EP0314819B1 - Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern - Google Patents

Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern Download PDF

Info

Publication number
EP0314819B1
EP0314819B1 EP19870116069 EP87116069A EP0314819B1 EP 0314819 B1 EP0314819 B1 EP 0314819B1 EP 19870116069 EP19870116069 EP 19870116069 EP 87116069 A EP87116069 A EP 87116069A EP 0314819 B1 EP0314819 B1 EP 0314819B1
Authority
EP
European Patent Office
Prior art keywords
bearing
chamber
pump
shaft pump
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870116069
Other languages
English (en)
French (fr)
Other versions
EP0314819A1 (de
Inventor
Heinz Frings
Hans-Peter Dr. Kabelitz
Ralf Steffens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to DE8787116069T priority Critical patent/DE3774711D1/de
Priority to EP19870116069 priority patent/EP0314819B1/de
Publication of EP0314819A1 publication Critical patent/EP0314819A1/de
Application granted granted Critical
Publication of EP0314819B1 publication Critical patent/EP0314819B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0028Internal leakage control

Definitions

  • the invention relates to a twin-shaft vacuum pump with a pump chamber housing ring, with two bearing disks attached to it laterally, each with a pump chamber sealing ring between the end faces of the housing ring and the bearing plates, with bearing chamber housings flanged to the bearing discs from the outside and with at least one Passing through bearing disks, connecting the storage chambers together.
  • This channel has the task of avoiding pressure differences in the oil-containing storage chambers. It is expedient to provide two connecting channels, one of which is arranged above and the other below the oil level in the bearing chambers. Pressure and oil level compensation are then ensured.
  • a two-shaft vacuum pump of this type are known from US-A-2014932 and DE-PS 19 39 717.
  • two channels are provided, one of which is designed as a bore in the housing ring and the other as a gas and oil-tight tube which is guided through the Roots work chamber.
  • the oil escaping from the leaks gets into the scooping chamber and contaminates the pumped medium.
  • twin-shaft vacuum pumps in particular Roots pumps, are preferably used where oil-free pumping is absolutely required. In the event of a leak in the area of the connecting channels passing through the bearing washers between the lateral bearing chambers, the pump loses its ability to deliver oil-free.
  • the object of the present invention is to ensure that the scooping chamber is free of oil even in the event of a leak in the area of the passage points of the connecting channels through the bearing washers.
  • this object is achieved in that the point of passage of the connecting channel through the bearing washers lies outside of the suction chamber sealing rings. If leaks occur in a twin-shaft vacuum pump designed in this way in the area of the passage point of the connecting channels, the pumping chamber sealing rings nevertheless prevent oil from escaping into the pumping chamber. The leak oil occurs to the outside, which has the advantage that the leak can be recognized early. With the twin-shaft vacuum pump according to the state of the art, it was only possible to detect a leak from the contamination of the pumped medium.
  • passage points of the connecting channel are expediently also outside the sealing rings, which seal the bearing chamber housings from the bearing disks. This measure and also the arrangement of the passage points of the connecting channel in one of the corners of the cross section of the pump enable a compact construction. "Corners” are to be understood to mean those areas which lie between the oval cross section of the scoop and the circumscribed rectangle.
  • the arrangement of one or both connecting channels in the corners of the pump also has the advantage that a pipe forming the connecting channel does not have to be passed through the inlet connection of the pump, as in the prior art.
  • a tube of this type In the inlet port of the pump, a tube of this type must be designed so that it can withstand the often aggressive fluids. This requirement does not exist in the pump according to the invention, since the connecting pipes do not penetrate the scoop space or inlet or outlet connection.
  • the two-shaft pump 1 (Roots pump) shown in the figures essentially comprises the following components: pump chamber housing ring 2, bearing disks 3 and 4 and rotors 5 and 6 (FIG. 2), which are rotatably supported with their shaft ends 7 and 8 in the bearing disks 3 and 4 are.
  • pump chamber housing ring 2 In the scooping chamber 9 there are two rotors each with a two-shaft vacuum pump, which are approximately 8-shaped (Roots pump), claw-shaped (Northey pump). can be helical (screw pump) or similar. Overall, there is an essentially oval cross section. In the bearing disks 3 and 4, two stub shafts 7 and 8 are supported.
  • bearing chambers 11 and 12 are partially filled with oil and contain, in addition to the bearings 15 and 16, synchronization wheels 17, spray disks 18, 19 etc.
  • one of the stub shafts 8 is connected to the drive shaft 21.
  • Screws 22, of which a total of twelve are arranged distributed over the circumference, are used to produce the connections between the pump chamber housing ring 2 and the bearing disks 3, 4 on the one hand and between the bearing disks 3, 4 and the bearing chamber housings 13, 14 on the other hand.
  • the pump chamber seals 23, 24 Between the end faces of the pump chamber housing 2 and the bearing disks 3, 4 are the pump chamber seals 23, 24.
  • the seals 25, 26 are arranged between the bearing disks 3, 4 and the bearing chamber housings 13, 14.
  • the bearing chambers 11, 12 are connected to one another via the channel generally designated 31.
  • This channel 31 comprises a pipe 32 which is guided outside the scoop housing ring 2 and whose end faces end in the region of the sealing surfaces between the bearing chamber housings 13 and 14 and the bearing disks 3 and 4, respectively.
  • the flanges of the bearing chamber housings 13, 14 are provided with bores 33 and 34 concentrically with the pipe 32.
  • the sealing rings 35 and 36 serve to seal the end faces of the tube 32 to the outside.
  • the passage points of the tube 32 through the bearing disks 3 and 4 are outside the chamber seals 23 and 24. This ensures that in the event of a leak in the connecting channel 31, for. B. in the area of the seals 35, 36, emerging oil can not get into the scooping chamber 9. Furthermore, the Passage points of the tube 32 through the bearing disks 3, 4 also outside of the seals 25 and 26 between the bearing disks 3, 4 and the bearing chamber housings 13, 14.
  • FIG. 2 shows a section at the line II-II in FIG. 1. It lies in one of the lower corners of the substantially oval cross section.
  • the bearing chamber housing 13 is provided with a corresponding shape in this area.
  • FIG. 2 shows yet another connecting channel 37, specifically in the corner diagonal to the corner with the connecting channel 31.
  • Fig. 1 can be viewed as a longitudinal section through the Roots pump 1 along the lines I-I in Fig. 2.
  • the connecting channel 37 is therefore not visible in FIG. 1.
  • the arrangement of the connecting channels 31, 37 in corners arranged diagonally to one another causes the connecting channel 31 to lie below the oil level in the bearing chambers 11, 12, while the connecting channel 37 is located above the oil level.
  • the connection flanges 38, 39 shown in FIG. 2 show that the Roots pump 2 shown has a vertical direction of passage. If the Roots pump is rotated by 90 ° about its longitudinal axis in order to achieve a horizontal passage position, then one of the two connecting channels 31, 37 is also arranged below and the other above the oil level in the bearing chambers 11, 12.
  • the invention is applicable to all twin-shaft pumps - regardless of the working principle - in which pressure and / or oil compensation between the side chambers is desired.

Description

    Zweiwellenvakuumpumpe mit mindestens einem Verbindungskanal zwischen den Lagerkammern
  • Die Erfindung bezieht sich auf eine Zweiwellenvakuumpumpe mit einem Schöpfraum-Gehäusering, mit zwei seitlich daran befestigten Lagerscheiben, mit jeweils einem Schöpfraum-Dichtring zwischen den Stirnseiten des Gehäuseringes und den Lagerscheiben, mit von außen an den Lagerscheiben angeflanschten Lagerkammer-Gehäusen und mit mindestens einem die Lagerscheiben durchsetzenden, die Lagerkammern miteinander verbindenden Kanal. Diese Kanal hat die Aufgabe, Druckdifferenzen in den Öl enthaltenden Lagerkammern zu vermeiden. Zweckmäßig ist es, zwei VerbindungsKanale vorzusehen, von denen einer oberhalb und der andere unterhalb des Ölspiegels in den Lagerkammern angeordnet ist. Druck- und Ölstandsausgleich sind dann sichergestellt.
  • Eine Zweiwellen-Vakuumpumpen dieser Art sind aus der US-A-2014932 und DE-PS 19 39 717 bekannt. Zur Verbindung der seitlichen Lagerkammern sind zwei Kanäle vorgesehen, von denen einer als Bohrung im Gehäusering und der andere als gas- und öldichtes durch den Wälzkolben-Arbeitsraum geführtes Rohr ausgebildet ist. Bei beiden Ausführungen besteht die Gefahr, daß im Bereich des Durchtritts der Verbindungskanäle durch die Lagerscheiben - z. B. infolge thermischer Bewegungen nach dem Aufheizen des Öls - Lecks auftreten. Das aus den Lecks austretende Öl gelangt in den Schöpfraum und kontaminiert das geförderte Medium. Zweiwellen-Vakuumpumpen, insbesondere Wälzkolbenpumpen, werden jedoch vorzugsweise dort eingesetzt, wo ein ölfreies Fördern unbedingt erwünscht ist. Im Falle eines Lecks im Bereich der durch die Lagerscheiben hindurchtretenden Verbindungskanäle zwischen den seitlichen Lagerkammern verliert die Pumpe ihre Eigenschaft, ölfrei fördern zu können.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, selbst im Falle eines Lecks im Bereich der Durchtrittsstellen der Verbindungskanäle durch die Lagerscheiben die Ölfreiheit des Schöpfraums sicherzustellen.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Durchtrittsstelle des Verbindungskanales durch die Lagerscheiben außerhalb der Schöpfraumdichtringe liegt. Treten bei einer in dieser Weise ausgebildeten Zweiwellen-Vakuumpumpe im Bereich der Durchtrittsstelle der Verbindungskanäle Lecks auf, dann verhindern die Schöpfraumdichtringe dennoch ein Eindringen von austretendem Öl in den Schöpfraum. Das Lecköl tritt nach außen auf, womit der Vorteil verbunden ist, daß die Leckstelle frühzeitig erkannt werden kann. Bei der Zweiwellen-Vakuumpumpe nach dem Stand der Technik war das Erkennen eines Lecks nur an der Verseuchung des Fördermediums möglich.
  • Zweckmäßigerweise liegen die Durchtrittsstellen des Verbindungskanals auch außerhalb der Dichtringe, die die Lagerkammergehäuse gegenüber den Lagerscheiben abdichten. Diese Maßnahme und auch die Anordnung der Durchtrittsstellen des Verbindungskanals in einer der Ecken des Querschnitts der Pumpe ermöglichen eine kompakte Bauweise. Unter "Ecken" sollen dabei diejenigen Bereiche verstanden werden, die zwischen dem ovalen Schöpfraumquerschnitt und dem umschriebenen Rechteck liegen.
  • Weiterhin ist es vorteilhaft, zwei Verbindungskanäle zwischen den Lagerkammern vorzusehen, deren Durchtrittsstellen jeweils in diagonal zueinander angeordneten Ecken angeordnet sind. Bei einer derartigen Anordnung der Verbindungskanäle liegt - unabhängig von der Durchgangslage - stets einer der Verbindungskanäle unterhalb und der zweite Verbindungskanal oberhalb des Ölspiegels. Druck- und Ölstandsausgleich sind dadurch gewährleistet. Außerdem liegen die Verbindungskanäle nicht - wie beim Stand der Technik - auf den Hauptachsen des Schöpfraumovals, sondern in den Ecken, so daß auch bei zwei Verbindungskanälen eine kompaktere Bauweise möglich ist.
  • Die Anordnung eines oder beider Verbindungskanäle in den Ecken der Pumpe hat außerdem noch den Vorteil, daß ein dem Verbindungskanal bildendes Rohr nicht - wie beim Stand der Technik - durch den Eintrittsstutzen der Pumpe geführt werden muß. Im Eintrittsstutzen der Pumpe muß ein Rohr dieser Art so ausgebildet sein, daß es den häufig aggressiven Fördermedien widersteht. Bei der erfindungsgemäßen Pumpe besteht diese Forderung nicht, da die Verbindungsrohre den Schöpfraum oder Eintritts- bzw. Austrittsstutzen nicht durchsetzen.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 und 2 dargestellten Ausführungsbeispielen erläutert werden.
  • Die in den Figuren dargestellte Zweiwellenpumpe 1 (Wälzkolbenpumpe) umfaßt im wesentlichen die folgenden Bauteile: Schöpfraumgehäusering 2, Lagerscheiben 3 und 4 sowie Rotoren 5 und 6 (Fig. 2), die mit ihren Wellenstümpfen 7 und 8 in den Lagerscheiben 3 und 4 drehbar gelagert sind. Im Schöpfraum 9 befinden sich bei einer Zweiwellenvakuumpumpe jeweils zwei Rotoren, die etwa 8-förmig (Wälzkolbenpumpe), klauenförmig (Northey-Pumpe). schraubenförmig (Schraubenpumpe) oder ähnlich ausgebildet sein können. Insgesamt ergibt sich ein im wesentlichen ovaler Querschnitt. In den Lagerscheiben 3 bzw. 4 sind jeweils zwei Wellenstümpfe 7 bzw. 8 gelagert.
  • Außerhalb der Lagerscheiben 3 und 4 befinden sich die Seitenräume bzw. Lagerkammern 11 und 12. Sie werden gebildet von Lagerkammergehäusen 13 bzw. 14, die von außen am Lagerflansch 3 bzw. 4 befestigt sind. Die Lagerkammern 11 und 12 sind teilweise mit Öl gefüllt und enthalten neben den Lagern 15 und 16 Synchronisationsräder 17, Spritzscheiben 18, 19 usw. Innerhalb der Lagerkammer 12 ist einer der Wellenstümpfe 8 mit der Antriebswelle 21 verbunden.
  • Zur Herstellung der Verbindungen zwischen dem Schöpfraumgehäusering 2 und den Lagerscheiben 3, 4 einerseits sowie zwischen den Lagerscheiben 3, 4 und den Lagerkammergehäusen 13, 14 andererseits dienen schematisch angedeutete Schrauben 22, von denen insgesamt zwölf auf dem Umfang verteilt angeordnet sind. Zwischen den Stirnseiten des Schöpfraumgehäuses 2 und den Lagerscheiben 3, 4 befinden sich die Schöpfraumdichtungen 23, 24. In entsprechender Weise sind zwischen den Lagerscheiben 3, 4 und den Lagerkammergehäusen 13, 14 die Dichtungen 25, 26 angeordnet.
  • Beim Ausführungsbeispiel nach Fig. 1 sind die Lagerkammern 11, 12 über den generell mit 31 bezeichneten Kanal miteinander verbunden. Dieser Kanal 31 umfaßt ein außerhalb des Schöpfraumgehäuseringes 2 geführtes Rohr 32, dessen Stirnseiten im Bereich der Dichtflächen zwischen den Lagerkammergehäusen 13 bzw. 14 und den Lagerscheiben 3 bzw. 4 enden. Konzentrisch zum Rohr 32 sind die Flansche der Lagerkammergehäuse 13, 14 mit Bohrungen 33 und 34 ausgerüstet. Zur Abdichtung der Stirnseiten des Rohrs 32 nach außen dienen die Dichtringe 35 und 36.
  • Die Durchtrittsstellen des Rohrs 32 durch die Lagerscheiben 3 und 4 liegen außerhalb der Schöpfraumdichtungen 23 und 24. Dadurch ist sichergestellt, daß im Falle eines Lecks des Verbindungskanals 31, z. B. im Bereich der Dichtungen 35, 36, austretendes Öl nicht in den Schöpfraum 9 gelangen kann. Weiterhin liegen die Durchtrittsstellen des Rohrs 32 durch die Lagerscheiben 3,4 ebenfalls außerhalb der Dichtungen 25 und 26 zwischen den Lagerscheiben 3,4 und den Lagerkammergehäusen 13, 14.
  • Der Fig. 2, die einen Schnitt in Höhe der Linie II-II in Fig. 1 darstellt, ist die Lage des Verbindungskanals 31 entnehmbar. Er liegt in einer der unteren Ecken des im wesentlichen ovalen Querschnitts. Das Lagerkammergehäuse 13 ist in diesem Bereich mit einer entsprechenden Ausformung versehen.
  • Fig. 2 zeigt noch einen weiteren Verbindungskanal 37, und zwar in der zur Ecke mit dem Verbindungskanal 31 diagonalen Ecke. Fig. 1 kann als Längsschnitt durch die Wälzkolbenpumpe 1 nach den Linien I-I in Fig. 2 angesehen werden. Der Verbindungskanal 37 ist deshalb in Fig. 1 nicht sichtbar. Die Anordnung der Verbindungskanäle 31,37 in diagonal zueinander angeordneten Ecken bewirkt, daß der Verbindungskanal 31 unterhalb des Ölspiegels in den Lagerkammern 11,12 liegt, während sich der Verbindungskanal 37 oberhalb des Ölspiegels befindet. Anhand der dargestellten Anschlußflansche 38,39 in Fig. 2 ist erkennbar, daß die dargestellte Wälzkolbenpumpe 2 eine vertikale Durchgangsrichtung hat. Dreht man die Wälzkolbenpumpe um ihre Längsachse um 90°, um einer horizontale Durchgangslage zu erreichen, dann ist ebenfalls eine der beiden Verbindungskanäle 31,37 unterhalb und der andere oberhalb des Ölspiegels in den Lagerkammern 11,12 angeordnet.
  • Die Erfindung ist bei allen Zweiwellenpumpen - unabhängig vom Arbeitsprinzip - anwendbar, bei denen ein Druck- und/oder Ölausgleich zwischen den Seitenkammern erwünscht ist.

Claims (8)

  1. Zweiwellenpumpe (1) mit einem Schöpfraumgehäusering (2), mit zwei seitlich daran befestigten Lagerscheiben (3,4), mit jeweils einer Schöpfraumdichtung (23 bzw. 24) zwischen den Stirnseiten des Gehäuseringes (2) und den Lagerscheiben (3 bzw. 4), mit von außen an den Lagerscheiben angeflanschten Lagerkammergehäusen (13, 14) und mit mindestens einem die Lagerscheiben durchsetzenden, die Lagerkammern (11, 12) miteinander verbindenden Kanal (31 bzw. 37) dadurch gekennzeichnet, daß die Durchtrittsstellen der Verbindungskanals (31 bzw. 37) durch die Lagerscheiben (3, 4) außerhalb der Schöpfraumdichtungen (23, 24) liegen.
  2. Zweiwellenpumpe (1) nach Anspruch 1, bei der zwischen den Lagerscheiben (3, 4) und den Lagerkammergehäusen (13, 14) Dichtringe (25, 26) vorgesehen sind, dadurch gekennzeichnet, daß die Durchtrittsstellen des Verbindungskanals (31 bzw. 37) durch die Lagerscheiben (3, 4) außerhalb dieser Dichtringe (25, 26) liegen.
  3. Zweiwellenpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Durchtrittsstellen des Verbindungskanals (31 bzw. 37) in einer der Ecken des Querschnitts der Pumpe (1) angeordnet sind.
  4. Zweiwellenpumpe (1) nach Anspruch 3, dadurch gekennzeichnet, daß zwei Verbindungskanäle (31, 37) vorgesehen sind, deren Durchtrittsstellen jeweils in diagonal zueinander angeordneten Ecken angeordnet sind.
  5. Zweiwellenpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindungskanäle (31, 37) von Rohren (32) gebildet werden.
  6. Zweiwellenpumpe (1) nach Anspruch 5, dadurch gekennzeichnet, daß die Stirnseiten der die Verbindungskanäle bildenden Rohre (32) in der Dichtfläche zwischen den Lagerscheiben (3, 4) und den Lagerkammergehäusen (13, 14) enden.
  7. Zweiwellenpumpe (1) nach Anspruch 6, dadurch gekennzeichnet, daß die Stirnseiten der Verbindungsrohre (32) mit einem Dichtring (35, 36) ausgerüstet sind.
  8. Zweiwellenpumpe (1) nach den Ansprüchen 5 bis 7, dadurch gekennzeichnet, daß die die Rohre (32) bildenden Verbindungskanäle (31, 37) außerhalb des Schöpfraumgehäuseringes (2) verlaufen.
EP19870116069 1987-10-31 1987-10-31 Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern Expired - Lifetime EP0314819B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8787116069T DE3774711D1 (de) 1987-10-31 1987-10-31 Zweiwellenvakuumpumpe mit mindestens einer verbindungsleitung zwischen den lagerkammern.
EP19870116069 EP0314819B1 (de) 1987-10-31 1987-10-31 Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19870116069 EP0314819B1 (de) 1987-10-31 1987-10-31 Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern

Publications (2)

Publication Number Publication Date
EP0314819A1 EP0314819A1 (de) 1989-05-10
EP0314819B1 true EP0314819B1 (de) 1991-11-21

Family

ID=8197411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870116069 Expired - Lifetime EP0314819B1 (de) 1987-10-31 1987-10-31 Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern

Country Status (2)

Country Link
EP (1) EP0314819B1 (de)
DE (1) DE3774711D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452251A (en) 1992-12-03 1995-09-19 Fujitsu Limited Semiconductor memory device for selecting and deselecting blocks of word lines
JP3408309B2 (ja) * 1994-02-10 2003-05-19 株式会社東芝 密閉形コンプレッサならびにこのコンプレッサを用いた冷凍装置
GB0709529D0 (en) * 2007-05-18 2007-06-27 Boc Group Plc Vacuum pump
DE102010045880A1 (de) * 2010-09-17 2012-03-22 Pfeiffer Vacuum Gmbh Vakuumpumpe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2014932A (en) * 1933-03-17 1935-09-17 Gen Motors Corp Roots blower
DE1939717B2 (de) * 1969-08-05 1978-03-23 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Waelzkolbenpumpe
GB1599413A (en) * 1978-04-14 1981-09-30 Carveth D Oil-injected rotary compressors
DE2948993A1 (de) * 1979-12-05 1981-06-11 Karl Prof.Dr.-Ing. 3000 Hannover Bammert Verdichter, insbesondere schraubenverdichter, mit schmiermittelkreislauf
US4439121A (en) * 1982-03-02 1984-03-27 Dunham-Bush, Inc. Self-cleaning single loop mist type lubrication system for screw compressors

Also Published As

Publication number Publication date
EP0314819A1 (de) 1989-05-10
DE3774711D1 (de) 1992-01-02

Similar Documents

Publication Publication Date Title
EP1979618B1 (de) Mehrstufiges schraubenkompressoraggregat
EP0030619A1 (de) Rotorverdichter, insbesondere Schraubenrotorverdichter, mit Schmiermittelzufuhr zu und Schmiermitteldrainage von den Lagern
DE3312280C2 (de)
DE2825616C2 (de) Lager- und Dichtungsanordnung an den Wellen einer Zahnradpumpe
EP0569455B1 (de) Trockenlaufende zweiwellenvakuumpumpe
DE19513380C2 (de) Abdichtung, Lagerung und Antrieb der Rotoren eines trockenlaufenden Schraubenrotorverdichters
EP0365695B1 (de) Zweiwellenvakuumpumpe mit Schöpfraum
EP1059454B1 (de) Drehkolbenverdichter mit axialer Förderrichtung
CH628709A5 (en) Roots pump
DE1939717A1 (de) Waelzkolbenpumpe
EP0314819B1 (de) Zweiwellenvakuumpumpe mit mindestens einer Verbindungsleitung zwischen den Lagerkammern
DE102012008527B3 (de) Drehkolbenpumpe mit optimierten ein-und auslässen
DE8208734U1 (de) Zahnradpumpe
DE20302989U1 (de) Drehkolbenpumpe
EP0171656B1 (de) Flüssigkeitsring-Verdichter
DE19544994A1 (de) Mehrwellenvakuumpumpe
EP0942172B1 (de) Mehrwellenvakuumpumpe
EP2052158A1 (de) Rotorkühlung für trocken laufende zweiwellen-vakuumpumpen bzw. -verdichter
DE2134241C3 (de) Zweistufige außenachsige Rotationskolbenmaschine
DE19502173C2 (de) Schraubenpumpe für drehrichtungsunabhängigen Betrieb
DE3730685A1 (de) Druckoelschmierung fuer drehschieber-vakuumpumpen
CH647048A5 (de) Zahnradpumpe.
DE102019120239A1 (de) Hydrostatische Verdrängereinheit
DE102020215198A1 (de) Mehrfachpumpe mit Fluidkanal zur Entlastung eines Dichtrings
DE3521253A1 (de) Spiralverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

17P Request for examination filed

Effective date: 19890808

17Q First examination report despatched

Effective date: 19900507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 3774711

Country of ref document: DE

Date of ref document: 19920102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940919

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960702