WO1999026028A1 - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
WO1999026028A1
WO1999026028A1 PCT/JP1998/004449 JP9804449W WO9926028A1 WO 1999026028 A1 WO1999026028 A1 WO 1999026028A1 JP 9804449 W JP9804449 W JP 9804449W WO 9926028 A1 WO9926028 A1 WO 9926028A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
circuit
injection
supercooling
compressor
Prior art date
Application number
PCT/JP1998/004449
Other languages
English (en)
French (fr)
Inventor
Yuji Yoneda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DK98945577T priority Critical patent/DK1033541T3/da
Priority to AU92820/98A priority patent/AU740993B2/en
Priority to JP52811899A priority patent/JP3858276B2/ja
Priority to EP98945577A priority patent/EP1033541B1/en
Priority to US09/554,508 priority patent/US6405559B1/en
Priority to KR10-2000-7005375A priority patent/KR100514927B1/ko
Priority to DE69825178T priority patent/DE69825178T2/de
Publication of WO1999026028A1 publication Critical patent/WO1999026028A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus provided with an injection circuit.
  • This refrigerating apparatus has a main circuit 57 in which a compressor 51, a condenser 52, a supercooling heat exchanger 53, a main expansion valve 54, an evaporator 55, and an accumulator 56 are sequentially connected.
  • a branch pipe 60 branched from the main circuit 57 between the condenser 52 and the supercooling heat exchanger 53 is connected to an inner pipe 53A of the supercooling heat exchanger 53.
  • the inner pipe 53 A extends from the downstream of the main flow to the upstream in the outer pipe 61, and is connected to the injection pipe 62.
  • the branch pipe 60 has a mechanical expansion valve 63, and the mechanical expansion valve 63 changes its opening in response to a signal from a temperature-sensitive cylinder 65 attached to the injection pipe 62. It has become.
  • the injection pipe 62 is connected to an intermediate pressure part 51 A of the compressor 51.
  • the injection pipe 62 has a solenoid valve 66. By opening and closing the solenoid valve 66, the injection of the gas refrigerant into the compressor 51 is turned on and off.
  • the refrigerant flowing from the condenser 52 to the main expansion valve 54 is supercooled by a subcooling circuit constituted by the supercooling heat exchanger 53, the branch pipe 60, and the mechanical expansion valve 63.
  • a subcooling circuit constituted by the supercooling heat exchanger 53, the branch pipe 60, and the mechanical expansion valve 63.
  • the refrigeration efficiency is improved. Is being improved.
  • FIG. 10 shows a refrigerant circuit of another conventional refrigeration apparatus.
  • the refrigerant circuit includes a compressor 201, a four-way switching valve 202, an outdoor heat exchanger 203, a first expansion valve 205, a gas-liquid separator 206, and a second expansion valve 200. 7, a main refrigerant circuit 210 in which the room heat exchanger 208 is connected in order.
  • the refrigerant circuit includes a bypass circuit 211 connecting the ceiling of the gas-liquid separator 206 to the intermediate pressure portion 201a of the compressor 201.
  • This bypass circuit 211 has a solenoid valve 211.
  • a heating operation is performed in which the four-way switching valve 202 communicates with the broken line and the indoor heat exchanger 208 is a condenser.
  • the solenoid valve 211 is opened, the gas refrigerant from the gas-liquid separator 206 passes through the bypass circuit 211, and is injected into the intermediate pressure point 20 la of the compressor 201. Is done.
  • the indoor heat acting as a condenser is obtained.
  • the amount of refrigerant flowing through the exchanger 208 is increased to improve efficiency.
  • FIG. 9 shows the above heating operation in a Mollier diagram.
  • the flow rate G c in the indoor heat exchanger 208 which is a condenser, is It is the sum (G e + G i) of the flow rate Ge in the outdoor heat exchanger 203 and the flow rate G i flowing in the bypass circuit 211.
  • the gas injection flow rate G i becomes (G c XX).
  • a reverse cycle defrost operation is performed. That is, the four-way switching valve 202 is switched to communicate the solid line path, and the outdoor heat exchanger 203 works as a condenser to melt the frost. Also in this reverse cycle defrost operation, by opening the solenoid valve 211, the gas refrigerant is recirculated from the bypass circuit 211 to the compressor 201, and the outdoor heat exchange is performed from the compressor 201. The amount of refrigerant circulating in the heat exchanger 203 can be increased, and the frost in the outdoor heat exchanger 203 can be quickly melted.
  • a first object of the present invention is to provide a refrigeration apparatus that can control a supercooling circuit and an injection circuit with low noise and low cost.
  • a second object of the present invention is to provide a refrigeration apparatus that can reduce the defrost time.
  • a refrigeration apparatus includes a compressor, a condenser, a main expansion mechanism, an evaporator, and a supercooler provided between the condenser and the main expansion mechanism.
  • a refrigerating apparatus comprising: a subcooling circuit having a cooling heat exchanger; and an injection circuit for injecting a gas refrigerant from the subcooling heat exchanger into an intermediate pressure portion of a compressor.
  • An electric expansion valve is provided on a supercooling pipe that branches off from a mainstream upstream of the supercooling heat exchanger and reaches the supercooling heat exchanger.
  • the injection operation of the injection circuit can be turned off by fully closing the electric expansion valve. Further, the degree of opening of the electric expansion valve can be controlled to a desired degree, and the degree of supercooling by the subcooling circuit and the amount of injection by the injection circuit can be set to desired values.
  • the electric expansion valve plays the role of the conventional solenoid valve and the role of the mechanical expansion valve, so that the solenoid valve is unnecessary, and the opening and closing noise of the solenoid valve, especially Chattering noise can be eliminated, and the cost can be reduced by eliminating the need for an electromagnetic valve. Therefore, according to the present invention, the supercooling circuit and the injection circuit can be linearly controlled with low noise and low cost.
  • the electric expansion valve when the injection circuit is substantially stopped operating, the electric expansion valve is set to a slight opening close to the fully closed state.
  • a first opening control unit to be set is provided.
  • the injection motor-operated expansion valve is slightly opened to avoid the generation of clearance volume (dead space) and to prevent the compressor body from being opened. A reduction in product efficiency can be avoided.
  • the refrigeration apparatus according to claim 1 further includes a rectifier circuit for flowing a refrigerant in the order of the condenser, the supercooling heat exchanger, and the main expansion mechanism during cooling and heating.
  • the rectifier circuit allows the refrigerant to flow in the order of the condenser, the subcooling heat exchanger, and the main expansion mechanism both during cooling and during heating. Perform injections to increase efficiency.
  • a second opening degree control for controlling the opening degree of the electric expansion valve to a puppy according to the level of the refrigerant temperature of the injection circuit.
  • the refrigerating apparatus of another embodiment includes a compressor, a four-way switching valve, an outdoor heat exchanger, a main expansion mechanism, and an indoor heat exchanger, and performs reverse cycle defrost operation.
  • the refrigeration system has a liquid injection circuit for injecting the liquid refrigerant from the outdoor heat exchanger into the compressor during reverse cycle defrost, bypassing the main expansion mechanism and the indoor heat exchanger.
  • the liquid refrigerant is injected into the compressor during the defrost by the liquid injection circuit, so that the amount of circulation of the compressor can be further increased as compared with the gas injection. Therefore, the frost can be melted in a short time, and the defrost time can be reduced.
  • the refrigerating apparatus includes a compressor, a condenser, a main expansion mechanism, an evaporator, a supercooling circuit provided between the condenser and the main expansion mechanism, and a subcooling circuit.
  • An electric expansion valve is provided in a subcooling pipe branched from a main stream upstream of the subcooling circuit and leading to the subcooling circuit.
  • the injection operation of the injection circuit can be turned off by fully closing the electric expansion valve. Further, by controlling the opening of the electric expansion valve to a desired opening, the degree of supercooling by the subcooling circuit and the injection amount by the injection circuit can be set to desired values. That is, according to the refrigeration apparatus, the electric expansion valve plays the role of the conventional solenoid valve and the role of the mechanical expansion valve, so that the solenoid valve is not required, and the opening and closing noise of the solenoid valve is reduced. In particular, chattering noise can be eliminated, and the cost can be reduced by eliminating the need for a solenoid valve. Therefore, according to the present invention, the supercooling circuit and the injection circuit can be linearly controlled with low noise and low cost.
  • the refrigeration apparatus wherein an output of the compressor is controlled by an inverter, and an operation frequency of the compressor is equal to or higher than a predetermined operation frequency. when it becomes, it opened the electric expansion valve, with a control means you turn on the injection operation by the injection circuit c
  • the injection operation is turned on when the operating frequency of the compressor is equal to or higher than a predetermined operating frequency. Therefore, efficient injection can be performed with the amount of circulating refrigerant increased to a predetermined value or more. .
  • FIG. 1A is a refrigerant circuit diagram of an air conditioner as a first embodiment of a refrigeration apparatus of the present invention
  • FIG. 1B is a modification of the rectifier circuit of the first embodiment.
  • FIG. 2 is a Mollier diagram illustrating the operation of the air conditioner.
  • Fig. 3 shows the control operation of the electric expansion valve for injection of the air conditioner. This is a flowchart for explaining.
  • FIG. 4 is a refrigerant circuit diagram of an air conditioner as a refrigeration apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a Mollier chart when liquid injection is performed in the second embodiment.
  • FIG. 6 is a timing chart at the time of executing the reverse cycle defrost according to the second embodiment.
  • FIG. 7 is a refrigerant circuit diagram of an air conditioner as a refrigeration apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a refrigerant circuit diagram of a conventional refrigeration apparatus.
  • FIG. 9 is a Moriel diagram of a gas injection cycle by the conventional refrigeration apparatus.
  • FIG. 10 is a refrigerant circuit diagram of another conventional refrigeration apparatus that performs gas injection.
  • FIG. 11 is a Mollier diagram when gas injection is performed during defrosting in the conventional refrigeration apparatus.
  • FIG. 1A shows an air conditioner as a refrigeration apparatus according to a first embodiment of the present invention.
  • the first embodiment has a refrigerant circuit in which a compressor 1, a four-way switching valve 2, an outdoor heat exchanger 3, a rectifying circuit 5, and an indoor heat exchanger 6 are connected in this order.
  • the indoor heat exchanger 6 is connected to the suction side of the compressor 1 via an accumulator 7.
  • the rectifier circuit 5 includes a series connection circuit of the first and second check valves 11 1 and 12 and a third
  • the fourth check valve 13 is a circuit in which a series connection circuit of 13 and 14 is connected in parallel.
  • the first check valve 11 and the second check valve 12 are connected in a forward direction toward their connection point P 1, and the third check valve 13 and the fourth check valve are connected to each other.
  • the stop valves 14 are connected in the opposite direction toward their connection point P2. Between the connection points P1 and P2 of the rectifier circuit 5, the supercooling circuit 8 and the main The motor-operated valve 9 and the injection circuit 10 are connected.
  • the supercooling circuit 8 includes a supercooling heat exchanger 15 and an electric expansion valve 16 for injection work.
  • the supercooling heat exchanger 15 is connected between the connection point P 1 and the main motor-operated valve 9.
  • the injection electric expansion valve 16 is branched from the connection point P 1 and connected to the inlet 21 a of the inner pipe 21 in the supercooling heat exchanger 15.
  • the outlet 21 b of the inner pipe 21 is connected to an injection pipe 22, and the injection pipe 22 is connected to the intermediate pressure point la of the compressor 1.
  • FIG. 2 shows a state on a Mollier diagram of each part Q1 to Q8 of the refrigerant circuit of FIG.
  • the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 and the rectification circuit 5 After flowing into the first check valve 11 1, it is divided into a sub-flow to the injection electric expansion valve 16 and a main flow to the subcooling heat exchanger 15 at the connection point P 1.
  • the main stream is supercooled by the subcooling heat exchanger 15 and then expanded by the main valve 9, passes through the connection point P 2 and the fourth check valve 14, and passes through the indoor heat exchanger. Reaches 6. Then, the main stream evaporated in the indoor heat exchanger 6 returns to the suction side of the compressor 1 through the four-way switching valve 2 and the accumulator 7.
  • the substream is expanded by the injection electric expansion valve 16, passes through the inner pipe 21 of the supercooling heat exchanger 15, absorbs heat, and It is injected into the compressor 1 at an intermediate pressure point 1 a through the junction pipe 22.
  • the refrigerant discharged from the compressor 1 is condensed in the indoor heat exchanger 6 and (2) Flow into the check valve (12), and is divided into a sub flow to the injection electrically operated expansion valve (16) and a main flow to the subcooling heat exchanger (15) at the connection point (P1).
  • the main stream is supercooled by the subcooling heat exchanger 15, then expanded by the main valve 9, passes through the connection point P 2, the third check valve 13, and passes through the outdoor heat exchanger 3. Leads to.
  • the main stream evaporated in the outdoor heat exchanger 3 returns to the suction side of the compressor 1 through the four-way switching valve 2 and the accumulator 7.
  • the sub-flow is expanded by the injection electric expansion valve 16, passes through the inner pipe 21 of the subcooling heat exchanger 15, absorbs heat, passes through the injection pipe 22, It is injected into the compressor 1 at an intermediate pressure point 1a.
  • the supercooling and the injection of the gas refrigerant into the intermediate pressure portion 1a of the compressor 1 can be performed during the cooling and the heating. . Therefore, in both cooling and heating, efficiency can be improved by supercooling and gas injection.
  • the injection operation of the injection circuit 10 can be turned off by fully closing the injection electric expansion valve 16. Further, by controlling the opening of the electric expansion valve 16 to a desired opening, the degree of supercooling by the supercooling circuit 8 and the amount of injection by the injection circuit 10 can be set to desired values.
  • the electric expansion valve 16 plays the role of the solenoid valve and the role of the mechanical expansion valve of the conventional example, the solenoid valve is not required, and Opening and closing sounds, especially chattering sounds, can be eliminated.
  • the cost can be reduced by eliminating the need for a solenoid valve. Therefore, according to this embodiment, the supercooling circuit 8 and the injection circuit 10 can be controlled linearly with low noise and low cost. Efficiency can be maximized by linearly controlling the degree of supercooling and the amount of gas injection.
  • step S1 it is determined whether or not the compressor 1 is stopped. If it is determined that the compressor 1 is stopped, the process proceeds to step S10, in which the electronic expansion valve 16 for injection is fully closed. To As described above, when the compressor 1 is stopped, the electric expansion valve 16 is fully closed, so that the refrigerant accumulates in the compressor 1 while the compressor 1 is stopped, and the refrigerant becomes refrigerating machine oil. Prevents melting (so-called refrigerant stagnation) and facilitates restart.
  • step S2 it is determined whether or not the operating frequency of the compressor 1 is higher than a predetermined frequency. Then, the electric expansion valve for injection 16 is opened, and the supercooling circuit 8 and the injection circuit 10 are operated. As a result, efficient injection can be performed with the amount of circulating refrigerant increased to a predetermined value or more.
  • step S6 the signal from the thermistor 31 attached to the refrigerant pipe between the electric expansion valve for injection 16 and the inlet 21a of the inner pipe 21 is used to make the injection pipe 2 Detects the intermediate temperature of the sub-flow refrigerant going to 2.
  • the intermediate temperature was detected by a thermistor 32 attached to the injection pipe 22 near the outlet 21b of the inner pipe 21. May be issued.
  • step S7 it is determined whether or not the intermediate temperature is higher than a predetermined temperature. If it is determined that the intermediate temperature is higher than the predetermined temperature, the process proceeds to step S8, where the injection Reduce the opening of the electric expansion valve 16 and return to the start.
  • Step S9 in which the opening of the injection electric expansion valve 16 is increased by the predetermined opening, and the process returns to the start.
  • Steps S6, S7, S8, and S9 constitute a second opening control unit.
  • step S2 determines whether the operating frequency of the compressor 1 is not higher than the predetermined frequency. If it is determined in step S2 that the operating frequency of the compressor 1 is not higher than the predetermined frequency, the process proceeds to step S3, in which the injection electric expansion valve 16 is closed, and the subcooling circuit 8 is closed. Stop the operation of the injection circuit 10.
  • step S4 the electric expansion valve for injection 16 is set to a predetermined opening degree, and the process returns to the start.
  • Steps S2, S3, and S4 constitute a first opening control unit.
  • the rectifier circuit 5 is constituted by four check valves.
  • the rectifier circuit may be constituted by a four-way switching valve 40 shown in FIG. 1 (B).
  • the first end 40 a of the four-way switching valve 40 is connected to the outdoor heat exchanger 3
  • the end 40b may be connected to the connection point P1
  • the third end 40c may be connected to the indoor heat exchanger 6, and the fourth end 40d may be connected to the connection point P2.
  • the solid-line paths 41, 43 of the four-way switching valve 40 in FIG. 1 (B) are communicated, while during heating, the broken-line path 4 of the four-way switching valve 40 in FIG. 1 (B) is connected.
  • Connect 2, 4 and 4. This allows the refrigerant from the condenser to flow in the order of the supercooling heat exchanger 15 and the main motor-operated valve 9 both during cooling and during heating.
  • the supercooling circuit 8 includes the supercooling heat exchanger 15.
  • FIG. 4 shows a refrigerant circuit of a refrigeration apparatus according to a second embodiment of the present invention.
  • the second embodiment has the same refrigerant circuit as the first embodiment shown in FIG. 1, and controls the inverter 101 for controlling the output of the compressor 1 and the inverter 101.
  • the second embodiment differs from the first embodiment in that a control unit 102 is provided. Therefore, in the second embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the reverse cycle defrost performed by interrupting the heating operation due to frost on the outdoor heat exchanger 3.
  • the operation will be described.
  • the operation of opening the electric expansion valve for injection 16 and injecting the liquid refrigerant from the injection pipe 22 into the compressor 1 during the reverse cycle defrost operation will be described.
  • the four-way switching valve 2 connects the broken line.
  • the four-way switching valve 2 connects the dashed path when the power is turned off, while the four-way switching valve 2 It is of the type that connects the solid line path when the power is turned on.
  • the outer fan 103 on the outdoor heat exchanger 3 side and the inner fan 105 on the indoor heat exchanger 6 side are operating.
  • the opening degree of the main motor-operated valve 9 is small.
  • the electric expansion valve 16 for injection is closed.
  • the control unit 102 detects that the outdoor heat exchanger 3 is frosted during the heating operation by the temperature signal from the outside temperature sensor 106, first, the four-way switching valve 2 is switched. Connect the solid line route to the cooling position. Immediately thereafter, the outer fan 103 and the inner fan 105 are stopped, and the openings of the main motor-operated valve 9 and the electric expansion valve 16 for injection are increased to a predetermined opening for defrost. At the same time, the control unit 102 increases the frequency of the inverter 101 to increase the output of the compressor 1. As a result, a reverse cycle defrost operation is started.
  • the bypass flow refrigerant passes from the connection point P1 through the electrically-operated expansion valve 16 for injection with a large opening, and passes through the inner pipe 21 and the injection pipe 22 in a state of low dryness containing a large amount of liquid refrigerant.
  • the state of the bypass flow refrigerant in this reverse cycle defrost operation The state change is indicated by the line segments HI and H2 in the Mollier diagram of FIG.
  • the opening of the electric expansion valve 16 for injection to be large, the length of the line segment H2 can be shortened, and the refrigerant containing a large amount of liquid refrigerant and having a small dryness is compressed. Can be injected into one.
  • the bypass-flow refrigerant bypassing the main motor-operated valve 9 and the indoor heat exchanger 6 is returned from the injection pipe 22 to the compressor 1 while containing a large amount of liquid refrigerant. . Therefore, the amount of the refrigerant circulated from the compressor 1 to the outdoor heat exchanger 3 during the reverse cycle defrost can be increased, and the defrost operation can be completed in a short time. Therefore, reverse cycle defrost operation can reduce the time during which heating is interrupted and improve heating comfort.
  • FIG. 7 shows a refrigerant circuit of a refrigeration apparatus according to a third embodiment of the present invention.
  • the third embodiment has a refrigerant circuit in which a compressor 81, a four-way switching valve 82, an outdoor heat exchanger 83, a main expansion valve 85, and an indoor heat exchanger 86 are sequentially connected.
  • This refrigerant circuit has a refrigerant pipe 88 connecting the outdoor heat exchanger 83 to the main expansion valve 85, and a bypass pipe 90 connecting the intermediate pressure point 81a of the compressor 81.
  • the bypass pipe 90 is provided with a solenoid valve 91.
  • the solenoid valve 91 and the bypass pipe 90 constitute a liquid injection circuit 93.
  • the four-way switching valve 82 when the four-way switching valve 82 communicates with the broken-line path and performs the heating operation, when the outdoor heat exchanger 83 becomes frosted, the four-way switching valve 8 2 , And communicate with the solid line path to execute reverse cycle defrost operation.
  • the solenoid valve 91 By opening the solenoid valve 91 during the reverse cycle defrost operation, the liquid refrigerant flowing from the outdoor heat exchanger 83 to the main expansion valve 85 is main expanded.
  • bypassing the expansion valve 85 and the indoor heat exchanger 86 it can be injected from the bypass pipe 90 into the point 81a of the intermediate pressure of the compressor 81.
  • the refrigeration apparatus of the present invention can be applied to a refrigeration apparatus having an injection circuit, and is particularly useful for making the injection circuit low in cost and quiet. Furthermore, it is useful to shorten the reverse cycle defrost time by using an injection circuit and improve comfort.

Description

明 細 書
冷凍装置 技術分野
この発明は、 インジェクション回路を備えた冷凍装置に関する。
背景技術
従来、 この種の冷凍装置としては、 図 8に示すものがある。 この冷凍装 置は、 圧縮機 5 1 と凝縮器 5 2と過冷却熱交換器 5 3と主膨張弁 5 4と蒸 発器 5 5とアキュムレータ 5 6が順に接続された主回路 5 7を有する。 上記凝縮器 5 2と過冷却熱交換器 5 3との間で主回路 5 7から分岐した 分岐管 6 0は、 上記過冷却熱交換器 5 3の内管 5 3 Aに接続されている。 この内管 5 3 Aは、 外管 6 1内を主流の下流から上流へ延びて、 インジ ェクション配管 6 2に接続されている。 上記分岐管 6 0は機械式膨張弁 6 3を有し、 この機械式膨張弁 6 3は、 上記インジェクション配管 6 2に取 り付けた感温筒 6 5からの信号でもって開度が変わるようになっている。 上記インジェクション配管 6 2は、 圧縮機 5 1の中間圧の部分 5 1 Aに 接続されている。 上記インジェクション配管 6 2は電磁弁 6 6を有してい る。 この電磁弁 6 6の開閉によって、 圧縮機 5 1へのガス冷媒のインジェ クションがオンオフされる。
この冷凍装置は、 上記過冷却熱交換器 5 3,分岐管 6 0 ,機械式膨張弁 6 3が構成する過冷却回路によって、 凝縮器 5 2から主膨張弁 5 4に向かう 冷媒を過冷却して、 冷凍効率の向上を図る。 さらに、 上記過冷却熱交換器 5 3で吸熱した分岐管 6 0からの分岐冷媒をィンジュクション配管 6 2か ら圧縮機 5 1の中間圧の部分 5 1 Aに注入することによって、 冷凍効率の 向上を図っている。 ところで、 主流の冷媒を分岐管 6 0に分岐させずに、 全部の冷媒を蒸発 器 5 5に送った方が効率が良い場合もある。 この場合には、 電磁弁 6 6を 閉じて、 過冷却回路およびインジェクション回路を働かせないようにする c なお、 上記機械式膨張弁 6 3は、 その機構上、 全閉にすることはできない c ところが、 上記従来の冷凍装置では、 上記インジェクション回路をオン オフするために設けた電磁弁 6 6の開閉による騒音が発生し、 特に、 圧力 変動時のチヤタリングによって騒音が発生するという問題がある。
また、 ィンジェクション回路のオンオフのためだけに電磁弁 6 6を設け たので、 コスト上昇を招くという問題がある。
次に、 図 1 0に、 従来のもう 1つの冷凍装置の冷媒回路を示す。 この冷 媒回路は、 圧縮機 2 0 1 , 四路切換弁 2 0 2, 室外熱交換器 2 0 3 , 第 1 膨張弁 2 0 5 , 気液分離器 2 0 6, 第 2膨張弁 2 0 7, 室內熱交換器 2 0 8が順に接続された主冷媒回路 2 1 0を備える。 また、 この冷媒回路は、 気液分離器 2 0 6の天井と圧縮機 2 0 1の中間圧の箇所 2 0 1 aとを接続 するバイパス回路 2 1 1を備える。 このバイバス回路 2 1 1は、 電磁弁 2 1 2を有している。 この従来例では、 暖房時には、 四路切換弁 2 0 2は破 線経路を連通させ、 室内熱交換器 2 0 8を凝縮器とする暖房運転が行われ る。 この暖房時に、 電磁弁 2 1 2を開くと、 気液分離器 2 0 6からのガス 冷媒が、 バイパス回路 2 1 1を通って、 圧縮機 2 0 1の中間圧の箇所 2 0 l aに注入される。 このように、 第 1膨張弁 2 0 5と室外熱交換器 2 0 3 をバイパスして、 バイパス回路 2 1 1から圧縮機 2 0 1にガス冷媒を還流 させることによって、 凝縮器として働く室内熱交換器 2 0 8に流す冷媒量 を増加させて、 効率向上を図る場合がある。
図 9に、 上記暖房運転をモリエル線図で示す。 このモリエル線図に示す ように、 凝縮器となる室内熱交換器 2 0 8での流量 G cは、 蒸発器となる 室外熱交換器 2 0 3での流量 G eとバイパス回路 2 1 1を流れる流量 G i との和(G e + G i )である。 そして、 気液分離器 2 0 6から圧縮機 2 0 1 に、 すべてのガスが注入されるとすると、 ガスインジェクションの流量 G iは、 (G c X X)になる。 ここで、 Xは、 膨張弁 2 0 7出口での冷媒の乾 き度(例えば、 0 . 2〜0 . 3 )である。 ゆえに、 室内熱交換器 2 0 8での 流量 G c = G eバ 1 一 X )になる。
そして、 この暖房運転時に、 室外熱交換器 2 0 3で着霜すると、 逆サイ クルデフロスト運転が行われる。 すなわち、 四路切換弁 2 0 2を切換えて、 実線経路を連通させて、 室外熱交換器 2 0 3を凝縮器として働かせ、 霜を 融かす。 そして、 この逆サイクルデフロス ト運転においても、 上記電磁弁 2 1 2を開くことによって、 バイパス回路 2 1 1から圧縮機 2 0 1にガス 冷媒を還流させ、 圧縮機 2 0 1から室外熱交換器 2 0 3に循環する冷媒量 を増加させ、 室外熱交換器 2 0 3の霜を速く融かすことができる。
し力 し、 この逆サイクルデフロス ト運転中は、 図 1 1に示すように、 膨 張弁 2 0 5出口での乾き度が小さく(例えば、 X == 0 . 1以下)、 冷媒のガ ス成分が少ない。 このため、 デフロス ト運転中にガスインジェクションを 行っても、 循環冷媒量の増大量が少なく、 デフロスト時間を短縮させる効 果が少なかった。
発明の開示
そこで、 この発明の第 1の目的は、 低騒音かつ低コス トでもって、 過冷 却回路とインジェクション回路を制御できる冷凍装置を提供することにあ る。 また、 この発明の第 2の目的は、 デフロス ト時間を短縮できる冷凍装 置を提供することにある。
上記目的を達成するため、 この発明の冷凍装置は、 圧縮機と、 凝縮器 と、 主膨張機構と、 蒸発器と、 上記凝縮器と主膨張機構との間に設けた過 冷却熱交換器を有する過冷却回路と、 上記過冷却熱交換器からのガス冷媒 を圧縮機の中間圧部分に注入するインジヱクション回路を備える冷凍装置 であって、
上記過冷却熱交換器の上流で主流から分岐して上記過冷却熱交換器に至 る過冷却配管に設けた電動式膨張弁を備えたことを特徴としている。
この冷凍装置では、 上記電動式膨張弁を全閉にすることで、 上記インジ ェクシヨン回路のインジェクション動作をオフにできる。 また、 上記電動 式膨張弁の開度を所望の開度に制御して、 過冷却回路による過冷却度およ びィンジェクション回路による注入量を所望の値に設定できる。
すなわち、 この冷凍装置によれば、 上記電動式膨張弁が、 従来例の電磁 弁の役割と機械式膨張弁の役割とを果たすから、 電磁弁が不要になって、 電磁弁の開閉音、 特にチャタリング音を無くすることができ、 しかも、 電 磁弁が不要な分だけコストダウンを図れる。 したがって、 この発明によれ ば、 低騒音かつ低コス トでもって、 過冷却回路とインジェクション回路を リニアに制御できる。
また、 一実施例の冷凍装置では、 請求項 1に記載の冷凍装置において、 インジェクション回路が実質的に作動停止しているときに、 上記電動式膨 張弁を全閉に近いわずかな開度に設定する第 1開度制御部を備えた。
この一実施例の冷凍装置では、 インジェクション運転を行わないときに も、 インジェクション用電動式膨張弁を僅かに開けておくことによって、 クリアランスボリユーム(デッドスペース)の発生を回避して、 圧縮機の体 積効率が低下することを回避できる。
また、 他の実施例の冷凍装置では、 請求項 1に記載の冷凍装置において、 冷房時にも暖房時にも凝縮器,過冷却熱交換器,主膨張機構の順に冷媒を流 す整流回路を備えた。 この冷凍装置では、 上記整流回路によって、 冷房時にも暖房時にも、 凝 縮器,過冷却熱交換器,主膨張機構の順に冷媒を流せるから、 冷房時と暖房 時の両方で過冷却とガス冷媒インジェクションを実行して、 効率を向上で きる。
また、 一実施例の冷凍装置では、 請求項 1に記載の冷凍装置において、 上記ィンジェクシヨン回路の冷媒温度の高低に応じて、 上記電動式膨張弁 の開度を小犬に制御する第 2開度制御部を備えた。
この冷凍装置では、 インジェクション流量が少ないときには、 インジェ クシヨン用電動式膨張弁の開度を大きく して、 インジェクション流量を増 やし、 インジェクション流量が多いときには、 インジェクション用電動式 膨張弁の開度を小さく して、 インジェクション流量を減少させて、 インジ ェクシヨン流量を常に所望値に保つことができる。
また、 他の実施例の冷凍装置では、 圧縮機と、 4路切替弁と、 室外熱交 換器と、 主膨張機構と、 室内熱交換器とを備えて、 逆サイクルデフロス ト 運転を行う冷凍装置において、 逆サイクルデフロス ト中に室外熱交換器か らの液冷媒を、 上記主膨張機構および室内熱交換器をバイパスして、 圧縮 機に注入する液インジェクション回路を備えた。
この冷凍装置では、 上記液インジェクション回路によって、 デフロス ト 中に液冷媒を圧縮機に注入するから、 ガスインジェクションに比べて、 圧 縮機の循環量をより一層増加させることができる。 したがって、 短時間で 霜を融かすことができ、 デフロス ト時間を短縮できる。
また、 一実施例の冷凍装置では、 圧縮機と、 凝縮器と、 主膨張機構と、 蒸発器と、 上記凝縮器と主膨張機構との間に設けた過冷却回路と、 上記過 冷却回路からのガス冷媒を圧縮機の中間圧部分に注入するインジェクショ ン回路とを備える冷凍装置であって、 上記過冷却回路の上流で主流から分岐して、 上記過冷却回路に至る過冷 却配管に設けた電動式膨張弁を備えた。
この冷凍装置では、 上記電動式膨張弁を全閉にすることで、 上記インジ ェクシヨン回路のインジェクション動作をオフにできる。 また、 上記電動 式膨張弁の開度を所望の開度に制御して、 過冷却回路による過冷却度およ びインジ二クション回路による注入量を所望の値に設定できる。 すなわち、 この冷凍装置によれば、 上記電動式膨張弁が、 従来例の電磁弁の役割と機 械式膨張弁の役割とを果たすから、 電磁弁が不要になって、 電磁弁の開閉 音、 特にチャタリング音を無くすることができ、 しかも、 電磁弁が不要な 分だけコストダウンを図れる。 したがって、 この発明によれば、 低騒音か つ低コス 卜でもって、 過冷却回路とインジェクション回路をリニアに制御 できる。
また、 他の実施例の冷凍装置では、 請求項 6に記載の冷凍装置において、 上記圧縮機の出力をィンバータで制御する冷凍装置であって、 上記圧縮機 の運転周波数が所定の運転周波数以上になったときに、 上記電動式膨張弁 を開けて、 インジェクション回路によるインジェクション動作をオンにす る制御手段を備えた c
この冷凍装置では、 圧縮機の運転周波数を所定の運転周波数以上にした ときにインジェクション動作をオンにするから、 循環冷媒量を所定以上に 増加させた状態で、 効率の良いィンジェクションを実行できる。
図面の簡単な説明
図 1 Aは、 この発明の冷凍装置の第 1実施例としての空気調和機の冷媒 回路図であり、 図 1 Bは、 第 1実施例の整流回路の変形例である。
図 2は、 上記空気調和機の動作を説明するモリエル線図である。
図 3は、 上記空気調和機のィンジェクション用電動式膨張弁の制御動作 を説明するフローチヤ一卜である。
図 4は、 この発明の冷凍装置の第 2実施例としての空気調和機の冷媒回 路図である。
図 5は、 上記第 2実施例で液ィンジェクシヨンを行った場合のモリエル 線図である。
図 6は、 上記第 2実施例による逆サイクルデフロスト実行時のタイミン グチヤートである。
図 7は、 この発明の冷凍装置の第 3実施例としての空気調和機の冷媒回 路図である。
図 8は、 従来の冷凍装置の冷媒回路図である。
図 9は、 上記従来の冷凍装置によるガスィンジェクションサイクルのモ リエル線図である。
図 1 0は、 ガスインジェクションを行う従来の今一つの冷凍装置の冷媒 回路図である。
図 1 1は、 上記従来の冷凍装置で、 デフロスト中にガスインジヱクショ ンを行った場合のモリエル線図である。
発明を実施するための最良の形態
以下、 この発明を図示の実施の形態により詳細に説明する。
〔第 1実施例〕
図 1 (A)に、 この発明の冷凍装置の第 1実施例としての空気調和機を示 す。 この第 1実施例は、 圧縮機 1 ,四路切換弁 2 ,室外熱交換器 3 ,整流回 路 5 ,室内熱交換器 6が順に接続された冷媒回路を有する。 上記室内熱交 換器 6は、 アキュムレータ 7を経由して圧縮機 1の吸入側に接続されてい る。
上記整流回路 5は、 第 1 ,第 2逆止弁 1 1 , 1 2の直列接続回路と第 3 , 第 4逆止弁 1 3 , 1 4の直列接続回路とが並列に接続された回路である。 上記第 1逆止弁 1 1 と第 2逆止弁 1 2は、 それらの接続点 P 1に向かって 順方向になるように接続されており、 上記第 3逆止弁 1 3と第 4逆止弁 1 4は、 それらの接続点 P 2に向かって逆方向になるように接続されている そして、 上記整流回路 5の接続点 P 1と P 2の間に、 過冷却回路 8とメ イン電動弁 9およびインジェクション回路 1 0が接続されている。
過冷却回路 8は、 過冷却熱交換器 1 5とインジ工クション用電動式膨張 弁 1 6とで構成されている。 上記過冷却熱交換器 1 5は、 上記接続点 P 1 とメイン電動弁 9の間に接続されている。 また、 上記インジェクション用 電動式膨張弁 1 6は、 上記接続点 P 1から分岐して過冷却熱交換器 1 5内 の内管 2 1の入口 2 1 aに接続されている。 そして、 この内管 2 1の出口 2 1 bはインジェクション配管 2 2に接続されており、 このインジェクシ ョン配管 2 2は、 上記圧縮機 1の中間圧の箇所 l aに接続されている。
次に、 上記構成の空気調和機の基本動作を説明する。 なお、 図 2には、 図 1の冷媒回路の各部 Q 1〜Q 8でのモリエル線図上での状態を示してい る。 まず、 四路切換弁 2が、 図 1に実線で示すように、 冷房位置にあると きには、 圧縮機 1が吐出した冷媒は、 室外熱交換器 3で凝縮されて、 整流 回路 5の第 1逆止弁 1 1に流入し、 接続点 P 1でインジェクション用電動 式膨張弁 1 6へのサブ流と過冷却熱交換器 1 5へのメイン流とに分かれる。 上記メイン流は、 この過冷却熱交換器 1 5で過冷却されてから、 メイン電 動弁 9で膨張して、 接続点 P 2,第 4逆止弁 1 4を通って、 室内熱交換器 6に至る。 そして、 室内熱交換器 6で蒸発したメイン流は、 四路切換弁 2 , アキュムレータ 7を経て、 圧縮機 1の吸入側に戻る。
一方、 上記サブ流は、 上記インジェクション用電動膨張弁 1 6で膨張さ れてから、 過冷却熱交換器 1 5の内管 2 1を通って、 吸熱してから、 イン ジヱクシヨン配管 2 2を通って、 圧縮機 1の中間圧の箇所 1 aに注入され る。
また、 上記四路切換弁 2が、 図 1に破線で示すように、 暖房位置にある ときには、 圧縮機 1が吐出した冷媒は、 室内熱交換器 6で凝縮されて、 整 流回路 5の第 2逆止弁 1 2に流入し、 接続点 P 1でインジェクション用電 動式膨張弁 1 6へのサブ流と過冷却熱交換器 1 5へのメイン流とに分かれ る。 上記メイン流は、 過冷却熱交換器 1 5で過冷却されてから、 メイン電 動弁 9で膨張して、 接続点 P 2,第 3逆止弁 1 3を通って、 室外熱交換器 3に至る。 そして、 室外熱交換器 3で蒸発したメイン流は、 四路切換弁 2, アキュムレータ 7を経て、 圧縮機 1の吸入側に戻る。 一方、 上記サブ流は、 上記インジェクション用電動膨張弁 1 6で膨張されてから、 過冷却熱交換 器 1 5の内管 2 1を通って、 吸熱してから、 インジェクション配管 2 2を 通って、 圧縮機 1の中間圧の箇所 1 aに注入される。
このように、 この第 1実施例によれば、 上記整流回路 5の働きによって、 冷房時にも暖房時にも、 過冷却および、 圧縮機 1の中間圧の箇所 1 aへの ガス冷媒の注入を行える。 したがって、 冷暖両方において、 過冷却とガス インジェクションによる効率の向上を図ることができる。
また、 この第 1実施例によれば、 上記インジェクション用電動式膨張弁 1 6を全閉にすることで、 上記インジェクション回路 1 0のインジェクシ ヨン動作をオフにできる。 また、 上記電動式膨張弁 1 6の開度を所望の開 度に制御することによって、 過冷却回路 8による過冷却度およびィンジェ クシヨン回路 1 0による注入量を所望の値に設定できる。
すなわち、 この第 1実施例によれば、 上記電動式膨張弁 1 6が、 従来例 の電磁弁の役割と機械式膨張弁の役割とを果たすから、 電磁弁が不要にな つて、 電磁弁の開閉音、 特にチャタリング音を無くすることができ、 しか も、 電磁弁が不要な分だけコス トダウンを図れる。 したがって、 この実施 形態によれば、 低騒音かつ低コス トでもって、 過冷却回路 8とインジェク ション回路 1 0をリニアに制御できる。 過冷却度とガスインジェクション の量をリニァに制御することで、 効率の最大化を図れる。
次に、 この第 1実施例での上記インジェクション用電動式膨張弁 1 6の 制御動作を、 図 3のフローチャートを参照しながら説明する。 なお、 この 制御を行う装置としては、 ここでは、 マイクロコンピュータ(図示せず)を 用いた。
まず、 ステップ S 1では、 圧縮機 1が停止しているか否かを判断し、 停 止していると判断すれば、 ステップ S 1 0に進み、 インジェクション用電 動式膨張弁 1 6を全閉にする。 このように、 圧縮機 1が停止しているとき には、 電動式膨張弁 1 6を全閉にすることで、 圧縮機 1の停止中に冷媒が 圧縮機 1に溜まって冷媒が冷凍機油に溶け込むこと(いわゆる冷媒寝込み) を防止して、 再起動を容易にする。
一方、 上記圧縮機 1が動いていると判断すれば、 ステップ S 2に進み、 圧縮機 1の運転周波数が所定の周波数よりも高いか否かを判断し、 高いと 判断すれば、 ステップ S 5に進み、 インジェクション用電動式膨張弁 1 6 を開き、 過冷却回路 8およびインジェクション回路 1 0を動作させる。 こ れにより、 循環冷媒量を所定以上に増加させた状態で、 効率の良いインジ 二クションを実行できる。
次に、 ステップ S 6に進み、 上記インジェクション用電動式膨張弁 1 6 と上記内管 2 1の入口 2 1 aとの間の冷媒配管に取り付けたサーミスタ 3 1からの信号でもって、 インジェクション配管 2 2に向かうサブ流の冷媒 の中間温度を検出する。 なお、 この中間温度を、 上記内管 2 1の出口 2 1 b付近のィンジェクション配管 2 2に取り付けられたサーミスタ 3 2で検 出してもよい。 次に、 ステップ S 7に進み、 上記中間温度が所定温度より も高いか否かを判断し、 上記中間温度が上記所定温度よりも高いと判断す れば、 ステップ S 8に進み、 上記インジェクション用電動式膨張弁 1 6の 開度を小さく して、 スタートに戻る。 一方、 上記中間温度が上記所定温度 よりも高くないと判断すれば、 ステップ S 9に進んで、 インジェクション 用電動式膨張弁 1 6の開度を所定開度だけ大きく して、 スタートに戻る。 上記ステップ S 6, S 7 , S 8 , S 9が第 2開度制御部を構成している。 これにより、 インジェクション流量が少ない (中間温度が低い) ときに は、 インジェクション用電動式膨張弁 1 6の開度を大きく して、 インジェ クシヨン流量を増やし、 インジェクション流量が多い (中間温度が高い) ときには、 インジェクション用電動式膨張弁 1 6の開度を小さく して、 ィ ンジェクション流量を減少させて、 インジェクション流量を常に所望値に 保つことができる。
一方、 上記ステップ S 2で、 圧縮機 1の運転周波数が所定の周波数より も高くないと判断すれば、 ステップ S 3に進み、 インジェクション用電動 式膨張弁 1 6を閉じて、 過冷却回路 8とインジヱクション回路 1 0の動作 を止める。 次に、 ステップ S 4に進み、 上記インジェクション用電動式膨 張弁 1 6を所定の開度にして、 スタートに戻る。 上記ステップ S 2, S 3, S 4が第 1開度制御部を構成している。 このように、 インジェクション運 転を行わないときにも、 インジェクション用電動式膨張弁 1 6を僅かに開 けておくことによって、 クリアランスボリユーム(デッドスペース)の発生 を回避して、 圧縮機 1の体積効率が低下しないようにしている。
尚、 この第 1実施例では、 4つの逆止弁で整流回路 5を構成したが、 図 1 ( B )に示す四路切換弁 4 0で整流回路を構成してもよい。 この場合には、 上記四路切換弁 4 0の第 1端 4 0 aを上記室外熱交換器 3に接続し、 第 2 端 4 0 bを上記接続点 P 1に接続し、 第 3端 4 0 cを上記室内熱交換器 6 に接続し、 第 4端 4 0 dを上記接続点 P 2に接続すればよい。 そして、 冷 房時には、 図 1 ( B )の四路切換弁 4 0の実線経路 4 1 , 4 3を連通させる 一方、 暖房時には、 図 1 ( B )の四路切換弁 4 0の破線経路 4 2, 4 4を連 通させる。 これにより、 冷房時にも暖房時にも凝縮器からの冷媒を、 過冷 却熱交換器 1 5 ,メイン電動弁 9の順に流すことができる。
尚、 上記第 1実施例では、 過冷却回路 8が過冷却熱交換器 1 5を備えた が、 過冷却熱交換器 1 5に替えて、 略平行に延びる 2本の冷媒管を伝熱板 で連結し、 一方の冷媒管をメイン流回路に接続し、 他方の冷媒管をサブ流 回路に接続してもよい =
〔第 2の実施例〕
次に、 図 4に、 この発明の冷凍装置の第 2の実施例の冷媒回路を示す。 この第 2実施例は、 図 1に示した第 1実施例と同一の冷媒回路を有してお り、 圧縮機 1の出力を制御するインバ一タ 1 0 1およびこのィンバータ 1 0 1を制御する制御部 1 0 2を備えている点が第 1実施例と異なる。 した がって、 この第 2実施例は、 前述の第 1実施例と同一部分には同一番号を 付して、 第 1実施例と異なる点を重点的に説明する。
図 4に示す冷媒回路と、 図 6に示すタイミングチヤ一卜とを参照して、 この第 2実施例において、 室外熱交換器 3に霜が付いたために暖房運転を 中断して行う逆サイクルデフロスト動作を説明する。 そして、 この逆サイ クルデフロスト運転中に、 インジェクション用電動式膨張弁 1 6を開いて インジェクション配管 2 2から圧縮機 1に液冷媒を注入する動作を説明す る。
暖房運転では、 四路切換弁 2は破線経路を連通させている。 この第 2実 施例では、 四路切換弁 2は、 通電オフ時に破線経路を連通させる一方、 通 電オン時に実線経路を連通させるタイプのものとする。 この暖房運転時に は、 室外熱交換器 3側の外ファン 1 0 3、 および、 室内熱交換器 6側の内 ファン 1 0 5は運転している。 また、 このとき、 メイン電動弁 9は開度が 小さくなつている。 また、 インジェクション用電動式膨張弁 1 6は閉じて いる。
そして、 制御部 1 0 2が、 この暖房運転中に室外熱交換器 3に霜が付い たことを外温度センサ 1 0 6からの温度信号によって検知すると、 まず、 四路切換弁 2を切換えて、 実線経路を連通させ、 冷房位置にする。 その直 後に、 外ファン 1 0 3, 内ファン 1 0 5を停止し、 メイン電動弁 9, イン ジェクシヨン用電動式膨張弁 1 6の開度を大きく して、 デフロスト用所定 開度に設定する。 また、 同時に、 制御部 1 0 2は、 インバータ 1 0 1の周 波数を上昇させて、 圧縮機 1の出力を増加させる。 これにより、 逆サイク ルデフロス 卜動作に突入する。
この逆サイクルデフロスト動作では、 圧縮機 1が吐出した冷媒は、 室外 熱交換器 3で凝縮され、 室外熱交換器 3の着霜を融かしてから、 整流回路 5の逆止弁 1 1を経由して、 接続点 P 1から過冷却熱交換器 1 5に流入す る。 この過冷却熱交換器 1 5に流入したメイン流冷媒は、 内管 2 1を流れ るバイパス流冷媒と熱交換してメイン電動弁 9に流入する。 そして、 この メイン膨張弁 9で膨張してから、 室内熱交換器 6を通って、 圧縮機 1の吸 入側に戻る。 この逆サイクルデフロスト動作での主流冷媒の状態変化を、 図 5のモリエル線図において、 線分 G 1 , G 2,G 3 , G 4,G 5で示す。 一方、 バイパス流冷媒は、 接続点 P 1から開度大のインジェクション用 電動式膨張弁 1 6を通り、 液冷媒を多く含んだ乾き度が小さな状態で、 内 管 2 1 ,インジェクション配管 2 2を通って、 圧縮機 1の中間圧の箇所 1 aに注入される。 この逆サイクルデフロス ト動作でのバイパス流冷媒の状 態変化を、 図 5のモリエル線図において、 線分 H I , H 2で示す。 上記し たように、 インジ クシヨン用電動式膨張弁 1 6の開度を大きく設定する ことによって、 線分 H 2の長さを短くでき、 液冷媒を多く含んだ乾き度が 小さな冷媒を圧縮機 1に注入することができる。
このように、 この第 2実施例では、 メイン電動弁 9 ,室内熱交換器 6を バイパスしたバイパス流冷媒を、 液冷媒を多く含んだ状態で、 インジェク シヨン配管 2 2から圧縮機 1に還流させる。 したがって、 逆サイクルデフ ロスト中に圧縮機 1から室外熱交換器 3に循環させる冷媒量を増加させる ことができ、 デフロス ト動作を短時間で終了させることができる。 したが つて、 逆サイクルデフロス ト運転によって、 暖房が中断される時間を短縮 でき、 暖房の快適性を向上させることができる。
〔第 3実施例〕
次に、 図 7に、 この発明の冷凍装置の第 3の実施例の冷媒回路を示す。 この第 3実施例は、 圧縮機 8 1,四路切換弁 8 2 ,室外熱交換器 8 3 ,主膨 張弁 8 5,室内熱交換器 8 6が順に接続された冷媒回路を有する。 この冷 媒回路は、 室外熱交換器 8 3を主膨張弁 8 5に接続する冷媒配管 8 8を、 圧縮機 8 1の中間圧の箇所 8 1 aに接続するバイバス配管 9 0を有してい る。 このバイパス配管 9 0には、 電磁弁 9 1が設けられている。 この電磁 弁 9 1 とバイパス配管 9 0とが液インジェクション回路 9 3を構成してい る。
この構成の第 3実施例では、 四路切換弁 8 2が破線経路を連通させて、 暖房運転を行っているときに、 室外熱交換器 8 3に霜が付く と、 四路切換 弁 8 2を切換、 実線経路を連通させて、 逆サイクルデフロス 卜運転を実行 する。 そして、 この逆サイクルデフロス ト運転時に、 上記電磁弁 9 1を開 けることで、 室外熱交換器 8 3から主膨張弁 8 5に向かう液冷媒を、 主膨 張弁 8 5と室内熱交換器 8 6をバイパスしてバイパス配管 9 0から圧縮機 8 1の中間圧の箇所 8 1 aに注入できる。 これにより、 逆サイクルデフ口 スト運転中に圧縮機 8 1から室外熱交換器 8 3に循環させる冷媒量を増加 させることができる。 したがって、 デフロス ト動作を短時間で終了させる ことができる。 したがって、 逆サイクルデフロス ト運転によって、 暖房が 中断される時間を短縮でき、 暖房の快適性を向上させることができる。 産業上の利用可能性
以上のように、 この発明の冷凍装置は、 インジェクション回路を備えた 冷凍装置に適用でき、 とくに、 インジェクション回路を低コス トで静かに するのに有用である。 さらには、 インジェクション回路を使用して逆サイ クルデフロスト時間を短縮し、 快適性を向上させるのに有用である。

Claims

請求の範囲
1. 圧縮機(1)と、 凝縮器(3, 6)と、 主膨張機構(9)と、 蒸発器(6, 3)と、 上記凝縮器(3, 6)と主膨張機構(9)との間に設けた過冷却熱交換 器(1 5)を有する過冷却回路(8)と、 上記過冷却熱交換器(1 5)からのガ ス冷媒を圧縮機( 1 )の中間圧部分( 1 a )に注入するインジェクシヨン回路 (1 0)を備える冷凍装置であって、
上記過冷却熱交換器(1 5)の上流(P 1)で主流から分岐して上記過冷却 熱交換器(1 5)に至る過冷却配管に設けた電動式膨張弁(1 6)を備えたこ とを特徴とする冷凍装置。
2. 請求項 1に記載の冷凍装置において、
インジェクション回路(1 0)が実質的に作動停止しているときに、 上記 電動式膨張弁(1 6)を全閉に近いわずかな開度に設定する第 1開度制御部 (S 2, S 3, S 4)を備えたことを特徴とする冷凍装置。
3. 請求項 1に記載の冷凍装置において、
冷房時にも暖房時にも凝縮器(3, 6),過冷却熱交換器(1 5),主膨張機 構(9)の順に冷媒を流す整流回路(5)を備えたことを特徴とする冷凍装置。
4. 請求項 1に記載の冷凍装置において、
上記インジェクション回路(1 0)の冷媒温度の高低に応じて、 上記電動 式膨張弁(1 6)の開度を小大に制御する第 2開度制御部(S 6, S 7, S 8, S 9)を備えたことを特徴とする冷凍装置。
5. 圧縮機(1)と、 4路切替弁(2)と、 室外熱交換器(3)と、 主膨張機 構(9)と、 室内熱交換器(6)とを備えて、 逆サイクルデフロスト運転を行 う冷凍装置において、
逆サイクルデフロスト中に室外熱交換器(3)からの液冷媒を、 上記主膨 張機構( 9 )および室内熱交換器( 6 )をバイパスして、 圧縮機( 1 )に注入す る液インジェクション回路(1 0)を備えたことを特徴とする冷凍装置。
6. 圧縮機(1)と、 凝縮器(3, 6)と、 主膨張機構(9)と、 蒸発器(6, 3)と、 上記凝縮器(3, 6)と主膨張機構(9)との間に設けた過冷却回路 (8)と、 上記過冷却回路(8)からのガス冷媒を圧縮機(1)の中間圧部分 (1 a)に注入するインジェクション回路(10)とを備える冷凍装置であつ て、
上記過冷却回路(8)の上流(P 1)で主流から分岐して、 上記過冷却回路 ( 8 )に至る過冷却配管に設けた電動式膨張弁( 1 6 )を備えたことを特徴と する冷凍装置。
7. 請求項 6に記載の冷凍装置において、
上記圧縮機( 1 )の出力をインバータで制御する冷凍装置であって、 上記圧縮機( 1 )の運転周波数が所定の運転周波数以上になったときに、 上記電動式膨張弁(1 6)を開けて、 インジェクション回路(1 0)によるィ ンジェクション動作をオンにする制御手段(S 2, S 3, S 5)を備えたこと を特徴とする冷凍装置。
PCT/JP1998/004449 1997-11-17 1998-10-02 Refrigerating apparatus WO1999026028A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK98945577T DK1033541T3 (da) 1997-11-17 1998-10-02 Köleanlæg
AU92820/98A AU740993B2 (en) 1997-11-17 1998-10-02 Refrigerating apparatus
JP52811899A JP3858276B2 (ja) 1997-11-17 1998-10-02 冷凍装置
EP98945577A EP1033541B1 (en) 1997-11-17 1998-10-02 Refrigerating apparatus
US09/554,508 US6405559B1 (en) 1997-11-17 1998-10-02 Refrigerating apparatus
KR10-2000-7005375A KR100514927B1 (ko) 1997-11-17 1998-10-02 냉동장치
DE69825178T DE69825178T2 (de) 1997-11-17 1998-10-02 Kältegerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/314989 1997-11-17
JP31498997 1997-11-17

Publications (1)

Publication Number Publication Date
WO1999026028A1 true WO1999026028A1 (en) 1999-05-27

Family

ID=18060079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004449 WO1999026028A1 (en) 1997-11-17 1998-10-02 Refrigerating apparatus

Country Status (9)

Country Link
US (1) US6405559B1 (ja)
EP (1) EP1033541B1 (ja)
JP (1) JP3858276B2 (ja)
KR (1) KR100514927B1 (ja)
CN (1) CN1111689C (ja)
AU (1) AU740993B2 (ja)
DE (1) DE69825178T2 (ja)
DK (1) DK1033541T3 (ja)
WO (1) WO1999026028A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127375A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 冷凍装置
JP2007132628A (ja) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd ヒートポンプ式給湯機
JP2008175410A (ja) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp 熱源側ユニット及び空気調和システム
JP2008224088A (ja) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp 給湯器
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
US7506518B2 (en) 2003-01-10 2009-03-24 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
WO2009131083A1 (ja) * 2008-04-22 2009-10-29 ダイキン工業株式会社 冷凍装置
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
JP2009287800A (ja) * 2008-05-27 2009-12-10 Daikin Ind Ltd 冷凍装置
JP2010054193A (ja) * 2008-07-31 2010-03-11 Daikin Ind Ltd 冷凍装置
JP4756035B2 (ja) * 2005-03-28 2011-08-24 東芝キヤリア株式会社 給湯機
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
US8327662B2 (en) 2007-11-30 2012-12-11 Daikin Industries, Ltd. Refrigeration apparatus
WO2013001572A1 (ja) * 2011-06-29 2013-01-03 三菱電機株式会社 空気調和装置
JP5496182B2 (ja) * 2009-03-26 2014-05-21 三菱電機株式会社 冷凍機
JP2014119221A (ja) * 2012-12-18 2014-06-30 Daikin Ind Ltd 冷凍装置
CN106642792A (zh) * 2017-01-20 2017-05-10 珠海格力电器股份有限公司 喷气增焓空调机组
WO2020208736A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU773284B2 (en) * 1999-10-18 2004-05-20 Daikin Industries, Ltd. Refrigerating device
JP2004218964A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 冷凍装置
EP1512924A3 (en) * 2003-09-05 2011-01-26 LG Electronics, Inc. Air conditioner comprising heat exchanger and means for switching cooling cycle
KR100539570B1 (ko) * 2004-01-27 2005-12-29 엘지전자 주식회사 멀티공기조화기
CN100510577C (zh) * 2004-07-12 2009-07-08 三洋电机株式会社 热交换装置及冷冻装置
DE102004045124B4 (de) * 2004-09-17 2007-10-18 Daimlerchrysler Ag Verfahren zum Klimatisieren eines Raums
JP2008530511A (ja) * 2005-02-18 2008-08-07 キャリア コーポレイション 改善された液体/蒸気レシーバを備えた冷凍回路
KR100958399B1 (ko) * 2005-03-14 2010-05-18 요크 인터내셔널 코포레이션 보조냉각기를 이용한 hvac 장치
KR101305281B1 (ko) * 2006-07-25 2013-09-06 엘지전자 주식회사 이중과냉각장치 및 이를 적용한 공기조화기
KR101333984B1 (ko) * 2006-10-17 2013-11-27 엘지전자 주식회사 공기조화기
JP5407173B2 (ja) * 2008-05-08 2014-02-05 ダイキン工業株式会社 冷凍装置
CN102177405B (zh) * 2008-07-18 2013-05-01 松下电器产业株式会社 制冷循环装置
JP2010054186A (ja) * 2008-07-31 2010-03-11 Daikin Ind Ltd 冷凍装置
US8539785B2 (en) 2009-02-18 2013-09-24 Emerson Climate Technologies, Inc. Condensing unit having fluid injection
JP5495293B2 (ja) * 2009-07-06 2014-05-21 株式会社日立産機システム 圧縮機
JP5411643B2 (ja) * 2009-10-05 2014-02-12 パナソニック株式会社 冷凍サイクル装置および温水暖房装置
CN101782753B (zh) * 2009-12-31 2011-12-07 河北省首钢迁安钢铁有限责任公司 空分内压缩流程的增压膨胀机故障单停方法
CN103229004B (zh) * 2011-01-26 2016-05-04 三菱电机株式会社 空调装置
JP5694018B2 (ja) * 2011-03-16 2015-04-01 株式会社日本自動車部品総合研究所 冷却装置
JP5375919B2 (ja) * 2011-09-30 2013-12-25 ダイキン工業株式会社 ヒートポンプ
JP5403029B2 (ja) * 2011-10-07 2014-01-29 ダイキン工業株式会社 冷凍装置
US9606035B2 (en) 2011-12-21 2017-03-28 Ta Instruments-Waters Llc System for mechanical stimulation and characterization of biologic samples
AU2012391144B2 (en) * 2012-09-28 2018-04-19 Electrolux Home Products Corporation N. V. Refrigerator and method of controlling refrigerator
DE202012009471U1 (de) 2012-10-04 2014-01-10 Stiebel Eltron Gmbh & Co. Kg Wärmepumpeneinheit mit einem reversierbaren Kältekreis
GB2497171B (en) * 2012-11-02 2013-10-16 Asd Entpr Ltd Improvements to thermodynamic solar heat transfer systems
CN103292523B (zh) * 2013-05-14 2016-05-04 西安交通大学 一种带有回热器的冷热双制空调系统
WO2014192140A1 (ja) * 2013-05-31 2014-12-04 三菱電機株式会社 空気調和装置
CN104515318B (zh) * 2013-09-30 2016-08-31 珠海格力电器股份有限公司 空调系统
KR102242776B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기 및 그 제어방법
GB2545827B (en) * 2014-10-16 2020-06-24 Mitsubishi Electric Corp Refrigeration cycle apparatus
CN106352613A (zh) * 2016-09-26 2017-01-25 珠海格力电器股份有限公司 一种空调器及其化霜系统
CN108061399A (zh) * 2017-08-28 2018-05-22 浙江大学 一种双向回热热泵系统
CN107975959B (zh) * 2017-11-08 2023-09-22 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法
KR102105706B1 (ko) * 2017-12-12 2020-04-28 브이피케이 주식회사 히트펌프 시스템, 이의 양방향 인젝션 운전 방법
US11473816B2 (en) 2018-12-21 2022-10-18 Samsung Electronics Co., Ltd. Air conditioner
CN110513904B (zh) * 2019-08-15 2021-11-19 海信(广东)空调有限公司 一种消除空调除霜噪音的控制方法、装置及空调器
CN110953756B (zh) * 2019-11-21 2022-02-25 泰州市南风冷链有限公司 一种直流变频冷冻冷藏设备及其制冷系统
KR20210104476A (ko) * 2020-02-17 2021-08-25 엘지전자 주식회사 공기조화기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014059A (ja) * 1983-07-05 1985-01-24 松下電器産業株式会社 ヒ−トポンプ装置
JPS6414569A (en) * 1987-07-08 1989-01-18 Toshiba Corp Air-conditioning machine
JPH01239350A (ja) * 1988-03-18 1989-09-25 Hitachi Ltd 冷凍サイクル装置
JPH0418260U (ja) * 1990-05-30 1992-02-14

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265381A (ja) * 1985-05-20 1986-11-25 Hitachi Ltd スクリユ−圧縮機のガス噴射装置
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
US5400609A (en) * 1994-01-14 1995-03-28 Thermo King Corporation Methods and apparatus for operating a refrigeration system characterized by controlling maximum operating pressure
US5596878A (en) * 1995-06-26 1997-01-28 Thermo King Corporation Methods and apparatus for operating a refrigeration unit
JP2985882B1 (ja) 1998-08-21 1999-12-06 ダイキン工業株式会社 二重管式熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014059A (ja) * 1983-07-05 1985-01-24 松下電器産業株式会社 ヒ−トポンプ装置
JPS6414569A (en) * 1987-07-08 1989-01-18 Toshiba Corp Air-conditioning machine
JPH01239350A (ja) * 1988-03-18 1989-09-25 Hitachi Ltd 冷凍サイクル装置
JPH0418260U (ja) * 1990-05-30 1992-02-14

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1033541A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7506518B2 (en) 2003-01-10 2009-03-24 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
US7647784B2 (en) 2003-01-10 2010-01-19 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
JP4756035B2 (ja) * 2005-03-28 2011-08-24 東芝キヤリア株式会社 給湯機
JP2007127375A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 冷凍装置
JP2007132628A (ja) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd ヒートポンプ式給湯機
JP4657087B2 (ja) * 2005-11-14 2011-03-23 三洋電機株式会社 ヒートポンプ式給湯機
JP2008175410A (ja) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp 熱源側ユニット及び空気調和システム
JP2008224088A (ja) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp 給湯器
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP4675927B2 (ja) * 2007-03-30 2011-04-27 三菱電機株式会社 空気調和装置
US8327662B2 (en) 2007-11-30 2012-12-11 Daikin Industries, Ltd. Refrigeration apparatus
JP2009264605A (ja) * 2008-04-22 2009-11-12 Daikin Ind Ltd 冷凍装置
CN102016456A (zh) * 2008-04-22 2011-04-13 大金工业株式会社 冷冻装置
WO2009131083A1 (ja) * 2008-04-22 2009-10-29 ダイキン工業株式会社 冷凍装置
AU2009239038B2 (en) * 2008-04-22 2012-05-17 Daikin Industries, Ltd. Refrigeration apparatus
JP2009287800A (ja) * 2008-05-27 2009-12-10 Daikin Ind Ltd 冷凍装置
JP2010054193A (ja) * 2008-07-31 2010-03-11 Daikin Ind Ltd 冷凍装置
JP5496182B2 (ja) * 2009-03-26 2014-05-21 三菱電機株式会社 冷凍機
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
WO2013001572A1 (ja) * 2011-06-29 2013-01-03 三菱電機株式会社 空気調和装置
JP5642278B2 (ja) * 2011-06-29 2014-12-17 三菱電機株式会社 空気調和装置
JPWO2013001572A1 (ja) * 2011-06-29 2015-02-23 三菱電機株式会社 空気調和装置
US9638447B2 (en) 2011-06-29 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014119221A (ja) * 2012-12-18 2014-06-30 Daikin Ind Ltd 冷凍装置
CN106642792A (zh) * 2017-01-20 2017-05-10 珠海格力电器股份有限公司 喷气增焓空调机组
WO2020208736A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 冷凍サイクル装置
JPWO2020208736A1 (ja) * 2019-04-10 2021-10-21 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
KR100514927B1 (ko) 2005-09-14
DE69825178T2 (de) 2005-07-21
US6405559B1 (en) 2002-06-18
AU740993B2 (en) 2001-11-22
CN1285907A (zh) 2001-02-28
EP1033541A4 (en) 2001-10-24
CN1111689C (zh) 2003-06-18
AU9282098A (en) 1999-06-07
DE69825178D1 (de) 2004-08-26
DK1033541T3 (da) 2004-11-29
EP1033541A1 (en) 2000-09-06
JP3858276B2 (ja) 2006-12-13
KR20010032186A (ko) 2001-04-16
EP1033541B1 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP3858276B2 (ja) 冷凍装置
JP4654828B2 (ja) 空気調和装置
JPH05264133A (ja) 空気調和機
US20080028773A1 (en) Air conditioner and controlling method thereof
JP2006105560A (ja) 空気調和装置
JP4269397B2 (ja) 冷凍装置
JPH11230646A (ja) エンジン駆動ヒートポンプ
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP5601890B2 (ja) 空気調和装置
JPH04366341A (ja) 空気調和装置
JP4023386B2 (ja) 冷凍装置
JPH06265242A (ja) エンジン駆動ヒートポンプ
JP2010190537A (ja) 空気調和機
JP2000055482A (ja) 空気調和機
JP2001201217A (ja) 空気調和機
JP2002213839A (ja) 多室形空気調和機
JPH11132603A (ja) 空気調和装置
JP3407867B2 (ja) 空気調和装置の運転制御方法
JPH08313121A (ja) 冷凍装置
JPS6346350B2 (ja)
JPH10281585A (ja) 多室空気調和機
JPH1194405A (ja) 空気調和機
JPH03230060A (ja) ヒートポンプ式空気調和機
KR0118785Y1 (ko) 냉.난방 겸용 에어콘의 제어장치
JPH03255864A (ja) ヒートポンプ式空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98813013.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007005375

Country of ref document: KR

Ref document number: 09554508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 92820/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998945577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998945577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007005375

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 92820/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998945577

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007005375

Country of ref document: KR