EP2348219A1 - Kältemittelpumpenaggregat - Google Patents

Kältemittelpumpenaggregat Download PDF

Info

Publication number
EP2348219A1
EP2348219A1 EP10000704A EP10000704A EP2348219A1 EP 2348219 A1 EP2348219 A1 EP 2348219A1 EP 10000704 A EP10000704 A EP 10000704A EP 10000704 A EP10000704 A EP 10000704A EP 2348219 A1 EP2348219 A1 EP 2348219A1
Authority
EP
European Patent Office
Prior art keywords
bearing
container
centrifugal pump
pressure
drive motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10000704A
Other languages
English (en)
French (fr)
Other versions
EP2348219B1 (de
Inventor
Bjarne Dindler Rasmussen
Peter Mønster
Carl-Christian Danielsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP10000704.6A priority Critical patent/EP2348219B1/de
Priority to US13/012,287 priority patent/US20110182725A1/en
Priority to CN201110031160.9A priority patent/CN102135103B/zh
Publication of EP2348219A1 publication Critical patent/EP2348219A1/de
Application granted granted Critical
Publication of EP2348219B1 publication Critical patent/EP2348219B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps

Definitions

  • the invention relates to a refrigerant pump unit, according to the preamble of claim 1.
  • Refrigerant pump units are used to deliver refrigerants or refrigerants to their circulation in refrigeration or air conditioning systems. Centrifugal pumps can be used for this purpose.
  • the refrigerant is usually in such systems under high pressure, so that high demands are placed on the seals of the individual components and joints.
  • refrigerants are often expensive, toxic and / or environmentally harmful media, so leakages should be avoided at all costs.
  • the refrigerant pump unit comprises a drive motor, in particular an electric drive motor and a centrifugal pump driven by this.
  • the centrifugal pump can do this be formed one or more stages.
  • Drive motor and centrifugal pump are connected together to form a pump unit.
  • the centrifugal pump is surrounded by a tubular container.
  • This tubular container surrounds the centrifugal pump as an additional wall, preferably radially spaced from the first housing walls of the individual pump stages of the centrifugal pump.
  • the tubular container is sealingly connected to the housing of the drive motor with a first axial end, on which it is formed open. At its opposite axial end of the tubular container is formed closed, so that it has a total of a cup-shaped shape.
  • the container closes the entire system to the outside and absorbs the forces generated by the system pressure of the fluid in its interior. For sealing only a single seal in the interface to the motor housing is required. In this respect, the risk of leaks is reduced by reducing the interfaces to be sealed.
  • the housing parts of the individual pump stages of the centrifugal pump must not be formed so resistant to pressure that they can absorb the system pressure, these housing parts need only withstand the differential pressure which is generated by the centrifugal pump or its individual pump stages. In this respect, can be dispensed with expensive castings in this area. Since the entire container surrounding the centrifugal pump is preferably filled with the refrigerant to be delivered, the system pressure then prevails both inside and outside the housing of the pump stages of the centrifugal pump assembly. In addition, no higher demands on the seals inside the centrifugal pump must be made because they do not have to hermetically seal the centrifugal pump out to the environment. This function is carried out by the surrounding container.
  • the tubular container preferably has a suction and pressure connection.
  • these two openings are preferably the only other openings in the container, so that the container is relatively easy to seal outward in this case at only three interfaces.
  • the suction port is connected to the suction side of the centrifugal pump and the pressure port to the pressure side of the centrifugal pump.
  • the suction port and / or pressure port extending in the radial direction away from the container, they thus form connecting pieces for connection to subsequent lines.
  • the container preferably has a closed wall.
  • the wall is formed in one piece or in one piece, optionally by welding a plurality of components.
  • the closed container thus formed has, in addition to the open end face for connecting the motor and the suction and pressure ports thus preferably no further openings or interfaces to be sealed, whereby the risk of leakage is minimized.
  • the suction connection and / or the pressure connection can be provided with connecting flanges for connection to adjacent pipelines.
  • the suction connection and / or the pressure connection can be designed for direct welding to connection lines. If subsequent lines are welded directly to the suction connection and / or the pressure connection, this has the advantage that no additional seals must be provided at these connections, whereby the risk of leakage is further minimized.
  • connection lines are welded directly to the suction port and pressure port, so ideally remains only one opening to be sealed to the container, namely the interface to the drive motor.
  • the suction port and the pressure port may be formed as a connecting piece.
  • the connection lines can also be welded directly to the peripheral wall of the container.
  • the container has in its interior an annular partition, which separates the suction and the pressure side of the centrifugal pump from each other.
  • This annular partition preferably extends as an annular projection of the inner wall radially inwardly.
  • the annular partition wall is seen in the axial direction of the container, that is arranged in the direction of the axis of rotation of the centrifugal pump, preferably between the suction port and the pressure port in the container.
  • the annular partition wall is further preferably designed such that it comes into sealing contact with the outer circumference of a housing part of the centrifugal pump arranged in the interior of the container.
  • a seal for example an O-ring may be provided.
  • the partition wall in the axial direction is preferably placed so that the centrifugal pump engages with its suction-side axial end in the inner periphery of the partition wall and sealingly abuts the partition wall with the suction-side axial end.
  • At the suction wall side facing away from the partition of the free space between the centrifugal pump and the surrounding container is preferably filled with the exiting from the centrifugal pumps fluid. This space is then preferably connected to the pressure port.
  • a free space between the centrifugal pump and the inner circumference of the container preferably remains, ie the container has an inner diameter which is larger than the outer diameter of the centrifugal pump.
  • the centrifugal pump preferably extends concentrically to the container and is in the axial direction, d. H. inserted in the direction of the longitudinal or rotational axis of the centrifugal pump from the open end side into the container.
  • the container is preferably releasably connected to the motor housing of the drive motor, for example by a bolted flange connection. This allows the container and the motor housing to be separated from one another, in which case the drive motor with the centrifugal pump assembly can be removed from or withdrawn from the container, for example to service or replace the centrifugal pump or the drive motor.
  • a very simple maintenance and possibly repair is possible because all connecting lines for connecting the centrifugal pump assembly with other parts of a refrigeration system need not be solved, but can remain firmly connected to the container.
  • the drive motor is designed as a canned motor. That is, the drive motor is a wet-running electric motor.
  • the split tube is more preferably arranged so that it is sealed directly to the open axial end of the container or is tightly connected to a flange for connection of the drive motor with the container.
  • the split tube can be welded to such a flange on the drive motor or motor housing. This has the advantage that even in the drive motor no further seals for sealing the filled with refrigerant and under system pressure interior are required. Ideally, therefore, only the only seal between the motor housing or drive motor on the one hand and the container on the other side is required. In particular, in the embodiment as a canned motor no shaft seals are required, which are particularly vulnerable to leakage.
  • the container is preferably formed pressure-resistant for the system pressure of the zufoundnden refrigerant.
  • the container is therefore particularly preferably designed such that it withstands a system pressure> 25, more preferably> 30 and in particular> 50 or 60 bar internal pressure.
  • the pump unit has in a known manner at least one impeller and a thrust bearing, which receives the axial reaction forces generated by the impeller in operation.
  • This thrust bearing can be arranged for example on a shaft driving the impeller.
  • the thrust bearing consists of a rotating and a fixed bearing part, wherein in operation the axial forces are transmitted from the rotating bearing part to the fixed bearing part and the fixed bearing part in turn is supported for example on the housing of the pump or the drive motor.
  • both the rotating and the stationary bearing part are self-aligning. That is, fixed and rotating bearing part are formed so that their bearing surfaces can align with each other so that they extend parallel to each other and, for example, can come into contact directly with each other to slide in the manner of a sliding bearing on each other.
  • the fact that both the rotating and the fixed bearing part and not only one of the bearing parts is self-aligning, even with position errors or deflections of the shaft reliable storage is possible because the bearing surfaces of the two bearing parts can always assume a mutually parallel angular position in which they slide reliably on each other. A tumbling of one of the bearing parts is prevented.
  • Such a thrust bearing is preferably suitable for an arrangement in the middle of the shaft.
  • the thrust bearing on a drive shaft is preferred spaced from the axial ends of the drive shaft, in particular, it is located closer to the axial center of the drive shaft than towards the axial ends. That is, in this embodiment, the thrust bearing is in the region of the drive shaft, in which there may be slight radial deflections of the shaft and positional errors of the shaft, more than at the axial ends, where the shaft is usually mounted radially.
  • the arrangement of the thrust bearing in this area usually has the problem that the bearing parts start to wobble, which causes increased friction and increased wear. Due to the self-aligning design of the two bearing parts according to the invention, this is avoided and even with an arrangement of the axial bearing in this central region of the shaft ensures a smooth and low-wear running.
  • a rotor of an electric drive motor and at least one impeller is preferably arranged, wherein the thrust bearing is located in the axial direction between the rotor and the at least one impeller.
  • the drive shaft may be formed as a continuous, one-piece drive shaft, but also in several parts, for example in the form of a motor shaft and a pump shaft to be formed, which are rotatably connected to each other.
  • the axial bearing is thus preferably arranged on the axial end of the centrifugal pump facing the drive motor.
  • the thrust bearing is arranged on the pressure side of the at least one impeller or an arrangement of a plurality of impellers, in the case of a multi-stage centrifugal pump.
  • the pressure side is that side of the impeller on which the medium to be delivered has a higher pressure.
  • the axial bearing is preferably arranged in the region of the pump in which the highest fluid pressure prevails. This has the advantage that sufficient lubrication of the axial bearing can be ensured by the fluid in this area. This is especially true in the promotion of fluids or liquids which tend to evaporate upon heating and / or lower pressure.
  • the fluid to be delivered is present in the liquid state of aggregation and can thus ensure adequate lubrication of the axial bearing.
  • the region of the highest pressure of the centrifugal pump is preferably located on the axial end of the centrifugal pump facing the drive motor. That is, the suction side of the pump is spaced in the axial direction of the drive motor.
  • the thrust bearing is preferably located in front of the drive motor, so that the fluid to be delivered in this area is not heated by the waste heat of the drive motor substantially. Ideally, the thrust bearing is thus in a range of high pressure and low temperature of the fluid to be delivered, so that it is ensured in this area that the fluid can not evaporate and lubricate the bearing in liquid form.
  • the thrust bearing is preferably designed as a plain bearing and is lubricated by the fluid to be delivered or the liquid to be delivered.
  • a bearing surface of at least one bearing part for alignment in its angular position to the axis of rotation of the drive shaft in at least a limited angular range is free to pivot.
  • the self-alignment is ensured, ie the bearing surface can pivot in its angular position with respect to the axis of rotation and align at an angle so that it comes flush against the opposite bearing surface of the other bearing part.
  • tumbling during operation can be prevented.
  • the bearing surface of at least one bearing part for alignment in its angular position about two mutually perpendicular and perpendicular to the axis of rotation of the drive shaft extending axes pivotally. That is, this essentially represents a pivoting on a spherical plane whose center lies on the axis of rotation.
  • the bearing surface can align freely in all directions in their angular position.
  • the bearing surface of at least one bearing part is attached or supported on a carrier which has a bearing surface facing away from the spherical contact surface, which bears slidably on a corresponding conical counter-contact surface.
  • the spherical contact surface is preferably convexly curved and the conical counter-contact surface is correspondingly concave.
  • the counter-bearing surface is preferably curved concavely in the same radius, that is to say spherically formed, so that the surfaces come into contact with one another flatly. Contact surface and counter-contact surface thus form parts of a spherical surface and allow the above-described pivoting of the bearing surface in its angular position relative to the axis of rotation.
  • the conical counter-bearing surface does not necessarily have to be spherical, instead it could also be conical with a straight cross-sectional line, the diameter and pitch of the cone being selected such that the spherical bearing surface can come into abutment against the conical counter-bearing surface at least in a line.
  • the bearing surface can be formed directly on the carrier, that is, the carrier itself is formed from the desired bearing material. Alternatively, it is possible to provide the carrier as a separate component to which at least one bearing element made of a suitable bearing material are arranged, on which the actual bearing surface is formed.
  • the contact surface and the counter-contact surface of at least one bearing part preferably the rotating bearing part held by spring force in plant.
  • engagement elements are expediently arranged on the contact surface and the counter-contact surface, which are engaged with each other for torque transmission.
  • the contact surface and the counter-contact surface should slide against each other to change the angular position of the bearing surface. As described above, this essentially involves pivoting about two mutually orthogonal pivot axes which intersect the axis of rotation of the drive shaft.
  • pivoting or turning about the axis of rotation between the contact surface and the counter-contact surface is undesirable since this is the movement which is to take place in the axial bearing between the bearing surfaces of the two bearing parts. These should rotate together. In this respect, a rotation between the contact surface and counter-contact surface is to be prevented.
  • the engagement elements may be formed, for example, in the form of engagement projections and corresponding engagement grooves, wherein the engagement projections are formed, for example, on the abutment surface and the engagement grooves in the counter abutment surface.
  • the engagement projections and engagement grooves preferably extend in the radial direction, so that the engagement projections in the engagement grooves can move relative to one another when pivoting the contact surface relative to the counter-contact surface. However, a movement in the circumferential direction relative to each other is prevented. This allows a torque between contact surface and counter-contact surface be ensured by the positive engagement of the engagement elements.
  • the contact surface and / or the counter contact surface are preferably made of a ceramic material. These materials have sufficient strength and in particular wear resistance.
  • one of the bearing parts on a bearing surface which is formed by a plurality of individual bearing shoes and the other bearing part has a continuous bearing surface on which slide the bearing shoes.
  • the stationary or stationary bearing part may have a plurality of individual bearing shoes, while the rotating bearing part has an annular continuous bearing surface, which is preferably made as a one-piece component.
  • grooves or recesses in the surface may be provided in the continuous bearing surface in order to ensure the supply of the fluid to be pumped by the pump for lubricating the bearing.
  • the individual bearing shoes on the other bearing part may have a certain mobility, so that they can also align with their O-ben lake relative to the opposite bearing surface, so that the bearing surfaces can come to rest flat against each other.
  • Free spaces or gaps can remain between the individual bearing shoes, which also serve to supply the fluid to be delivered or the fluid to be conveyed for lubricating the bearing. Also, corresponding recesses or grooves for lubricant supply can be provided in the bearing surfaces on the bearing shoes.
  • the centrifugal pump unit is configured to convey a refrigerant. Especially in such a centrifugal pump unit, it is desirable to arrange the thrust bearing on the pressure side of the centrifugal pump, ie in the axial center region of the shaft, wherein the quality of the storage is improved by the inventive design of the thrust bearing in the manner described above.
  • centrifugal pump units are specially designed for the promotion of refrigerants and have at an axial end to a drive motor 2, on which the axial side, ie in the direction of the axis of rotation X, a centrifugal pump 4 is attached.
  • the centrifugal pump 4 is designed in multiple stages, that is, it has a plurality of in the axial direction one behind the other on the drive shaft 6 arranged impellers 8.
  • the wheels 8 are as known from conventional centrifugal pumps ago surrounded by housing parts 10 with internal nozzles 12.
  • the nozzles 12 are used to guide the flow of an impeller 8 to the next and for deflecting the radially emerging from the impeller 8 flow in the axial direction.
  • the housing parts 10 are placed in the axial direction X together, so that they together form a tubular housing.
  • a filter 14 is arranged, through which the refrigerant to be delivered is sucked by the centrifugal pump 4 and enters into this.
  • circumferential outlet openings 16 are arranged in the last housing part 10, through which the refrigerant conveyed by the centrifugal pump 4 exits radially out of the centrifugal pump 4.
  • the total system pressure of a refrigeration system can be more than 50 bar, while the differential pressure between the suction and pressure side of the centrifugal pump 4 can be much lower, for example, in the range between 2.5 and 6 bar.
  • the high system pressure requires that the centrifugal pump assembly be sufficiently pressure-resistant.
  • leaks are to be avoided at all costs, since such refrigerants are often expensive, harmful to the environment and / or toxic, so that their escape into the environment must be avoided.
  • the centrifugal pump 4 is arranged in a surrounding pressure-resistant container 18.
  • the container 18 is tubular and closed at its end remote from the drive motor 2 end 20.
  • the container has only three openings. These are an opening 22, which is formed by the end face of the container 18 facing away from the axial end 20, as well as a suction opening 24 and a pressure opening 26.
  • the container wall is formed completely closed.
  • the container 18 may in particular be pressure-tight welded in the other areas.
  • the conveyed by the stages of the centrifugal pump refrigerant then exits at the opposite axial end of the centrifugal pump 4 through the outlet openings 16. It then flows through the gap 28 between the outside of the housing parts 10 and the inner circumference of the container 18 to the pressure port 26, through which it then exits the centrifugal pump assembly.
  • a ring 29 is arranged on the inner wall, which forms a partition wall in the gap 28 and separates the pressure side of the suction side.
  • the ring 29 sealingly abuts the axial end 13 of the tubular housing formed from the housing parts 10.
  • an O-ring is provided to the seal. This prevents the fluid from flowing from the pressure side in the gap 28 into the suction side and the opening at the axial end 13 of the centrifugal pump 4.
  • the ring 29 is fixedly and tightly connected to the container wall, in particular welded.
  • the suction opening 24 and the pressure opening 26 are surrounded by flanges 30, by means of which the centrifugal pump unit can be connected to adjacent connecting lines.
  • a sealing element for sealing is interposed in each case between the flanges 30 and against these mating connection flanges (not shown here) between the flanges 30 and against these mating connection flanges (not shown here) in each case a sealing element for sealing.
  • the embodiment according to FIG. 2 provided in which the suction port 24 and the pressure port 26 are formed only by radially extending away from the container 18 tubular nozzle 32, which can be welded directly to adjoining lines.
  • a flange 34 is disposed at the axial end of the container 18, which is circumferentially with the wall of the container 18 is welded.
  • This flange 34 serves to connect to the drive motor 2, which for this purpose at its the centrifugal pump 4 facing axial end has a counter flange 36 which is screwed by means of screws 38 to the flange 34.
  • an O-ring 40 is arranged for sealing.
  • the drive motor 2 is designed as a canned motor, wherein its split tube 42 is connected at its open the centrifugal pump 4 end facing sealingly with the mating flange 36, preferably welded thereto.
  • a further feature of the centrifugal pump unit according to the invention is the configuration of the axial bearing 44, which is described below with reference to FIG FIGS. 5 to 9 will be described in detail.
  • the thrust bearing 44 is disposed in the central region of the drive shaft 6, that is, it is from the two axial ends the drive shaft 6 spaced and located closer to the axial center of the drive shaft 6 as to the axial ends.
  • the thrust bearing 44 thus lies between the centrifugal pump 4 and the rotor 46 of the drive motor 2, which is also mounted on the drive shaft 6.
  • the drive shaft 6 is formed in two parts, the part of the shaft in the rotor 2 is separated from the part of the drive shaft 6 in the centrifugal pump 4. Both parts are non-rotatably connected.
  • a one-piece drive shaft 6 could find use.
  • the position of the thrust bearing 44 on the drive motor 2 facing the end of the centrifugal pump 4 has the advantage that the thrust bearing 44, which is lubricated by the delivered refrigerant, located in the region of the centrifugal pump, in which the highest pressure of the refrigerant prevails.
  • the axial bearing is still spaced from the rotor 46 of the drive motor 2, so that in this area the delivered refrigerant is not heated excessively by the waste heat of the drive motor 2.
  • the axial bearing 44 is located precisely in the region in which the refrigerant does not evaporate due to the high pressure and the not yet completed heating by the drive motor, so that reliable fluid lubrication of the axial bearing 44 is ensured here.
  • the thrust bearing consists of two bearing parts 48 and 50, namely a stationary bearing part 48 and a rotating bearing part 50.
  • the rotating bearing part 50 is rotatably connected to the shaft 6, while the stationary bearing member 48 rotatably in a bolted to the mating flange 36 Housing part 52 is located. Both the stationary bearing part 48 and the rotating bearing part 50 are self-aligning.
  • the rotating bearing part 50 has an annular bearing element 54 made of a suitable bearing material, for example a ceramic material.
  • a first bearing surface 56 is formed on an axial side with respect to the axis of rotation X.
  • the bearing member 54 is held on a support 58, being centered over an O-ring 60.
  • the O-ring 60 is arranged circumferentially of a projection 62 of the carrier 58, which engages in the inner circumference of the annular bearing element 54, so that the O-ring 60 comes to rest on the inner circumference of the bearing element 54.
  • With the bearing surface 56 facing away from the axial rear side of the bearing element 54 is flat against the support 58 at.
  • the carrier 58 is supported via a wave-shaped spring washer 64 on a radially projecting shoulder 65 of a sleeve 66, wherein the sleeve 66 is fixed to the drive shaft 6.
  • the bearing element 54 facing away from the rear surface of the support 58 is formed as a spherical contact surface 68. That is, the abutment surface 68 has the shape of an annular spherical portion, with the center of this sphere lying on the axis of rotation X.
  • the contact surface 68 bears against a conical, in this case correspondingly spherically shaped, counter-bearing surface 70, which is formed in a support body 72.
  • the counter-abutment surface 70 in this case has the same curvature, ie, the same radius as the abutment surface 68.
  • the contact surface 68 is convex and the counter-contact surface 70 is concave.
  • the support body 42 in turn is supported on an annular projection 74 on the drive shaft 6.
  • the projection 74 is formed by the axial end of the shaft portion of the drive shaft 6, which forms the rotor shaft of the rotor 46.
  • the projection 74 of the shoulder 65 is opposite. and the carrier 58 are clamped by the spring action of the spring washer 64 between the shoulder 65 and the projection 74 and the abutment surface 68 and the counter-abutment surface 70 are held in abutment by this spring force.
  • the carrier X is possible to pivot around the center of the spherical shape of the abutment surface 68 and the counter-abutment surface 70, so that the angular position of the bearing surface 56 with respect to the rotation axis X by two mutually orthogonal and the axis of rotation X orthogonal axes is changeable.
  • the bearing surface 56 can align itself automatically in its angular position to the axis of rotation X, wherein the contact surface 68 slides on the counter-bearing surface 70.
  • the spring action of the spring washer 64 ensures that even when the pump is stopped, when the axial force which acts on the thrust bearing in operation, is no longer present, the contact surface 68 and the counter-contact surface 70 are fixed to each other, so that a previously automatically set angular position of the bearing surface 56 is maintained even when the pump is stopped.
  • the stationary bearing part 48 is formedsausplaind.
  • the stationary bearing part 48 has a plurality of bearing shoes 76, whose axial surfaces form second bearing surfaces 78, which are in sliding contact with the first bearing surface 56.
  • the bearing shoes 76 are fixed in a retaining ring 80, which has recesses 82 which correspond to the outer contour of the bearing shoes 76.
  • the bearing shoes 76 may extend through the recesses 82 and be fixed in the radial and circumferential direction in the retaining ring 80.
  • the bearing shoes 76 rest against a carrier 84.
  • the carrier 84 has on its side facing away from the bearing shoes 76 axial side on a spherical contact surface 86.
  • This spherical contact surface 86 forms an annular surface 86 on.
  • This spherical abutment surface 86 forms an annular section of a spherical surface, wherein the center of the ball is located on the axis of rotation X.
  • the contact surface 86 bears against a counter-contact surface 88, which is formed in the housing part 52.
  • the counter-bearing surface 88 is conical, in this case correspondingly spherical, ie it has the same radius of curvature and is curved around the same center point as the abutment surface 86.
  • the abutment surface 86 is convexly curved, while the counter-abutment surface 88 is concavely curved.
  • This embodiment allows the carrier 84 to pivot about the midpoint of the spherical surface defining the abutment surface 86 and abutment surface 88.
  • the bearing surfaces 78 on the bearing shoes 76 in its angular position automatically align with respect to the axis of rotation X. That is, the bearing surfaces 78 are free to pivot about two mutually orthogonal pivot axes, which extend normal to the longitudinal axis X, in a certain angular range. In this way, the bearing surfaces 78 can always create a flat against the bearing surface 56 of the rotating bearing part, so that there is always a sliding contact without wobbling movement of the bearing surfaces.
  • the carrier 58 is rotatably mounted on the support body 72, so that a torque from the support body 72 can be transferred to the carrier 58.
  • radially extending engagement projections 96 are arranged on the outer circumference of the contact surface 68, which engage in corresponding recesses 98 in the support body 72. Again, sufficient clearance, in particular in the radial direction between the engagement projections 96 and provided in the recesses 98 in order to keep the pivotal movement of the abutment surface 68 relative to the counter abutment surface 70 further possible.
  • the contact surfaces 68 and 86 and the counter-bearing surfaces 70 and 88 are preferably made of a hard wear-resistant material, in particular, the carrier 58 may be the housing part 52 and the support body 72 made of a corresponding hard material such as cemented carbide or ceramic.

Abstract

Die Erfindung betrifft ein Kreiselpumpenaggregat mit zumindest einem Laufrad (8) und einem Axiallager (44) welches rotierenden (50) und einen feststehenden (48) Lagerteil aufweist, wobei sowohl der rotierende (50) als auch der feststehende (48) Lagerteil selbstausrichtend ausgebildet sind.

Description

  • Die Erfindung betrifft ein Kältemittel-Pumpenaggregat, gemäß dem Oberbegriff des Anspruchs 1.
  • Kältemittel-Pumpenaggregate werden eingesetzt, um in Kühl- oder Klimaanlagen Kühl- bzw. Kältemittel zu deren Zirkulation zu fördern. Hierzu können Kreiselpumpen eingesetzt werden.
  • Das Kältemittel steht in derartigen Anlagen üblicherweise unter hohem Druck, so dass an die Abdichtungen der einzelnen Bauteile und Verbindungsstellen hohe Anforderungen gestellt sind. Darüber hinaus handelt es sich bei Kältemitteln häufig um teuere, giftige und/oder umweltschädliche Medien so dass Leckagen unbedingt vermieden werden sollen.
  • Im Hinblick auf diese Problematik ist es Aufgabe der Erfindung, ein Kältemittel-Pumpenaggregat bereitzustellen, bei welchen Leckagen zuverlässig verhindert werden können.
  • Diese Aufgabe wird durch ein Kältemittel-Pumpenaggregat mit den im Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Das Kältemittel-Pumpenaggregat gemäß der Erfindung weist einen Antriebsmotor, insbesondere einen elektrischen Antriebsmotor und eine von diesem angetriebene Kreiselpumpe auf. Dabei kann die Kreiselpumpe ein- oder mehrstufig ausgebildet sein. Antriebsmotor und Kreiselpumpe sind zu einem Pumpenaggregat miteinander verbunden.
  • Erfindungsgemäß ist vorgesehen, dass die Kreiselpumpe von einem rohrförmigen Behälter umgeben ist. Dieser rohrförmige Behälter umgibt die Kreiselpumpe als zusätzliche Wandung, vorzugsweise radial beabstandet zu den ersten Gehäusewandungen der einzelnen Pumpenstufen der Kreiselpumpe. Der rohrförmige Behälter ist mit einem ersten Axialende, an welchem er offen ausgebildet ist, dichtend mit dem Gehäuse des Antriebsmotors verbunden. An seinem entgegengesetzten axialen Ende ist der rohrförmige Behälter geschlossen ausgebildet, so dass er insgesamt eine topfförmige Form aufweist. Der Behälter schließt das gesamte System nach außen ab und nimmt die durch den Systemdruck des Fluids in seinem Inneren erzeugten Kräfte auf. Zur Abdichtung ist nur eine einzige Dichtung im Bereich der Schnittstelle zu dem Motorgehäuse hin erforderlich. Insofern wird die Gefahr von Leckagen durch die Reduzierung der abzudichtenden Schnittstellen reduziert. Darüber hinaus müssen die Gehäuseteile der einzelnen Pumpenstufen der Kreiselpumpe nicht derart druckfest ausgebildet werden, dass sie den Systemdruck aufnehmen können, diese Gehäuseteile müssen lediglich den Differenzdruck, welcher von der Kreiselpumpe bzw. deren einzelnen Pumpenstufen erzeugt wird, standhalten. Insofern kann auf teuere Gussteile in diesem Bereich verzichtet werden. Da der ganze, die Kreiselpumpe umgebende Behälter vorzugsweise mit dem zu fördernden Kältemittel gefüllt ist, herrscht der Systemdruck dann sowohl innerhalb als auch außerhalb des Gehäuses der Pumpenstufen des Kreiselpumpenaggregates. Darüber hinaus müssen auch keine höheren Anforderungen an die Dichtungen im Inneren der Kreiselpumpe gestellt werden, da diese die Kreiselpumpe nicht hermetisch nach außen zur Umgebung hin abdichten müssen. Diese Funktion übernimmt der umgebende Behälter.
  • Bevorzugt weist der rohrförmige Behälter einen Saug- und Druckanschluss auf. Neben dem geöffneten axialen Stirnende, welches mit dem Motorgehäuse verbunden wird, sind diese beiden Öffnungen bevorzugt die einzigen weiteren Öffnungen in dem Behälter, so dass der Behälter nach außen relativ leicht in diesem Fall an nur drei Schnittstellen abzudichten ist. Es ist jedoch auch denkbar, das je nach Anlage, in welche der Behälter einzubauen ist, möglicherweise auch mehr als ein Sauganschluss und/oder mehr als ein Druckanschluss an dem Behälter vorgesehen sein kann. Im Inneren des Behälters ist der Sauganschluss mit der Saugseite der Kreiselpumpe und der Druckanschluss mit der Druckseite der Kreiselpumpe verbunden.
  • Bevorzugt erstrecken sich der Sauganschluss und/oder Druckanschluss in radialer Richtung von dem Behälter weg, sie bilden somit Anschlussstutzen zur Verbindung mit anschließenden Leitungen.
  • Der Behälter weist im Übrigen vorzugsweise eine geschlossene Wandung auf. Bevorzugt ist die Wandung einteilig oder einstückig ausgebildet, gegebenenfalls durch Verschweißen mehrerer Bauteile. Der so gebildete geschlossene Behälter weist neben der offenen Stirnseite zur Anbindung des Motors und den Saug- und Druckanschlüssen somit bevorzugt keine weiteren Öffnungen oder abzudichtenden Schnittstellen auf, wodurch die Leckagegefahr minimiert wird.
  • Der Sauganschluss und/oder der Druckanschluss können mit Anschlussflanschen zur Verbindung mit sich anschließenden Rohrleitungen versehen sein. Alternativ können der Sauganschluss und/oder der Druckanschluss zum direkten Verschweißen mit Anschlussleitungen ausgebildet sein. Wenn sich anschließende Leitungen direkt mit dem Sauganschluss und/oder dem Druckanschluss verschweißt werden, hat dies den Vorteil, dass an diesen Anschlüssen keine weiteren Dichtungen vorgesehen werden müssen, wodurch die Leckagegefahr weiter minimiert wird. In dem Fall, dass Anschlussleitungen direkt an Sauganschluss und Druckanschluss angeschweißt sind, verbleibt im Idealfall somit lediglich eine abzudichtende Öffnung an dem Behälter, nämlich die Schnittstelle zu dem Antriebsmotor. Der Sauganschluss und der Druckanschluss können als Anschlussstutzen ausgebildet sein. Alternativ können die Anschlussleitungen auch direkt an die Umfangswandung des Behälters angeschweißt werden.
  • Weiter bevorzugt weist der Behälter in seinem Inneren eine ringförmige Trennwand auf, welche die Saug- und die Druckseite der Kreiselpumpe voneinander trennt. Diese ringförmige Trennwand erstreckt sich bevorzugt als ringförmiger Vorsprung von der Innenwandung radial nach innen. Die ringförmige Trennwand ist dabei in axialer Richtung des Behälters gesehen, d. h. in Richtung der Rotationsachse der Kreiselpumpe, vorzugsweise zwischen dem Sauganschluss und dem Druckanschluss in dem Behälter angeordnet. An ihrem Innenumfang ist die ringförmige Trennwand weiter bevorzugt so ausgebildet, das sie mit dem Außenumfang eines Gehäuseteiles der im Inneren des Behälters angeordneten Kreiselpumpe dichtend zur Anlage kommt. Hier kann gegebenenfalls eine Dichtung, beispielsweise ein O-Ring vorgesehen sein. Dabei ist die Trennwand in axialer Richtung bevorzugt so platziert, dass die Kreiselpumpe mit ihrem saugseitigen Axialende in den Innenumfang der Trennwand eingreift und mit dem saugseitigen Axialende dichtend an der Trennwand anliegt. An der der Saugwandseite abgewandten Seite der Trennwand ist der Freiraum zwischen Kreiselpumpe und dem umgebenden Behälter vorzugsweise mit dem aus der Kreiselpumpen austretenden Fluid gefüllt. Dieser Raum ist dann bevorzugt mit dem Druckanschluss verbunden. Bevorzugt verbleibt somit ein Freiraum zwischen der Kreiselpumpe und dem Innenumfang des Behälters, d. h. der Behälter weist einen Innendurchmesser auf, welcher größer ist als der Außendurchmesser der Kreiselpumpe.
  • Die Kreiselpumpe erstreckt sich bevorzugt konzentrisch zu dem Behälter und ist in axialer Richtung, d. h. in Richtung der Längs- bzw. Rotationsachse der Kreiselpumpe von der offenen Stirnseite her in den Behälter eingeschoben. Dabei ist der Behälter mit dem Motorgehäuse des Antriebsmotors bevorzugt lösbar verbunden, beispielsweise durch eine verschraubte Flanschverbindung. Dies ermöglicht es, dass der Behälter und das Motorgehäuse voneinander getrennt werden können, wobei dann der Antriebsmotor mit dem Kreiselpumpenaggregat von dem Behälter abgenommen bzw. aus diesem herausgezogen werden können, beispielsweise um die Kreiselpumpe oder den Antriebsmotor zu warten oder auszutauschen. Insofern ist eine sehr einfache Wartung und gegebenenfalls Reparatur möglich, da sämtliche Anschlussleitungen zur Verbindung des Kreiselpumpenaggregates mit übrigen Teilen eines Kältesystems nicht gelöst werden müssen, sondern fest mit dem Behälter verbunden verbleiben können.
  • Weiter bevorzugt ist der Antriebsmotor als Spaltrohrmotor ausgebildet. Das heißt der Antriebsmotor ist ein nasslaufender Elektromotor. Dabei ist das Spaltrohr weiter bevorzugt so angeordnet, dass es direkt mit dem offenen Axialende des Behälters abgedichtet ist bzw. dicht mit einem Flansch zur Verbindung des Antriebsmotors mit dem Behälter verbunden ist. Beispielsweise kann das Spaltrohr mit einem solchen Flansch am Antriebsmotor bzw. Motorgehäuse verschweißt sein. Dies hat den Vorteil, dass auch im Antriebsmotor keine weiteren Dichtungen zur Abdichtung des mit Kältemittel gefüllten und unter Systemdruck stehenden Innenraumes erforderlich sind. Im Idealfall ist somit nur die einzige Dichtung zwischen Motorgehäuse bzw. Antriebsmotor auf der einen Seite und dem Behälter auf der anderen Seite erforderlich. Insbesondere sind bei der Ausgestaltung als Spaltrohrmotor keine Wellendichtungen erforderlich, welche besonders leckagegefährdet sind.
  • Wie vorangehend beschrieben ist der Behälter vorzugsweise druckfest für den Systemdruck des zufördernden Kältemittels ausgebildet. Besonders bevorzugt ist der Behälter daher so ausgebildet, das er einem Systemdruck > 25, weiter bevorzugt >30 und insbesondere > 50 oder 60 bar Innendruck standhält.
  • Das Pumpenaggregat weist in bekannter Weise zumindest ein Laufrad und ein Axiallager auf, welches die von dem Laufrad im Betrieb erzeugten axialen Reaktionskräfte aufnimmt. Dieses Axiallager kann beispielsweise an einer das Laufrad antreibenden Welle angeordnet sein. Das Axiallager besteht aus einem rotierenden und einem feststehenden Lagerteil, wobei im Betrieb die Axialkräfte von dem rotierenden Lagerteil auf den feststehende Lagerteil übertragen werden und der feststehende Lagerteil sich seinerseits beispielsweise am Gehäuse der Pumpe oder des Antriebsmotors abstützt.
  • Gemäß einer bevorzugten Ausführungsform sind sowohl der rotierende als auch der feststehenden Lagerteil selbstausrichtend ausgebildet. Das heißt feststehender und rotierender Lagerteil sind so ausgebildet, dass sich ihre Lagerflächen zueinander so ausrichten können, dass sie sich parallel zueinander erstrecken und beispielsweise direkt miteinander in Anlage kommen können, um nach Art eines Gleitlagers aufeinander zu gleiten. Dadurch, dass sowohl der rotierende als auch der feststehende Lagerteil und nicht nur einer der Lagerteile selbstausrichtend ausgebildet ist, ist auch bei Lagefehlern oder Auslenkungen der Welle eine zuverlässige Lagerung möglich, da die Lagerflächen der beiden Lagerteile stets eine zueinander parallele Winkellage einnehmen können, in welcher sie zuverlässig aufeinander gleiten. Ein Taumeln eines der Lagerteile wird so verhindert.
  • Bevorzugt eignet sich ein solches Axiallager für eine Anordnung in der Mitte der Welle. So ist bevorzugt das Axiallager an einer Antriebswelle beabstandet von den axialen Enden der Antriebswelle angeordnet, insbesondere ist es näher zur axialen Mitte der Antriebswelle als zu den axialen Enden hin gelegen. Das heißt bei dieser Ausführungsform liegt das Axiallager im dem Bereich der Antriebswelle, in welchem es zu geringfügigen radialen Auslenkungen der Welle und Lagefehlern der Welle kommen kann, mehr als an deren axialen Enden, wo die Welle üblicherweise radial gelagert ist. Die Anordnung des Axiallagers in diesem Bereich hat üblicherweise das Problem zur Folge, dass die Lagerteile zu taumeln anfangen, was eine erhöhte Reibung und einen erhöhten Verschleiß bedingt. Durch die erfindungsgemäße selbstausrichtende Ausgestaltung der beiden Lagerteile wird dies vermieden und auch bei einer Anordnung des Axiallagers in diesem Mittelbereich der Welle ein reibungs- und verschleißarmer Lauf gewährleistet.
  • Auf der Antriebswelle ist bevorzugt ein Rotor eines elektrischen Antriebsmotors und zumindest ein Laufrad angeordnet, wobei das Axiallager in axialer Richtung zwischen dem Rotor und dem zumindest einen Laufrad gelegen ist. Dabei kann die Antriebswelle als durchgehende, einteilige Antriebswelle ausgebildet sein, jedoch auch mehrteilig, beispielsweise in Form einer Motorwelle und einer Pumpenwelle ausgebildet sein, welche drehfest miteinander verbunden sind. Bevorzugt ist das Axiallager somit an dem dem Antriebsmotor zugewandten Axialende der Kreiselpumpe angeordnet.
  • Weiter bevorzugt ist das Axiallager an der Druckseite des zumindest einen Laufrades oder einer Anordnung mehrerer Laufräder, im Falle einer mehrstufigen Kreiselpumpe, angeordnet. Die Druckseite ist diejenige Seite des Laufrades, an welcher das zu fördernde Medium einen höheren Druck aufweist. Das heißt bevorzugt wird das Axiallager im Bereich der Pumpe angeordnet, in welchem der höchste Fluiddruck herrscht. Dies hat den Vorteil, dass in diesem Bereich eine ausreichende Schmierung des Axiallagers durch das Fluid gewährleistet werden kann. Dies gilt insbesondere bei der Förderung von Fluiden bzw. Flüssigkeiten, welche dazu neigen, bei Erwärmung und/oder geringerem Druck zu verdampfen. Durch Anordnung im Bereich des höchsten Druckes wird gewährleistet, dass in diesem Bereich das zu fördernde Fluid im flüssigen Aggregatzustand vorliegt und so für eine ausreichende Schmierung des Axiallagers sorgen kann. Dies ist insbesondere dann von Bedeutung, wenn das zu fördernde Fluid beispielsweise ein Kältemittel ist, welches bereits bei geringeren Temperaturen verdampft. Bevorzugt liegt der Bereich des höchsten Druckes der Kreiselpumpe an dem dem Antriebsmotor zugewandten Axialende der Kreiselpumpe. Das heißt die Saugseite der Pumpe ist in axialer Richtung vom Antriebsmotor beabstandet. Das Axiallager liegt dabei vorzugsweise vor dem Antriebsmotor, so dass das zu fördernde Fluid in diesem Bereich im Wesentlichen noch nicht durch die Abwärme des Antriebsmotors erwärmt wird. Im Idealfall liegt das Axiallager somit in einem Bereich eines hohen Druckes und geringer Temperatur des zu fördernden Fluids, so dass in diesem Bereich sichergestellt ist, dass das Fluid nicht verdampft und in flüssiger Form das Lager schmieren kann.
  • Wie oben beschrieben ist das Axiallager vorzugsweise als Gleitlager ausgebildet und wird durch das zu fördernde Fluid bzw. die zu fördernde Flüssigkeit geschmiert.
  • Weiter bevorzugt ist eine Lagerfläche zumindest eines Lagerteils zur Ausrichtung in ihrer Winkellage zur Rotationsachse der Antriebswelle in zumindest einem begrenzten Winkelbereich frei schwenkbar. Hierdurch wird die Selbstausrichtung gewährleistet, d.h. die Lagerfläche kann in ihrer Winkellage bezüglich der Rotationsachse verschwenken und sich im Winkel so ausrichten, dass sie plan an der gegenüberliegenden Lagerfläche des anderen Lagerteils zur Anlage kommt. Somit kann ein Taumeln im Betrieb verhindert werden.
  • Dazu ist weiter bevorzugt die Lagerfläche zumindest eines Lagerteils zur Ausrichtung in ihrer Winkellage um zwei zueinander rechtwinklige und sich normal zur Rotationsachse der Antriebswelle erstreckenden Achsen schwenkbar. Das heißt dies stellt im Wesentlichen eine Verschwenkung auf einer Kugelebene dar, deren Mittelpunkt auf der Rotationsachse liegt. So kann sich die Lagerfläche frei in allen Richtungen in ihrer Winkellage ausrichten.
  • Bevorzugt ist die Lagerfläche zumindest eines Lagerteils an einem Träger angebracht oder abgestützt, welcher eine der Lagerfläche abgewandte sphärische Anlagefläche aufweist, welche gleitend an einer korrespondierenden konischen Gegenanlagefläche anliegt. Dabei ist die sphärische Anlagefläche vorzugsweise konvex gewölbt und die konische Gegenanlagefläche entsprechend konkav ausgebildet. Dabei ist die Gegenanlagefläche bevorzugt im selben Radius konkav gewölbt, d.h. sphärisch ausgebildet, so dass die Flächen aneinander flächig zur Anlage kommen. Anlagefläche und Gegenanlagefläche bilden somit Teile einer Kugeloberfläche und ermöglichen die vorangehend beschriebene Verschwenkung der Lagerfläche in ihrer Winkellage relativ zur Rotationsachse. Die konische Gegenanlagefläche muss nicht zwingend sphärisch ausgebildet sein, stattdessen könnte sie auch konisch mit gerader Querschnittslinie ausgebildet sein, wobei Durchmesser und Steigung des Konus so gewählt sind, dass die sphärische Anlagefläche zumindest linienförmig an der konischen Gegenanlagefläche zur Anlage kommen kann. Die Lagerfläche kann direkt an dem Träger ausgebildet sein, das heißt der Träger selber ist aus dem gewünschten Lagermaterial ausgebildet. Alternativ ist es möglich, den Träger als separates Bauteil vorzusehen, an welchem zumindest ein Lagerelement aus einem geeigneten Lagermaterial angeordnet sind, an welchem die eigentliche Lagerfläche ausgebildet ist.
  • Weiter bevorzugt werden die Anlagefläche und die Gegenanlagefläche zumindest eines Lagerteils, vorzugsweise des rotierenden Lagerteils durch Federkraft in Anlage gehalten. Dies hat den Vorteil, dass auch bei Stillstand der Pumpe die durch relatives Verschwenken von Anlagefläche und Gegenanlagefläche zueinander eingenommene Winkellage der Lagerfläche beibehalten werden kann, da Anlagefläche und Gegenanlagefläche mit einem gewissen Reibschluss in Anlage gehalten werden.
  • Ferner sind an der Anlagefläche und der Gegenanlagefläche zweckmäßigerweise Eingriffselemente angeordnet, welche zur Drehmomentübertragung miteinander in Eingriff sind. Die Anlagefläche und die Gegenanlagefläche sollen aneinander gleiten, um die Winkellage der Lagerfläche zu verändern. Wie oben beschrieben beinhaltet dies im Wesentlichen ein Verschwenken um zwei zueinander orthogonale Schwenkachsen, welche die Rotationsachse der Antriebswelle kreuzen. Ein Verschwenken bzw. Drehen um die Rotationsachse zwischen Anlagefläche und Gegenanlagefläche ist jedoch unerwünscht, da dies die Bewegung ist, welche im Axiallager zwischen den Lagerflächen der beiden Lagerteile erfolgen soll. Diese sollen rotierend aneinander gleiten. Insofern soll eine Rotation zwischen Anlagefläche und Gegenanlagefläche verhindert werden. Die Eingriffselemente können beispielsweise in Form von Eingriffsvorsprüngen und korrespondierenden Eingriffsnuten ausgebildet sein, wobei die Eingriffsvorsprünge beispielsweise an der Anlagefläche und die Eingriffsnuten in der Gegenanlagefläche ausgebildet sind. Die Eingriffsvorsprünge und Eingriffsnuten erstrecken sich dabei bevorzugt in radialer Richtung, so dass sich die Eingriffsvorsprünge in den Eingriffsnuten beim Verschwenken der Anlagefläche relativ zu der Gegenanlagefläche relativ zueinander bewegen können. Eine Bewegung in Umfangsrichtung relativ zueinander wird jedoch verhindert. So kann ein Drehmoment zwischen Anlagefläche und Gegenanlagefläche durch den formschlüssigen Eingriff der Eingriffselemente gewährleistet werden.
  • Die Anlagefläche und/oder die Gegenanlagefläche sind bevorzugt aus einen keramischen Material gefertigt. Diese Materialien weisen eine ausreichende Festigkeit und insbesondere Verschleißfestigkeit auf.
  • Weiter bevorzugt weist eines der Lagerteile eine Lagerfläche auf, welche von mehreren einzelnen Lagerschuhen gebildet ist und das andere Lagerteil weist eine durchgehende Lagerfläche auf, auf welcher die Lagerschuhe gleiten. So kann beispielsweise der feststehende bzw. stationäre Lagerteil mehrere einzelne Lagerschuhe aufweisen, während der rotierende Lagerteil eine ringförmige durchgehende Lagerfläche aufweist, welche vorzugsweise als einstückiges Bauteil gefertigt ist. Dabei können in der durchgehenden Lagerfläche aber Nuten oder Ausnehmungen in der Oberfläche vorgesehen sein, um die Zufuhr des von der Pumpe zu fördernden Fluids zur Schmierung des Lagers zu gewährleisten. Die einzelnen Lagerschuhe an dem anderen Lagerteil können eine gewisse Beweglichkeit aufweisen, so dass sie sich mit ihren O-benflächen ebenfalls relativ zu der gegenüberliegenden Lagerfläche ausrichten können, so dass die Lagerflächen plan aneinander zur Anlage kommen können. Zwischen den einzelnen Lagerschuhen können Freiräume bzw. Spalte verbleiben, welche ebenfalls der Zufuhr des zu fördernden Fluids bzw. der zu fördernden Flüssigkeit zur Schmierung des Lagers dienen. Auch können in den Lagerflächen an den Lagerschuhen entsprechende Ausnehmungen oder Nuten zur Schmierstoffzufuhr vorgesehen sein.
  • Wie oben beschrieben ist das Kreiselpumpenaggregat zur Förderung eines Kältemittels ausgebildet. Gerade bei einem solchen Kreiselpumpenaggregat ist es wünschenswert das Axiallager auf der Druckseite der Kreiselpumpe, d.h. im axialen Mittelbereich der Welle anzuordnen, wobei die Qualität der Lagerung durch die erfindungsgemäße Ausgestaltung des Axiallagers in der oben beschriebenen Weise verbessert wird.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Figur 1 -
    eine Schnittansicht eines Kreiselpumpenaggregates für die Förderung eines Kältemittels gemäß einer ersten Ausführungsform,
    Figur 2 -
    eine Schnittansicht eines Kreiselpumpenaggregates für die Förderung eines Kältemittels gemäß einer zweiten Ausführungsform,
    Figur 3 -
    eine perspektivische Gesamtansicht des Kreisel- pumpenaggregates gemäß Figur 1,
    Figur 4 -
    in einer perspektivischen Ansicht das Kreiselpum- penaggregat gemäß Figur 3 im geöffneten Zu - stand,
    Figur 5 -
    vergrößert die Ausgestaltung des Axiallagers in den Kreiselpumpen gemäß den Figuren 1 und 2,
    Figur 6 -
    in einer perspektivischen Explosionsansicht den ers- ten rotierenden Lagerteil des Axiallagers gemäß Figur 5,
    Figur 7 -
    eine perspektivische Explosionsansicht des festste- henden Lagerteils gemäß Figur 6 in anderer axialer Richtung gesehen,
    Figur 8 -
    eine perspektivische Explosionsansicht des festste- henden Lagerteils des Axiallagers gemäß Figur 5 und
    Figur 9 -
    eine perspektivische Explosionsansicht des festste- henden Lagerteils gemäß Figur 8 in anderer axialer Richtung gesehen.
  • Die in den Figuren 1 und 2 gezeigten Kreiselpumpenaggregate sind speziell zur Förderung von Kältemitteln ausgebildet und weisen an einem Axialende einen Antriebsmotor 2 auf, an welchen axialseitig, d.h. in Richtung der Rotationsachse X eine Kreiselpumpe 4 angesetzt ist. Die Kreiselpumpe 4 ist mehrstufig ausgebildet, d.h. sie weist eine Vielzahl von in axialer Richtung hintereinander an der Antriebswelle 6 angeordneten Laufrädern 8 auf. Die Laufräder 8 sind wie von herkömmlichen Kreiselpumpen her bekannt von Gehäuseteilen 10 mit innenliegenden Leitapparaten 12 umgeben. Die Leitapparate 12 dienen der Strömungsführung von einem Laufrad 8 zum nächsten und zur Umlenkung der radial aus dem Laufrad 8 austretenden Strömung in axialer Richtung.
  • Die Gehäuseteile 10 sind in axialer Richtung X aneinander gesetzt, so dass sie gemeinsam ein rohrförmiges Gehäuse bilden. Am ersten Axialende 13 der Kreiselpumpe 4, welches die Saugseite bildet, ist ein Filter 14 angeordnet, durch welchen das zu fördernde Kältemittel von der Kreiselpumpe 4 angesaugt wird und in diese eintritt. Am entgegengesetzten druckseitigen Axialende sind in dem letzten Gehäuseteil 10 umfängliche Austrittsöffnungen 16 angeordnet, durch welche das von der Kreiselpumpe 4 geförderte Kältemittel radial aus der Kreiselpumpe 4 austritt.
  • Bei der Förderung von Kältemitteln besteht die Problematik, dass dieses üblicherweise unter einem hohen Systemdruck gefördert wird. Der Gesamtsystemdruck eines Kältesystems kann mehr als 50 bar betragen, während der Differenzdruck zwischen Saug- und Druckseite der Kreiselpumpe 4 wesentlich geringer sein kann, beispielsweise im Bereich zwischen 2,5 und 6 bar liegen kann. Der hohe Systemdruck erfordert es jedoch, dass das Kreiselpumpenaggregat ausreichend druckfest auszubilden. Insbesondere bei der Förderung von Kältemitteln sind dabei Leckagen unbedingt zu vermeiden, da derartige Kältemittel häufig teuer, umweltschädlich und/oder giftig sind, so dass deren Austritt in die Umgebung unbedingt zu vermeiden ist.
  • Um das Kreiselpumpenaggregat ausreichend dicht und druckfest auszubilden, ist die Kreiselpumpe 4 in einem umgebenden druckfesten Behälter 18 angeordnet. Der Behälter 18 ist rohrförmig ausgebildet und an seinem dem Antriebsmotor 2 abgewandten Ende 20 geschlossen. So wird insgesamt eine topfförmige Behälterform erreicht. Der Behälter weist lediglich drei Öffnungen auf. Dies sind eine Öffnung 22, welche durch die dem axialen Ende 20 abgewandte Stirnseite des Behälters 18 gebildet wird, sowie eine Saugöffnung 24 und eine Drucköffnung 26. Im Übrigen ist die Behälterwandung vollständig geschlossen ausgebildet. Der Behälter 18 kann in den übrigen Bereichen insbesondere druckdicht verschweißt sein. Durch die Saugöffnung 24 wird das zu fördernde Kältemittel angesaugt und tritt dann durch den Filter 14 in die Kreiselpumpe 4 ein. Das von den Stufen der Kreiselpumpe geförderte Kältemittel tritt dann am entgegengesetzten Axialende der Kreiselpumpe 4 durch die Austrittsöffnungen 16 aus. Anschließend fließt es durch den Spalt 28 zwischen der Außenseite der Gehäuseteile 10 und dem Innenumfang des Behälters 18 zu der Drucköffnung 26, durch welche es dann aus dem Kreiselpumpenaggregat austritt. Zur Ausbildung des Spaltes 28 ist der Innendurchmesser des Behälters 18, welcher bevorzugt einen kreisförmigen Querschnitt bezüglich der Rotationsachse X aufweist, größer ausgebildet als der Außendurchmesser der Gehäuseteile 10.
  • Im Inneren des Behälters 18 ist an der Innenwandung ein Ring 29 angeordnet, welcher eine Trennwand in dem Spalt 28 bildet und die Druckseite von der Saugseite trennt. Der Ring 29 liegt dichtend am Axialende 13 des aus den Gehäuseteilen 10 gebildeten rohrförmigen Gehäuses an. Hierzu ist ein O-Ring zur Dichtung vorgesehen. So wird verhindert, dass das Fluid von der Druckseite im Spalt 28 in die Saugseite und die Öffnung am Axialende 13 der Kreiselpumpe 4 einströmt. Der Ring 29 ist mit der Behälterwandung fest und dicht verbunden, insbesondere verschweißt.
  • Bei dem in Figur 1 gezeigten Beispiel sind die Saugöffnung 24 und die Drucköffnung 26 von Flanschen 30 umgeben, mittels welcher das Kreiselpumpenaggregat an angrenzende Anschlussleitungen angeschlossen werden kann. Dabei wird zwischen die Flansche 30 und an diesen anliegenden Gegenanschlussflanschen (hier nicht gezeigt) jeweils ein Dichtungselement zur Abdichtung zwischengelegt. Um eine solche Abdichtung zu vermeiden, ist es auch möglich, den Behälter 18 direkt mit anschließenden Rohrleitungen zu verschweißen. Hierzu ist die Ausführungsform gemäß Figur 2 vorgesehen, bei welcher die Saugöffnung 24 und die Drucköffnung 26 lediglich durch sich radial von dem Behälter 18 wegerstreckende rohrförmige Stutzen 32 gebildet werden, welche direkt mit sich anschließenden Leitungen verschweißt werden können. Alternativ wäre es auch denkbar, sich anschließende Leitungen direkt mit dem Behälter 18 zu verschweißen. Auf diese Weise werden abzudichtende Anschlussstellen vermieden, welche ein potentielles Leckagerisiko bilden.
  • Umgebend die Öffnung 20 ist am Axialende des Behälters 18 ein Flansch 34 angeordnet, welcher mit der Wand des Behälters 18 umfänglich verschweißt ist. Dieser Flansch 34 dient der Verbindung mit dem Antriebsmotor 2, welcher hierzu an seinem der Kreiselpumpe 4 zugewandten Axialende einen Gegenflansch 36 aufweist, welcher mittels Schrauben 38 mit dem Flansch 34 verschraubt ist. Zwischen Flansch 34 und Gegenflansch 36 ist zur Abdichtung ein O-Ring 40 angeordnet.
  • Der Antriebsmotor 2 ist als Spaltrohrmotor ausgebildet, wobei sein Spaltrohr 42 an seinem offenen der Kreiselpumpe 4 zugewandten Ende dichtend mit dem Gegenflansch 36 verbunden ist, vorzugsweise mit diesem verschweißt ist. Durch diese Ausgestaltung wird erreicht, dass das gesamte Kreiselpumpenaggregat außer den Saugöffnungen 24 und 26 nur eine Schnittstelle aufweist, an welcher der Innenraum nach außen abzudichten ist, nämlich zwischen dem Flansch 34 und dem Gegenflansch 36 im Bereich der Verbindung zwischen Antriebsmotor 2 und Behälter 18. In dem Fall, dass auch die Sauganschlüsse 24 und 26 wie bei dem Ausführungsbeispiel gemäß Figur 2 durch Verschweißen mit sich anschließenden Rohrleitungen verbunden sind, ist somit nur eine einzige Dichtung zur Abdichtung des Druckraumes nach außen erforderlich. Dadurch wird das Leckagerisiko minimiert. Darüber hinaus ist es zu Wartungszwecken sehr leicht möglich, die gesamte Kreiselpumpe 4, wie in Figur 4 gezeigt, in axialer Richtung X nach Lösen der Schrauben 38 aus dem Behälter 18 zu entnehmen. So kann auch die gesamte Kreiselpumpe 4 einschließlich Antriebsmotor 2 sehr leicht ausgetauscht werden.
  • Eine weitere erfindungsgemäße Besonderheit des gezeigten Kreiselpumpenaggregates liegt in der Ausgestaltung des Axiallagers 44, welche nachfolgend anhand der Figuren 5 - 9 im Einzelnen beschrieben wird.
  • Wie in Figur 1 und 2 zu erkennen ist, ist das Axiallager 44 im Mittelbereich der Antriebswelle 6 angeordnet, d.h. es ist von den beiden Axialenden der Antriebswelle 6 beabstandet und näher zur axialen Mitte der Antriebswelle 6 gelegen als zu deren Axialenden. Das Axiallager 44 liegt somit zwischen der Kreiselpumpe 4 und dem Rotor 46 des Antriebsmotors 2, welcher ebenfalls auf der Antriebswelle 6 befestigt ist. Im hier gezeigten Beispiel ist die Antriebswelle 6 dazu zweiteilig ausgebildet, der Teil der Welle im Rotor 2 ist getrennt von dem Teil der Antriebswelle 6 in der Kreiselpumpe 4. Beide Teile sind drehfest miteinander verbunden. Es ist jedoch zu verstehen, dass hier auch eine einteilige Antriebswelle 6 Verwendung finden könnte.
  • Die Lage des Axiallagers 44 an dem Antriebsmotor 2 zugewandten Ende der Kreiselpumpe 4 hat den Vorteil, dass das Axiallager 44, welches durch das geförderte Kältemittel geschmiert wird, in dem Bereich der Kreiselpumpe gelegen ist, in dem der höchste Druck des Kältemittels herrscht. Gleichzeitig ist das Axiallager aber noch vom Rotor 46 des Antriebsmotors 2 beabstandet, so dass in diesem Bereich das geförderte Kältemittel noch nicht übermäßig durch die Abwärme des Antriebsmotors 2 erwärmt wird. Das heißt, dass das Axiallager 44 gerade in dem Bereich liegt, in dem das Kältemittel aufgrund des hohen Druckes und der noch nicht erfolgten Erwärmung durch den Antriebsmotor nicht verdampft, so dass hier eine zuverlässige Flüssigkeitsschmierung des Axiallagers 44 gewährleistet bleibt.
  • In dem Mittelbereich der Antriebswelle 6, in welchem das Axiallager 44 angeordnet ist, besteht üblicherweise das Problem, dass die Teile eines Axiallagers aufgrund möglicher radialer Auslenkungen der Antriebswelle zum Taumeln neigen. Erfindungsgemäß wird dies dadurch vermieden, dass das Axiallager selbstausrichtend ausgebildet ist. Das Axiallager besteht aus zwei Lagerteilen 48 und 50, nämlich einem stationären Lagerteil 48 und einem rotierenden Lagerteil 50. Der rotierende Lagerteil 50 ist drehfest mit der Welle 6 verbunden, während der stationäre Lagerteil 48 drehfest in einem mit dem Gegenflansch 36 verschraubten Gehäuseteil 52 gelegen ist. Sowohl der stationäre Lagerteil 48 als auch der rotierende Lagerteil 50 sind selbstausrichtend ausgebildet.
  • Der rotierende Lagerteil 50 weist ein ringförmiges Lagerelement 54 aus einem geeigneten Lagermaterial, beispielsweise einem keramischen Material auf. An dem Lagerelement 54 ist an einer Axialseite bezogen auf die Rotationsachse X eine erste Lagerfläche 56 ausgebildet. Das Lagerelement 54 wird auf einem Träger 58 gehalten, wobei es über einen O-Ring 60 zentriert wird. Der O-Ring 60 ist dabei umfänglich eines Vorsprunges 62 des Trägers 58 angeordnet, welcher in den Innenumfang des ringförmigen Lagerelementes 54 eingreift, so dass der O-Ring 60 am Innenumfang des Lagerelementes 54 zur Anlage kommt. Mit der der Lagerfläche 56 abgewandten axialen Rückseite liegt das Lagerelement 54 plan an dem Träger 58 an. Der Träger 58 stützt sich über eine wellenförmige Federscheibe 64 an einer radial ausragenden Schulter 65 einer Hülse 66 ab, wobei die Hülse 66 an der Antriebswelle 6 fixiert ist.
  • Die dem Lagerelement 54 abgewandte rückseitige Fläche des Trägers 58 ist als sphärische Anlagefläche 68 ausgebildet. Das heißt die Anlagefläche 68 hat die Form eines ringförmigen Kugelabschnittes, wobei der Mittelpunkt dieser Kugel auf der Rotationsachse X liegt. Die Anlagefläche 68 liegt an einer konischen, in diesem Fall korrespondierend sphärisch geformten Gegenanlagefläche 70 an, welche in einem Stützkörper 72 ausgebildet ist. Die Gegenanlagefläche 70 weist in diesem Fallsomit dieselbe Krümmung, d.h. denselben Radius wie die Anlagefläche 68 auf. Dabei sind die Anlagefläche 68 konvex und die Gegenanlagefläche 70 konkav geformt. Der Stützkörper 42 stützt sich wiederum auf einem ringförmigen Vorsprung 74 and der Antriebswelle 6 ab. Im hier gezeigten Beispiel wird der Vorsprung 74 vom axialen Ende des Wellenabschnittes der Antriebswelle 6 gebildet, welcher die Rotorwelle des Rotors 46 bildet. Dabei ist der Vorsprung 74 der Schulter 65 entgegen- und der Träger 58 durch die Federwirkung der Federscheibe 64 zwischen der Schulter 65 und dem Vorsprung 74 geklemmt werden und die Anlagefläche 68 und die Gegenanlagefläche 70 durch diese Federkraft in Anlage gehalten werden.
  • Aufgrund der sphärischen Form der Anlagefläche 78 und der Gegenanlagefläche 70 ist es dem Träger X möglich, um den Mittelpunkt der Kugelform der Anlagefläche 68 und der Gegenanlagefläche 70 zu verschwenken, so dass die Winkellage der Lagerfläche 56 bezüglich der Rotationsachse X um zwei zueinander orthogonale und zu der Rotationsachse X orthogonale Achsen veränderbar ist. Auf diese Weise kann die Lagerfläche 56 sich selbsttätig frei in ihrer Winkellage zur Rotationsachse X ausrichten, wobei die Anlagefläche 68 auf der Gegenanlagefläche 70 gleitet. Durch die Federwirkung der Federscheibe 64 wird sichergestellt, dass auch bei Stillstand der Pumpe, wenn die Axialkraft, welche im Betrieb auf das Axiallager wirkt, nicht mehr vorhanden ist, die Anlagefläche 68 und die Gegenanlagefläche 70 aneinander fixiert werden, so dass eine sich zuvor selbsttätig eingestellte Winkellage der Lagerfläche 56 auch im Stillstand der Pumpe beibehalten wird.
  • Auch der stationäre Lagerteil 48 ist selbstausrichtend ausgebildet. Der stationäre Lagerteil 48 weist mehrere Lagerschuhe 76 auf, deren axiale Oberflächen zweite Lagerflächen 78 bilden, welche gleitend mit der ersten Lagerfläche 56 in Anlage sind. Die Lagerschuhe 76 sind in einem Haltering 80 fixiert, welcher Ausnehmungen 82 aufweist, welche der Außenkontur der Lagerschuhe 76 entsprechen. So können die Lagerschuhe 76 sich durch die Ausnehmungen 82 hindurch erstrecken und werden in radialer und umfänglicher Richtung in dem Haltering 80 fixiert. An der den Lagerflächen 78 abgewandten Axialseite liegen die Lagerschuhe 76 an einem Träger 84 an. Der Träger 84 weist an seiner den Lagerschuhen 76 abgewandten Axialseite eine sphärische Anlagefläche 86 auf. Diese sphärische Anlagefläche 86 bildet einen ringförmifläche 86 auf. Diese sphärische Anlagefläche 86 bildet einen ringförmigen Abschnitt bzw. Ausschnitt einer Kugeloberfläche, wobei der Mittelpunkt der Kugel auf der Rotationsachse X gelegen ist. Die Anlagefläche 86 liegt an einer Gegenanlagefläche 88 an, welche in dem Gehäuseteil 52 ausgebildet ist. Die Gegenanlagefläche 88 ist konisch, in diesem Fall korrespondierend sphärisch ausgebildet, d.h. sie weist denselben Krümmungsradius auf und ist um denselben Mittelpunkt gekrümmt wie die Anlagefläche 86. Die Anlagefläche 86 ist dabei konvex gekrümmt, während die Gegenanlagefläche 88 konkav gekrümmt ist. Diese Ausgestaltung ermöglicht es dem Träger 84, um den Mittelpunkt der die Anlagefläche 86 und Gegenanlagefläche 88 definierenden Kugelform zu verschwenken. Somit ist es möglich, dass sich die Lagerflächen 78 an den Lagerschuhen 76 in ihrer Winkellage selbsttätig bezüglich der Rotationsachse X auszurichten. Das heißt die Lagerflächen 78 können um zwei zueinander orthogonale Schwenkachsen, welche sich normal zur Längsachse X, erstrecken in einem bestimmten Winkelbereich frei verschwenken. Auf diese Weise können sich die Lagerflächen 78 immer an die Lagerfläche 56 des rotierenden Lagerteiles plan anlegen, so dass stets ein gleitender Kontakt ohne Taumelbewegung der Lagerflächen gegeben ist.
  • In der Anlagefläche 86 sind, wie in Figur 9 zu erkennen ist, drei gleichmäßig über den Umfang verteilte sich radial erstreckende Nuten 90 ausgebildet, welche die Fluidzirkulation und damit die Schmierung im Axiallager verbessern.
  • Um den Träger 86 drehfest an dem Gehäuseteil 52 zu halten, sind am Außenumfang der Anlagefläche 86 drei, gleichmäßig über den Umfang verteilte, sich in axialer Richtung erstreckende Eingriffsvorsprünge 92 ausgebildet, welche in korrespondierende Ausnehmungen 94 in dem Gehäuseteil 52 eingreifen. Dabei ist zwischen den Eingriffsvorsprüngen 92 und den Ausnehmungen 94 insbesondere in radialer Rich-Ausrichtbewegung zwischen Anlagefläche 86 und der Gegenanlagefläche 88 möglich bleibt.
  • Entsprechend ist der Träger 58 drehfest an dem Stützkörper 72 gelagert, so dass ein Drehmoment von dem Stützkörper 72 auf den Träger 58 übertragen werden kann. Hierzu sind am Außenumfang der Anlagefläche 68 sich radial erstreckende Eingriffsvorsprünge 96 angeordnet, welche in korrespondierende Ausnehmungen 98 in dem Stützkörper 72 eingreifen. Auch hier ist ausreichend Spiel, insbesondere in radialer Richtung zwischen den Eingriffsvorsprüngen 96 und in den Ausnehmungen 98 vorgesehen, um die Schwenkbewegung der Anlagefläche 68 relativ zu der Gegenanlagefläche 70 weiter möglich zu halten.
  • Die Anlageflächen 68 und 86 sowie die Gegenanlageflächen 70 und 88 sind vorzugsweise aus einem harten verschleißfesten Material gefertigt, insbesondere können die Träger 58 ggf. das Gehäuseteil 52 sowie der Stützkörper 72 aus einem entsprechenden harten Material beispielsweise Hartmetall oder Keramik gefertigt sein.
  • Bezugszeichenliste
  • 2 - Antriebsmotor
    4 - Kreiselpumpe
    6 - Antriebswelle
    8 - Laufräder
    10 - Gehäuseteile
    12 - Leitapparate
    13 - Axialende
    14 - Filter
    16 - Austrittsöffnungen
    18 - Behälter
    20 - axiales Ende
    22 - Öffnung
    24 - Saugöffnung
    26 - Drucköffnung
    28 - Spalt
    29 - Ring
    30 - Flansche
    32 - Stutzen
    34 - Flansch
    36 - Gegenflansch
    38 - Schrauben
    40 - O-Ring
    42 - Spaltrohr
    44 - Axiallager
    46 - Rotor
    48 - stationärer Lagerteil
    50 - rotierender Lagerteil
    52 - Gehäuseteil
    54 - Lagerelement
    56 - Lagerfläche
    58 - Träger
    60 - O-Ring
    62 - Vorsprung
    64 - Federscheibe
    65 - Schulter
    66 - Hülse
    68 - Anlagefläche
    70 - Gegenanlagefläche
    72 - Stützkörper
    74 - Vorsprung
    76 - Lagerschuhe
    78 - Lagerflächen
    80 - Haltering
    82 - Ausnehmungen
    84 - Träger
    86 - Anlagefläche
    88 - Gegenanlagefläche
    90 - Nuten
    92 - Eingriffsvorsprünge
    94 - Ausnehmungen
    96 - Eingriffsvorsprünge
    98 - Ausnehmungen
    X - Rotationsachse

Claims (10)

  1. Kältemittel-Pumpenaggregat mit einem Antriebsmotor (2) und einer Kreiselpumpe (4), dadurch gekennzeichnet, dass die Kreiselpumpe (4) von einem rohrförmigen Behälter (18) umgeben ist, welcher mit einem ersten Axialende dichtend mit dem Motorgehäuse des Antriebsmotors (2) verbunden und an seinem entgegengesetzten axialen Ende (20) geschlossen ausgebildet ist.
  2. Kältemittel-Pumpenaggregat nach Anspruch 1, dadurch gekennzeichnet das der rohrförmige Behälter (18) einen Saug-(24) und eine Druckanschluss (26) aufweist.
  3. Kältemittel-Pumpenaggregat nach Anspruch 2, dadurch gekennzeichnet, dass sich der Sauganschluss (24) und/oder der Druckanschluss (26) in radialer Richtung von dem Behälter (18) wegerstrecken.
  4. Kältemittel-Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (18) eine geschlossene Wandung aufweist.
  5. Kältemittel-Pumpenaggregat nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Sauganschluss (24) und/oder der Druckanschluss (26) mit Anschlussflanschen (30) versehen sind.
  6. Kältemittel-Pumpenaggregat nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der Sauganschluss (24) und/oder der Druckanschluss (26) zum direkten Verschweißen mit einer Anschlussleitung ausgebildet sind.
  7. Kältemittel-Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in dem Behälter (18) eine ringförmige Trennwand (25) angeordnet ist, welche die Saug-(24) und die Druckseite (26) der Kreiselpumpe (4) voneinander trennt.
  8. Kältemittel-Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (18) mit dem Motorgehäuse des Antriebsmotors (2) lösbar verbunden ist.
  9. Kältemittel-Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Antriebsmotor (2) ein Spaltrohrmotor ist.
  10. Kältemittel-Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (18) druckfest für den Systemdruck des zu fördernden Kältemittels ausgebildet ist.
EP10000704.6A 2010-01-25 2010-01-25 Kältemittelpumpenaggregat Active EP2348219B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10000704.6A EP2348219B1 (de) 2010-01-25 2010-01-25 Kältemittelpumpenaggregat
US13/012,287 US20110182725A1 (en) 2010-01-25 2011-01-24 Refrigerant pump assembly
CN201110031160.9A CN102135103B (zh) 2010-01-25 2011-01-25 制冷剂泵机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10000704.6A EP2348219B1 (de) 2010-01-25 2010-01-25 Kältemittelpumpenaggregat

Publications (2)

Publication Number Publication Date
EP2348219A1 true EP2348219A1 (de) 2011-07-27
EP2348219B1 EP2348219B1 (de) 2016-06-29

Family

ID=42236332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10000704.6A Active EP2348219B1 (de) 2010-01-25 2010-01-25 Kältemittelpumpenaggregat

Country Status (3)

Country Link
US (1) US20110182725A1 (de)
EP (1) EP2348219B1 (de)
CN (1) CN102135103B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161647A1 (de) * 2013-04-04 2014-10-09 Linde Aktiengesellschaft Kältemittelverdichter und verfahren zur verdichtung von gas sowie verfahren zur herstellung von flüssigem wasserstoff

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3242034T3 (da) * 2013-03-19 2019-08-12 Flow Control LLC Lavprofilpumpe med evnen til at blive monteret i forskellige konfigurationer
JP6111915B2 (ja) * 2013-07-18 2017-04-12 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機
WO2019152951A1 (en) * 2018-02-05 2019-08-08 Franklin Electric Co., Inc. Modular submersible motor and pump assembly
US11466691B2 (en) 2018-02-05 2022-10-11 Franklin Electric Co., Inc. Fault protection for a pump-motor assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450137A (en) * 1944-12-01 1948-09-28 Smith Corp A O Multistage centrifugal pump
GB701511A (en) * 1949-11-01 1953-12-30 Hayward Tyler & Co Ltd Improvements in and relating to pump and motor combinations
FR1091514A (fr) * 1953-07-13 1955-04-13 Vogel Pumpen Dispositif permettant d'absorber les forces axiales dans les moteurs immergés
DE4011475A1 (de) * 1990-04-09 1991-10-10 Klein Schanzlin & Becker Ag Topfgehaeuse
DE4415157A1 (de) * 1994-05-02 1995-11-09 Klein Schanzlin & Becker Ag Selbstansaugende mehrstufige Kreiselpumpe
US5692886A (en) * 1993-12-08 1997-12-02 Ebara Corporation Canned motor pump having concentric bearings

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2343511A (en) * 1941-06-13 1944-03-07 Byron Jackson Co Double casing pump
US2374122A (en) * 1942-12-05 1945-04-17 Arthur J Nelson Double case pump
US2365310A (en) * 1944-03-02 1944-12-19 Worthington Pump & Mach Corp Rotor unit
US2376528A (en) * 1944-03-02 1945-05-22 Worthington Pump & Mach Corp Centrifugal pump
DE1528795A1 (de) * 1965-07-02 1969-12-11 Lederle Pumpen & Maschf Hochdruck-Spaltrohrmotorpumpe
DE3014103A1 (de) * 1980-04-12 1981-10-15 Hermetic-Pumpen Gmbh, 7803 Gundelfingen Pumpenaggregat mit einem mehrstufigen pumpenteil
US5009578A (en) * 1987-10-27 1991-04-23 Crane Co. Motor driven pumps
US5591016A (en) * 1994-11-30 1997-01-07 Nikkiso Co., Ltd. Multistage canned motor pump having a thrust balancing disk
US5888053A (en) * 1995-02-10 1999-03-30 Ebara Corporation Pump having first and second outer casing members
US5961301A (en) * 1997-07-31 1999-10-05 Ansimag Incorporated Magnetic-drive assembly for a multistage centrifugal pump
DE29819363U1 (de) * 1998-10-30 1999-02-18 Klein Schanzlin & Becker Ag Kompensator
GB0117941D0 (en) * 2001-07-24 2001-09-19 Weir Pumps Ltd Pump assembly
HUE029908T2 (hu) * 2003-03-10 2017-04-28 Thermodyn Centrifugálkompresszor egység
US20050036895A1 (en) * 2003-08-11 2005-02-17 Mth Tool Company, Inc. Canned motor and pump
JP4633396B2 (ja) * 2004-07-16 2011-02-16 株式会社荏原製作所 遠心式ポンプ
US7520720B2 (en) * 2004-07-28 2009-04-21 Sta-Rite Industries, Llc Pump
JP4642788B2 (ja) * 2007-01-22 2011-03-02 株式会社荏原製作所 多段高圧ポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450137A (en) * 1944-12-01 1948-09-28 Smith Corp A O Multistage centrifugal pump
GB701511A (en) * 1949-11-01 1953-12-30 Hayward Tyler & Co Ltd Improvements in and relating to pump and motor combinations
FR1091514A (fr) * 1953-07-13 1955-04-13 Vogel Pumpen Dispositif permettant d'absorber les forces axiales dans les moteurs immergés
DE4011475A1 (de) * 1990-04-09 1991-10-10 Klein Schanzlin & Becker Ag Topfgehaeuse
US5692886A (en) * 1993-12-08 1997-12-02 Ebara Corporation Canned motor pump having concentric bearings
DE4415157A1 (de) * 1994-05-02 1995-11-09 Klein Schanzlin & Becker Ag Selbstansaugende mehrstufige Kreiselpumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161647A1 (de) * 2013-04-04 2014-10-09 Linde Aktiengesellschaft Kältemittelverdichter und verfahren zur verdichtung von gas sowie verfahren zur herstellung von flüssigem wasserstoff

Also Published As

Publication number Publication date
CN102135103A (zh) 2011-07-27
EP2348219B1 (de) 2016-06-29
CN102135103B (zh) 2015-08-19
US20110182725A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
EP2348221B1 (de) Kreiselpumpenaggregat
EP2137378B1 (de) Pumpe oder motor
EP2348219B1 (de) Kältemittelpumpenaggregat
DE102007032228A1 (de) Selbstansaugende Pumpenaggregation
CH626950A5 (de)
WO2017005797A1 (de) Leckreduzierte drehdurchführung
EP2864640B1 (de) Motorkreiselpumpe mit einer gleitringdichtung
DE102007020218A1 (de) Förderpumpe
EP2816263A2 (de) Dichtungsvorrichtung
EP0942172B1 (de) Mehrwellenvakuumpumpe
DE102012104736B4 (de) Drehkolbenpumpe
DE102012100720B4 (de) Ölleitsystem für einen Verdichter
DE10062451A1 (de) Förderpumpe
DE202010012138U1 (de) Zellenradschleuse
DE102017100540B4 (de) Exzenterschneckenpumpe
EP2101934A1 (de) Treibrolle insbesondere für besäumscheren
DE10034195C1 (de) Baggerpumpe
DE3045192A1 (de) Zahnradpumpe
DE102014215560A1 (de) Gasverdichter, insbesondere für ein Brennstoffzellensystem eines Fahrzeugs
EP3019763B1 (de) Hydrodynamische maschine, insbesondere hydrodynamische kupplung
WO2018224200A1 (de) Zahnradpumpe für ein abwärmerückgewinnungssystem
DE102009023188B4 (de) Strömungsmaschine mit im Innern einer Hohlwelle angeordnetem Laufrad
DE4326519A1 (de) Taumelscheiben-Kompressor
DE102008042233A1 (de) Exzenterschneckenpumpe sowie mechanisches Koppelelement für die Exzenterschnecke einer Exzenterschneckenpumpe
WO2019081967A1 (de) Taumelscheibenmaschine mit antrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20120126

17Q First examination report despatched

Effective date: 20120508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010011891

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0001060000

Ipc: F04D0029080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/08 20060101AFI20151023BHEP

INTG Intention to grant announced

Effective date: 20151202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20160520

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809344

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011891

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011891

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809344

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011891

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230123

Year of fee payment: 14