EP0365695A1 - Zweiwellenvakuumpumpe mit Schöpfraum - Google Patents

Zweiwellenvakuumpumpe mit Schöpfraum Download PDF

Info

Publication number
EP0365695A1
EP0365695A1 EP88117651A EP88117651A EP0365695A1 EP 0365695 A1 EP0365695 A1 EP 0365695A1 EP 88117651 A EP88117651 A EP 88117651A EP 88117651 A EP88117651 A EP 88117651A EP 0365695 A1 EP0365695 A1 EP 0365695A1
Authority
EP
European Patent Office
Prior art keywords
rotors
pump according
vacuum pump
purge gas
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88117651A
Other languages
English (en)
French (fr)
Other versions
EP0365695B1 (de
Inventor
Hanns-Peter Dr. Berges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to EP88117651A priority Critical patent/EP0365695B1/de
Priority to DE8888117651T priority patent/DE3876243D1/de
Priority to JP1275119A priority patent/JPH02153292A/ja
Priority to US07/481,853 priority patent/US5046934A/en
Publication of EP0365695A1 publication Critical patent/EP0365695A1/de
Application granted granted Critical
Publication of EP0365695B1 publication Critical patent/EP0365695B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/005Removing contaminants, deposits or scale from the pump; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes

Definitions

  • the invention relates to a twin-shaft vacuum pump with a pair of claw rotors rotating in the suction chamber, which together with the suction chamber wall forms a suction side and a pressure side.
  • a two-shaft vacuum pump of this type is known from EU-A 87107089.
  • the rotors are each equipped with a claw (tooth) and a recess and perform their rotary motion in the scooping chamber in a meshing and contact-free manner.
  • the respective cutouts control the inlet and outlet openings located in the side plates of the scoop chamber.
  • twin-shaft vacuum pumps of the type described are therefore often used to evacuate vacuum chambers in which etching, coating or other vacuum treatment or manufacturing processes are carried out. In such operations there is a risk that solids get into the pump, and although also indirectly, that is to say that solid particles only form during the compression of the gases, that is to say during the passage of the gases to be discharged through the vacuum pump. Examples include the formation of aluminum chloride in aluminum etching, ammonium chloride in coating processes, etc.
  • Solid particles that get directly or indirectly into the vacuum pump are deposited in the scooping chamber, including on the peripheral surfaces of the rotors, where they initially narrow the gap between the rotors. Further deposits cause the rotors to touch, which causes the solid particles to roll onto the rotor surfaces. If the deposits continue to increase, the rolled-on layer is thickened, so that a force is generated which forces the rotors and thus the rotor shafts apart. This leads to bearing damage and thus to the failure of the pump, particularly if the rolled layer continues to grow.
  • the present invention has for its object to prevent in a twin-shaft vacuum pump of the type mentioned that solid particles entering the vacuum pump accumulate in the scoop.
  • this object is achieved in that a purge gas line opens on the pressure side into the scoop. If a flushing gas is supplied via this flushing gas line during operation of the pump, gas vortices arising in the scooping chamber prevent the deposition of solid particles entering the scooping chamber.
  • the amount of purge gas supplied does not have to be very high, since otherwise the final pressure of the pump would be unnecessarily deteriorated. It is particularly advantageous if the purge gas at high speed, for. B. is supplied via a nozzle. The solid particles suspended as a result of the resulting vortices can then be conveyed to the next pump stage or to the pump outlet.
  • the purge gas line is expediently located in the immediate vicinity of the gap seal of the two rotors. As a result, the particularly endangered peripheral surfaces of the two rotors are kept free of deposits.
  • the exemplary embodiment shown in FIG. 1 is a three-stage vacuum pump 1 with two shafts 2 and 3 and three pairs of rotors 4, 5 or 6, 7 or 8, 9.
  • the axial length of the rotors decreases from the suction side to the pressure side .
  • the rotary pistons are of the claw type (see FIG. 2) and rotate in the scoops 11, 12, 13, which are formed by the shields 14 to 17 and the housing rings 18 to 20.
  • the drive motor 22 is located next to the vertically arranged pump housing. Below the lower bearing plate 17, the shafts 2, 3 are equipped with gear wheels 23, 24 of the same diameter, which are used to synchronize the movement of the rotor pairs 4, 5 or 6, 7 or 8, 9 serve.
  • the drive motor 22 also has a gearwheel 25 on its underside. The drive connection is established by a further gearwheel 26 which is in engagement with the gearwheels 24 and 25.
  • the shafts 2, 3 are supported by roller bearings 27.
  • the upper end plate 14 is equipped with a horizontally arranged connecting flange 28, which forms the inlet 29 of the pump.
  • the inlet channel 31 opens at the end (opening 32) into the scoop chamber 11 of the first stage.
  • the one on the front The outlet opening of the first stage is designated 33 and leads into the connecting channel 34.
  • the connecting channel 34 located in the shield 15 is connected to the inlet opening 35 of the second stage.
  • the end shield 16 is designed accordingly.
  • Below the lowermost (third) pump stage is the outlet 36, which is connected to the front outlet opening 37 in the lower bearing plate 17.
  • Figure 2 shows the contour of the rotors. They each have a claw 41, 42 and a recess 43, 44 and carry out their rotary movement according to the arrows 45 in a meshing and contactless manner.
  • the gap seal located between the two rotors is designated by 46.
  • the control of the inlet opening 32, 35 and the outlet opening 33, 37 takes place via the respective recess 43, 44.
  • the rotors form two spaces 47 and 48, of which the enlarging space 47 is connected to the inlet opening 32, 35 .
  • the space 47 therefore forms the suction side.
  • the shrinking space 48 is connected to the outlet 33, 37 after a slight rotational movement. The space 48 thus forms the pressure side.
  • the mouth 49 of a purge gas line (not shown in FIG. 2) is located on the pressure side 48.
  • the mouth 49 is located in the immediate vicinity of the sealing gap 46 between the two rotors, so that this sealing gap is preferably kept free of solid particles.
  • Figure 1 shows that the scoops 11, 12, 13 are assigned a plurality of mouths 49.
  • the scooping chamber 12 there are, for example, two openings 49, directly opposite one another in the respective side plates 15, 16.
  • the desired effect of keeping solid particles in suspension is achieved in a particularly favorable manner.
  • the orifices 49 are connected to a purge gas source 51, specifically via bores 52, 53 in the side plates 15, 16 and via the line system 54 provided outside the pump with the valve 55.
  • Nozzles are located in the bores 52, 53, which are only shown schematically 56, 57, which serve on the one hand to reduce the amount of gas supplied and on the other hand to increase the speed of the gas.
  • a suitable purge gas is nitrogen, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Die Erfindung bezieht sich auf eine Zweiwellenvakuumpumpe (1) mit einem im Schöpfraum (11, 12, 13) rotierenden Klauenrotorpaar (4, 5; 6, 7; 8, 9), das gemeinsam mit der Schöpfraumwandung eine Saugseite (47) und eine Druckseite (48) bildet; um zu verhindern, daß sich in den Schöpfraum gelangende Feststoffpartikel ablagern, wird vorgeschlagen, auf der Druckseite (48) des Schöpfraumes (11, 12, 13) die Mündung (49) einer Spülgasleitung (52, 53) anzuordnen; mit Hilfe eines durch die Mündung (49) zugeführten Spülgases können die Partikel in der Schwebe gehalten und ausgefördert werden.

Description

  • Die Erfindung bezieht sich auf eine Zweiwellenvakuumpumpe mit einem im Schöpfraum rotierenden Klauenrotorpaar, das gemeinsam mit der Schöpfraumwandung eine Saugseite und eine Druckseite bildet.
  • Aus der EU-A 87107089 ist eine Zweiwellenvakuumpumpe dieser Gattung bekannt. Die Rotoren sind jeweils mit einer Klaue (Zahn) und einer Aussparung ausgerüstet und führen ihre Drehbewegung kämmend und berührungsfrei im Schöpfraum aus. Die jeweiligen Aussparungen steuern die in den Seitenschilden des Schöpfraumes befindlichen Einlaß- und Auslaßöffnungen. Während der synchronen Drehbewegung der Rotoren bilden sich durch Spaltöffnungen abge­dichtete, sich zunächst vergrößernde und dann wieder verklei­nernde Räume aus, die das auf der Saugseite eingeströmte Gas verdichten und zur Druckseite fördern.
  • Der wesentliche Vorteil von Zweiwellenvakuumpumpen der beschrie­benen Gattung ist, daß sie trocken, d. h. ohne Dichtmittel im Schöpfraum, betrieben werden können. Pumpen dieser Art werden deshalb häufig zur Evakuierung von Vakuumkammern eingesetzt, in denen Ätz-, Beschichtungs- oder andere Vakuumbehandlungs- oder -herstellverfahren durchgeführt werden. Bei derartigen Einsätzen besteht die Gefahr, daß Feststoffe in die Pumpe gelangen, und zwar auch mittelbar, d. h. daß sich Feststoffpartikel erst während der Verdichtung der Gase, also während des Durchtritts der abzuführenden Gase durch die Vakuumpumpe, bilden. Beispiele dafür sind die Entstehung von Aluminiumchlorid beim Aluminium-­Ätzen, Amoniumchlorid bei Beschichtungsverfahren usw.
  • Unmittelbar oder mittelbar in die Vakuumpumpe gelangende Fest­stoffpartikel lagern sich im Schöpfraum ab, unter anderem auch auf den peripheren Oberflächen der Rotoren, wo sie zunächst den zwischen den Rotoren befindlichen Spalt verengen. Weitere Abla­gerungen führen dazu, daß sich die Rotoren berühren, was zu einem Aufwalzen der Feststoffpartikel auf die Rotoroberflächen führt. Nehmen die Ablagerungen weiter zu, dann kommt es zu einer Ver­dickung der aufgewalzten Schicht, so daß eine die Rotoren und damit die Rotorwellen auseinanderdrückende Kraft entsteht. Diese führt insbesondere bei einem weiteren Anwachsen der aufgewalzten Schicht zu Lagerschäden und damit zum Ausfall der Pumpe.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei einer Zweiwellenvakuumpumpe der eingangs erwähnten Art zu verhindern, daß sich in die Vakuumpumpe gelangende Feststoffpartikel im Schöpfraum ablagern.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß eine Spülgasleitung druckseitig in den Schöpfraum mündet. Wird während des Betriebs der Pumpe über diese Spülgasleitung ein Spülgas zugeführt, dann verhindern im Schöpfraum entstehende Gaswirbel die Ablagerung von in den Schöpfraum gelangenden Feststoffpar­tikeln. Die Menge des zugeführten Spülgases muß nicht sehr hoch sein, da sonst der Enddruck der Pumpe unnötig verschlechtert würde. Von besonderem Vorteil ist, wenn das Spülgas mit hoher Geschwindigkeit, z. B. über eine Düse, zugeführt wird. Die infolge der entstehenden Wirbel in Schwebe gehaltenen Feststoff­partikel können dann zur nächsten Pumpenstufe oder zum Pumpen­ausgang gefördert werden.
  • Zweckmäßig befindet sich die Spülgasleitung in unmittelbarer Nähe der Spaltdichtung der beiden Rotoren. Dadurch werden die beson­ders gefährdeten peripheren Oberflächen der beiden Rotoren von Ablagerungen freigehalten.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 und 2 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
    • - Figur 1 einen Längs schnitt durch eine mehrstufige Pumpe nach der Erfindung und
    • - Figur 2 einen Schnitt durch einen der Schöpfräume parallel zu einem Rotorpaar.
  • Bei dem in Figur 1 dargestellten Ausführungsbeispiel handelt es sich um eine dreistufige Vakuumpumpe 1 mit zwei Wellen 2 und 3 sowie drei Rotorpaaren 4, 5 bzw. 6, 7 bzw. 8, 9. Die axiale Länge der Rotoren nimmt von der Saugseite zur Druckseite ab. Die Drehkolben sind vom Klauentyp (vergl. Figur 2) und rotieren in den Schöpfräumen 11, 12, 13, welche von den Schilden 14 bis 17 und den Gehäuseringen 18 bis 20 gebildet werden.
  • Neben dem vertikal angeordneten Pumpengehäuse befindet sich der Antriebsmotor 22. Unterhalb des unteren Lagerschildes 17 sind die Wellen 2, 3 mit Zahnrädern 23, 24 gleichen Durchmessers ausgerü­stet, welche der Synchronisation der Bewegung der Rotorpaare 4, 5 bzw. 6, 7 bzw. 8, 9 dienen. Auch der Antriebsmotor 22 weist an seiner Unterseite ein Zahnrad 25 auf. Die Antriebsverbindung wird hergestellt durch ein weiteres Zahnrad 26, das mit den Zahnrädern 24 und 25 in Eingriff steht.
  • In dem oberen Lagerschild 14 und dem unteren Lagerschild 17 stützen sich die Wellen 2, 3 über Wälzlager 27 ab. Der obere Lagerschild 14 ist mit einem horizontal angeordneten Anschluß­flansch 28 ausgerüstet, welcher den Einlaß 29 der Pumpe bildet. Der Einlaßkanal 31 mündet stirnseitig (Öffnung 32) in den Schöpfraum 11 der ersten Stufe. Die stirnseitig angeordnete Auslaßöffnung der ersten Stufe ist mit 33 bezeichnet und führt in den Verbindungskanal 34. Der im Schild 15 befindliche Verbin­dungskanal 34 steht mit der Einlaßöffnung 35 der zweiten Stufe in Verbindung. Der Lagerschild 16 ist entsprechend gestaltet. Unterhalb der untersten (dritten) Pumpstufe befindet sich der Auslaß 36, der mit der stirnseitigen Auslaßöffnung 37 im unteren Lagerschild 17 in Verbindung steht.
  • Figur 2 läßt sie Kontur der Rotoren erkennen. Sie weisen jeweils eine Klaue 41, 42 sowie eine Aussparung 43, 44 auf und führen ihre Drehbewegung entsprechend der Pfeile 45 kämmend und berührungsfrei aus. Die zwischen den beiden Rotoren befindliche Spaltdichtung ist mit 46 bezeichnet.
  • Die Steuerung der Einlaßöffnung 32, 35 und der Auslaßöffnung 33, 37 erfolgt über die jeweilige Aussparung 43, 44. In der darge­stellten Stellung bilden die Rotoren zwei Räume 47 und 48, von denen der sich vergrößernde Raum 47 mit der Einlaßöffnung 32, 35 verbunden ist. Der Raum 47 bildet deshalb die Saugseite. Der sich verkleinernde Raum 48 wird nach geringfügiger Rotationsbewegung mit dem Auslaß 33, 37 verbunden. Der Raum 48 bildet damit die Druckseite.
  • Erfindungsgemäß befindet sich auf der Druckseite 48 die Mündung 49 einer in Figur 2 nicht dargestellten Spülgasleitung. Die Mündung 49 befindet sich in unmittelbarer Nähe des Dichtungs­spaltes 46 zwischen den beiden Rotoren, so daß vorzugsweise dieser Dichtspalt von Feststoffpartikeln freigehalten wird.
  • Figur 1 zeigt, daß den Schöpfräumen 11, 12, 13 mehrere Mündungen 49 zugeordnet sind. In dem Schöpfraum 12 befinden sich bei­spielsweise zwei Mündungen 49, und zwar direkt einander gegen­überliegend in den jeweiligen Seitenschilden 15, 16. Die ge­wünschte Wirkung, Feststoffpartikel in Schwebe zu halten, wird dadurch in besonders günstiger Weise erreicht.
  • Die Mündungen 49 stehen mit einer Spülgasquelle 51 in Verbindung, und zwar über Bohrungen 52, 53 in den Seitenschilden 15, 16 und über das außerhalb der Pumpe vorgesehene Leitungssystem 54 mit dem Ventil 55. In den nur schematisch dargestellten Bohrungen 52, 53 befinden sich Düsen 56, 57, die zum einen der Reduzierung der zugeführten Gasmenge und zum anderen der Erhöhung der Geschwin­digkeit des Gases dienen. Ein geeignetes Spülgas ist beispiels­weise Stickstoff.

Claims (7)

1. Zweiwellenvakuumpumpe (1) mit einem im Schöpfraum (11, 12, 13) rotierenden Klauenrotorpaar (4, 5; 6, 7; 8, 9), das gemeinsam mit der Schöpfraumwandung eine Saugseite (47) und eine Druckseite (48) bildet, dadurch gekennzeichnet, daß sich auf der Druckseite (48) des Schöpfraumes (11, 12, 13) die Mündung (49) einer Spülgasleitung (52, 53) befindet.
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß sich die Mündung (49) in einem Seitenschild (15, 16, 17) befindet.
3. Pumpe nach Anspruch 2, dadurch gekennzeichnet, daß die Mündung (49) in unmittelbarer Nähe der Spaltdichtung (46) zwischen den beiden Rotoren (4, 5; 6, 7; 8, 9) angeordnet ist.
4. Pumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß zwei Mündungen (49) vorgesehen sind.
5. Pumpe nach Anspruch 2 und Anspruch 4, dadurch gekennzeichnet, daß sich die beiden Mündungen (49) in zwei den Schöpfraum (12) begrenzenden Seitenschilden (15, 16) einander gegen­über liegend angeordnet sind.
6. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mündungen (49) über Bohrungen (52, 53) in den Seitenschilden (15, 16) sowie ein Leitungssystem (54)mit einer Spülgasquelle (51) verbunden sind.
7. Pumpe nach Anspruch 6, dadurch gekennzeichnet, daß sich innerhalb der Bohrung (52, 53) eine Düse (56, 57) befindet.
EP88117651A 1988-10-24 1988-10-24 Zweiwellenvakuumpumpe mit Schöpfraum Expired - Lifetime EP0365695B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP88117651A EP0365695B1 (de) 1988-10-24 1988-10-24 Zweiwellenvakuumpumpe mit Schöpfraum
DE8888117651T DE3876243D1 (de) 1988-10-24 1988-10-24 Zweiwellenvakuumpumpe mit schoepfraum.
JP1275119A JPH02153292A (ja) 1988-10-24 1989-10-24 吸入室を備えた2軸式真空ポンプ
US07/481,853 US5046934A (en) 1988-10-24 1990-02-20 Twin shaft vacuum pump with purge gas inlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88117651A EP0365695B1 (de) 1988-10-24 1988-10-24 Zweiwellenvakuumpumpe mit Schöpfraum

Publications (2)

Publication Number Publication Date
EP0365695A1 true EP0365695A1 (de) 1990-05-02
EP0365695B1 EP0365695B1 (de) 1992-11-25

Family

ID=8199481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117651A Expired - Lifetime EP0365695B1 (de) 1988-10-24 1988-10-24 Zweiwellenvakuumpumpe mit Schöpfraum

Country Status (4)

Country Link
US (1) US5046934A (de)
EP (1) EP0365695B1 (de)
JP (1) JPH02153292A (de)
DE (1) DE3876243D1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670839A1 (fr) * 1990-12-21 1992-06-26 Cit Alcatel Machine, telle que pompe a vide ou compresseur du type volumetrique ou a entrainement.
WO1992015786A1 (de) * 1991-03-04 1992-09-17 Leybold Aktiengesellschaft Einrichtung zur inertgasversorgung einer mehrstufigen trockenlaufenden vakuumpumpe
DE4233142A1 (de) * 1992-10-02 1994-04-07 Leybold Ag Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
WO1994009275A1 (de) * 1992-10-12 1994-04-28 Leybold Aktiengesellschaft Verfahren zum betrieb einer trockenverdichtenden vakuumpumpe
DE19629174A1 (de) * 1996-07-19 1998-01-22 Leybold Vakuum Gmbh Klauenvakuumpumpe
WO2007036689A1 (en) * 2005-09-28 2007-04-05 Edwards Limited Method of pumping gas
GB2440341A (en) * 2006-07-24 2008-01-30 Boc Group Plc Vacuum pump with purge gas channel
WO2008129317A1 (en) * 2007-04-23 2008-10-30 Edwards Limited Vacuum pump
EP1990543A1 (de) * 2007-05-11 2008-11-12 Alcatel Lucent Trockenvakuumpumpe
CN102762867A (zh) * 2009-12-24 2012-10-31 爱德华兹有限公司 具有吹扫气体系统的干式真空泵和吹扫方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9708397D0 (en) * 1997-04-25 1997-06-18 Boc Group Plc Improvements in vacuum pumps
JP2001304115A (ja) * 2000-04-26 2001-10-31 Toyota Industries Corp 真空ポンプにおけるガス供給装置
WO2004036047A1 (en) * 2002-10-14 2004-04-29 The Boc Group Plc Rotary piston vacuum pump with washing installation
DE102010055798A1 (de) * 2010-08-26 2012-03-01 Vacuubrand Gmbh + Co Kg Vakuumpumpe
JP6025876B2 (ja) * 2012-03-02 2016-11-16 ドーヴァー パンプ ソリューションズ グループ(ヨーロッパ)ゲーエムベーハーDover Pump Solutions Group (Europe) Gmbh 密閉機構、密閉機構を有する搬送装置、および密閉機構を操作する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1834976A (en) * 1928-03-09 1931-12-08 Patiag Patentverwertungs Und I Rotary compressor, pump or the like
FR2109798A5 (de) * 1970-10-01 1972-05-26 Atlas Copco Ab
US4621985A (en) * 1984-05-30 1986-11-11 Honjo Chemical Kabushiki Kaisha High vacuum apparatus
EP0290662A1 (de) * 1987-05-15 1988-11-17 Leybold Aktiengesellschaft Zweiwellenvakuumpumpe mit Schöpfraum

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111126A (en) * 1981-12-09 1983-06-29 British Oxygen Co Ltd Rotary positive-displacement fluid-machines
NL180992C (nl) * 1984-12-07 1987-06-01 Naaktgeboren Maschf Rotterdam Tankwagen.
GB8809621D0 (en) * 1988-04-22 1988-05-25 Boc Group Plc Dry pump with closed loop filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1834976A (en) * 1928-03-09 1931-12-08 Patiag Patentverwertungs Und I Rotary compressor, pump or the like
FR2109798A5 (de) * 1970-10-01 1972-05-26 Atlas Copco Ab
US4621985A (en) * 1984-05-30 1986-11-11 Honjo Chemical Kabushiki Kaisha High vacuum apparatus
EP0290662A1 (de) * 1987-05-15 1988-11-17 Leybold Aktiengesellschaft Zweiwellenvakuumpumpe mit Schöpfraum

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670839A1 (fr) * 1990-12-21 1992-06-26 Cit Alcatel Machine, telle que pompe a vide ou compresseur du type volumetrique ou a entrainement.
EP0492332A1 (de) * 1990-12-21 1992-07-01 Alcatel Cit Vakuumpumpe mit System zur Injektion von trockenem Gas
US5234323A (en) * 1990-12-21 1993-08-10 Alcatel Cit Fluid positive displacement machine with gas injection in the discharge region
WO1992015786A1 (de) * 1991-03-04 1992-09-17 Leybold Aktiengesellschaft Einrichtung zur inertgasversorgung einer mehrstufigen trockenlaufenden vakuumpumpe
DE4233142A1 (de) * 1992-10-02 1994-04-07 Leybold Ag Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
WO1994008141A1 (de) * 1992-10-02 1994-04-14 Leybold Aktiengesellschaft Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe
US5660535A (en) * 1992-10-02 1997-08-26 Leybold Aktiengesellschaft Method of operating a claw-type vacuum pump and a claw-type vacuum pump suitable for carrying out the method
WO1994009275A1 (de) * 1992-10-12 1994-04-28 Leybold Aktiengesellschaft Verfahren zum betrieb einer trockenverdichtenden vakuumpumpe
US5975857A (en) * 1992-10-12 1999-11-02 Leybold Aktiengesellschaft Process for operating a dry-compression vacuum pump as well as a suitable vacuum pump for implementation of this process
DE19629174A1 (de) * 1996-07-19 1998-01-22 Leybold Vakuum Gmbh Klauenvakuumpumpe
WO2007036689A1 (en) * 2005-09-28 2007-04-05 Edwards Limited Method of pumping gas
GB2440341A (en) * 2006-07-24 2008-01-30 Boc Group Plc Vacuum pump with purge gas channel
GB2440341B (en) * 2006-07-24 2011-09-21 Boc Group Plc Vacuum pump
WO2008129317A1 (en) * 2007-04-23 2008-10-30 Edwards Limited Vacuum pump
US9004891B2 (en) 2007-04-23 2015-04-14 Edwards Limited Vacuum pump
EP1990543A1 (de) * 2007-05-11 2008-11-12 Alcatel Lucent Trockenvakuumpumpe
FR2916022A1 (fr) * 2007-05-11 2008-11-14 Alcatel Lucent Sas Pompe a vide seche
CN102762867A (zh) * 2009-12-24 2012-10-31 爱德华兹有限公司 具有吹扫气体系统的干式真空泵和吹扫方法
CN102762867B (zh) * 2009-12-24 2015-12-09 爱德华兹有限公司 具有吹扫气体系统的干式真空泵和吹扫方法
US9334863B2 (en) 2009-12-24 2016-05-10 Edwards Limited Pump

Also Published As

Publication number Publication date
JPH02153292A (ja) 1990-06-12
EP0365695B1 (de) 1992-11-25
DE3876243D1 (de) 1993-01-07
US5046934A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
EP0365695B1 (de) Zweiwellenvakuumpumpe mit Schöpfraum
EP2054626B1 (de) Verfahren zur abreaktion selbstentzündlicher stäube in einer vakuumpumpvorrichtung
EP0290662B1 (de) Zweiwellenvakuumpumpe mit Schöpfraum
DE69123898T3 (de) Drehanlage für flüssige Medien
DE19530662A1 (de) Schraubenvakuumpumpe
DE3705863A1 (de) Kompressor in spiralbauweise
DE3410905A1 (de) Einrichtung zur foerderung von gasen bei subatmosphaerischen druecken
DE3312280C2 (de)
EP0408792B1 (de) Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe
EP0156951A2 (de) Zweiwellen-Vakuumpumpe mit Getrieberaum-Evakuierung
WO1998039570A1 (de) Vakuumpumpe
DE10150015A1 (de) Mehrkammeranlage zur Behandlung von Gegenständen unter Vakuum, Verfahren zur Evakuierung dieser Anlage und Evakuierungssystem dafür
EP0448750A1 (de) Mehrstufige trockenverdichtende Vakuumpumpe und Verfahren zu ihrem Betrieb
CH628709A5 (en) Roots pump
EP0866918A1 (de) Zwillings-förderschrauben
WO1992014060A1 (de) Trockenlaufende zweiwellenvakuumpumpe
EP0370117B1 (de) Zweiwellenvakuumpumpe und Verfahren zu ihrem Betrieb
DE2528465C2 (de) Verfahren zur Vergrößerung des Verdichtungsverhältnisses eines Schraubenrotorverdichters bei im wesentlichen gleicher Leistungsaufnahme
EP0198936B1 (de) Mehrstufige Vakuumpumpe
EP0332741B1 (de) Mehrstufige Vakuumpumpe
EP0314819B1 (de) Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern
EP0603698B1 (de) Wälzkolben-Vakuumpumpe
DE2951591A1 (de) Mehrstufige waelzkolbenpumpe
DE19710419C2 (de) Flügelzellenverdichter
DE3118297A1 (de) Zahnradpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19901031

17Q First examination report despatched

Effective date: 19910826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3876243

Country of ref document: DE

Date of ref document: 19930107

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST