスプレーの流速を速めることができ、 かつスプレー量を増量させる ことができる。
前記第 1番目の液体塗布装置においては、 前記スプレー吐出ノズルか らの吐出流の大半を前記スプレー搬送通路に搬入される前に、 前記容器 内の壁面に衝突させることが好ましい。 前記のような液体塗布装置によ れば、 大粒径のスプレーや液滴は、 壁面に衝突すると壁面に付着し易い ので、 大粒径のスプレーや液滴がスプレー搬送パイプ内へ搬入されるの を防止することができる。
また、 前記壁面が前記液体の液面であることが好ましい。 前記のよう な液体塗布装置によれば、 大粒径のスプレーや液滴は、 液面に衝突する と液面に吸収され易いので、 大粒径のスプレーや液滴がスプレー搬送パ ィプ内へ搬入されるのを防止することができる。
また、 前記液中ノズルに前記ガスを供給する通路に、 前記容器内を一 定の圧力に制御する圧力制御手段を備えたことが好ましい。 容器の内圧 が一定であれば、 容器内へのガス供給の一次側圧力と、 容器内圧との差 圧が一定となるので、 容器内におけるスプレー発生用のガス流速も一定 となり、 安定したスプレーの発生が可能になる。 さらに、 吐出部におい ても一定の流速が確保できるので、 スプレーを油滴状に変化させて吐出 させることができる。
また、 先端部を前記容器内の空気中に有しガスを吐出するガス吐出ノ ズルを備えたことが好ましい。 前記のような液体塗布装置によれば、 容 器の内圧を高めることができるので、 スプレー搬送通路の出口部におけ るスプレーの流速を速めることができる。
また、 前記ガス吐出ノズルに前記ガスを供給する通路に、 前記容器内 を一定の圧力に制御する圧力制御手段を備えたことが好ましい。 容器の 内圧が一定であれば、 容器内へのガス供給の一次側圧力と、 容器内圧と の差圧が一定となるので、 容器内におけるスプレー発生用のガス流速も 一定となり、 安定したスプレーの発生が可能になる。 さらに、 吐出部に おいても一定の流速が確保できるので、 スプレーを油滴状に変化させて 吐出させることができる。
また、 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続 されていることが好ましい。 前記のような液体塗布装置によれば、 吐出 部においてスプレーの流速が増加するので、 スプレーを液滴に変えて取 り出すことができる。
また、 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガス と前記液体とが前記スプレー吐出ノズル内で混合することにより、 前記 容器内に前記スプレーが吐出されることが好ましい。
また、 前記容器内に貯留された液体は液体供給手段に流入し、 前記液 体供給手段から流出した液体が前記スプレー吐出ノズルへ供給されるこ とが好ましい。 前記のような液体塗布装置によれば、 オイルタンクを別 途設ける必要がなく、容器内の液体を効率良く循環させることができる。 また、 前記液体供給手段が液体ポンプであることが好ましい。
また、 前記液体供給手段が前記容器内に貯留された液体中に先端部を 有し前記容器内に貯留された液体を吸い上げるサイホンチューブである ことが好ましい。
また、 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記容 器内を一定の圧力に制御する圧力制御手段を備えたことが好ましい。 容 器の内圧が一定であれば、 容器内へのガス供給の一次側圧力と、 容器内 圧との差圧が一定となるので、 容器内におけるスプレー発生用のガス流 速も一定となり、 安定したスプレーの発生が可能になる。 さらに、 吐出 部においても一定の流速が確保できるので、 スプレーを油滴状に変化さ せて吐出させることができる。
次に、 本発明の第 2番目の液体塗布装置は、 容器と、 前記容器内にス プレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを 前記容器外へ搬送するスプレー搬送通路とを備えた液体塗布装置であつ て、 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬送通 路に搬入される前に、前記容器内の壁面に衝突させることを特徴とする。 前記のような液体塗布装置によれば、 大粒径のスプレーや液滴は、 壁 面に衝突すると壁面に付着し易いので、 大粒径のスプレーや液滴がスプ レ一搬送パイプ内へ搬入されるのを防止することができる。
前記第 2番目の液体塗布装置においては、 前記壁面によって、 前記容 器内が上側空間と下側空間とに分離され、 前記下側空間内に前記スプレ —吐出ノズルの吐出口が配置されていることが好ましい。
前記のような液体塗布装置によれば、 大粒径のスプレーや液滴は、 壁 面に衝突すると壁面に付着し易く、 壁面に付着したものの大半は下側空 間の容器下部へ重力落下するので、 上側空間内に搬入されるものの大半 は細かいスプレーとなり、 大粒径のスプレーや液滴がスプレー搬送パイ プ内へ搬入されるのを防止することができる。
また、 前記壁面によって、 前記容器内が上側空間と下側空間とに分離 され、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されて いることが好ましい。
前記のような液体塗布装置によれば、 大粒径のスプレーや液滴の大半 は、 壁面に衝突すると壁面に付着するか、 壁面に沿って下側空間に落下 する。 このため、 上側空間内に搬入されるものの大半は細かいスプレー となり、 大粒径のスプレーや液滴がスプレー搬送パイプ内へ搬入される のを防止することができる。 また、 前記壁面が、 下側が開口部のドーム状部材の内壁面であること が好ましい。 前記のような液体塗布装置によれば、 大粒径のスプレーや 液滴を下側空間の容器下部へ落下させ易い。
また、 前記壁面が、 下側が開口部のドーム状部材の外壁面であること が好ましい。 前記のような液体塗布装置によれば、 大粒径のスプレーや 液滴を下側空間の容器下部へ落下させ易い。
また、 前記壁面が前記容器内に貯留された液体の液面であることが好 ましい。 前記のような液体塗布装置によれば、 大粒径のスプレーや液滴 は、 壁面に衝突すると壁面に付着し易いので、 大粒径のスプレーや液滴 がスプレー搬送パイプ内へ搬入されるのを防止することができる。
また、 前記壁面に吐出流搬送通路が形成され、 前記吐出流搬送通路に 接続されたバルブを開くことにより前記スプレー吐出ノズルからの吐出 流の大半を前記容器外に直接取り出すことができることが好ましい。 前記のような液体塗布装置によれば、 スプレーの粒径の選別を必要と しない場合に、 スプレー吐出ノズルかちの吐出流を直接容器外に取り出 すことができる。
また、 前記壁面に衝突した後、 前記スプレー搬送通路に搬入される前 の前記吐出流が、 前記壁面とは別に形成されている壁面に衝突すること が好ましい。 前記のような液体塗布装置によれば、 大粒径のスプレーや 液滴のスプレー搬送パイプへの搬入防止を徹底させることができる。 また、 先端部を前記容器内の空気中に有しガスを吐出するガス吐出ノ ズルを備えたことが好ましい。 前記のような液体塗布装置によれば、 容 器の内圧を高めることができるので、 スプレー搬送通路の出口部におけ るスプレーの流速を速めることができる。
また、 前記ガス吐出ノズルに前記ガスを供給する通路に、 前記容器内 を一定の圧力に制御する圧力制御手段を備えたことが好ましい。 容器の 内圧が一定であれば、 容器内へのガス供給の一次側圧力と、 容器内圧と の差圧が一定となるので、 容器内におけるスプレー発生用のガス流速も 一定となり、 安定したスプレーの発生が可能になる。 さらに、 吐出部に おいても一定の流速が確保できるので、 スプレーを油滴状に変化させて 吐出させることができる。
また、 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続 されていることが好ましい。 前記のような液体塗布装置によれば、 吐出 部においてスプレーの流速が増加するので、 スプレーを液滴に変えて取 り出すことができる。
また、 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガス と前記液体とが前記スプレー吐出ノズル内で混合することにより、 前記 容器内に前記スプレーが吐出されることが好ましい。
また、 前記容器内に貯留された液体は液体供給手段に流入し、 前記液 体供給手段から流出した液体が前記スプレー吐出ノズルへ供給されるこ とが好ましい。 前記のような液体塗布装置によれば、 オイルタンクを別 途設ける必要がなく、容器内の液体を効率良く循環させることができる。 また、 前記液体供給手段が液体ポンプであることが好ましい。
また、 前記液体供給手段が前記容器内に貯留された液体中に先端部を 有し前記容器内に貯留された液体を吸い上げるサイホンチューブである ことが好ましい。
また、 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記容 器内を一定の圧力に制御する圧力制御手段を備えたことが好ましい。 容 器の内圧が一定であれば、 容器内へのガス供給の一次側圧力と、 容器内 圧との差圧が一定となるので、 容器内におけるスプレー発生用のガス流 速も一定となり、 安定したスプレーの発生が可能になる。 さらに、 吐出 部においても一定の流速が確保できるので、 スプレーを油滴状に変化さ せて吐出させることができる。
次に、 本発明の第 3番目の液体塗布装置は、 容器内のスプレーが、 前 記容器内に供給されたガスのガス圧によって、 スプレー搬送通路を通過 して前記容器外に搬送される液体塗布装置であって、 前記容器内を一定 の圧力に制御する圧力制御手段を備えたことを特徴とする。
前記のような液体液体塗布装置によれば、 大粒径のスプレーを容器内 でトラップでき、 スプレー搬送は即応性に優れ、 かつ容器内の内圧を一 定に制御できるので、 容器内へのガス供給の一次側圧力と、 容器内圧と の差圧が一定となり、 容器内におけるスプレー発生用のガス流速も一定 となり、 安定したスプレーの発生が可能になる。 さらに、 吐出部におい ても一定の流速が確保できるので、 スプレーを油滴状に変化させて吐出 させることができ、 かつスプレーの流速変化を防止でき、 スプレー吐出 量を安定させことができる。
前記第 3番目の液体塗布装置においては、 前記スプレーは、 前記容器 内にスプレーを吐出するスプレー吐出ノズルにより供給され、 前記スプ レー吐出ノズルへガスと液体とが供給され、 前記ガスと前記液体とが前 記スプレー吐出ノズル内で混合することにより、 前記容器内に前記スプ レーが吐出されることが好ましい。
また、 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記圧 力制御手段を備えたことが好ましい。
また、 前記容器内に液体が貯留され、 ガス吐出口を前記液体中に有し た液中ノズルを備え、 前記液中ノズルにより前記液体内にガスを吐出す ることにより前記液体から前記スプレーを発生させることが好ましい。 また、 前記液中ノズルに前記ガスを供給する通路に、 前記圧力制御手 段を備えたことが好ましい。
また、 前記圧力制御手段は、 前記ガスの供給通路に接続された圧力調 整弁を備え、 前記容器内の圧力が設定値に上昇すると、 前記圧力調整弁 を閉じて前記ガスの供給を停止し、 前記容器内の圧力が一定圧に下降す ると、 前記圧力調整弁を開いて前記ガスの供給を再開することが好まし い。 前記のような液体塗布装置によれば、 構造が簡単であるので、 コス トを抑えることができ、 かつ取付作業も容易である。
また、 前記設定値を変更できることが好ましい。 前記のような液体塗 布装置によれば、 装置を複数の用途、 例えば切削加工用とエア一ブロー 用とに使い分けることができる。
また、 前記圧力制御手段は、 前記ガスの供給通路に接続された電磁弁 と、 圧力検知部が前記容器内に配置された圧力スィッチとを備え、 前記 容器内の圧力が上限の設定値に上昇すると、 前記圧力スィツチにより、 前記電磁弁を閉じて前記ガスの供給を停止し、 前記容器内の圧力が下限 の設定値に下降すると、 前記圧力スィッチにより、 前記電磁弁を開いて 前記ガスの供給を再開することが好ましい。 前記のような液体塗布装置 によれば、 動作がより確実となり、 圧力制御の精度を高めることができ る。
また、 前記圧力スィッチは、 それぞれ値の異なる前記上限の設定値と 前記下限の設定値との組合わせを複数組有し、 前記組合わせ間の切り替 えが可能であることが好ましい。 このような圧力スィツチを用いれば、 装置を複数の用途、 例えば切削加工用とエアーブロー用とに使い分ける ことができる。
また、 前記圧力制御手段は、 前記ガスの供給通路に設けられた弁と、 前記弁通過後の前記ガスの圧力を検知する圧力センサと、 制御部とを備 え、 前記圧力センサにより検知された検知圧力は電気信号に変換され、 前記電気信号は前記制御部で演算処理され、 前記制御部は前記検知圧力 が上限の設定値に達した判断すると、 前記弁を閉じる信号を発し、 前記 ガスの供給を停止し、 前記検知圧力が下限の設定値に達したと判断する と、 前記弁を開く信号を発し、 前記ガスの供給を再開することが好まし い。 前記のような液体塗布装置によれば、 動作がより確実となり、 圧力 制御の精度を高めることができる。
また、 前記圧力センサは、 前記容器内に配置されていることが好まし い。
また、 前記圧力センサは、 前記ガスの供給通路のうち、 前記弁と前記 容器との間に配置されていることが好ましい。
また、 前記圧力センサは、 前記スプレー搬送通路に配置されているこ とが好ましい。
また、 前記上限の設定値及び前記下限の設定値を変更できることが好 ましい。 前記のような液体塗布装置によれば、 装置を複数の用途、 例え ば切削加工用とエアープロ一用とに使い分けることができる。
また、 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続 されていることが好ましい。 前記のような液体塗布装置によれば、 吐出 部においてスプレーの流速が増加するので、 スプレーを液滴に変えて取 り出すことができる。
次に、 本発明の第 1番目の切削加工方法は、 容器と、 前記容器内にス プレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを 前記容器外へ搬送するスプレー搬送通路とを含み、 前記容器内に液体が 貯留され、 ガス吐出口を前記液体中に有し前記液体内にガスを吐出する ことにより前記液体からスプレーを発生させる液中ノズルを備えた液体 塗布装置を工作機械の給油部に取り付け、 刃具に向けて前記スプレーを 供給して加工対象物を切削加工することを特徴とする。
前記のような切削加工方法によれば、 加工対象物にスプレーを供給し て切削加工するので、 塗布量を最小限に抑えることができ、 生産性向上 に加え、 作業環境悪化を防止できる。 さらに、 液体塗布装置が液中ノズ ルを備えることにより、 容器の内圧を高め、 かつスプレー吐出ノズルに よるスプレーとは別にスプレーを発生させることができるので、 スプレ 一搬送通路の出口部におけるスプレーの流速を速めることができ、 かつ スプレー量を増量させることができる。
前記第 1番目の切削加工方法においては、 前記スプレー吐出ノズルか らの吐出流の大半を前記スプレー搬送通路に搬入される前に、 前記容器 内の壁面に衝突させることが好ましい。 前記のような切削加工方法によ れば、 大粒径のスプレーや液滴は、 壁面に衝突すると壁面に付着し易い ので、 大粒径のスプレーや液滴がスプレー搬送パイプ内へ搬入されるの を防止することができる。
次に、 本発明の第 2番目の切削加工方法は、 容器と、 前記容器内にス プレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを 前記容器外へ搬送するスプレー搬送通路とを備え、 前記スプレー吐出ノ ズルからの吐出流の大半を前記スプレー搬送通路に搬入される前に、 前 記容器内の壁面に衝突させる液体塗布装置を工作機械の給油部に取り付 け、 刃具に向けて前記スプレーを供給して加工対象物を切削加工するこ と特徴とする。
前記のような切削加工方法によれば、 加工対象物にスプレーを供給し て切削加工するので、 塗布量を最小限に抑えることができ、 生産性向上 に加え、 作業環境悪化を防止できる。 さらに、 大粒径のスプレーや液滴 は、 壁面に衝突すると壁面に付着し易いので、 大粒径のスプレーや液滴 がスプレー搬送パイプ内へ搬入されるのを防止することができる。 前記第 2番目の切削加工方法においては、 前記壁面によって、 前記容 器内が上側空間と下側空間とに分離され、 前記下側空間内に前記スプレ 一吐出ノズルの吐出口が配置されていることが好ましい。 前記のような 切削加工方法によれば、 大粒径のスプレーや液滴は、 壁面に衝突すると 壁面に付着し易く、 壁面に付着したものの大半は下側空間の容器下部へ 重力落下するので、 上側空間内に搬入されるものの大半は細かいスプレ —となり、 大粒径のスプレーや液滴がスプレー搬送パイプ内へ搬入され るのを防止することができる。
また、 前記壁面によって、 前記容器内が上側空間と下側空間とに分離 され、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されて いることが好ましい。
前記のような切削加工方法によれば、 大粒径のスプレーや液滴の大半 は、 壁面に衝突すると壁面に付着するか、 壁面に沿って下側空間に落下 する。 このため、 上側空間内に搬入されるものの大半は細かいスプレー となり、 大粒径のスプレーや液滴がスプレー搬送パイプ内へ搬入される のを防止することができる。
次に、 本発明の第 3番目の切削加工方法は、 容器内のスプレーが、 前 記容器内に供給されたガスのガス圧によって、 スプレー搬送通路を通過 して前記容器外に搬送される液体塗布装置であって、 前記容器内を一定 の圧力に制御する圧力制御手段を備えた液体塗布装置を工作機械の給油 部に取り付け、 刃具に向けて前記スプレーを供給して加工対象物を切削 加工することを特徴とする。
前記のような切削加工方法によれば、 加工対象物にスプレーを供給し て切削加工するので、 塗布量を最小限に抑えることができ、 生産性向上 に加え、 作業環境悪化を防止できる。 さらに、 大粒径のスプレーを容器 内でトラップでき、 スプレー搬送は即応性に優れ、 かつ容器内の内圧を 一定に制御できるので、 容器内へのガス供給の一次側圧力と、 容器内圧 との差圧が一定となり、 容器内におけるスプレー発生用のガス流速も一 定となり、 安定したスプレーの発生が可能になる。 また、 吐出部におい ても一定の流速が確保できるので、 スプレーを油滴状に変化させて吐出 させることができ、 かつスプレーの流速変化を防止でき、 スプレー吐出 量を安定させことができる。
前記第 3番目の切削加工方法においては、 前記圧力制御手段は、 前記 ガスの供給通路に接続された圧力調整弁を備え、 前記容器内の圧力が設 定値に上昇すると、 前記圧力調整弁を閉じて前記ガスの供給を停止し、 前記容器内の圧力が一定圧に下降すると、 前記圧力調整弁を開いて前記 ガスの供給を再開することが好ましい。
前記のような切削加工方法によれば、 液体塗布装置の構造が簡単であ るので、 コストを抑えることができ、 かつ圧力調整弁の取付作業も容易 である。
また、 前記圧力制御手段は、 前記ガスの供給通路に接続された電磁弁 と、 圧力検知部が前記容器内に配置された圧力スィッチとを備え、 前記 容器内の圧力が上限の設定値に上昇すると、 前記圧力スィツチにより、 前記電磁弁を閉じて前記ガスの供給を停止し、 前記容器内の圧力が下限 の設定値に下降すると、 前記圧力スィッチにより、 前記電磁弁を開いて 前記ガスの供給を再開することが好ましい。 前記のようなによれば、 液 体塗布装置の動作がより確実となり、 圧力制御の精度を高めることがで さる。
また、 前記圧力制御手段は、 前記ガスの供給通路に設けられた弁と、 前記弁通過後の前記ガスの圧力を検知する圧力センサと、 制御部とを備 え、 前記圧力センサにより検知された検知圧力は電気信号に変換され、 前記電気信号は前記制御部で演算処理され、 前記制御部は前記検知圧力 が上限の設定値に達した判断すると、 前記弁を閉じる信号を発し、 前記 ガスの供給を停止し、 前記検知圧力が下限の設定値に達したと判断する と、 前記弁を開く信号を発し、 前記ガスの供給を再開することが好まし レ 前記のような切削加工方法によれば、 液体塗布装置の動作がより確 実となり、 圧力制御の精度を高めることができる。 図面の簡単な説明
図 1は、 本発明の実施形態 1に係る液体塗布装置の垂直断面図。
図 2は、 本発明の実施形態 2に係る液体塗布装置の水平断面図。
図 3は、 本発明の実施形態 3に係る液体塗布装置の垂直断面図。
図 4は、 本発明の実施形態 4に係る液体塗布装置の垂直断面図。
図 5は、 本発明の実施形態 5に係る液体塗布装置の垂直断面図。
図 6は、 本発明の実施形態 6に係る液体塗布装置の垂直断面図。
図 7は、 本発明の実施形態 7に係る液体塗布装置の垂直断面図。
図 8 ( a ) は、 本発明の実施形態 8に係る圧力制御回路。
図 8 ( b ) は、 本発明の実施形態 9に係る圧力制御回路。
図 8 ( c ) は、 本発明の実施形態 1 0に係る圧力制御回路。
図 9は、 本発明の実施形態 1 1に係る圧力制御回路。 発明を実施するための最良の形態
以下、 本発明の一実施形態について図面を参照しながら説明する。 各 実施形態は、 本発明に係る液体塗布装置を、 給油装置として用いたもの である。
(実施の形態 1 )
図 1は、 実施形態 1に係る液体塗布装置の垂直断面図である。 容器 1 には、 スプレー吐出ノズル 2、 ガス吐出ノズル 3、 液中ノズル 4、 スプ レー搬送パイプ 5が取り付けられている。
スプレー吐出ノズル 2は、 ガスチューブ 6とこの中を挿通するオイル チューブ 7とで二重に形成されている。 ガスチューブ 6はガス源 8に接 続され、 ガス流量調整バルブ 9 aによって、 吐出流量を調整できる。 ォ ィルチューブ 7はオイルポンプ 1 0に接続されている。 ガス源 8から吐 出されるガスには、 例えば空気が用いられる。
また、 スプレー吐出ノズル 2の容器 1内の先端部では、 オイルチュー ブ 7の先端は、 ガスチューブ 6の内部に入り込んでいる。 このノズル先 端部 6 aにおいて、 オイルポンプ 1 0から供給されたオイルと、 ガス源 8から供給されたガスとが混合し、 オイルスプレーとなって容器 1内に 吐出される。
ガス吐出ノズル 3は、 容器 1内にガスを供給するためのものであり、 ガス源 8に接続され、 ガス流量調整バルブ 9 bによって、 吐出流量を調 整できる。
液中ノズル 4は、 容器 1内に一定量充填されているオイル 1 1に浸漬 している。 液中ノズル 4はガス源 8に接続され、 ガス流量調整バルブ 9 cによって、 吐出流量を調整できる。 液中ノズル 4からオイル 1 1内に ガスを吐出すると、 オイル 1 1はこの吐出ガスによって飛沫同伴され、 液面上からオイルスプレーとして噴霧拡散される。
スプレー搬送パイプ 5は、 容器 1内のスプレーを容器 1の外部に搬送 するためのものである。 スプレー搬送パイプ 5には、 オイルスプレーを 給油対象物まで搬送するスプレー搬送外部パイプ 1 2が接続されている スプレー搬送外部パイプ 1 2の先端側には、 先端先細形状の吐出部 1 3 が接続されている。
例えば、 スプレー搬送外部パイプ 1 2をマシニングセン夕の油穴付ス ピンドルに接続し、 この油穴付スピンドルに吐出部 1 3として、 先端に 小径の吐出口を有したドリルを取り付けるといった用い方ができる。 また、 容器 1内のオイル 1 1は、 給油キャップ 1 4を取り外し、 給油 口 1 5より補充できる。 オイル 1 1は供給口 1 6を経てポンプ 1 0へ流 入する。 以下、 容器 1内のオイルスプレーが、 容器外へ流動するまでの 動作について説明する。 容器 1内へは、 スプレー吐出ノズル 2のノズル 先端部 6 aから吐出されるオイルスプレーと、 液中ノズル 4によってォ ィル 1 1の液面から発生するオイルスプレーのいずれについても供給が 可能である。
まず、 液中ノズル 4からのガス吐出を停止させ、 容器 1内へのオイル スプレー供給をスプレー吐出ノズル 2のみによる場合について説明する。 ノズル先端部 6 aから吐出されたオイルスプレーの粒径には、 細かいも のから大粒径のものまで、 ばらつきがある。
また、 スプレー状ではなく油滴状のものも吐出される。 大粒径のオイ ルスプレーや油滴は重力落下し易いのに対して、 細かいオイルスプレー の重力落下のスピードは遅く、 容器 1内の滞留時間が長い。 以下、 細か いオイルスプレーとは、 煙り状で空気中を漂える程度のもののことをい う。
容器 1内は、 スプレー吐出ノズル 2からのエア圧によって加圧される ので、 容器 1内に滞留している細かいオイルスプレーは、 この加圧の影 響を受け矢印 a方向に移動し、スプレー搬送パイプ 5内へ運ばれて行く。 大粒径のオイルスプレーや油滴はオイル 1 1の液面方向に重力落下し ようとするので、 エア圧の影響を受けにくく、 スプレー搬送外部パイプ 1 2内には、 これら大粒径のオイルスプレーや油滴は流入しにくい。 スプレー搬送外部パイプ 1 2内を搬送されるオイルスプレーは、 前記 のように大半が細かいオイルスプレーであるので、 高速で搬送すること ができ、 パイプ内壁面へも付着しにくい。 したがって、 給油対象物のま での距離が長く搬送パイプ長が長くなつても、 短時間で搬送パイプ内を 通過させることができる。
スプレー搬送用外部パイプ 1 2を通過した後のオイルスプレーは、 口 径を絞った吐出部 1 3を通過することにより流速が増す。 流速の増加に よって、 オイルスプレーの粒径は増し、 一定流速が確保できれば油滴状 に変化させることができる。
このように、 オイルスプレーを油滴状に変化させるのは、 細かいオイ ルスプレーすなわち煙り状で空気中を漂う程度の大きさのオイルスプレ 一のままで吐出しても、 そのほとんどは給油対象物に付着しないからで ある。
したがって、 例えば吐出部 1 3がマシニングセンタの油穴付スピンド ルを介して取り付けられ、先端に吐出口を有したドリルの場合であれば、 ドリル先端からは油滴として吐出されるので、 これら油滴は被加工物に 付着し易く円滑な加工を行うことができる。
また、 スプレー搬送パイプ 1 2から油穴付スピンドルへと流入するォ ィルスプレーは、 前記のように粒径が細かいので、 スピンドルの高速回 転による遠心力の影響を受けにくく、 油穴の壁面部分への付着を防止で きる。
ここで、 ガス吐出ノズル 3の役割について説明する。 前記のようにォ ィルスプレーは、 口径を絞った吐出部 1 3を通過することにより流速が 増加するが、 この流速は容器 1の内圧が高いほど速くなる。 容器 1の内 圧は、 吐出部 1 3の口径によっても左右され、 吐出部 1 3の口径が小さ いほど容器 1の内圧は高くなる。
したがって、 例えば吐出部 1 3の口径が一定径より大きいと、 十分な 流速を確保できず、 オイルスプレーが十分に大粒径化せず、 有効な油滴 状に変化しない場合が生じる。
この場合、 吐出部 1 3として用いている工具を適当な吐出口を有した 工具に交換することは、実使用の場面では無理な場合がほとんどである。 また、 スプレー吐出ノズル 2は、 スプレー発生用のため有効断面積は小 さく、 吐出ガス圧を高めるには一定の限界がある。
このような場合に用いるのがガス吐出ノズル 3であり、 ガス吐出ノズ ル 3からら吐出ガスにより、 容器 1の内圧を上げることができ、 最終出 口部におけオイルスプレーの流速を確保することできる。 ガス吐出ノズ ル 3は、 ガス供給のみを目的としているので、 スプレー吐出ノズル 2の ガスチューブ 6に比べ有効断面積を大きくすることができ、 吐出ガス圧 の可変範囲を十分広くすることができる。
以上のように、 容器 1内のオイルスプレーがスプレー吐出ノズル 2か らのオイルスプレーのみの装置であっても給油装置としての役割を果た すことができる。
しかし、 高速 ·重切削加工等の場合のように発生熱量が大きく、 より多 くの給油量が必要とされる場合がある。
また、 ガス吐出ノズル 3からの吐出ガス圧により容器 1の内圧を高め ることにより、 オイルスプレーの油滴化に必要な最終出口部の流速を確 保することができるが、 この場合は同時に容器 1内のオイルスプレー量 も減少してしまう。 これは、 ガス吐出ノズル 3からの吐出ガス圧により 容器 1の内圧を高めることにより、 ガスチューブ 6からの吐出ガス圧と 容器 1の内圧との差圧が小さくなり、 オイルスプレーを発生させるため のガス流量が減少するためである。
このような場合に、 容器 1の内圧を高め、 かつ容器 1内のオイルスプ レ一量を増量させる役割を果たすのが、 容器 1内のオイル 1 1に浸漬し ている液中ノズル 4である。 前記のように、 液中ノズル 4からのガス吐 出により、 オイル 1 1の液面上からオイルスプレーが噴霧拡散される。 液中ノズル 4からガスを吐出することにより、 容器 1の内圧が高まる とともに、 スプレー吐出ノズル 2からのオイルスプレーとは別にオイル スプレーを発生させることができる。 このため、 容器 1の内圧の増加に 伴うスプレー吐出ノズル 2からのオイルスプレーの減少を、 このオイル 1 1の液面上からのオイルスプレーによって補うことができる。
すなわち、 液中ノズル 4からのガス吐出により、 オイルスプレーの油 滴化に必要な最終出口部の流速を確保しつつ、 容器 1内のオイルスプレ —量の減少を抑えることができる。
このように、 本実施形態では液中ノズル 4からのガス吐出により、 容 器 1の内圧を高めることができるので、 ガス吐出ノズル 3からのガス吐 出を停止させて用いることもできる。 ガス吐出ノズル 3からのガス吐出 も併用すれば、 容器 1の内圧の可変範囲をより広くすることができる。 したがって、 液中ノズル 4からのガス吐出のみで、 容器 1の必要な内圧 が確保できる場合は、 ガス吐出ノズル 3は設けていない装置としてもよ い。
また本実施形態では、 液中ノズル 4からの吐出圧力をレギユレ一夕一 等であらかじめ一定圧に設定しておけば、 先端のドリル等の工具を交換 した場合でも、 出口断面積の変化に伴なう細かい微調整が不要となる。 例えば、 出口断面積が狭くなり、 容器 1の内圧が一定圧以上になると、 液中ノズル 4からのガス吐出は停止するので、 不必要なガス供給を防止 できる。 この場合は、 スプレー吐出ノズル 2からのオイルスプレーのみ が容器 1内に吐出される。
逆に、 容器 1の内圧が一定圧より低いと、 液中ノズル 4からの吐出圧 と容器 1の内圧との差圧に応じて液中ノズル 4からの吐出ガスが供給さ れ、 容器 1の必要な内圧を確保することになる。
また本実施形態では、 スプレー吐出ノズル 2からのオイルスプレーと は別に液中ノズル 4からのガス吐出によってもオイルスプレーを発生さ せることができるので、 同一量のオイルスプレーをスプレー吐出ノズル 2のみから吐出させる場合と比べると、 オイルポンプ 1 0の負担を軽く することができる。
また、 スプレー吐出ノズル 2からオイルスプレーを発生させるために は、 オイルポンプ 1 0からノズル先端部 6 aにまでオイルが供給される までの間の予備運転が必要である。 これはオイル供給にサイホンチュー ブを用いた場合も同じである。 液中ノズル 4の吐出ガスにより、 オイル スプレーを発生させる場合は、 ガス吐出直後に液面からオイルスプレー が発生するので、 予備運転は不要である。
また、 投入された油量 (液面) が液中ノズル 4の吐出口より上側にあ れば、 必ずオイルスプレーは発生するので、 オイルスプレー発生の有無 は例えばフロートレベルスィッチにて容器外から容易に確認することが できる。
さらにガス吐出圧は容器 1にプレッシャースィツチを設置することに より確認ができ、 この吐出圧により出口部におけるオイルスプレーの仮 想流速が求まり、オイルスプレーの状態が有効かどうかの判断ができる。 なお、 前記実施形態では、 スプレー吐出ノズル 2からのオイルスプレ —と、 液中ノズル 4からのガス吐出によるオイルスプレーの両方を容器 内に供給する場合について説明したが、 用途に応じてスプレー吐出ノズ ルを設けていない装置にしてもよい。 このような装置であればオイルポ ンプが必要がないのでメンテナンスフリーとすることができる。
また、 スプレー搬送外部パイプ 1 2は、 1本でなくても複数本に分岐 させて接続してもよい。 この場合は、 1台の装置で複数箇所に液体を塗 布できる。
また、 容器の形状は商品性の向上、 製作し易さ、 メンテナンス性等を 考慮して設計すればよく、 円筒形状に限らず、 角柱形状等でもよい。 例 えば商品性を重視する場合は、 製函したタンクでもよい。
(実施の形態 2 ) 実施形態 2は、 実施形態 1と同様の装置であるが、 スプレー吐出ノズ ル 2の先端部と容器 1の内壁面との位置関係に特徴を有するものである。 実施形態 1のような装置では、 スプレー吐出ノズル 2の先端部とスプレ 一搬送パイプ 5の先端部との距離を十分長くすれば、 大粒径のオイルス プレーや油滴の液面落下をより確実にすることができる。
実施形態 2は、 容器が比較的小さくスプレー吐出ノズル 2の先端部と スプレー搬送パイプ 5の先端部との間に十分な距離を確保できない場合 に有効な実施形態である。
図 2に、 実施形態 2に係る液体塗布装置の水平方向の断面図を示して いる。 スプレー吐出ノズル 2の先端部は、 スプレ一吐出ノズル 2からの 吐出流の大半がスプレー搬送パイプ 5内に搬入される前に内壁面 1 aに 衝突するように配置されている。 すなわち、 スプレー吐出ノズル 2から の吐出流の大半は、 容器 1の中央部を通過することなく、 内壁面 l aに 直接衝突する (矢印 b )。
細かいオイルスプレーは、 壁面に衝突しても壁面にはほとんど付着せ ず、 大粒径のオイルスプレーや油滴は、 壁面に衝突すると壁面に付着し 易い。 大粒径になるほど壁面に付着し易く、 特に油滴状のものはその傾 向が強い。 また、 衝突後の内壁面 1 aに沿った旋回 (矢印 c ) 中にも、 大粒径のオイルスプレーや油滴は内壁面 1 aに付着する。
したがって、 スプレー吐出ノズル 2からの吐出流のうち、 大粒径のも のや油滴状のものの相当量は、 内壁面 1 aに付着することになる。 また、 内壁面 1 aに付着することなく、 容器 1の気中を流動する大粒径のオイ ルスプレーや油滴についても、 相当量は重力落下する。 このため、 大粒 径のオイルスプレーや油滴がスプレー搬送パイプ 5内へ搬入されるのを 防止することができる。
なお、 スプレー吐出ノズル 2の先端部とこれと対向する内壁面 1 aと の位置関係は、 スプレー吐出ノズルからの吐出流の大半がスプレー搬送 パイプ 5内に搬入される前に内壁面 1 aに、 直接衝突するような位置関 係であればよく、 内壁面 1 aに対して吐出流が垂直方向に衝突する位置 関係でも、 傾斜して衝突する位置関係でもよい。
また、 吐出流を容器の内壁面に衝突させる例を説明したが、 専用の壁 面を別途設けてもよい。
また、実施形態 1に係る装置を基本構成とした例について説明したが、 液中ノズルゃガス吐出ノズルを有しない装置であっても同様の効果が得 られる。
(実施の形態 3 )
実施形態 3に係る装置は、 スプレー吐出ノズルの先端部と容器のオイ ルの液面との位置関係以外は実施形態 1に係る装置と同様である。
図 3に、 実施形態 3に係る液体塗布装置の垂直方向の断面図を示して いる。 スプレー吐出ノズル 2、 ガス吐出ノズル 3の位置以外は図 1に示 した実施形態 1と同様であるので、 ガス回路図等の図示は省略した。 ス プレー吐出ノズル 2は先端部をオイル 1 1の液面側に向け、 スプレー吐 出ノズル 2の先端と液面との距離は、 液面からのオイル 1 1の吹き上が りを防止できる程度に近接させている。 したがって、 スプレー吐出ノズ ルからの吐出流の大半は、 スプレー搬送パイプ 5に搬入される前に、 液 面に直接衝突する。
細かいオイルスプレーは、 液面に衝突しても液面にはほとんど吸収さ れず、 容器 1内を流動する。 大粒径のオイルスプレーや油滴は、 重力落 下に加え吐出方向が液面側であるので、 液面に衝突すると液面に液面に 吸収され易い。 大粒径になるほど液面に吸収され易く、 特に油滴状のも のはその傾向が強い。
したがって、 スプレー吐出ノズル 2からの吐出流のうち、 大粒径のも のや油滴状のものの大半は、 スプレー搬送パイプ 5に搬入されることな くオイル 1 1に吸収されることになる。 このため、 大粒径のオイルスプ レーや油滴がスプレー搬送パイプ 5内へ搬入されるのを防止することが できる。
本実施形態は、 実施形態 2と同様に、 容器が比較的小さくスプレー吐 出ノズル 2の先端部とスプレー搬送パイプ 5の先端部との間に十分な距 離を確保できない場合に有効である。
なお、 スプレー吐出ノズル 2の先端部とこれと対向する液面との位置 関係は、 スプレー吐出ノズル 2からの吐出流の大半が、 スプレー搬送パ イブ 5に搬入される前に液面に直接衝突するような位置関係であればよ く、 液面に対して吐出流が垂直方向に衝突する位置関係でも、 傾斜して 衝突する位置関係でもよい。
また、実施形態 1に係る装置を基本構成とした例について説明したが、 液中ノズルやガス吐出ノズルを有しない装置であっても同様の効果が得 られる。
(実施の形態 4 )
前記実施形態 1では、 スプレー吐出ノズルにはオイルポンプによって オイルが供給される例を示したが、 実施形態 4は、 オイルポンプは用い ずにオイル供給にサイホン方式を用いた実施形態である。 図 4は、 実施 形態 4に係る液体塗布装置の垂直断面図である。 オイル供給方式以外は 実施形態 1と同様であるので、 ガス吐出ノズル 3、 液中ノズル 4のガス 回路図は省略した。
スプレー吐出ノズル 1 1には、 サイホンチューブ 1 8及びガスチュー ブ 1 9が接続されている。 ガスチューブ 1 9はエア源 8に接続され、 ガ ス流量調節バルブ 9 dにより流量調節ができる。 スプレー吐出ノズル 1 7の内部では、 ガスチューブ 1 9からのガス供給により、 ノズル内部の 圧力と容器内圧との間に圧力差が生じる。
このため、 オイル 1 1はサイホンチューブ 1 8の下端から吸い上げら れ、 スプレー吐出ノズル 1 7部でガスチューブ 1 9から供給されたガス と混合し、 オイルスプレーとして容器 1内に吐出される。 サイホンチュ —ブ 1 8の途中に二一ドルバルブ等の絞り弁を設ければ、 オイル流量の 調節が可能である。
なお、サイホン方式を用いた例を示したが、 重力方式を用いてもよい。 重力方式では、 別途オイルタンクを設け、 ノズル部へのオイル供給は、 チューブ内にオイルを重力落下させて行う。 この場合もオイルポンプは 不要である。
(実施の形態 5 )
図 5は、 実施形態 5に係る液体塗布装置の垂直断面図である。 図 1に 示した実施形態 1と同一のものについては、 同一符号を付してその詳細 な説明は省略する。 容器 1内には、 開口部を下側に向けたドーム状部材 2 0が設置されている。 ドーム状部材 2 0の内壁面 2 0 a側に、 先端部 が内壁面 2 0 aと対向しているスプレー吐出ノズル 2が配置されている。 実施形態 1と同様に、 スプレー吐出ノズル 2のノズル先端部 6 aから オイルスプレーが容器 1内に吐出される。 実施の形態 2で説明したよう に、 細かいオイルスプレーは、 壁面に衝突しても壁面にはほとんど付着 しない。 一方、 大粒径のオイルスプレーや油滴は、 壁面に衝突すると壁 面に付着し易い。
したがって、 内壁面 2 0 aに衝突するノズル先端部 6 aからの吐出流 のうち、 細かいオイルスプレーの大半は内壁面 2 0 aに付着することな く内壁面 2 0 aに沿って下方に移動 (矢印 d、 e ) した後、 スプレー搬 送パイプ 5に向かって移動する (矢印 i、 g、 a )。
一方、 大粒径のオイルスプレーや油滴は、 内壁面 2 0 aへの衝突によ つて内壁面 2 0 aに付着するものもあれば、 内壁面 2 0 a上を矢印 d、 e方向に流動しながら内壁面 2 0 aに付着するものもある。 また、 内壁 面 2 0 aに付着後は、 そのまま重力落下するものもあるが、 自重と矢印 d、 e方向のオイルスプレーの流動により内壁面 2 0 a上を押し下げら れ、 オイル 1 1の液面側に落下するものもある。
すなわち、 細かいオイルスプレーの大半は、 ドーム状部材 2 0の上側 空間に流動するが、 大粒径のオイルスプレーや油滴の大半は、 上側空間 に流動することなく、 下側空間のオイル 1 1の液面側に落下する。 上側 空間への上昇流は、 その相当量が内壁面 2 0 aに沿って形成されたフラ ンジ 2 1に衝突する。
このため上昇流に、 大粒径のオイルスプレーや油滴が含まれていたと しても、 このフランジ 2 1に衝突し付着する。 すなわち、 フランジ 2 1 は、 大粒径のオイルスプレーや油滴のスプレー搬送パイプ 5への搬入防 止を徹底させるためのものである。
以上のように、 上側空間へ達した上昇流のほぼすベて細かいオイルス プレーであるので、 スプレー搬送パイプ 5の先端の搬入口は上側空間に さえあれば、 特に制約を受けない。 例えば、 搬入口は下向きでも横向き でもよく、 傾斜させてもよい。
また、 給油口 1 5からオイルを補充した際に、 オイルがドーム状部材 2 0の外壁面 2 0 bに残留すると、 この残留オイルが、 上昇流とともに スプレー搬送パイプ 5へ搬入される場合がある。 図 5に示したドーム状 部材 2 0の一例では、 外壁面 2 0 bは頂部から下側に向かって傾斜面を 有し、 さらにこの傾斜面は垂直面へとつながっている。 このため、 給油 口 1 5からオイルを補充した場合でも、 オイルはドーム状部材 2 0を伝 わって液面へと落下するので、 補充オイルがスプレー搬送パイプ 5へ搬 入されるのを防止することができる。 以上の説明では、 スプレー吐出ノズル 2のノズル先端部 6 aを、 ドー ム状部材 2 0の内壁面 2 0 a側に配置した例で説明したが、 ノズル先端 部 6 aをドーム状部材 2 0の上側に設け、 ノズル先端部 6 aと外壁面 2 0 bとが対向するように配置してもよい。 この場合は、 大粒径のオイル スプレーや油滴の大半は、 外壁面 2 0 bへの衝突によって外壁面 2 0 b に付着したり、 外壁面 2 0 bに沿ってオイル 1 1の液面側に落下する。 このため、 大粒径のオイルスプレーや油滴の上側方向への流動はほとん どなく、 スプレー搬送パイプ 5へ搬入されるのは、 大半が細かいオイル スプレーとなる。
また、 ノズル先端部 6 aを、 内壁面 2 0 a側に配置した場合と同様に、 フランジ 2 1を設けることにより、 大粒径のオイルスプレーや油滴のス プレー搬送パイプ 5への搬入防止を徹底させることができる。
なお、 ドーム状部材 2 0の形状は、 図 5に示した一例に限るものでは なく、 下側に開口部を有したものであればよく、 半球状、 円錐状、 円筒 状、 若しくは角柱状等でもよく、 またはこれらの組み合わせでもよい。 また、 ドームではなく、 平板状でもよい。 この場合は、 平板上に補充 オイルが残留しないように、 例えばオイル給油口 1 5を平板より下側に 設ける等の配慮をすればよい。
(実施の形態 6 )
図 6は、 実施形態 6に係る液体塗布装置の垂直断面図である。 下側部 分は、図 5に示した実施形態 5と同一構成であるので、 図示を省略した。 実施形態 6では、 スプレー吐出ノズル 2の先端部をドーム状部材 2 2 の内壁の側面 2 2 aに向けている。 このため、 吐出流の大半は側面 2 2 aに衝突し、 側面 2 2 aに沿って旋回することになる (矢印 h、 i 、 j ) , 大粒径のオイルスプレーや油滴は、 側面 2 2 aへの衝突によって側面 2 2 aに付着するのみならず、 側面 2 2 a上を旋回しながらも側面 2 2 a に付着することになる。 また、 側面 2 2 aに付着したものは、 自重に加 え旋回流によって下方に押し下げられ、 液面側に落下する。
したがって、 実施形態 5と同様に、 細かいオイルスプレーの大半は、 ドーム状部材 2 2の上側空間に流動する (矢印 k ) が、 大粒径のオイル スプレーや油滴の大半は、 上側空間に流動することなく、 オイル 1 1の 液面側に落下する。
(実施の形態 7 )
図 7は、 実施形態 7に係る液体塗布装置の垂直断面図である。 下側部 分は、 図 5に示した実施形態 5と同一構成であるので、 図示を省略した。 実施形態 7に係る液体塗布装置は基本動作は、 実施形態 5に係る液体塗 布装置と同じであるが、 実施形態 7に係る液体塗布装置では、 スプレー 吐出ノズル 2からの吐出流の大半をいつたん壁面に衝突させてから容器 外に取り出す用い方と、 吐出流の大半を直接容器外に取り出す用い方と が選択できる。
スプレー吐出ノズル 2からの吐出流を直接容器外に取り出す用い方を 選択した場合は、 大粒径のオイルスプレーや油滴も合わせて取り出して しまうことになるが、 このような選択は、 オイルスプレーの粒径の選別 を必要としない場合に有用である。 この吐出流の取り出し方の選択は、 吐出流搬送パイプ 2 3、 スプレー搬送パイプ 2 4に接続されているバル ブ 2 5、 2 6の開閉によって可能になる。
スプレー吐出ノズル 2からの吐出流を直接容器外に取り出す場合は、 バルブ 2 5を開き、 バルブ 2 6を閉じる。 このことによって、 スプレー 吐出ノズル 2からの吐出流の大半は、 吐出流搬送パイプ 2 3内に搬入さ れることになる。
スプレー吐出ノズル 2からの吐出流の粒径を選別して容器外に取り出 す場合は、 バルブ 2 6を開き、 バルブ 2 5を閉じる。 この場合の動作は、 実施形態 5と同様であり、 スプレー搬送パイプ 2 4内には細かいオイル スプレーが搬入される。
また、 用途に応じてバルブ 2 5、 2 6の両方を閉いてもよい。 この場 合は、 スプレー搬送パイプ 2 3内はスプレー吐出ノズル 2からの吐出流 が直接搬送されることになり、 スプレー搬送パイプ 2 4内は細かいオイ ルスプレーが搬送されことになる。 したがって、 本実施形態のような液 体塗布装置を用いれば、 給油対象物に応じた使い分けが可能になる。 以上の説明では、 スプレー吐出ノズル 2のノズル先端部 6 aを、 ド一 ム状部材 2 0の内壁面側に配置した例で説明したが、 ノズル先端部 6 a をドーム状部材 2 0の上側に設け、 ノズル先端部 6 aとドーム状部材の 外壁面とが対向するように配置してもよい。 この場合は、 吐出流搬送パ イブ 2 3は、 ドーム状部材 2 0の内側に配置されることになり、 ノズル 先端部 6 aから吐出流搬送パイプ 2 3に流入した吐出流は、 いったん吐 出流搬送パイプ 2 3内を下降することになる。
なお、 実施形態 5〜 7では、 液中ノズルを設けていない例を説明した が、 液中ノズルを設けてもよい。 この場合は、 実施形態 1〜4と同様に、 スプレー搬送通路出口部におけるスプレーの流速を速めることができ、 かつスプレー量を増量できるという効果が得られる。
また、 実施形態 5〜 7ではスプレー吐出ノズル 2へのオイル供給にォ ィルポンプを用いた場合を説明したが、実施の形態 4で説明したように、 サイホン方式や重力方式を用いてもよい。
(実施の形態 8 )
前記各実施形態では、 容器の内圧の調節は、 例えば図 1に示した例で は、 ガス流量調節バルブ 9 a, 9 b , 9 cの調節によって行うことがで きる。 また、 実施形態 1で説明したように、 スプレー吐出ノズルに加え て液中ノズルを用いた場合には、吐出部 1 3の出口断面積が変化しても、 内圧が一定となるように自動的に調整される。 この実施形態は内圧を直 接制御するものではないが、結果として容器 1の内圧が一定に保たれる。 以下に示す実施形態 8〜 1 0は、 液中ノズルの有無に関係なく、 容器 内の内圧を一定に保つ制御ができるものである。 すなわち、 圧力制御手 段を用いて容器内の内圧を直接的に制御することにより、 吐出部の出口 断面積が変化しても、 容器内の内圧は一定となるよう自動的に制御され る。
容器の内圧が一定であれば、 容器内へのガス供給の一次側圧力と、 容 器内圧との差圧が一定となるので、 容器内におけるスプレー発生用のガ ス流速も一定となり、 安定したスプレーの発生が可能になる。 さらに、 出口断面積を絞った吐出部においても一定の流速が確保できるので、 ス プレ一を油滴状に変化させて吐出させることができる。
図 8に、 実施形態 8〜 1 0に係る回路図を示している。 本図では、 容 器 1へのガス吐出ノズルが液中ノズルのみの例を簡略化して示している が、容器 1内の構造は、前記各実施形態で示したいずれの構造でもよい。 すなわち、 容器 1内へのガス供給ノズルが、 スプレー吐出ノズル、 液中 ノズル、 及びガス吐出ノズルのものでも、 スプレー吐出ノズル及び液中 ノズルのものでもよい。 また、 ガス吐出ノズルだけのものでもよい。 図 8 ( a ) に示した実施形態は、 圧力制御手段として圧力調整弁を用 いたものである。 本実施形態は機械式制御によるもので、 圧力調整弁に は例えばばね圧によって弁を開閉する減圧弁を用いることができる。 ガ ス源 8からの 1次側供給ガスは、 圧力調整弁 2 7を経て容器 1内に供給 される。 吐出部 1 3を交換して例えば出口断面積が小さくなると、 容器 1の内圧が上昇する。 2次側圧力 (圧力調整弁 2 7に対して容器 1側の 圧力) が設定値以上になると、 パイロット回路より流入するガスによつ て、 圧力調整弁 2 7は閉じ、 ガス供給を停止する。 容器 1内の圧力が、 一定値まで下降すると、 ばねの復元作用により圧 力調整弁 2 7は開き、 ガス供給が再開される。 したがって、 吐出部 1 3 の出口断面積が変化しても、 圧力調整弁 2 7の開閉により、 容器 1内の 圧力を一定範囲内に保つことができる。 本実施形態のような機械式制御 によれば、 構造が簡単であるので、 コストを抑えることができ、 かつ取 付作業も容易である。
また、 圧力調整弁 2 7は、 ばね圧の調節により設定値が調節できるこ とが好ましい。 例えば、 吐出部における流速を高めたい場合は、 設定値 を高くする。 このが場合は、 一次圧と容器内圧との差圧が減少し安定し たオイルスプレー発生の点では不利になるが、 吐出流量は増加する。 こ のため、 切削加工中において、 切削部へのスプレー塗布よりも切り粉の 除去を優先したい場合に有効である。 また、 切削加工後において、 必要 に応じて設定値を調節して、 エア一ブローによる切り粉除去用として用 いることもできる。
(実施の形態 9 )
図 8 ( b ) に圧力制御回路を示した実施形態 9は、 容器 1の内圧を電 気制御するもので、 圧力制御手段として電磁弁 2 8と圧力スィツチ 2 9 とを用いたものである。 圧力スィッチ 2 9には、 圧力検知部が含まれて いる。 ガス源 8からの 1次側供給ガスは、 電磁弁 2 8を経て容器 1内に 供給される。
2次側圧力 (容器 1の内圧) は、 圧力スィッチ 2 9の圧力検知部が検 知する。 2次側圧力が設定値 (上限の設定値) 以上になると、 圧力スィ ツチ 2 9が作動し、 電磁弁 2 8のコイル部は通電して (又は通電を停止 して)、 電磁弁 2 8は弁を閉じ、 ガス供給を停止する。
容器 1の内圧が、 一定値 (下限の設定値) まで下降すると、 圧力スィ ツチ 2 9が作動し、 電磁弁 2 8のコイル部は通電を停止して (又は通電 して)、 電磁弁 2 8は弁を開いてガスの供給を再開する。 したがって、 吐 出部 1 3の出口断面積が変化しても、 電磁弁 2 8の開閉により、 容器 1 内の圧力を一定範囲内に保つことができる。 本実施形態のような電気制 御によれば、 機械制御と比べると構造が複雑となり、 コスト面でも割高 となるが、 動作がより確実となり、 圧力制御の精度を高めることができ る。
また、 圧力スィッチ 2 9は、 それぞれ値の異なる上限と下限の設定値 の組合わせが複数組のものが好ましく、 特に 2組のものが好ましい。 こ のような圧力スィッチを用いれば、 装置を 2種類の用途、 例えば切削加 ェ用とエア一ブロー用とに使い分けることができる。 切削加工用の圧力 設定は、 工具及び被加工物にスプレーが付着するような設定とし、 エア —ブロー用の圧力設定は、 切削加工による切り粉を吹き飛ばせる程度の 流速が確保できる設定とする。
このような圧力設定とすれば、 切削加工中は圧力スィッチを、 切削加 ェ用の設定値で用い、 切削加工後は圧力スィッチをエア一ブロー用の設 定値に切り替えて、 エア一ブローを行って切り粉を吹き飛ばすことがで さる。
また、 切削加工中と切削加工後の切り替えに限らず、 2組の設定値両 方を切削加工中の設定値としてもよい。 例えば、 1組の設定値はスプレ —塗布量を優先した設定値とし、 もう 1組の設定値は吐出部におけガス 流量を増量した設定値とする。 ガス流量を増量した設定値では、 スプレ —塗布量は、 減少することになるが、 切削部へのスプレー塗布よりも、 切り粉の除去を優先したい場合に有効である。
本実施形態 9の一例として、 一次側圧力を 0 . 6 M P a、 圧カスイツ チが作動する圧力設定値を 0 . 3 M P aとし、最終出口部口径を直径 1 . 0〜4 . 0 mmの範囲で変化させたところ、 容器の内圧のばらつきは僅 かであり、 容器の内圧は安定していることが確認できた。
(実施の形態 1 0 )
図 8 ( c ) に圧力制御回路を示した実施形態 1 0は、 容器 1の内圧を 電気制御するもので、 圧力制御手段として電磁弁 3 0と、 圧力センサ一 (図示せず) と、 制御部 3 1とを用いたものである。 電磁弁の開閉を電 気制御する点では、 実施形態 9と同様であるが、 圧力スィッチを用いな い点、 制御部を用いる点で実施形態 9と異なる。
ガス源 8からの 1次側供給ガスは、 電磁弁 3 0を経て容器 1内に供給 される。 2次側圧力 (容器 1の内圧) は、 圧力センサ一によって検知さ れ、 電気 (電圧又は電流) 信号に変換される。 この電気信号は、 制御部 3 1に入力され、 設定値 (設定圧力に相当する電圧値又は電流値) との 差が演算処理される。
この演算処理の結果、 入力された電気信号が設定値 (上限の設定値) 以上であれば、 制御部 3 1は電磁弁 3 0に弁を閉じる信号を発し、 電磁 弁 3 0のコイル部は通電して(又は通電を停止して)、電磁弁 3 0の弁は 閉じ、 ガス供給を停止する。
容器 1の内圧が、 一定値 (下限の設定値) まで下降すると、 制御部 3 1 は電磁弁 3 0に弁を開く信号を発し、 電磁弁 3 0のコイル部は通電を停 止して(又は通電して)、電磁弁 3 0は弁を開いてガスの供給を再開する したがって、 吐出部 1 3の出口断面積が変化しても、 電磁弁 3 0の開 閉により、 容器 1内の圧力を一定範囲内に保つことができる。 このよう な電気制御では、 圧力センサーによって得られた電気信号を演算処理し て、 その結果に応じて電磁弁 3 0に命令を発するので、 必要な圧力値を 例えば内圧変更ポリユームにより任意に設定できる。本実施形態 1 0は、 制御機器や制御用ソフトウェアが必要になり、 実施形態 9と比べると割 高となるが、 より高精度な圧力制御が可能になる。 以上の説明では、 電磁弁 3 0の開閉が直接ガスの供給 ·停止を行う例 を示したが、 容器 1へのガス供給通路に弁を設け、 この弁の開閉を電磁 弁によって行ってもよい。 例えば、 ガス供給通路から分岐した通路に電 磁弁を設け、 検知圧力が設定値 (上限の設定値) 以上であれば、 制御部 3 1が電磁弁を閉じる信号を発する。 このことにより、 電磁弁からガス 供給通路の弁へのガス供給は停止され、 ガス供給通路の弁は閉じる。 検知圧力が、 一定値 (下限の設定値) まで下降すると、 制御部 3 1は 電磁弁を開く信号を発する。 このことにより、 電磁弁からガス供給通路 の弁へのガス供給が再開され、 ガス供給通路の弁は開く。 電磁弁が閉じ ればガス供給通路の弁が閉じ、 電磁弁が開けば、 ガス供給通路の弁が開 く例で説明したが、 電磁弁が閉じればガス供給通路の弁が開き、 電磁弁 が開けばガス供給通路の弁が閉じるものでもよい。 この場合は、 命令信 号は逆になる。
本実施形態 1 0の一例として、 一次圧力を 0 . 6 M P a、 設定圧力値 を 0 . 3 M P aとし、 最終出口部口径を直径 1 . 0〜 5 . 0 mm ( 5 . 0 mmの場合は吐出口は 2個) の範囲で変化させたところ、 実施形態 9の 実施例と比べると、 容器内圧力のばらつきは小さく、 容器の内圧は安定 していることが確認できた。
また、 本実施形態 1 0に係る電気制御においても、 設定値を切り換え ることにより、 例えば切削用とエアブロー用とに使い分ける等、 設定値 に応じた用途に使い分けることができる。
(実施の形態 1 1 )
実施形態 1 0は、 圧力センサーによる圧力検知を容器 1内で行う例を 示したが、 図 9に圧力制御回路を示した実施形態 1 1は、 圧力センサ一 による圧力検知を電磁弁 3 0と容器 1 との間のガス供給通路内で行うも のである。 電磁弁 3 0と容器 1 との間のガス供給通路内において検知さ れた圧力は、 電気 (電圧又は電流) 信号に変換され、 この電気信号は経 路 3 2を経て、 制御部 3 1に入力される。
また、 圧力センサ一による圧力検知を、 容器 1と吐出部 1 3との間の スプレー搬送外部パイプ 1 2内で行ってもよい。 このような圧力センサ —の配置は、 搬送外部パイプ 1 2が長すぎたり、 複雑に曲がっていて、 配管の圧力損失が大きい場合に有効である。
以上、 圧力制御手段を備えた装置について説明したが、 内圧制御の精 度を高める点では、 実施形態 1 0, 1 1が適しているが、 ある程度の内 圧のばらつきが許容できる場合や、 複雑な条件設定を要求されない場合 には、 コスト面や設備の簡略化の面で実施形態 8, 9のような制御方法 が適している。
また、 前記実施形態 8〜1 1において、 容器内へのガス供給ノズルが 複数の場合には、 各ガス供給ノズルの少なくとも一つの配管経路に前記 のような圧力制御手段を設ける必要があるが、 複数の配管経路に圧力制 御手段を設けてもよい。
また、 ガス供給停止と連動させてオイル供給を停止させてもよい。 こ のような制御を行うことにより、 オイル供給ポンプ等の可動部を持つ機 器の寿命を向上できる。 例えば、 パルスエア圧でオイル供給を行う装置 においては、 ガス供給停止と連動させてパルスの発生源であるパルス発 生器又は電磁弁を停止させる。 また、 オイルをサイフォンで汲み上げて いる装置では、 オイル供給パイプにバルブを組み込んで停止させるか、 負圧を生じさせているガスの流れを止める。
(実施例)
実施例として、 図 5に示した実施形態に、 図 1に示したようなガス吐 出ノズル及び液中ノズルを追加した装置を用いた。 スプレー搬送チュー ブの先端は、 高速回転 ·センタースルー仕様のマシニングセン夕に接続 し、 さらにこのマシニングセンタにノズルを接続し、 以下の条件で実験 を行った。
容器 : 4インチ ステンレスチューブ(外形 1 14. 3 mm、
厚さ 2. 1 mm、 高さ 2 5 0 mm)
ドーム状部材 3インチ 溶接キャップ(外径 8 9 mm) スプレー搬送チューブ:ナイロンチューブ (内径 9 mmx外形 1 2 m m)
液中ノズル 吐出口部面積 3. 14 mm2
1次供給エア圧 0. 6 MP a (約 6 k g/cm2)
スプレー吐出ノズル 吐出口部面積 2. 2 6mm2 (直径 7 m m)
主軸回転数 : 1 40 0 0 r pm
比較例として、 液中ノズルからのエア吐出を停止させた場合、 液中ノズ ルのみのエア吐出の場合の確認を行った。実験結果を以下の表 1に示す。
表 1 比餃例 1 比絞例 2 比絞例 3 実施例 1 実施例 2 スプレ-吐出バ A流 S (NL/min) 6 5 52 0 52 5 5 液中ノ ズル流 1 (NL/min) 0 0 1 1 0 40 3 5 ガス吐出ノ ズル流量 (NL/min) 0 6 0 0 0 2 0
§S内圧 (MPa) 0. 1 2 0. 35 0. 35 0. 32 0. 3 5 出口状態 状 油滴状 ;¾状 油¾状 油 状 比較例 1では、 液中ノズル及びガス吐出ノズルの両方の吐出を停止さ せた。 その結果、 容器内圧が不足し、 マシニングセンタに接続したノズ ル先端部でオイルスプレーを油滴化させることができず、 煙状の状態で しか取り出せなかった。
比較例 2は、 ガス吐出ノズルからエア流量を増加させながら確認を行 つたものである。 容器内圧は次第に増加し、 エア流量が 6 0 N L Zm i nになるとマシニングセンタに接続したノズルから油滴状態で取り出す ことができた。 このことは、 実施の形態 1で説明したように、 ガス吐出 ノズルからのエア吐出が、 オイルスプレーの油滴化に有効であることを 裏付けている。 また、 容器内圧の増加に伴いスプレー吐出ノズルの流量 が 2 0 %減少した。 このことにより、 比較例 1と比べると容器内に吐出 されるオイルスプレー量は減少していると考えられる。
比較例 3は、 液中ノズルのみからエア吐出させた場合である。 この場 合もマシニングセンタに接続したノズルから油滴状態で取り出すことが できた。 このことは、 液中ノズルのエア吐出により貯留したオイルから オイルスプレーを発生させることができることを裏付けている。
実施例 1は、 ガス吐出ノズルからのエア吐出を停止させ、 液中ノズル からエア流量を増加させながら確認を行ったものである。 また、 スプレ —吐出ノズルの流量は比較例 2と同じ 5 2 N L Zm i nとした。 液中ノ ズルのエア流量が 4 0 N L Zm i nでは、 マシニングセンタに接続した ノズルから油滴状態で取り出すことができ、 しかも油量は目視確認では 比較例 2に比べ増加していた。 このことは、 液面より発生したオイルス プレーが吐出油滴量の増加に役立つことを裏付けている。
実施例 2は、 実施例 1の状態からガス吐出ノズルのエア流量を増加さ せながら確認を行ったものである。 エア流量が 2 0 N L Zm i nで、 容 器内圧が比較例 2と同じになった。 この状態では比較例 2の総エア流量 (1 12 NL/m i n) と実施例 2の総エア流量(1 10 NLZm i n) とは、 ほぼ同量であつたが、 マシニングセンタに接続したノズルからの 油滴量は、 目視確認では実施例 2の方が多かった。 このことにより、 液 中ノズル及びガス吐出ノズルの両方のエア流量の調節によっても、 十分 な油滴量が確保できることがわかる。 産業上の利用可能性
以上のように、 本発明の液体塗布装置は、 容器内のスプレーを搬送し て、 目的物に液体を塗布することができるので、 マシニングセンター、 研磨機、 または旋盤等の工作機械の刃具に切削油を供給する液体塗布装 置として利用できる。
また、 本発明の切削加工方法は、 容器内のスプレーを搬送して、 目的 物に液体を塗布する液体塗布装置を用いるので、 マシニングセンタ一、 研磨機、 または旋盤等を用いて対象物を加工する切削加工方法として利 用できる。

Claims

請 求 の 範 囲
1 . 容器と、 前記容器内にスプレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー搬送通路と を含む液体塗布装置であって、 前記容器内に液体が貯留され、 ガス吐出 口を前記液体中に有し前記液体内にガスを吐出することにより前記液体 からスプレーを発生させる液中ノズルを備えたことを特徴とする液体塗 布装置。
2 . 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬送通 路に搬入される前に、 前記容器内の壁面に衝突させる請求の範囲第 1項 に記載の液体塗布装置。
3 . 前記壁面が前記液体の液面である請求の範囲第 2項に記載の液体塗 布装置。
4 . 前記液中ノズルに前記ガスを供給する通路に、 前記容器内を一定の 圧力に制御する圧力制御手段を備えた請求の範囲第 1項に記載の液体塗 布装置。
5 . 先端部を前記容器内の空気中に有しガスを吐出するガス吐出ノズル を備えた請求の範囲第 1項に記載の液体塗布装置。
6 . 前記ガス吐出ノズルに前記ガスを供給する通路に、 前記容器内を一 定の圧力に制御する圧力制御手段を備えた請求の範囲第 5項に記載の液 体塗布装置。
7 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続され ている請求の範囲第 1項に記載の液体塗布装置。
8 . 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガスと前 記液体とが前記スプレー吐出ノズル内で混合することにより、 前記容器 内に前記スプレーが吐出される請求の範囲第 1項に記載の液体塗布装置 ;
9 . 前記容器内に貯留された液体は液体供給手段に流入し、 前記液体供 給手段から流出した液体が前記スプレー吐出ノズルへ供給される請求の 範囲第 8項に記載の液体塗布装置。
1 0 . 前記液体供給手段が液体ポンプである請求の範囲第 9項に記載の 液体塗布装置。
1 1 . 前記液体供給手段が前記容器内に貯留された液体中に先端部を有 し前記容器内に貯留された液体を吸い上げるサイホンチューブである請 求の範囲第 9項に記載の液体塗布装置。
1 2 . 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記容器 内を一定の圧力に制御する圧力制御手段を備えた請求の範囲第 8項に記 載の液体塗布装置。
1 3 . 容器と、前記容器内にスプレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー搬送通路と を備えた液体塗布装置であって、 前記スプレー吐出ノズルからの吐出流 の大半を前記スプレー搬送通路に搬入される前に、 前記容器内の壁面に 衝突させることを特徴とする液体塗布装置。
1 4 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記下側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 1 3項に記載の液体塗布装置。
1 5 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 1 3項に記載の液体塗布装置。
1 6 . 前記壁面が、 下側が開口部のドーム状部材の内壁面である請求の 範囲第 1 3項に記載の液体塗布装置。
1 7 . 前記壁面が、 下側が開口部のドーム状部材の外壁面である請求の 範囲第 1 3項に記載の液体塗布装置。
1 8 . 前記壁面が前記容器内に貯留された液体の液面である請求の範囲 第 1 3項に記載の液体塗布装置。
1 9 . 前記壁面に吐出流搬送通路が形成され、 前記吐出流搬送通路に接 続されたバルブを開くことにより前記スプレー吐出ノズルからの吐出流 の大半を前記容器外に直接取り出すことができる請求の範囲第 1 3項に 記載の液体塗布装置。
2 0 . 前記壁面に衝突した後、 前記スプレー搬送通路に搬入される前の 前記吐出流が、 前記壁面とは別に形成されている壁面に衝突する請求の 範囲第 1 3項に記載の液体塗布装置。
2 1 . 先端部を前記容器内の空気中に有しガスを吐出するガス吐出ノズ ルを備えた請求の範囲第 1 3項に記載の液体塗布装置。
2 2 . 前記ガス吐出ノズルに前記ガスを供給する通路に、 前記容器内を 一定の圧力に制御する圧力制御手段を備えた請求の範囲第 2 1項に記載 の液体塗布装置。
2 3 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続さ れている請求の範囲第 1 3項に記載の液体塗布装置。
2 4 . 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガスと 前記液体とが前記スプレー吐出ノズル内で混合することにより、 前記容 器内に前記スプレーが吐出される請求の範囲第 1 3項に記載の液体塗布 装置。
2 5 . 前記容器内に貯留された液体は液体供給手段に流入し、 前記液体 供給手段から流出した液体が前記スプレー吐出ノズルへ供給される請求 の範囲第 2 4項に記載の液体塗布装置。
2 6 . 前記液体供給手段が液体ポンプである請求の範囲第 2 5項に記載 の液体塗布装置。
2 7 . 前記液体供給手段が前記容器内に貯留された液体中に先端部を有 し前記容器内に貯留された液体を吸い上げるサイホンチューブである請 求の範囲第 2 5項に記載の液体塗布装置。
2 8 . 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記容器 内を一定の圧力に制御する圧力制御手段を備えた請求の範囲第 2 4項に 記載の液体塗布装置。
2 9 . 容器内のスプレーが、 前記容器内に供給されたガスのガス圧によ つて、 スプレー搬送通路を通過して前記容器外に搬送される液体塗布装 置であって、 前記容器内を一定の圧力に制御する圧力制御手段を備えた ことを特徴とする液体塗布装置。
3 0 . 前記スプレーは、 前記容器内にスプレーを吐出するスプレー吐出 ノズルにより供給され、 前記スプレー吐出ノズルへガスと液体とが供給 され、 前記ガスと前記液体とが前記スプレー吐出ノズル内で混合するこ とにより、 前記容器内に前記スプレーが吐出される請求の範囲第 2 9項 に記載の液体塗布装置。
3 1 . 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記圧力 制御手段を備えた請求の範囲第 3 0項に記載の液体塗布装置。
3 2 . 前記容器内に液体が貯留され、 ガス吐出口を前記液体中に有した 液中ノズルを備え、 前記液中ノズルにより前記液体内にガスを吐出する ことにより前記液体から前記スプレーを発生させる請求の範囲第 2 9項 に記載の液体塗布装置。
3 3 . 前記液中ノズルに前記ガスを供給する通路に、 前記圧力制御手段 を備えた請求の範囲第 3 2項に記載の液体塗布装置。
3 4 . 前記圧力制御手段は、 前記ガスの供給通路に接続された圧力調整 弁を備え、 前記容器内の圧力が設定値に上昇すると、 前記圧力調整弁を 閉じて前記ガスの供給を停止し、 前記容器内の圧力が一定圧に下降する と、 前記圧力調整弁を開いて前記ガスの供給を再開する請求の範囲第 2 9項に記載の液体塗布装置。
3 5 . 前記設定値を変更できる請求の範囲第 3 4項に記載の液体塗布装 置。
3 6 . 前記圧力制御手段は、前記ガスの供給通路に接続された電磁弁と、 圧力検知部が前記容器内に配置された圧力スィッチとを備え、 前記容器 内の圧力が上限の設定値に上昇すると、 前記圧力スィッチにより、 前記 電磁弁を閉じて前記ガスの供給を停止し、 前記容器内の圧力が下限の設 定値に下降すると、 前記圧力スィッチにより、 前記電磁弁を開いて前記 ガスの供給を再開する請求の範囲第 2 9項に記載の液体塗布装置。
3 7 . 前記圧力スィッチは、 それぞれ値の異なる前記上限の設定値と前 記下限の設定値との組合わせを複数組有し、 前記組合わせ間の切り替え が可能である請求の範囲第 3 6項に記載の液体塗布装置。
3 8 . 前記圧力制御手段は、 前記ガスの供給通路に設けられた弁と、 前 記弁通過後の前記ガスの圧力を検知する圧力センサと、制御部とを備え、 前記圧力センサにより検知された検知圧力は電気信号に変換され、 前記 電気信号は前記制御部で演算処理され、 前記制御部は前記検知圧力が上 限の設定値に達した判断すると、 前記弁を閉じる信号を発し、 前記ガス の供給を停止し、 前記検知圧力が下限の設定値に達したと判断すると、 前記弁を開く信号を発し、 前記ガスの供給を再開する請求の範囲第 2 9 項に記載の液体塗布装置。
3 9 . 前記圧力センサは、 前記容器内に配置されている請求の範囲請求 第 3 8項に記載の液体塗布装置。
4 0 . 前記圧力センサは、 前記ガスの供給通路のうち、 前記弁と前記容 器との間に配置されている請求の範囲第 3 8項に記載の液体塗布装置。 4 1 . 前記圧力センサは、 前記スプレー搬送通路に配置されている請求 の範囲第 3 8項に記載の液体塗布装置。
4 2 . 前記上限の設定値及び前記下限の設定値を変更できる請求の範囲 第 3 8項に記載の液体塗布装置。
4 3 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続さ れている請求の範囲第 2 9項に記載の液体塗布装置。
4 4 . 容器と、前記容器内にスプレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー搬送通路と を含み、 前記容器内に液体が貯留され、 ガス吐出口を前記液体中に有し 前記液体内にガスを吐出することにより前記液体からスプレーを発生さ せる液中ノズルを備えた液体塗布装置を工作機械の給油部に取り付け、 刃具に向けて前記スプレーを供給して加工対象物を切削加工することを 特徴とする切削加工方法。
4 5 . 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬送 通路に搬入される前に、 前記容器内の壁面に衝突させる請求の範囲第 4 4項に記載の切削加工方法。
4 6 . 容器と、前記容器内にスプレーを吐出するスプレー吐出ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー搬送通路と を備え、 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬 送通路に搬入される前に、 前記容器内の壁面に衝突させる液体塗布装置 を工作機械の給油部に取り付け、 刃具に向けて前記スプレーを供給して 加工対象物を切削加工することを特徴とする切削加工方法。
4 7 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記下側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 4 6項に記載の切削加工方法。
4 8 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 4 6項に記載の切削加工方法。
4 9 . 容器内のスプレーが、 前記容器内に供給されたガスのガス圧によ つて、 スプレー搬送通路を通過して前記容器外に搬送される液体塗布装 置であって、 前記容器内を一定の圧力に制御する圧力制御手段を備えた 液体塗布装置を工作機械の給油部に取り付け、 刃具に向けて前記スプレ —を供給して加工対象物を切削加工することを特徴とする切削加工方法。
5 0 . 前記圧力制御手段は、 前記ガスの供給通路に接続された圧力調整 弁を備え、 前記容器内の圧力が設定値に上昇すると、 前記圧力調整弁を 閉じて前記ガスの供給を停止し、 前記容器内の圧力が一定圧に下降する と、 前記圧力調整弁を開いて前記ガスの供給を再開する請求の範囲第 4 9項に記載の切削加工方法。
5 1 . 前記圧力制御手段は、 前記ガスの供給通路に接続された電磁弁と、 圧力検知部が前記容器内に配置された圧力スィツチとを備え、 前記容器 内の圧力が上限の設定値に上昇すると、 前記圧力スィッチにより、 前記 電磁弁を閉じて前記ガスの供給を停止し、 前記容器内の圧力が下限の設 定値に下降すると、 前記圧力スィッチにより、 前記電磁弁を開いて前記 ガスの供給を再開する請求の範囲第 4 9項に記載の切削加工方法。
5 2 . 前記圧力制御手段は、 前記ガスの供給通路に設けられた弁と、 前 記弁通過後の前記ガスの圧力を検知する圧力センサと、制御部とを備え、 前記圧力センサにより検知された検知圧力は電気信号に変換され、 前記 電気信号は前記制御部で演算処理され、 前記制御部は前記検知圧力が上 限の設定値に達した判断すると、 前記弁を閉じる信号を発し、 前記ガス の供給を停止し、 前記検知圧力が下限の設定値に達したと判断すると、 前記弁を開く信号を発し、 前記ガスの供給を再開する請求の範囲第 4 9 項に記載の切削加工方法。 補正書の請求の範囲 -
[ 1 9 9 9年 9月 1 7日 (1 7 . 0 9 . 9 9 ) 国際事務局受理:出願当初の請求の範囲 5, 及び 2 1は取り下げられた;出願当初の請求の範囲 1, 6, 1 3, 2 2, 4 4及び 4 6は 補正された;他の請求の範囲は変更なし。 (6頁)]
請 求 の 範 囲
1 . (補正後)容器と、 前記容器内にスプレーを吐出するスプレー吐出ノ ズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー搬 送通路とを含む液体塗布装置であって、 先端部を前記容器内の空気中に 有しガスを吐出するガス吐出ノズルを備え、 前記容器内に液体が貯留さ れ、 ガス吐出口を前記液体中に有し前記液体内にガスを吐出することに より前記液体からスプレーを発生させる液中ノズルを備えたことを特徴 とする液体塗布装置。
2 . 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬送通 路に搬入される前に、 前記容器内の壁面に衝突させる請求の範囲第 1項 に記載の液体塗布装置。
3 . 前記壁面が前記液体の液面である請求の範囲第 2項に記載の液体塗 布装置。
5 4 . 前記液中ノズルに前記ガスを供給する通路に、 前記容器内を一定の 圧力に制御する圧力制御手段を備えた請求の範囲第 1項に記載の液体塗 布装置。
5 . (削除)
6 . (補正後)前記ガス吐出ノズルに前記ガスを供給する通路に、 前記容 器内を一定の圧力に制御する圧力制御手段を備えた請求の範囲第 1項に 記載の液体塗布装置。
7 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続され ている請求の範囲第 1項に記載の液体塗布装置。
8 . 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガスと前5 記液体とが前記スプレー吐出ノズル内で混合することにより、 前記容器 内に前記スプレーが吐出される請求の範囲第 1項に記載の液体塗布装置。
45
铺正された ¾紙 (条約第19条)
9 . 前記容器内に貯留された液体は液体供給手段に流入し、 前記液体供 給手段から流出した液体が前記スプレー吐出ノズルへ供給される請求の 範囲第 8項に記載の液体塗布装置。
1 0 . 前記液体供給手段が液体ポンプである請求の範囲第 9項に記載の 液体塗布装置。
1 1 . 前記液体供給手段が前記容器内に貯留された液体中に先端部を有 し前記容器内に貯留された液体を吸い上げるサイホンチューブである請 求の範囲第 9項に記載の液体塗布装置。
1 2 . 前記スプレー吐出ノズルに前記ガスを供給する通路に、 前記容器 内を一定の圧力に制御する圧力制御手段を備えた請求の範囲第 8項に記 載の液体塗布装置。
1 3 . (補正後)容器と、 前記容器内にスプレーを吐出するスプレー吐出 ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー 搬送通路とを備えた液体塗布装置であって、 先端部を前記容器内の空気 中に有しガスを吐出するガス吐出ノズルを備え、 前記スプレー吐出ノズ ルからの吐出流の大半を前記スプレー搬送通路に搬入される前に、 前記 容器内の壁面に衝突させることを特徴とする液体塗布装置。
1 4 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記下側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 1 3項に記載の液体塗布装置。
1 5 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 1 3項に記載の液体塗布装置。
1 6 . 前記壁面が、 下側が開口部のドーム状部材の内壁面である請求の 範囲第 1 3項に記載の液体塗布装置。
1 7 . 前記壁面が、 下側が開口部のドーム状部材の外壁面である請求の
46
補正きれた用紙 (条約第 条》 範囲第 1 3項に記載の液体塗布装置 c
47
補正きれた ¾紙. (条約第1.9条)
1 8 . 前記壁面が前記容器内に貯留された液体の液面である請求の範囲 第 1 3項に記載の液体塗布装置。
1 9 . 前記壁面に吐出流搬送通路が形成され、 前記吐出流搬送通路に接 続されたバルブを開くことにより前記スプレー吐出ノズルからの吐出流 の大半を前記容器外に直接取り出すことができる請求の範囲第 1 3項に 記載の液体塗布装置。
2 0 . 前記壁面に衝突した後、 前記スプレー搬送通路に搬入される前の 前記吐出流が、 前記壁面とは別に形成されている壁面に衝突する請求の 範囲第 1 3項に記載の液体塗布装置。
2 1 . (削除)
2 2 . (補正後)前記ガス吐出ノズルに前記ガスを供給する通路に、 前記 容器内を一定の圧力に制御する圧力制御手段を備えた請求の範囲第 1 3 項に記載の液体塗布装置。
2 3 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続さ れている請求の範囲第 1 3項に記載の液体塗布装置。
2 4 . 前記スプレー吐出ノズルへガスと液体とが供給され、 前記ガスと 前記液体とが前記スプレー吐出ノズル内で混合することにより、 前記容 器内に前記スプレーが吐出される請求の範囲第 1 3項に記載の液体塗布
2 5 . 前記容器内に貯留された液体は液体供給手段に流入し、 前記液体 供給手段から流出した液体が前記スプレー吐出ノズルへ供給される請求 の範囲第 2 4項に記載の液体塗布装置。
2 6 . 前記液体供給手段が液体ポンプである請求の範囲第 2 5項に記載 の液体塗布装置。
2 7 . 前記液体供給手段が前記容器内に貯留された液体中に先端部を有
48
補正された 紙 (条約第 19条)
4 2 . 前記上限の設定値及び前記下限の設定値を変更できる請求の範囲 第 3 8項に記載の液体塗布装置。
4 3 . 前記スプレー搬送通路の先端に、 先端先細形状の吐出部が接続さ れている請求の範囲第 2 9項に記載の液体塗布装置。
4 4 . (補正後)容器と、 前記容器内にスプレーを吐出するスプレー吐出 ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー 搬送通路と、 先端部を前記容器内の空気中に有しガスを吐出するガス吐 出ノズルとを含み、 前記容器内に液体が貯留され、 ガス吐出口を前記液 体中に有し前記液体内にガスを吐出することにより前記液体からスプレ 一を発生させる液中ノズルを備えた液体塗布装置を工作機械の給油部に 取り付け、 刃具に向けて前記スプレーを供給して加工対象物を切削加工 することを特徴とする切削加工方法。
4 5 . 前記スプレー吐出ノズルからの吐出流の大半を前記スプレー搬送 通路に搬入される前に、 前記容器内の壁面に衝突させる請求の範囲第 4 4項に記載の切削加工方法。
4 6 . (補正後)容器と、 前記容器内にスプレーを吐出するスプレー吐出 ノズルと、 前記容器内の前記スプレーを前記容器外へ搬送するスプレー 搬送通路と、 先端部を前記容器内の空気中に有しガスを吐出するガス吐 出ノズルとを備え、 前記スプレー吐出ノズルからの吐出流の大半を前記 スプレー搬送通路に搬入される前に、 前記容器内の壁面に衝突させる液 体塗布装置を工作機械の給油部に取り付け、 刃具に向けて前記スプレー を供給して加工対象物を切削加工することを特徴とする切削加工方法。 4 7 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ れ、 前記下側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 4 6項に記載の切削加工方法。
4 8 . 前記壁面によって、 前記容器内が上側空間と下側空間とに分離さ
49
補正された用紙 (条約第 19条) れ、 前記上側空間内に前記スプレー吐出ノズルの吐出口が配置されてい る請求の範囲第 4 6項に記載の切削加工方法。
50
補正された用綏 (条約第 19条) 条約 1 9条に基づく説明書
請求の範囲第 5項を削除し、 これを請求の範囲第 1項に合体させ、 請 求の範囲第 2 1項を削除し、 これを請求の範囲第 1 3項に合体させるこ とにより、 本発明の第 1番目及び第 2番目の液体塗布装置を、 先端部を 容器内の空気中に有しガスを吐出するガス吐出ノズルを備えた構成とし た。
また、 請求の範囲第 4 4項及び第 4 6項を補正し、 本発明の第 1番目 及び第 2番目の切削加工方法を、 先端部を容器内の空気中に有しガスを 吐出するガス吐出ノズルを備えた液体塗布装置を用いた構成とした。 引用例 (特公昭 2 5— 3 0 4 5号公報等) には、 前記のように液体塗 布装置にガス吐出ノズルを備えた構成は、 記載も示唆すらない。 本発明 は、 容器内にガス吐出ノズルを備えることにより、 容器の内圧を高める ことができるので、 スプレー搬送通路の出口部における流速を速めるこ とができる。
PCT/JP1999/001234 1998-05-25 1999-03-12 Dispositif de pulverisation de liquide et procede de decoupe WO1999061163A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000550607A JP3219753B2 (ja) 1998-05-25 1999-03-12 液体塗布装置及び切削加工方法
DE69934984T DE69934984T2 (de) 1998-05-25 1999-03-12 Vorrichtung zur zerstäubung von flüssigkeiten und verfahren zum schneiden
KR1020007013294A KR20010052402A (ko) 1998-05-25 1999-03-12 액체 도포 장치 및 절삭 가공 방법
EP99953308A EP1090690B1 (en) 1998-05-25 1999-03-12 Liquid spray device and cutting method
US09/700,830 US6659370B1 (en) 1998-05-25 1999-03-12 Liquid spray device and cutting method
IL13988299A IL139882A0 (en) 1998-05-25 1999-05-25 Liquid spray device and cutting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP14259298 1998-05-25
JP10/142592 1998-05-25
JP30569498 1998-10-27
JP10/305694 1998-10-27

Publications (1)

Publication Number Publication Date
WO1999061163A1 true WO1999061163A1 (fr) 1999-12-02

Family

ID=26474542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001234 WO1999061163A1 (fr) 1998-05-25 1999-03-12 Dispositif de pulverisation de liquide et procede de decoupe

Country Status (8)

Country Link
US (1) US6659370B1 (ja)
EP (2) EP1090690B1 (ja)
JP (3) JP3219753B2 (ja)
KR (1) KR20010052402A (ja)
DE (3) DE04014613T1 (ja)
IL (1) IL139882A0 (ja)
TW (1) TW415856B (ja)
WO (1) WO1999061163A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077302A (ko) * 2002-08-31 2002-10-11 이계상 절삭기계 연무의 기름분리장치
CN114476396A (zh) * 2021-12-31 2022-05-13 中国建材国际工程集团有限公司 一种切割设备用微正压微气泡连续供油装置
EP2588242B1 (en) * 2010-06-30 2023-07-26 Commonwealth Scientific and Industrial Research Organisation Droplet generation system and method

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650963B2 (ja) * 2000-10-26 2005-05-25 フジビーシー技研株式会社 切削オイル塗布装置
DE10207435A1 (de) * 2002-02-21 2003-09-04 Vogel Willi Ag Verfahren und Vorrichtung zur Erzeugung eines Aerosols
JP3774185B2 (ja) 2002-10-25 2006-05-10 フジビーシー技研株式会社 流体機器
DE10310118A1 (de) * 2003-03-06 2004-09-16 Willy Vogel Ag Schmiervorrichtung mit Einspritzeinrichtung und Schmierverfahren
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
JP2006062024A (ja) * 2004-08-26 2006-03-09 Ebara Corp ミスト生成装置
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
WO2007081387A1 (en) 2006-01-11 2007-07-19 Raindance Technologies, Inc. Microfluidic devices, methods of use, and kits for performing diagnostics
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2047910B1 (en) 2006-05-11 2012-01-11 Raindance Technologies, Inc. Microfluidic device and method
EP3536396B1 (en) 2006-08-07 2022-03-30 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
EP2315629B1 (en) 2008-07-18 2021-12-15 Bio-Rad Laboratories, Inc. Droplet libraries
EP2411148B1 (en) 2009-03-23 2018-02-21 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US8356696B1 (en) * 2009-06-12 2013-01-22 Honda Motor Co., Ltd. Air-operated device and method for lubricating components with elimination of lubricant waste
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
EP2517025B1 (en) 2009-12-23 2019-11-27 Bio-Rad Laboratories, Inc. Methods for reducing the exchange of molecules between droplets
DE102009060454B8 (de) * 2009-12-24 2018-10-18 Hpm Technologie Gmbh Vorrichtung zur Aerosolerzeugung
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
WO2012124772A1 (ja) * 2011-03-15 2012-09-20 住友化学株式会社 フィルタ検査用ミスト供給装置
WO2012124773A1 (ja) * 2011-03-15 2012-09-20 住友化学株式会社 フィルタの欠陥の検査方法、及び、フィルタの欠陥の検査装置
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
DE202012013668U1 (de) 2011-06-02 2019-04-18 Raindance Technologies, Inc. Enzymquantifizierung
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US9616451B2 (en) * 2012-11-19 2017-04-11 Lam Research Ag Apparatus for processing wafer-shaped articles
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
CN104190569A (zh) * 2014-08-28 2014-12-10 济南万方炭素有限责任公司 一种振动台加压式喷油装置
JP6265152B2 (ja) * 2015-03-02 2018-01-24 日本精工株式会社 グリース塗布方法及び塗布装置、並びに、ウォーム減速機の製造方法、電動式パワーステアリング装置の製造方法、自動車の製造方法及び産業機械の製造方法
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
DE102018111083A1 (de) * 2018-05-08 2019-11-14 Broetje-Automation Gmbh Zerstäubereinheit eines Minimalmengenschmiersystems
IT201900006072A1 (it) * 2019-04-18 2020-10-18 Dropsa Spa Generatore di nebbia aria/olio
DE102019130112A1 (de) * 2019-11-07 2021-05-12 Broetje-Automation Gmbh Zerstäubereinheit
DE102021114987A1 (de) 2021-06-10 2022-12-15 Topas Gmbh Technologieorientierte Partikel-, Analysen- Und Sensortechnik Einrichtung zur Erzeugung eines konditionierten Aerosols
CN116237176B (zh) * 2023-05-11 2023-07-25 四川工程职业技术学院 一种内置雾化装置及内置雾化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS253045B1 (ja) * 1949-09-27 1950-09-30
JPS5353124Y2 (ja) * 1975-05-29 1978-12-19
JPS546762Y2 (ja) * 1975-03-14 1979-03-30
JPS63214131A (ja) * 1987-03-02 1988-09-06 株式会社 桜川ポンプ製作所 薬剤発泡散布装置
JPH0592596U (ja) 1992-05-15 1993-12-17 タコ株式会社 噴霧給油装置
JPH09248735A (ja) * 1996-03-10 1997-09-22 Minoru Saito 水溶性切削油を霧状に噴射して真鍮を加工する方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US954451A (en) 1907-07-29 1910-04-12 Merrell Soule Co Desiccating apparatus.
US992503A (en) 1910-10-25 1911-05-16 John W Staub Lubricator.
US1333451A (en) 1919-06-06 1920-03-09 Perry B Sample Lubricator
US2020325A (en) 1933-12-15 1935-11-12 New Jersey Zinc Co Method of producing precipitates
GB465357A (en) 1935-02-19 1937-05-05 Gauchard Fernand Method of and apparatus for putting liquids into suspension in a gaseous medium
US2245601A (en) 1939-02-06 1941-06-17 William L Ulmer Method of and apparatus for lubricating pneumatic tools
US2438868A (en) * 1943-09-09 1948-03-30 Trier Vernon Anthony Method and apparatus for atomizing liquids
US2613067A (en) 1950-01-21 1952-10-07 Hills Mccanna Co Device for introducing atomized liquid into gas under pressure
FR1152856A (fr) 1953-06-11 1958-02-26 Fr D Etudes Et De Realisations Atomiseur
US2719604A (en) 1954-03-02 1955-10-04 Stewart Warner Corp Method and apparatus for generating lubricating oil mist
US2981526A (en) * 1955-11-21 1961-04-25 Phillip R Grumbach Vaporizer
US3240243A (en) 1961-07-27 1966-03-15 Alexander J Golick Mist lubricated ripsawing method and mechanisms
US3249553A (en) 1963-01-28 1966-05-03 Samuel B Steinberg Smoke generator
US3439777A (en) 1966-09-06 1969-04-22 Skf Svenska Kullagerfab Ab Oil mist lubricator
US3491855A (en) 1968-07-17 1970-01-27 Houdaille Industries Inc Oil mist lubricating system
US3618709A (en) 1969-11-06 1971-11-09 Unimist Inc Pressurized lubrication system
US3744771A (en) 1970-07-20 1973-07-10 Ahldea Corp Disposable liquid entraining system
US4054622A (en) 1970-11-03 1977-10-18 Lester Victor E Combination nebulizer and humidifier
US3729898A (en) * 1971-06-01 1973-05-01 Chemical Construction Corp Removal of entrained matter from gas streams
US3756348A (en) 1971-10-05 1973-09-04 Shoketsu Kinzoku Kogyo Kk Machine tool lubricating device
US3941355A (en) * 1974-06-12 1976-03-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Mixing insert for foam dispensing apparatus
US3939944A (en) 1974-07-24 1976-02-24 Bryant Grinder Corporation Oil-mist lubrication system
US4131658A (en) 1975-07-17 1978-12-26 Nippon Oil Company Limited Method for atomizing oil and an apparatus therefor
JPS5353124A (en) 1976-10-22 1978-05-15 Takeshige Shimonohara Block structure
JPS546762A (en) 1977-06-17 1979-01-19 Mitsubishi Electric Corp Cathode-ray tube
US4253027A (en) 1978-06-14 1981-02-24 Ohio-Nuclear, Inc. Tomographic scanner
US4335804A (en) 1979-07-30 1982-06-22 Bardin Viktor P Vortex-type oil mist generator
US4309456A (en) 1980-09-23 1982-01-05 Rca Corporation Method and apparatus for coating recorded discs with a lubricant
JPH0114402Y2 (ja) 1981-02-13 1989-04-27
US4637493A (en) 1981-04-17 1987-01-20 Lubricating Systems Company Of Texas, Inc. Mist generators
US4421798A (en) 1981-11-10 1983-12-20 Rca Corporation Apparatus for coating recorded discs with a lubricant
GB2148127B (en) 1983-08-25 1986-07-30 Penlon Ltd Gas humidifying apparatus and method
JPS6265147A (ja) 1985-09-17 1987-03-24 Nec Corp バストレ−ス方式
JPH0661530B2 (ja) * 1988-11-02 1994-08-17 ノードソン株式会社 エアロゾルの塗布方法
RU2069809C1 (ru) 1991-03-05 1996-11-27 Зульцер Рюти АГ Устройство для подачи распыленной смазки
GB9115340D0 (en) 1991-07-16 1991-08-28 Univ Leeds Nebuliser
JPH0545393A (ja) 1991-08-20 1993-02-23 Tokin Corp 電波暗室の散乱波強度測定方法
JPH0592596A (ja) 1991-09-30 1993-04-16 Kyocera Corp サーマルヘツドの製造方法
EP0539055B1 (en) 1991-10-09 1997-03-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for working on a workpiece, using foamed working liquid in area of contact between the workpiece and working tool
JP3431187B2 (ja) 1992-08-05 2003-07-28 東芝機械株式会社 ミスト発生装置
JPH0661530A (ja) 1992-08-10 1994-03-04 Asahi Optical Co Ltd レーザ発光出力制御装置
JP3027270B2 (ja) 1992-10-20 2000-03-27 タコ株式会社 潤滑油霧供給システム及びその弁装置
JP3027272B2 (ja) 1992-12-03 2000-03-27 タコ株式会社 圧力流体供給装置
JP2859061B2 (ja) 1992-12-22 1999-02-17 タコ株式会社 潤滑油供給方式
US5314620A (en) * 1993-04-02 1994-05-24 Harvey Universal, Inc. Cutting oil treatment
JP3043930B2 (ja) 1993-10-12 2000-05-22 タコ株式会社 潤滑方式
US5427203A (en) 1994-02-07 1995-06-27 The Anspach Effort, Inc. Pneumatic tool lubrication system
DE19519885B4 (de) * 1995-05-31 2009-06-10 Malischewsky, Jörg Vorrichtung zur Erzeugung eines Kühlschmierstoff-Aerosols
US5609798A (en) * 1995-06-07 1997-03-11 Msp Corporation High output PSL aerosol generator
JPH09159610A (ja) 1995-12-07 1997-06-20 Jeol Ltd 試料導入安定化機構を備えたプラズマ分析装置
MX9600099A (es) 1996-01-04 1997-01-31 Sist S Centrales De Lubricacio Sistema modular de lubricacion.
DE59609959D1 (de) 1996-09-07 2003-01-16 Vogel Willi Ag Kühlschmiervorrichtung
JPH1099398A (ja) 1996-09-26 1998-04-21 Masao Ikeo 治療用ベッド
TW344682B (en) * 1996-11-29 1998-11-11 Fuji Transaction Co Ltd Liquid coating device a liquid coating device comprises a spray supply nozzle, a gas supply passage, and a spray transport passage.
US6086052A (en) * 1996-12-03 2000-07-11 Rowe; Carroll G. Foam generating apparatus
DE19654321A1 (de) 1996-12-24 1998-06-25 Pe Product Engineering Gmbh Vorrichtung zur Aerosolerzeugung
KR100460394B1 (ko) 1998-08-14 2004-12-08 구로다 세이코 가부시키가이샤 미스트 공급장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS253045B1 (ja) * 1949-09-27 1950-09-30
JPS546762Y2 (ja) * 1975-03-14 1979-03-30
JPS5353124Y2 (ja) * 1975-05-29 1978-12-19
JPS63214131A (ja) * 1987-03-02 1988-09-06 株式会社 桜川ポンプ製作所 薬剤発泡散布装置
JPH0592596U (ja) 1992-05-15 1993-12-17 タコ株式会社 噴霧給油装置
JPH09248735A (ja) * 1996-03-10 1997-09-22 Minoru Saito 水溶性切削油を霧状に噴射して真鍮を加工する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1090690A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077302A (ko) * 2002-08-31 2002-10-11 이계상 절삭기계 연무의 기름분리장치
EP2588242B1 (en) * 2010-06-30 2023-07-26 Commonwealth Scientific and Industrial Research Organisation Droplet generation system and method
CN114476396A (zh) * 2021-12-31 2022-05-13 中国建材国际工程集团有限公司 一种切割设备用微正压微气泡连续供油装置

Also Published As

Publication number Publication date
EP1090690A4 (en) 2001-11-07
JP2002102752A (ja) 2002-04-09
DE69938068D1 (de) 2008-03-13
EP1457264A3 (en) 2004-11-24
JP3219753B2 (ja) 2001-10-15
US6659370B1 (en) 2003-12-09
KR20010052402A (ko) 2001-06-25
TW415856B (en) 2000-12-21
EP1457264B1 (en) 2008-01-23
EP1090690B1 (en) 2007-01-24
JP2001276679A (ja) 2001-10-09
DE04014613T1 (de) 2005-05-04
EP1457264B2 (en) 2012-02-29
DE69938068T2 (de) 2009-01-15
DE69934984T2 (de) 2007-10-25
IL139882A0 (en) 2002-02-10
EP1457264A2 (en) 2004-09-15
DE69938068T3 (de) 2012-05-31
EP1090690A1 (en) 2001-04-11
DE69934984D1 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
WO1999061163A1 (fr) Dispositif de pulverisation de liquide et procede de decoupe
EP3450104B1 (en) Method and apparatus for fluid cavitation abrasive surface finishing
US6460831B2 (en) Cutting liquid coater
WO2006022180A1 (ja) ミスト生成装置
JP4017522B2 (ja) エアロゾル生成装置及び方法
KR102300363B1 (ko) 혼기 제트 분사 장치
JP2001502970A (ja) エアゾル生成装置
CN112292232B (zh) 最小量润滑系统的雾化器单元
JP2010142894A (ja) 液体サイクロン装置
KR20040077521A (ko) 미스트생성장치
US20170225296A1 (en) Device And Method For Blasting A Suspension Onto Workpieces
JP2004276230A (ja) ミスト生成装置
JP4065366B2 (ja) 液体を噴霧するための超音波装置
CN110064968A (zh) 内冷微钻微量润滑控制系统
CN111315495A (zh) 用于粉末涂料的颜色更换系统
JP2004261919A (ja) ミスト生成装置
CN114571373A (zh) 一种用于加工拐角结构的螺旋供料装置及磨料供给与轨迹协同调控加工拐角结构的方法
JPH07163918A (ja) 噴霧方法および噴霧器
KR20160026102A (ko) 블라스팅 장치
JPH11235666A (ja) 噴射量を少量に制御可能なブラスト加工装置
UA45933A (uk) Спосіб гідроабразивної обробки поверхонь деталей

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA IL JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09700830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 139882

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020007013294

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999953308

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999953308

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013294

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007013294

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999953308

Country of ref document: EP