EP0219383B1 - Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d'éléments de filtration en céramique poreuse, et céramiques ainsi obtenues - Google Patents

Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d'éléments de filtration en céramique poreuse, et céramiques ainsi obtenues Download PDF

Info

Publication number
EP0219383B1
EP0219383B1 EP86401972A EP86401972A EP0219383B1 EP 0219383 B1 EP0219383 B1 EP 0219383B1 EP 86401972 A EP86401972 A EP 86401972A EP 86401972 A EP86401972 A EP 86401972A EP 0219383 B1 EP0219383 B1 EP 0219383B1
Authority
EP
European Patent Office
Prior art keywords
particles
particle size
less
micrometre
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86401972A
Other languages
German (de)
English (en)
Other versions
EP0219383A1 (fr
Inventor
Louis Cot
Christian Gilbert Guizard
André Larbot
Francis Gugliermotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT86401972T priority Critical patent/ATE51765T1/de
Publication of EP0219383A1 publication Critical patent/EP0219383A1/fr
Application granted granted Critical
Publication of EP0219383B1 publication Critical patent/EP0219383B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the present invention relates to the use of mixtures of sinterable powders of different particle sizes in the preparation of a filtration element comprising a macroporous support of porous ceramic, the preparation of such filtration elements, and the filtration elements thus obtained.
  • organic membranes deposited on porous supports are currently used as filter elements, in particular in ultrafiltration and sterilization operations. It is known that such organic membranes have several drawbacks. In particular, they have low mechanical resistance. In addition, they are very sensitive to chemical or thermal treatments, which makes cleaning and sterilization difficult.
  • FR-A 2 502 508 it has been proposed to produce filtration structures constituted by a porous support of sintered material with relatively large grains carrying a thinner filter layer of sintered material with relatively fine grains.
  • the porous support is prepared by mixing a sinterable powder with a sintering agent constituted by a glass, but one then obtains a porous support having a relatively low chemical resistance due to the presence of a vitreous silica phase at the joints of grains.
  • the present invention which was made at the Physicochemistry of Materials Laboratory (UA 407-CNRS) of the National School of Chemistry of opponent, relates to the production of filtration elements comprising a macroporous support in carbide ceramic silicon by performing a sintering at a relatively low temperature, in the absence of a sintering agent, thanks to the use of mixtures of powders of different particle sizes. We can thus achieve significant energy savings and use ovens of current model.
  • Document DE-A 3 149 796 describes the preparation of porous ceramics obtained by sintering a mixture of large and fine particles of boron carbide. Sintering is carried out at 2050 ° C, ie 300 ° C below the melting temperature of boron carbide (2350 ° C).
  • porous ceramics are prepared by sintering a mixture of large and fine particles of silicon carbide.
  • the sintering can, surprisingly, be carried out for example at 1100 ° C., ie 1600 ° C. below the melting point of the silicon carbide (2700 ° C.).
  • the present invention more specifically relates to the use in the preparation of a filtration element comprising a macroporous ceramic support, of sinterable powders constituted by a mixture of particles having two different particle sizes, characterized in that said sinterable powders, made of silicon carbide, consist of a mixture of particles having a particle size less than 1 micrometer and of particles having a particle size greater than or equal to 5 micrometers, the proportion of particles of particle size less than 1 micrometer being from 10 to 20% by mass relative to the total mass of particles.
  • the proportion of particles with a particle size of less than 1 micrometer is 10 to 20% by mass, relative to the total mass of the particles. A higher proportion is not advantageous.
  • the ratio of the average size of the particles with a particle size greater than or equal to 5 micrometers to the average dimension of the particles with a particle size less than 1 micrometer is at least equal to 8.
  • the particles with a particle size at least equal to 5 micrometers have, for example, dimensions which can range from 5 to 50 micrometers, and preferably from 5 to 25 micrometers. For particles with extreme particle sizes from 5 to 50, and in particular from 5 to 25 micrometers, the dispersion of the particle sizes does not play a decisive role.
  • the invention also relates to a process for the preparation of a porous ceramic filter element, in which a mixture of sinterable powders having two different particle sizes is used, characterized in that sinterable powders are mixed in silicon carbide constituted by a mixture of particles having a particle size less than 1 micrometer and of particles having a particle size greater than or equal to 5 micrometers, the proportion of the particles of particle size less than 1 micrometer being from 10 to 20% by mass relative to the total mass of the particles, with a binding agent and a liquid vehicle, so as to obtain a paste, which is shaped said paste, and that it is baked until the desired porous structure is obtained.
  • the procedure is carried out according to known techniques, by mixing the powder with organic binders or plasticizers which will be removed during cooking, and optionally a liquid vehicle such as water with or without the addition of a lubricant.
  • the proportion of binders or plasticizers in the paste is for example from 5 to 20% by mass, and the proportion of liquid vehicle from 15 to 35%.
  • the shaping of the dough is carried out according to known methods.
  • Drying can be carried out either in the open air or in a controlled humid atmosphere.
  • the cooking temperature varies with the starting material. It is generally of the order of 1000 to 1300 ° C.
  • the cooking is carried out in an inert atmosphere.
  • silicon carbide in an inert atmosphere, it is the small grains which provide the sintering, while in an oxidizing atmosphere, it is the silica resulting from the partial oxidation of small grains which ensures sintering between the grains of large particle size. and which also coats these large grains (this coating is visible by electron microscopy).
  • a surface layer of a liquid suspension containing a sinterable powder is applied to said fired ceramic, at least 95% by mass of the particles of which have a particle size of less than 1 micrometer and of which at least 50% by mass has a particle size less than 0.5 micrometer, and a second firing is carried out to obtain a filtration element consisting of a thin filtering layer deposited on a macroporous support.
  • the preparation and application of the slip are carried out in a known manner; see for example the patent applications cited above.
  • the cooking temperature of the microporous layer is of the same order of magnitude as the cooking temperature of the macroporous support.
  • the invention also relates to a ceramic silicon carbide filtration element, characterized in that it comprises a porous structure which appears in scanning electron microscopy in the form of large grains having dimensions at least equal to 5 micrometers, said large grains being uncoated and having retained the appearance of the particles used for the preparation of ceramic, and said large grains being joined by discontinuous grain boundaries having the appearance of small grains of dimension less than 1 micrometer, said small grains having a crystal structure.
  • the powder composed of particles of dimensions less than 1 micrometer, used in the preparation of the filter element has the same composition as the powder formed of particles having dimensions greater than or equal to 5 micrometers, and the grain boundaries have the same composition as the large grains in the final product.
  • the dimensions of the large grains can range from 5 to 50 micrometers, and preferably from 5 to 25 micrometers.
  • Such filtration elements are obtained according to the method described above, by performing, if necessary, cooking in an inert atmosphere.
  • Amigel is a trademark for a pregelatinized starch. This product is marketed by the Corn Products Company (92140 CLAR-MART-FRANCE).
  • Methocel is a trademark for methyl cellulose. This product is marketed by the Lambert-Rivière Company (13240 SEPTEMES-LES - VALLONS - FRANCE).
  • the added water represents 32% of the mass of the products mentioned above; 20% is added during mixing and 12% during mixing.
  • the paste obtained is extruded so as to give it the form of a tube having the following dimensions: length 15 cm, internal diameter 16 mm, external diameter 21 mm.
  • the dough is air dried at a temperature of 25 ° C.
  • Calcination is carried out at 1100 ° C. under nitrogen.
  • Porous supports prepared in a similar manner but calcined in an oxidizing atmosphere (in air) have similar porosity characteristics. However, the appearance of the grains, in scanning electron microscopy, is different, as shown in the attached FIG. 2 (magnification: 1500). We see that the large grains are coated, and we note the virtual absence of small grains. This coating comes from the formation of silica.
  • EXAMPLE 2 Thin filtering layer on a macroporous support.
  • polyvinyl alcohol After despersion and homogenization of the powders and the deflocculant in water, polyvinyl alcohol is added.
  • the filter layers prepared in an analogous manner but calcined under an oxidizing atmosphere have the same porosity characteristics as those calcined under an inert atmosphere. However, they have a weakened chemical resistance due to the presence of Si0 2 .
  • Macroporous support mixture of CSi grains
  • the filtering layer is deposited inside the support of Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)

Description

  • La présente invention a pour objet l'utilisation de mélanges de poudres frittables de granulométries différentes dans la préparation d'un élément de filtration comprenant un support macroporeux en céramique poreuse, la préparation de tels éléments de filtration, et les éléments de filtration ainisi obtenus.
  • On sait que l'on utilise actuellement comme éléments filtrants, notamment dans les opérations d'ultrafiltration et de stérilisation, des membranes organiques déposées sur des supports poreux. Il est connu que de telles membranes organiques présentent plusieurs inconvénients. En particulier elles ont une faible résistance mécanique. En outre, elles sont très sensibles aux traitements chimiques ou thermiques, ce qui rend difficile leur nettoyage et leur stérilisation.
  • Dans la demande de brevet FR-A 2 502 508 on a proposé de réaliser des structures de filtration constituées par un support poreux en matériau fritté à grains relativement gros portant une couche filtrante plus mince en un matériau fritté à grains relativement fins. Le support poreux est préparé par mélange d'une poudre frittable avec un agent de frittage constitué par un verre, mais on obtient alors un support poreux ayant une résitstance chimique relativement faible en raison de la présence d'une phase vitreuse de silice aux joints de grains.
  • On sait qu'il est possible de préparer des céramiques, sans agents de frittage tels que des verres, mais alors la cuisson doit être effectuée à des températures très élevées.
  • La présente invention, qui a été faite au Laboratoire de physicochimie des Matériaux (U.A. 407-CNRS) de l'Ecole Nationale Supérieure de Chimie de Montpellier, a pour objet la réalisation d'éléments de filtration comprenant un support macroporeux en céramique de carbure de silicium en effectuant un frittage à température relativement basse, en l'absence d'un agent de frittage, grâce à l'emploi de mélanges de poudres de granulométries différentes. On peut ainisi réaliser des économies d'énergie importantes et utiliser des fours de modèle courant.
  • Dans le document DE-A 3 149 796, on décrit la préparation de céramiques poreuses obtenues par frittage d'un mélange de grosses et de fines particules de carbure de bore. Le frittage est effectué à 2050°C, soit 300°C en-dessous de la température de fusion du carbure de bore (2350°C).
  • Dans le procédé de la présente demande, on prépare des céramiques poreuses par frittage d'un mélange de grosses et de fines particules de carbure de silicium. Le frittage peut, de façon surprenante, être effectué par exemple à 1100°C, soit 1600°C en dessous de la température de fusion du carbure de silicium (2700°C).
  • La présente invention a plus précisément pour objet l'utilisation dans la préparation d'un élément de filtration comprenant un support macroporeux en céramique, de poudres frittables constituées par un mélange de particules ayant deux granulométries différentes, caractérisée par le fait que lesdites poudres frittables, en carbure de silicium, sont constituées par un mélange de particules ayant une granulométrie inférieure à 1 micromètre et de particules ayant une granulométrie supérieure ou égale à 5 micromètres, la proportion des particules de granulométrie inférieure à 1 micromètre étant de 10 à 20% en masse par rapport à la masse totale de particules.
  • La proportion des particules de granulométrie inférieure à 1 micromètre est de 10 à 20% en masse, par rapport à la masse totale des particules. Une proportion supérieure n'est pas avantageuse.
  • De préférence, le rapport de la dimension moyenne des particules de granulométrie supérieure ou égale à 5 micromètres à la dimension moyenne des particules de granulométrie inférieure à 1 micromètre est au moins égal à 8.
  • Les particules de granulométrie au moins égale à 5 micromètres ont par exemple des dimensions pouvant aller de 5 à 50 micromètres, et de préférence de 5 à 25 micromètres. Pour les particules ayant des dimensions extrêmes des particules de 5 à 50, et en particulier de 5 à 25 micromètres, la dispersion des tailles de particules ne joue pas un rôle déterminant.
  • L'invention a également pour objet un procédé de préparation d'un élément de filtration en céramique poreuse, dans lequel on utilise un mélange de poudres frittables ayant deux granulométries differen- tes, caractérisé par le fait que l'on mélange des poudres frittables en carbure de silicium constituées par un mélange de particules ayant une granulométrie inférieure à 1 micromètre et de particules ayant une granulométrie supérieure ou égale à 5 micromètres, la proportion des partiules de granulométrie inférieure à 1 micromètre étant de 10 à 20% en masse par rapport à la masse totale des particules, avec un agent liant et un véhicule liquide, de façon à obtenir une pâte, qui l'on met en forme ladite pâte, et qu'on la cuit jusqu'à obtention de la structure poreuse désirée.
  • Pour préparer la pâte, on opère selon les techniques connues, en mélangeant la poudre avec des liants ou plastifiants organiques qui seront éliminés lors de la cuisson, et éventuellement un véhicule liquide tel que de l'eau additionnée ou non d'un lubrifiant.
  • La proportion de liants ou plastifiants dans la pâte est par exemple de 5 à 20% en masse, et la proportion de véhicule liquide de 15 à 35%.
  • La mise en forme de la pâte (plaques, tubes, tubes multicanaux) est effectuée selon les méthodes connues.
  • Le séchage peut être effectué soit à l'air libre, soit en atmosphère humide contrôle.
  • La température de cuisson varie avec le matériau de départ. Elle est généralement de l'ordre de 1000 à 1300°C.
  • Grâce à l'utilisation de poudres de granulométries différentes, il est donc possible d'effectuer la cuisson à des températures relativement basses malgré l'absence d'un agent de frittage tel qu'un verre.
  • Si l'on souhaite éviter de modifier la compostion chimique de la poudre de départ, on effectue la cuisson en atmosphère inerte.
  • Dans le cas du carbure de silicium, en atmosphère inerte, ce sont les petits grains qui assurent le frittage, alors qu'en atmosphère oxydante, c'est la silice issue de l'oxydation partielle des petits grains qui assure le frittage entre les grains de grosse granulométrie. et qui enrobe en outre ces gros grains (cet enrobage est visible en microscopie électronique).
  • En outre, si désiré, on applique sur ladite céramique cuite une couche superficielle d'une suspension liquide contenant une poudre frittable dont au moins 95% en masse des particules ont une granulométrie inférieure à 1 micromètre et dont au moins 50% en masse ont une granulométrie inférieure à 0,5 micromètre, et l'on procède à une seconde cuisson pour obtenir un élément de filtration constitué par une couche mince filtrante déposée sur un support macroporeux.
  • La préparation et l'application de la barbotine sont effectuées de façon connue; voir par exemple les demandes de brevets citées précédemment. La température de cuisson de la couche fitrante micro- poreuse est du même ordre de grandeur que la température de cuisson du support macroporeux.
  • Bien entendu, il est possible de réaliser, entre le support et la couche filtrante, une ou plusieurs couches intermédiaires.
  • L'invention a également pour objet un élément de filtration en céramique de carbure de silicium, caractérisé par le fait qu'il comprend une structure poreuse qui apparaît en microscopie électronique à balayage sous la forme de gros grains ayant des dimensions au moins égales à 5 micromètres, lesdits gros grains étant non enrobés et ayant conservé l'aspect des particules utilisées pour la préparation de la céramique, et lesdits gros grains étant réliés par des joints de grains discontinus ayant l'aspect de petits grains de dimension inférieure à 1 micromètre, lesdits petits grains ayant une structure cristalline. La poudre composée de particules de dimensions inférieures à 1 micromètre, utilisée dans la préparation de l'élément de filtration, a la même compostion que la poudre formée de particules ayant des dimensions supérieures ou égales à 5 micromètres, et les joints de grains ont la même compostion que les gros grains dans le produit final.
  • Généralement, les dimensions des gros grains peuvent aller de 5 à 50 micromètres, et de préférence de 5 à 25 micromètres.
  • De tels éléments de filtration sont obtenus selon le procédé décrit précédemment, en effectuant, si nécessaire, la cuisson en atmosphère inerte.
  • Les exemples suivants illustrent l'invention sans toutefois la limiter. Dans ces exemples, les mesures de porosité et de diamètre des pores sont effectuées au porosimètre à mercure.
  • EXEMPLE 1 - Support macroporeux
  • a) On procède au mélange des produits suivants (les quantités sont données en pourcentage pondéral) :
    • - CSi (0,511m) 10
    • - CSi (10 µm) : 75
    • - Alcool polyvinylique : 5
    • - Amigel : 5
    • - Méthocel : 5
  • Amigel est une marque commerciale pour un amidon prégélatinisé. Ce produit est commercialisé par la Société des Produits du Maïs (92140 CLAR-MART-FRANCE).
  • Méthocel est une marque commerciale pour la mé- thyl cellulose. Ce produit est commercialisé par la Société Lambert-Rivière (13240 SEPTEMES-LES - VALLONS - FRANCE).
  • b) Malaxage :
  • L'eau ajoutée représente 32 % de la masse des produits cités ci-dessus ; 20% sont ajoutés lors du mélange et 12 % lors du malaxage.
  • c) Mise en forme :
  • La pâte obtenue est extrudée de façon à lui donner la forme d'un tube ayant les dimensions suivantes : longueur 15 cm, diamètre intérieur 16 mm, diamètre extérieur 21 mm.
  • d) Séchage :
  • On sèche la pâte à l'air, à une température de 25°C.
  • c) Cuisson :
  • On procède à une calcination à 1100°C sous azote.
  • Caractéristiques du produit obtenu :
    • diamètre des pores : 8 µm
    • volume poreux : 35 %
    • Aspect en microscopie électronique à balayage :
    • voir la figure 1 annexée (grossissement : 6800)
  • L'analyse des joints de grains à la sonde de Cas- taing montre que ceux-ci sont constituées de carbure de silicium, tout comme les gros grains majoritaires.
  • Les supports poreux préparés de façon analogue mais calcinés sous atmosphère oxydante (à l'air) présentent des caractéristiques de porosité analogues. Toutefois, l'aspect des grains, en microscopie électronique à balayage, est différent, comme le montre la figure 2 annexée (grossissement : 1500). On voit que les gros grains sont enrobés, et on note la quasi-absence de petits grains. Cet enrobage provient de la formation de silice.
  • EXEMPLE 2 - Couche mince filtrante sur support macroporeux.
  • On réalise une suspension avec les éléments suivants : (en % pondéral)
    • H20 distillée : 52,34
    • CSi 0,5 gm : 10
    • alcool polyvinylique : 18,75
    • défloculant : 0,16
  • Après despersion et homogénéisation des poudres et du défloculant dans l'eau, on ajoute l'alcool polyvinylique.
  • On applique la suspension à l'intérieur du tube décrit dans l'exemple 1, en emplissant le tube à l'aide de la suspension, selon le principe des vases communicants, puis en vidant le tube de la même façon.
  • Après séchage, on procède à une calcination à 1050°C (sous azote).
  • Caractéristiques de la couche :
    • épaisseur = 10 à 12 gm
    • Diamètre des pores :
    • 0,15 - 0.20 µm
    • Volume poreux : 30 %
    • Perméabilité à l'eau : 12001/h/m2/bar
    • On rappelle que 1 bar = 105 Pa
  • Les couches filtrantes préparées de façon analogue mais calcinées sous atmosphère oxydante ont les mêmes caractéristiques de porosité que celles calcinées sous atmosphère inerte. Néanmoins, elle présentent une résistance chimique affaiblie du fait de la présence de Si02.
  • De façon analogue à celle décrite à l'exemple 1, on a préparé des supports d'éléments de filtration avec les mélanges de poudres mentionnés ci-après.
  • EXEMPLE 3 Support macroporeux : mélange de grains de CSi
    • 12 % à 0,5 µm
    • 88 % à 5 jim
    • Calcination à 1100°C (sous azote)
  • Caractéristiques du support :
    • Tube de longueur de 15 cm, diamètre intérieur 16 mm, diamètre extérieur 21 mm.
      • Diamètre des pores : 5 µm
      • Volume poreux : 30%
    EXEMPLE 4 Couche filtrante sur support macroporeux
  • On opère de façon analogue à celle décrite à l'exemple 2, mais en utilisant 6% de CSi 0,5 µm
  • Calcination à 1100°C (sous azote)
  • La couche filtrante est déposée à l'intérieur du support de l'exemple 3.
  • Caractéristiques :
    • Epaisseur de la couche : 5 µm
    • Diamètre des pores : 0,15 µm
    • Volume poreux : 30 %
    • Débit à l'eau : 1.5001/h/m2/bar

Claims (6)

1. Utilisation, dans la préparation d'un élément de filtration comprenant un support macroporeux en céramique, de poudres frittables constituées par un mélange de particules ayant deux granulométries différentes, caractérisée par le fait que lesdites poudres frittables, en carbure de silicium, sont constituées par un mélange de particules ayant une granulométrie inférieure à 1 micromètre et de particules ayant une granulométrie supérieure ou égale à 5 micromètres, la proportion des particules de granulométrie inférieure à 1 micromètre étant de 10 à 20% en masse par rapport à la masse totale des particules.
2. Utilisation selon la revendication 1, caractérisée par le fait que les particules ayant une granulométrie supérieure ou égale à 5 micromètres ont des dimensions de 5 à 50 micromètres.
3. Utilisation selon l'une quelconque des revendications 1 et 2, caractérisée par le fait que le rapport de la dimension moyenne des particules de granulométrie supérieure ou égale à 5 micromètres à la dimension moyenne des particules de granulométrie inférieure à 1 micromètre est au moins égale à 8.
4. Procédé de préparation d'un élément de filtration en céramique poreuse, dans lequel on utilise un mélange de poudres frittables ayant deux granulométrie différentes, caractérisé par le fait que l'on mélange des poudres frittables en carbure de silicium constituées par un mélange de particules ayant une granulométrie inférieure à 1 micromètre et de particules ayant une granulométrie supérieure ou égale à 5 micromètre, la proportion des particules de granulométrie inférieure à 1 micromètre étant de 10 à 20% en masse par rapport à la masse totale des particules, avec un agent liant et un véhicule liquide, de façon à obtenir une pâte, que l'on met en forme ladite pâte, et qu'on la cuit jusqu'à obtention de la structure poreuse désireé.
5. Procédé selon la revendication 4, caractérisé par le fait qu'en outre, on applique sur ladite céramique cuite une couche d'une suspension liquide contenant une poudre frittable dont au moins 95% en masse des particules ont une granulométrie inférieure à 1 micromètre et dont au moins 50% en masse ont une granulométrie inférieure à 0,5 micromètre, et que l'on procède à une seconde cuisson pour obtenir un élément de filtration constitué par une couche mince filtrante déposée sur un support macroporeux.
6. Elément de filtration en céramique, caractérisé par le fait qu'il est préparé selon le procédé de l'une quelconque des revendications 4 et 5.
EP86401972A 1985-09-09 1986-09-09 Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d'éléments de filtration en céramique poreuse, et céramiques ainsi obtenues Expired - Lifetime EP0219383B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86401972T ATE51765T1 (de) 1985-09-09 1986-09-09 Verwendung sinterfaehiger pulver aus siliciumcarbid mit einer besonderen korngroessenverteilung zur herstellung poroeser keramischer filterelemente und so hergestellte keramische produkte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8513379A FR2587026B1 (fr) 1985-09-09 1985-09-09 Utilisation de poudres frittables de granulometrie particuliere dans la realisation d'elements de filtration en ceramique poreuse, et ceramiques ainsi obtenues
FR8513379 1985-09-09

Publications (2)

Publication Number Publication Date
EP0219383A1 EP0219383A1 (fr) 1987-04-22
EP0219383B1 true EP0219383B1 (fr) 1990-04-11

Family

ID=9322757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401972A Expired - Lifetime EP0219383B1 (fr) 1985-09-09 1986-09-09 Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d'éléments de filtration en céramique poreuse, et céramiques ainsi obtenues

Country Status (4)

Country Link
EP (1) EP0219383B1 (fr)
AT (1) ATE51765T1 (fr)
DE (1) DE3670213D1 (fr)
FR (1) FR2587026B1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8812217D0 (en) * 1988-05-24 1988-06-29 Alcan Int Ltd Composite membranes
DE68902595T2 (de) * 1988-05-24 1993-03-04 Ceramesh Ltd Komposit-membranen.
US5605628A (en) * 1988-05-24 1997-02-25 North West Water Group Plc Composite membranes
US4946487A (en) * 1988-11-14 1990-08-07 Norton Company High temperature filter
GB8914023D0 (en) * 1989-06-19 1989-08-09 Alcan Int Ltd Porous ceramic membrane method
US5004544A (en) * 1989-11-13 1991-04-02 Norton Company Reaction bonded silicon nitride filtration membranes
JPH04100505A (ja) * 1990-08-20 1992-04-02 Toto Ltd セラミックフィルタの製造方法
FR2693921B1 (fr) * 1992-07-24 1994-09-30 Tech Sep Support monolithe céramique pour membrane de filtration tangentielle.
JPH09157060A (ja) * 1995-12-06 1997-06-17 Sumitomo Chem Co Ltd 無機焼結多孔体およびフィルタ
ES2183264T3 (es) * 1998-08-03 2003-03-16 Europ Economic Community Metodo y aparato para la extraccion de isotopos de hidrogeno de un eutectico liquido de pb-17li en un reactor de fusion.
GB9914396D0 (en) 1999-06-22 1999-08-18 Sterilox Med Europ Ltd Ceramic membrane
EP1686107A4 (fr) * 2003-09-12 2008-12-03 Ibiden Co Ltd Comprime en ceramique frittee et filtre en ceramique
EP1769837B1 (fr) * 2005-02-04 2016-05-04 Ibiden Co., Ltd. Structure en nid d'abeille ceramique et procede de fabrication de celle-ci
CN101010266A (zh) 2005-02-04 2007-08-01 揖斐电株式会社 陶瓷蜂窝结构体
FR3030297B1 (fr) 2014-12-18 2016-12-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen Filtres comprenant des membranes en sic incorporant de l'azote
FR3030298B1 (fr) 2014-12-18 2016-12-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen Filtres comprenant des membranes a base de sic appauvri en oxygene
FR3030296B1 (fr) * 2014-12-18 2016-12-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen Filtres a membranes composites sic-nitrure ou sic-oxynitrure
FR3052682B1 (fr) 2016-06-20 2020-11-06 Saint Gobain Ct Recherches Filtres comprenant des couches separatrices a base de beta-sic
DE102016011672A1 (de) * 2016-09-28 2018-03-29 Rauschert Kloster Veilsdorf Gmbh Verfahren zur Herstellung einer keramischen Filtrationsscheibe
KR20180072025A (ko) 2016-12-20 2018-06-29 한국기계연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막 및 그 제조 방법
FR3098730B1 (fr) * 2019-07-18 2024-01-19 Saint Gobain Ct Recherches Filtre comprenant une couche séparatrice en carbure de silicium
CN111744372B (zh) * 2020-07-06 2022-06-28 广州市还原科技有限公司 一种多孔超滤陶瓷材料、含有该材料的制品及其制备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021520A (en) * 1932-07-15 1935-11-19 Siemens Ag Method of making bodies consisting of metallic oxides
LU36002A1 (fr) * 1957-04-26
FR2463636A1 (fr) * 1973-09-28 1981-02-27 Commissariat Energie Atomique Procede de fabrication de supports de filtres poreux
IT1085777B (it) * 1977-02-16 1985-05-28 Montedison Spa Procedimento per la produzione di manufatti a porosita' e permeabilita' controllate,costituiti da alluminia o da altri ossidi di elevata purezza
DE3140098A1 (de) * 1981-10-06 1983-04-21 Schweizerische Aluminium AG, 3965 Chippis Filtermedium in form eines stabilen poroesen koerpers
DE3149796A1 (de) * 1981-12-16 1983-06-23 Elektroschmelzwerk Kempten GmbH, 8000 München Verfahren zur herstellung von poroesen formkoerpern aus polykristallinem borcarbid mit eigenbindung durch drucklose sinterung
FR2549736B1 (fr) * 1983-07-29 1988-10-07 Ceraver Membrane de filtration

Also Published As

Publication number Publication date
EP0219383A1 (fr) 1987-04-22
ATE51765T1 (de) 1990-04-15
FR2587026A1 (fr) 1987-03-13
DE3670213D1 (de) 1990-05-17
FR2587026B1 (fr) 1992-02-07

Similar Documents

Publication Publication Date Title
EP0219383B1 (fr) Utilisation de poudres frittables de carbure de silicium de granulométrie particulière dans la réalisation d'éléments de filtration en céramique poreuse, et céramiques ainsi obtenues
US5110470A (en) Ceramic filter and process for making it
EP0585152B1 (fr) Support monolithe céramique pour membrane de filtration tangentielle
CA1322134C (fr) Membrane de filtration ceramique et procede de fabrication
EP0237865B1 (fr) Procédé de fabrication d'un élemént de microfiltration, d'ultrafiltration ou d'osmose inverse
JPS5834006A (ja) フイルタ構体とその製法およびこれを用いた限外濾過装置
JPH02504124A (ja) 熱反応性無機結合剤を有する多孔質で無機質の膜体の製法
CN108201794B (zh) 利用经氧化处理的碳化硅的水处理用陶瓷分离膜及其制备方法
CN107619296A (zh) 一种碟式全碳化硅过滤膜的制备方法
LU70703A1 (fr) Procede de fabrication de supports de filtres poreux
WO2017107478A1 (fr) Procédé de préparation d'un corps de support de membrane de tamis moléculaire
EP3558895A1 (fr) Produits céramiques poreux de sous oxydes de titane
Das et al. Formatation of pore structure in tape-cast alumina membranes–effects of binder content and firing temperature
JPH01239056A (ja) 酸化アルミニウム管およびその製造方法
JPH08971A (ja) セラミック膜の形成方法
JP3057312B2 (ja) 濾過分離用セラミックス多孔体
FR2678524A1 (fr) Membrane filtrante minerale a permeabilite amelioree, et sa preparation.
EP0236398B1 (fr) Couches minces microporeuses a porosite ouverte ayant des proprietes de conduction
JPH01274815A (ja) セラミックスフィルターの製造方法
KR101918916B1 (ko) 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막
Santos et al. Formation of SnO 2 supported porous membranes
JPS63274407A (ja) 分離膜エレメントの製造方法
JPH02153871A (ja) 無機多孔質構造体およびその製造法
JP2934864B2 (ja) シリカガラスフィルターの製造方法
Salikhov et al. Prospects for application of superdispersed powders obtained in small solar furnaces to form ceramic membranes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870512

17Q First examination report despatched

Effective date: 19880506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 51765

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3670213

Country of ref document: DE

Date of ref document: 19900517

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910805

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910829

Year of fee payment: 6

Ref country code: AT

Payment date: 19910829

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910830

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910930

Year of fee payment: 6

Ref country code: CH

Payment date: 19910930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911018

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920909

Ref country code: GB

Effective date: 19920909

Ref country code: AT

Effective date: 19920909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920930

Ref country code: CH

Effective date: 19920930

Ref country code: BE

Effective date: 19920930

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Effective date: 19920930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920909

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

EUG Se: european patent has lapsed

Ref document number: 86401972.4

Effective date: 19930406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050909