WO1999057439A1 - Vacuumpumpe - Google Patents

Vacuumpumpe Download PDF

Info

Publication number
WO1999057439A1
WO1999057439A1 PCT/EP1999/002882 EP9902882W WO9957439A1 WO 1999057439 A1 WO1999057439 A1 WO 1999057439A1 EP 9902882 W EP9902882 W EP 9902882W WO 9957439 A1 WO9957439 A1 WO 9957439A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotors
pump chamber
pump
pump according
pressure
Prior art date
Application number
PCT/EP1999/002882
Other languages
English (en)
French (fr)
Inventor
Reinhard Garczorz
Fritz-Martin Scholz
Original Assignee
Werner Rietschle Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Werner Rietschle Gmbh + Co. Kg filed Critical Werner Rietschle Gmbh + Co. Kg
Priority to EP99923485A priority Critical patent/EP1075601B1/de
Priority to DE59902761T priority patent/DE59902761D1/de
Priority to JP2000547364A priority patent/JP2002513887A/ja
Priority to US09/673,641 priority patent/US6439865B1/en
Publication of WO1999057439A1 publication Critical patent/WO1999057439A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/122Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth

Definitions

  • the invention relates to a pump for the simultaneous generation of pressure and negative pressure.
  • Pumps of this type are advantageous if an industrial process requires compressed air and negative pressure at the same time, since the pump only requires one drive.
  • a separate charging connection which is connected to the atmosphere in order to ensure the volume flow for the compressed air. Accordingly, several separate cells must be formed in the pump chamber. In the prior art, this has only been achieved with rotary slide systems. However, rotary vane are subject to wear and can only be operated lubricant-free if special materials are used.
  • two at least three-bladed rotors rotate in opposite directions about parallel, mutually offset axes in the pump chamber and mesh without contact in order to form cells which are separate from one another with the peripheral wall of the pump chamber.
  • the rotors in the pump chamber can be used to separate the cells required for the simultaneous generation of compressed air and vacuum. Since the rotors are contactless with each other and also with the peripheral wall of the
  • the pump according to the invention is particularly suitable for use in the paper processing industry, especially in applications which do not require separate provision or adjustment of compressed air and vacuum.
  • Compressed air is e.g. needed to blow on a stack of paper to support sheet separation.
  • the pulsating generation of compressed air by the pump according to the invention proves to be expedient here, since the paper edges can be separated more easily by compressed air which occurs intermittently. Vacuum is required in such applications to suck up the top sheet of paper.
  • the rotors with the pump chamber form a suction cell which is connected to the suction connection and increases their volume due to the rotation of the rotors, and a pressure cell which reduces their volume when the rotors rotate and is connected to the pressure connection.
  • This pressure cell is formed from two charging cells which are initially separated from one another in the course of the rotation of the rotors, each of which has an assigned charging connection and are combined with one another to form the pressure cell during the further rotation of the rotors.
  • the charging cells are shifted essentially isobar and isochoric in the pump chamber, i.e. the air in the charging cells experiences essentially no change in pressure and no volume when the charging cells are displaced.
  • FIG. 1 shows a longitudinal section of the pump according to the invention
  • Figure 2 is a view along line II-II in Figure 1;
  • Figure 3 is a view along line III-III in Figure 1;
  • Figures 4a to 4h are schematic views of different rotor positions to explain the mode of operation. - 3 -
  • the single-stage pump for the simultaneous generation of pressure and negative pressure has a housing which consists of a supporting central part 10, a housing cover 12 placed on one side of the central part 10, a housing ring 14 attached to the other side of the central part 10 and one on the housing ring
  • a pump chamber 18 is formed between the middle part 10, the housing ring 14 and the cover plate 16.
  • two shafts 20, 22 are mounted parallel to one another and offset from one another in ball bearings.
  • a pinion 24, 26 is seated on each shaft 20, 22. The pinions 24, 26 are in meshing engagement with one another, so that the shafts 20, 22 rotate in opposite directions synchronously with one another.
  • the lower shaft 22 is led out of the housing cover 12.
  • Two rotors 30, 32 are arranged on the free ends of the shafts 20, 22 projecting into the pump chamber 14. Since the load application formed by the rotors 30, 32 is not between, but outside of the bearings, there is a flying shaft bearing. Each of the rotors 30, 32 is adjustably attached to the associated shaft 20 and 22, respectively. As can be seen from Figure 2, each rotor 30, 32 has three blades 30a and 32a.
  • the pump chamber 18 has a side view in the form of two intersecting circles, which are joined together in the form of an "8".
  • the blades 30a of the rotor 30 have a shape that is different from the shape of the blades 32a of the rotor 32.
  • the geometry of the vanes 30a, 32a and the pump chamber 18 is determined in such a way that when the rotors 30, 32 rotate, a plurality of separate cells is formed, as explained in more detail below with reference to FIGS. 4a to 4h, in that the vanes 30a, 32a slide without contact with a sealing gap of a fraction of 1 mm one above the other and along the outer circumference of the pump chamber 18.
  • the cover plate 16 is provided with a series of recesses, which are closed off from the outside by an attached closure plate 36.
  • Two pipe sockets 42, 44 are screwed into the closure plate 36.
  • the upper pipe socket 42 forms the suction connection and is connected to a recess 50 of the cover plate 16.
  • the lower Pipe socket 44 forms the pressure connection and is connected to a recess 52 in the cover plate 16.
  • Two further cutouts 54a, 54b in the cover plate 16 are open to the outside and form charging connections.
  • FIG. 4a shows the rotors 30, 32 in a rotational position in which their wings 30a, 32a form a closed, common cell 60, which is only connected to the recess 50, with the wall of the pump chamber 18. As the rotors 30, 32 continue to rotate, this cell 60 increases its volume, as can be seen in FIG. 4b.
  • This cell 60 is therefore a suction cell.
  • FIG. 4c shows two cells 62a, 62b which are separate from one another and which arise immediately after the state shown in FIG. 4b in that the cell 60 has been separated into two sub-cells.
  • the cell 62a assigned to the rotor 30 already borders the recess 54a, and the cell 62b assigned to the rotor 32 approaches the recess 54b.
  • the cells 62a, 62b are connected to the recesses 54a and 54b leading to the atmosphere and are filled with air and charged to ambient pressure, so that the air mass flow is increased.
  • the cells 62a, 62b are thus charging cells.
  • the cells 62a, 62b are moved isobarically and isochorously until, as in FIG. 4f shown, combine with one another to form a pressure cell 64.
  • the pressure cell 64 reduces its volume. The air compressed in the pressure cell 64 is pushed out via the cutout 52 to the pipe socket 44, as illustrated in FIGS. 4g and 4h.
  • the pump chamber 18 is free of any lubricant, since the rotors 30, 32 operate without contact. On the drive side, the pump chamber 18 is sealed by seals on the shafts 20, 22.
  • the housing can be equipped with cooling fins, and cooling air is guided from the cover plate 16 through the housing ring 14, the middle part 10 and the housing cover 12 by a cooling fan arranged on the side of the housing cover 12.
  • a resonance damper which is matched to the operating frequency of the pump, is used to dampen the operating noise. Due to the three-wing design of the rotors, this frequency is three times the speed of the shafts 20, 22. The increased operating frequency makes it easier to accommodate the resonance damper, since its length is reduced accordingly.
  • the described flying storage of the rotors is up to one
  • Pumps with a larger volume flow are preferably designed with rotors mounted on both sides. In this case, connections are left in both side plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Zur gleichzeitigen Erzeugung von Druck und Unterdruck mit einer einstufigen Pumpe weist diese eine in einem Gehäuse gebildete Pumpenkammer (18) auf, die mit einem Sauganschluß, einem Druckanschluß und einem Aufladeanschluß versehen ist. In der Pumpenkammer (18) sind zwei mindestens dreiflügelige Rotoren (30, 32) angeordnet, die um parallele, gegeneinander versetzte Achsen gegenläufig rotieren und berührungslos kämmen sowie mit der Umfangswandung der Pumpenkammer (18) voneinander getrennte Zellen (60, 62a, 62b, 64) bilden.

Description

VACUUMPUMPE
Die Erfindung betrifft eine Pumpe zur gleichzeitigen Erzeugung von Druck und Unterdruck.
Derartige Pumpen sind vorteilhaft, wenn ein industrieller Prozeß gleichzeitig Druckluft und Unterdruck erfordert, da die Pumpe nur einen Antrieb benötigt. Außer dem Sauganschluß benötigt eine solche Pumpe einen gesonderten Aufladeanschluß, der mit der Atmosphäre verbunden ist, um den Volumenstrom für die Druckluft zu gewährleisten. Entsprechend müssen in der Pumpenkammer mehrere voneinander getrennte Zellen gebildet werden. Dies ist im Stand der Technik nur mit Drehschiebersystemen gelungen. Drehschieber sind aber verschleißbehaftet und können nur bei Einsatz spezieller Werkstoffe schmiermittelfrei betrieben werden.
Durch die vorliegende Erfindung wird eine Pumpe zur gleichzeitigen
Erzeugung von Druckluft und Unterdruck zur Verfügung gestellt, die nahezu verschleißfrei ist und ohne den Einsatz besonderer Werkstoffe hergestellt werden kann. Bei der erfindungsgemäßen Pumpe rotieren in der Pumpenkammer zwei mindestens dreiflügelige Rotoren um parallele, gegeneinander versetzte Achsen gegenläufig und kämmen berührungslos, um mit der Umfangswandung der Pumpenkammer voneinander getrennte Zellen zu bilden. Mittels der Rotoren lassen sich in der Pumpenkammer die für die gleichzeitige Erzeugung von Druckluft und Vakuum erforderlichen Zellen voneinander abgrenzen. Da die Rotoren berührungslos miteinander und auch mit der Umfangswand der
Pumpenkammer zusammenwirken, tritt im Bereich der Pumpenkammer keinerlei Verschleiß auf. Der Dichtspalt zwischen den Rotoren kann durch Optimierung ihrer Geometrie sehr klein gehalten werden; er beträgt bei praktischen Ausführungen nur Bruchteile eines Millimeters, so daß gute Druck- und Vakuumwerte gewährleistet sind. Diese Werte werden sogar mit zunehmender Betriebsdauer besser, da die sich mit der Zeit bildenden Ablagerungen zu einer Verkleinerung der Dichtspalte führen. - 2 -
Die erfindungsgemäße Pumpe ist besonders für den Einsatz im papierverarbeitenden Gewerbe geeignet, vornehmlich bei Anwendungen, die keine getrennte Bereitstellung oder Einstellung von Druckluft und Vakuum erfordern. Druckluft wird z.B. zum seitlichen Anblasen eines Papierstapels für die Unterstützung der Bogentrennung benötigt. Die pulsierende Drucklufterzeugung durch die erfindungsgemäße Pumpe erweist sich hier als zweckmäßig, da die Papierkanten durch stoßweise auftretende Druckluft leichter getrennt werden können. Unterdruck ist bei derartigen Anwendungen zum Ansaugen des obersten Papierbogens erforderlich.
Bei der bevorzugten Ausführungsform der Pumpe bilden die Rotoren mit der Pumpenkammer eine mit dem Sauganschluß verbundene, durch die Drehung der Rotoren ihr Volumen vergrößernde Saugzelle sowie eine Druckzelle, die bei der Drehung der Rotoren ihr Volumen verkleinert und mit dem Druckanschluß verbunden ist. Diese Druckzelle wird aus zwei im Verlauf der Drehung der Rotoren zunächst voneinander getrennten Aufladezellen gebildet, die je einen zugeordneten Aufladeanschluß aufweisen und bei der weiteren Drehung der Rotoren miteinander zur Druckzelle vereinigt werden. Die Aufladezellen werden vor ihrer Vereinigung im wesentlichen isobar und isochor in der Pumpenkammer verschoben, d.h. die sich in den Aufladezellen befindliche Luft erfährt bei der Verschiebung der Aufladezellen im wesentlichen keine Druck- und keine Volumenänderung.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform und aus der Zeichnung, auf die Bezug genommen wird. In der Zeichnung zeigen:
Figur 1 einen Längsschnitt der erfindungsgemäßen Pumpe;
Figur 2 eine Ansicht entlang Linie II-II in Figur 1;
Figur 3 eine Ansicht entlang Linie III-III in Figur 1; und
Figuren 4a bis 4h schematische Ansichten verschiedener Rotorstellungen zur Erläuterung der Wirkungsweise. - 3 -
Die einstufig ausgebildete Pumpe zur gleichzeitigen Erzeugung von Druck und Unterdruck hat ein Gehäuse, das aus einem tragenden Mittelteil 10, einem auf der einen Seite des Mittelteils 10 aufgesetzten Gehäusedeckel 12, einem an die andere Seite des Mittelteils 10 angefügten Gehäusering 14 und einer an den Gehäusering
14 anschließenden Deckelplatte 16 besteht. Zwischen dem Mittelteil 10, dem Gehäusering 14 und der Deckelplatte 16 ist eine Pumpenkammer 18 gebildet. In den einander gegenüberliegenden Wandungsteilen des Gehäusedeckels 12- und des Mittelteils 10 sind zwei Wellen 20, 22 parallel zueinander und gegeneinander versetzt in Kugellagern fliegend gelagert. Auf jeder Welle 20, 22 sitzt ein Ritzel 24, 26. Die Ritzel 24, 26 stehen miteinander in Kämmeingriff, so daß die Wellen 20, 22 miteinander synchron entgegengesetzt rotieren. Für den Drehantrieb ist die untere Welle 22 aus dem Gehäusedeckel 12 herausgeführt.
Auf den in die Pumpenkammer 14 hineinragenden freien Enden der Wellen 20, 22 sind zwei Rotoren 30, 32 angeordnet. Da der durch die Rotoren 30, 32 gebildete Lastangriff nicht zwischen, sondern außerhalb der Lager liegt, ergibt sich eine fliegende Wellenlagerung. Jeder der Rotoren 30, 32 ist justierbar an der zugehörigen Welle 20 bzw. 22 befestigt. Wie aus Figur 2 ersichtlich ist, hat jeder Rotor 30, 32 drei Flügel 30a bzw. 32a. Die Pumpenkammer 18 hat in Seitenansicht die Form von zwei sich schneidenden Kreisen, die in Form einer "8" zusammengefügt sind. Die Flügel 30a des Rotors 30 haben eine Form, die von der Form der Flügel 32a des Rotors 32 verschieden ist. Die Geometrie der Flügel 30a, 32a und der Pumpenkammer 18 ist so bestimmt, daß bei der Drehung der Rotoren 30, 32 mehrere voneinander getrennte Zellen gebildet werden, wie unter Bezugnahme auf die Figuren 4a bis 4h weiter unten näher erläutert, indem die Flügel 30a, 32a berührungsfrei mit einem Dichtspalt eines Bruchteils von 1 mm übereinander und entlang dem Außenumfang der Pumpenkammer 18 gleiten.
Die Deckelplatte 16 ist mit einer Reihe von Aussparungen versehen, die nach außen durch eine aufgesetzte Verschlußplatte 36 abgeschlossen werden. In die Verschlußplatte 36 sind zwei Rohrstutzen 42, 44 eingeschraubt. Der obere Rohrstutzen 42 bildet den Sauganschluß und ist mit einer Aussparung 50 der Deckelplatte 16 verbunden. Der untere Rohrstutzen 44 bildet den Druckanschluß und ist mit einer Aussparung 52 in der Deckelplatte 16 verbunden. Zwei weitere Aussparungen 54a, 54b in der Deckelplatte 16 sind nach außen zur Atmosphäre geöffnet und bilden Aufladeanschlüsse.
Figur 4a zeigt die Rotoren 30, 32 in einer Drehstellung, bei der ihre Flügel 30a, 32a mit der Wandung der Pumpenkammer 18 eine abgeschlossene, nur mit der Aussparung 50 in Verbindung stehende, gemeinsame Zelle 60 bilden. Diese Zelle 60 vergrößert bei der weiteren Drehung der Rotoren 30, 32 ihr Volumen, wie in Figur 4b ersichtlich.
Es handelt sich bei dieser Zelle 60 also um eine Saugzelle.
Figur 4c zeigt zwei voneinander getrennte Zellen 62a, 62b, die unmittelbar nach dem in Figur 4b gezeigten Zustand entstehen, indem die Zelle 60 in zwei Teilzellen getrennt wurde. Die dem Rotor 30 zugeordnete Zelle 62a grenzt schon an die Aussparung 54a an, und die dem Rotor 32 zugeordnete Zelle 62b nähert sich der Aussparung 54b. In Figur 4d sind die Zellen 62a, 62b mit den zur Atmosphäre führenden Aussparungen 54a bzw. 54b in Verbindung und werden mit Luft aufgefüllt und auf Umgebungsdruck aufgeladen, so daß der Luftmassenstrom erhöht wird. Es handelt sich bei den Zellen 62a, 62b somit um Aufladezellen. Nachdem diese Aufladezellen 62a, 62b durch den nacheilenden Flügel 30a bzw. 32b von der zugehörigen Aussparung 54a bzw. 54b abgetrennt sind, wie in Figur 4e gezeigt, werden die Zellen 62a, 62b isobar und isochor verschoben, bis sie sich, wie in Figur 4f gezeigt, miteinander zu einer Druckzelle 64 vereinigen. Bei der weiteren Drehung der Rotoren 30, 32 verkleinert die Druckzelle 64 ihr Volumen. Die in der Druckzelle 64 verdichtete Luft wird über die Aussparung 52 zum Rohrstutzen 44 ausgeschoben, wie in den Figuren 4g und 4h veranschaulicht ist.
Die Pumpenkammer 18 ist frei von jeglichem Schmiermittel, da die Rotoren 30, 32 berührungsfrei arbeiten. Zur Antriebsseite hin ist die Pumpenkammer 18 durch Dichtungen an den Wellen 20, 22 abgedichtet.
Durch die fliegende Anordnung der Rotoren 30, 32 auf den Wellen
20, 22, die zu einer fliegenden Lagerung führt, wird der Zugang zur Pumpenkammer erleichtert, da für einen Zugang lediglich die Deckelplatte 16 abzunehmen ist. Auch die Kühlung wird durch diese Anordnung - 5 -
erleichtert. Zur Kühlung kann das Gehäuse mit Kühlrippen ausgestattet werden, und durch ein auf der Seite des Gchäusedeckels 12 angeordnetes Kühlgebläse wird kühlende Luft von der Deckelplatte 16 her über den Gehäusering 14, das Mittelteil 10 und den Gehäusedeckel 12 geführt.
Zur Dämpfung der Betriebsgeräusche dient ein Resonanz-Dämpfer, der auf die Betriebsfrequenz der Pumpe abgestimmt ist. Diese Frequenz beträgt aufgrund der dreiflügeligen Ausbildung der Rotoren die dreifache Drehzahl der Wellen 20, 22. Die erhöhte Betriebsfrequenz erleichtert die Unterbringung des Resonanz-Dämpfers, da dessen Länge entsprechend verkleinert wird.
Die beschriebene fliegende Lagerung der Rotoren ist bis zu einem
Volumenstrom von etwa 300 m3/h vorteilhaft. Pumpen mit größerem Volumenstrom werden vorzugsweise mit beidseitig gelagerten Rotoren ausgebildet. In diesem Falle sind in beiden Seitenplatten Anschlüsse ausgespart.

Claims

- 6 -Patentansprüche
1. Pumpe zur gleichzeitigen Erzeugung von Druck und Unterdruck, mit einer in einem Gehäuse gebildeten Pumpenkammer (18), die einen Sauganschluß, einen Druckanschluß und einen Aufladeanschluß aufweist, dadurch gekennzeichnet, daß in der Pumpenkammer (18) zwei mindestens dreiflügelige Rotoren (30, 32) um parallele, gegeneinander versetzte Achsen gegenläufig rotieren und berührungslos kämmen sowie mit der Umfangswandung der Pumpenkammer (18) voneinander getrennte Zellen (60, 62a, 62b, 64) bilden.
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Rotoren (30, 32) mit der Pumpenkammer (18) eine mit dem Sauganschluß (50) verbundene, durch die Drehung der Rotoren (30, 32) ihr Volumen ver- größernde Saugzelle (60) bilden.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Rotoren (30, 32) mit der Pumpenkammer (18) eine mit dem Druckanschluß (52) verbundene, durch die Drehung der Rotoren (30, 32) ihr Volumen verkleinernde Druckzelle (64) bilden.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß die Rotoren (30, 32) mit der Pümpenkammer zwei im Verlauf der Drehung der Rotoren zunächst voneinander getrennte Aufladezellen (62a, 62b) bilden, die bei der weiteren Drehung der Rotoren miteinander zur Druckzelle (64) vereinigt werden.
5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, daß mindestens eine Aufladezelle (62a, 62b) einen zugeordneten Aufladeanschluß (54a, 54b) aufweist.
6. Pumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Aufladezellen (62a, 62b) vor ihrer Vereinigung im wesentlichen isobar und isochor in der Pumpenkammer (18) verschoben werden.
7. Pumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Pumpenkammer (18) schmiermittelfrei ist. - 7 -
8. Pumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Pumpenkammer (18) zwischen zwei parallelen Seitenplatten (10, 16) begrenzt ist und in wenigstens einer der Seitenplatten (16) die Anschlüsse (50, 52, 54a, 54b) ausgespart sind.
9. Pumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Wellen (20, 22) fliegend gelagert und die Rotoren (30, 32) auf freien Enden der Wellen (20, 22) angeordnet sind.
10. Pumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Wellen (20, 22) durch zwei miteinander in Kämmeingriff stehende Ritzel (24, 26) synchronisiert sind und wenigstens einer der Rotoren (30, 32) justierbar auf der zugeordneten Welle (20, 22) befestigt ist.
PCT/EP1999/002882 1998-04-30 1999-04-28 Vacuumpumpe WO1999057439A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99923485A EP1075601B1 (de) 1998-04-30 1999-04-28 Vacuumpumpe
DE59902761T DE59902761D1 (de) 1998-04-30 1999-04-28 Vacuumpumpe
JP2000547364A JP2002513887A (ja) 1998-04-30 1999-04-28 加圧−吸引ポンプ
US09/673,641 US6439865B1 (en) 1998-04-30 1999-04-28 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19819538A DE19819538C2 (de) 1998-04-30 1998-04-30 Druck-Saug-Pumpe
DE19819538.9 1998-04-30

Publications (1)

Publication Number Publication Date
WO1999057439A1 true WO1999057439A1 (de) 1999-11-11

Family

ID=7866414

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1999/002882 WO1999057439A1 (de) 1998-04-30 1999-04-28 Vacuumpumpe
PCT/EP1999/002881 WO1999057419A1 (de) 1998-04-30 1999-04-28 Drehkolbenmaschine mit dreiflügeligen rotoren

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002881 WO1999057419A1 (de) 1998-04-30 1999-04-28 Drehkolbenmaschine mit dreiflügeligen rotoren

Country Status (7)

Country Link
US (2) US6364642B1 (de)
EP (2) EP1075601B1 (de)
JP (2) JP2002513880A (de)
KR (2) KR100556077B1 (de)
CN (2) CN1105820C (de)
DE (3) DE19819538C2 (de)
WO (2) WO1999057439A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20216504U1 (de) * 2002-10-25 2003-03-06 Werner Rietschle GmbH + Co. KG, 79650 Schopfheim Verdrängermaschine mit gegensinnig laufenden Rotoren
FR2859000B1 (fr) * 2003-08-20 2005-09-30 Renault Sa Dent d'engrenage et pompe a engrenages exterieurs
DE102004009639A1 (de) * 2004-02-27 2005-09-15 Rietschle Thomas Gmbh + Co. Kg Drehzahnverdichter
GB0410491D0 (en) * 2004-05-11 2004-06-16 Epicam Ltd Rotary device
EP1640613B1 (de) * 2004-09-17 2006-11-29 Aerzener Maschinenfabrik GmbH Drehkolbenverdichter und Verfahren zum Betreiben eines Drehkolbenverdichters
TW200848617A (en) * 2007-06-08 2008-12-16 Jaguar Prec Industry Co Ltd Motor direct drive air pump, related applications and manufacturing methods thereof
JP5725660B2 (ja) * 2011-09-30 2015-05-27 アネスト岩田株式会社 クローポンプ
EP2674570A1 (de) * 2012-06-14 2013-12-18 Bobby Boucher Turbine mit gleich- und gegenläufigen Rotoren auf derselben Ebene
CN103775341B (zh) * 2012-10-15 2016-05-18 良峰塑胶机械股份有限公司 两外形相同的爪式转子对装置
WO2014123539A1 (en) 2013-02-08 2014-08-14 Halliburton Energy Services, Inc. Electronic control multi-position icd
DE102013112704B4 (de) 2013-11-18 2022-01-13 Pfeiffer Vacuum Gmbh Gehäuse für eine Wälzkolbenpumpe
US9605739B2 (en) * 2014-04-11 2017-03-28 Gpouer Co., Ltd. Power transmission system
JP6340556B2 (ja) * 2015-02-12 2018-06-13 オリオン機械株式会社 二軸回転ポンプ
JP6221140B2 (ja) * 2015-02-12 2017-11-01 オリオン機械株式会社 二軸回転ポンプ
JP6340557B2 (ja) * 2015-02-12 2018-06-13 オリオン機械株式会社 二軸回転ポンプ
RU2611117C2 (ru) * 2015-04-01 2017-02-21 Евгений Михайлович Пузырёв Роторная машина
DE102018203992A1 (de) 2018-03-15 2019-09-19 Gardner Denver Schopfheim Gmbh Drehkolbenmaschine
CN109630411B (zh) * 2018-12-06 2021-06-11 莱州市增峰石业有限公司 一种可变压缩比的增压器及应用和发动机调控技术
JP6749714B1 (ja) * 2019-10-28 2020-09-02 オリオン機械株式会社 クローポンプ
JP7109788B2 (ja) * 2019-10-28 2022-08-01 オリオン機械株式会社 回転ポンプ
JP6845596B1 (ja) * 2020-06-24 2021-03-17 オリオン機械株式会社 クローポンプ
CN116517826B (zh) * 2023-04-25 2024-03-22 北京通嘉宏瑞科技有限公司 一种转子组件及泵体结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818691A (en) * 1957-05-20 1959-08-19 Lacy Hulbert & Company Improvements in rotary air pumps
US3199771A (en) * 1961-10-19 1965-08-10 Becker G M B H Geb Multicell machine operating as a combination pressure-vacuum generator
DE2422857A1 (de) * 1974-05-10 1975-11-27 Petr Terk Maschine mit zentrisch gelagerten rotoren
US4859158A (en) * 1987-11-16 1989-08-22 Weinbrecht John F High ratio recirculating gas compressor
EP0578853A1 (de) * 1992-07-15 1994-01-19 Mario Antonio Morselli Umlaufmaschine mit conjugierten Profilen in kontinuierlicher Berührung

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE142587C (de)
DE564152C (de) * 1931-11-22 1932-11-14 Otto Becker Jr Drehkolbengeblaese, insbesondere fuer Papierverarbeitungsmaschinen
GB622873A (en) * 1947-04-10 1949-05-09 Thomas Desmond Hudson Andrews Improvements in or relating to rotary blowers
US2764407A (en) 1951-10-03 1956-09-25 Roland Offsetmaschf Device for controlling the air in machines working with suction
FR1147777A (fr) 1956-04-19 1957-11-29 Turbine volumétrique à deux rotors
US2967054A (en) 1958-05-22 1961-01-03 Mergenthaler Linotype Gmbh Vacuum and pressure control valve for printing presses
DE1133500B (de) 1959-06-10 1962-07-19 Polysius Gmbh Roots-Geblaese
US3182900A (en) * 1962-11-23 1965-05-11 Davey Compressor Co Twin rotor compressor with mating external teeth
DE1628347A1 (de) 1967-01-19 1971-06-16 Hubrich Christoph Dipl Ing Innere Kuehlung eines im Unterdruckgebiet arbeitenden Rootsgeblaeses
DE1915269A1 (de) 1969-03-26 1970-10-08 Siemens Ag Roots-Geblaese
US3628893A (en) * 1970-05-04 1971-12-21 Poerio Carpigiani Liquid and air mixing gear pump
DE2027272C2 (de) 1970-06-03 1983-11-03 Aerzener Maschinenfabrik Gmbh, 3251 Aerzen Rotationskolbenverdichter
AT317935B (de) * 1971-02-03 1974-09-25 Apaw Sa Zahnradpumpe zur Herstellung von Luft-Flüssigkeitsgemischen, insbesondere in Softeis- und Schlagobersmaschinen od.dgl.
NO137655C (no) * 1974-06-14 1978-03-29 Myrens Verksted As Roterende fortrengningspumpe.
US4480970A (en) * 1981-05-30 1984-11-06 Rolls-Royce Limited Self priming gear pump
DD209880A1 (de) 1982-08-27 1984-05-23 Halle Maschf Veb Anordnung und gestaltung der aufladeeinlassoeffnungen an einem schraubenverdichter
JPS62157289A (ja) * 1985-12-29 1987-07-13 Anretsuto:Kk 高真空用ル−ツブロワ−
EP0409287B1 (de) 1987-05-15 1994-04-06 Leybold Aktiengesellschaft Vakuumpumpe mit Schöpfraum
EP0370117B1 (de) 1988-10-24 1994-01-12 Leybold Aktiengesellschaft Zweiwellenvakuumpumpe und Verfahren zu ihrem Betrieb
GB2233042A (en) * 1989-06-17 1991-01-02 Fleming Thermodynamics Ltd Screw expander/compressor
FR2653831A1 (fr) * 1989-11-02 1991-05-03 Cit Alcatel Pompe volumetrique.
GB2243651A (en) * 1990-05-05 1991-11-06 Drum Eng Co Ltd Rotary, positive displacement machine
US5078583A (en) * 1990-05-25 1992-01-07 Eaton Corporation Inlet port opening for a roots-type blower
US5071328A (en) * 1990-05-29 1991-12-10 Schlictig Ralph C Double rotor compressor with two stage inlets
NL9002027A (nl) 1990-09-14 1992-04-01 Westera Beheer Bv Inrichting voor het transport van papier, zoals in de vorm van vellen, in drukpersen, boekbindmachines en dergelijke.
DE4118843A1 (de) 1991-06-07 1993-02-11 Sihi Gmbh & Co Kg Fluessigkeitsringgaspumpe mit fliegend gelagertem fluegelrad
DE4301907A1 (de) 1993-01-25 1994-07-28 Siemens Ag Flüssigkeitsringmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818691A (en) * 1957-05-20 1959-08-19 Lacy Hulbert & Company Improvements in rotary air pumps
US3199771A (en) * 1961-10-19 1965-08-10 Becker G M B H Geb Multicell machine operating as a combination pressure-vacuum generator
DE2422857A1 (de) * 1974-05-10 1975-11-27 Petr Terk Maschine mit zentrisch gelagerten rotoren
US4859158A (en) * 1987-11-16 1989-08-22 Weinbrecht John F High ratio recirculating gas compressor
EP0578853A1 (de) * 1992-07-15 1994-01-19 Mario Antonio Morselli Umlaufmaschine mit conjugierten Profilen in kontinuierlicher Berührung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÜNTER LEUSCHNER: "Kleines Pumpenhandbuch für Chemie und Technik", 1967, VERLAG CHEMIE GMBH, WEINHEIM/BERGSTR., XP002113407 *

Also Published As

Publication number Publication date
KR20010043094A (ko) 2001-05-25
DE19819538A1 (de) 1999-11-11
CN1299434A (zh) 2001-06-13
JP2002513880A (ja) 2002-05-14
US6439865B1 (en) 2002-08-27
JP2002513887A (ja) 2002-05-14
EP1076760B1 (de) 2003-07-02
WO1999057419A1 (de) 1999-11-11
KR100556077B1 (ko) 2006-03-07
CN1128935C (zh) 2003-11-26
CN1299444A (zh) 2001-06-13
EP1076760A1 (de) 2001-02-21
DE59906193D1 (de) 2003-08-07
US6364642B1 (en) 2002-04-02
EP1075601B1 (de) 2002-09-18
KR100608527B1 (ko) 2006-08-09
CN1105820C (zh) 2003-04-16
DE19819538C2 (de) 2000-02-17
EP1075601A1 (de) 2001-02-14
DE59902761D1 (de) 2002-10-24
KR20010043093A (ko) 2001-05-25

Similar Documents

Publication Publication Date Title
EP1075601B1 (de) Vacuumpumpe
DE3740726C2 (de)
DE3705863A1 (de) Kompressor in spiralbauweise
DE4136541C2 (de) Spiralverdichter mit optimierter Kupplung
DE4210527C2 (de) Spiralverdichter
EP1957798A1 (de) Schraubenkompressor
DE3312117A1 (de) Zweiwellen-vakuumpumpe mit innerer verdichtung
EP1070848A1 (de) Verdrängermaschine für kompressible Medien
WO2006005445A1 (de) Flügel für eine einflügelvakuumpumpe
DE1503544A1 (de) Rotierende Vakuumpumpe
DE69928172T2 (de) Vacuumpumpe
WO1994019610A1 (de) Flussigkeitsringmaschine und verfahren zu ihrem betrieb
DE102007038966B4 (de) Mehrstufige Drehkolbenvakuumpumpe bzw. - verdichter
DE102011121365B4 (de) Spiralverdichter mit axial verschiebbarem Spiralblatt
DE202016005209U1 (de) Schraubenvakuumpumpe
EP2079932A1 (de) Vakuumpumpe mit einem auslassventil
DE4134965A1 (de) Spiralverdichter mit modifizierter kopfnut
DE19503716C1 (de) Zweiwellige Drehkolbenpumpe zur gleichzeitigen Erzeugung von Unterdruck und von Überdruck
DE4038704C2 (de) Drehkolbenpumpe
DE4010755C2 (de) Flügelzellen- bzw. Schwenkflügel-Vakuumpumpe
DE4234055C2 (de) Spiralkompressor
DE2951591A1 (de) Mehrstufige waelzkolbenpumpe
DE2254185B2 (de) Flügelzellenverdichter
DE102018105802B4 (de) Flügelzellen-Vakuumpumpe
DE102005052398B4 (de) Zahnradmotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805636.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007011978

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999923485

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09673641

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999923485

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007011978

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999923485

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007011978

Country of ref document: KR