WO1999023231A2 - Beeinflussung des tocopherolgehaltes in transgenen pflanzen - Google Patents

Beeinflussung des tocopherolgehaltes in transgenen pflanzen Download PDF

Info

Publication number
WO1999023231A2
WO1999023231A2 PCT/EP1998/006851 EP9806851W WO9923231A2 WO 1999023231 A2 WO1999023231 A2 WO 1999023231A2 EP 9806851 W EP9806851 W EP 9806851W WO 9923231 A2 WO9923231 A2 WO 9923231A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
plants
acid sequence
plant
plant cells
Prior art date
Application number
PCT/EP1998/006851
Other languages
English (en)
French (fr)
Other versions
WO1999023231A3 (de
Inventor
Bernhard Grimm
Ryouichi Tanaka
Original Assignee
Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA002306458A priority Critical patent/CA2306458A1/en
Application filed by Institut für Pflanzengenetik und Kulturpflanzenforschung filed Critical Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority to SK599-2000A priority patent/SK5992000A3/sk
Priority to JP2000519087A priority patent/JP2001521745A/ja
Priority to BR9813165-6A priority patent/BR9813165A/pt
Priority to HU0003963A priority patent/HUP0003963A2/hu
Priority to KR1020007004715A priority patent/KR20010031660A/ko
Priority to EP98964393A priority patent/EP1025250A2/de
Priority to AU19616/99A priority patent/AU747854B2/en
Priority to IL13539198A priority patent/IL135391A0/xx
Priority to PL98340335A priority patent/PL340335A1/xx
Publication of WO1999023231A2 publication Critical patent/WO1999023231A2/de
Publication of WO1999023231A3 publication Critical patent/WO1999023231A3/de
Priority to US09/564,367 priority patent/US6624342B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Definitions

  • the present invention relates to new nucleic acid sequences. which code for a geranylgeranyl reductase, a method for producing new plants which contain a new nucleic acid sequence and whose content of tocopherol and / or chlorophyll has changed compared to wild type plants, these new plants, their parts and products and plant cells and the use of Nucleic acid sequences for influencing the tocopherol, chlorophyll and / or vitamin K, content in transgenic plants, their parts and products and
  • the diterpene geranylgeranyl pyrophosphate (GGPP) is produced as a 20 C intermediate in the plant isoprenoid metabolism. It results from the addition of one unit of isopentenyl pyrophosphate (IPP) to farnesyl pyrophosphate, a 15-C-
  • GGPP Sesquiterpene.
  • GGPP flows into various synthetic routes of plant secondary metabolism.
  • two molecules of GGPP "tail to tail" can be joined together to form 40-C bodies, the tetraterpenes, which are generally referred to as carotenoids and which include, for example, ß-carotene.
  • carotenoids the tetraterpenes
  • GGPP also flows into the biosynthesis of polyterpenes, such as rubber and gutta-percha.
  • GGPP can also be used in other diterpenes, e.g. Phytyl pyrophosphate (PPP).
  • PPP Phytyl pyrophosphate
  • the group of tocopherols commonly referred to as vitamin E, includes a number of structurally closely related fat-soluble vitamins, namely ⁇ -, ⁇ -, ⁇ -, ⁇ - and £ -tocopherol, of which ⁇ -tocopherol is the most biologically important.
  • the tocopherols are found in many vegetable oils, the seed oils of soy, wheat, corn, rice, cotton, are particularly rich in tocopherols.
  • tocopherols are only synthesized in plants or photo-synthetically active organisms.
  • tocopherols Due to their redox potential, tocopherols help to prevent the oxidation of unsaturated fatty acids by atmospheric oxygen; in humans - tocopherol is the most important fat-soluble antioxidant. It is believed that the tocopherols, through their function as antioxidants, contribute to the stabilization of biological membranes, since the membrane fluidity is maintained by protecting the unsaturated fatty acids of the membrane lipids. According to recent findings, the formation of arteriosclerosis can also be countered with the regular intake of relatively high doses of tocopherol.
  • a further beneficial physiological property of tocopherols has been described as delaying late-stage damage caused by diabetes, reducing the risk of cataract formation, reducing oxidative stress in smokers, anticarcinogenic effects, protective effect against skin damage such as erythrems and skin aging, etc. - ->
  • tocopherols are not only used in terms of food technology, but also in paints based on natural oils, in deodorants and other cosmetics, e.g. sunscreens, skin care products, lipsticks etc.
  • Tocopherol compounds such as tocopheryl acetate and succinate are the usual forms of application for use as vitamin E, in blood circulation-promoting and lipid-lowering agents and in veterinary medicine as a feed additive.
  • GGPP reductase also known as geranylgeranyl pyrophosphate hydrogenase or GGPP hydrogenase
  • GGPP reductase also known as geranylgeranyl pyrophosphate hydrogenase or GGPP hydrogenase
  • Ger.anylgeranyl reductase is part of the isoprenoid metabolism and works for two metabolic pathways: tocopherol synthesis and chlorophyll synthesis.
  • chlorophyll biosynthesis The essential importance of this enzyme has been shown for the first time in chlorophyll biosynthesis (Benz et al. (1980) Plant Sei. Lett. 19, 225-230; Soll and Schultz (1981) Biochem. Biophys. Res. Commun. 99, 907 -912; Schoch et al. (1977) Z. Plant Physiol. 83, 427-436).
  • the final step in chlorophyll biosynthesis is the esterification of chlorophyllide. which can be done with both phytyl pyrophosphate and geranylgeranyl pyrophosphate.
  • Rhodobacter capsulatus mutants have shown that bacteriochlorophyllid is first esterified with GGPP and then esterified chlorophyll-GG is hydrogenated (Katz et al. (1972) J. Am. Chem. Soc. 94, 7938-7939). Phytyl chlorophyll (chlorophyll-P) is mostly detected in higher plants (Rüdiger and Schoch (1991) in chlorophylls
  • GGPP serves as a substrate for the synthetic pathways of tocopherol and phylloquinone in chloroplast envelope membranes and for chlorophyll synthesis in the thylakoid membranes.
  • the reduction from GGPP to PPP was first described in 1983 by Soll et ⁇ l. (1983, Plant. Physiol. 71, 849-854). So far, however, the isolation and characterization of nucleic acid sequences which code for the plant enzyme and can be used for influencing the tocopherol content in transgenic plants has not been successful.
  • Encoding reductase, changes in tocopherol and / or chlorophyll biosynthesis performance could be achieved in plants. In this way it would be possible, for example, to produce transgenic plants with an increased or decreased tocopherol content. Such transgenic plants or their parts, cells and / or Products could then be used as food and feed or more generally as a production facility for tocopherol, which is used in the chemical, pharmaceutical and cosmetic industries.
  • plants which have a higher antioxidative tocopherol content than wild type plants also have an increased resistance to stress conditions, in particular to oxidative stress.
  • transgenic plants, cells, products and parts with a tocopherol content which is different from that of wild type plants.
  • Another object of the invention is to demonstrate possibilities of using the DNA sequences according to the invention, their gene products and the transgenic plants according to the invention for plant breeding practice.
  • the present invention thus relates to DNA sequences which code for proteins with the biological activity of a geranylgeranyl reductase (also called geranylgeranyl pyrophosphate hydrogenase) or a biologically active fragment thereof.
  • geranylgeranyl reductase also called geranylgeranyl pyrophosphate hydrogenase
  • biologically active fragment means that the mediated biological activity has an effect on the
  • the invention relates to plant DNA sequences which code for proteins with the biological activity of a geranylgeranyl reductase or a biologically active fragment thereof; the invention particularly preferably relates to those in SEQTD NO. 1 specified DNA sequence (see also Fig. 1).
  • the invention relates to alleles and derivatives of the DNA sequences according to the invention which code for a protein with the biological activity of a geranylgeranyl reductase, in particular nucleic acid molecules, the sequences of which differ from the DNA sequences according to the invention due to the degeneration of the genetic code which code for a protein or a fragment thereof which has the biological activity of a geranylgeranyl reductase.
  • the invention further relates to nucleic acid molecules which contain the DNA sequences according to the invention or which have arisen from, or have been derived from, naturally occurring or by genetic engineering or chemical processes and synthesis processes.
  • This can be, for example, DNA or RNA molecules, cDNA, genomic DNA, mRNA etc.
  • the invention also relates to those nucleic acid molecules in which the DNA sequences according to the invention are linked to regulatory elements which ensure transcription and, if desired, translation in the plant cell.
  • the DNA sequences according to the invention can be expressed in plant cells, for example, under the control of constitutive, but also inducible or tissue- or development-specific regulatory elements, in particular promoters. While, for example, the use of an inducible promoter is the specifically triggered expression of the DNA sequences according to the invention in
  • tissue-specific for example seed-specific
  • promoters the possibility of changing the tocopherol content in certain tissues, for example in seed tissue.
  • the DNA sequences according to the invention are present in a preferred embodiment in combination with tissue-specific promoters, in particular seed-specific promoters.
  • the invention further relates to proteins with the biological activity of a geranylgeranyl reductase or active fragments thereof, which are encoded by a DNA sequence according to the invention or a nucleic acid molecule according to the invention. It is preferably a plant geranylgeranyl reductase, preferably from Nicotiana tabacum, particularly preferably a protein with the number shown in SEQ: ID No. 2 (see also Fig. 2) amino acid sequence shown or an active fragment thereof.
  • Another object of the invention is to provide vectors and microorganisms, the use of which enables the production of new plants in which an altered tocopherol content can be achieved.
  • This object is achieved by the provision of the vectors and microorganisms according to the invention which contain nucleic acid sequences coding for enzymes with the activity of a geranylgeranyl reductase.
  • the present invention thus also relates to vectors, in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are common in genetic engineering, which contain the nucleic acid molecules according to the invention described above and can optionally be used for the transfer of the nucleic acid molecules according to the invention to plants or plant cells.
  • vectors in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are common in genetic engineering, which contain the nucleic acid molecules according to the invention described above and can optionally be used for the transfer of the nucleic acid molecules according to the invention to plants or plant cells.
  • the invention also relates to transformed microorganisms, such as bacteria,
  • Viruses, fungi, yeasts etc. which contain the nucleic acid sequences according to the invention.
  • nucleic acid molecules contained in the vectors are linked to regulatory elements that form the
  • nucleic acid sequences of the invention can be supplemented by enhancer sequences or other regulatory sequences.
  • regulatory sequences include e.g. also signal sequences that ensure that the gene product is transported to a specific compartment.
  • nucleic acid molecules according to the invention are transferable to the cells.
  • nucleic acid molecules according to the invention it is now possible to use genetic engineering methods to modify plant cells to the effect that they produce a new or modified geranylgeranyl compared to wild-type cells.
  • reductase activity and, as a result, there is an altered tocopherol biosynthesis performance and an altered tocopherol content.
  • the invention also relates to plants in which the transfer of the nucleic acid molecules according to the invention leads to a reduction in the tocopherol and / or chlorophyll content.
  • a reduced tocopherol and / or chlorophyll biosynthesis performance can be achieved, for example, by the transfer of antisense constructs or other suppression mechanisms, such as, for example, cosuppression.
  • the invention further relates to transgenic plant cells or plants comprising such plant cells and their parts and products in which the new nucleic acid molecules are integrated into the plant genome.
  • the invention also relates to plants in whose cells the nucleic acid sequence according to the invention is present in self-replicating form, i.e. the plant cell contains the foreign DNA on an independent nucleic acid molecule.
  • the plants which are transformed with the nucleic acid molecules according to the invention and in which a modified amount of tocopherol and / or chlorophyll is synthesized due to the introduction of such a molecule can in principle be any plant. It is preferably a monocot or dicot crop. Examples of monocot plants are the plants belonging to the genera Avena (oats), Triticum (wheat), Seeale (rye), Hordeum (barley), Oryza (rice), Panicum, Pennisetum, Setaria, Sorghum (millet), Zea (corn).
  • the dicotyledonous useful plants include legumes, such as legumes and in particular alfalfa, soybean, rapeseed, tomato, sugar beet, potatoes, ornamental plants, trees.
  • Other useful plants can be, for example, fruit (in particular apples, pears, cherries, grapes, citrus, pineapple and bananas), oil palms, tea, cocoa and coffee bushes, tobacco, sisal, cotton, flax, sunflower and medicinal plants and pasture grasses and fodder plants.
  • Tomato Potato, Sweet Grasses, Forage Grasses, and Clover. It is self-evident that the invention relates in particular to conventional food or fodder plants.
  • peanut, lentil, broad bean, black beet, buckwheat, carrot, sunflower, Jerusalem artichoke, turnip, white mustard, turnip and stubble are worth mentioning.
  • the invention furthermore relates to propagation material from plants according to the invention, for example seeds, fruits, cuttings, tubers, rhizomes etc., this propagation material optionally containing transgenic plant cells described above, and parts of these plants such as
  • the invention also relates to plant cells which, owing to the presence and possibly expression of the nucleic acid molecules according to the invention, changed one compared to plant cells which do not contain the nucleic acid molecules
  • Vitamin K content The fat-soluble vitamin K, which is particularly contained in plants, has an important function in the formation of coagulation factors, lack of vitamin K, leads to a reduction in blood clotting, which is why it is also used as an antihemoragic or coagulation vitamin referred to as. Since the expression of the nucleic acid molecules according to the invention results in an altered geranylgeranyl reductase activity and consequently an altered PPP synthesis performance and since the phylloquinone referred to as vitamin K, like the tocopherols, comprises a unit of phytol, such plant cells or plants are also the subject of the invention. that changed one
  • Vitamin K content alone or in combination with an altered tocopherol content.
  • these are transgenic plant cells or plants and their parts and products which, owing to the presence and, where appropriate, expression of a DNA sequence coding for a geranylgeranyl reductase from plants, have a tocopherol content which is changed compared to non-transformed cells .
  • the DNA sequence contained in the plant cells is preferably a sequence coding for geranylgeranyl reductase, which comes from tobacco. These are particularly preferably those in SEQ: ID NO. 1 DNA sequence shown (see also Fig. 1).
  • the DNA sequences according to the invention code for a geranylgeranyl reductase precursor enzyme which comprises a transit sequence for translocation in plastids.
  • the invention further relates to plants in which, in addition to the chl P gene, a gene for hydroxyphenylpyruvate dioxygenase (HPD) is also expressed.
  • HPD catalyzes the conversion of 4-hydroxyphenyl pyruvate into homogentisate, which, as mentioned above, is the second building block of tocopherols alongside phytol.
  • the invention relates to host cells, in particular prokaryotic and eukaryotic cells that have been transformed or infected with a nucleic acid molecule or a vector described above, and cells that are derived from such host cells and contain the described nucleic acid molecules or vectors.
  • the host cells can be bacteria, algae, yeast and fungal cells as well as plant or animal cells.
  • the invention also relates to such host cells which, in addition to the nucleic acid molecules according to the invention, contain one or more nucleic acid molecules which are transmitted by genetic engineering or natural means and which carry the genetic information for enzymes involved in tocopherol, chlorophyll and / or vitamin K, biosynthesis .
  • the present invention is also based on the object of methods for producing plant cells and plants which are changed by a
  • this object is achieved by methods with the aid of which it is possible to produce new plant cells and plants which, owing to the " joint transmission of nucleic acid molecules coding for geranylgeranyl reductase and for nucleic acid molecules coding for HPD or the transmission of nucleic acid molecules coding for geranylgeranyl reductase and for HPD have a tocopherol content that is different from that of wild type plants.
  • plants or plant cells can be modified using conventional genetic engineering transformation methods in such a way that the new nucleic acid molecules are integrated into the plant genome, i.e. that stable transformants are generated.
  • a nucleic acid molecule according to the invention the presence and optionally expression of which in the plant cell causes an altered tocopherol biosynthesis, can be contained in the plant cell or the plant as a self-replicating system.
  • the nucleic acid molecules of the invention can e.g. contained in a virus with which the plant or plant cell comes into contact.
  • plant cells which have an altered tocopherol content due to the expression of a nucleic acid sequence according to the invention are produced by a method which comprises the following steps:
  • an expression cassette which comprises the following DNA sequences: a promoter which ensures transcription in plant cells; at least one nucleic acid sequence according to the invention which codes for a protein or a fragment with the enzymatic activity of a geranylgeranyl reductase, the nucleic acid sequence being in the sense orientation at the 3 'end of the Promoter is coupled; and optionally a termination signal for the termination of the
  • nucleic acid sequences according to the invention can be introduced into the plant cell or plant as a self-replicating system.
  • step a) of the above method can be modified such that the at least one nucleic acid sequence according to the invention, which codes for a protein or a fragment with the enzymatic activity of a geranylgeranyl reductase, in antisense orientation at the 3 'end of the
  • Another object of the invention is to show uses of the nucleic acid sequences according to the invention and of the nucleic acid molecules they contain.
  • This object is achieved by the uses according to the invention of the new DNA molecules for the production of plant cells and plants which are characterized by a tocopherol content that is modified, preferably increased, compared to wild type cells or plants, solved.
  • the invention relates to the use of the nucleic acid sequences according to the invention for producing plants which have changed
  • the invention further relates to the use of the nucleic acid sequences according to the invention for the production of plants which are distinguished by an altered, preferably increased, vitamin K content.
  • Another object of the invention is to record the possibilities of using the plants according to the invention or their cells, parts and products.
  • the invention relates in particular to the use of the plants according to the invention as a forage and / or food plant.
  • the invention relates in particular to the use of the plants according to the invention as a forage and / or food plant.
  • an otherwise common and often also necessary admixture of the corresponding vitamins, in particular vitamin E can be limited in quantity or become completely superfluous.
  • the invention relates generally to increasing the nutritional value of useful plants by increasing the tocopherol and / or phylloquinone content.
  • the invention relates to the use of the plant cells according to the invention, plants, their parts and products, as production sites for vitamin E and / or vitamin K.
  • tocopherols are also used as antioxidants in chemical products such as fats and oils.
  • the plants according to the invention thus represent an important source for the production of tocopherols and / or vitamin K, for a broad spectrum of commercial purposes.
  • the invention also relates to the use of the nucleic acid sequences according to the invention in combination with seed-specific promoters for the production of plants in which the seed tissue in particular is distinguished by a changed, preferably increased, tocopherol content.
  • the nucleic acid sequences according to the invention are used in combination with the USP (Bäumlein et al. (1991) Mol. Gen. Genet. 225, 459-467) or Hordein promoter (Brandt et al. (1985) Carlsberg Res. Commun. 50, 333-345).
  • promoters mentioned are also particularly suitable for the targeted reduction of the tocopherol or chlorophyll content in transgenic seeds using the DNA sequences according to the invention in connection with the antisense technique.
  • the invention further relates to the use of a geranylgeranyl reductase gene for producing an altered tocopherol content in plants.
  • the invention further relates to the use of a protein with the enzymatic activity of a geranylgeranyl reductase in order to achieve an altered tocopherol content in plants.
  • the invention relates to the use of the nucleic acid molecules according to the invention, the proteins according to the invention with geranylgeranyl Reductase activity and / or the transgenic plants or host cells according to the invention with new or modified geranylgeranyl reductase activity for identifying new herbicidal active compounds for crop protection. Thanks to the key position of geranylgeranyl reductase in chlorophyll and tocopherol biosynthesis, the DNA sequences according to the invention and the proteins encoded by them represent an extremely valuable target for herbicide research.
  • the proteins according to the invention with enzymatic geranylgeranyl reductase activity can be used for X-ray structure analysis , NMR spectroscopy, molecular modeling, and drug design are used to identify or synthesize inhibitors and / or effectors of geranylgeranyl reductase and thus potential herbicides based on the knowledge gained from these methods.
  • the invention further relates to the use of the nucleic acid sequences according to the invention for the production of herbicide-tolerant plants. So for
  • Sequences encoding geranylgeranyl reductase can be changed using standard methods or expanded to include new sequence elements and then transferred to plant cells.
  • the introduction of sequences derived from the sequences according to the invention can e.g. be used to change the properties of plants in such a way that in the transgenic
  • Plant more or less functionally active geranylgeranyl reductase or a variant of geranylgeranyl reductase with modified properties is formed or that the level of expression of the chl P gene present in the transgenic plant is reduced.
  • an increase in the tolerance to herbicides which inhibit chlorophyll biosynthesis can be achieved by increasing the CHL P activity.
  • the expression of modified geranylgeranyl reductase genes in transgenic plant cells can also be associated with an increase in herbicide tolerance.
  • the invention further relates to the use of the nucleic acid sequences according to the invention or a protein encoded by them for the production of antibodies.
  • the present invention thus encompasses every possible form of use of the nucleic acid molecules according to the invention, the presence and expression of which, if appropriate, in plants causes a change in the tocopherol content and / or chlorophyll content, and the use of the proteins or fragments thereof, the enzymatic activity of which brings about such a change.
  • any promoter which is functional in the plants selected for the transformation and which fulfills the condition that the expression regulated by it leads to an altered tocopherol synthesis performance is suitable for the promoter mentioned.
  • the transgenic plants as food or fodder plants, especially those appear for this
  • Promoters that ensure seed-specific expression make sense. Examples of such promoters are the USP promoter, hordein promoter and napin promoter.
  • RNA + RNA is isolated from seed tissue and a cDNA library is created.
  • cDNA clones based on poly (A) + RNA molecules from a non-seed tissue are used to identify those clones from the first bank by hybridization whose corresponding poly (A) + RNA Molecules are only expressed in the seed tissue. Promoters are then isolated with the aid of these cDNAs identified in this way and are then used for the expression of the coding nucleic acid sequences described here can be. Analogously, other tissue-specific or development-specific or inducible by abiotic stimulators promoters can be isolated and used according to the invention.
  • the plant has a changed, preferably increased tocopherol content in many areas due to the expression of the nucleic acid molecules according to the invention.
  • a constitutive promoter for example the 35S RNA promoter from Cauliflower Mosaic Virus.
  • the invention also relates to nucleic acid molecules which code for proteins with the biological activity of a geranylgeranyl reductase or biologically active fragments thereof and which hybridize with one of the nucleic acid molecules described above.
  • biologically active fragments refers to fragments that can change the tocopherol content.
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Nucleic acid molecules that hybridize with the molecules of the invention can e.g. can be isolated from genomic or from cDNA libraries.
  • nucleic acid molecules can be identified and isolated using the nucleic acid molecules according to the invention or parts of these molecules or the reverse complements of these molecules, for example by means of hybridization using standard methods (see for example Sambrook et al., Supra).
  • sequence sequences derived from the DNA sequences according to the invention for example degenerate oligonucleotide primers, can be used.
  • the invention thus also relates to the use of a DNA sequence according to the invention or parts thereof for the identification and isolation of homologous ones
  • hybridization probe e.g. Nucleic acid molecules are used that have the nucleotide sequences listed above or parts of these sequences exactly or essentially. In the used as a hybridization probe
  • Fragments can also be synthetic fragments that have been produced with the aid of common synthetic techniques and whose sequence essentially corresponds to that of a nucleic acid molecule according to the invention. If genes have been identified and isolated which hybridize with the nucleic acid sequences according to the invention, the sequence must be determined and the analysis carried out
  • Molecules also include fragments, derivatives, and allelic variants of the DNA molecules described above, which encode a geranylgeranyl reductase or a biological, i.e. enzymatically active fragment thereof. Fragments are understood to mean parts of the nucleic acid molecules that are long enough to contain a polypeptide or protein with the enzymatic activity of a geranylgeranyl
  • the term derivative in this context means that the sequences of these molecules differ from the sequences of the nucleic acid molecules described above on one or differentiate multiple positions and have a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 40%, in particular an identity of at least 60%, preferably over 80% and particularly preferably over 90%.
  • the deviations from the nucleic acid molecules described above can be caused by deletion. Addition,
  • nucleic acid molecules which are homologous to the molecules described above and which are derivatives of these molecules are generally variations of these molecules which are modifications which have the same biological function. This can involve both naturally occurring variations, for example sequences from other organisms, or mutations, it being possible for these modifications to have occurred naturally or to have been introduced by targeted mutagenesis. Furthermore, the variations can be synthetically produced sequences.
  • allelic variants can be both naturally occurring and synthetically produced variants or those produced by recombinant DNA techniques.
  • the proteins encoded by the different variants and derivatives of the nucleic acid molecules according to the invention usually have certain common characteristics. For this, e.g. Enzyme activity, molecular weight, immunological reactivity, conformation etc. belong. More common
  • Characteristics can include physical properties such as e.g. B. the running behavior in gel electrophoresis, chromatographic behavior, sedimentation coefficient, solubility, spectroscopic properties, stability, pH optimum, temperature Represent optimum etc. Furthermore, the products of the reactions catalyzed by the proteins can of course have common or similar features.
  • cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence can be introduced into the vector at a suitable restriction site.
  • the plasmid obtained is used for the transformation of E. co / cells.
  • Transformed E. coli cells are grown in a suitable medium and then harvested and lysed.
  • the plasmid is recovered. Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained.
  • the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences.
  • Each plasmid DNA sequence can be cloned into the same or different plasmids.
  • a variety of known techniques are available for introducing DNA into a plant host cell, and the person skilled in the art can determine the appropriate method without difficulty. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transformation agent, the fusion of protoplasts, the direct gene transfer of isolated DNA into protoplasts, the microinjection and electroporation of DNA, the introduction of DNA by means of biolistic method and other possibilities. J -
  • plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements per se for the plasmids used. The same applies to direct gene transfer. Simple plasmids such as e.g. pUC derivatives are used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable one is usually the case
  • Marker gene necessary.
  • the usual selection markers are known to the person skilled in the art and it is not a problem for him to select a suitable marker.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti and Ri plasmid, must be connected as a flank region to the genes to be introduced .
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation). Binary vectors can replicate in E. coli as well as in Agrobacteria.
  • the agrobacterium serving as the host cell is said to contain a plasmid which carries a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and is sufficient in EP 120 515; Hoekema in: The Binary Plant Vector System, Offsetdrokkerij Kanters B.V., Alblasserdam (1985) Chapter V; Fraley et al. (1993) Crit. Rev. Plant. Sci., 4, 1-46 and An et al. (1985) EMBO J.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes. From the infected plant material (e.g. leaves,
  • Leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells can then regenerate whole plants again in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
  • a suitable medium which can contain antibiotics or biocides for the selection of transformed cells.
  • the plants are regenerated using conventional regeneration methods using known nutrient media.
  • Protoplast transformation the electroporation of partially permeabilized cells, the introduction of DNA using glass fibers.
  • EP 292 435 describes a process by means of which fertile plants can be obtained starting from a slimy, soft, granular corn callus. Shillito et al. ((1989) Bio / Technology 7, 581) have observed in this connection that it is also necessary for the regenerability to fertile plants to start from callus suspension cultures, from which one divides Protoplast culture with the ability to regenerate plants can be produced. After an in vitro cultivation time of seven to eight months, Shillito et al. Plants with viable offspring.
  • Prioli and Sondahl ((1989) Bio / Technology 7, 589) describe the regeneration and extraction of fertile plants from maize protoplasts, the Cateto maize inbred line Cat 100-1. The authors suspect that protoplast regeneration to fertile plants can be caused by a number of different factors, e.g. depends on the genotype, the physiological state of the donor cells and the cultivation conditions.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which shows the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G418, bleomycin, hygromycin, methotrexate,
  • the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup become.
  • the resulting hybrid individuals have the corresponding phenotypic properties. Seeds can be obtained from the plant cells.
  • Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
  • transgenic lines can be determined by customary methods, which are homozygous for the new nucleic acid molecules and whose phenotypic behavior with regard to an altered tocopherol content is examined and compared with that of hemizygotic lines.
  • Activity can be accomplished using conventional molecular biological and biochemical methods. These techniques are known to the person skilled in the art and he is easily able to select a suitable detection method, for example a Northern blot analysis for detecting geranylgeranyl reductase-specific RNA or for determining the level of accumulation of geranylgeranyl reductase-specific RNA, a Southern blot analysis for identification of DNA sequences coding for geranylgeranyl reductase or a Western blot analysis for detection of the protein encoded by the DNA sequences according to the invention, preferably CHL P. Detection of the enzymatic activity of geranylgeranyl reductase can, for example, with that of
  • the invention is based on the successful isolation of a cDNA clone coding for a geranylgeranyl reductase from a cDNA library from Nicotiana tabacum cv. Petit Havana SRI.
  • the sequence of this cDNA clone, which comprises a complete open reading frame, is in SEQ: ID NO. 1 shown.
  • Using the sequence according to SEQ: ID No. 1 succeeded in producing transgenic plants that have a different tocopherol content compared to wild type plants.
  • the DNA sequence according to SEQ: ID NO. 1 containing cDNA clone was transformed into Escherichia coli and the corresponding E. coli strain on
  • a Lambda ZAP II cDNA library (Nicotiana tabacum SRI, Stratagene, USA) was screened using an EST from Arabidopsis thaliana coding for the locus 4D9T7P.
  • the EST sequence used is similar to the known bch P / chl P sequences from Rhodobacter capsulatus (Young et al. (1989) Mol. Gen. Genet. 218, 1-12; Bollivar et al. (1994) J. Mol. Biol. 237, 622-640; Bollivar et al. (1994) Biochemistry 33, 12763-12768) and Synechocystis PCC6803 (Addlesee et al. (1996) FEBS Lett. 389, 126-130).
  • the hybridization probe used encompasses the region of the EST sequence from base 1 to base 364 shown in 4D9T7P (Accession No. T04791).
  • the probe was obtained as a NotI / Sall restriction fragment from the PRL2 library from A. thaliana (vector: ⁇ ZipLox) ( Newman et al. (1994) Plant Physiol. 106: 1241-1255) isolated and radioactively labeled with [ ⁇ - 32 P] dCTP using nick translation (Life Technologies, Eggenstein).
  • the hybridization was carried out according to the following protocol.
  • Composition 5 x SSC, 0.1% SDS, 5 x Denhard reagent, 100 ⁇ g / ml denatured Salmon sperm DNA; - 12 h main hybridization at 55 ° C with fresh hybridization solution of the above composition plus radiolabelled probe;
  • chI P cDNA sequence comprises 1510 nucleotides (without polyA tail), of which nucleotides 1 to 1392 for a 52 kDa protein of 464 amino acids (including the start methionine, and without the stop codon (nucleotides 1393 to 1395 ) calculated) code.
  • the deduced amino acid sequence of the CHL P is in SEQ: ID NO. 2 shown.
  • SEQ: ID NO. 1 nucleotide sequence shown comprises a 3 ' untranslated region from nucleotide 1396 to 1510.
  • sequence analysis, restriction, cloning, gel electrophoresis, radioactive labeling, Southern, standards and Western blot analyzes, hybridization and the like common methods have been used as described in relevant laboratory manuals, such as Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • the DNA sequence according to SEQ: ID NO. 1 by means of the restriction enzymes BamHI and Sall in the multiple cloning interface of the pBluescript vector cut out of the vector and in sense orientation in the binary vector BinAR-TX (Höfgen and Willmitzer (1990) Plant Science 66, 221-230), one pBIB derivative (Becker (1990) Nucleic Acid Res. 18, 203), which was digested with the same restriction endonucleases, ligated behind the CaMV 35S promoter.
  • a restriction map of the vector BinAR-TX is attached as Figure 3.
  • any vector suitable for plant transformation can be used to produce a chimeric gene consisting of a fusion of the CaMV 35S promoter or another
  • Promotors which ensures the transcription and translation in plant cells, and DNA sequences coding for CHL P are used.
  • the recombinant vector pCHLPbin was then transformed into Agrobacterium tumefaciens (strain GV2260; Horsch et al. (1985) Science 227, 1229-1231) and used to transform tobacco plants (SNN) using the leaf disc transformation technique (Horsch et al., Supra) .
  • an overnight culture of the corresponding Agrobacterium tumefaciens clone was centrifuged for 10 minutes at 5000 rpm, and the bacteria were resuspended in 2YT medium.
  • Young tobacco leaves from a sterile culture (Nicotiana tabacum cv. Samsun NN) were cut into small pieces measuring approx. 1 cm 2 and briefly placed in the bacterial suspension. The leaf pieces were then placed on MS medium (Murashige and Skoog (1962) Physiol. Plant. 15, 473; 0.7% agar) and incubated for two days in the dark.
  • the leaf pieces were then sprouted on MS medium (0.7% agar) with 1.6% glucose, 1 mg / 1 6-benzylaminopurine, 0.2 mg / 1 naphthyl acetic acid, 500 mg / 1 claforan (cefotaxime, Hoechst, Frankfut) and 50 mg / 1
  • Kanamycin laid The medium was changed every seven to ten days. When shoots had developed, the leaf pieces were transferred to glass jars containing the same medium. Resulting shoots were cut off and placed on MS medium with 2% sucrose and 250 mg / 1 Claforan and regenerated to whole plants.
  • Transgenic tobacco plants were transformed, selected and regenerated as described above. After rooting in sterile culture, about 100 independent transformants were transferred to soil in the greenhouse. The tobacco plants were in Greenhouse at 60% humidity and 20-25 ° C for 16 hours in the light and 18-20 ° C for 8 hours in the dark.
  • transformants with normal or increased tocopherol or chlorophyll contents showed neither a changed appearance with regard to their phenotype nor a different growth rate compared to control plants.
  • Plants under stress conditions e.g. Cultivation under low and elevated temperatures or strong light, and in senescent leaves were additionally increased compared to control plants.
  • the tocopherol content was determined according to the following protocol:
  • Leaf disks were homogenized in liquid nitrogen and extracted three times in methanol. The extracts were collected and eluted on a LiCrospher 100 HPLC RP-18 column (Merck, Darmstadt, Germany) at a flow of 1 ml / min with the following gradient: 94% solvent B (100% methanol) / 6% solvent A ( 30% methanol, 10% 0.1 M ammonium acetate, pH 5.1) for 7 min., For a further 17 min. 99% solvent B / 1% solvent A, then another 26 min. 94% solvent B / 6% solvent A.
  • the collected extracts were analyzed by HPLC in an isocratic gradient (gradient consists of 2% solution A [10% methanol and 10% acetic acid] and 98% methanol (solution B); flow rate 1 ml / min.).
  • Gradient consists of 2% solution A [10% methanol and 10% acetic acid] and 98% methanol (solution B); flow rate 1 ml / min.).
  • transgenic tobacco plants were also analyzed in a Southern blot. This resulted in hybridization with a labeled cDNA fragment for CHL
  • Northern blot analysis revealed an increased amount of specific RNA in the transformants compared to the CHL P-RNA contents of the control plants.
  • transgenic plants produced and analyzed in Examples 2 and 3 had an increased tocopherol content due to the overexpression of the DNA sequences according to the invention, the following antisense construct was generated and produced for the production of transgenic tobacco plants which have a reduced activity of CHL P Transfer tobacco.
  • the cDNA sequence according to SEQ: ID NO. 1 was cut out of the vector using the restriction enzymes Kpnl and Xbal in the multiple cloning interface of the pBluescript vector and in the antisense orientation in the binary vector BinAR-TX (see Example 2), which was digested with the same restriction enzymes, with the Cauliflower Mosaic Virus 35S promoter fused.
  • the resulting recombinant vector pCHLPASbin was transferred to tobacco as described in Example 2 using Agrobacterium tumefaciens-mediated leaf disc transformation. Subsequently, transgenic plants were regenerated. Approximately 100 independent transgenic lines were regenerated and copies of the transgene were inserted using standard techniques (e.g. Southern
  • the transformants showed a reduced growth compared to control plants, a bleached phenotype, reduced RNA and protein contents for CHL P, a high content of geranylgeranyl chlorophyll (up to 50% of the
  • the amplified PCR fragment was purified and cut with the restriction enzymes Ncol and BglII and ligated into the expression vector pQE60 (Qiagen, Hilden) digested with the same enzymes. After the initiation codon ATG (part of the recognition sequence for Ncol) was followed by the coding Chl P sequence, starting with nucleotide No. 148 of the open reading frame of the CHL P cDNA sequence. After methionine, this results in the incorporation of a glycine (amino acid No. 50 of the protein translated from the cDNA sequence).
  • the E. co // strains XL 1 were used for the expression of the plant CHL P
  • the protein from the total extract has a geranylgeranyl reductase activity in a combined enzyme assay with bacterial bacteriochlorophyll synthase using chlorophyllide and GGPP.
  • Enzyme assay was carried out according to the protocol in Oster et al. (1997) J. Biol. Chem. 272, 9671-9676.
  • Chlorophyll-GG and chlorophyll-phytol were separated on an HPLC with the RP 18 column using the solvent mixture solution
  • A (60% acetone) and solution B (100% acetone).
  • the gradient of solvents was used: t 0 75% solution A and 25% solution B, 2 min .; within t 2 . 4 to 45% solution A and 55% solution B; within t 4 . 13 to 30% solution A and 70% solution B; within t 13.17 to 100% solution B; t 17 . 21 100% solution B isocratic; then within 5 min. on 75% solution A and 25% solution B; then another 5 min. 75% solution A and 25% solution B isocratic.
  • a fluorescence detector was used to detect the tetrapyrroles ( ⁇ ex 425 nm, ⁇ em 665 nm).
  • the sequence of the HPD cDNA (Accession No .: AF 000228) between nucleotide 37 and 1404 was amplified from an Arabidopsis tb ⁇ / z ⁇ tt ⁇ cDNA library, cloned and sequenced. The fragment was cut with the restriction endonucleases Kpnl and Sall and ligated into the Kpnl / Sall-cut binary vector Bin-Hyg-TX.
  • the vector Bin-Hyg-TX is (as in the vector BinAR-TX used in Example 2) a pBIB descendant (Becker, supra) which expresses the one in the multiple
  • the binary vector Bin-Hyg-TX carries a hygromycin resistance gene as a selection marker for plant cells.
  • a restriction map of the vector Bin-Hyg-TX is attached as Figure 5.
  • any vector suitable for plant transformation can be used to produce a chimeric gene, consisting of a fusion of the CaMV 35S promoter or another promoter which ensures transcription and translation in plant cells and DNA- Sequences encoding HPD are used.
  • the recombinant vector pBinHygHPD obtained was then transferred to tobacco SNN by means of Agrobacterium tumefaciens as described in Example 2 above, transgenic tobacco sprouts being selected on hygromycin-containing medium.
  • the plants obtained after regeneration served as control plants.
  • transformants 28 and 30 described in Example 2 and optionally other transformants that control the CHL P gene under control of the 35S Overexpress RNA promoters transformed with the recombinant vector pBinHygHPD using leaf disc transformation and whole plants regenerated with selection for kanamycin and hygromycin.
  • transgenic plants that express both the CHL P gene and the HPD gene can also be obtained by crossing homozygous "CHL P lines” with homozygous "HPD lines".
  • Double crossings can be expected under stress conditions (e.g. increased temperature, light stress, etc.).
  • transgenic HPD lines were also examined for their tocopherol content and the influence of stress conditions on the tocopherol content. It could be shown that overexpression of HPD in tobacco leaves is a 2- to 3-fold increase in tocopherol content and that, in particular, the values increase under stress conditions compared to non-transgenic control plants.
  • Figure 6 shows tocopherol levels in leaves 4, 7 and 10 of 12-week-old transgenic takak lines (# 2, 6 and 33) that overexpress the Arabidopsis enzyme hydroxyphenyl pyruvate dioxygenase (HPD) compared to control plants (SNN).
  • the plants were removed either at 38 ° C. or at 10 ° C. and a light intensity of approx. 200 ⁇ mol photons / m 2 / s.
  • Tocopherol is enriched in the plants with increasing leaf age. In the older leaves in particular, the tocopherol content in the plants grown below 38 ° C rises much more steeply and reaches twice the amount compared to the control plants. In contrast, the tocopherol levels in the transformants in the cold are only slightly increased compared to those of the wild type plants.
  • HPD particularly favors the regeneration of these antioxidants in transgenic plants when there is an increased need for tocopherols, in particular under stress conditions.
  • tocopherol was extracted from seeds from transgenic plants which, owing to the expression of CHL P under the control of the CaMV 35S promoter (cf. Example 2), are characterized by an increased tocopherol content in leaves in comparison to wild type plants.
  • the results of the tocopherol quantification performed by HPLC are compared to
  • ⁇ -tocopherol was also quantified.
  • the latter is generally present in larger quantities in tobacco seeds; the ratio of ⁇ -tocopherol to ⁇ -tocopherol in tobacco seeds is approx. 10: 1.
  • the levels of both forms of tocopherols, especially ⁇ -tocopherol, are around 2 to 3 times higher than the control plants in the transgenic plants with increased geranylgeranyl reductase expression. times increased.
  • SEQ: ID NO. 1 shows the nucleotide sequence of a chl P cDNA of geranylgeranyl reductase (CHL P) from Nicotiana tabacum.
  • SEQ: ID NO. 2 shows an amino acid sequence of the enzyme CHL P from N tabacum, derived from the SEQ shown in FIG. 1: ID ⁇ 0.1.
  • BinAR Höfgen and Willmitzer (1990) Plant Science 66, 221
  • Bin19 derivative Bevan (1984) Nucl. Acids Res. 12, 8711
  • Expression cassette via the EcoRI and Hindlll
  • the cassette comprises a 770 bp EcoRI / HindIII fragment which contains the CaMV 35S promoter, a partial pUC18 polylinker and the termination signal of the octopine synthase gene (OCS).
  • OCS octopine synthase gene
  • the unique interfaces of the pUC18 polylinker namely Kpnl, Smal, BamHI, Xbal and Sall, are particularly suitable for the insertion of coding sequences.
  • the binary vector BinAR carries a kanamycin resistance gene as a plant selection marker.
  • Figure 4 Bar chart showing the tocopherol content in leaves 6, 9, 12 (counted from the plant tip) of transgenic tobacco plants (lines 28 and 30) versus the corresponding leaves of control plants (SNN).
  • Figure 5 Restriction map of the binary vector Bin-Hyg-TX used for plant transformation, which is a pBIB derivative (Becker, supra; Bevan, supra) that contains an expression cassette for the constitutive expression of chimeric genes in plants .
  • the unique interfaces of the pUC18 polylinker namely Hpal, Kpnl, Smal, Xbal and Sall, are particularly suitable for the insertion of coding sequences.
  • the binary vector Bin-Hyg-TX carries a hygromycin resistance gene as a plant selection marker.
  • Figure 6 Bar graph of tocopherol levels in leaves 4, 7 and 10 in 12-week-old transgenic lines (# 2, 6, 33) that overexpress the Arabidopsis enzyme HPD and in control plants (SNN).
  • Figure 8 Relative values of ⁇ -tocopherol and ⁇ -tocopherol in seeds from transgenic tobacco plants (# 7, 39, 67, 96) and wild-type tobacco plants (SNN). 100% ⁇ -tocopherol corresponds to 6 ng / mg seeds; 100% ⁇ -tocopherol corresponds to 62.8 ng / mg seeds.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Nukleinsäuresequenzen, die für eine Geranylgeranyl-Reduktase kodieren, eine Methode zur Erzeugung neuer Pflanzen, die eine neue Nukleinsäuresequenz enthalten und deren Gehalt an Tocopherol und/oder Chlorophyll im Vergleich zu Wildtyppflanzen verändert ist, diese neuen Pflanzen, deren Teile und Produkte und Pflanzenzellen sowie die Verwendung der Nukleinsäuresequenzen zur Beeinflussung des Tocopherol-, Chlorophyll- und/oder Vitamin K1-Gehaltes in transgenen Pflanzen, deren Teilen und Produkten und Pflanzenzellen.

Description

Beeinflussung des Tocopherolgehaltes in transgenen Pflanzen
Die vorliegende Erfindung betrifft neue Nukleinsäuresequenzen. die für eine Geranylgeranyl-Reduktase kodieren, eine Methode zur Erzeugung neuer Pflanzen, die eine neue Nukleinsauresequenz enthalten und deren Gehalt an Tocopherol und/oder Chlorophyll im Vergleich zu Wildtyppflanzen verändert ist, diese neuen Pflanzen, deren Teile und Produkte und Pflanzenzellen sowie die Verwendung der Nukleinsäuresequenzen zur Beeinflussung des Tocopherol-, Chlorophyll- und/oder Vitamin K, -Gehaltes in transgenen Pflanzen, deren Teilen und Produkten und
Pflanzenzellen.
Das Diterpen Geranylgeranyl-pyrophosphat (GGPP) entsteht als 20-C-Zwischen- produkt im pflanzlichen Isoprenoidstoffwechsel. Es resultiert aus der Addition einer Einheit Isopentenyl-pyrophosphat (IPP) an Farnesyl-pyrophosphat, ein 15-C-
Sesquiterpen. GGPP fließt in diverse Synthesewege des pflanzlichen Sekundärstoffwechsels. So können beispielsweise zwei Moleküle GGPP "Schwanz an Schwanz" zu 40-C-Körpern zusammengefügt werden, die Tetraterpene, die allgemein als Carotinoide bezeichnet werden und zu denen beispielsweise das ß- Carotin gehört. Durch die Addition weiterer Moleküle IPP fließt GGPP des weiteren in die Biosynthese von Polyterpenen, wie Kautschuk und Guttapercha, ein.
GGPP kann darüber hinaus in weitere Diterpene, wie z.B. Phytyl-pyrophosphat (PPP), überführt werden. Der 20-C-Körper Phytol ist ein obligatorisches
Intermediat in der Biosynthese der Tocopherole (Soll and Schulz (1981) Biochem. Biophys. Res. Commun. 99, 907-912) sowie der Synthese der Chlorophylle (Beale and Weinstein (1990) In: Biosynthesis of Heme and Chlorophyll (Dailey H.A., ed.) McGraw Hill. NY, 287-391). Während die Grundstruktur aller Chlorophylle (Chlorophyll a, b, c, usw.) ein aus 4 Pyrrolringen aufgebautes Porphyrinsystem ist, an welches das Phytol esterartig über den Pyrrolring IV gebunden ist, zeichnen sich die Tocopherole durch eine aus Homogentisat und einem Phytol-Schwanz bestehende Struktur aus.
Die Gruppe der Tocopherole, die allgemein als Vitamin E bezeichnet werden, umfaßt eine Reihe strukturell nahe verwandter fettlöslicher Vitamine, nämlich α-, ß-, γ-, δ- und £-Tocopherol, wovon α-Tocopherol biologisch am wichtigsten ist. Die Tocopherole kommen in vielen Pflanzenölen vor, besonders reich an Tocopherolen sind die Samenöle von Soja, Weizen, Mais, Reis, Baumwolle,
Luzerne und Nüssen. Auch Früchte und Gemüse, z.B. Himbeeren, Bohnen, Erbsen, Fenchel, Paprika, etc. enthalten Tocopherole. Soweit bisher bekannt werden Tocopherole ausschließlich in Pflanzen bzw. photo synthetisch aktiven Organismen synthetisiert.
Tocopherole tragen aufgrund ihres Redoxpotentials dazu bei, die Oxidation ungesättigter Fettsäuren durch Luftsauerstoff zu vermeiden; im Menschen ist - Tocopherol das wichtigste fettlösliche Antioxidans. Es wird angenommen, daß die Tocopherole durch diese Funktion als Antioxidantien zur Stabilisierung bio- logischer Membranen beitragen, da durch den Schutz der ungesättigten Fettsäuren der Membranlipide die Membran-Fluidität aufrechterhalten wird. Jüngeren Erkenntnissen zufolge kann darüber hinaus mit der regelmäßigen Zufuhr relativ hoher Tocopherol-Dosen der Ausbildung der Arteriosklerose entgegengewirkt werden. Als weitere günstige physiologische Eigenschaft der Tocopherole wurde die Verzögerung Diabetes bedingter Spätschäden, die Verminderung des Risikos der Kataraktbildung, Verminderung des oxidativen Stresses bei Rauchern, anticarcinogene Effekte, protektive Wirkung gegen Hautschäden wie Erythreme und Hautalterung, etc. beschrieben. - ->
- Wegen ihrer oxidationshemmenden Eigenschaften werden die Tocopherole nicht nur lebensmitteltechnologisch genutzt, sondern auch in auf natürlichen Ölen basierenden Anstrichfarben, in Desodorantien und anderen Kosmetika, beispielsweise Sonnenschutzmittel, Hautpflegemitteln, Lippenstiften etc. eingesetzt. Dabei sind Tocopherolverbindungen wie Tocopherylacetat und -succinat die üblichen Applikationsformen für die Anwendung als Vitamin E, in durchblutungs- fördernden und Lipid-senkenden Mitteln und veterin-ärmedizinisch als Futtermittelzusatz.
In der Biosythese der Tocopherole, insbesondere des α-Tocopherols, scheint
Phytylpyrophosphat ein limitierender Faktor zu sein. Bisherige Untersuchungen deuten darauf hin, daß PPP durch sequentielle Hydrogenierung der Isoprenoid- gruppe aus GGPP hervorgeht, wobei als Intermediate Dihydro-GGPP und Tetrahydro-GGPP entstehen (GGPP -> Dihydro-GGPP -> Tetrahydro-GGPP -> PPP; vgl. bspw. Bollivar et al. (1994) Biochemistry 33, 12763-12768).
Die schrittweise Hydrogenierung von GGPP zu PPP wird, so wird gegenwärtig angenommen, durch das Enzym Geranylgeranyl-Reduktase (GGPP-Reduktase, auch als Geranylgeranyl-pyrophosphat-Hydrogenase bzw. GGPP-Hydrogenase bezeichnet) katalysiert, das in Pflanzen im Gen Chl P kodiert wird. Das Enzym
Ger.anylgeranyl-Reduktase gehört zum Isoprenoidstoffwechsel und fungiert für zwei Stoffwechsel wege: die Tocopherolsynthese und die Chlorophyllsynthese.
Die essentielle Bedeutung dieses Enzyms ist erstmals für die Chlorophyll- biosynthese gezeigt worden (Benz et al. (1980) Plant Sei. Lett. 19, 225-230; Soll and Schultz (1981) Biochem. Biophys. Res. Commun. 99, 907-912; Schoch et al. (1977) Z. Pflanzenphysiol. 83, 427-436). Der letzte Schritt der Chlorophyllbiosynthese ist die Veresterung von Chlorophyllid. die sowohl mit Phytylpyrophosphat als auch mit Geranylgeranyl-pyrophosphat erfolgen kann. Systema- _ tische Untersuchungen von Rhodobacter capsulatus-Mutanten haben zeigen können, daß zuerst Bacteriochlorophyllid mit GGPP verestert und nachfolgend esterifiziertes Chlorophyll-GG hydrogeniert wird (Katz et αl. (1972) J. Am. Chem. Soc. 94, 7938-7939). In höheren Pflanzen wird größtenteils Phytyl-Chlorophyll (Chlorophyll-P) nachgewiesen (Rüdiger and Schoch (1991) in Chlorophylls
(Scheer, H., Ed.) pp. 451-464, CRC Press, Boca Raton, Florida, USA). Es ist bisher nicht geklärt, mit welchen Substraten die Reduktase-Reaktion in Pflanzen erfolgt. Gegenwärtig wird angenommen, daß die pflanzliche Geranylgeranyl- Reduktase in der Lage ist, sowohl Chlorophyll-GG in Chlorophyll-P umzuwandeln (Schoch et αl. (1978) Z. Pflanzenphysiol. 83, 427-436) als auch GGPP zu PPP zu hydrogenieren, das dann anschließend mit Chlorophyllid verbunden wird (Soll et αl. (1983) Plant Physiol. 71, 849-854).
GGPP dient als Substrat für die Synthesewege des Tocopherols und des Phyllochinons in Chloroplastenhüllmembranen und für die Chlorophyllsynthese in den Thylakoidmembranen. Die Reduktion von GGPP zu PPP wurde erstmals 1983 von Soll et αl. beschrieben (1983, Plant. Physiol. 71, 849-854). Bisher ist allerdings die Isolierung und Charakterisierung von Nukleinsäuresequenzen, die für das pflanzliche Enzym kodieren und für die Beeinflussung des Tocopherol- gehaltes in transgenen Pflanzen eingesetzt werden können, nicht gelungen.
Die essentielle Rolle der Geranylgeranyl-Reduktase im Tocopherol- und Chlorophyllstoffwechsel macht dieses Enzym zu einem besonders wertvollen Instrument für die molekulare Biotechnologie. Mit Hilfe molekularbiologischer Techniken wie der Übertragung von DNA-Sequenzen, die für Geranylgeranyl-
Reduktase kodieren, könnten in Pflanzen Änderungen in der Tocopherol- und/oder Chlorophyllbiosyntheseleistung erzielt werden. Auf diese Weise wäre z.B. die Erzeugung von transgenen Pflanzen mit erhöhtem oder verringertem Tocopherol- gehalt möglich. Solche transgenen Pflanzen bzw. deren Teile, Zellen und/oder Produkte könnten anschließend als Nahrungs- und Futtermittel bzw. allgemein als Produktionsstätte für Tocopherol, das in der chemischen, pharmazeutischen und kosmetischen Industrie Anwendung findet, eingesetzt werden.
Darüber hinaus ist davon auszugehen, daß Pflanzen, die einen gegenüber Wildtyppflanzen erhöhten Gehalt an antioxidativ wirksamen Tocopherolen aufweisen, auch eine erhöhte Resistenz gegenüber Streßbedingungen, insbesondere gegenüber oxi- dativem Streß, aufweisen.
Es ist daher Aufgabe der Erfindung, neue Nukleinsäuresequenzen bereitzustellen, mit deren Hilfe in Pflanzen, Pflanzenzellen, -teilen und/oder -produkten der Gehalt an Tocopherol beeinflußt werden kann.
Des weiteren ist es eine wichtige Aufgabe der Erfindung, transgene Pflanzen, - zellen, -produkte und -teile mit gegenüber Wildtyppflanzen verändertem Toco- pherolgehalt bereitzustellen.
Eine weitere Aufgabe der Erfindung besteht darin, Möglichkeiten der Verwendung der erfmdungsgemäßen DNA-Sequenzen, deren Genprodukte sowie der erfindungsgemäßen transgenen Pflanzen für die pflanzenzüchterische Praxis aufzuzeigen.
Weitere Aufgaben der Erfindung ergeben sich aus der folgenden Beschreibung. Diese Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche, insbesondere basierend auf der Bereitstellung der erfmdungsgemäßen DNA-
Sequenzen, deren Genprodukte unmittelbar an der Tocopherolbiosynthese beteiligt sind, und der in einem veränderten Tocopherolgehalt resultierenden Übertragung dieser DNA- Sequenzen auf Pflanzen, gelöst. Die vorliegende Erfindung betrifft somit DNA-Sequenzen, die für Proteine mit der biologischen Aktivität einer Geranylgeranyl-Reduktase (auch Geranylgeranyl- pyrophosphat-Hydrogenase genannt) oder ein biologisch aktives Fragment davon kodieren. Biologisch aktives Fragment bedeutet im Zusammenhang mit dieser Erfindung, daß die vermittelte biologische Aktivität zu einer Beeinflussung des
Tocopherolgehalts ausreicht. Insbesondere betrifft die Erfindung pflanzliche DNA- Sequenzen, die für Proteine mit der biologischen Aktivität einer Geranylgeranyl- Reduktase oder ein biologisch aktives Fragment davon kodieren, besonders bevorzugt betrifft die Erfindung die in SEQTD NO. 1 angegebene DNA-Sequenz (s. auch Abb. 1).
Des weiteren betrifft die Erfindung Allele und Derivate der erfmdungsgemäßen DNA-Sequenzen, die für ein Protein mit der biologischen Aktivität einer Geranylgeranyl-Reduktase kodieren, insbesondere Nukleinsäuremoleküle, deren Sequenzen sich aufgrund der Degeneration des genetischen Codes von den erfindungsgem.äßen DNA-Sequenzen unterscheiden und die für ein Protein oder ein Fragment davon kodieren, das die biologische Aktivität einer Geranylgeranyl- Reduktase aufweist.
Des weiteren betrifft die Erfindung Nukleinsäuremoleküle, die die erfindungsgemäßen DNA-Sequenzen enthalten oder durch natürlich vorkommende oder durch gentechnische oder chemische Prozesse und Syntheseverfahren aus diesen entstanden sind bzw. von diesen abgeleitet wurden. Hierbei kann es sich beispielsweise um DNA- oder RNA-Moleküle, cDNA, genomische DNA, mRNA etc. handeln.
Die Erfindung betrifft auch solche Nukleinsäuremoleküle, in denen die erfindungsgemäßen DNA-Sequenzen mit regulatorischen Elementen verknüpft sind, die die Transkription und, falls erwünscht, Translation in der Pflanzenzelle gewährleisten. - So können die erfindungsgemäßen DNA-Sequenzen beispielsweise unter Kontrolle konstitutiver, aber auch induzierbarer oder gewebe- bzw. enwicklungsspezifischer Regulationselemente, insbesondere Promotoren, in Pflanzenzellen exprimiert werden. Während beispielsweise die Verwendung eines induzierbaren Promotors die gezielt ausgelöste Expression der erfindungsgemäßen DNA-Sequenzen in
Pflanzenzellen ermöglicht, bietet z.B. der Einsatz von gewebespezifischen, beispielsweise samenspezifischen, Promotoren die Möglichkeit, den Tocopherolgehalt in bestimmten Gewebe, beispielsweise in Samengewebe zu verändern. So liegen die erfindungsgemäßen DNA-Sequenzen in einer bevorzugten Ausführungs- form in Kombination mit gewebespezifischen Promotoren, insbesondere samenspezifischen Promotoren, vor.
Die Erfindung betrifft weiterhin Proteine mit der biologischen Aktivität einer Geranylgeranyl-Reduktase oder aktive Fragmente davon, die durch eine erfindungsgemäße DNA-Sequenz oder ein erfindungsgemäßes Nukleinsäure- molekül kodiert werden. Vorzugsweise handelt es sich um eine pflanzliche Geranylgeranyl-Reduktase, bevorzugt aus Nicotiana tabacum, besonders bevorzugt um ein Protein mit der in SEQ:ID No. 2 (s. auch Abb. 2) gezeigten Aminosäuresequenz oder ein aktives Fragement davon.
Eine weitere Aufgabe der Erfindung besteht darin, Vektoren und Mikroorganismen zu liefern, deren Verwendung die Herstellung neuer Pflanzen, in denen ein veränderter Tocopherolgehalt erzielt werden kann, ermöglicht. Diese Aufgabe wird durch die Bereitstellung der erfindungsgemäßen Vektoren und Mikroorganismen gelöst, die für Enzyme mit der Aktivität einer Geranylgeranyl-Reduktase kodierende Nukleinsäuresequenzen enthalten.
Die vorliegende Erfindung betrifft somit auch Vektoren, insbesondere Plasmide, Cosmide, Viren, Bakteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen Nukleinsäuremoleküle enthalten und gegebenfalls für den Transfer der erfindungsgemäßen Nukleinsäuremoleküle auf Pflanzen bzw. Pflanzenzellen eingesetzt werden können.
Ebenso betrifft die Erfindung transformierte Mikroorganismen, wie Bakterien,
Viren, Pilze, Hefen etc., die die erfindungsgemäßen Nukleinsäuresequenzen enthalten.
In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen Nukleinsäuremoleküle verknüpft mit regulatorischen Elementen, die die
Transkription und ggf. Translation in prokaryontischen und eukaryontischen Zellen gewährleisten.
Gegebenenfalls können die Nukleinsäuresequenzen der Erfindung durch Enhancer- Sequenzen oder andere regulatorische Sequenzen ergänzt sein. Diese regulatorischen Sequenzen beinhalten z.B. auch Signalsequenzen, die für den Transport des Genprodukts zu einem bestimmten Kompartiment sorgen.
Es ist ebenso eine Aufgabe der Erfindung neue Pflanzen, Pflanzenzellen, -teile oder -produkte bereitzustellen, die sich durch einen veränderten Tocopherolgehalt auszeichnen, der ggf. mit einer gegenüber Wildtyppflanzen veränderten Chlorophyllbiosyntheseleistung gekoppelt sein kann.
Diese Aufgaben werden durch die Übertragung der erfindungsgemäßen Nuklein- Säuremoleküle und ihre Expression in Pflanzen gelöst. Durch die Bereitstellung der erfindungsgemäßen Nukleinsäuremoleküle besteht nun die Möglichkeit, pflanzliche Zellen mittels gentechnischer Methoden dahingehend zu verändern, daß sie im Vergleich zu Wildtypzellen eine neue oder veränderte Geranylgeranyl- Reduktase-Aktivität aufweisen und es als Folge dazu zu einer veränderten Tocopherolbiosyntheseleistung und zu einem veränderten Tocopherolgehalt kommt.
In einer bevorzugten Ausführungsform handelt es sich um Pflanzen bzw. deren
Zellen und Teile, in denen der Tocopherolgehalt aufgrund der Gegenwart und Expression der erfindungsgemäßen Nukleinsäuremoleküle gegenüber Wildtyppflanzen erhöht ist.
Die Erfindung betrifft aber auch solche Pflanzen, in denen die Übertragung der erfindungsgemäßen Nukleinsäuremoleküle zu einer Verringerung des Tocopherol- und/oder Chlorophyllgehalts führt. Eine reduzierte Tocopherol- und/oder Chlorophyllbiosyntheseleistung kann beispielsweise durch den Transfer von antisense-Konstrukten oder andere Suppressionsmechanismen, wie beispielsweise Cosuppression, erreicht werden.
Gegenstand der Erfindung sind weiterhin transgene Pflanzenzellen bzw. solche Pflanzenzellen umfassende Pflanzen und deren Teile und Produkte, in denen die neuen Nukleinsäuremolelüle integriert in das pflanzliche Genom vorliegen. Ebenfalls Gegenstand der Erfindung sind Pflanzen, in deren Zellen die erfindungsgemäße Nukleinsauresequenz in selbstreplizierender Form vorliegt, d.h. die Pflanzenzelle enthält die fremde DNA auf einem eigenständigen Nukleinsäure- molekül.
Bei den Pflanzen, die mit den erfindungsgemäßen Nukleinsäure-molekülen transformiert sind und in denen aufgrund der Einführung eines solchen Moleküls eine veränderte Menge an Tocopherol und/oder Chlorophyll synthetisiert wird, kann es sich im Prinzip um jede beliebige Pflanze handeln. Vorzugsweise ist es eine monokotyle oder dikotyle Nutzpflanze. Beispiele für monokotyle Pflanzen sind die Pflanzen, die zu den Gattungen Avena (Hafer), Triticum (Weizen), Seeale (Roggen), Hordeum (Gerste), Oryza (Reis), Panicum, Pennisetum, Setaria, Sorghum (Hirse), Zea (Mais) gehören. Bei den dicotylen Nutzpflanzen sind u.a. zu nennen Leguminosen, wie Hülsenfrüchte und insgesondere Alfalfa, Sojabohne, Raps, Tomate, Zuckerrübe, Kartoffel, Zierpflanzen, Bäume. Weitere Nutzpflanzen können beispielsweise Obst (insbesondere Äpfel, Birnen, Kirschen, Weintrauben, Citrus, Ananas und Bananen), Ölpalmen, Tee-, Kakao- und Kaffeesträucher, Tabak, Sisal, Baumwolle, Lein, Sonnenblume sowie Heilpflanzen und Weidegräser und Futterpflanzen sein. Besonders bevorzugt sind die Getreide, Weizen, Roggen, Hafer, Gerste, Reis, Mais und Hirse, Futtergetreide, Zuckerrübe, Raps, Soja,
Tomate, Kartoffel, Süßgräser, Futtergräser, und Klee. Es ergibt sich von selbst, daß die Erfindung insbesondere übliche Nahrungs- bzw. Futterpflanzen betrifft. Hier sind neben den bereits erwähnten Pflanzen zusätzlich Erdnuß, Linse, Ackerbohne, Runkelrübe, Buchweizen, Möhre, Sonnenblume, Topinambur, Rübsen, Weißer Senf, Kohlrübe und Stoppelrübe zu nennen.
Gegenstand der Erfindung sind ferner Vermehrungsmaterial von erfindungsgemäßen Pflanzen, beispielsweise Samen, Früchte, Stecklinge, Knollen, Wurzelstöcke etc., wobei dieses Vermehrungsmaterial gegebenenfalls oben beschriebene transgene Pflanzenzellen enthält, sowie Teile dieser Pflanzen wie
Protoplasten, Pflanzenzellen und Kalli.
Die Erfindung betrifft ebenfalls Pflanzenzellen, die aufgrund der Gegenwart und ggf. Expression der erfindungsgemäßen Nukleinsäuremoleküle einen im Vergleich zu Pflanzenzellen, die die Nukleinsäuremoleküle nicht enthalten, veränderten
Gehalt an Vitamin K, aufweisen. Das fettlösliche Vitamin K,, das insbesondere in Pflanzen enthalten ist, hat eine wichtige Funktion bei der Bildung von Gerinnungsfaktoren, Mangel an Vitamin K, führt zu einer Verringerung der Blutgerinnung, weshalb es auch als antihämorhagisches oder Koagulationsvitamin bezeichnet wird. Da die Expression der erfindungsgemäßen Nukleinsäuremoleküle in einer veränderten Geranylgeranyl-Reduktase- Aktivität und demzufolge veränderten PPP-Sytheseleistung resultiert und das als Vitamin K, bezeichnete Phyllochinon, wie die Tocopherole, eine Einheit Phytol umfaßt, sind auch solche Pflanzenzellen bzw. Pflanzen Gegenstand der Erfindung, die einen veränderte
Vitamin K, -Gehalt alleine oder in Kombination mit einem veränderten Tocopherolgehalt aufweisen.
In einer bevorzugten Ausführungsform handelt es sich um transgene Pflanzen- zellen bzw. Pflanzen und deren Teile und Produkte, die aufgrund der Gegenwart und ggf. Expression einer für eine Geranylgeranyl-Reduktase aus Pflanzen kodierenden DNA-Sequenz einen gegenüber nicht-transformierten Zellen veränderten Tocopherolgehalt aufweisen. Bevorzugt handelt es sich bei der in den Pflanzenzellen enthaltenen DNA-Sequenz um eine für Geranylgeranyl-Reduktase kodierende Sequenz, die aus Tabak stammt. Besonders bevorzugt handelt es sich um die in SEQ:ID NO. 1 dargestellte DNA-Sequenz (siehe auch Abb. 1). In einer besonders bevorzugten Ausführungsform kodieren die erfindungsgemäßen DNA- Sequenzen für ein Geranylgeranyl-Reduktase- Vorstufenenzym, das eine Transitsequenz für die Translokation in Piastiden umfaßt.
Die Erfindung betrifft des weiteren Pflanzen, in denen neben dem chl P-Gen zusätzlich ein Gen für Hydroxyphenylpyruvat-Dioxygenase (HPD) exprimiert wird. Das Enzym HPD katalysiert die Umsetzung von 4-Hydroxyphenylpyruvat in Homogentisat, das wie oben erwähnt neben dem Phytol den zweiten Baustein der Tocopherole darstellt. Das Enzym HPD sowie seine Stellung im pflanzlichen
Isoprenoid-Stoffwechsel sind wter alia in Norris et al. (1995) The Plant Cell 7, 2139-2149, beschrieben. Durch die gemeinsame Expression, vorzugsweise Überexpression, von Sequenzen, die für Geranylgeranyl-Reduktase und HPD kodieren, kann der Tocopherolgehalt in transgenen Pflanzen gegenüber solchen Pflanzen, die nur die erfindungsgemäßen, für CHL P kodierenden Sequenzen enthalten, zusätzlich gesteigert werden.
In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische und eukaryontische Zellen, die mit einem oben beschriebenen Nukleinsäuremolekül oder einem Vektor transformiert bzw. infiziert wurden, und Zellen, die von derartigen Wirtszellen abstammen und die beschriebenen Nukleinsäuremoleküle oder Vektoren enthalten. Die Wirtszellen können Bakterien, Algen, Hefe- und Pilzzellen sowie pflanzliche oder tierische Zellen sein. Gegenstand der Erfindung sind auch solche Wirtszellen, die neben den erfindungsgemäßen Nukleinsäuremolekülen ein oder mehrere auf gentechnolo- gischem oder natürlichem Weg übertragene Nukleinsäuremoleküle enthalten, die die genetische Information für an der Tocopherol-, Chlorophyll- und/oder Vitamin K, -Biosynthese beteiligte Enzyme tragen.
Der vorliegenden Erfindung liegt außerdem die Aufgabe zugrunde, Verfahren zur Herstellung von Pflanzenzellen und Pflanzen, die sich durch einen veränderten
Tocopherolgehalt auszeichnen, bereitzustellen.
Diese Aufgabe wird durch Verfahren gelöst, mit deren Hilfe die Erzeugung neuer Pflanzenzellen und Pflanzen, die aufgrund der Übertragung von für Geranyl- geranyl- Reduktase kodierenden Nukleinsäuremolekülen einen veränderten
Tocopherolgehalt aufweisen, möglich ist.
Des weiteren wird diese Aufgabe durch Verfahren gelöst, mit deren Hilfe die Erzeugung neuer Pflanzenzellen und Pflanzen möglich ist, die aufgrund der " gemeinsamen Übertragung von für Geranylgeranyl-Reduktase kodierenden Nukleinsäurenmolekülen und für HPD kodierenden Nukleinsäuremolekülen oder der Übertragung von für Geranylgeranyl-Reduktase und für HPD kodierenden Nukleinsäuremolekülen einen gegenüber Wildtyppflanzen veränderten Tocopherolgehalt aufweisen.
Zur Erzeugung solcher neuer Pflanzenzellen und Pflanzen bieten sich verschiedene Methoden an. Zum einen können Pflanzen bzw. Pflanzenzellen mit Hilfe herkömmlicher gentechnologischer Transformationsmethoden derart verändert werden, daß die neuen Nukleinsäuremoleküle in das pflanzliche Genom integriert werden, d.h. daß stabile Transformanten erzeugt werden. Zum anderen kann ein erfindungsgemäßes Nukleinsäuremolekül, dessen Anwesenheit und ggf. Expression in der Pflanzenzelle eine veränderte Tocopherolbiosyntheseleistung bewirkt, in der Pflanzenzelle bzw. der Pflanze als selbstreplizierendes System enthalten sein. So können die erfindungsgemäßen Nukleinsäuremoleküle z.B. in einem Virus enthalten sein, mit dem die Pflanze bzw. Pflanzenzelle in Kontakt kommt.
Erfindungsgemäß werden Pflanzenzellen, die aufgrund der Expression einer erfindungsgemäßen Nukleinsauresequenz einen veränderten Tocopherolgehalt aufweisen, durch ein Verfahren hergestellt, das folgende Schritte umfaßt:
a) Herstellung einer Expressionskassette, die folgende DNA-Sequenzen umfaßt: einen Promotor, der die Transkription in pflanzlichen Zellen gewährleistet; mindestens eine erfindungsgemäße Nukleinsauresequenz, die für ein Protein oder ein Fragment mit der enzymatischen Aktivität einer Geranylgeranyl-Reduktase kodiert, wobei die Nukleinsauresequenz in Sense-Orientierung an das 3 '-Ende des Promotors gekoppelt ist; und gegebenenfalls ein Terminationssignal für die Termination der
Transkription und die Addition eines poly-A-Schwanzes an das entsprechende
Transkript, das an das 3 '-Ende der kodierenden
Region gekoppelt ist.
b) Transformation pflanzlicher Zellen mit der in Schritt a) hergestellten Expressionskassette.
c) Regeneration transgener Pflanzen und gegebenenfalls die Vermehrung der Pflanzen.
Alternativ kann eine oder mehrere erfindungsgemäße Nukleinsäuresequenzen als selbstreplizierendes System in die Pflanzenzelle bzw. Pflanze eingebracht werden.
Als weitere Alternative kann Schritt a) des obigen Verfahrens dahingehend abgewandelt werden, daß die mindestens eine erfindungsgemäße Nukleinsauresequenz, die für ein Protein oder ein Fragment mit der enzymatischen Aktivität einer Geranylgeranyl-Reduktase kodiert, in Antisense-Orientierung an das 3 '-Ende des
Promotors gekoppelt ist.
Eine weitere Aufgabe der Erfindung besteht darin, Verwendungen der erfindungsgemäßen Nukleinsäuresequenzen sowie der sie enthaltenen Nukleinsäuremoleküle aufzuzeigen.
Diese Aufgabe wird durch die erfindungsgemäßen Verwendungen der neuen DNA-Moleküle zur Erzeugung von Pflanzenzellen und Pflanzen, die sich durch einen im Vergleich zu Wildtypzellen bzw. -pflanzen veränderten, vorzugsweise erhöhten, Tocopherolgehalt auszeichnen, gelöst.
Des weiteren betrifft die Erfindung die Verwendung der erfindungsgemäßen Nukleinsäuresequenzen zur Erzeugung von Pflanzen, die einen veränderten
Chlorophyllgehalt aufweisen.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Nukleinsäuresequenzen zur Erzeugung von Pflanzen, die sich durch einen veränderten, vorzugsweise erhöhten, Gehalt an Vitamin K, auszeichnen.
Eine weitere Aufgabe der Erfindung besteht darin, die Möglichkeiten der Verwendung der erfindungsgemäßen Pflanzen bzw. deren Zellen, Teile und Produkte aufzuzeichnen.
Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Pflanzen als Futter- und/oder Nahrungspflanze. In Abhängigkeit von der erzielten Erhöhung des Gehalts an Vitamin E und/oder Vitamin K, in der transgenen Nutzpflanze bzw. deren Produkte und Teile kann eine sonst allgemein übliche und oft auch erforderliche Zumischung der entsprechenden Vitamine, insbesondere von Vitamin E, mengenmäßig beschränkt bzw. vollkommen überflüssig werden. Unabhängig davon betrifft die Erfindung allgemein die Erhöhung des Nährwerts von Nutzpflanzen durch eine Steigerung des Gehalts an Tocopherolen und/oder Phyllochinon.
Des weiteren betrifft die Erfindung die Verwendung der erfindungsgemäßen Pflanzenzellen, Pflanzen, deren Teile und Produkte, als Produktionsstätten für Vitamin E und/oder Vitamin K,. Neben ihrer Anwendung aufgrund ihres Vitamin- Charakters, beispielsweise in diätetischen und pharmazeutischen Produkten, Kosmetika, Hautpflegeprodukten, allgemein zur Vitamin E-Supplementierung, etc.. finden Tocopherole auch als Antioxidantien in chemischen Produkten wie beispielsweise Fetten und Ölen Anwendung. Die erfindungsgemäßen Pflanzen stellen somit eine wichtige Quelle für die Gewinnung von Tocopherolen und/oder Vitamin K, für ein breites Spektrum gewerblicher Zwecke dar.
Gegenstand der Erfindung ist ebenfalls die Verwendung der erfindungsgemäßen Nukleinsäuresequenzen in Kombination mit samenspezifischen Promotoren zur Erzeugung von Pflanzen, bei denen sich vor allem das Samengewebe durch einen veränderten, vorzugsweise erhöhten, Tocopherolgehalt auszeichnet. In einer bevorzugten Ausführungsform der Erfindung handelt es sich um die Verwendung der erfindungsgemäßen Nukleinsäuresequenzen in Kombination mit dem USP- (Bäumlein et al. (1991) Mol. Gen. Genet. 225, 459-467) oder Hordein-Promotor (Brandt et al. (1985) Carlsberg Res. Commun. 50, 333-345).
Diese genannten Promotoren, insbesondere die samenspezifischen Promotoren, eignen sich auch besonders für die gezielte Reduktion des Tocopherol- bzw. Chlorophyllgehalts in transgenen Samen unter Einsatz der erfindungsgemäßen DNA- Sequenzen im Zusammenhang mit der Antisense-Technik.
Weiter betrifft die Erfindung die Verwendung eines Geranylgeranyl-Reduktase- Gens zur Erzeugung eines veränderten Tocopherolgehalts in Pflanzen.
Weiter betrifft die Erfindung die Verwendung eines Proteins mit der enzymatischen Aktivität einer Geranylgeranyl-Reduktase, um in Pflanzen einen veränderten Tocopherolgehalt zu erzielen.
Des weiteren betrifft die Erfindung die Verwendung der erfindungsgemäßen Nukleinsäuremoleküle, der erfindungsgemäßen Proteine mit Geranylgeranyl- Reduktase-Aktivität und/oder der erfindungsgemäßen transgenen Pflanzen bzw. Wirtszellen mit neuer bzw. veränderter Geranylgeranyl-Reduktase-Aktivität zur Identifizierung neuer herbizider Wirkstoffe für den Pflanzenschutz. Dank der Schlüsselstellung der Geranylgeranyl-Reduktase innerhalb der Chlorophyll- und Tocopherolbiosynthese stellen die erfindungsgemäßen DNA-Sequenzen und die durch sie kodierten Proteine ein äußerst wertvolles Target für die Herbizidforschung dar. So können beispielsweise die erfindungsgemäßen Proteine mit enzymatischer Geranylgeranyl-Reduktase-Aktivität für die Röntgenstrukturanalyse, NMR- Spektroskopie, molecular modeling, und drug design eingesetzt werden, um auf der Basis der aus diesen Verfahren gewonnenen Erkenntnisse Inhibitoren und/oder Effektoren der Geranylgeranyl-Reduktase und somit potentielle Herbizide zu identifizieren oder synthetisieren.
Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Nuklein- säuresequenzen zur Herstellung herbizidtoleranter Pflanzen. So können für
Geranylgeranyl-Reduktase kodierende Sequenzen mittels Standard-Methoden verändert oder um neue Sequenzelemente erweitert werden und anschließend auf Pflanzenzellen übertragen werden. Die Einbringung von aus den erfindungsgemäßen Sequenzen abgeleiteten Sequenzen kann z.B. dazu genutzt werden, die Eigenschaften der Pflanzen dahingehend zu verändern, daß in der transgenen
Pflanze mehr oder weniger funktioneil aktive Geranylgeranyl-Reduktase oder eine Variante der Geranylgeranyl-Reduktase mit veränderten Eigenschaften gebildet wird oder daß das Expressionsniveau des in der transgenen Pflanze vorhandenen chl P-Gens vermindert wird. So kann mittels einer Erhöhung der CHL P-Aktivität eine Erhöhung der Toleranz gegenüber Herbiziden, welche die Chlorophyllbiosynthese inhibieren, erreicht werden. Ebenso kann z.B. die Expression veränderter Geranylgeranyl-Reduktase-Gene in transgenen Pflanzenzellen mit einer Erhöhung der Herbizidtoleranz verbunden sein. Des weiteren betrifft die Erfindung die Verwendung der erfindungsgemäßen Nukleinsäuresequenzen oder eines durch sie kodierten Proteins zur Herstellung von Antikörpern.
Die vorliegende Erfindung umfaßt somit jede mögliche Form des Einsatzes der erfindungsgemäßen Nukleinsäuremoleküle, deren Gegenwart und ggf. Expression in Pflanzen eine Veränderung des Tocopherolgehalts und/oder Chlorophyllgehalts bewirkt, sowie des Einsatzes der erfindungsgemäßen Proteine oder Fragmente davon, deren enzymatische Aktivität eine solche Veränderung herbeiführt.
Für den genannten Promotor kommt im Prinzip jeder in den für die Transformation gewählten Pflanzen funktionale Promotor in Betracht, der die Bedingung erfüllt, daß die von ihm regulierte Expression zu einer veränderten Tocopherolsyntheseleistung führt. Im Hinblick auf die Verwendung der transgenen Pflanzen als Nahrungs- bzw. Futterpflanzen erscheinen hierfür besonders solche
Promotoren sinnvoll, die eine samenspezifische Expression gewährleisten. Beispiele für solche Promotoren sind der USP-Promotor, Hordein-Promotor und Napin-Promotor.
Falls solche Promotoren nicht bekannt sind oder nicht zur Verfügung stehen, ist auf jeden Fall das Konzept zur Isolierung solcher Promotoren dem Fachmann bekannt. Dabei wird in einem ersten Schritt aus Samengewebe die poly(A)+ RNA isoliert und eine cDNA-Bank angelegt. In einem zweiten Schritt werden mit Hilfe von cDNA-Klonen, die auf poly(A)+ RNA-Molekülen aus einem nicht aus Samen stammenden Gewebe basieren, aus der ersten Bank mittels Hybridisierung diejenigen Klone identifiziert, deren korrespondierende poly(A)+ RNA-Moleküle lediglich im Samengewebe exprimiert werden. Anschließend werden mit Hilfe dieser so identifizierten cDNA's Promotoren isoliert, die sodann für die Expression der hier beschriebenen kodierenden Nukleinsäuresequenzen verwendet werden können. Analog können andere gewebespezifische oder entwicklungsspezifische oder durch abiotische Stimuli induzierbare Promotoren isoliert und erfindungsgemäß eingesetzt werden.
Alternativ kann erstrebenswert sein, daß die Pflanze in vielen Bereichen aufgrund der Expression der erfindungsgemäßen Nukleinsäuremoleküle einen veränderten, vorzugsweise erhöhten Tocopherolgehalt aufweist. In diesem Fall bietet sich die Verwendung eines konstitutiven Promotors, beispielsweise des 35S RNA Promotors aus Cauliflower Mosaic Virus, an.
Gegenstand der Erfindung sind ebenfalls Nukleinsäuremoleküle, die für Proteine mit der biologischen Aktivität einer Geranylgeranyl-Reduktase kodieren oder biologisch aktive Fragmente davon und die mit einem der oben beschriebenen Nukleinsäuremoleküle hybridisieren. Der Begriff biologisch aktive Fragmente bezieht sich auf Fragmente, die eine Veränderung des Tocopherolgehalts bewirken können. Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, beschrieben sind.
Nukleinsäuremoleküle, die mit den erfindungsgemäßen Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken isoliert werden.
Die Identifizierung und Isolierung derartiger Nukleinsäuremoleküle kann dabei unter Verwendung der erfindungsgemäßen Nukleinsäuremoleküle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al., supra). Zur Identifizierung und Isolierung derartiger Nukleinsäuremoleküle können auch von den erfindungsgemäßen DNA-Sequenzen abgeleitete Sequenzfolgen, beispielsweise degenerierte Oligonukleotidprimer, verwendet werden.
Somit betrifft die Erfindung ebenfalls die Verwendung einer erfindungsgemäßen DNA-Sequenz oder Teile davon zur Identifizierung und Isolierung homologer
Sequenzen aus Pflanzen oder anderen Organismen.
Als Hybridisierungssonde können z.B. Nukleinsäuremoleküle verwendet werden, die exakt oder im wesentlichen die oben aufgeführten Nukleotidsequenzen oder Teile dieser Sequenzen aufweisen. Bei den als Hybridisierungssonde verwendeten
Fragmenten kann es sich auch um synthetische Fragmente handeln, die mit Hilfe der gängigen Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen Nukleinsäuremoleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen Nukleinsäure- Sequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der
Eigenschaften der von dieser Sequenz kodierten Proteine erforderlich. Hierzu stehen dem Fachmann eine Reihe von molekularbiologischen, biochemischen und biotechnologischen Standardverfahren zur Verfügung.
Die mit den erfindungsgemäßen Nukleinsäuremolekülen hybridisierenden
Moleküle umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Moleküle, die für eine Geranylgeranyl-Reduktase kodieren oder ein biologisch, d.h. enzymatisch aktives Fragment davon. Unter Fragmenten werden dabei Teile der Nukleinsäuremoleküle verstanden, die lang genug sind, um ein Polypeptid oder Protein mit der enzymatischen Aktivität einer Geranylgeranyl-
Reduktase oder einer vergleichbaren enzymatischen Aktivität, die einen veränderten Tocopherolgehalt bedingt, zu kodieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen Nukleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40%, insbesondere eine Identität von mindestens 60%, vorzugsweise über 80% und besonders bevorzugt über 90%. Die Abweichungen zu den oben beschriebenen Nukleinsäuremolekülen können dabei durch Deletion. Addition,
Substitution, Insertion oder Rekombination entstanden sein.
Homologie bedeutet ferner, daß funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden Nukleinsäuremolekülen oder den durch sie kodierten Proteinen besteht. Bei den Nukleinsäuremolekülen, die homolog zu den oben beschriebenen Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Organismen, oder um Mutationen, wobei diese Modifikationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten handeln.
Üblicherweise weisen die von den verschiedenen Varianten und Derivaten der erfindungsgemäßen Nukleinsäuremoleküle kodierten Proteine bestimmte gemeinsame Charakteristika auf. Dazu können z.B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören. Weitere gemeinsame
Charakteristika können physikalische Eigenschaften wie z. B. das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität, pH-Optimum, Temperatur- Optimum etc. darstellen. Des weiteren können natürlich die Produkte der von den Proteinen katalysierten Reaktionen gemeinsame oder ähnliche Merkmale aufweisen.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp- Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E. co/ -Zellen verwendet. Transformierte E. coli- Zellen werden in einem geeigneten Medium gezüchtet und anschließend geerntet und lysiert. Das Plasmid wird wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden eingesetzt. Nach jeder Manipulation können die Plasmid- DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden kloniert werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielz.ahl bekannter Techniken zur Verfügung, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agro- bacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, den direkten Gentransfer isolierter DNA in Protoplasten, die Mikroinjektion und Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten. J -
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide wie z.B. pUC- Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist in der Regel die Anwesenheit eines selektierbaren
Markergens notwendig. Dem Fachmann sind die gängigen Selektionsmarker bekannt und es stellt für ihn kein Problem dar, einen geeigneten Marker auszuwählen.
Je nach Einführungsmethode kann neben dem gewünschten Gen bzw. Gene die
Anwesenheit weiterer DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- und Ri-Plasmid enthaltenen T-DNA als Flankenbereich mit den ein- zuführenden Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir- Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA- Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. (1978) Molecular and General Genetics 163, 181- 187). Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir- Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120 515; Hoekema in: The Binary Plant Vector System, Offsetdrokkerij Kanters B.V., Alblasserdam (1985) Chapter V; Fraley et al. (1993) Crit. Rev. Plant. Sei., 4, 1-46 und An et al. (1985) EMBO J.
4, 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pfl.anzenmaterial (z.B. Blätter,
Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensionskultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten können, wieder ganze Pflanzen regeneriert werden. Die Regeneration der Pflanzen erfolgt nach üblichen Regenerationsmethoden unter Verwendung bekannter Nährmedien.
Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistischen Verfahrens oder durch Protoplasten-Transformation sind bekannt (vgl. z.B. Wilmitzer L. (1993) Transgenic Plants, in: Biotechnology, A Multi-Volume Comprehensive Treatise (H . Rehm, G. Reed, A. Pühler, P.
Stadler, eds.) Vol. 2, 627-659, V.C.H. Weinheim - New York - Basel - Cambridge). Während die Transformation dikotyler Pflanzen über Ti-Plasmid-Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels ,4grobαcter w/n-basierender Vektoren sehr wohl zugänglich sind (Chan et al. (1993) Plant Mol. Biol. 22, 491-506; Hiei et al. (1994) Plant J. 6, 271-282; Deng et al. (1990) Science in China 33, 28-34; Wilmink et al. (1992) Plant Cell Reports 11, 76-80; May et al. (1995) Bio/Technology 13, 486-492; Conner und Domiss (1992) Int. J. Plant Sei. 153, 550-555; Ritchie et al. (1993) Transgenic Res. 2, 252-265).
Alternative Systeme zur Transformation von monokotylen Pflanzen sind die Transformationen mittels des biolistischen Ansatzes (Wan and Lemaux (1994) Plant Physiol. 104, 37-48; Vasil et al. (1993) Bio/Technology 11, 1553-1558; Ritala et al. (1994) Plant Mol. Biol. 24, 317-325; Spencer et al. (1990) Theor. Appl. Genet. 79, 625-631; Altpeter et al. (1996) Plant Cell Reports 16, 12-17), die
Protoplasten-Transformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern.
Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z.B. WO 95/06128, EP 0 513 849; EP 0 465 875; Fromm et al.
(1990) Biotechnology 8, 833-844; Gordon-Kamm et al. (1990) Plant Cell 2, 603- 618; Koziel et al. (1993) Biotechnology 11, 194-200). In EP 292 435 wird ein Verfahren beschrieben, mit Hilfe dessen, ausgehend von einem schleimlosen, weichen, granulösen Mais-Kallus, fertile Pflanzen erhalten werden können. Shillito et al. ((1989) Bio/Technology 7, 581) haben in diesem Zusammenhang beobachtet, daß es ferner für die Regenerierbarkeit zu fertilen Pflanzen notwendig ist, von Kallus- Suspensionskulturen auszugehen, aus denen eine sich teilende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivierungszeit von sieben bis acht Monaten erhalten Shillito et al. Pflanzen mit lebensfähigen Nachkommen.
Prioli und Söndahl ((1989) Bio/Technology 7, 589) beschreiben die Regeneration und die Gewinnung fertiler Pflanzen aus Mais-Protoplasten, der Cateto-Mais- Inzuchtlinie Cat 100-1. Die Autoren vermuten, daß die Protoplasten-Regeneration zu fertilen Pflanzen von einer Anzahl verschiedener Faktoren, wie z.B. vom Genotyp, vom physiologischen Zustand der Donor-Zellen und von den Kulti- vierungsbedingungen, abhängig ist.
Auch die erfolgreiche Transformation anderer Getreidearten wurde bereits beschrieben, z.B. für Gerste (Wan und Lemaux, supra; Ritala et al., supra) und für Weizen (Nehra et al. (1994) Plant J. 5, 285-297; Altpeter et al, supra).
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G418, Bleomycin, Hygromycin, Methotrexat,
Glyphosat, Streptomycin, Sulfonyl-Harnstoff, Gentamycin oder Phosphinotricin u.a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise
(siehe auch McCormick et al. (1986) Plant Cell Reports 5, 81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften. Von den Pflanzenzellen können Samen gewonnen werden.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Ebenso können nach üblichen Methoden transgene Linien bestimmt werden, die für die neuen Nukleinsäuremoleküle homozygot sind und ihr phänotypisches Verhalten hinsichtlich eines veränderten Tocopherolgehalts untersucht und mit dem von hemizygoten Linien verglichen werden.
Die Expression der erfindungsmäßen Proteine mit Geranylgeranyl-Reduktase-
Aktivität kann mit Hilfe herkömmlicher molekularbiologischer und biochemischer Methoden erfolgen. Dem Fachmann sind diese Techniken bekannt und er ist problemlos in der Lage, eine geeignete Nachweismethode zu wählen, beispielsweise eine Northern Blot-Analyse zum Nachweis Geranylgeranyl-Reduktase- spezifischer RNA bzw. zur Bestimmung der Höhe der Akkumulation von Geranyl- geranyl-Reduktase-spezifischer RNA, eine Southern-Blot Analyse zur Identifizierung für Geranylgeranyl-Reduktase kodierender DNA-Sequenzen oder eine Western Blot-Analyse zum Nachweis des durch die erfindungsgemäßen DNA- Sequenzen kodierten Proteins, vorzugsweise CHL P. Der Nachweis der enzymati- sehen Aktivität der Geranylgeranyl-Reduktase kann beispielsweise mit dem von
Soll und Schultz (1981) in Biochem. Biophys. Res. Commun. 99, 907-912 beschriebenen Enzymassay über die Bildung von Chlorophyll-Phytyl erfolgen. Die Erfindung basiert auf der erfolgreichen Isolierung eines für eine Geranylgeranyl-Reduktase kodierenden cDNA-Klons aus einer cDNA-Library aus Nicotiana tabacum cv. Petit Havana SRI. Die Sequenz dieses cDNA-Klons, die einen vollständigen offenen Leserahmen umfaßt, ist in SEQ:ID NO. 1 dargestellt. Unter Verwendung der Sequenz gemäß SEQ:ID No. 1 gelang die Erzeugung transgener Pflanzen, die einen gegenüber Wildtyppflanzen veränderten Tocopherolgehalt aufweisen.
Der die DNA-Sequenz gemäß SEQ:ID NO. 1 enthaltende cDNA-Klon wurde in Escherichia coli transformiert und der entsprechende E. coli-Stamm am
16.10.1997 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH (DSMZ), Mascheroder Weg lb, D-38124 Braunschweig, unter der Hinterlegungsnummer DSM 11816 gemäß dem Budapester Vertrag hinterlegt.
Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung.
BEISPIELE
Beispiel 1 :
Klonierung einer Tabak-cDNA, die eine Geranylgeranyl-Reduktase (CHL P) kodiert
Zur Identifizierung der Geranylgeranyl-Reduktase-cDNA aus Tabak wurde eine Lambda ZAP II cDNA-Bibliothek (Nicotiana tabacum SRI, Stratagene, USA) unter Verwendung eines für den Locus 4D9T7P kodierenden EST aus Arabidopsis thaliana nach Vorschrift gescreent. Die verwendete EST-Sequenz weist eine Ähnlichkeit zu den bekannten bch P/chl P-Sequenzen aus Rhodobacter capsulatus (Young et al. (1989) Mol. Gen. Genet. 218, 1-12; Bollivar et al. (1994) J. Mol. Biol. 237, 622-640; Bollivar et al. (1994) Biochemistry 33, 12763-12768) und Synechocystis PCC6803 (Addlesee et al. (1996) FEBS Lett. 389, 126-130) auf.
Die verwendete Hybridisierungssonde umfaßt den Bereich der in 4D9T7P (Accession No. T04791) dargestellten EST-Sequenz von Base 1 bis Base 364. Die Sonde wurde als Notl/Sall-Restriktionsfragment aus der PRL2-Library von A. thaliana (Vektor: λZipLox) (Newman et al. (1994) Plant Physiol. 106:1241-1255) isoliert und mit [α-32P]dCTP mittels Nicktranslation (Life Technologies, Eggenstein) radioaktiv markiert.
Die Hybridisierung wurde nach folgendem Protokoll durchgeführt.
2 h Vorhybridisierung bei 55 °C mit Hybridisierungslösung folgender
Zusammensetzung: 5 x SSC, 0,1 % SDS, 5 x Denhardtreagenz, 100 μg/ml denaturierte Salmonsperm-DNA; - 12 h Haupthybridisierung bei 55 °C mit frischer Hybridisierungslösung der oben genannten Zusammensetzung plus radioaktiv markierte Sonde;
Waschen: 2 x 10 min. bei 55 °C mit 2 x SSC und 0,1 % SDS, und
1 x 5 min. bei 55 °C mit 1 x SSC und 0,1 % SDS.
Die nach cDNA-Bank-Screening isolierte Plasmid-DNA wurde sequenziert. Die identifizierte und in SEQ:ID NO. 1 dargestellte chl P-cDNA-Sequenz umfaßt 1510 Nukleotide (ohne polyA-Schwanz), von denen die Nukleotide 1 bis 1392 für ein 52 kDa-Protein von 464 Aminosäuren (einschließlich des Start-Methionins, und ohne das Stopkodon (Nukleotide 1393 bis 1395) gerechnet) kodieren. Die abge- leitete Aminosäuresequenz des CHL P ist in SEQ:ID NO. 2 gezeigt. Die in
SEQ:ID NO. 1 gezeigte Nukleotidsequenz umfaßt einen 3' untranslatierten Bereich von Nukleotid 1396 bis 1510. Zur DNA-RNA-Isolierung, Sequenzanalye, Restriktion, Klonierung, Gelelektrophorese, radioaktive Markierung, Southern, Normen und Western Blot Analysen, Hybridisierung und dergleichen wurden gängige Methoden angewandt, wie sie in einschlägigen Laborhandbüchern, wie Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, beschrieben sind.
Beispiel 2: Transformation von Tabakpflanzen und Regeneration intakter Pflanzen
Für die Herstellung tr.ansgener Pfl.anzen, die CHL P überexprimieren und daher einen gegenüber nicht-transformierten Pflanzen erhöhten Tocopherolgehalt aufweisen, wurde die DNA-Sequenz gemäß SEQ:ID NO. 1 mittels der Restrikti- onsenzyme BamHI und Sall in der multiplen Klonierungsschnittstelle des pBluescript-Vektors aus dem Vektor herausgeschnitten und in Sense-Orientierung in den binären Vektor BinAR-TX (Höfgen and Willmitzer (1990) Plant Science 66, 221-230), einem pBIB-Abkömmling (Becker (1990) Nucleic Acid Res. 18, 203), der mit den selben Restriktionsendonukleasen verdaut wurde, hinter den CaMV 35S-Promotor hineinligiert. Zur Verdeutlichung ist eine Restriktionskarte des Vektors BinAR-TX als Abbildung 3 beigefügt.
Anstelle des genannten binären Vektors BinAR-TX kann jeder beliebige für die Pflanzentransformation geeignete Vektor für die Herstellung eines chimären Gens, bestehend aus einer Fusion des CaMV 35S-Promotors oder eines anderen
Promotors, der die Transkription und Translation in Pflanzenzellen gewährleistet, und DNA-Sequenzen, die für CHL P kodieren, verwendet werden. Der rekombinante Vektor pCHLPbin wurde sodann in Agrobacterium tumefaciens (Stamm GV2260; Horsch et al. (1985) Science 227, 1229-1231) transformiert und zur Transformation von Tabakpflanzen (SNN) mittels der Blattscheiben-Transformationstechnik (Horsch et al. , supra) eingesetzt.
Hierzu wurde eine Übernachtkultur des entsprechenden Agrobacterium tumefaciens-Klons für 10 Minuten bei 5000 rpm abzentrifugiert, und die Bakterien wurden in 2YT-Medium resuspendiert. Junge Tabakblätter einer Sterilkultur (Nicotiana tabacum cv. Samsun NN) wurden in kleine, ca. 1 cm2 große Stücke zerschnitten und kurzzeitig in die Bakteriensuspension gelegt. Die Blattstücke wurden anschließend auf MS-Medium (Murashige und Skoog (1962) Physiol. Plant. 15, 473; 0,7 % Agar) gelegt und zwei Tage im Dunkeln inkubiert. Anschließend wurden die Blattstücke zur Sproßinduktion auf MS-Medium (0,7 % Agar) mit 1 ,6 % Glukose, 1 mg/1 6-Benzylaminopurin, 0,2 mg/1 Naphthyl- essigsaure, 500 mg/1 Claforan (Cefotaxim, Hoechst, Frankfut) und 50 mg/1
Kanamycin gelegt. Das Medium wurde alle sieben bis zehn Tage gewechselt. Wenn sich Sprosse entwickelt hatten, wurden die Blattstücke in Glasgefäße, die dasselbe Medium enthielten, überführt. Entstehende Sprosse wurden abgeschnitten und auf MS-Medium mit 2 % Saccharose und 250 mg/1 Claforan gegeben und zu ganzen Pflanzen regeneriert.
Beispiel 3:
Analyse transgener Tabakpflanzen, die den rekombinanten Vektor pCHLPbin enthalten
Transgene Tabakpflanzen wurden wie oben beschrieben transformiert, selektioniert und regeneriert. Nach Bewurzelung in Sterilkultur wurden ca. 100 unabhängige Transformanten im Gewächshaus in Erde überführt. Die Tabakpflanzen wurden im Gewächshaus bei 60 % Luftfeuchtigkeit und 20-25 °C für 16 Stunden im Licht und 18-20 °C für 8 Stunden in Dunkelheit gehalten.
Die Transformanten mit normalen oder erhöhten Tocopherol- bzw. Chlorophyll- gehalten zeigten weder hinsichtlich ihres Phänotyps ein verändertes Aussehen noch eine im Vergleich zu Kontrollpflanzen veränderte Wachstumsrate.
Einige der Primärtransformanten zeigten einen gegenüber Wildtyppflanzen bis zu 4- bis όfach-gesteigerten Tocopherolgehalt. Diese Steigerung des Tocopherol- gehalts konnte in Nachkommen der TI- und T2-Generation und in homozygoten
Tochterpflanzen, die durch übliche Selbstbestäubung und anschließende Bestimmung des Aufspaltungsmusters der Samen auf Kanamycin-haltigem Medium gewonnen wurden, zusätzlich erhöht werden.
Des weiteren konnte beobachtet werden, daß die Tocopherolgehalte in transgenen
Pflanzen unter Streßbedingungen, wie z.B. Anzucht unter tiefen und erhöhten Temperaturen bzw. Starklicht, und in seneszenten Blättern gegenüber Kontrollpflanzen zusätzlich erhöht waren.
Die Bestimmung des Tocopherolgehalts erfolgte nach folgendem Protokoll:
Blattscheiben wurden in flüssigem Stickstoff homogenisiert und dreimal in Methanol extrahiert. Die Extrakte wurden gesammelt und auf einer LiCrospher 100 HPLC RP-18-Säule (Merck, Darmstadt, Deutschland) bei einem Fluß von 1 ml/min mit folgendem Gradienten eluiert: 94 % Laufmittel B (100 % Methanol) / 6 % Laufmittel A (30 % Methanol, 10 % 0,1 M Ammoniumacetat, pH 5,1) für 7 min., für weitere 17 min. 99 % Laufmittel B / 1 % Laufmittel A, dann weitere 26 min. 94 % Laufmittel B / 6 % Laufmittel A. Alternativ wurden die gesammelten Extrakte mittels HPLC in einem isokratischen Gradienten analysiert (Gradient besteht zu 2 % aus Lösung A [10 % Methanol und 10 % Essigsäure] und zu 98 % aus Methanol (Lösung B); Flußrate 1 ml/min.). Es wurde eine Waters LC-Modul- Anlage mit Shimadzu RF 551 Fluoreszenzdetektor (295 nmex, 325 nmem) verwendet.
Das Ergebnis eines Tocopherolassays ist in Abbildung 4 in Form eines Balkendiagramms dargestellt. Der Vergleich der Blätter 6, 9, 12 (gezählt von der Pflanzenspitze) von den Transformanten 28 und 30 mit den entsprechenden Blättern der Kontrollpflanze (SNN) belegt einen bis zu 6-fach gesteigerten Gehalt an Tocopherol in den transgenen Linien.
Unabhängig von ihrer Fähigkeit, auf Kanamycin-haltigem Medium zu wachsen, wurden die transgenen Tabakpflanzen auch im Southern Blot analysiert. Hierbei ergaben sich nach Hybridisierung mit einem markierten cDNA-Fragment für CHL
P zusätzliche radioaktiv-markierte Banden der mit Restriktionsenzymen verdauten genomischen DNA der Transform.anten im Vergleich zu Kontrollpflanzen
Eine Northern Blot-Analyse ergab eine gegenüber den CHL P-RNA-Gehalten der Kontrollpflanzen erhöhte Menge an spezifischer RNA in den Transformanten.
Eine erhöhte Geranylgeranyl-Reduktase-Expression in den transgenen Pflanzen konnte auch im Western Blot nachgewiesen werden. Die Transformanten zeigten gegenüber Kontrollpflanzen eine erhöhte Menge an CHL P-Protein.
Zusätzlich konnte in Plastiden-Importexperimenten (durchgeführt nach Grimm et al. (1989) Plant Mol. Biol. 13, 583-593) bestätigt werden, daß das durch die Sequenz gemäß SEQ:ID NO. 1 kodierte CHL P-Vorstufenprotein nach in vitro- Transkription und -Translation in die Piastiden importiert wurde. Beispiel 4:
Herstellung von CHL P- Antisense-Konstrukten und Übertragung auf Tabak
Während die in den Beispielen 2 und 3 erzeugten und analysierten transgenen Pflanzen einen aufgrund der Überexpression der erfindungsgemäßen DNA- Sequenzen erhöhten Tocopherolgehalt aufwiesen, wurde für die Herstellung von transgenen Tabakpflanzen, die eine reduzierte Aktivität von CHL P aufweisen, folgendes Antisense-Konstrukt erzeugt und auf Tabak übertragen.
Die cDNA-Sequenz gemäß SEQ:ID NO. 1 wurde mittels der Restriktionsenzyme Kpnl und Xbal in der multiplen Klonierungsschnittstelle des pBluescript-Vektors aus dem Vektor herausgeschnitten und in Antisense-Orientierung in den binären Vektor BinAR-TX (siehe Beispiel 2), der mit den selben Restriktionsenzymen ver- daut wurde, mit dem 35S-Promotor von Cauliflower Mosaic Virus fusioniert. Der hieraus resultierende rekombinante Vektor pCHLPASbin wurde wie in Beispiel 2 beschrieben mittels Agrobacterium tumefaciens- vermittelter Leaf Disc-Trans- formation auf Tabak übertragen. Anschließend wurden transgene Pflanzen regeneriert. Ungefähr 100 unabhängige transgene Linien wurden regeneriert und die Insertion von Kopien des Transgens mittels üblicher Verfahren (z.B. Southern
Blot-Hybridisierung) bestätigt.
Die Transformanten zeigten einen im Vergleich zu Kontrollpflanzen verminderten Wuchs, einen ausgebleichten Phänotyp, reduzierte RNA- und Proteingehalte für CHL P, einen hohen Gehalt an Geranylgeranyl-Chlorophyll (bis zu 50% des
Gesamt-Chlorophyllgehalts im Vergleich zu 100% Phytyl-Chlorophyll der Wildtyppflanzen) sowie einen verminderten Chlorophyll- und Tocopherolgehalt. Beispiel 5:
Überexpression aktiver Geranylgeranyl-Reduktase in Escherichia coli
Für die Herstellung von Expressionsklonen, die das rekombinante CHL P in E. coli überexprimieren, wurde der offene Leserahmen für ein vermutlich reifes
(prozessiertes) Protein mittels der Oligonukleotid-Primer
CSYN 1 5'-cgc cat ggg ccg caa tct tcg tgt tgc ggt-3' und
CSYN 2 5'-gca gat ctg tcc att tcc ctt ctt agt gca-3'
von der DNA-Sequenz gemäß SEQ:ID No. 1 mittels PCR amplifiziert (1 min. 94
°C; 2 min. 60 °C; 3 min. 72 °C für 25 Zyklen). Das amplifizierte PCR-Fragment wurde aufgereinigt und mit den Restriktionsenzymen Ncol und Bglll geschnitten und in den mit den selben Enzymen verdauten Expressionsvektor pQE60 (Qiagen, Hilden) hineinligiert. Hinter dem Initiationskodon ATG (Bestandteil der Erkennungssequenz für Ncol) folgte die kodierende Chl P-Sequenz, beginnend mit dem Nukleotid Nr. 148 des offenen Leserahmens der CHL P-cDNA-Sequenz. Daraus resultiert nach dem Methionin der Einbau eines Glycins (Aminosäure Nr. 50 des aus der cDNA-Sequenz übersetzten Proteins).
Für die Expression des pflanzlichen CHL P wurden die E. co//-Stämme XL 1
Blue (Stratagene, LaJolla, CA, USA) oder SG 13009 (Gottesman et al. (1981) J. Bacteriol. 148, 265-273) mit dem rekombinanten Vektor transformiert. Nach Induktion der Transkription des rekombinanten Gens mittels IPTG wurde in den E. co/z'-Stämmen ein Protein mit einem Molekulargewicht von ca. 47 kDa exprimiert. Das Protein wurde in der pelletierbaren Fraktion des Bakterienextraktes nachgewiesen und aus dem Gesamtextrakt unter denaturierenden Bedingungen über eine Nickel-Affinitätssäule gemäß den Instruktionen des Anbieters (Qiagen, Hilden) aufgereinigt. Das aufgereinigte Protein wurde zur Antikörperherstellung in Kaninchen injiziert.
Das Protein aus dem Gesamtextrakt besitzt eine Geranylgeranyl-Reduktase- Aktivität in einem kombinierten Enzymassay mit bakterieller Bacterio- chlorophyllsynthase unter Verwendung von Chlorophyllid und GGPP. Der
Enzymassay wurde gemäß dem Protokoll in Oster et al. (1997) J. Biol. Chem. 272, 9671-9676, durchgeführt.
Die Auftrennung von Chlorophyll-GG und Chlorophyll-Phytol erfolgte auf einer HPLC mit der RP 18-Säule unter Verwendung der Lösungsmittelgemische Lösung
A (60% Aceton) und Lösung B (100% Aceton). Der Gradient an Lösungsmitteln wurde eingesetzt: t0 75% Lösung A und 25% Lösung B, 2 min.; innerhalb t2.4 auf 45% Lösung A und 55% Lösung B; innerhalb t4.13 auf 30% Lösung A und 70% Lösung B; innerhalb t13.17 auf 100% Lösung B; t17.21 100% Lösung B isokratisch; anschließend innerhalb von 5 min. auf 75% Lösung A und 25% Lösung B; dann weitere 5 min. 75% Lösung A und 25% Lösung B isokratisch. Zur Detektion der Tetrapyrrole wurde ein Fluoreszenzdetektor verwendet (λex 425 nm, λem 665 nm).
Beispiel 6:
Co-Expression des CHL P-Gens und des HPD-Gens in Nicotiana tabacum
Mittels der Oligonukleotid-Primer hpdolil 5'-tta ggt acc atg ggc cac caa aac gcc gcc gtt tca g-3' und hpdoli2 5'-tga gtc gac cac aat cct tta gtt ggt tct tct tct tg-3'
wurde aus einer Arabidopsis tbα/zαttα-cDNA-Bibliothek die Sequenz der HPD- cDNA (Accession No.: AF 000228) zwischen Nukleotid 37 und 1404 amplifiziert, kloniert und ansequenziert. Das Fragment wurde mit den Restriktionsendo- nukleasen Kpnl und Sall geschnitten und in den Kpnl/Sall-geschnittenen binären Vektor Bin-Hyg-TX hineinligiert. Bei dem Vektor Bin-Hyg-TX handelt es sich (wie bei dem in Beispiel 2 verwendeten Vektor BinAR-TX) um einen pBIB- Abkömmling (Becker, supra), der die Expression einer in die multiple
Klonierungsstelle einligierten kodierenden Region unter Kontrolle des 35S RNA Promotors aus Cauliflower Mosaic Virus ermöglicht. Im Unterschied zu dem für die Expression des CHL P-Gens eingesetzten Vektors BinAR-TX, der in Pflanzenzellen eine Selektion auf Kanamycin ermöglicht, trägt der binäre Vektor Bin-Hyg- TX ein Hygromycinresistenzgen als Selektionsmarker für Pflanzenzellen. Zur Verdeutlichung ist eine Restriktionskarte des Vektors Bin-Hyg-TX als Abbildung 5 beigefügt.
Anstelle des genannten binären Vektors Bin-Hyg-TX kann jeder beliebige für die Pflanzentransformation geeignete Vektor für die Herstellung eines chimären Gens, bestehend aus einer Fusion des CaMV 35S-Promotors oder eines anderen Promotors, der die Transkription und Translation in Pflanzenzellen gewährleistet und DNA-Sequenzen, die für HPD kodieren, verwendet werden.
Dann erfolgte die Übertragung des erhaltenen, rekombinanten Vektor pBinHygHPD auf Tabak SNN mittels Agrobacterium tumefaciens wie in obigem Beispiel 2 beschrieben, wobei transgene Tabaksprosse auf Hygromycin-haltigem Medium selektiert wurden. Die nach Regeneration erhaltenen Pflanzen dienten als Kontrollpflanzen.
Zusätzlich wurden die in Beispiel 2 beschriebenen Transformanten 28 und 30 und wahlweise andere Transformanten, die das CHL P-Gen unter Kontrolle des 35S RNA Promotors überexprimieren, mittels Leaf Disc Transformation mit dem rekombinanten Vektor pBinHygHPD transformiert und ganze Pflanzen unter Selektion auf Kanamycin und Hygromycin regeneriert.
In sämtlichen transgenen Pflanzen wurde die erfolgreiche Übertragung und
Expression des chimären HPD-Gens durch geeignete Southern- und Northernblot- Experimente mit dem oben erwähnten PCR-Fragment für HPD als Sonde bestätigt.
Ein Vergleich der Tocopherolgehalte (Analyse wie in Beispiel 3) in Blättern von Pflanzen, die nur das CHL P-Gen exprimieren (siehe Beispiel 3, Transformanten
28 und 30), und solchen Pflanzen, die das HPD-Gen und das CHL P-Gen co- exprimieren (Transformanten 28+HPD und 30+HPD) zeigte, daß der Tocopherolgehalt durch die gleichzeitige Expression des Hydroxyphenylpyruvat-Dioxygenase- Gens zusätzlich gesteigert werden konnte.
Alternativ können transgene Pflanzen, die sowohl das CHL P-Gen als auch das HPD-Gen exprimieren, auch durch Kreuzung homozygoter "CHL P-Linien" mit homozygoten "HPD-Linien" erhalten werden.
Eine zusätzliche Steigerung des Tocopherolgehalts in Doppeltransformanten (bzw.
Doppelkreuzungen) ist unter Streßbedingungen (z.B. erhöhte Temperatur, Lichtstreß u.a.) zu erwarten.
Neben den vorangehend beschriebenen Doppeltransformanten, die HPD und CHL P exprimieren, wurden auch transgene HPD-Linien auf ihren Tocopherolgehalt und den Einfluß von Streßbedingungen auf den Tocopherolgehalt untersucht. Es konnte gezeigt werden, daß Überexpression von HPD in Tabakblättern eine 2- bis 3-fache Steigerung des Tocopherolgehalts zur Folge hat und daß insbesondere die Werte unter Streßbedingungen gegenüber nichttransgenen Kontrollpflanzen ansteigen.
Abbildung 6 zeigt Tocopherolgehalte in den Blättern 4, 7 und 10 von 12 Wochenalten transgenen Takaklinien (# 2, 6 und 33), die das Arabidopsis-Enyzm Hydroxyphenyl-Pyruvat-Dioxygenase (HPD) überexprimieren, im Vergleich zu Kontrollpflanzen (SNN). Die Pflanzen wurden entweder bei 38 °C oder bei 10 °C und einer Lichtintensität von ca. 200 μmol Photonen/m2/s abgezogen. Tocopherol wird mit zunehmendem Blattalter in den Pflanzen verstärkt angereichert. Insbesondere in den älteren Blättern steigt der Gehalt des Tocopherols in den unter 38 °C angezogenen Pflanzen sehr viel steiler an und erreicht die zweifache Menge gegenüber den Kontrollpflanzen. Dagegen sind die Tocopherolgehalte in den Transformanten in der Kälte nur leicht gegenüber denen der Wildtyppflanzen erhöht.
Die Ergebnisse deuten darauf hin, daß HPD bei erhöhtem Bedarf an Tocopherolen, also insbesondere unter Streßbedingungen, die Regeneration dieser Antioxidantien in transgenen Pflanzen besonders begünstigt.
Beispiel 7:
Erhöhte Resistenz der transgenen Pflanzen gegenüber oxidativem Streß
Nach Beispiel 2 und 3 hergestellte transgene Pflanzen wurden in einem
Blattscheiben-Inkubationsversuch auf den Einfluß inhibitorischer und oxidativer Substanzen untersucht. 15 Keimlinge wurden in 20 mM Kaliumphosphat-Puffer (pH 7,1) für 10 h im Licht inkubiert. Neben den Kontrollansätzen (Wasser) wurden die Pflanzen in Ansätzen mit 3,3 μM (niedrige Konzentration = NK) oder 33 μM (hohe Konzentration = HK) Acifluorfen (BASF, Ludwigshafen, Deutschland), einem Hemmstoff der Protoporphyrinogen-Oxidase, und in anderen Ansätzen mit 1,7 μM (niedrige Konzentration = NK) oder 17 μM (hohe Konzentration = HK) Bengalrosa (4,5,6,7-Tetrachlor-2',4',5',7'-tetrajodfluorescein, Sigma-Aldrich, Deisenhofen, Deutschland), einem Erzeuger von reaktiven Sauer- stoffspezies, inkubiert. Der Gehalt an Tocopherol ist in den untersuchten transgenen Linien (28, 30) sowohl in den Puffer-Kontrollansätzen wie auch unter oxidativen Streßbedingungen gegenüber Wildtyppflanzen (SNN) jeweils um das 2- bis 3-fache erhöht. Die Ergebnisse sind in Abbildung 7 veranschaulicht.
Die Ergebnisse deuten darauf hin, daß sich die erfindungsgemäßen Pflanzen dank ihres gegenüber Wildtyppflanzen erhöhten Tocopherolgehalts durch eine erhöhte Resistenz gegenüber oxidativem Streß auszeichnen. Ein erhöhter antioxidativer Schutz der zellulären Membranen vor reaktiven Sauerstoffspezies in den erfindungsgemäßen Pflanzen ist somit zu erwarten.
Beispiel 8:
Tocopherolgehalt in Samen von transgenen Pflanzen
Tocopherol wurde wie oben beschrieben aus Samen von transgenen Pflanzen extrahiert, die sich aufgrund der Expression von CHL P unter Kontrolle des CaMV 35S-Promotors (vgl. Beispiel 2) durch einen im Vergleich zu Wildtyppflanzen erhöhten Tocopherolgehalt in Blättern auszeichnen. Die Ergebnisse der mittels HPLC durchgeführten Tocopherolquantifizierung sind im Vergleich zu
Tabakkontrollpflanzen in Abbildung 8 dargestellt.
Neben α-Tocopherol wurde auch γ-Tocopherol quantifiziert. Letzteres liegt grundsätzlich in Tabaksamen in größeren Mengen vor; das Verhältnis von γ-Tocopherol zu α-Tocopherol beträgt in Tabaksamen ca. 10: 1. Die Gehalte an beiden Formen der Tocopherole, insbesondere α-Tocopherol, sind im Vergleich zu den Kontrollpflanzen in den transgenen Pflanzen mit erhöhter Geranylgeranyl-Reduktase- Expression um das 2- bis 3-fache erhöht.
Diese Ergebnisse, die die Auswirkungen einer konstitutiven CHL P-Expression unter Kontrolle des 35S-Promotors auf den Tocopherolgehalt im Samen wiedergeben, zeigen deutlich, daß bei Einsatz eines samenspezifischen Promotors (bzw. eines in Samen induzierbaren Promotors) die Expression der Geranylgeranyl- Reduktase im Samen und hierdurch der Tocopherolgehalt in Samen von transgenen Pflanzen zusätzlich gesteigert werden kann.
Sollten in irgendeiner Weise molekularbiologische Arbeiten nicht hinreichend beschrieben worden sein, so wurden diese nach Standardmethoden, wie bei Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage,
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, beschrieben, durchgeführt. Bezüglich der Transformation von Pflanzen wird auf allgemein bekannte Übersichtsartikel sowie auf die oben genannten Veröffentlichungen verwiesen.
BESCHREIBUNG DER ABBILDUNGEN
Abbildung 1 : SEQ:ID NO. 1 zeigt die Nukleotid-Sequenz einer chl P-cDNA der Geranylgeranyl-Reduktase (CHL P) aus Nicotiana tabacum.
Abbildung 2: SEQ:ID NO. 2 zeigt eine Aminosäuresequenz des Enzyms CHL P aus N tabacum, abgeleitet von der in Abbildung 1 gezeigten SEQ:ID Ν0.1.
Abbildung 3: Restriktionskarte des für die Pflanzentransformation eingesetzten binären Vektors BinAR. BinAR (Höfgen and Willmitzer (1990) Plant Science 66, 221) ist ein Binl9-Derivat (Bevan (1984) Nucl. Acids Res. 12, 8711), das eine Expressionskassette für die konstitutive Expression von chimären Genen in Pflanzen enthält, wobei die Expressionskassette über die EcoRI- und Hindlll-
Restriktionsschnittstellen von Binl9 kloniert ist. Die Kassette umfaßt ein 770 Bp.-EcoRI/Hindlll-Fragment, das den CaMV 35S-Promotor, einen teilweisen pUC18-Polylinker und das Terminationssignal des Octopinsynthase-Gens (OCS) enthält. Für die Insertion kodierender Sequenzen eignen sich besonders die unikalen Schnittstellen des pUC18-Polylinkers, nämlich Kpnl, Smal, BamHI, Xbal und Sall. Als Pflanzenselektionsmarker trägt der binäre Vektor BinAR ein Kanamycinresistenzgen.
Abbildung 4: Balkendiagramm, das den Tocopherolgehalt in den Blättern 6, 9, 12 (gezählt von der Pflanzenspitze) von transgenen Tabakpflanzen (Linien 28 und 30) versus den entsprechenden Blättern von Kontrollpflanzen (SNN) zeigt. Abbildung 5: Restriktionskarte des für die Pflanzentransformation eingesetzten binären Vektors Bin-Hyg-TX, bei dem es sich um ein pBIB- Derivat (Becker, supra; Bevan, supra) handelt, das eine Expressionskassette für die konstitutive Expression von chimären Genen in Pflanzen enthält. Für die Insertion kodierender Sequenzen eignen sich besonders die unikalen Schnittstellen des pUC18-Polylinkers, nämlich Hpal, Kpnl, Smal, Xbal und Sall. Als Pflanzenselektionsmarker trägt der binäre Vektor Bin-Hyg- TX ein Hygromycinresistenzgen.
Abbildung 6: Säulendiagramm der Tocopherolgehalte in den Blättern 4, 7 und 10 in 12 Wochen-alten transgenen Linien (# 2, 6, 33), die das Arabidopsis-Enzym HPD überexprimieren, und in Kontrollpflanzen (SNN).
Abbildung 7: Tocopherolgehalt in 12 Tage-alten Keimlingen, die während einer lOstündigen Belichtung in 20 mM Kaliumphosphatpuffer (pH 7,1, Kontrolle = Wasser), mit 3,3 μM (NK) bzw. 33 μM (HK) Acifluorfen oder mit 1,7 μM (NK) bzw. 17 μM (HK) Bengalrosa inkubiert wurden (SNN = Wildtyp-Kontrollpflanzen, 28 und 30 = transgene Linien).
Abbildung 8: relative Werte an α-Tocopherol und γ-Tocopherol in Samen von transgenen Tabakpflanzen (# 7, 39, 67, 96) und Wildtyptabakpflanzen (SNN). 100% α-Tocopherol entspricht 6 ng/mg Samen; 100% γ-Tocopherol entspricht 62,8 ng/mg Samen.

Claims

A N S P R U C H E
1. Nukleinsauresequenz, dadurch gekennzeichnet, daß sie für ein Protein mit der Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon kodiert.
2. Nukleinsauresequenz gemäß Anspruch 1, dadurch gekennzeichnet, daß sie für ein pflanzliches Protein kodiert.
3. Nukleinsauresequenz gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie für ein Protein aus Tabak kodiert.
4. Nukleinsauresequenz gemäß SEQ:ID No. 1.
5. Nukleinsauresequenz gemäß Anspruch 1, dadurch gekennzeichnet, daß sie in dem Klon DSM 11816 enthalten ist.
6. Allele und Derivate der Nukleinsäuressequenz gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sie für ein Protein mit der Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon kodieren.
7. Nukleinsäuremolekül, dadurch gekennzeichnet, daß es eine Nukleinsauresequenz gemäß einem der vorangehenden Ansprüche umfaßt.
8. Nukleinsäuremolekül gemäß Anspruch 7, dadurch gekennzeichnet, daß es eine Nukleinsäuressequenz gemäß einem der Ansprüche 1 -6 in Kombination mit regulatorischen Elementen umfaßt, die die Transkription und Translation in prokaryontischen oder eukaryontischen Zellen gewährleisten.
9. Nukleinsäuremolekül gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, daß es eine Nukleinsauresequenz gemäß einem der Ansprüche 1 -6 in Kombination mit Promotoren umfaßt, die die Transkription und Translation in Pflanzenzellen gewährleisten.
10. Nukleinsäuremolekül gemäß Anspruch 9, dadurch gekennzeichnet, daß es sich bei dem Promotor um einen konstitutiven, induzierbaren, gewebespezifischen oder entwicklungsspezifischen Promotor handelt.
11. Nukleinsäuremolekül gemäß Anspruch 10, dadurch gekennzeichnet, daß es sich bei dem Promotor um einen samenspezifischen Promotor handelt.
12. Nukleinsäuremolekül gemäß einem der Ansprüche 7-11, dadurch gekennzeichnet, daß es zusätzlich Enhancer- Sequenzen, für Signalpeptide kodierende Sequenzen oder andere regulatorische Sequenzen umfaßt.
13. Nukleinsäuremolekül gemäß einem der Ansprüche 7-12, in dem die kodierende Nukleinsauresequenz in der Sense-Orientierung vorliegt.
14. Nukleinsäuremolekül gemäß einem der Ansprüche 7-12, in dem die kodierende Nukleinsauresequenz in der Antisense-Orientierung vorliegt.
15. Protein mit der biologischen Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon, dadurch gekennzeichnet, daß es durch eine DNA-Sequenz oder ein Nukleinsäuremolekül gemäß einem der vorangehenden
Ansprüche kodiert wird.
16. Protein mit der biologischen Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon, dadurch gekennzeichnet, daß es die in SEQ:ID NO. 2 gezeigte Aminosäuresequenz oder Bereiche davon aufweist.
17. Mikroorganismus, dadurch gekennzeichnet, daß er eine
Nukleinsauresequenz oder ein Nukleinsäuremolekül gemäß einem der Ansprüche 1-14 enthält.
18. Transgene Pflanzen, die eine Nukleinsauresequenz, eine davon abgeleitete Nukleinsauresequenz oder ein Nukleinsäuremolekül gemäß einem der
Ansprüche 1-14 enthalten, sowie Teile dieser Pflanzen und deren Verrnehrungsmaterial, wie Protoplasten, Pflanzenzellen, Kalli, Samen, Knollen oder Stecklinge, usw., sowie die Nachkommen dieser Pflanzen.
19. Pflanzen gemäß Anspruch 18, die einen gegenüber Wildtypflanzen veränderten Tocopherolgehalt aufweisen.
20. Pflanzen gemäß Anspruch 19, die einen gegenüber Wildtyppflanzen erhöhten Tocopherolgehalt aufweisen.
21. Pflanzen gemäß Anspruch 18, die einen gegenüber Wildtyppflanzen veränderten Gehalt an Vitamin K, aufweisen.
22. Pflanzen gemäß Anspruch 21, die einen gegenüber Wildtyppflanzen erhöhten Gehalt an Vitamin K, aufweisen.
23. Pflanzen gemäß Anspruch 18, die einen gegenüber Wildtyppflanzen veränderten Chlorophyllgehalt aufweisen.
24. Pflanzen gemäß Anspruch 23, die einen gegenüber Wildtyppflanzen erhöhten Chlorophyllgehalt aufweisen.
25. Dikotyle Pflanzen gemäß einem der Ansprüche 18-24.
26. Pflanzen gemäß Anspruch 25, bei denen es sich um Nutzpflanzen, Nahrungs- und/oder Futterpflanzen, insbesondere Raps, Soja, Tomate, Kartoffel, Zuckerrübe, Klee, handelt.
27. Monokotyle Pflanzen gemäß einem der Ansprüche 18-24.
28. Pflanzen gemäß Anspruch 27, bei denen es sich um Nutzpflanzen, Nahrungs- und/oder Futterpflanzen, insbesondere Getreide, wie Weizen, Gerste, Mais, Hafer, Roggen, Reis, Süß- und Weidegräser, handelt.
29. Pflanzen gemäß einem der Ansprüche 18-28, in denen eine Nukleinsauresequenz gemäß einem der Ansprüche 1-6 integriert im Genom der Pflanze vorliegt, sowie Teile dieser Pflanzen und deren Vermehrungsmaterial, wie Protoplasten, Pflanzenzellen, Kalli, Samen, Knollen oder Stecklinge, usw., sowie die Nachkommen dieser Pflanzen.
30. Transgene Pflanzenzellen, einschließlich Pro toplasten, die eine Nukleinsauresequenz, eine davon abgeleitete Nukleinsauresequenz oder ein Nukleinsäuremolekül gemäß einem der Ansprüche 1-14 enthalten.
31. Pflanzenzellen gemäß Anspruch 30. einschließlich Protoplasten, die einen gegenüber nicht-transformierten Pflanzenzellen veränderten, insbesondere erhöhten, Tocopherol-, Vitamin K,- und/oder Chlorophyllgehalt aufweisen.
32. Pflanzen bzw. Pflanzenzellen gemäß einem der Ansprüche 18-31, die zusätzlich eine für Hydroxyphenylpyruvat-Dioxygenase kodierende Nukleinsauresequenz enthalten.
33. Verfahren zur Herstellung von Pflanzen bzw. Pflanzenzellen gemäß einem der Ansprüche 18-32, folgende Schritte umfassend:
a) Herstellung einer Nukleinsauresequenz, bestehend aus den folgenden
Bestandteilen, die in der 5 '-3 '-Orientierung aneinandergereiht sind: - ein in Pflanzen funktionsfähiger, insbesondere samenspezifischer,
Promotor, mindestens eine Nukleinsauresequenz, die für ein Protein mit der Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon kodiert und - gegebenenfalls ein Terminationssignal für die Termination der
Transkription und die Addition eines poly-A-Schwanzes an das entsprechende Transkript, sowie ggf. davon abgeleitete DNA- Sequenzen;
b) Übertragung der Nukleinsauresequenz aus a) auf pflanzliche Zellen und gegebenenfalls Integration der Nukleinsauresequenz in das pflanzliche Genom,
c) falls erwünscht, Regeneration vollständig transformierter Pflanzen und gegebenenfalls Vermehrung dieser Pflanzen.
34. Verwendung einer Pflanze gemäß einem der Ansprüche 18-29 und 32 als Nahrungs- oder Futterpflanze.
35. Verwendung einer Pflanze gemäß einem der Ansprüche 18-29 und 32 als Produktionsstätte für Tocopherole und/oder Vitamin K,.
36. Verwendung einer Nukleinsauresequenz oder eines Nukleinsäuremoleküls gemäß einem der Ansprüche 1-14 zur Identifizierung,
Isolierung oder Amplifizierung einer Nukleinsauresequenz, die für ein Protein mit der Aktivität einer Geranylgeranyl-Reduktase oder ein aktives Fragment davon kodiert.
37. Verwendung einer Nukleinsauresequenz, eines Nukleinsäuremoleküls oder eines Proteins gemäß einem der Ansprüche 1-16 zur Herstellung von Antikörpern.
38. Verwendung einer Nukleinsauresequenz oder eines Nukleinsäuremoleküls gemäß einem der Ansprüche 1-14 zur Herstellung transgener Pflanzen bzw. Pflanzenzellen.
39. Verwendung gemäß Anspruch 38, worin die Pflanzen bzw. Pflanzenzellen einen veränderten Tocopherolgehalt aufweisen.
40. Verwendung gemäß Anspruch 38, worin die Pflanzen bzw. Pflanzenzellen einen veränderten Chlorophyllgehalt aufweisen.
41. Verwendung gemäß Anspruch 38, worin die Pflanzen bzw. Pflanzenzellen einen veränderten Vitamin K,-Gehalt aufweisen.
42. Verwendung gemäß Anspruch 38, worin die Pflanzen bzw. Pflanzenzellen eine gegenüber Wildtyppflanzen erhöhte Herbizidtoleranz aufweisen.
43. Verwendung gemäß einem der Ansprüche 38-42, worin die Pflanzen bzw. Pflanzenzellen zusätzlich eine für Hydroxyphenylpyruvat-Dioxygenase kodierende Nukleinsauresequenz enthalten.
44. Verwendung einer Nukleinsauresequenz, eines Nukleinsäuremoleküls, eines Proteins oder eines Mikroorganismus gemäß einem der Ansprüche 1-17 zur Auffindung von Effektoren pflanzlicher Geranylgeranyl-Reduktase.
PCT/EP1998/006851 1997-10-29 1998-10-29 Beeinflussung des tocopherolgehaltes in transgenen pflanzen WO1999023231A2 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020007004715A KR20010031660A (ko) 1997-10-29 1998-10-29 형질전환 식물에서 토코페롤 함유량의 증가
SK599-2000A SK5992000A3 (en) 1997-10-29 1998-10-29 Modification of the tocopherol content of transgenic plants
JP2000519087A JP2001521745A (ja) 1997-10-29 1998-10-29 遺伝子導入植物のトコフェロール含有量操作
BR9813165-6A BR9813165A (pt) 1997-10-29 1998-10-29 Manipulação de teor de tocoferol em plantas transgênicas
HU0003963A HUP0003963A2 (en) 1997-10-29 1998-10-29 Modification of the tocopherol content of transgenic plants
CA002306458A CA2306458A1 (en) 1997-10-29 1998-10-29 Manipulation of tocopherol content in transgenic plants
EP98964393A EP1025250A2 (de) 1997-10-29 1998-10-29 Beeinflussung des tocopherolgehaltes in transgenen pflanzen
PL98340335A PL340335A1 (en) 1997-10-29 1998-10-29 Method of influencing tocopherol content in tissue of transgenic plants
IL13539198A IL135391A0 (en) 1997-10-29 1998-10-29 Manipulation of tocopherol content in transgenic plants
AU19616/99A AU747854B2 (en) 1997-10-29 1998-10-29 Modification of the tocopherol content of transgenic plants
US09/564,367 US6624342B1 (en) 1997-10-29 2000-04-28 Manipulation of tocopherol content in transgenic plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19747739.9 1997-10-29
DE19747739 1997-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/564,367 Continuation US6624342B1 (en) 1997-10-29 2000-04-28 Manipulation of tocopherol content in transgenic plants

Publications (2)

Publication Number Publication Date
WO1999023231A2 true WO1999023231A2 (de) 1999-05-14
WO1999023231A3 WO1999023231A3 (de) 1999-07-29

Family

ID=7846978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006851 WO1999023231A2 (de) 1997-10-29 1998-10-29 Beeinflussung des tocopherolgehaltes in transgenen pflanzen

Country Status (15)

Country Link
US (1) US6624342B1 (de)
EP (1) EP1025250A2 (de)
JP (1) JP2001521745A (de)
KR (1) KR20010031660A (de)
CN (1) CN1280622A (de)
AR (1) AR010953A1 (de)
AU (1) AU747854B2 (de)
BR (1) BR9813165A (de)
CA (1) CA2306458A1 (de)
DE (2) DE19752647C1 (de)
HU (1) HUP0003963A2 (de)
IL (1) IL135391A0 (de)
PL (1) PL340335A1 (de)
SK (1) SK5992000A3 (de)
WO (1) WO1999023231A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844142A1 (fr) * 2002-09-11 2004-03-12 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
US6787683B1 (en) 1999-05-07 2004-09-07 Pioneer Hi-Bred International, Inc. Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof
US7332649B2 (en) 2000-06-29 2008-02-19 Sungene Gmbh & Co. Kgaa Changing the fine chemical content in organisms by genetically modifying the shikimate pathway

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111676A1 (de) * 2001-03-09 2002-09-12 Sungene Gmbh & Co Kgaa Erhöhung des Vitamin-E-Gehalts in Organismen durch Erhöhung der Tyrosinaminotransferase-Aktivität
US7838733B2 (en) 2004-04-30 2010-11-23 Dow Agrosciences Llc Herbicide resistance genes
CN101553111B (zh) 2005-10-28 2013-06-26 美国陶氏益农公司 新除草剂抗性基因
JP2007244240A (ja) * 2006-03-14 2007-09-27 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai 緑色カルス細胞の製造方法
US7777102B2 (en) * 2007-02-08 2010-08-17 University Of Tennessee Research Foundation Soybean varieties
US9669242B2 (en) * 2013-07-01 2017-06-06 L'oreal Compositions containing at least two phenolic compounds, a lipid-soluble antioxidant and at least one hydrotrope for cosmetic use
WO2016164810A1 (en) * 2015-04-08 2016-10-13 Metabolix, Inc. Plants with enhanced yield and methods of construction
US20220290168A1 (en) * 2019-09-04 2022-09-15 Syngenta Crop Protection Ag Methods for transformation of dicot plant cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027285A1 (en) * 1996-01-29 1997-07-31 Arizona Board Of Regents, On Behalf Of University Of Arizona Cloned plant p-hydroxyphenyl pyruvic acid dioxygenase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773692A (en) * 1995-12-12 1998-06-30 Her Majesty The Queen In Right Of Canada, As Represented By Agriculture And Agri-Food Canada Anti-sense RNA for CAB transcript to reduce chlorophyll content in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027285A1 (en) * 1996-01-29 1997-07-31 Arizona Board Of Regents, On Behalf Of University Of Arizona Cloned plant p-hydroxyphenyl pyruvic acid dioxygenase

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADDLESEE, H.A., ET AL. : "cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene, chlP, of Synechocystis sp. PCC 6803" FEBS LETTERS, Bd. 389, 1996, Seiten 126-130, XP002100515 in der Anmeldung erw{hnt *
BURKE, D.H.; ET AL.: "untitled" EMBL SEQUENCE DATA LIBRARY,1. Mai 1992, XP002100516 heidelberg, germany *
KELLER, Y., ET AL.: "metabolic compartmentation of plastid prenyllipid biosynthesis - evidence for the involvement of a multifunctional geranylgeranyl reductase" EUROPEAN JOURNAL OF BIOCHEMISTRY, Bd. 251, Nr. 1-2, Januar 1998, Seiten 413-417, XP002100518 *
NORRIS S R ET AL: "GENETIC DISSECTION OF CAROTENOID SYNTHESIS IN ARABIDOPSIS DEFINES PLASTOQUINONE AS AN ESSENTIAL COMPONENT OF PHYTOENE DESATURATION" PLANT CELL, Bd. 7, Dezember 1995, Seiten 2139-2149, XP002041909 in der Anmeldung erw{hnt *
SOLL, J., ET AL. : "hydrogenation of geranylgeraniol: Two pathways exist in spinach chloroplasts" PLANT PHYSIOLOGY, Bd. 71, Nr. 4, 1983, Seiten 849-854, XP002100517 in der Anmeldung erw{hnt *
TANAKA, R. , ET AL. : "unpublished" EMBL SEQUENCE DATA LIBRARY, 12. Oktober 1998, XP002101333 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787683B1 (en) 1999-05-07 2004-09-07 Pioneer Hi-Bred International, Inc. Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof
US7332649B2 (en) 2000-06-29 2008-02-19 Sungene Gmbh & Co. Kgaa Changing the fine chemical content in organisms by genetically modifying the shikimate pathway
FR2844142A1 (fr) * 2002-09-11 2004-03-12 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
WO2004024928A2 (fr) * 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
WO2004024928A3 (fr) * 2002-09-11 2004-04-22 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
US10138490B2 (en) 2002-09-11 2018-11-27 Michel Matringe Transformed plants tolerant to herbicides due to overexpression of prephenate dehydrogenase and p-hydroxyphenylpyruvate dioxygenase

Also Published As

Publication number Publication date
KR20010031660A (ko) 2001-04-16
EP1025250A2 (de) 2000-08-09
US6624342B1 (en) 2003-09-23
AU1961699A (en) 1999-05-24
JP2001521745A (ja) 2001-11-13
CA2306458A1 (en) 1999-05-14
DE19752647C1 (de) 1999-06-24
IL135391A0 (en) 2001-05-20
AU747854B2 (en) 2002-05-23
SK5992000A3 (en) 2000-11-07
AR010953A1 (es) 2000-07-12
BR9813165A (pt) 2000-08-22
WO1999023231A3 (de) 1999-07-29
DE19849960A1 (de) 1999-08-05
HUP0003963A2 (en) 2001-03-28
CN1280622A (zh) 2001-01-17
PL340335A1 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
DE19730066A1 (de) DNA-Sequenz codierend für eine Hydroxyphenylpyruvatdioxygenase und deren Überproduktion in Pflanzen
EP1102852A1 (de) Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen
EP1294913B1 (de) Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges
WO1999023231A2 (de) Beeinflussung des tocopherolgehaltes in transgenen pflanzen
KR20010105373A (ko) 식물의 농업경영 및 영양 가치의 개선 방법
DE10046462A1 (de) Verbesserte Verfahren zur Vitamin E Biosynthese
DE19918949A1 (de) Überexpression einer DNA-Sequenz codierend für eine 1-Desoxy-D-Xylulose-5-Phosphat Reduktoisomerase in Pflanzen
WO2001004330A1 (de) Identifizierung und überexpression einer dna-sequenz kodierend für eine 2-methyl-6-phytylhydrochinon-methyltransferase in pflanzen
EP1038012A2 (de) Verfahren zur herstellung transgener pflanzen mit veränderter 5-aminolävulinsäure-biosynthese und verfahren zur identifizierung von effektoren der 5-aminolävulinsäure-synthese
DE19835219A1 (de) DNA-Sequenz codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und deren Überproduktion in Pflanzen
DE602004011035T2 (de) Erhöhte ansammlung von karottenoiden in pflanzen
EP1373533B1 (de) Erhöhung des vitamin-e-gehalts in organismen durch erhöhung der tyrosinaminotransferase-aktivität
WO1999022011A1 (de) Reduktion des chlorophyllgehaltes in ölpflanzensamen
DE10022362A1 (de) Verfahren zum Auffinden von Modulatoren von Enzymen des Carotenoid-Biosyntheseweges
WO2000044911A1 (de) Überexpression einer dna-sequenz codierend für transketolase in pflanzen
DE10026845A1 (de) Triacylglycerol-Lipasen
EP1576164A2 (de) VERFAHREN ZUR HERSTELLUNG VON TRANSGENEN PFLANZEN MIT ERHöHT EM VITAMIN E-GEHALT DURCH VER äNDERUNG DES SERIN-ACETYLTRANSF ERASE-GEHALTS
EP1198578A2 (de) Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz
CZ20001069A3 (cs) Sekvence nukleové kyseliny, alely a deriváty, molekula nukleové kyseliny, protein, mikroorganizmus, transgenní rostliny, dvouděložné rostliny, jednoděložné rostliny, transgenní rostlinné buňky, způsob vytváření rostlin, použití rostlin, použití sekvence nukleové kyseliny
DE19845231A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Pphosphat Synthase, eine Hydroxyphenylpyruvat Dioxygenase und eine Geranylgeranylpyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen
DE19845224A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Geranylgeranyl-Pyrosphat Oxidoreduktase und deren Überproduktion in Pflanzen
DE19845216A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Hydroxyphenylpyruvat Dioxygenase und deren Überproduktion in Pflanzen
DE10064454A1 (de) Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
DE10030647A1 (de) Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
DE19632121A1 (de) Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 135391

Country of ref document: IL

Ref document number: 98810737.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PV2000-1069

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2306458

Country of ref document: CA

Ref document number: 2306458

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5992000

Country of ref document: SK

Ref document number: 1998964393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/A/2000/004090

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09564367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007004715

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 19616/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998964393

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2000-1069

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007004715

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV2000-1069

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 19616/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1020007004715

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998964393

Country of ref document: EP