EP0942172B1 - Mehrwellenvakuumpumpe - Google Patents

Mehrwellenvakuumpumpe Download PDF

Info

Publication number
EP0942172B1
EP0942172B1 EP99101291A EP99101291A EP0942172B1 EP 0942172 B1 EP0942172 B1 EP 0942172B1 EP 99101291 A EP99101291 A EP 99101291A EP 99101291 A EP99101291 A EP 99101291A EP 0942172 B1 EP0942172 B1 EP 0942172B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump
shaft
vacuum pump
bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99101291A
Other languages
English (en)
French (fr)
Other versions
EP0942172A1 (de
Inventor
Christopher Mark Rippl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP0942172A1 publication Critical patent/EP0942172A1/de
Application granted granted Critical
Publication of EP0942172B1 publication Critical patent/EP0942172B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the invention relates to a multi-shaft vacuum pump according to the preamble of first claim.
  • Multi-shaft vacuum pumps of the type described here are considered dry Pump systems especially in the chemical industry and in semiconductor technology a wide range of applications. Dry pump systems are characterized by that their scoops no oil for lubrication and sealing, reduction of Dead volume or included for other purposes. This enables them to to create a completely hydrocarbon-free vacuum. To achieve optimal Pump properties can have several pump stages connected in series in one Housing.
  • the drive motor is mounted outside the pump housing.
  • a shaft bushing For that Coupling to the main shaft requires a shaft bushing.
  • the shaft bushing Corresponding When using the pump, the shaft bushing must have a more or less expensive sealing.
  • GB 809,445 describes a multi-shaft vacuum pump, where two rotors work together in a pump housing. Through their Non-contact movement creates scoops in which the pumped Medium is promoted.
  • the rotor has a bell-shaped design.
  • the drive system is designed as an external rotor motor, such that its Rotor parts are attached to the inner surface of the bell-shaped rotor and the stator parts are fixedly mounted opposite those within the bell-shaped rotor are.
  • the gas is conveyed perpendicular to the axis direction.
  • There are bearings and gear components are not separated from the pumping chamber, so that dry gas production is excluded.
  • the invention has set itself the task of a dry multi-shaft vacuum pump to develop, which no longer has the disadvantages mentioned. In front everything should be aimed at a compact design with optimal pump properties which is space-saving and enables easy assembly. Other components, such as seals, sealing gas devices and oil supplies, are to be optimally adapted to the new pump concept.
  • the rotors fill up a large part of the pump volume. This room is not used due to the massive construction of the rotors since then.
  • Through the bell-shaped design of at least one rotor it becomes possible to drive the system fully integrated into the interior of a rotor and the one that has not been used since Recycle space. This reduces the geometric dimensions of the Pump considerably.
  • the bearings are encapsulated from the scooping area, and no shaft bushings are required.
  • the Supply pressure is above the range in which the sealing material blocks occurs. Because the gas is distributed in the seal and on the internal surface flows out into the gap between the sealing body and the rotor, creates a gas cushion, which causes gas exchange between the gearbox and Scooping space is prevented.
  • the pump according to the invention has a compact design with optimal pump properties Construction, which is space-saving and enables easy assembly.
  • Other components such as power supply, seals, coolant supply, Purge gas equipment and oil supply were the pump concept optimally adapted.
  • the one wave is a working wave, hereinafter referred to as the main rotor ", and the second shaft as the control shaft, hereinafter Called "control rotor”.
  • Figure 1 shows a cross section through the pump system.
  • Figure 2 shows a section along the two rotors of a four-stage pump.
  • a pump housing 1 which has an intake flange 2 and a gas outlet opening 3 is provided, the main rotor 4, the control rotor 5 in bearings 31, 33 and 32, 34 worn.
  • the outer profile of the main rotor 4 is designed that it has two working pistons 6 which rotate in the scooping chamber 8.
  • the profile of the control rotor 5 corresponds to these working pistons 6 two recesses 7.
  • the rotor parts 13 are on the inner surface of the bell-shaped Main rotor 4 attached.
  • the stator parts 12 of the drive system are fixedly mounted inside the rotor opposite the rotor shaft 13. Camps 31, 33 and 32, 34 are mounted on pins 9 and 10 inside the rotors. These pins are firmly connected to the housing 1 via flanges 17 and 18.
  • a gear arrangement consisting of gears 14 and 15, which in Gearbox 19 are housed, the rotor movement of the main rotor 4th transferred to the control rotor 5.
  • non-contact seals 22 available. These are called threaded shaft pumps designed to counteract the backflows between the stages.
  • sealing gas seals are made of porous Material and allow through the material selection and shape a metered Supply of sealing gas.
  • Oil is delivered to the bearing points 31, 33 and 32, 34 with the help of Threaded shaft pumps 20 and 21, which on the inside of the control rotor 5th are attached and designed symmetrically so that they are in the axial direction pump in the opposite direction and the oil is discharged in the middle. About drilling 42 and 43 in the pins 9 and 10, the oil is fed to the bearings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Die Erfindung betrifft eine Mehrwellenvakuumpumpe nach dem Oberbegriff des ersten Patentanspruches.
Mehrwellenvakuumpumpen der hier beschriebenen Art finden als trockene Pumpsysteme besonders in der chemischen Industrie und in der Halbleitertechnik ein breites Einsatzgebiet. Trockene Pumpsysteme zeichnen sich dadurch aus, daß ihre Schöpfräume kein Öl zur Schmierung und Abdichtung, Reduzierung von Totvolumen oder zu sonstigen Zwecken enthalten. Dadurch sind sie in der Lage, ein völlig kohlenwasserstofffreies Vakuum zu erzeugen. Zum Erreichen optimaler Pumpeigenschaften können mehrere, in Serie geschaltete Pumpstufen, in einem Gehäuse untergebracht sein.
Dem Stand der Technik entsprechend, rotieren bei Mehrwellenvakuumpumpen zwei oder mehr Kolben in einem Pumpengehäuse. Die Kolben befinden sich auf Wellen, die in Lagerschilden beiderseits der Wellenenden oder auch nur auf einer Seite der Wellenenden fixiert sind. Die Drehbewegung der Kolben wird über Getriebe so synchronisiert, daß ein gleichmäßiges Abwälzen ohne Berührung unter gleichzeitiger Einhaltung von minimalen Spalten erfolgen kann. Die Lagerstellen und Getriebe müssen durch geeignete Abdichtungen vom Schöpfraum getrennt sein, um zu verhindern, daß zum einen Öl oder sonstige Betriebsmittel in den Schöpfraum gelangen und zum anderen, daß abzupumpende schädliche Gase in die Getriebe und Lagerräume strömen und dort Schmiermittel verunreinigen oder zersetzen können. Durch die Verwendung von Sperrgas kann die Abdichtung noch effektiver gestaltet werden.
Der Antriebsmotor ist außerhalb des Pumpengehäuses angebracht. Für dessen Ankopplung an die Hauptwelle ist eine Wellendurchführung erforderlich. Entsprechend dem Einsatz der Pumpe muss die Wellendurchführung mit einer mehr oder weniger aufwendigen Abdichtung versehen sein.
Ein wesentlicher Nachteil der seither bekannten Pumpen dieser Art besteht in der aufwendigen Bauweise. Dies kommt besonders in der Baugröße, der großen Anzahl von Gehäuseteilen und in einer komplizierten Montage zum Ausdruck. Aber auch weitere wichtige Bauteile, wie Abdichtungen zwischen den einzelnen Stufen, Sperrgaseinrichtungen und Ölversorgungen, weisen bei den herkömmlichen Bauweisen oft Unzulänglichkeiten auf und sind verbesserungsbedürftig.
In der GB-Patentschrift 809,445 wird eine Mehrwellenvakuumpumpe beschrieben, bei der in einem Pumpengehäuse zwei Rotoren zusammenwirken. Durch deren berührungslose Bewegung entstehen Schöpfräume, in welchen das zu pumpende Medium gefördert wird. Dabei weist der Rotor eine glockenförmige Bauweise auf. Das Antriebssystem ist als Außenläufermotor ausgebildet, derart, dass dessen Rotorteile an der Innenfläche des glockenförmigen Rotors angebracht sind und die Statorteile jenen gegenüber innerhalb des glockenförmigen Rotors fest montiert sind. Die Gasförderung erfolgt senkrecht zur Achsrichtung. Dabei sind Lager und Getriebebauteile nicht vom Schöpfraum getrennt, so dass eine trockene Gasförderung ausgeschlossen ist.
Die Erfindung hat sich die Aufgabe gestellt, eine trockene Mehrwellenvakuumpumpe zu entwickeln, welche die angeführten Nachteile nicht mehr aufweist. Vor allem soll bei optimalen Pumpeigenschaften eine kompaktere Bauweise angestrebt werden, welche platzsparend ist und eine einfache Montage ermöglicht. Weitere Bauteile, wie Abdichtungen, Sperrgaseinrichtungen und Ölversorgungen, sollen dem neuen Pumpenkonzept optimal angepasst werden.
Die Aufgabe wird durch die kennzeichnenden Merkmale des 1. Patentanspruches gelöst. Die Ansprüche 2 - 5 stellen weitere Ausgestaltungsformen der Erfindung dar.
Die Rotoren füllen einen großen Teil des Pumpenvolumens aus. Dieser Raum wird durch die seitherige massive Bauweise der Rotoren nicht genutzt. Durch die glockenförmige Bauart mindestens eines Rotors wird es möglich, das Antriebssystem vollständig in das Innere eines Rotors zu integrieren und den seither ungenutzten Raum zu verwerten. Dies reduziert die geometrischen Abmessungen der Pumpe erheblich. Die Lagerstellen sind gegenüber dem Schöpfraum abgekapselt, und es werden keine Wellendurchführungen benötigt. Außerdem ergibt sich eine Anzahl zusätzlicher Vorteile, welche durch weitere erfindungsgemäße Merkmale charakterisiert sind. So können der elektrische Anschluß für das Antriebssystem und die Kühlmittelversorgung durch Bohrungen in den Zapfen des Hauptrotors erfolgen.
Die glockenförmige Bauweise bedingt eine Konstruktion, die große Rotordurchmesser zur Folge hat. Im Falle einer mehrstufigen Pumpe, bei der die Stufen axial hintereinander angeordnet sind, stellt sich das Problem der Abdichtung zwischen den einzelnen Stufen. Zum Beispiel scheiden Radialwellendichtungen aus, da wegen der großen Durchmesser hohe Geschwindigkeiten an den Grenzflächen auftreten, was zu unzulässigen Temperaturen und Verschleißerscheinungen führt. Außerdem ist es wünschenswert, der Rückströmung zwischen den Stufen entgegenzuwirken. Um diesen Umständen Rechnung zu tragen, werden zwischen den Stufen berührungsfreie Dichtungen eingesetzt. Diese sind als Gewindewellenpumpen ausgebildet und haben so die Eigenschaft, ein Druckverhältnis zu erzeugen, welches der Rückströmung entgegenwirkt.
Um sicherzustellen, daß kein Öl in den Schöpfraum und, umgekehrt, kein Prozeßgas in den Getrieberaum gelangt, ist es erforderlich, Sperrgas zwischen Getrieberaum und angrenzendem Schöpfraum einzulassen. Ein kritisches Problem ist hierbei die Dosierung. Da als Sperrgas in der Regel Inertgas verwendet wird, ist man bemüht, den Gasverbrauch niedrig zu halten. Andererseits soll kein Risiko eingegangen werden, durch zu geringe Gasmengen die Absperrfunktion zu gefährden. Um diese Forderungen zu erfüllen, waren bisher aufwendige Inertgasaufbereitungseinrichtungen (Druckregelung, Einstellung und Überwachung) notwendig. Erfindungsgemäß kann durch die Verwendung von porösem Material als Werkstoff für die Dichtkörper der Sperrgasdichtungen der Sperrgasverbrauch optimal eingestellt werden. Dieser ist von der Wandstärke der Dichtung und von der Permeabilität des Werkstoffes abhängig. Dabei muß beachtet werden, daß der Versorgungsdruck oberhalb des Bereiches liegt, in dem im Dichtwerkstoff Verblockung auftritt. Dadurch, daß sich das Gas in der Dichtung verteilt und auf der inneren Oberfläche in den Spalt zwischen Dichtungskörper und Rotor ausströmt, entsteht ein Gaspolster, wodurch ein Gasaustausch zwischen Getrieberaum und Schöpfraum verhindert wird.
Für die Versorgung der Lagerstellen mit Öl werden symmetrisch gestaltete Gewindewellenpumpen, welche auf der Innenseite des Steuerrotors angebracht sind, verwendet. Zur weiteren Beförderung des Öles sind erfindungsgemäß Bohrungen innerhalb der Zapfen angebracht. Dadurch wird auch für diese Bauteile eine optimale Raumausnutzung bewirkt.
Die erfindungsgemäße Pumpe weist bei optimalen Pumpeigenschaften eine kompakte Bauweise auf, welche platzsparend ist und eine einfache Montage ermöglicht. Weitere Bauteile, wie Stromversorgung, Abdichtungen, Kühlmittelversorgung, Sperrgaseinrichtungen und Ölversorgung, wurden dem Pumpenkonzept optimal angepaßt.
Anhand der Abbildungen 1 und 2 soll die Erfindung am Beispiel einer Zweiwellenvakuumpumpe näher erläutert werden. Dabei ist die eine Welle als Arbeitswelle, im folgenden Hauptrotor" genannt, und die zweite Welle als Steuerwelle, im folgenden "Steuerrotor" genannt, ausgebildet.
Abbildung 1 zeigt einen Querschnitt durch das Pumpsystem.
Abbildung 2 zeigt einen Schnitt längs der beiden Rotoren einer vierstufigen Pumpe.
In einem Pumpengehäuse 1, welches mit einem Ansaugflansch 2 und einer Gasaustrittsöffnung 3 versehen ist, werden der Hauptrotor 4 der Steuerrotor 5 in Lagern 31, 33 und 32, 34 getragen. Das äußere Profil des Hauptrotors 4 ist so gestaltet, daß es zwei Arbeitskolben 6 aufweist, welche im Schöpfraum 8 umlaufen. Korrespondierend zu diesen Arbeitskolben 6 bildet das Profil des Steuerrotors 5 zwei Ausnehmungen 7. Durch das Zusammenwirken von Hauptrotor 4 und Steuerrotor 5 entsteht auf an sich bekannte Art und Weise der Pumpeffekt. Beide Rotoren sind als glockenförmige Hohlkörper ausgebildet. Diese Bauweise ermöglicht das Unterbringen von weiteren Bauteilen im Inneren der Rotoren. So ist das Antriebssystem im Inneren des Hauptrotors 4 installiert. Dieses ist als Außenläufermotor ausgebildet. Dabei sind dessen Rotorteile 13 an der Innenfläche des glokkenförmigen Hauptrotors 4 angebracht. Die Statorteile 12 des Antriebssystems sind innerhalb des Rotors gegenüber der Rotorwelle 13 fest montiert. Die Lager 31, 33 und 32, 34 sind im Inneren der Rotoren auf Zapfen 9 und 10 angebracht. Diese Zapfen sind über Flansche 17 und 18 mit dem Gehäuse 1 fest verbunden. Durch eine Getriebeanordnung, bestehend aus Zahnrädern 14 und 15, welche im Getrieberaum 19 untergebracht sind, wird die Rotorbewegung vom Hauptrotor 4 auf den Steuerrotor 5 übertragen. Die elektrischen Versorgungsleitungen 37 für die Statorteile 12 des Antriebssystems sowie die Versorgung des Kühlsystems 38 mit Kühlmittel erfolgen durch eine Bohrungen im Zapfen 9 des Hauptrotors 4.
Im Falle einer mehrstufigen Ausführung, welche in Abbildung 2 dargestellt ist, sind zwischen den einzelnen Pumpstufen, die axial hintereinander angeordnet sind, berührungsfreie Dichtungen 22 vorhanden. Diese sind als Gewindewellenpumpen so ausgebildet, daß sie den Rückströmungen zwischen den Stufen entgegenwirken.
Zur Abdichtung zwischen Getrieberaum 19 und angrenzendem Schöpfraum 8 wird Sperrgas über den Sperrgaseinlaß 23, die Ringkanäle 24 und 25 und die Sperrgasdichtungen 26 und 27 zugeführt. Die Sperrgasdichtungen sind aus porösem Material und gestatten durch die Materialauswahl und die Formgebung eine dosierte Zuführung von Sperrgas.
Die Förderung von Öl zu den Lagerstellen 31, 33 und 32, 34 erfolgt mit Hilfe von Gewindewellenpumpen 20 und 21, welche auf der Innenseite des Steuerrotors 5 angebracht sind und symmetrisch gestaltet sind, so daß sie in axialer Richtung entgegengesetzt pumpen und der Ölaustritt jeweils in der Mitte erfolgt. Über Bohrungen 42 und 43 in den Zapfen 9 und 10 wird das Öl den Lagerstellen zugeführt.

Claims (5)

  1. Mehrwellenvakuumpumpe, bei welcher in einem Pumpengehäuse (1) mindestens zwei Rotoren (4 und 5) so zusammenwirken, daß durch ihre berührungslose Bewegung Schöpfräume (8) entstehen, in welchen das zu pumpende Medium gefördert wird, und daß mindestens ein Rotor (4) eine glockenförmige Bauart aufweist, wobei das Antriebssystem als Außenläufermotor ausgebildet ist, derart, daß dessen Rotorteile (13) an der Innenfläche des glockenförmigen Rotors (4) angebracht sind und die Statorteile (12) jenen gegenüber innerhalb des glockenförmigen Rotors (4) fest montiert, dadurch gekennzeichnet, daß sie aus mehreren Pumpstufen besteht, welche axial hintereinander angeordnet sind.
  2. Mehrwellenvakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den Pumpstufen berührungsfreie Dichtungen (22) vorhanden sind, welche als Gewindewellenpumpen ausgebildet sind, derart, daß sie den Rückströmungen zwischen den Stufen entgegenwirken.
  3. Mehrwellenvakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Getrieberaum (19) und dem angrenzenden Schöpfraum (9) ein Sperrgaseinlaß (23) angeordnet ist, welcher über Ringkanäle (24 und 25) mit Sperrgasdichtungen (26 und 27) verbunden ist, die aus porösem Material als Werkstoff bestehen.
  4. Mehrwellenvakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zur Förderung von Öl zu den Lagerstellen an der Innenseite des Steuerrotors (5) Gewindewellenpumpen (20 und 21) angebracht sind, welche symmetrisch gestaltet sind, so daß sie in axialer Richtung entgegengesetzt pumpen und der Ölaustritt in der Mitte der jeweiligen Gewindewellenpumpe erfolgt.
  5. Mehrwellenvakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ölversorgung der Lagerstellen über Bohrungen (42 und 43) in den Zapfen (9 und 10) erfolgt.
EP99101291A 1998-03-07 1999-01-25 Mehrwellenvakuumpumpe Expired - Lifetime EP0942172B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19809957A DE19809957A1 (de) 1998-03-07 1998-03-07 Mehrwellenvakuumpumpe
DE19809957 1998-03-07

Publications (2)

Publication Number Publication Date
EP0942172A1 EP0942172A1 (de) 1999-09-15
EP0942172B1 true EP0942172B1 (de) 2004-09-29

Family

ID=7860157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99101291A Expired - Lifetime EP0942172B1 (de) 1998-03-07 1999-01-25 Mehrwellenvakuumpumpe

Country Status (5)

Country Link
US (1) US6241490B1 (de)
EP (1) EP0942172B1 (de)
JP (1) JP4282809B2 (de)
AT (1) ATE278110T1 (de)
DE (2) DE19809957A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6729863B2 (en) * 1999-03-22 2004-05-04 Werner Rietschle Gmbh & Co. Kg Rotary pump having high and low pressure ports in the housing cover
US20050095160A1 (en) * 2003-10-29 2005-05-05 Heng-I Lin Pump
US20140161655A1 (en) * 2011-07-08 2014-06-12 Edward L. Simonds Pump
JP6418838B2 (ja) * 2014-07-31 2018-11-07 エドワーズ株式会社 ドライポンプ及び排ガス処理方法
JP7061618B2 (ja) 2017-04-07 2022-04-28 スタックポール インターナショナル エンジニアード プロダクツ,リミテッド. エピトロコイド真空ポンプ
DE102018001519A1 (de) * 2018-02-27 2019-08-29 Ralf Steffens Lagerung und Antrieb für einen R718-Verdichter
CN111989490A (zh) 2018-04-27 2020-11-24 开利公司 具有外部马达转子的螺杆压缩机
KR102453438B1 (ko) * 2020-06-15 2022-10-12 주식회사 한중엔시에스 리저버 일체형 진공 펌프

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809445A (en) * 1954-02-27 1959-02-25 Heraeus Gmbh W C Improvements in or relating to rotary high vacuum pumps
DE2359456A1 (de) * 1973-11-29 1975-06-05 Leybold Heraeus Gmbh & Co Kg Turbomolekularvakuumpumpe mit gasgelagertem rotor
GB2088957B (en) * 1980-12-05 1984-12-12 Boc Ltd Rotary positive-displacement fluidmachines
SE424760B (sv) * 1980-12-12 1982-08-09 Sullair Tech Ab Forfarande vid en oljeinsprutad skruvkompressor for balansering av axialkrafter hos atminstone en av kompressorns rotorer, for tetning av spalterna mellan rotorhus och rotorernas axlar, samt for kylning och smorjning ..
DE3317156A1 (de) * 1982-05-12 1983-11-17 Walter 5411 Oberalm Salzburg Schwab Rotationspumpe zur foerderung gasfoermiger und fluessiger stoffe, insbesonders zur verwendung als blut- und herzpumpe sowie kuenstliches herz
US4457680A (en) * 1983-04-27 1984-07-03 Paget Win W Rotary compressor
JPS62243982A (ja) * 1986-04-14 1987-10-24 Hitachi Ltd 2段型真空ポンプ装置およびその運転方法
DE58905785D1 (de) * 1989-07-20 1993-11-04 Leybold Ag Gasreibungspumpe mit mindestens einer auslassseitigen gewindestufe.
EP0472933B2 (de) * 1990-08-01 2003-12-03 Matsushita Electric Industrial Co., Ltd. Drehanlage für flüssige Medien
FR2668209B1 (fr) * 1990-10-18 1994-11-18 Hitachi Koki Kk Pompe d'aspiration moleculaire.
DE4238271A1 (de) * 1992-11-13 1994-05-19 Leybold Ag Zweiwellenvakuumpumpe
DE4244063A1 (de) * 1992-12-24 1994-06-30 Balzers Pfeiffer Gmbh Wälzkolben-Vakuumpumpe
US5346361A (en) * 1993-04-15 1994-09-13 Goulds Pumps, Incorporated Air seal for pump with vertical shaft
JPH0828471A (ja) * 1994-07-11 1996-01-30 Matsushita Electric Ind Co Ltd 容積型ポンプ
BE1010822A3 (nl) * 1996-12-23 1999-02-02 Atlas Copco Airpower Nv Machine met gelagerde rotoren en vloeistofsmering van de lagers.

Also Published As

Publication number Publication date
ATE278110T1 (de) 2004-10-15
DE59910616D1 (de) 2004-11-04
EP0942172A1 (de) 1999-09-15
US6241490B1 (en) 2001-06-05
JPH11294358A (ja) 1999-10-26
JP4282809B2 (ja) 2009-06-24
DE19809957A1 (de) 1999-09-09

Similar Documents

Publication Publication Date Title
DE69607718T2 (de) Wälzlager mit dynamischer, ölversorgter Drainage
DE3714536C2 (de)
DE2639174C2 (de)
DE2441520C2 (de) Wellendichtung für die Rotoren eines mit Wassereinspritzung arbeitenden Schraubenverdichters
DE2801206A1 (de) Spiralartige einrichtung mit einem festen gekroepften kurbelantriebsmechanismus
EP1108143A1 (de) Trockenverdichtende schraubenspindelpumpe
DE3127323A1 (de) Schraubenkompressor mit geschlossenem druckgassystem mit oelnebelschmierung
EP0166807A2 (de) Drehschieber-Vakuumpumpe
EP0955466B1 (de) Spaltringdichtung
EP0569455B1 (de) Trockenlaufende zweiwellenvakuumpumpe
EP0942172B1 (de) Mehrwellenvakuumpumpe
DE60300051T2 (de) Wellendichtung
DE102006058837A1 (de) Schmiermittelgedichtete Drehschiebervakuumpumpe
WO2012097839A1 (de) Wasserturbine oder wasserpumpe oder sonstige hydraulische maschine
DE69716552T2 (de) Dichtung/lagervorrichtung
EP0030275A1 (de) Verdichter, insbesondere Schraubenverdichter, mit Schmiermittelkreislauf
DE20302989U1 (de) Drehkolbenpumpe
EP2348219A1 (de) Kältemittelpumpenaggregat
EP2949938B1 (de) Vakuumpumpe
DE3124247C1 (de) Schraubenverdichter
EP0038306A1 (de) Hydrostatisches hydrodynamisches Lager
DD147567A5 (de) Rotationsbearbeitungsmaschine,insbesondere zur bearbeitung viskoser kunststoff-oder polymermaterialien
WO2000053931A1 (de) Schraubenkompressor
EP0198936A1 (de) Mehrstufige Vakuumpumpe
DE60318841T2 (de) Flüssigkeitsringverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991220

AKX Designation fees paid

Free format text: AT CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20030630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59910616

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PFEIFFER VACUUM (SCHWEIZ) AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081203

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090128

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120124

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140116

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140110

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910616

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125