WO1999048840A1 - Materiau ceramique poreux massif homogene - Google Patents

Materiau ceramique poreux massif homogene Download PDF

Info

Publication number
WO1999048840A1
WO1999048840A1 PCT/FR1999/000607 FR9900607W WO9948840A1 WO 1999048840 A1 WO1999048840 A1 WO 1999048840A1 FR 9900607 W FR9900607 W FR 9900607W WO 9948840 A1 WO9948840 A1 WO 9948840A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
pore diameter
pore
material according
diameter
Prior art date
Application number
PCT/FR1999/000607
Other languages
English (en)
Other versions
WO1999048840A9 (fr
Inventor
Raymond Soria
Jean-Claude Foulon
Jean-Michel Cayrey
Original Assignee
Societe Des Ceramiques Techniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Des Ceramiques Techniques filed Critical Societe Des Ceramiques Techniques
Priority to DE1070028T priority Critical patent/DE1070028T1/de
Priority to AU28416/99A priority patent/AU2841699A/en
Priority to EP99909023A priority patent/EP1070028A1/fr
Publication of WO1999048840A1 publication Critical patent/WO1999048840A1/fr
Publication of WO1999048840A9 publication Critical patent/WO1999048840A9/fr
Priority to NO20004674A priority patent/NO20004674L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the subject of the invention is a homogeneous solid porous ceramic material, with adjustable and controlled porosity and pore diameter.
  • the present ceramic porous body can be used for filtration of fluids, gas separation, or for contacting fluids such as in catalytic reactions, or production of emulsion, and other applications using a porous ceramic material.
  • pore diameter and porosity are also largely a function of the characteristics of the layer on which it is deposited, which does not allow variation in a very wide field.
  • their baking temperature must be lower than the baking temperature of the undercoat. In some cases, this baking temperature is low and insufficient to allow optimum adhesion of the layer to the under layer.
  • the manufacture of filtration membranes is a long and expensive process comprising a large number of steps; it does not allow the membrane characteristics to be adapted to the fluids to be filtered.
  • the porosity of the macro-porous support is low in order to maintain sufficient mechanical strength for the use of the membrane.
  • the production of a layer with a small pore diameter requires relatively low baking temperatures, temperatures which are insufficient to obtain the optimum properties of the material.
  • US-P-4446024 describes a ceramic fiber, whose pore diameter is typically of the order of a tenth of a micron, and whose porosity is greater than 35%.
  • the material of this patent suffers from two major drawbacks, namely a large closed porosity, which harms the filtration capacity of this porous ceramic material, and a bubble point which does not correspond to the average pore size, thus highlighting faults.
  • EP-A-0657403 describes a porous ceramic material having a honeycomb structure, using a silica oligomer as a bonding agent. No porogen is used.
  • DE-A-19609126 describes a porous support, the starting paste of which comprises an agent indicated as "Porentrucknet and Grunbinder”. This agent is for example cellulose or tragacanth, which is soluble in the chosen solvent (water). It is in fact the binder conventionally used in the art.
  • EP-A-0778250 describes a porous support obtained by pressing, using a binder soluble in the chosen solvent (1 water).
  • O-A-9423829 describes a process for manufacturing fibers, using a binder as before.
  • DE-A-19618920 describes a porous ceramic fiber comprising a carbon membrane.
  • the binder used is as previously conventional.
  • the subject of the present invention is a homogeneous solid porous ceramic material whose average pore diameter D50 is less than 4 ⁇ m and whose closed porosity is less than 4%, preferably less than 2%.
  • D50 is the volume average diameter such that 50% of the pores have a diameter less than D50.
  • the volume distribution of pore diameter is monodisperse; according to this embodiment the standard deviation is less than 35%, preferably 25% of the mean diameter by volume D50.
  • the material according to the invention will have a standard deviation of between 10 and 25% of the mean diameter by volume D50.
  • Figures 1 and 2 show the volume distribution curve of the pore diameters for the materials of Examples 1 and 5, respectively.
  • the material according to the invention has a bubble point corresponding to the pore diameter measured on said material.
  • a first advantage of the present invention is to provide a homogeneous massive structure ("bul y"), that is to say having the same pore diameter over the entire thickness of the material.
  • the term "solid” is intended to distinguish the present material from a thin layer; the characteristic dimension of the material is of the order of a millimeter, namely the material is on a macroscopic scale.
  • the term "homogeneous” also intends to distinguish the material from a stack of successive layers which could possibly have a similar characteristic dimension.
  • a second advantage of the present invention is to be able to easily adjust the key characteristics of the structure of the membranes, that is to say the pore diameter and the porosity, in a simple and rapid manner, as well as in a large range of variation without loss of mechanical resistance.
  • This adaptability is obtained independently for the pore diameter and the porosity; in other words the two criteria can be adjusted independently of each other.
  • This adaptability is obtained without modifying the sintering temperature of the parts obtained.
  • a third advantage of the present invention is to obtain porous ceramic membranes having no structural defect.
  • a fourth advantage of the present invention is the simplicity of its manufacture due to the elimination, on the one hand of the manufacture of an intermediate layer, and on the other hand, that of the end sealing.
  • the present invention relates to a porous body having a homogeneous structure.
  • This structure is characterized by a pore diameter and a porosity, that is to say a pore volume. These quantities are measured by mercury porosimetry.
  • the pore diameter D50 of the material is for example less than 2 ⁇ m, and in general between 50 nm and 1.5 ⁇ m. This variation in diameter is controlled by the initial composition of the spinning dough. This area of variation is very wide.
  • the pore volume or porosity of the material according to the invention is such that the closed porosity is less than 4%, preferably less than 2%, advantageously less than 1%.
  • the open pore volume or open porosity is generally between 10 and 70%; the invention makes it possible in particular to obtain very high open porosities, such greater than 30%, for example between 40, or even 45%, and 60%. This variation in the open porosity is controlled by the initial composition of the spinning paste.
  • the present invention makes it possible to obtain membranes having no defect. This characteristic is measured by the bubble point technique (see the publication by TH MELTZER et al, Bulletin of the Parenteral Drug Association, vol. 65 (4), 1971, ppl65-174). This technique makes it possible to determine the pressure necessary for a gas bubble to pass through the membrane previously saturated with a wetting liquid. A mathematical relationship links the gas pressure, the surface tension of the wetting liquid and the diameter of the through pore (Jurin's Law). The present invention makes it possible to obtain a bubble point (through pore diameter) which corresponds to the pore diameter measured on the membrane (at 10%). The invention also relates to a hollow fiber based on the material according to the invention, as well as a filtration and / or reaction module comprising such fibers.
  • Another object of the present invention is the description of a manufacturing process for a porous ceramic membrane having the advantages listed above, as well as the precursor paste of said material.
  • the present invention therefore also provides a process for preparing a homogeneous solid porous ceramic material, in particular a material according to the invention, comprising the following main steps:
  • the precursor paste of the material comprises the mixture of an inorganic compound or filler, an organic binder, a porosity-creating or porogenic agent, a solvent, and optionally a mineral binder and / or a deflocculant suitable for this metallic compound and / or a processability agent (in general an extrusion agent).
  • the mineral part of said paste consists of particles of an inorganic compound, preferably metallic, which will form after sintering the homogeneous porous network.
  • the metal compound is either a non-oxide compound or a metal oxide.
  • a derivative of silicon or aluminum will be chosen, and preferably silicon carbide, silicon nitride or aluminum nitride.
  • the metal compound is an oxide, it will be chosen from oxides of aluminum, of silicon or of metals of groups IVA (group of titanium) or VA (group of vanadium) and preferably alumina, oxide of zirconium or titanium oxide. These oxides can be used alone or as a mixture.
  • the metallic compound has, for example, an average particle diameter (measured in the sedigraph) between 0.15 and 2 ⁇ m, and preferably between 0.15 and 0.6 ⁇ m. Its content in the dough will be between 50 and 85% by mass, and preferably between 65 and 80% by mass.
  • This mineral filler will preferably consist of particles whose diameters d90 and d50 are such that d90 / d50 ⁇ 3 and advantageously d90 / d50 ⁇ 2.
  • the organic binder will give the paste the rheological properties necessary for extrusion and the mechanical properties necessary to obtain good cohesion of the product after extrusion.
  • Said organic binder is preferably, but not necessarily, a water-soluble polymer.
  • the polymer will present, for example, for a solution at 2% by mass, a viscosity measured 20 ° C. of between 4 and 10 Pa / s.
  • This polymer can be chosen from celluloses and their derivatives, in particular hydroxyethyl cellulose and / or microcrystalline cellulose, but also a polyacrylic acid or a polyvinyl alcohol, etc.
  • the paste will contain, for example, between 2 and 10% by mass of organic binder and preferably between 3 and 8% by mass.
  • the role of the solvent is to disperse the mineral part and the binder.
  • water will be chosen as the solvent; in the case where the polymer is not water-soluble, an alcohol will be chosen, for example 1 ethanol as solvent.
  • concentration of the solvent will be for example between 8 and 40% by mass and preferably between 10 and 27% by mass.
  • the porosity-creating or porogenic agent is characterized by a low decomposition temperature, for example less than 450 ° C., preferably less than 250 ° C. It is characterized on the other hand by the average size of the particles which compose it, size which is in relation to that of the particles of the metallic charge.
  • This size is for example between 5 and 30 ⁇ m and preferably between 8 and 16 ⁇ m.
  • the porogen is substantially insoluble in the chosen solvent.
  • the sizes of the mineral filler particles and the blowing agent particles can vary independently of each other to a very great extent.
  • spinnability paste generally between 9 and 30 bar, and preferably between 10 and 16 bar.
  • a solvent-soluble deflocculant will improve the dispersion of the particles of the metal compound.
  • a polyacrylic acid, a phospho-organic acid or an alkyl sulfonic acid will be chosen.
  • the deflocculant content is of the order of 0.5 to 1% by mass.
  • a processability agent will generally be added, an extrusion aid agent such as a polyethylene glycol.
  • the content of extruding agent is of the order of 0.5 to 1% by mass.
  • the mechanical resistance to bending can be modified in a conventional manner by the introduction into the composition of the paste of mineral binders which will react during sintering to increase the cohesion forces between the particles.
  • the subject of the invention is finally the precursor paste as described above, namely a paste comprising, dispersed in a solvent, a mineral part or filler, an organic binder and a blowing agent.
  • the dough is shaped for example and preferably by extrusion, in a conventional manner.
  • the product is then dried and then sintered at a high temperature, for example between 1400 and 1750 ° C.
  • Example 1 A ceramic paste is produced by mixing an alumina of average size 0.6 ⁇ m, microcrystalline cellulose as organic binder, water as solvent and a porogen constituted by particles of low density polyethylene, the average size of these particles being 15 ⁇ m.
  • the d90 / d50 ratio of the powder used is 1.4.
  • the composition of this paste is (in percentage by mass):
  • the dough thus obtained has a filability of 10.
  • This dough is extruded through a die for hollow fiber so as to form a tube of 1.5 mm outside diameter and 0.8 mm inside diameter.
  • the fiber thus obtained is baked at 1450 ° C in a normal atmosphere.
  • the decomposition temperature of low density polyethylene chosen is 230 ° C, it is therefore completely destroyed during sintering of the fiber.
  • the fiber is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 0.6 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.08 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in the present case 13%.
  • the volume distribution curve of the pore diameters is shown in Figure 1.
  • a ceramic paste is produced by mixing a silica of average size 0.2 ⁇ m, a polyvinyl alcohol as organic binder, water as solvent and a pore-forming agent constituted by particles of an ethylene vinyl acetate copolymer, the the average size of these particles being 30 ⁇ m.
  • the d90 / d50 ratio of the silica used is 1.5.
  • the composition of this paste is (in percentage by mass):
  • the paste thus obtained has a filability of 9.
  • This paste is used to form a porous block of 5 cm on one side.
  • This block is baked at 1530 ° C in a normal atmosphere.
  • the decomposition temperature of the ethylene vinyl acetate copolymer chosen is 180 ° C., it is therefore completely destroyed during the sintering of the porous block.
  • the block is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 0.4 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.1 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in this case 25%.
  • a ceramic paste is produced by mixing a titanium oxide powder of average size 2 ⁇ m, a hydroxy propyl cellulose (HPC) as an organic binder, water as a solvent, a porogen constituted by particles of activated carbon whose size average is 8 ⁇ m and a polymethacrylic acid as deflocculant.
  • the d90 / d50 ratio of the titanium oxide powder used is 1.7.
  • the composition of this paste is (in percentage by mass)
  • the paste thus obtained has a filability of 19.
  • This paste is used to form a porous fiber of 1 mm in external diameter and 0.5 mm in internal diameter.
  • This fiber is baked at 1400 ° C in an argon atmosphere.
  • the decomposition temperature of the activated carbon is 420 ° C, it is therefore completely destroyed during the sintering of the porous fiber.
  • the fiber is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 1.2 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.1 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in this case 8%.
  • a ceramic paste is produced by mixing a zirconium oxide powder of average size 0.25 ⁇ m, microcrystalline cellulose as organic binder, water as solvent, a porogen constituted by sawdust from active walnut kernels, the average size is 10 ⁇ m.
  • the d90 / d50 ratio of the zirconia used is 1.2.
  • the composition of this paste is (in percentage by mass):
  • the pulp thus obtained has a filability of 30.
  • This pulp is used to form a porous fiber of 1 mm in external diameter and 0.3 mm in internal diameter.
  • This fiber is baked at 1700 ° C in a normal atmosphere.
  • the sawdust decomposition temperature is 350 ° C, it is therefore completely destroyed during the sintering of the porous fiber.
  • the fiber is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 0.05 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.01 ⁇ m, this width corresponds to the standard deviation of the pore distribution, which in this case is 20%.
  • a ceramic paste is produced by mixing a vanadium oxide powder of average size 2 ⁇ m, a polyacrylic acid (APA) as an organic binder, water as a solvent, polyethylene glycol as an extruding agent and a pore-forming agent constituted by an emulsion of fats in water, the average size of the fat globules being 26 ⁇ m.
  • the d90 / d50 ratio of the vanadium oxide powder used is 1.8.
  • the composition of this paste is (in percentage by mass):
  • the paste thus obtained has a filability of 13.
  • This paste is used to form a porous block of 12 cm on one side.
  • This block is baked at 1600 ° C in a normal atmosphere.
  • the decomposition temperature of the emulsion chosen is 160 ° C. It is therefore completely destroyed during the sintering of the porous block.
  • the block is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 2 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.2 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in this case 10%.
  • the curve of volume distribution of pore diameters is shown in Figure 2.
  • the fiber is therefore free from defects.
  • a ceramic paste is produced by mixing a powder of silicon nitride of average size 0.6 ⁇ m, an ethyl cellulose as organic binder, ethanol as a solvent, a pore-forming agent constituted by particles of low density polyethylene (LDPE) whose average size is 5 ⁇ m.
  • LDPE low density polyethylene
  • the d90 / d50 ratio of the silicon nitride powder used is 1.5.
  • the composition of this paste is (in percentage by mass): - silicon nitride 80
  • the paste thus obtained has a filability of 12.
  • This paste is used to form a porous fiber of 1 mm of external diameter and 0.5 mm of internal diameter.
  • This fiber is baked at 1750 ° C in an argon atmosphere.
  • the decomposition temperature of the activated carbon is 210 ° C, it is therefore completely destroyed during the sintering of the porous fiber.
  • the fiber is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 0.5 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.12 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in this case 24%. On the other hand, its pore volume is 35%. The density of the fiber is 3.15. The absolute density of the silicon nitride being 3.18, the closed porosity not available for filtration is 0.9% at most. The bubble point measurement gives a pressure of
  • a ceramic paste is produced by mixing an alumina of average size 0.9 ⁇ m, a powder of titanium oxide of average size 1.3 ⁇ m, microcrystalline cellulose as organic binder, water as solvent and a porogen consisting of particles of an ethylene vinyl acetate copolymer, the average particle size being 12 ⁇ m.
  • the d90 / d50 ratio of the mixture of oxide powders used is 1.8.
  • the composition of this paste is (in percentage by mass):
  • the paste thus obtained has a filability of 9.
  • This paste is used to form a porous block of 5 cm on one side.
  • This block is baked at 1500 ° C in a normal atmosphere.
  • the decomposition temperature of the emulsion chosen is 150 ° C., it is therefore completely destroyed during the sintering of the porous block.
  • the block is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 0.9 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.1 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in this case 11%.
  • a ceramic paste is produced by mixing an alumina of average size 1.8 ⁇ m, a hydroxy ethyl cellulose (HEC) as organic binder, water as a solvent and a porogen constituted by sawdust of nuclei, the average size of these particles being 20 ⁇ m.
  • HEC hydroxy ethyl cellulose
  • the d90 / d50 ratio of the alumina powder used is 2.
  • composition of this paste is (in percentage by mass): - alumina 63
  • the paste thus obtained has a filability of 14.
  • This paste is used to form a porous plate 5 cm side by 15 cm long.
  • This plate is baked at 1500 ° C in a normal atmosphere.
  • the decomposition temperature of the sawdust of cores chosen is 450 ° C, it is therefore completely destroyed during the sintering of the porous plate.
  • the plate is characterized by mercury porosimetry. Mercury penetration only shows a single peak centered at 1.5 ⁇ m indicating a monodisperse distribution of the pores. The width at mid-height of the peak is 0.3 ⁇ m, this width corresponds to the standard deviation of the pore distribution which is in the present case 20%.
  • the bubble point measurement gives a pressure of 640 mbar, i.e. a pore diameter of 1.5 ⁇ m, which corresponds to the pore diameter determined by the mercury porosimetry.
  • the fiber is therefore free from defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)

Abstract

L'invention a pour objet un matériau céramique poreux massif homogène dont le diamètre moyen des pores D50 est inférieur à 4 νm et dont la porosité fermée est inférieure à 2 %. Le matériau selon l'invention présente un point de bulle correspondant au diamètre de pore mesuré sur ledit matériau. L'invention a encore pour objet une fibre creuse à base du matériau selon l'invention, ainsi qu'in module comprenant ces fibres. L'invention fournit enfin un procédé de préparation du matériau selon l'invention, ainsi qu'une pâte précurseur dudit matériau, cette pâte comprenant un agent porogène.

Description

MATERIAU CERAMIQUE POREUX MASSIF HOMOGENE
L'invention a pour objet un matériau céramique poreux massif homogène, à porosité et diamètre de pore ajustables et contrôlés. Le présent corps poreux céramique peut être utilisé pour la filtration de fluides, la séparation de gaz, ou pour la mise en contact de fluides comme dans les réactions catalytiques, ou la production d'émulsion, et autres applications utilisant un matériau poreux céramique.
On connaît déjà de nombreuses membranes céramiques.
Elles sont en général formées par l'empilement de couches successives sur un support présentant de gros pores (support macroporeux) . Le support confère la résistance mécanique à la membrane. L'empilement de couches permet la réduction progressive du diamètre de pore. Ces couches sont difficiles à développer. Les caractéristiques principales de la couche filtrante, c'est-à-dire diamètre de pore et porosité (ou volume poreux) , sont aussi en grande partie fonction des caractéristiques de la couche sur laquelle elle est déposée, ce qui ne permet pas de variation dans un domaine très étendu. De plus, leur température de cuisson doit être inférieure à la température de cuisson de la sous-couche. Dans certains cas, cette température de cuisson est basse et insuffisante pour permettre un accrochage optimum de la couche à la sous couche.
Avec cette technique, la fabrication de membranes de filtration est un procédé long et coûteux comportant un nombre élevé d'étapes; il ne permet pas d'adapter les caractéristiques membranaires aux fluides à filtrer. D'autre part, la porosité du support macro-poreux est faible afin de conserver une résistance mécanique suffisante pour l'utilisation de la membrane. Enfin, la réalisation de couche à petit diamètre de pore nécessite des températures de cuissons relativement faibles, températures insuffisantes pour obtenir l'optimum des propriétés du matériau.
Le brevet US-P-4446024 décrit une fibre céramique, dont le diamètre de pore est typiquement de l'ordre du dixième de micron, et dont la porosité est supérieure à 35%. Cependant, le matériau de ce brevet souffre de deux inconvénients majeurs, à savoir une porosité fermée importante, ce qui nuit à la capacité de filtration de ce matériau céramique poreux, et un point de bulle qui ne correspond pas à la taille moyenne des pores, mettant ainsi en évidence des défauts.
EP-A-0657403 décrit un matériau céramique poreux ayant une structure en nid d'abeilles, faisant emploi d'un oligomère silice en tant qu'agent de collage. Aucun porogène n'est utilisé. DE-A-19609126 décrit un support poreux dont la pâte de départ comprend un agent indiqué comme "Porenbildnet et Grunbinder" . Cet agent est par exemple de la cellulose ou de la gomme adragante, qui est soluble dans le solvant choisi (l'eau). Il s'agit en fait du liant classiquement utilisé dans la technique.
EP-A-0778250 décrit un support poreux obtenu par pressage, faisant emploi de liant soluble dans le solvant choisi (1 ' eau) . O-A-9423829 décrit un procédé de fabrication de fibres, faisant emploi d'un liant comme précédemment.
DE-A-19618920 décrit une fibre céramique poreuse comprenant une membrane carbone. Le liant utilisé est comme précédemment classique.
La présente invention a pour objet un matériau céramique poreux massif homogène dont le diamètre moyen des pores D50 est inférieur à 4 μm et dont la porosité fermée est inférieure à 4%, dé préférence inférieure à 2%. D50 est le diamètre moyen en volume tel que 50% des pores ont un diamètre inférieur à D50.
Selon un mode de réalisation, la distribution volumique de diamètre de pores est monodisperse; selon ce mode de réalisation l'écart-type est inférieur à 35%, de préférence à 25% du diamètre moyen en volume D50. _Typiquement , le matériau selon l'invention présentera un écart-type compris entre 10 et 25% du diamètre moyen en volume D50. On assimilera dans la suite la courbe de distribution volumique des diamètres de pore à une courbe gaussienne, l'écart-type étant alors la largeur à mi- hauteur du pic. Les figures 1 et 2 représentent la courbe de distribution volumique des diamètres de pore pour les matériaux des exemples 1 et 5, respectivement. Selon un mode de réalisation, le matériau selon l'invention a un point de bulle correspondant au diamètre de pore mesuré sur ledit matériau. Selon ce mode de réalisation, on a une correspondance lorsque les deux valeurs diffèrent l'une de l'autre de moins de 10%. Un premier avantage de la présente invention est de fournir une structure massive ("bul y") homogène, c'est-à- dire présentant le même diamètre de pore sur toute l'épaisseur du matériau. Le terme "massif" entend distinguer le présent matériau d'une couche de faible épaisseur; la dimension caractéristique du matériau est de l'ordre du millimètre, à savoir le matériau est à une échelle macroscopique. Le terme "homogène" entend aussi distinguer le matériau d'un empilement de couches successives qui pourraient éventuellement présenter une dimension caractéristique similaire.
Un deuxième avantage de la présente invention est de pouvoir ajuster de façon simple les caractéristiques clefs de la structure des membranes, c'est à dire le diamètre de pore et la porosité et cela d'une manière simple et rapide, ainsi que dans un large domaine de variation sans perte de résistance mécanique. Cette adaptabilité est obtenue de façon indépendante pour le diamètre de pore et la porosité; en d'autres termes les deux critères peuvent être ajustés indépendamment l'un de l'autre. Cette adaptabilité est obtenue sans modifier la température de frittage des pièces obtenues . Un troisième avantage de la présente invention est d'obtenir des membranes poreuses céramiques ne présentant aucun défaut de structure.
Un quatrième avantage de la présente invention est la simplicité de sa fabrication due à la suppression, d'une part de la fabrication de couche intermédiaire, et d'autre part, à celle de 1 ' étanchage d'extrémité.
La présente invention concerne un corps poreux présentant une structure homogène. Cette structure est caractérisée par un diamètre de pore et une porosité, c'est-à-dire un volume poreux. Ces grandeurs sont mesurées par porosimétrie mercure. Le diamètre de pore D50 du matériau est par exemple inférieur à 2 μm, et en général compris entre 50 nm et 1,5 μm. Cette variation de diamètre est contrôlée par la composition initiale de la pâte de filage. Ce domaine de variation est très large. le volume poreux ou porosité du matériau selon l'invention est tel que la porosité fermée est inférieure à 4%, de préférence inférieure à 2%, avantageusement inférieure à 1%. Le volume poreux ouverte ou porosité ouverte est compris en général entre 10 et 70%; l'invention permet notamment d'obtenir des porosités ouvertes très élevées, telles supérieures à 30%, par exemple entre 40, voire 45%, et 60%. Cette variation de la porosité ouverte est contrôlée par la composition initiale de la pâte de filage.
On peut ainsi obtenir des matériaux poreux dont le diamètre moyen de pore est compris entre 0,5 et 2 μm et la porosité ouverte est comprise entre 45 et 60%.
La présente invention permet d'obtenir des membranes ne présentant aucun défaut. Cette caractéristique est mesurée par la technique du point de bulle (voir la publication de T. H. MELTZER et al, Bulletin of the Parenteral Drug Association, vol. 65(4), 1971, ppl65-174). Cette technique permet de déterminer la pression nécessaire pour qu'une bulle de gaz traverse la membrane préalablement saturée d'un liquide mouillant. Une relation mathématique relie la pression de gaz, la tension superficielle du liquide mouillant et le diamètre du pore traversant (Loi de Jurin) . La présente invention permet d'obtenir un point de bulle (diamètre de pore traversant) qui correspond au diamètre de pore mesuré sur la membrane (à 10%). L'invention a encore pour objet une fibre creuse à base du matériau selon l'invention, ainsi qu'un module de filtration et/ou de réaction comprenant de telles fibres.
Un autre objet de la présente invention est la description d'un procédé de fabrication pour une membrane céramique poreuse présentant les avantages énumérés ci dessus, ainsi que la pâte précurseur dudit matériau.
La présente invention fournit donc aussi un procédé de préparation d'un matériau céramique poreux massif homogène, notamment d'un matériau selon l'invention, comprenant les étapes principales suivantes:
(i) préparation d'une pâte minérale comprenant une partie ou charge minérale, un liant organique, un agent porogène et un solvant, avec éventuellement un défloculant et/ou un liant minéral et/ou un agent de processabilité; (ii) mise en forme de ladite pâte; et
(iii) consolidation de cette forme par frittage.
La pâte précurseur du matériau comprend le mélange d'un composé ou charge minéral, d'un liant organique, d'un agent créateur de porosité ou porogène, d'un solvant, et éventuellement d'un liant minéral et/ou d'un défloculant adapté à ce composé métallique et/ou d'un agent de processabilité (en général un agent d' extrusion) .
La partie minérale de ladite pâte est constituée de particules d'un composé minéral, de préférence métallique, qui formera après frittage le réseau poreux homogène. Le composé métallique est soit un composé non-oxyde, soit un oxyde métallique. Dans le cas où il s'agit d'un dérivé non- oxyde on choisira un dérivé du silicium ou de l'aluminium et préférentiellement le carbure de silicium, le nitrure de silicium ou le nitrure d'aluminium. Dans le cas où le composé métallique est un oxyde on choisira parmi les oxydes d'aluminium, de silicium ou des métaux des groupes IVA (groupe du titane) ou VA (groupe du vanadium) et de préférence l'alumine, l'oxyde de zirconium ou l'oxyde de titane. Ces oxydes peuvent être utilisés seul ou en mélange. Le composé métallique présente par exemple un diamètre moyen de particule (mesuré au sédigraphe) entre 0.15 et 2 μm, et préférentiellement entre 0,15 et 0,6 μm. Sa teneur dans la pâte sera comprise entre 50 et 85 % massique, et de préférence entre 65 et 80 % massique. Cette charge minérale sera constituée de préférence de particules dont les diamètres d90 et d50 sont tels que d90/d50 < 3 et avantageusement d90/d50 < 2.
Le liant organique conférera à la pâte les propriétés rhéologiques nécessaires à l'extrusion et les propriétés mécaniques nécessaires pour obtenir une bonne cohésion du produit après l'extrusion. Ledit liant organique est de préférence, mais pas obligatoirement, un polymère hydrosoluble. Le polymère présentera par exemple, pour une solution à 2% massique, une viscosité mesurée 20°C comprise entre 4 et 10 Pa/s. Ce polymère peut être choisi parmi les celluloses et leurs dérivés, notamment hydroxyéthyl- cellulose et/ou cellulose microcristalline, mais aussi un acide polyacrylique ou un alcool polyvinylique, etc.. La pâte contiendra par exemple entre 2 et 10 % massique de liant organique et préférentiellement entre 3 et 8 % massique.
Le solvant a pour rôle de disperser la partie minérale et le liant. Dans le cas où l'on utilise un polymère hydrosoluble, on choisira l'eau comme solvant; dans le cas ou le polymère n'est pas hydrosoluble on choisira un alcool par exemple 1 ' éthanol comme solvant. La concentration du solvant sera comprise par exemple entre 8 et 40% massique et préférentiellement entre 10 et 27% massique. L'agent créateur de porosité ou porogène se caractérise par une température de décomposition faible, par exemple inférieure à 450°C, de préférence inférieure à 250°C. Il se caractérise d'autre part par la taille moyenne des particules qui le composent, taille qui est en rapport avec celle des particules de la charge métallique. Cette taille est comprise par exemple entre 5 et 30 μm et de préférence entre 8 et 16 μm. Le porogène est sensiblement insoluble dans le solvant choisi. On peut utiliser un porogène d'origine naturelle et, par exemple, de la sciure de coque de noyaux, de la farine ou des carbon black, ou d'origine artificielle et par exemple des billes de polyéthylene basse densité, ou une emulsion eau/huile et par exemple du mobilcer (emulsion huile-dans-eau) . Les tailles des particules de charge minérale et des particules d'agent porogène peuvent varier indépendamment les unes des autres dans une très grande mesure.
Ces composants sont mélangés pour former une pâte de filabilité comprise en général entre 9 et 30 bar, et de préférence entre 10 et 16 bar.
Un défloculant soluble dans le solvant améliorera la dispersion des particules du composé métallique. On choisira par exemple un acide polyacrylique, un acide phospho-organique ou un alkyl-sulfonique . La teneur en défloculant est de l'ordre de 0,5 à 1 % massique.
Dans certains cas, on ajoutera un agent de processabilité en général un agent d'aide à l'extrusion tel qu'un polyéthylèneglycol . La teneur en agent d'extrusion est de l'ordre de 0.5 à 1 % massique. La résistance mécanique à la flexion peut être modifiée de façon classique par l'introduction dans la composition de la pâte de liants minéraux qui réagiront au cours du frittage pour augmenter les forces de cohésion entre les particules. L'invention a enfin pour objet la pâte précurseur telle que décrite ci-dessus, à savoir une pâte comprenant, dispersée dans un solvant, une partie ou charge minérale, un liant organique et un agent porogène.
La pâte est mise en forme par exemple et de préférence par extrusion, de façon classique. Le produit est ensuite séché puis fritte à une température élevée par exemple comprise entre 1400 et 1750°C.
Les exemples suivants illustrent l'invention sans la limiter.
Dans les exemples, on procédera à la mesure du point de bulle des matériaux céramiques des exemples, qui met en évidence le plus gros pore présent dans la fibre. La mesure, en utilisant l' éthanol absolu (tension superficielle de 24 10-3 Nm) comme milieu d'imprégnation donne une pression de bulle qui est la pression à partir de laquelle on observe la formation d'une bulle traversante. Par application de la loi de Jurin, on obtient alors le diamètre du plus gros pore en fonction de la pression mesurée . Exemple 1 : On produit une pâte céramique en mélangeant une alumine de taille moyenne 0,6 μm, une cellulose microcristalline comme liant organique, de l'eau comme solvant et un porogène constitué par des particules de polyéthylene basse densité, la taille moyenne de ces particules étant de 15 μm. Le rapport d90/d50 de la poudre utilisé est de 1,4. La composition de cette pâte est (en pourcentage massique) :
- alumine 75
- cellulose microcristalline 2 - eau 8
- polyéthylene basse densité 15
La pâte ainsi obtenue présente une filabilité de 10. Cette pâte est extrudé au travers d'une filière pour fibre creuse de façon à former un tube de 1,5 mm de diamètre extérieur et 0,8 mm de diamètre intérieur. La fibre ainsi obtenue est cuite à 1450°C en atmosphère normale. La température de décomposition du polyéthylene basse densité choisi est de 230°C, il est donc totalement détruit lors du frittage de la fibre.
La fibre est caractérisée par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 0,6 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,08 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 13%. La courbe de distribution volumique des diamètres de pore est représentée à la figure 1.
D'autre part son volume poreux est de 60%. La densité de la fibre est de 3,9. La densité absolue de l'alumine est de 3,94. La porosité fermée non disponible pour la filtration est de 1% au maximum. La mesure du point de bulle donne une pression de 1600 mbar, soit un diamètre de pore de 0,6 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut. Exemple 2 : On produit une pâte céramique en mélangeant une silice de taille moyenne 0,2 μm, un alcool polyvinylique comme liant organique, de l'eau comme solvant et un porogène constitués par des particules d'un copolymère éthylène acétate de vinyle, la taille moyenne de ces particules étant de 30 μm. Le rapport d90/d50 de la silice utilisée est de 1,5. La composition de cette pâte est (en pourcentage massique) :
- silice 50
- alcool polyvinylique 2 - eau 40
- copolymère éthylène acétate de vinyle 8
La pâte ainsi obtenue présente une filabilité de 9. Cette pâte est utilisée pour former un bloc poreux de 5 cm de coté. Ce bloc est cuit à 1530°C en atmosphère normale. La température de décomposition du copolymère éthylène acétate de vinyle choisi est de 180°C, il est donc totalement détruit lors du frittage du bloc poreux. Le bloc est caractérisé par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 0,4 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,1 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 25%.
D'autre part son volume poreux est de 10%. La densité de la fibre est de 2,3. La densité absolue de la silice est de 2,32, la porosité fermé non disponible pour la filtration est de 0,9% au maximum.
La mesure du point de bulle donne une pression de 2400 mbar, soit un diamètre de pore de 0,4 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut. Exemple 3:
On produit une pâte céramique en mélangeant une poudre d'oxyde de titane de taille moyenne 2 μm, une hydroxy propyle cellulose (HPC) comme liant organique, de l'eau comme solvant, un porogène constitués par des particules de charbon actif dont la taille moyenne est de 8 μm et un acide polyméthacrylique comme défloculant. Le rapport d90/d50 de la poudre d'oxyde de titane utilisée est de 1,7. La composition de cette pâte est (en pourcentage massique)
- Oxyde de titane 65
- HPC 3
- eau 24
- charbon actif 7
- acide polyméthacrylique 1 La pâte ainsi obtenue présente une filabilité de 19. Cette pâte est utilisée pour former une fibre poreuse de 1 mm de diamètre externe et de 0,5 mm de diamètre interne. Cette fibre est cuite à 1400°C en atmosphère d'argon. La température de décomposition du charbon actif est de 420 °C, il est donc totalement détruit lors du frittage de la fibre poreuse . La fibre est caractérisée par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 1,2 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,1 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 8%.
D'autre part son volume poreux est de 55%. La densité de la fibre est de 3,76, La densité absolue de l'oxyde de titane est de 3,8, la porosité fermée non disponible pour la filtration est de 1% au maximum.
La mesure du point de bulle donne une pression de 800 mbar, soit un diamètre de pore de 1,2 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut. Exemple 4 :
On produit une pâte céramique en mélangeant une poudre d'oxyde de zirconium de taille moyenne 0,25 μm, une cellulose microcristalline comme liant organique, de l'eau comme solvant, un porogène constitués par de la sciure de noyaux de noix actif dont la taille moyenne est de 10 μm. Le rapport d90/d50 de la zircone utilisée est de 1,2. La composition de cette pâte est (en pourcentage massique) :
- Oxyde de zirconium 85
- cellulose microcristalline 2 - eau 8
- sciure de noix 5
La pâte ainsi obtenue présente une filabilité de 30. Cette pâte est utilisée pour former une fibre poreuse de 1 mm de diamètre externe et de 0,3 mm de diamètre interne. Cette fibre est cuite à 1700°C en atmosphère normale. La température de décomposition de la sciure est de 350°C, elle est donc totalement détruite lors du frittage de la fibre poreuse.
La fibre est caractérisée par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 0,05 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,01 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 20%.
D'autre part son volume poreux est de 28%. La densité de la fibre est de 5,56, La densité absolue de la zircone étant de 5,6, la porosité fermé non disponible pour la filtration est de 0,4% au maximum.
La mesure du point de bulle donne une pression de 19200 mbar, soit un diamètre de pore de 0,05 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut. Exemple 5:
On produit une pâte céramique en mélangeant une poudre d'oxyde de vanadium de taille moyenne 2 μm, un acide polyacrylique (APA) comme liant organique, de l'eau comme solvant, du polyéthylene glycol comme agent d' extrusion et un porogène constitués par une emulsion de graisses dans de l'eau, la taille moyenne des globules de graisses étant de 26 μm. Le rapport d90/d50 de la poudre d'oxyde de vanadium utilisée est de 1,8. La composition de cette pâte est (en pourcentage massique) :
- oxyde de vanadium 62
- APA 8
- eau 10
- emulsion 19 - polyéthylene glycol 1
La pâte ainsi obtenue présente une filabilité de 13. Cette pâte est utilisée pour former un bloc poreux de 12 cm de coté. Ce bloc est cuit à 1600°C en atmosphère normale. La température de décomposition de l' emulsion choisi est de 160°C, elle est donc totalement détruite lors du frittage du bloc poreux.
Le bloc est caractérisé par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 2 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,2 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 10%. La courbe de distribution volumique des diamètres de pore est représentée à la figure 2.
D'autre part son volume poreux est de 47%. La densité de la fibre est de 4,86. La densité absolue de l'oxyde de vanadium étant de 4,87, la porosité fermé non disponible pour la filtration est nulle.
La mesure du point de bulle donne une pression de
480 mbar, soit un diamètre de pore de 2 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut.
Exemple 6:
On produit une pâte céramique en mélangeant une poudre de nitrure de silicium de taille moyenne 0,6 μm, une éthyle cellulose comme liant organique, de 1 ' éthanol comme solvant, un porogène constitués par des particules de polyéthylene basse densité (LDPE) dont la taille moyenne est de 5 μm. Le rapport d90/d50 de la poudre de nitrure de silicium utilisée est de 1,5. La composition de cette pâte est (en pourcentage massique) : - nitrure de silicium 80
- éthyle cellulose 3
- éthanol 10
- LDPE 7
La pâte ainsi obtenue présente une filabilité de 12. Cette pâte est utilisée pour former une fibre poreuse de 1 mm de diamètre externe et de 0,5 mm de diamètre interne. Cette fibre est cuite à 1750°C en atmosphère d'argon. La température de décomposition du charbon actif est de 210°C, il est donc totalement détruit lors du frittage de la fibre poreuse.
La fibre est caractérisée par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 0,5 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,12 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 24%. D'autre part son volume poreux est de 35%. La densité de la fibre est de 3,15. La densité absolue du nitrure de silicium étant de 3,18, la porosité fermé non disponible pour la filtration est de 0,9% au maximum. La mesure du point de bulle donne une pression de
1920 mbar, soit un diamètre de pore de 0,5 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut. Exemple 7 : On produit une pâte céramique en mélangeant une alumine de taille moyenne 0,9 μm, une poudre d'oxyde de titane de taille moyenne 1,3 μm, une cellulose microcristalline comme liant organique, de l'eau comme solvant et un porogène constitué par des particules d'un copolymère éthylène vinyl acétate, la taille moyenne des particules étant de 12 μm. Le rapport d90/d50 du mélange de poudres d'oxyde utilisés est de 1,8. La composition de cette pâte est (en pourcentage massique) :
- alumine 50 - oxyde de titane 20
- cellulose microcristalline 10
- eau 8
- copolymère éthylène acétate de vinyle 12
La pâte ainsi obtenue présente une filabilité de 9. Cette pâte est utilisée pour former un bloc poreux de 5 cm de coté. Ce bloc est cuit à 1500°C en atmosphère normale. La température de décomposition de l' emulsion choisie est de 150°C, elle est donc totalement détruite lors du frittage du bloc poreux. Le bloc est caractérisé par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 0 , 9 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,1 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 11%.
D'autre part son volume poreux est de 59%. La densité de la fibre est de 3,85. La densité absolue du mélange alumine oxyde de titane est de 3,87. la porosité fermé non disponible pour la filtration est de 0,5% au maximum.
La mesure du point de bulle donne une pression de
1065 mbar, soit un diamètre de pore de 0,9 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut.
Exemple 8 :
On produit une pâte céramique en mélangeant une alumine de taille moyenne 1,8 μm, une hydroxy éthyle cellulose (HEC) comme liant organique, de l'eau comme solvant et un porogène constitués par de la sciure de noyaux, la taille moyenne de ces particules étant de 20 μm.
Le rapport d90/d50 de la poudre d'alumine utilisé est de 2.
La composition de cette pâte est (en pourcentage massique) : - alumine 63
- HEC 5
- eau 11
- sciure de noyaux 19
La pâte ainsi obtenue présente une filabilité de 14. Cette pâte est utilisée pour former une plaque poreux de 5 cm de coté sur 15 cm de long. Cette plaque est cuite à 1500°C en atmosphère normale. La température de décomposition de la sciure de noyaux choisi est de 450°C, elle est donc totalement détruite lors du frittage de la plaque poreuse.
La plaque est caractérisée par porosimétrie mercure. La pénétration du mercure ne met en évidence qu'un seul pic centré à 1 , 5 μm indice d'une distribution monodisperse des pores. La largeur à mi-hauteur du pic est de 0,3 μm, cette largeur correspond à l'écart-type de la distribution de pore qui est dans le cas présent de 20%.
D'autre part son volume poreux est de 52%. La densité de la fibre est de 3,92. La densité absolue de l'alumine étant de 3,94, la porosité fermé non disponible pour la filtration est de 0,5% au maximum.
La mesure du point de bulle donne une pression de 640 mbar, soit un diamètre de pore de 1,5 μm, ce qui correspond au diamètre de pore déterminé par la porosimétrie mercure. La fibre est donc exempte de défaut.
L'invention n'est pas limitée aux modes de réalisation décrits mais est susceptible de nombreuses variantes aisément accessibles à l'homme de l'art.

Claims

REVENDICATIONS .
1. Matériau céramique poreux massif homogène dont le diamètre moyen des pores D50 est inférieur à 4 μm et dont la porosité fermée est inférieure à 4%.
2. Matériau selon la revendication 1, dont la distribution volumique de diamètre de pores est monodisperse .
3. Matériau selon la revendication 1 ou 2 , dont le point de bulle correspond au diamètre de pore mesuré sur ledit matériau.
4. Matériau selon l'une quelconque des revendications 1 à 3, dans lequel le diamètre de pores est inférieur à 2 μm.
5. Matériau selon la revendication 4, dans lequel le diamètre de pores est compris entre 50 nm et 1,5 μm.
6. Matériau selon l'une quelconque des revendications 1 à 5, dans lequel la porosité ouverte est comprise entre 10 et 70%.
7. Matériau selon la revendication 6, dans lequel la porosité ouverte est comprise entre 40 et 60%.
8. Matériau selon l'une quelconque des revendications 1 à 7, dans lequel le diamètre moyen de pore est compris entre 0,5 et 2 μm et la porosité ouverte est comprise entre 45 et 60%.
9. Matériau selon l'une quelconque des revendications 1 à 8, qui est un oxyde métallique.
10. Fibre creuse à base du matériau selon l'une quelconque des revendications 1 à 9.
11. Module de filtration et/ou de réaction comprenant des fibres selon la revendication 10.
12. Procédé de préparation d'un matériau céramique poreux massif homogène, comprenant les étapes principales suivantes : (i) préparation d'une pâte minérale constituée d'une partie ou charge minérale, d'un liant organique, d'un agent porogène et d'un solvant, avec éventuellement un défloculant et/ou un liant minéral et/ou un agent de processabilité; (ii) mise en forme de ladite pâte; et
(iii) consolidation de cette forme par frittage.
13. Procédé selon la revendication 12, pour la préparation d'un matériau selon l'une quelconque des revendications 1 à 9.
14. Pâte précurseur d'un matériau céramique poreux massif homogène, ladite pâte comprenant, dispersée dans un solvant, une partie ou charge minérale, un liant organique et un agent porogène.
15. Pâte selon la revendication 14, dans laquelle le diamètre des particules de la charge minérale est tel que d90/d50 < 3.
16. Pâte selon la revendication 15, dans laquelle d90/d50 < 2.
17. Pâte selon l'une quelconque des revendications 14 à 16, dans laquelle le diamètre des particules de la charge minérale est compris entre 0.15 et 2 μm.
PCT/FR1999/000607 1998-03-20 1999-03-17 Materiau ceramique poreux massif homogene WO1999048840A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE1070028T DE1070028T1 (de) 1998-03-20 1999-03-17 Poröses homogenes massives keramikmaterial
AU28416/99A AU2841699A (en) 1998-03-20 1999-03-17 Homogeneous massive porous ceramic material
EP99909023A EP1070028A1 (fr) 1998-03-20 1999-03-17 Materiau ceramique poreux massif homogene
NO20004674A NO20004674L (no) 1998-03-20 2000-09-19 Homogent bulk porøst keramisk materiale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/03490 1998-03-20
FR9803490A FR2776287B1 (fr) 1998-03-20 1998-03-20 Materiau ceramique poreux massif homogene

Publications (2)

Publication Number Publication Date
WO1999048840A1 true WO1999048840A1 (fr) 1999-09-30
WO1999048840A9 WO1999048840A9 (fr) 2000-05-11

Family

ID=9524326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000607 WO1999048840A1 (fr) 1998-03-20 1999-03-17 Materiau ceramique poreux massif homogene

Country Status (11)

Country Link
US (2) US6573208B1 (fr)
EP (1) EP1070028A1 (fr)
JP (1) JPH11322465A (fr)
KR (1) KR19990078084A (fr)
CN (1) CN1229770A (fr)
AU (1) AU2841699A (fr)
CA (1) CA2266566A1 (fr)
DE (1) DE1070028T1 (fr)
FR (1) FR2776287B1 (fr)
NO (1) NO20004674L (fr)
WO (1) WO1999048840A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199067B2 (en) * 1998-03-20 2007-04-03 Pall Corporation Homogeneous bulky porous ceramic material

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805331B1 (fr) * 2000-02-21 2002-05-31 Ceramiques Tech Soc D Element multicanal et procede de fabrication d'un tel element
JP4730722B2 (ja) * 2001-03-27 2011-07-20 日本特殊陶業株式会社 積層型ガスセンサ素子の製造方法及び積層型ガスセンサ素子
US7922964B2 (en) * 2002-08-30 2011-04-12 Itn Nanovation Ag Ceramic hollow fibers made from nanoscale powder particles
JP2006027925A (ja) * 2004-07-13 2006-02-02 Nagoya Institute Of Technology 湿度センサー材料、湿度センサー材料を用いた湿度センサー及び湿度センサー材料を備えた電気機器
JP4473693B2 (ja) * 2004-09-28 2010-06-02 日本碍子株式会社 ハニカムフィルタ
CN100406122C (zh) * 2004-10-29 2008-07-30 中国石油化工股份有限公司 一种重、渣油加氢处理催化剂的制备方法
WO2006120772A1 (fr) * 2005-05-10 2006-11-16 Koa Glass Co., Ltd Fibre antimicrobienne et procede de production correspondant
DE102005031856A1 (de) * 2005-05-13 2006-11-16 Atech Innovations Gmbh Verfahren zur Herstellung von keramischen Filtern, Engobe und keramischer Filter
ATE513071T1 (de) * 2005-07-08 2011-07-15 Univ Bath Anorganische poröse hohlfasern
EP1785408A1 (fr) * 2005-11-15 2007-05-16 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé d'élaboration de supports poreux céramiques de microstructure contrôlée
DE102006044635B4 (de) * 2006-09-19 2008-11-06 Gkss-Forschungszentrum Geesthacht Gmbh Gastrenn-Membran
DE102006047928A1 (de) * 2006-10-10 2008-04-17 Robert Bosch Gmbh Verfahren zur Herstellung mindestens einer porösen Schicht
JP4961189B2 (ja) * 2006-10-20 2012-06-27 株式会社ニッカトー 多孔質アルミナ質焼結体からなる真空チャック用部材およびその製造方法
JP5176198B2 (ja) 2007-02-21 2013-04-03 独立行政法人産業技術総合研究所 マクロポーラスな連通孔を持つセラミック多孔体の製造方法
EP2274066B9 (fr) * 2008-04-11 2020-12-09 LiqTech International A/S Filtre aveugle en céramique, système de filtre et procédé de filtration
KR101161675B1 (ko) 2009-12-31 2012-07-02 한국에너지기술연구원 탄화규소 중공사 및 그 제조방법
KR101185490B1 (ko) 2009-12-31 2012-10-02 한국에너지기술연구원 무기질 중공사 및 그 제조 방법
US9878272B2 (en) * 2010-05-28 2018-01-30 Corning Incorporated Porous inorganic membranes and method of manufacture
JP5806030B2 (ja) * 2011-07-28 2015-11-10 京セラ株式会社 回路基板およびこれを備える電子装置
CN106000123B (zh) * 2016-05-27 2019-11-01 成都易态科技有限公司 多孔薄膜的制备方法
DE102018200969B3 (de) 2018-01-23 2018-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung poröser anorganischer Formkörper sowie damit hergestellte Formkörper und deren Verwendung
JP2020200230A (ja) * 2019-06-13 2020-12-17 日本特殊陶業株式会社 セラミックス体およびセラミックス体の製造方法
CN111548125A (zh) * 2020-04-15 2020-08-18 天津大学 一种梯度孔多层陶瓷膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023829A1 (fr) * 1993-04-15 1994-10-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procede pour la production de fibres ceramiques creuses, en particulier des membranes a fibres creuses pour la microfiltration, l'ultrafiltration et la separation de gaz
EP0657403A1 (fr) * 1993-06-14 1995-06-14 Sumitomo Electric Industries, Limited Ceramique poreuse et son procede de fabrication
DE19618920A1 (de) * 1995-05-10 1996-11-28 Nok Corp Verbundhohlfaser aus poröser Keramik und Verfahren zu seiner Herstellung
EP0778250A1 (fr) * 1995-12-06 1997-06-11 Sumitomo Chemical Company, Limited Corps inorganique poreux fritté ou compacté et son utilisation comme filtre
DE19701751A1 (de) * 1996-01-21 1997-07-24 Klaus Rennebeck Mikrohohlfaser aus keramischen Material, ein Verfahren zu deren Herstellung sowie deren Verwendung
DE19609126A1 (de) * 1996-03-08 1997-09-11 Schumacher Umwelt Trenntech Poröse Form und Verfahren zu ihrer Herstellung

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446024A (en) 1977-02-22 1984-05-01 E. I. Du Pont De Nemours & Company Hollow filament product
US4203772A (en) * 1977-04-18 1980-05-20 Corning Glass Works Porous zirconia containing ceramics
US4222977A (en) * 1978-05-16 1980-09-16 Monsanto Company Process to produce inorganic hollow fibers
US4175153A (en) * 1978-05-16 1979-11-20 Monsanto Company Inorganic anisotropic hollow fibers
FR2431468A1 (fr) * 1978-07-19 1980-02-15 Lafarge Sa Materiau microporeux utilisable notamment dans l'industrie ceramique
JPS55119402A (en) * 1979-03-07 1980-09-13 Toyobo Co Ltd Liquid separating module
JPS5610533A (en) * 1979-07-09 1981-02-03 Kuraray Co Ltd Polyvinyl alcohol porous membrane and production thereof
FR2462405A1 (fr) * 1979-08-03 1981-02-13 Produits Refractaires Procede de preparation de sialons
DE3103751C2 (de) * 1981-02-04 1983-05-19 Schott Glaswerke, 6500 Mainz Verfahren zur Herstellung von porösem Glas, poröser Glaskeramik und porösen keramischen Sintermassen
FR2553758B1 (fr) * 1983-10-25 1991-07-05 Ceraver Materiau poreux et filtre tubulaire comprenant ce materiau
JPS60255671A (ja) * 1984-05-29 1985-12-17 イビデン株式会社 高強度多孔質炭化ケイ素焼結体とその製造方法
US4778499A (en) * 1984-12-24 1988-10-18 Ppg Industries, Inc. Method of producing porous hollow silica-rich fibers
JPS63270368A (ja) * 1987-04-30 1988-11-08 Okura Ind Co Ltd セラミツクス多孔体の製造方法
EP0318236B1 (fr) * 1987-11-27 1993-04-14 Ecc International Limited Matériaux minéraux poreux
USH721H (en) * 1988-07-05 1990-01-02 The United States Of America As Represented By The Secretary Of The Air Force Production of 10 micron diameter hollow ceramic fibers
GB8902050D0 (en) * 1989-01-31 1989-03-22 T & N Technology Ltd Reinforced materials
JPH0492874A (ja) * 1990-08-02 1992-03-25 Lion Corp 多孔質セラミックスの製造方法
FR2693921B1 (fr) * 1992-07-24 1994-09-30 Tech Sep Support monolithe céramique pour membrane de filtration tangentielle.
ATE267149T1 (de) 1996-01-21 2004-06-15 Klaus Rennebeck Verfahren zur herstellung von mikrohohlfasern aus keramischem material
US5766760A (en) * 1996-09-04 1998-06-16 Kimberly-Clark Worldwide, Inc. Microporous fibers with improved properties
JPH10100320A (ja) * 1996-09-30 1998-04-21 Mitsubishi Gas Chem Co Inc 複合セラミックス板およびその製造法
DE19648270A1 (de) * 1996-11-21 1998-05-28 Basf Ag Offenzellige poröse Sinterprodukte und Verfahren zu ihrer Herstellung
US5922299A (en) * 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
US6210612B1 (en) * 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
DE69800531T2 (de) 1997-04-09 2001-09-27 Ceramiques Tech Bazet Soc D Makroporöser Träger mit einem Porositätsgradient und Methode zu dessen Herstellung
JP2001514152A (ja) 1997-09-04 2001-09-11 ポール・コーポレーション 多孔質のセラミック構造体および多孔質のセラミック構造体を製造する方法
FR2776286B1 (fr) 1998-03-20 2000-05-12 Ceramiques Tech Soc D Fibre ceramique poreuse multi-canal
FR2776287B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Materiau ceramique poreux massif homogene
FR2789908B1 (fr) 1999-02-19 2002-05-31 Ceramiques Tech Soc D Nappe d'elements de filtration, separation ou reaction, module comprenant une telle nappe et procedes de fabrication d'une telle nappe et d'un tel module
FR2796638B1 (fr) * 1999-07-21 2001-09-14 Ceramiques Tech Et Ind S A Structure monolithe nid d'abeilles en materiau ceramique poreux, et utilisation comme filtre a particules
AU778651B2 (en) * 1999-12-16 2004-12-16 Isotis N.V. Porous ceramic body
US6399528B1 (en) * 2000-09-01 2002-06-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Porous aluminum oxide structures and processes for their production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023829A1 (fr) * 1993-04-15 1994-10-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procede pour la production de fibres ceramiques creuses, en particulier des membranes a fibres creuses pour la microfiltration, l'ultrafiltration et la separation de gaz
EP0657403A1 (fr) * 1993-06-14 1995-06-14 Sumitomo Electric Industries, Limited Ceramique poreuse et son procede de fabrication
DE19618920A1 (de) * 1995-05-10 1996-11-28 Nok Corp Verbundhohlfaser aus poröser Keramik und Verfahren zu seiner Herstellung
EP0778250A1 (fr) * 1995-12-06 1997-06-11 Sumitomo Chemical Company, Limited Corps inorganique poreux fritté ou compacté et son utilisation comme filtre
DE19701751A1 (de) * 1996-01-21 1997-07-24 Klaus Rennebeck Mikrohohlfaser aus keramischen Material, ein Verfahren zu deren Herstellung sowie deren Verwendung
DE19609126A1 (de) * 1996-03-08 1997-09-11 Schumacher Umwelt Trenntech Poröse Form und Verfahren zu ihrer Herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199067B2 (en) * 1998-03-20 2007-04-03 Pall Corporation Homogeneous bulky porous ceramic material

Also Published As

Publication number Publication date
US6573208B1 (en) 2003-06-03
US20030166449A1 (en) 2003-09-04
AU2841699A (en) 1999-10-18
CA2266566A1 (fr) 1999-09-20
US7199067B2 (en) 2007-04-03
JPH11322465A (ja) 1999-11-24
NO20004674D0 (no) 2000-09-19
FR2776287A1 (fr) 1999-09-24
DE1070028T1 (de) 2003-05-28
FR2776287B1 (fr) 2000-05-12
CN1229770A (zh) 1999-09-29
EP1070028A1 (fr) 2001-01-24
WO1999048840A9 (fr) 2000-05-11
NO20004674L (no) 2000-11-08
KR19990078084A (ko) 1999-10-25

Similar Documents

Publication Publication Date Title
EP1070028A1 (fr) Materiau ceramique poreux massif homogene
EP1144099B1 (fr) Membrane comprenant un support poreux et une couche d&#39;un tamis moleculaire et son procede de preparation
EP1062185B1 (fr) Fibre ceramique poreuse multi-canal
JP5054460B2 (ja) ハニカム構造体の製造方法、及び、ハニカム焼成体用原料組成物
EP3233252B1 (fr) Filtres comprenant des membranes en sic incorporant de l&#39;azote
WO2003004439A1 (fr) Procede de preparation d&#39;une composition ceramique de faible epaisseur a deux materiaux, composition obtenue, cellule electrochimique et membrane la comprenant
EP0219383B1 (fr) Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d&#39;éléments de filtration en céramique poreuse, et céramiques ainsi obtenues
EP3558895B1 (fr) Produits céramiques poreux de sous oxydes de titane
EP2114841B1 (fr) Procédé de fabrication d&#39;un corps poreux céramique à base de sic
EP3233253B1 (fr) Filtres comprenant des membranes a base de sic appauvri en oxygene
FR2936512A1 (fr) Procede de fabrication d&#39;un materiau poreux en sic.
EP3471863B1 (fr) Filtres comprenant des couches separatrices a base de beta-sic
EP2091890B1 (fr) Procede d&#39;obtention d&#39;une structure poreuse a base de carbure de silicium et structure poreuse obtenue
EP1910249B1 (fr) Procede de preparation d&#39;une structure poreuse utilisant des agents porogenes a base de silice
FR2678524A1 (fr) Membrane filtrante minerale a permeabilite amelioree, et sa preparation.
FR3030296A1 (fr) Filtres a membranes composites sic-nitrure ou sic-oxynitrure
EP2285753A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d&#39;aluminium
FR2936963A1 (fr) Structure tri-dimensionnelle ouverte a forte resistance mecanique
JP2008303133A (ja) 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGE 19, CLAIMS, ADDED

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1999909023

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999909023

Country of ref document: EP