EP1198578A2 - Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz - Google Patents

Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz

Info

Publication number
EP1198578A2
EP1198578A2 EP00958357A EP00958357A EP1198578A2 EP 1198578 A2 EP1198578 A2 EP 1198578A2 EP 00958357 A EP00958357 A EP 00958357A EP 00958357 A EP00958357 A EP 00958357A EP 1198578 A2 EP1198578 A2 EP 1198578A2
Authority
EP
European Patent Office
Prior art keywords
plant
protoporphyrin
nucleotide sequence
methyltransferase
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00958357A
Other languages
English (en)
French (fr)
Inventor
Andreas Reindl
Ralf Reski
Jens Lerchl
Bernhard Grimm
Ali Al-Awadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1198578A2 publication Critical patent/EP1198578A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Definitions

  • Vegetable S-adenosylmethionine Mq-protoporphyrin-lX-O-methyltransferase, plants with an altered chlorophyll content and / or herbicide tolerance and process for their production
  • the invention relates to nucleotide sequences coding for plant S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferases, plants with an altered chlorophyll content, herbicide-tolerant plants and methods for producing such plants.
  • Heme acts as a cofactor in hemoglobin in higher animals, in plants as a cofactor in cytochrome, P450 oxygenases, peroxidases and catalases (for an overview, see Voet and Voet, Biochemie, 1994, VCH; Suzuki et al., 1997, Annual Reviews in Genetics 31 : 61-89; Rüdiger 1997, Phytochemistry 46: 1151-1167) and is therefore an essential component in all aerobic organisms.
  • protoporphyrinogen-IX The last common step of the two biosynthetic pathways is the oxidation of protoporphyrinogen-IX to protoporphyrin-IX, which is catalyzed by the enzyme protoporphyrinogen-IX oxidase (for an overview, see Richter, Biochemie der convinced, 1996, Georg Thieme Verlag).
  • protoporphyrin-IX On the way to chlorophyll, protoporphyrin-IX receives a central Mg through the Mg chelatase, which produces Mg-protoporphyrin-IX.
  • Mg-protoporphyrin-IX-O-methyltransferase (EC 2.1.1.11) leads to Mg-protoporphyrin-13 3 -monomethyl ester, which further in batches characterized steps to chlorophyll a and b is implemented.
  • S-adenosylmethionine Mg-protoporphyrin-IX-O-methyltransferase in chlorophyll biosynthesis has been shown by investigations with inhibitors.
  • Sinefungin a structural analogue of S-adenosylmethionine (SAM), which is secreted by the bacterium Streptomyces, is able to inhibit the S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, which has been enriched from barley chloroplasts (Vothknecht et al., 1995, Plant Physiology and Biochemistry 33, 759-763). The administration of increasing amounts of sinefungin led to an increasing inhibition of chlorophyll biosynthesis in the barley leaves.
  • PMT is a soluble enzyme in the stroma of plant plastids. Enzyme activities of PMT have already been described in plants, for example in maize (Radmer and Bogorad (1967), Plant Physiol. 42: 463-465), and in photosynthetic bacteria (Gorchein (1972), Biochem, J. 127: 97-106) Service.
  • the Rhodobacter capsulatus bchM gene was identified as a gene sequence encoding a PMT (Bollivar et al. (1994), J. Bacteriol. 176: 5290-5296; Gibson and Hunter (1994) FEBS Letters 352: 127-130).
  • This gene is located in a 46 kB gene cluster, which was initially fully sequenced and contains genes for numerous proteins of bacteriochiorophyll and carotenoid synthesis and the photosynthetic apparatus.
  • the function of the bchM gene product could be demonstrated by interrupting the gene, since after losing the activity of the encoded protein the substrate of the PMT, Mg-protoporphyrin IX, accumulated.
  • the cyanobacterial gene ChIM was found in a cosmid library from Synechocystis 6803 (Jensen et al, 1996, Plant Molecular Biology 30: 1307-1314).
  • the cyanobacterial gene product ChIM has an amino acid identity to the corresponding Rhodobacter protein of 29%.
  • An object of the present invention is thus to provide gene sequences from plants which code for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase.
  • Another object of the present invention is to provide transgenic plants or parts, tissues or cells thereof with an altered control of the chlorophyll biosynthetic pathway, an altered chlorophyll content and / or a tolerance to herbicides and their use in plant breeding.
  • the present invention relates to a nucleotide sequence coding for a plant S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase or parts, derivatives, homologs or isoforms thereof.
  • a nucleotide sequence encoding a plant S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase is included, which has a sequence according to SEQ ID NO 1 and the plant protein encoded by it an amino acid sequence according to SEQ ID NO 5 contains.
  • this nucleotide sequence codes for an amino acid sequence with the biological activity of an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase from tobacco (Nicotiana tabacum).
  • the present invention also relates to nucleotide sequences coding for a plant S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase, which contain a sequence according to SEQ ID NO 2 or according to SEQ ID NO 3 or according to SEQ ID NO 4.
  • the invention further encompasses nucleotide sequences which code for a protein which contains an amino acid sequence according to SEQ ID NO 6 or SEQ ID NO 7.
  • nucleotide sequences coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts thereof come from Physcomitrella patens.
  • the present invention also includes essentially equivalent, i.e. functionally equivalent nucleotide sequences (allele variations).
  • nucleotide sequences are also selected, selected from the group consisting of a) DNA sequences which comprise a nucleotide sequence which contains the sequence shown in SEQ ID NO. 5 encode specified amino acid sequence or fragments thereof, b) DNA sequences which comprise a nucleotide sequence which the in
  • SEQ ID NO. 6 or SEQ ID NO 7 encode the amino acid sequence indicated or fragments thereof
  • Nucleotide sequence of a), b, c), d) or e) is degenerate, or comprise parts of this nucleotide sequence, g) DNA sequences which are a derivative, analog or fragment of a
  • the present invention also relates to nucleotide sequences which are homologous to one of the aforementioned nucleotide sequences, i. H. has a sequence identity of at least 40%, preferably at least 60%, particularly preferably more than 80% and in particular more than 90% and for a protein with the biological activity of an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or Parts of it are encoded.
  • the nucleotide sequence coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase, its parts, derivatives or homologues can be natural, chemically synthesized, modified or artificially generated nucleotide sequences.
  • the nucleotide sequence coding for S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase and its allele variations can be heterologous nucleotide sequences of various others Organisms and mixtures of these and the aforementioned nucleotide sequences contain.
  • both parts of coding nucleotide sequences such as. B. partial cDNAs, as well as so-called full-length clones of a coding structural gene, possibly including regulatory elements.
  • the length of an S-adenosy! Methionine: Mg-protoporphyrin-IX-O-methyltransferase according to the invention can be, for example, in the range from 325 ⁇ 10 amino acid residues to 325 ⁇ 250 amino acid residues, preferably from 325 ⁇ 50 to 325 ⁇ 100 and particularly preferably from 325 ⁇ 25 to 325 ⁇ 50 amino acid residues vary.
  • the “base number” of 325 amino acid residues corresponds to a polypeptide sequence of an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase according to SEQ ID NO 5 encoded by a nucleotide sequence according to SEQ ID NO 1. Consequently, the “base number” of the polypeptide can be in Depending on the nucleotide sequence encoding they also vary.
  • Mg-protoporphyrin-IX-O-methyltransferase means a protein which catalyzes the methylation of protoporphyrin IX.
  • biologically active fragment means that the mediated biological activity is sufficient to influence the chlorophyll content.
  • Mg-protoporphyrinogen-IX-O-methyltransferase are those sequences which, despite a different nucleotide sequence, still have the desired functions (allelic variations).
  • Functional equivalents thus include naturally occurring variants of the sequences described here as well as artificial ones, for example by chemical or Genetic engineering obtained artificial nucleotide sequences adapted to the codon use of a plant. This can be, for example, DNA or RNA molecules, cDNA, genomic DNA, mRNA etc.
  • functionally equivalent sequences include those which have an altered nucleotide sequence which gives the enzyme resistance to inhibitors.
  • a functional equivalent is also understood to mean, in particular, natural or artificial mutations of an originally isolated sequence coding for an S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase, which furthermore show the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also includes those nucleotide sequences which can be obtained by modifying the S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase-
  • the aim of such a modification can e.g. further narrowing down the coding sequence contained therein or e.g. also be the insertion of further restriction enzyme interfaces.
  • Functional equivalents are also those variants whose function is weakened or enhanced compared to the original gene or gene fragment.
  • artificial DNA sequences are suitable as long as they impart the desired properties, as described above.
  • Such artificial DNA sequences can be determined, for example, by back-translation of proteins constructed using molecular modeling, which have S-adenosylmethionine: Mg protoporphyrinogen-IX-0-methyltransferase activity, or by in vitro selection. Coding DNA sequences which are obtained by back-translating a polypeptide sequence according to that for the host plant are particularly suitable specific codon usage.
  • the specific codon usage can easily be determined by a person skilled in plant genetic methods by computer evaluations of other, known genes of the plant to be transformed.
  • a further variant of the present invention comprises a nucleotide sequence and its allele variations, which codes for a modified S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts, derivatives, homologs or isoforms thereof, which tolerate compounds with herbicidal activity, such as Sinefungin.
  • an in vitro or in vivo (bacterial) mutagenesis is carried out according to the invention, in which correspondingly resistant forms of the gene can be identified by methods known per se. With this technique, for any S-adenosylmethionine: Mg-Protoporphyrinogen-IX-0-
  • Methyltransferase-specific inhibitor-resistant forms of S-adenosylmethionine Mg-protoporphyrinogen-lX-0-methyltransferase can be generated.
  • the present invention thus also relates to a method for isolating a nucleotide sequence coding for a herbicide-tolerant S-adenosylmethionine: Mg-protoporphyrin-IX-0-
  • Methyltransferase wherein a nucleotide sequence according to the invention of the type described above is used in an in vitro or in vivo mutagenesis, then possibly transferred to a single or multicellular host organism, then the organisms which are in the presence of a herbicide ( due to the mutation-modified nucleotide sequence coding for a herbicide-tolerant PMT) can be isolated and finally those in these organisms containing genetically modified nucleotide sequences coding for a herbicide-tolerant S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase can be isolated.
  • S-adenosylmethionine: Mg-protoporphyrinogen-IX-O-methyltransferase gene is characterized in that operatively linked regulatory nucleic acid sequences which control the expression of the coding sequence in a host cell are assigned to it.
  • An operative link is understood to mean the sequential arrangement of, for example, the promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended in the expression of the coding sequence.
  • any promoter that can control the expression of foreign genes in plants is suitable as a promoter.
  • the DNA sequences according to the invention can be expressed in plant cells under the control of constitutive, but also inducible and / or tissue- or development-specific regulatory elements, in particular promoters.
  • constitutive, but also inducible and / or tissue- or development-specific regulatory elements in particular promoters.
  • tissue-specific, for example leaf and / or seed-specific, promoters offers the possibility of determining the chlorophyll content in certain tissue, for example in leaf or. Seed tissue, changing.
  • Other suitable promoters for example, mediate light-induced gene expression in transgenic plants.
  • the promoter can be homologous or heterologous with respect to the plants to be transformed.
  • suitable promoters include the 35S Cauliflower Mosaic Virus RNA promoter and maize ubiquitin promoter for constitutive expression.
  • Suitable seed-specific promoters are, for example, the USP (Bäumlein et al. (1991), Mol. Gen. Genet. 225: 459-467) or the Hordein promoter (Brandt et al. (1985), Carlsberg Res. Commun. 50: 333-345).
  • the promoters mentioned are also particularly suitable for the targeted reduction of the chlorophyll content in transgenic seeds using the DNA sequences according to the invention in connection with the antisense or cosuppression technique. In any case, the person skilled in the art can find suitable promoters in the literature or isolate them from any plants using routine methods.
  • sequences which are preferred but not restricted to the operative linkage are enhancers, transcription terminators, targeting sequences (transit signal sequences) to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in mitochondria, in the endoplasmic reticulum (ER), in the cell nucleus, in Oil bodies or other compartments and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nuci. Acids Res. 15 (1987), 8693-871 1). Furthermore, there is a transcription or termination sequence which serves to correctly terminate the transcription and can also be used to add a polyA tail to the transcript, which is assigned a function in stabilizing the transcripts.
  • Such elements are described in the literature (e.g. Gielen, 1989, EMBO J., 8: 23-29) and are interchangeable, e.g. the terminator of the octopine synthase gene from Agrobacterium tumefaciens.
  • the present invention furthermore relates to a gene structure comprising an S-adenosylmethionine: Mg protoporphyrinogen IX-0-methyltransferase gene according to one of the previously described Design variants and operatively linked regulatory nucleotide sequences of the aforementioned type.
  • Chimeric gene constructs are also conceivable here, according to which mixtures of a nucleotide sequence according to the invention fused with homologous or heterologous regulatory structures are to be understood.
  • the gene structure comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the sequence coding for the S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyitransferase gene in between.
  • the present invention also includes a gene structure containing regulatory nucleotide sequences from the group of promoters, enhancers, operators, terminators, polyadenylation signals, targeting sequences, retention signals or translation enhancers. Numerous examples of this are described in the literature. These preferably include those regulatory sequences which are active in the host organisms and / or plants used.
  • any promoter that can control the expression of foreign genes in plants is suitable as promoters of the gene structure.
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • the CAMV 35S promotor from the cauliflower mosaic virus (Franck et al., Cell 21 (1980), 285-294) is particularly preferred.
  • this promoter contains different recognition sequences for transcriptional effectors which, in their entirety, become permanent and constitutive Expression of the introduced gene lead (Benfey et al., EMBO J, 8 (1989), 2195-2202).
  • the gene structure can also contain, for example, a chemically inducible promoter through which the expression of the exogenous S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase gene in the plant can be controlled at a specific point in time.
  • a chemically inducible promoter through which the expression of the exogenous S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase gene in the plant can be controlled at a specific point in time.
  • promoters such. B. the PRP1 promoter (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), a salicylic acid-inducible promoter (WO 95119443), a benzene-sulfonamide-inducible (EP-A 388186), a Tetracycline-inducible (Gatz et al., (1992) Plant J.
  • the gene structure can therefore be, for example, a seed-specific promoter (preferably the phaseolin promoter (US 5504200), the USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459-467) or LEB4 promoter (Fiedler and Conrad, 1995), the LEB4 signal peptide, the gene to be expressed and an ER retention signal.
  • a seed-specific promoter preferably the phaseolin promoter (US 5504200), the USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459-467) or LEB4 promoter (Fiedler and Conrad, 1995), the LEB4 signal peptide, the gene to be expressed and an ER retention signal.
  • a gene construct which contains a constitutive promoter as the regulatory nucleotide sequence. It is equally conceivable for a gene structure according to the invention to contain, as a regulatory nucleotide sequence, a leaf- and / or seed-specific and / or an inducible, preferably a light-inducible promoter.
  • a gene structure is produced by fusing a suitable promoter with a suitable nucleotide sequence encoding an S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase (structural gene) and preferably a DNA inserted between promoter and "structural gene", which codes for a chloroplast-specific transit peptide
  • a suitable promoter with a suitable nucleotide sequence encoding an S-adenosylmethionine: Mg-protoporphyrinogen-IX-0-methyltransferase (structural gene) and preferably a DNA inserted between promoter and "structural gene", which codes for a chloroplast-specific transit peptide
  • the present invention also relates to a gene structure in which the nucleotide sequence coding for a PMT according to the invention of the type described above is not contained in a sense orientation, as in most cases, but in an antisense orientation.
  • Gene structures can also be used whose DNA sequence codes for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase fusion protein.
  • part of the fusion protein can be a transit peptide which controls the translocation of the polypeptide.
  • Preferred transit peptides are preferred for the chloroplasts, which are cleaved enzymatically after translocation of the S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyitransferase gene into the chloroplasts from the S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase part.
  • the transit peptide which is derived from the plastid S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase or a functional equivalent of this transit peptide is particularly preferred.
  • the S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase fusion proteins according to the invention also contain sequences which are particularly suitable for the improved purification of the S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, for example via affinity chromatography, and which can then be split off again.
  • a so-called “His tag” or sequences against epitopes of antibodies can be mentioned here as examples.
  • the nucleotide sequence encoding an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase encoding can be synthetically produced or naturally obtained, as well as different from different heterologous S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase gene segments Organisms exist or contain mixtures of synthetic and natural DNA components.
  • nucleotide sequences with codons are generated which are preferred by plants. These codons preferred by plants can be determined from codons with the highest protein frequency, which are expressed in most interesting plant species.
  • various DNA fragments can be changed in such a way that a nucleotide sequence is obtained which is expediently read in the correct direction and equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can preferably be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, preferably 1 to 8, particularly preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • An embodiment variant of the gene structure according to the invention contains the promoter in the 5'-3 direction of transcription, a DNA sequence which is for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase gene encodes and a region for transcriptional termination. Different termination areas are interchangeable.
  • Preferred polyadonylation signals are vegetable
  • Polyadenylation signals preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACH ⁇ (Gielen et al., EMBO J. 3 (1984), 835 ff) or functional equivalents.
  • the specific ER retention signal SEKDEL (Schouten, A. et al., Plant Mol. Biol. 30 (1996), 781-792) can also be contained in the gene construct. This triples or quadruples the average level of expression. Other retention signals, which occur naturally in plant and animal proteins located in the ER, can also be used for the structure of the gene structure.
  • the gene construct can be, for example, a constitutive promoter (preferably the CAMV 35 S promoter), the LeB4 signal peptide, which is to be expressed Gen and the ER retention signal may be included.
  • the amino acid sequence KDEL lysine, aspartic acid, glutamic acid, leucine is particularly preferred here as the ER retention signal.
  • the present invention relates to a vector containing, as described above, a nucleotide sequence encoding an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, to regulatory nucleotide sequences operatively linked thereto, and to additional regulation signals, for example nucleotide sequences for replication in a corresponding one Host cell and / or for integration into the host cell genome.
  • the vector according to the invention can contain a gene structure of the aforementioned type.
  • the gene structures can be cloned into suitable vectors that propagate in host cells such as
  • the invention thus also relates to vectors, in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are common in genetic engineering and which comprise the above-described inventive
  • nucleic acid molecules Contain nucleic acid molecules and if necessary for the transfer of the nucleic acid molecules according to the invention to plants or
  • Plant cells can be used. Suitable vectors are inter alia in "Methods in Plant Molecular Structure"
  • pBR332, pUC series, M13mp series and pACYCI 84 are preferred as cloning vectors. Especially binary vectors are preferred which can replicate both in E. coli and, for example, in agrobacteria.
  • the pBIN19 may be mentioned as an example (Bevan et al., Nucl. Acids Res. 12 (1984), 871 1).
  • the gene structure according to the invention can also be incorporated into the tobacco transformation vector pBIN-AR-TP (FIG. 2).
  • the present invention furthermore comprises a probe for specific hybridization with a DNA sequence or a mRNA derived therefrom coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts thereof, wherein this probe is a coherent sequence of the invention for a contains plant-based PMT coding nucleotide sequence which is at least 10 nucleotides long. This also includes short nucleotide sequences with a length of, for example, 10 to 30, preferably 12 to 15 nucleotides. This includes u. a. also so-called primers.
  • the probe according to the invention is further characterized in that it contains a label suitable for detection, for example a digoxygenin system (Boehringer Mannheim).
  • the invention also relates to a kit for identifying further eukaryotic nucleotide sequences coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, this kit containing at least one previously described probe and instructions for hybridizing and detecting nucleotide sequences, such as the one described are known from the literature (Boehringer Mannheim or T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratury, Cold Spring Harbor, NY (1989)).
  • This kit is used according to the invention for the isolation of S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase from eukaryotes.
  • the invention also relates to a method for isolating a DNA sequence which codes for a plant S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase, which is characterized in that a cDNA library is created starting from a plant source , this library is used for hybridization with a probe of the type described and the positive cDNA clones are detected and isolated.
  • the present invention relates to an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts, derivatives, homologs or isoforms thereof, which is encoded by one of the previously described embodiment variants of the nucleotide sequences according to the invention or their allelic variations.
  • Isoforms are to be understood as enzymes with the same or comparable substrate and activity specificity, but which have a different primary structure.
  • an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts thereof is included, containing an amino acid sequence according to SEQ ID NO 5 or parts or derivatives or isoforms thereof or mixtures thereof.
  • This is preferably a plant PMT, particularly preferably from tobacco (Nicotiana tabacum).
  • the present invention also relates to an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts thereof containing an amino acid sequence according to SEQ ID NO 6 or SEQ ID NO 7 or parts or derivatives or isoforms thereof or mixtures thereof.
  • This protein or parts thereof preferably originate from Physcomitrella patens.
  • the present invention further relates to a further variation of an S-adenosylmethionine: Mg-protoporphyrin-IX-0- Methyltransferase, which has a tolerance to compounds with herbicidal activity.
  • the present invention further relates to antibodies with the ability to bind specifically to one of the aforementioned S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase.
  • Antibodies are produced according to the invention by injecting a protein or part of a protein coded by an S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase gene according to the invention into animals or animal cells, producing antibodies by immune reaction and the produced antibodies are isolated from the animals or animal cell cultures. According to the invention, these antibodies are used for the specific detection and for the improved purification of S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferases from eukaryotes.
  • the present invention furthermore relates to the transfer of a previously described nucleotide sequence according to the invention and its allelic variations coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase from plants, for example in the form of the gene construct or vector according to the invention, into suitable host systems.
  • a nucleotide sequence coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyl transferase from plants is transferred to a suitable host system by genetic engineering methods.
  • Plants can be homologous organisms to this host system.
  • heterologous host systems are also conceivable.
  • it can be microorganisms, such as. B. bacteria, viruses, Act fungi, cyanobacteria, algae or plants, plant tissues or cells.
  • the microorganisms, viruses or fungi are, so to speak, an "intermediate station" before the actual transfer of the nucleotide sequences according to the invention into plant systems.
  • the invention also relates to host cells which, in addition to the nucleic acid molecules according to the invention, contain one or more nucleic acid molecules which are transmitted by genetic engineering or natural means and which carry the genetic information for enzymes involved in chlorophyll biosynthesis.
  • Modified DNA or foreign genes are transferred to a host cell using genetic engineering methods.
  • a wide range of transformation methods has been established here. Suitable methods for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are the protoplast transformation by polyethylene glycol-induced DNA uptake, biolistic methods with the gene gun - the so-called particle bombardment method, the electroporation, the incubation of dry embryos in DNA containing solution, microinjection and Agrobacterium-mediated gene transfer using Agrobacterium tumefaciens or Agrobacterium rhizogenes as transformation agents. The methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti or Ri plasmid, must be connected as a flank region to the genes to be introduced.
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector.
  • the intermediate vectors can be integrated by homologous recombination into the Ti or Ri-Plindind of the agrobacteria due to sequences that are homologous to sequences in the T-DNA.
  • Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation).
  • Binary vectors can replicate in E. coli as well as in Agrobacteria. They contain a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region. They can be transformed directly into the agrobacteria.
  • the agrobacterium serving as the host cell is said to contain a plasmid which carries a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the Agrobacterium transformed in this way is used to transform plant cells.
  • the use of T-DNA for the transformation of plant cells has been intensively investigated and has been sufficiently described in well-known overview articles and manuals for plant transformation.
  • the invention thus relates to a genetically modified single-cell or multicellular host organism and its progeny, comprising, in replicable form, a nucleotide sequence according to the invention and / or a gene structure and / or a vector of the type described above. or multicellular host organism around a microorganism, preferably a bacterium, or a virus or a fungus or a plant or plant cell or plant tissue.
  • nucleic acid molecules according to the invention By providing the nucleic acid molecules according to the invention, it is now possible to use genetic engineering methods to modify plant cells to the extent that they have a new or changed PMT activity compared to genetically unmodified cells, in particular wild-type cells, and as a result thereof there is a change in Chlorophyll biosynthetic performance and / or tolerance to herbicides comes.
  • the invention thus relates to a process for the production of plants or parts, tissues or cells thereof with changed control of chlorophyll biosynthesis, comprising the steps of producing a gene construct and / or a vector of the type described above and transferring the gene construct and / or the vector on plant cells.
  • the procedure for producing plants or parts, tissues or cells thereof with an altered chlorophyll content is analogous, as is the case for a process for Production of herbicide-tolerant plants, parts, tissues or cells thereof.
  • one or more nucleotide sequences according to the invention can be transferred in replicating form into the plant cells.
  • these methods include the regeneration of transgenic plants from the plant cells.
  • the transfer of the nucleotide sequences, gene constructs and / or vectors according to the invention to plant cells includes not only the transfer to isolated cells present in cell culture, but also the transfer to living whole plants, ie to plant cells that are not in cell culture but in intact tissue.
  • the regeneration of the transgenic plants from transgenic plant cells is carried out according to customary regeneration methods using conventional nutrient media and phytohormones.
  • the plants thus obtained can then, if desired, by conventional methods, including molecular biological methods, such as PCR, blot analysis, or biochemical methods for the presence of the introduced DNA, which encodes a protein with the enzymatic activity of a PMT, or for the presence of PMT enzyme activity will be examined.
  • the Detection of the enzymatic activity of PMT can also be determined by a person skilled in the art using protocols available in the literature. Furthermore, one can, for example, lay out the seeds obtained by selfing or crossings on medium which contains a suitable selection agent which matches the selection marker which is transferred together with the PMT-DNA sequence. Based on the germination capacity and the growth of the daughter generation (s) of the seeds and the segregation pattern, conclusions can be drawn about the genotype of the respective plant.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes. Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which may contain antibiotics or biocides for the selection of transformed cells.
  • agrobacteria The transformation of plants by agrobacteria is known, among other things, from F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol, 1, Engineering and Utilization, edited by S. D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which gives the transformed plant cells resistance to a blocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin, methotrexate, glyphosate, streptomycin, sulfonylurea, gentamycin or phosphinotricin and others.
  • the individually selected markers should therefore allow the selection of transformed cells over cells that lack the inserted DNA.
  • Alternative markers are also suitable for this, such as nutritive markers and screening markers (such as GFP, green fluorescent protein).
  • selection markers can also be completely dispensed with, but this is associated with a fairly high need for screening. If the selection marker used is to be removed again after the transformation and identification of successfully transformed cells or plants, various strategies are available to the person skilled in the art. For example, sequence-specific recombinases can be used, for example in the form of retransformation of a starting line expressing recombinase and outcrossing of the recombinase after removal of the selection marker (Reiss et al (1996) Proc. Natl. Acad. Sci. USA 93: 3094-3098; Bayley et al (1992) Plant Mol. Biol. 18: 353-361; Lloyd et al. (1994) Mol. Gen. Genet.
  • the selection marker can also be removed by cotransformation followed by outcrossing.
  • a particularly preferred embodiment of the present invention is a genetically modified plant or parts, tissue or cells thereof and their progeny containing, in replicable form, a nucleotide sequence according to the invention and / or a gene construct and / or a vector of the type described above.
  • the invention further relates to transgenic plant cells or plants comprising transgenic plant cells or parts and products thereof in which the nucleic acid molecules according to the invention are present as integrated in the plant genome.
  • the invention also relates to plants in whose cells the nucleic acid sequence according to the invention is present in self-replicating form, ie the Plant cell contains the foreign DNA on an independent nucleic acid molecule, e.g. B. a plasmid. This is known as transient expression.
  • the genetically modified plant or its parts, tissues or cells and their progeny are characterized in that, due to the presence and expression of the nucleotide sequences according to the invention, they synthesize proteins which the corresponding non-genetically modified plant, e.g. B. the wild type, not produced.
  • the invention encompasses a genetically modified plant or parts, tissues or cells thereof and their progeny which has a net productivity of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase which is greater than that of the correspondingly non-genetically modified plant, in particular one Wild type, is elevated.
  • this is preferably a genetically modified plant or parts, tissue or cells thereof and their progeny which has a modified chlorophyll content which is increased or decreased compared to that of the correspondingly non-genetically modified plant.
  • the present invention also relates to a genetically modified plant or parts, tissue or cells thereof and their progeny which has an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase which has a tolerance to compounds having a herbicidal action.
  • the present invention thus also relates to a herbicide-tolerant plant, plant tissue, plant cell and its progeny, containing in replicating form a previously described S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase gene, a gene structure or a vector containing one Gene structure of the previous
  • S-adenosylmethionine Mg-protoporphyrin-IX-0-methyltransferase gene, a gene structure or a vector containing one Gene structure of the previous
  • the type mentioned is also the subject of the invention of herbicide-tolerant plants, plant tissues, plant cells and their progeny which have a net productivity of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, which is increased compared to the correspondingly non-genetically modified form
  • the invention further relates to a transgenic plant and its progeny which expresses an S-aden
  • a particularly preferred embodiment variant relates to a genetically modified plant or parts thereof, plant tissue, cells and their progeny, which has an altered control of chlorophyll biosynthesis and / or an altered chlorophyll content and / or a herbicide tolerance in relation to a corresponding non-genetically modified plant.
  • the invention also relates to those plants in which the transfer of the nucleotide sequences according to the invention leads to a reduction in the chlorophyll content.
  • Such reduced chlorophyll biosynthesis performance can be achieved, for example, by the transfer of antisense constructs or by others
  • Suppression mechanisms such as cosuppression, can be achieved.
  • these plants are characterized by reduced growth, a bleached phenotype, reduced RNA and protein contents for PMT and a greatly reduced chlorophyll content.
  • the use of such transgenic plants in the elucidation of key enzymes and key metabolites of the chlorophyll biosynthetic pathway or for the identification or (new) synthesis of herbicides or compounds with an inhibitory effect on these central closing enzymes of the chlorophyll biosynthetic pathway is also included according to the invention.
  • any plant can be used for a transfer of the genetic material according to the invention.
  • These can be monocot or dicot crops.
  • monocotyledonous plants are plants belonging to the genera Avena (oats), Triticum (wheat), Seeale (rye), Hordeum (barley), Oryza (rice), Panicum, Pennisetum, Setaria, Sorghum (millet), Zea (Corn) belong.
  • dicotyledonous crops are to name legumes, such as legumes and in particular alfalfa, soybean, rapeseed, tomato, sugar beet, canola, potatoes, ornamental plants or trees.
  • Other useful plants can be, for example, fruit (in particular apples, pears, cherries, grapes, citrus, pineapple and bananas), oil palms, tea, cocoa and coffee bushes, tobacco, sisal, cotton, flax, sunflower and medicinal plants and pasture grasses and forage plants.
  • the cereals wheat, rye, oats, barley, rice, corn and millet, feed grain, sugar beet, rapeseed, soybean, tomato, potato, sweet grasses, feed grasses and clover are particularly preferred.
  • the invention relates in particular to conventional food or fodder plants.
  • peanut, lentil, broad bean, black beet, buckwheat, carrot, sunflower, Jerusalem artichoke, turnip, white mustard, turnip and stubble are worth mentioning.
  • the invention also relates to seeds of the genetically modified plants according to the invention.
  • the invention also relates to reproductive material from a single or multicellular host organism or from transgenic plants, plant tissues or cells of the type described above.
  • reproductive material or crop products are those according to the invention to understand genetically modified plants, for example seeds, fruits, cuttings, tubers, rhizomes, etc., and parts of these plants, such as protoplasts, plant cells and calli.
  • the present invention also includes a method for identifying cells from a cell population that contain a herbicide-tolerant S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase.
  • This method comprises the following steps: mutagenesis of the cell population, by chemical or genetic engineering treatment of the cells, cultivation of the population of cells in the presence of at least one compound with herbicidal activity which inhibits the activity of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase inhibits selection of cells whose growth is unchanged, ie is not inhibited.
  • process steps such as regeneration of genetically modified plants from the herbicide-tolerant cells and isolation, identification and / or characterization of a herbicide-tolerant S-adenosylmethionine: Mg-protoporphyrin-IX-O-methyltransferase from the selected ones Cells or, if necessary, isolation, identification and / or characterization of a nucleotide sequence coding for a herbicide-tolerant S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase from the selected cells.
  • the present invention also relates to a method and a measuring system for identifying compounds having a herbicidal action.
  • This measuring system contains at least one S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase as well
  • the S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase encoded by a corresponding nucleotide sequence is purified in preceding steps, then this S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase with compounds which, for example, are catalytic or the regulatory center of the enzyme, incubated and then the specific activity of S-adenosylmethionine: Mg-protoporphyrin-IX-0-
  • Methyltransferase measured is an in vivo measuring system, such as an organism transformed with a nucleotide sequence coding for an S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase, to which potentially herbicidal compounds are added. Due to the measurement of differences in specific enzyme activity, i.e. a reduction in the specific PMT activity, the effect of the added compounds can be identified as a herbicide or inhibitor of PMT.
  • the present invention further relates to the use of a nucleotide sequence according to the invention of the type described and / or a probe created or isolated on the basis of the nucleotide sequence according to the invention for isolating and / or amplifying a nucleotide sequence, preferably from eukaryotes which are suitable for an S- Adenosyimethionine: Mg-protoporphyrin-IX-0-methyltransferase or parts thereof.
  • the present invention comprises the use of a nucleotide sequence according to the invention for the production of plants or parts, tissues or cells thereof with an altered control of the chlorophyll biosynthesis and / or an altered chlorophyll content and / or an altered herbicide tolerance.
  • Herbicide-tolerant forms of this enzyme Compared to chemical syntheses, the use of these enzymes for the biological (in vitro) production of chlorophyll or its derivatives as an economically interesting plant vitamin is conceivable.
  • the invention also relates to the use of a concentrated S-adenosylmethionine: Mg-
  • DNA sequences and the proteins encoded by them represent an extremely valuable “target” for herbicide research.
  • the proteins according to the invention with enzymatic PMT activity can be used for X-ray structure analysis, NMR spectroscopy, molecular modeiing and drug design are used to identify or synthesize inhibitors and / or effectors of PMT and thus potential herbicides based on the knowledge gained from these methods.
  • the present invention also provides for the use of the plants described above and genetically modified according to the invention in the areas of plant breeding, plant protection and agriculture.
  • Cloning methods such as Restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of phages and sequence analysis of recombinant DNA were as with Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press, ISBN 0-87969-309-6).
  • the transformation of Agrobacterium tumefaciens was carried out according to the method of Höfgen and Wiilmitzer (Nucl. Acid Res. (1988) 16, 9877).
  • the agrobacteria were grown in YEB medium (Vervliet et al., J. Gen. Virol. (1 975) 26, 33),
  • the bacterial strains used (E. coli, XL-1 Blue) were from
  • Agrobacterium strain Agrobacterium tumefaciens, C5SC1 with the plasmid pGV2260 or pGV3B50kan
  • the one used for plant transformation Agrobacterium strain was developed by Deblaere et al. in nucl. Acids Res. 13 (1985), 4777.
  • the LBA4404 agrobacterial strain (Clontech) or other suitable strains can be used.
  • the vectors pUC19 (Yanish-Perron, Gene 33 (1985), 103-119) pBluescript SK (Stratagene, Heidelberg), PGEM-T (Promega), pZerO (Invitrogen), pBIN19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711-8720) and pBINAR (Höfgen and Willmitzer, Plant Science 66 (1990), 221-230).
  • RNA from 9-day-old Protonema was prepared according to one of Logemann et al. (Anal. Biochem. (1987) 163,21).
  • the poly (A) RNA was then purified via oligo (dT) cellulose type 7 (Pharmacia, Freiburg) according to the manufacturer's instructions. After the photometric concentration had been determined, 5 ⁇ g of the RNA thus obtained were used for the cDNA synthesis. All chemicals and enzymes required for the production of the cDNA were obtained from Stratagene (La Jolla CA 9203-7, USA). The methods used were carried out according to the manufacturer's instructions.
  • the synthesis of the first and second strand of the cDNA was carried out using the Lambda ZAPII-CDNA synthesis kit.
  • the double-stranded cDNAs obtained were then provided with EcoRI adapters and cloned into an EcoRI-cleaved lambda ZAPII vector.
  • EcoRI-cleaved lambda ZAPII vector After in vitro packaging (Gigapack II packaging extract) of the recombinant lambda DNA, XL-1 E. coli cells (Stratagene, Heidelberg) were transformed. The titer of the cDNA library was determined by counting the plaques formed.
  • so-called EST sequences are produced (Expressed Sequence Tags) procedure. According to known methods, such as. B. by homology comparisons with sequences stored in databases, potential candidates of EST sequences which code for a (partial) PMT can be narrowed down and / or identified from a cDNA bank.
  • SEQ ID NO 2 A partial DNA sequence of the S-adenosylmethionine: Mg-Protoporphy ⁇ in-IX-O-methyltransferase gene from Physcomitrella patens is shown in SEQ ID NO 2 or 3 or 4, the sequence according to SEQ ID NO 2 being the 5 'end of the gene coding for S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase and SEQ ID NO 3 represents the 3 'end of this gene from Physcomitrella patens. Both fragments are separated from each other by only about 4 amino acid residues.
  • the fragments according to the invention according to SEQ ID NO 2, 3 and 4 can thus be combined in a simple manner by the person skilled in the art into a gene of entire length.
  • a nucleotide sequence can be isolated as a full-length clone of eukaryotic PMT genes, as described above.
  • the partial amino acid sequence of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase corresponding to SEQ ID NO 2 or SEQ ID NO 3 is shown in SEQ ID NO 6 or SEQ ID NO 7.
  • SEQ ID NO 2 which was radioactively labeled using a "Multiprime DNA labeling System” (Amersham Buchler) in the presence of ⁇ - 32 P-dCTP (specific activity 3000 Ci / mmol) according to the manufacturer's instructions.
  • the membrane was hybridized after prehybridization at 42 ° C. in PEG buffer (Amasino (1986) Anal. Biochem. 152, 304-307) for 12-16 hours. The filters were then washed 3 ⁇ 20 minutes in 2 ⁇ SSC, 0.1% SDS at 42 ° C. Positive hybridizing phages were visualized by autoradiography and purified by standard techniques.
  • S-adenosylmethionine Mg-protoporphyrin-IX-O-methyltransferase gene in expression vectors of heterologous expression systems and detection of the enzymatic activity.
  • a clone coding for a full length S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase sequence was identified using the partial DNA sequence of the S-adenosylmethionine: Mg-protoporphyrin-IX- 0-Methyltransferase identified in SEQ ID NO 2.
  • Expression vectors are suitable for the expression of recombinant proteins in E. coli, but also baculovirus vectors for the expression of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase in
  • Insect cells Bacterial expression vectors are derived, for example, from pBR322 and carry a bacteriophage T7 promoter for expression.
  • the plasmid is propagated in an E. coli strain which carries an inducible gene for the T7 polymerase (for example JM109 (DE3); Promega).
  • the expression of the recombinant protein is activated via the induction of the T7 polymerase by IPTG.
  • IPTG-inducible systems from Qiagen are available (pQE vectors) or Novagen (pET vectors). Depending on the interfaces available, there are all vectors with all reading frames.
  • the one with the S-adenosylmethionine Mg-protoporphyrin-IX-0-
  • Vectors containing methyltransferase-transformed E. coli strain was incubated in the culture medium "2xYT" (per 1 liter: bacto-trypton 16 g, yeast extract 10 g, NaCl 1 5 g). The cultivation took place at 37 ° C up to an OD 5 eo of 0.6. After the addition of IPTG (1 mM), the growth continued for a further 10 min at 37 ° C., then for a further 4 h at 28 ° C. until the harvest. The cells were centrifuged off and washed in 1% NaCl.
  • Plant transformation vector pBIN19AR-TP pBIN19AR-TP contains a plastid targeting sequence (TP; see FIG. 2) integrated in the polylinker of the vector, which was inserted via the interfaces Kpnl (as Asp718 isoschizomer) and BamHI (Höfgen and Willmitzer, Plant Science 66 (1990 ), 221-230).
  • TP plastid targeting sequence
  • the 555 base pair fragment coding for the Physcomitrella-S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase according to SEQ ID NO 2 was converted into a binary vector (PBIN-AR-TP; see FIG. 2B) in antisense orientation cloned under control of the 35S promoter.
  • the following primers were chosen for cloning the S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase into a binary vector in an antisense orientation.
  • PpS adenosylmethionine Mg protoporphyrin IX-0-methyltransferase ASpBINI forward 5 'TATGTCGACTATCGAATTCGGCACGAGCT
  • PpS adenosylmethionine Mg protoporphyrin IX-0-methyltransferase ASpBIN2 backwards 5 'TATGGATCCAGCTTTGGAAACGGGAACGCA 3'
  • the PCR product was purified using the Gene Clean Kit (Dianova GmbH, Hilden) and digested with Sall and BamHI.
  • the vector pBIN19AR-TP09 was also cut with Sall and BamHI, which additionally contains the transit peptide of the transketolase from potato behind the CAMV 35S promoter.
  • the heterologous signal sequence (from potato) serves as an additionally detectable sequence in transgenic tobacco plants (via Northern blot or via PCR), beyond the detection of S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase antisense RNA.
  • the construct is shown in Fig. 2B.
  • This construct was transformed into tobacco by Agrobacterium-mediated transformation. Regenerated plants were examined for S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase mRNA amounts. All examined antisense plants with reduced S-adenosyimethionine: Mg-protoporphyrin-IX-0- Amounts of methyl transferase mRNA showed significant differences in terms of plant size. Plants were found that were reduced in size and plants that showed significant bleaching. These bleaches are due to greatly reduced amounts of chlorophyll. The chlorophyll amounts were determined as described in Lichtenthaler and Wellbum (1983) with 100% acetone extracts.
  • the reaction takes place in a total volume of 150 ⁇ l with 20 ⁇ g protein extract (heterologously expressed as His-Tag protein in E. coli with or without subsequent affinity purification via NTA agarose), 0.35 M S-adenosylmethionine (SAM; Sigma) or 3.7 kBq [Methyl-C] SAM (NEN, Boston, USA; specific activity 2.1 GBq mmol "1 ), 20 ⁇ M Mg-protoporphyrin-IX, 0.1 M tricine-NaOH (pH 7.9), 0.3 M glycerol, 25 mM MgCl 2 and 1 mM dithiotreitol.
  • SAM S-adenosylmethionine
  • Homocysteine has free sufhydryl groups that react with the Ellman reagent (5,5'-dithio-bis (2-nitrobenzoic acid; DTNB; Sigma). The detection is carried out photometrically at an absorption wavelength of 412 nm.
  • DTNB is solved according to the manufacturer's instructions (3.96 mg / ml in 0.1 M phosphate buffer pH 7.0), and in a volume ratio of 1: 500 to the batch to be measured (20 ⁇ g E. coli total protein extract in 0.1 M phosphate powder pH 8.0) . The incubation was repeated several times during the up to 45 min Absorbance at 412 nm determined according to the following formula:
  • tobacco leaf disks with sequences of S-adenosylmethionine: Mg-protoporphyrin-IX-0- Transformed methyl transferase from P. patens To transform tobacco plants, 10 ml of an overnight culture of Agrobacterium tumefaciens grown under selection were centrifuged off, the supernatant was discarded and the bacteria were resuspended in the same volume of antibiotic-free medium. Leaf disks of sterile plants (diameter approx. 1 cm) were bathed in this bacterial suspension in a sterile petri dish.
  • the leaf disks were then placed in Petri dishes on MS medium (Murashige and Skoog, Physial, Plant (1962) 15, 473) with 2% sucrose and 0.8% Bacto agar. After 2 days of incubation in the dark at 25 ° C, they were on MS medium with 100 mg / l kanamycin, 500 mg / l claforan, 1 mg / l benzylaminopurine (BAP), 0.2 mg / l naphthylacetic acid (NAA), 1.6% glucose and 0.8% Bacto agar transferred and cultivation continued (16 hours light / 8 hours dark). Growing shoots were transferred to hormone-free MS medium with 2% sucrose, 250 mg / l Claforan and 0.8% Bacto-Agar.
  • the cDNA sequence coding for the PMT from tobacco was determined by screening a lambda ZAP II cDNA library from Nicotiana tabacum (SR1, Stratagene, USA) using a partial EST clone from the moss Physcomitrella ( SEQ ID NO 4) identified according to a standardized protocol.
  • a 548 bp restriction fragment of the EST sequence according to SEQ ID NO 4 was used as a probe for the hybridization of the cDNA library and radioactively labeled with cc-32-P-DCTP using the random primer labeling kit (GIBCO Life Technologies, Eggenstein).
  • the hybridization was carried out according to the following protocol: a) 4 hours prehybridization at 51 ° C with a hybridization solution of the following composition: 5 x SSC, 0.1% SDS, 5 x Denhardts reagent, 100 ⁇ g / ml denatured fish DNA, b) 16 hours main hybridization at 51 ° C with fresh hybridization solution of the following composition: 5 x SSC, 0.1% SDS, 5 x Denhardts reagent, 100 ⁇ g / ml denatured fish DNA with radioactively labeled cDNA probe, c) washing conditions: 1x with 5xSSC, 0.1% SDS , 10 minutes, 51 ° C; 2x with 2xSSC, 0.1% SDS, 10 minutes each, 51 ° C.
  • the PMT cDNA sequence identified and shown in SEQ ID NO 1 comprises 1134 base pairs (without the polyA tail) with a start codon at position 12-14 and a stop codon at position 987-989. Nucleotides 12-986 encode 325 amino acids.
  • the deduced amino acid sequence of the PMT gene is shown in SEQ ID NO 5.
  • the open reading frame for the complete unprocessed protein using the oligonucleotide primers was forward primers: Exe-F 1 (Ncol) 5'-GAT CCC ATG GCT TTC TCT TCG CCA CTA TTC-3 'and reverse primer:
  • Exe-RI 5'-GAT CGG ATC CGC AGG GAC AGC CTC AAT AAG CTT-3 'from the DNA sequence according to SEQ ID NO: 1 amplified by PCR.
  • the PCR conditions were as follows: 5 min. Denaturation at 95 ° C, then for 25 cycles: 1 min. At 94 ° C, 12 min. At 60 ° C / 1 min. At 72 ° C, finally another 3 min Extension at 72 ° C.
  • the PCR was carried out with the PWO enzyme from Stratagene (La Jolla, USA) on a ThermoCycler 9700 from Perkin-Elmer.
  • the amplified PCR fragment was purified using the Qiagen PCR Purification Kit (Qiagen, Hilden), cut with the restriction enzymes Ncol and BamHI (Amersharn, Freiburg, Germany) and ligated into the expression vector pET20B (Novagen) cut with the same enzymes (ligation with TF-DNA ligase from Amersharn for 20 hours at 15 ° C).
  • This pET vector expresses the foreign protein under the control of a promoter recognized by the T7 polymerase and encodes the PelB leader sequence at the N-terminal end of the recombinant protein and a histidine tag at the C-terminal end (FW Studier et al. (1990 ), Meth. Enzymol. 185: 60-89).
  • the synthesis of the foreign protein is made possible after the induction of the synthesis of the bacteriophage T7 RNA polymerase in the E. coli cells.
  • the ligated vector was transformed into the E. coli strain MOS blue (Amersharn, Freiburg) and then into the strain E coli BL 21 (Novagen, Madison, Wl, USA).
  • the E. coli strain BL21 was grown in LB medium to an optical density of 0.6, and then the expression was increased by adding 1 mM IPTG for 5 Hours induced. A recombinant protein with a molecular weight of 33 kDa was synthesized. The protein was in the soluble protein fraction of disrupted E. coli cells.
  • the overexpressed protein was purified using the TALON beads (Clontech) on a cobalt affinity column according to the manufacturer's instructions.
  • the purified protein was infected in rabbits for antibody production.
  • the enzymatic detection of the recombinant protein was carried out according to the method of Gibson and Hunter (FEBS Letters 352: 127-130).
  • the bacterial extract was in a 500 ul assay volume in a buffer consisting of 50 mM Tris-HCl, pH 8.4, 5 MM EGTA with 20 gM Mg protoporphyrin IX (Porphyrin Products Inc., Utah, USA) and 0.5 MM S-Adenosyl-L-Methioni ⁇ (Sigrna, Deisenhofen) incubated as a cofactor at 33 ° C for 60 minutes. At six measuring points (0 sec., 30 sec., 10 min., 25 min., 40 min.
  • Mg porphyrins Diluted 8-fold for the analysis of the Mg porphyrins on a HPLC system from Waters using a Nova-Pak C 1.
  • the Mg porphyrins were eluted with the following linear gradient: from solution A (10% 1 M NH 4 acetate, 10% methanol) to solution B (10% 1 M NH acetate, 90% methanol) within the first 7 minutes , from the 7th to the 21st minute 100% solution B, from the 21st to the 23rd minute of solution B to solution A, from the 23rd to the 29th minute solution A.
  • the elution profile of the Mg porphyrins from the extracts of the PMT assay, which were removed at the indicated reaction times, are shown in FIG. 3.
  • Mg protoporphyrin usually has an elution time of 14.8 minutes and Mg protoporphyrin IX monomethyl ester has an elution time of 16.25 minutes.
  • the DNA sequence according to SEQ ID NO 1 was carried out using the restriction enzymes Smal and Sall in the multiple cloning interface of the pBluescript vector (Stratagene, Amsterdam, Netherlands) cut out of the vector and in sense orientation into the binary vector BinAR-TX (Höfgen and Willmitzer (1 990) Plant Science 66: 221-23 0), a pBIB descendant, which was digested with the same restriction endonucleases, ligated in behind the CAMV 35S promoter.
  • a restriction map of the vector BinAR-TX is attached as Fig. 4.
  • the recombinant vector pPMTbin was then transformed into Agrobacterium tumefaciens (Stanun GV2260; Horsch et al. (1,985), Science 227, 1229-123 1) and for the transformation of tobacco plants (SNN) by means of the leaf disc transformation technique (Horsch et al., supra) used.
  • an overnight culture of the corresponding Agrobacterium tumefaciens clone was centrifuged for 10 minutes at 5000 rpm, and the bacteria were resuspended in 2YT medium.
  • Young tobacco leaves one Sterile culture (Nicotiana tabacum cv. Samsun NN) was cut into small pieces of about 1 cm 2 in size and placed briefly in the bacterial suspension. The leaf pieces were then placed on MS medium (Murashige and Skoog (1 962), Physiol. Plant. 15, 473; 0.7% agar) and incubated for two days in the dark.
  • the leaf pieces were then sprouted on MS medium (0.7% agar) with 1.6% glucose, 1 mg / l 6-benzylaminopurine, 0.2 mg / l naphthylacetic acid, 500 mg / l claforan (Cefotaxim, Hoechst, Frankfurt) and 50 mg / l kanamycin.
  • the medium was changed every seven to ten days.
  • shoots had developed the leaf pieces were transferred to glass jars containing the same medium. Resulting shoots were cut off and placed on MS medium with 2% sucrose and 250 mg / l Claforan and regenerated to whole plants.
  • Example 11 in which transgenic plants are described which, because of the overexpression of the DNA sequence according to the invention, have an increased activity of the PMT, the cDNA sequence was used for the production of transgenic tobacco plants which have a reduced activity of PMT SEQ ID NO 1 was cut out of the pBluescript vector using the restriction enzymes EcoRV and Xbal and ligated into a binary vector BinAR-TX digested with the same enzymes behind the 35S promoter of CAMV (see FIG. 4). The recombinant plasmid was first transferred into the E. coli strain pMOS and then into the Agrobacterium tumefaciens strain GV 2260.
  • the recombinant agrobacteria with the binary vector pPMTASdin were integrated into the tobacco genome according to the leaf disk transformation (see Example 11).
  • the transformants with the PMT sense gene construct showed two different external appearances. About 30 plants showed pale green to green-yellowish leaves and reduced growth. The remaining lines showed no noticeable differences compared to the control plants, although the presence of the transgene was also proven in these lines by means of genomic Southern blot analysis.
  • the PMT antisense plants showed a reduced growth compared to the control plants, a bleached phenotype, reduced RNA and protein contents for PMT and a greatly reduced chlorophyll content.
  • the primary transformants showed one to several copies of the PMT transgene compared to the control plants.
  • Three antisense RNA synthesizing lines were subjected to detailed analysis.
  • the transgenic plants with the copies of the PMT transgene in sense or antisense orientation were analyzed in Southern blot methods.
  • the hybridization with one labeled cDNA fragment for PMT resulted in one to several additional hybridization bands of the genomic DNA digested with a restriction enzyme.
  • a Northem blot analysis showed an increased amount of specific RNA compared to the PMT-RNA contents of the control plants in the case of the PMT sense lines and a reduced amount in the case of the transformants with PMT antisense genes.
  • Increased PMT contents could be determined by means of Western blot analysis in the lines with PMT sense gene constructs and reduced PMT contents in lines with the PMTA antisense construct.
  • the PMT activity of the transformants was determined in vivo. In parallel to the increased protein contents, an increased enzyme activity could be determined for the PMT sense lines, while the lines with antisense RNA showed reduced activities (FIG. 6).
  • ALA synthesis is the rate-limiting step of tetrapyrrole synthesis and is influenced by many external factors (such as light, day / night rhythm, light intensity) and endogenous factors (such as endogenous clock, hormones, development). The results imply a regulatory mechanism that aligns the activities of the early steps with those of the later steps, here that of the PMT.
  • the adaptation of the ALA biosynthesis performance to the activities in the Mg porphyrin synthesis pathway is believed to be based on a joint coordination of the transcriptional and post-translational expression control.
  • Fig. 1 Illustration of the three cassettes for the three different reading frames of the plastid transit peptide of the plastid S-adenosylmethionine: Mg-protoporphyrin-IX-0-methyltransferase from potato.
  • Fig. 2 (A): Plant transformation vector pBIN19AR-TP.
  • TK-Tp transit peptide of the transketolase from potato
  • OCS octopine synthase terminator
  • Fig. 3 Enzyme activity of the recombinant Mg-PMT protein shown as a gene map and elution profile of the Mg porphyrins from the extracts of the PMT enzyme test.
  • Fig. 5 Bar chart showing the Mg-porphyrin content of selected transgenic Mg-PMT tobacco plants containing Gene constructs with coding nucleotide sequences in sense and
  • Antisense orientation referred to as sense and antisense.
  • Fig. 6 Bar chart to show the Mg-PMT activity in modified tobacco plants (Mg-PMT content after 1 hour of incubation).
  • Fig. 7 Bar chart to show the ALA content in transgenic Mg-PMT tobacco lines containing gene constructs with coding nucleotide sequences in sense and antisense orientation, referred to as sense and antisense.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Nukleotidsequenz kodierend für eine pflanzliche S-Adenosylmethionin:Mg-Protoporphyrin-IX-O-Methyltransferase, Verfahren zur Erzeugung von genetisch veränderten Pflanzen mit einer veränderten Kontrolle des Chlorophyllbiosyntheseweges und/oder einem veränderten Chlorophyllgehalt und/oder einer Toleranz gegenüber Herbiziden. Gegenstand der Erfindung sind Pflanzen mit verändertem Chlorophyllgehalt sowie Herbizid-tolerante Pflanzen. Ferner betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen pflanzlichen PMT-Nukleotidsequenzen zur Beeinflussung des Chlorophyllgehalts transgener Pflanzen sowie zur Auffindung von Effektoren, insbesondere Inhibitoren pflanzlicher PMTs sowie Verbindungen mit herbizider Wirkung.

Description

Pflanzliche S-Adenosylmethionin:Mq-Protoporphyrin-lX-O- Methyltransferase, Pflanzen mit verändertem Chlorophyllqehalt und/oder Herbizidtoleranz und Verfahren zu deren Herstellung
Die Erfindung betrifft Nukleotidsequenzen kodierend für pflanzliche S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferasen, Pflanzen mit verändertem Chlorophyllgehalt, Herbizid-tolerante Pflanzen sowie Verfahren zur Herstellung solcher Pflanzen.
Die S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase
(PMT; EC 2.1.1.11) ist bei der Biosynthese von Chlorophyll sowie der Hämgruppe beteiligt.
Die Wege der Chlorophyll- und der Hämbiosynthese bedienen sich einiger gemeinsamer enzymatischer Schritte. Häm fungiert in höheren Tieren als Kofaktor im Hämoglobin, in Pflanzen als Kofaktor in Cytochromen, P450- Oxygenasen, Peroxidasen und Katalasen (zur Übersicht siehe Voet und Voet, Biochemie, 1994, VCH; Suzuki et al., 1997, Annual Reviews in Genetics 31 : 61-89; Rüdiger 1997, Phytochemistry 46: 1151-1167) und ist somit ein essentieller Bestandteil in allen aeroben Organismen.
Der letzte gemeinsame Schritt der beiden Biosynthesewege ist die Oxidation von Protoporphyrinogen-IX zu Protoporphyrin-IX, welches durch das Enzym Protoporphyrinogen-IX-Oxidase katalysiert wird (zur Übersicht siehe Richter, Biochemie der Pflanzen, 1996, Georg Thieme Verlag). Auf dem Weg zum Chlorophyll erhält Protoporphyrin-IX ein zentrales Mg durch die Mg-Chelatase, wodurch Mg-Protoporphyrin-IX entsteht. Eine gezielte Methylierung der Propionsäure-Seitenkette durch die S- Adenosylmethionin:Mg-Protoporphyrin-IX-O-Methyltransferase (EC 2.1.1.11 ) führt zu Mg-Protoporphyrin-133-Monomethylester, welcher weiter in ansatzweise charakterisierten Schritten zu Chlorophyll a und b umgesetzt wird.
Die essentielle Funktion der S-Adenosylmethionin:Mg-Protoporphyrin-IX- O-Methyltransferase innerhalb der Chlorophyll-Biosynthese wurde durch Untersuchungen mit Hemmstoffen gezeigt. So ist Sinefungin, ein Strukturanalogon von S-Adenosylmethionin (SAM), welches von dem Bakterium Streptomyces sekretiert wird, in der Lage, die S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase zu inhibieren, welche aus Gerste-Chloroplasten angereichert wurde (Vothknecht et al., 1995, Plant Physiology und Biochemistry 33, 759-763). Die Verabreichung zunehmender Mengen an Sinefungin führte zu einer zunehmenden Hemmung der Chlorophyll-Biosynthese in den Gerstenblättem.
Die Rolle der PMT als Schlüsselenzym am Verzweigungspunkt des Tetrapyrrol-Stoffwechselwegs macht dieses Enzym zu einem besonders wertvollen Instrument für die molekulare Biotechnologie. Mit Hilfe molekularbiologischer Techniken, wie der Übertragung von DNA- Sequenzen, die für die PMT kodieren, könnten in Pflanzen Änderungen in der Chlorophyllbiosyntheseleistung erzielt werden. Auf diese Weise wäre beispielsweise die Erzeugung von transgenen Pflanzen mit gegenüber Wildtyppflanzen erhöhtem oder verringertem Chlorophyllgehalt möglich. Durch eine Beeinflussung der Genexpression, entweder durch Suppression oder durch Überexpression, kann in hohem Maße Einfluß auf die Vitalität und/oder das Wachstum von Pflanzen genommen werden. Darüber hinaus stellt die PMT als „Target" einen neuen Ansatzpunkt für die Identifizierung und/oder Entwicklung einer neuen Generation hochspezifisch wirksamer herbizider Verbindungen dar. Vor allem hinsichtlich verstärkter Bemühungen Herbizide gezielter in der Landwirtschaft sowie in Bereichen der Pflanzenzüchtung und des Pflanzenschutzes einzusetzen, ist eine weitere Aufklärung des Chlorophyll-Biosyntheseweges von großem Interesse. Hierbei steht insbesondere die Charakterisierung des Schlüsselenzyms S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase im
Vordergrund.
Wie gegenwärtig angenommen wird, ist die PMT ein lösliches Enzym im Stroma der pflanzlichen Plastide. Enzymaktivitäten der PMT sind bereits in Pflanzen, beispielsweise in Mais (Radmer und Bogorad (1967), Plant Physiol. 42: 463-465), und in photosynthetischen Bakterien (Gorchein (1972), Biochem, J. 127: 97-106) beschrieben worden. Das bchM-Gen aus Rhodobacter capsulatus wurde als Gensequenz identifiziert, die eine PMT kodiert (Bollivar et al. (1994), J. Bacteriol. 176: 5290-5296; Gibson und Hunter (1994) FEBS Letters 352: 127-130). Dieses Gen befindet sich in einem 46 kB langen Gencluster, der zunächst vollständig sequenziert wurde und in dem Gene für zahlreiche Proteine der Bakteriochiorophyll- und Carotinoidsynthese und des Photosyntheseapparats enthalten sind. Die Funktion des bchM-Genprodukts konnte durch eine Genunterbrechung nachgewiesen werden, da sich nach Verlust der Aktivität des kodierten Proteins das Substrat der PMT, Mg-Protoporphyrin IX, anreicherte.
Ferner wurde durch Komplementation einer Rhodobacter bchM-Mutante das Cyanobakterien-Gen ChIM in einer Cosmid-Bibliothek von Synechocystis 6803 gefunden (Jensen et al, 1996, Plant Molecular Biology 30: 1307-1314). Das Cyanobakterien-Genprodukt ChIM hat eine Aminosäurenidentität zum entsprechenden Rhodobacter-Protein von 29%. Aufgrund der geringen Sequenzähnlichkeit war es jedoch nicht möglich, das ChlM-Gen aus Cyanobakterien als Sonde für pflanzliche cDNA für PMT zu verwenden.
Zwar sind zwischenzeitlich verschiedene EST-Sequenzen in Datenbanken erschienen (AL035523, APO00559, AL035396, AWO38070, T05529, S71781), die Ähnlichkeiten mit den beiden vorstehend genannten Gensequenzen für die bakteriellen Methyltransferasen BchM und ChIM zeigen. Ein funktioneller Nachweis der EST-Sequenzen, d.h. daß sie für PMT kodieren, wurde bislang jedoch nicht erbracht. Ebenfalls stehen bislang keine Gene, kodierend für eine S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus Pflanzen zur Verfügung.
Ein Ziel der vorliegenden Erfindung ist somit, Gensequenzen aus Pflanzen, die für eine S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase kodieren zur Verfügung zu stellen. Ein weiteres Ziel der vorliegenden Erfindung ist die Bereitstellung transgener Pflanzen oder Teile, Gewebe oder Zellen davon mit einer veränderten Kontrolle des Chlorophyllbiosyntheseweges, einem verändertem Chlorophyllgehalt und/oder einer Toleranz gegenüber Herbiziden sowie deren Verwendung in der Pflanzenzucht.
Diese Aufgabe wird durch die vorliegende Erfindung in vorteilhafter Weise gelöst.
Gegenstand der vorliegenden Erfindung ist eine Nukleotidsequenz kodierend für eine pflanzliche S-Adenosylmethionin:Mg-Protoporphyrin-IX- O-Methyltransferase oder Teile, Derivate, Homologe oder Isoformen davon. In einer besonderen Ausführungsvariante der vorliegenden Erfindung ist eine Nukleotidsequenz kodierend für eine pflanzliche S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase umfaßt, welche eine Sequenz gemäß SEQ ID NO 1 und das durch sie kodierte pflanzliche Protein eine Aminosäuresequenz gemäß SEQ ID NO 5 enthält. Insbesondere kodiert diese Nukleotidsequenz für eine Aminosäuresequenz mit der biologischen Aktivität einer S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase aus Tabak (Nicotiana tabacum). Ferner betrifft die vorliegende Erfindung auch Nukleotidsequenzen kodierend für eine pflanzliche S-Adenosylmethionin:Mg-Protoporphyrin-IX- O-Methyltransferase, die eine Sequenz gemäß SEQ ID NO 2 oder gemäß SEQ ID NO 3 oder gemäß SEQ ID NO 4 enthalten. Umfaßt sind erfindungsgemäß ferner Nukleotidsequenzen, die für ein Protein kodiert, das eine Aminosäuresequenz gemäß SEQ ID NO 6 oder SEQ ID NO 7 enthält. In einer bevorzugten Variante der vorliegenden Erfindung stammen die für eine S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase kodierenden Nukleotidsequenzen oder Teile davon aus Physcomitrella patens.
Die vorliegende Erfindung schließt neben den zuvor genannten Nukleotidsequenzen auch im wesentlichen gleichwirkende, d.h. funktioneil äquivalente Nukleotidsequenzen (Allelvariationen) ein.
Erfindungsgemäß sind auch Nukleotidsequenzen umfaßt, ausgewählt aus der Gruppe bestehend aus a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 5 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in
SEQ ID NO. 6 oder SEQ ID NO 7 angegebene Aminosäuresequenz oder Fragmente davon kodieren, c) DNA-Sequenzen, die die in SEQ ID No. 1 oder SEQ ID NO 4 angegebene Nukleotidsequenz oder Teile davon enthalten, d) DNA-Sequenzen, die die in SEQ ID No. 2 oder SEQ ID NO 3 angegebene Nukleotidsequenz oder Teile davon enthalten, e) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a), b), c) oder d) hybridisieren, oder Teile dieser Nukleotidsequenz umfassen, f) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer
Nukleotidsequenz von a), b, c), d) oder e) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, g) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer
Nukleotidsequenz von a), b), c), d) e) oder f) darstellen.
Gegenstand der vorliegenden Erfindung sind auch Nukleotidsequenzen, die zu einer der zuvor genannten Nukleotidsequenzen homolog ist, d. h. eine Sequenzidentität von mindestens 40%, bevorzugt wenigstens 60%, besonders bevorzugt von mehr als 80% und insbesondere von mehr als 90% aufweist und für ein Protein mit der biologischen Aktivität einer S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile davon kodiert.
Erfindungsgemäß kann es sich bei der für eine S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase, deren Teile, Derivate oder Homologe kodierende Nukleotidsequenz um natürliche, chemisch synthetisierte, modifizierte oder artifiziell erzeugte Nukleotidsequenzen handeln. Ferner kann die für die S-Adenosylmethionin:Mg-Protoporphyrin- IX-O-Methyltransferase kodierende Nukleotidsequenz und deren Allelvariationen heterologe Nukleotidsequenzen verschiedener anderer Organismen sowie Mischungen dieser und der zuvor genannten Nukleotidsequenzen enthalten.
Erfindungsgemäß sind ferner sowohl Teile kodierender Nukleotidsequenzen, wie z. B. partielle cDNAs, als auch sogenannte Gesamtlängen-Klone eines kodierenden Strukturgens, ggf. nebst regulativer Elemente, umfaßt. Dies schließt beispielsweise auch sogenannte EST-Sequenzen (Expressed Sequence Tag) ein. Die Länge einer erfindungsgemäßen S-Adenosy!methionin:Mg- Protoporphyrin-IX-O-Methyltransferase kann zum Beispiel im Bereich von 325 ± 10 Aminosäurereste bis 325 ± 250 Aminosäurereste, bevorzugt von 325 ± 50 bis 325 ± 100 und besonders bevorzugt von 325 ± 25 bis 325 ± 50 Aminosäurereste variieren. Dabei entspricht die „Basiszahl" von 325 Aminosäureresten erfindungsgemäß einer Polypeptidsequenz einer S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase gemäß SEQ ID NO 5 kodiert durch eine Nukleotidsequenz gemäß SEQ ID NO 1. Folglich kann die „Basiszahl" des Polypeptids in Abhängigkeit von der sie kodierenden Nukleotidsequenz ebenfalls variieren. Im Zusammenhang mit der vorliegenden Erfindung wird unter einem Protein mit der biologischen Aktivität einer S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase ein Protein verstanden, das die Methylierung von Protoporphyrin IX katalysiert. Der Begriff biologisch aktives Fragment bedeutet im Rahmen dieser Erfindung, daß die vermittelte biologische Aktivität zu einer Beeinflussung des Chlorophyllgehalts ausreicht.
Funktionen äquivalente Sequenzen, die für eine S-Adenosylmethionin:Mg- Protoporphyrinogen-IX-O-Methyltransferase kodieren, sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen besitzen (Allelvariationen). Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische oder gentechnische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte, künstliche Nukieotid-Sequenzen. Hierbei kann es sich beispielsweise um DNA- oder RNA-Moleküle, cDNA, genomische DNA, mRNA etc. handeln. Darüber hinaus umfassen funktioneil äquivalente Sequenzen solche, die eine veränderte Nukleotidsequenz aufweisen, welche dem Enzym eine Resistenz gegenüber Inhibitoren verleiht.
Unter einem funktioneilen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für eine S-Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyltransferase kodierende Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation der S- Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyltransferase-
Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein. Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist.
Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beschrieben, die gewünschten Eigenschaften vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die S-Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyltransferase- Aktivität aufweisen oder durch in vitro-Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon- Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln.
Eine weitere Variante der vorliegenden Erfindung umfaßt eine Nukleotidsequenz und deren Allelvariationen, die für eine modifizierte S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile, Derivate, Homologe oder Isoformen davon kodiert, die eine Toleranz gegenüber Verbindungen mit herbizider Wirkung, wie z.B. Sinefungin, aufweist. Hierbei sind Varianten eingeschlossen, die eine verbesserte Toleranz gegenüber Herbiziden aufweisen oder vollkommen unempfindlich gegenüber Herbiziden sind, d.h. Varianten, die nur geringfügig oder gar nicht durch Herbizide gehemmt werden. Zur Herstellung solcher resistenten Formen wird erfindungsgemäß eine in- vitro- oder in-vivo- (Bakterien)-Mutagenese durchgeführt, bei der nach an sich bekannten Methoden entsprechend resistente Formen des Gens identifiziert werden können. Mit dieser Technik können für jeden beliebigen S-Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-
Methyltransferase-spezifischen Hemmstoff resistente Formen der S- Adenosylmethionin:Mg-Protoporphyrinogen-lX-0-Methyltransferase generiert werden. Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Isolierung einer Nukleotidsequenz kodierend für eine Herbizid-tolerante S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-
Methyltransferase, wobei eine erfindungsgemäße Nukleotidsequenz der zuvor beschriebenen Art in eine in-vitro- oder in-vivo-Mutagenese eingesetzt wird, anschließend ggf. in einen ein- oder mehrzelligen Wirtsorganismus übertragen wird, so dann die Organismen, die sich in Anwesenheit eines Herbizides (aufgrund der durch Mutation modifizierten Nukleotidsequenz kodierend für eine Herbizid-tolerante PMT) vermehren können, isoliert werden und abschließend die in diesen Organismen enthaltenden genetisch veränderten Nukleotidsequenzen kodierend für eine Herbizid-tolerante S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase isoliert werden.
Ferner zeichnet sich das erfindungsgemäße S-Adenosylmethionin:Mg- Protoporphyrinogen-IX-O-Methyltransferase-Gen dadurch aus, daß ihm operativ verknüpfte regulative Nukleinsäuresequenzen zugeordnet sind, welche die Expression der kodierenden Sequenz in einer Wirtszelle steuern.
Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung beispielsweise von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Als Promotor ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. So können die erfindungsgemäßen DNA-Sequenzen beispielsweise unter Kontrolle konstitutiver, aber auch induzierbarer und/oder gewebe- bzw. entwicklungsspezifischer Regulationselemente, insbesondere Promotoren, in Pflanzenzellen exprimiert werden. Während beispielsweise die Verwendung eines induzierbaren Promotors die gezielt ausgelöste Expression der erfindungsgemäßen DNA-Sequenzen in Pflanzenzellen ermöglicht, bietet beispielsweise der Einsatz von gewebespezifischen, beispielsweise blatt- und/oder samenspezifischen, Promotoren die Möglichkeit, den Chlorophyllgehalt in bestimmtem Gewebe, z.B. in Blattbzw. Samengewebe, zu verändern. Andere geeignete Promotoren vermitteln z.B. Licht-induzierte Genexpression in transgenen Pflanzen. In Bezug auf die zu transformierende Pflanzen kann der Promotor homolog oder heterolog sein. Weitere geeignete Promotoren sind z.B. der 35S RNA-Promotor des Cauliflower Mosaic Virus und der Ubiquitin-Promotor aus Mais für eine konstitutive Expression. Als samenspezifische Promotoren bieten sich bspw. der USP- (Bäumlein et al. (1991), Mol. Gen. Genet. 225: 459-467) oder der Hordein-Promotor (Brandt et al. (1985), Carlsberg Res. Commun. 50: 333-345). Die genannten Promotoren eignen sich auch besonders für die gezielte Reduktion des Chlorophyllgehalts in transgenen Samen unter Einsatz der erfindungsgemäßen DNA-Sequenzen im Zusammenhang mit der Antisense- oder Cosuppressions-Technik. In jedem Fall kann der Fachmann geeignete Promotoren der Literatur entnehmen oder mittels Routineverfahren selbst aus beliebigen Pflanzen isolieren.
Weitere zur operativen Verknüpfung bevorzugte aber nicht darauf beschränkte Sequenzen sind Enhancer, Transkriptionsterminatoren, Targeting-Sequenzen (Transitsignalsequenzen) zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrien, im Endoplasmatischen Retikuium (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nuci. Acids Res. 15 (1987), 8693-871 1). Ferner sind Transkriptions- bzw. Terminationssequenz vorhanden, die der korrekten Beendigung der Transkription dient, sowie der Addition eines polyA-Schwanzes an das Transkript dienen kann, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (z.B. Gielen, 1989, EMBO J., 8: 23-29) und beliebig austauschbar, wie z.B. der Terminator des Octopinsynthasegens aus Agrobacterium tumefaciens.
Gegenstand der vorliegenden Erfindung ist ferner eine Genstruktur enthaltend ein S-Adenosylmethionin:Mg-Protoporphyrinogen-IX-0- Methyltransferase-Gen nach einer der zuvor beschriebenen Ausführungsvarianten sowie mit diesem operativ verknüpfte regulative Nukleotidsequenzen der zuvor genannten Art. Hierbei sind auch Chimäre Genkonstrukte denkbar unter denen erfindungsgemäß Mischungen aus einer erfindungsgemäßen Nukleotidsequenz fusioniert mit homologen oder heterologen regulativen Strukturen zu verstehen sind.
In einer bevorzugten Ausführungsform umfaßt die Genstruktur stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegend kodierenden Sequenz für das S- Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyitransferase-Gen operativ verknüpft sind.
Die vorliegende Erfindung umfaßt dabei auch eine Genstruktur enthaltend regulatorische Nukleotidsequenzen aus der Gruppe der Promotoren, Enhancer, Operatoren, Terminatoren, Polyadenylierungssignale, Targeting-Sequenzen, Retentionssignale oder Translationsverstärker. Beispiele hierzu sind zahlreich in der Literatur beschrieben. Bevorzugt zählen hierzu solche regulatorische Sequenzen, die in den verwendeten Wirtsorganismen und/oder Pflanzen aktiv sind.
Als Promotoren der Genstruktur ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CAMV 35SPromotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285-294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J, 8 (1989),2195-2202).
Die Genstruktur kann auch beispielsweise einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen S- Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyltransferase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z. B. der PRP1 -Promotor (Ward et al., Plant. Mol. Biol. 22 (1993), 361 -366), ein durch Salizylsäure induzierbarer Promotor (WO 95119443), ein durch Benzenesuifonamidinduzierbarer (EP-A 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor können u.a. verwendet werden.
Mit Hilfe eines samenspezifischen Promotors konnte ein Fremdprotein stabil bis zu einem Anteil von 0,67 % des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, BioΛTechnology 10 (1995), 1090-1094). Die Genstruktur kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin-Promotor (US 5504200), den USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459 - 467) oder LEB4Promotor (Fiedler und Conrad, 1995), das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.
In einer bevorzugten Ausführungsvariante des vorliegenden Erfindung ist ein Genkonstrukt umfaßt, enthaltend als regulative Nukleotidsequenz einen konstitutiven Promotor. Denkbar ist gleichermaßen eine erfindungsgemäßes Genstruktur enthaltend als regulative Nukleotidsequenz einen blatt- und/oder samenspezifischen und/oder einen induzierbaren, bevorzugt einen Licht-induzierbaren Promotor. Die Herstellung einer Genstruktur erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten Nukleotidsequenz kodierend eine S- Adenosylmethionin:Mg-Protoporphyrinogen-IX-0-Methyltransferase (Strukturgen) und vorzugsweise einer zwischen Promotor und „Strukturgen" inserierten DNA, die für ein chloroplastenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal im Anschluß an das Strukturgen. Gängige Rekombinations- und Klonierungstechniken sind beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratury, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M-L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben.
Insbesondere bevorzugt sind Sequenzen, die ein Targeting in den Apoplasten, in Piastiden, in die Vakuole, in das Mitochondrium, in das Endoplasmatische Retikulum (ER) oder durch ein Fehlen entsprechender operativer Sequenzen einen Verbleib im Kompartiment des Entstehens, dem Zytosol, gewährleisten (Kermode, Crit, Rev. Plant Sei. 15, 4 (1996), 285-423). Für die Menge der Proteinakkumulation in transgenen Pflanzen besonders förderlich erwiesen hat sich eine Lokalisation im ER (Schouten et al., Plant Mol. Biol. 30 (1996), 781 -792).
Gegenstand der vorliegenden Erfindung ist auch eine Genstruktur bei der die erfindungsgemäß für eine PMT kodierende Nukleotidsequenz der zuvor beschriebenen Art nicht, wie in den meisten Fällen, in Sense- Orientierung, sondern in Antisense-Orientierung enthalten ist. Es können auch Genstrukturen verwendet werden, deren DNA-Sequenz für ein S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase- Fusionsprotein kodiert. Erfindungsgemäß kann ein Teil des Fusionsproteins ein Transitpeptid sein, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation des S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyitransferase-Gens in die Chloroplasten vom S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase-Teil enzymatisch abgespalten werden. Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase oder einem funktioneilen Äquivalent dieses Transitpeptids (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco oder der Ferredoxin NADP Oxidoreduktase) abgeleitet ist.
Besonders bevorzugt sind DNA-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären S-Adenosyimethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus Kartoffel in drei Leserastern als Kpnl/BamHI-Fragmente mit einem ATG-Codon in der Ncol Schnittstelle (Fig. 1).
Ferner können die erfindungsgemäßen S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase-Fusionsproteine auch Sequenzen enthalten, die besonders zur verbesserten Aufreinigung der S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase, beispielsweise über Affinitätschromatographie geeignet sind und die im Anschluß daran auch wieder abgespalten werden können. Beispielhaft sind hier ein sogenannter „His-Tag" oder Sequenzen gegen Epitope von Antikörpern zu nennen. Erfindungsgemäß kann die in der Genstruktur enthaltende für eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltraπsferase kodierende Nukleotidsequenz synthetisch hergestellt oder natürlich gewonnen sein sowie aus verschiedenen heterologen S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase-Genabschnitten verschiedener Organismen bestehen oder Mischungen aus synthetischen und natürlichen DNA-Bestandteilen enthalten.
Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Kodons erzeugt, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Bei der Herstellung einer Genstruktur können verschiedene DNA-Fragmente derart verändert werden, daß eine Nukleotid-Sequenz erhalten wird, die zweckmäßigerweise in der korrekten Richtung abgelesen und mit einem korrekten Leseraster ausgestattet ist.
Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Bevorzugt können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, bevorzugt 1 bis 8, besonders bevorzugt 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein.
Eine Ausführungsvariante der erfindungsgemäßen Genstruktur beinhaltet in der 5'-3Transkriptionsrichtung den Promotor, eine DNA-Sequenz die für ein S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase-Gen kodiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Bevorzugte Polyadonylierungssignale sind pflanzliche
Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T- DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHδ entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktioneile Äquivalente.
Ferner können Veränderungen vorgenommen werden, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, in den Fällen, bei denen Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerrepair", Restriktion oder Ligation angewendet werden. Durch Veränderungen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Oberhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
Erfindungsgemäß kann u.a. auch das spezifische ER-Retentionssignals SEKDEL (Schouten, A. et al., Plant Mol. Biol. 30 (1996), 781 - 792) in dem Genkonstrukt enthalten sein. Hierdurch wird die durchschnittliche Expressionshöhe verdreifacht bis vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Genstruktur eingesetzt werden.
In einer weiteren Ausführungsvariante des erfindungsgemäßen
Genkonstrukts kann beispielsweise ein konstitutiver Promotor (bevorzugt den CAMV 35 S-Promotor), das LeB4-Signalpeptid, das zu exprimierende Gen und das ER-Retentionssignal enthalten sein. Besonders bevorzugt ist hier als ER-Retentionssignal die Aminosäuresequenz KDEL (Lysin, Asparaginsäure, Glutaminsäure, Leucin).
Darüber hinaus betrifft die vorliegende Erfindung einen Vektor enthaltend, wie zuvor beschrieben, eine Nukleotidsequenz kodierend eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase, mit diesem operativ verknüpfte regulative Nukleotidsequenzen sowie zusätzliche Regulationssignale, beispielsweise Nukleotidsequenzen für die Replikation in einer entsprechenden Wirtszelle und/oder zur Integration in das Wirtszell-Genom. Ferner kann der erfindungsgemäße Vektor eine Genstruktur der vorgenannten Art enthalten.
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Genstrukturen in geeignete Vektoren kloniert werden, die ihre Vermehrung in Wirtszellen, wie beispielsweise
Bakterien, Viren, Cyanobakterien, Hefen, filamentösen Pilzen, Algen,
Pflanzen, Pflanzengeweben oder -zellen ermöglichen. Die vorliegende
Erfindung betrifft somit auch Vektoren, insbesondere Plasmide, Kosmide, Viren, Bakteriophagen und andere in der Gentechnik gängige Vektoren, die die vorstehend beschriebenen erfindungsgemäßeπ
Nukieinsäuremoieküle enthalten und ggf. für den Transfer der erfindungsgemäßen Nukieinsäuremoieküle auf Pflanzen bzw.
Pflanzenzellen eingesetzt werden können. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular
Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.
Für E. coli als Wirtszelle sind als Klonierungsvektoren vor allem pBR332, pUC-Serien, M13mp-Serien und pACYCI 84 bevorzugt. Besonders bevorzugt sind binäre Vektoren, die sowohl in E coli als auch beispielsweise in Agrobakterien replizieren können. Beispielhaft sei hierfür der pBIN19 genannt (Bevan et al., Nucl. Acids Res. 12 (1984), 871 1). Beispielhaft kann die erfindungsgemäße Genstruktur auch in den Tabak- Transformationsvektor pBIN-AR-TP eingebaut werden (Fig. 2).
Die vorliegende Erfindung umfaßt ferner eine Sonde zur spezifischen Hybridisierung mit einer DNA-Sequenz oder einer davon abgeleiteten mRNA kodierend für eine S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase oder Teile davon, wobei diese Sonde eine zusammenhängende Abfolge der erfindungsgemäß für eine pflanzliche PMT kodierende Nukleotidsequenz enthält, welche wenigstens 10 Nukleotide lang ist. Hierzu zählen auch kurze Nukleotidsequenzen mit einer Länge von beispielsweise 10 bis 30, bevorzugt 12 bis 15 Nukleotiden. Dies umfaßt erfindungsgemäß u. a. auch sogenannte Primer. Die erfindungsgemäße Sonde zeichnet sich ferner dadurch aus, daß sie eine zur Detektion geeignete Markierung enthält, beispielsweise ein Digoxygenin-System (Boehringer Mannheim).
Gegenstand der Erfindung ist auch ein Kit zur Identifizierung von weiteren eukaryontischen Nukleotidsequenzen kodierend für eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase, wobei dieser Kit wenigstens eine zuvor beschriebene Sonde sowie Anleitungen zur Hybridisierung und Detektion von Nukleotidsequenzen enthält, wie sie aus der Literatur bekannt sind (Boehringer Mannheim oder T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratury, Cold Spring Harbor, NY (1989)). Dieser Kit wird erfindungsgemäß zur Isolierung von S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus Eukaryonten verwendet. Gegenstand der Erfindung ist außerdem ein Verfahren zur Isolierung einer DNA-Sequenz, die für eine pflanzliche S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase kodiert, das sich dadurch auszeichnet, daß eine cDNA-Genbank ausgehend von einer pflanzlichen Quelle erstellt wird, diese Genbank zur Hybridisierung mit einer Sonde der beschrieben Art eingesetzt wird und die positiven cDNA-Klone detektiert und isoliert werden.
Ferner bezieht sich die vorliegende Erfindung auf eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile, Derivate, Homologe oder Isoformen davon, die durch eine der zuvor beschriebenen Ausführungsvarianten der erfindungsgemäßen Nukleotidsequenzen oder deren Allelvariationen kodiert wird. Unter Isoformen sind Enzyme mit gleicher oder vergleichbarer Substrat- und Wirkungsspezifität zu verstehen, die jedoch eine unterschiedliche Primärstruktur aufweisen.
In einer erfindungsgemäßen Ausführungsvariante ist eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile davon umfaßt, enthaltend eine Aminosäuresequenz gemäß SEQ ID NO 5 oder Teile oder Derivate oder Isoformen davon oder Mischungen daraus. Bevorzugt handelt es sich hierbei um eine pflanzliche PMT, besonders bevorzugt aus Tabak (Nicotiana tabacum).
Im weiteren betrifft die vorliegende Erfindung auch eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile davon enthaltend eine Aminosäuresequenz gemäß SEQ ID NO 6 oder SEQ ID NO 7 oder Teile oder Derivate oder Isoformen davon oder Mischungen daraus. Bevorzugt stammt dieses Protein oder Teile davon aus Physcomitrella patens. Die vorliegende Erfindung betrifft ferner eine weitere Variation einer S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase, die eine Toleranz gegenüber Verbindungen mit herbizider Wirkung aufweist.
Gegenstand der vorliegenden Erfindung sind ferner Antikörper mit der Fähigkeit zur spezifischen Bindung an eine der vorher genannten S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase.
Erfindungsgemäß erfolgt die Herstellung von Antikörpern dadurch, daß in Tiere oder tierische Zellen ein Protein oder ein Teil eines Proteins kodiert durch ein erfindungsgemäßes S-Adenosylmethionin:Mg-Protoporphyrin- IX-O-Methyltransferase-Gen injeziert wird, durch Immunreaktion Antikörper gebildet werden und die produzierten Antikörper aus den Tieren oder tierischen Zellkulturen isoliert werden. Diese Antikörper werden erfindungsgemäß zum spezifischen Nachweis und zur verbesserten Aufreinigung von S-Adenosylmethionin:Mg-Protoporphyrin- IX-O-Methyltransferasen aus Eukaryonten verwendet.
Gegenstand der vorliegenden Erfindung ist ferner die Übertragung einer zuvor beschriebenen erfindungsgemäßen Nukleotidsequenz und deren Allelvariationen kodierend für eine S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus Pflanzen, beispielsweise in Form des erfindungsgemäßen Genkonstrukts oder Vektors, in geeignete Wirtssysteme. Bei einem Verfahren zur Herstellung genetisch veränderter ein- oder mehrzelliger Organismen wird eine erfindungsgemäße Nukleotidsequenz kodierend für eine S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus Pflanzen durch gentechnische Methoden auf ein geeignetes Wirtssystem übertragen.
Bezogen auf den Ursprung der erfindungsgemäßen Nukleotidsequenz aus
Pflanzen können diese Wirtssystem homologe Organismen sein.
Erfindungsgemäß sind aber auch heterologe Wirtssysteme denkbar. Prinzipiell kann es sich um Mikroorganismen, wie z. B. Bakterien, Viren, Pilze, Cyanobakterien, Algen oder Pflanzen, Pflanzengewebe oder -zellen handeln. In einigen Ausführungsvarianten der vorliegenden Erfindung sind die Mikroorganismen, Viren oder Pilze sozusagen als „Zwischenstation" vor der eigentlichen Übertragung der erfindungsgemäßen Nukleotidsequenzen in pflanzliche Systeme anzusehen. Ais Mikroorganismen sind u.a. Enterobakterien, Baciilen oder bevorzugt Agrobacterium tumefaciens denkbar, ebenso wie im Bereich der Gentechnik etablierte Hefen, z. B. Saccharomyces cereviesiae. Gegenstand der Erfindung sind auch solche Wirtszellen, die neben den erfindungsgemäßen Nukleinsäuremolekülen ein oder mehrere, auf gentechnoiogischem oder natürlichem Weg übertragene Nukieinsäuremoieküle enthalten, die die genetische Information für an der Chlorophyllbiosynthese beteiligte Enzyme tragen.
Die Übertragung von modifizierter DNA oder Fremdgenen in eine Wirtzelle erfolgt nach gentechnischen Methoden. Hier ist ein breites Spektrum an Transformationsmethoden etabliert. Geeignete Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA- Aufnahme, biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S. D. Kung und R. Wu, Academic Press (1993), 128143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205225) beschrieben. Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide, wie z.B. pUC-Derivate, verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens empfehlenswert. Dem Fachmann sind die gängigen Selektionsmarker bekannt, und es stellt für ihn kein Problem dar, einen geeigneten Marker auszuwählen. Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Tioder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- bzw. Ri-Plasmid enthaltenen T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden. Werden für die Transformation Agrobakterien verwendet, muß die einzubringende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Tioder Ri-Plamind der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eine Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarkergen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA-Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden. Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in allseits bekannten Übersichtsartikeln und Handbüchern zur Pflanzentransformation beschrieben worden.
Gegenstand der Erfindung ist somit ein genetisch veränderter ein- oder mehrzelliger Wirtsorganismus und dessen Nachkommen, enthaltend in replizierbarer Form eine erfindungsgemäße Nukleotidsequenz und/oder eine Genstruktur und/oder einen Vektor der zuvor beschriebenen Art. Bevorzugt handelt es sich bei dem erfindungsgemäß genetisch veränderten ein- oder mehrzelliger Wirtsorganismus um einen Mikroorganismus, bevorzugt ein Bakterium, oder einen Virus oder einen Pilz oder eine Pflanze oder Pflanzenzelle oder Pflanzengewebe.
Durch die Bereitstellung der erfindungsgemäßen Nukieinsäuremoieküle besteht nun die Möglichkeit, pflanzliche Zellen mittels gentechnischer Methoden dahingehend zu verändern, daß sie im Vergleich zu genetisch nicht veränderten Zellen, insbesondere Wildtypzellen, eine neue oder veränderte PMT-Aktivität aufweisen und es als Folge davon zu einer Veränderung der Chlorophyllbiosyntheseleistung und/oder Toleranz gegenüber Herbiziden kommt.
Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Pflanzen oder Teilen, Geweben oder Zellen davon mit veränderter Kontrolle der Chlorophyllbiosynthese, umfassend die Schritte der Herstellung eines Genkonstrukts und/oder eines Vektors der zuvor beschriebenen Art und der Übertragung des Genkonstrukts und/oder des Vektors auf Pflanzenzellen. In analoger Weise wird auch zur Herstellung von Pflanzen oder Teilen, Geweben oder Zellen davon mit verändertem Chlorophyllgehalt verfahren, ebenso wie bei einem Verfahren zur Herstellung von Herbizid-toleranten Pflanzen, Teilen, Geweben oder Zellen davon. Erfindungsgemäß können eine oder mehrere erfindungsgemäße Nukleotidsequenzen in replizierender Form in die Pflanzenzellen übertragen werden. Diese Verfahren umfassen in einem weiteren Schritt die Regeneration transgener Pflanzen aus den Pflanzenzellen. Die Übertragung der erfindungsgemäßen Nukleotidsequenzen, Genkonstrukte und/oder Vektoren auf Pflanzenzellen schließt dabei nicht nur die Übertragung auf isolierte in Zellkultur vorliegende Zellen ein, sondern auch die Übertragung auf lebende ganze Pflanzen, d.h. auf Pflanzenzellen die nicht in Zellkultur, sondern im intakten Gewebeverband vorliegen.
Die Regeneration der transgenen Pflanzen aus transgenen Pflanzenzellen erfolgt nach üblichen Regenerationsmethoden unter Verwendung üblicher Nährmedien und Phytohormone. Die so erhaltenen Pflanzen können dann, falls erwünscht, mittels üblicher Verfahren, einschließlich molekularbiologischer Methoden, wie PCR, Blot-Analysen, oder biochemischer Verfahren auf Anwesenheit der eingeführten DNA, die ein Protein mit der enzymatischen Aktivität einer PMT kodiert, bzw. auf Anwesenheit von PMT-Enzymaktivität untersucht werden. Unabhängig von den verwendeten regulatorischen Sequenzen, unter deren Kontrolle die Expression der PMT-DNA-Sequenzen steht, steht dem Fachmann ein breites Spektrum an molekuiarbiologischen und/oder biochemischen Verfahren für die Analyse der transformierten Pflanzenzellen, transgenen Pflanzen, Pflanzenteile, Ernteprodukte und Vermehrungsmaterial zur Verfügung, z.B. PCR, Northern Blot-Analyse zum Nachweis PMT-spezifischer RNA bzw. zur Bestimmung der Höhe der Akkumulation von PMT-spezifischer RNA, Southern Blot-Analyse zur Identifizierung von PMT-kodierenden DNA-Sequenzen oder Western Blot- Analyse zum Nachweis des durch die erfindungsgemäßen Nukleotidsequenzen kodierten PMTs. Selbstverständlich kann der Nachweis der enzymatischen Aktivität der PMT auch vom Fachmann mittels in der Literatur erhältlicher Protokolle bestimmt werden. Weiter kann man z.B. den durch Selbstung oder Kreuzungen erhaltenen Samen auf Medium auslegen, welches ein geeignetes Selektionsmittel enthält, das zu dem zusammen mit der PMT-DNA-Sequenz übertragenen Selektionsmarker paßt. Anhand der Keimfähigkeit und des Wachstums der Tochtergeneration(en) der Samen und des Segregationsmusters können Rückschlüsse auf den Genotyp der jeweiligen Pflanze gezogen werden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen- Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol, 1 , Engineering and Utilization, herausgegeben von S. D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Blozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin, Methotrexat, Glyphosat, Streptomycin, Sulfonylhamstoff, Gentamycin oder Phosphinotricin u.a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten. Hierzu sind auch alternative Marker geeignet, wie nutritive Marker, Screeningmarker (wie GFP, green fluorescent protein). Selbstverständlich kann auch vollkommen auf Selektionsmarker verzichtet werden, was allerdings mit einem ziemlich hohen Screeningbedarf einhergeht. Falls der eingesetzte Selektionsmarker nach erfolgter Transfonnation und Identifizierung erfolgreich transformierter Zellen bzw. Pflanzen wieder entfernt werden soll, stehen dem Fachmann hierfür verschiedene Strategien zur Verfügung. So können z.B. sequenzspezifische Rekombinasen verwendet werden, z.B. in Form der Retransformation einer Rekombinase-exprimierenden Ausgangslinie und Auskreuzung der Rekombinase nach erfolgter Entfernung des Selektionsmarkers (Reiss et al (1996) Proc. Natl. Acad. Sei. USA 93:3094-3098; Bayley et al (1992) Plant Mol. Biol. 18:353-361 ; Lloyd et al. (1994) Mol. Gen. Genet. 242:653- 657; Maser et al. (1991) Mol. Gen. Genet. 230:170-176; Onouchi er al. (1991) Nucl. Acids Res. 19:6373-6378). Der Selektionsmarker kann auch durch Cotransformation mit anschließender Auskreuzung entfernt werden.
Bei einer besonders bevorzugten Ausführungsvariante der vorliegenden Erfindung handelt es sich um eine genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen enthaltend in replizierbarer Form eine erfindungsgemäße Nukleotidsequenz und/oder ein Genkonstrukt und/oder einen Vektor der zuvor beschriebenen Art.
Gegenstand der Erfindung sind weiterhin transgene Pflanzenzellen oder transgene Pflanzenzellen umfassende Pflanzen oder deren Teile und Produkte, in denen die erfindungsgemäßen Nukieinsäuremoieküle als in das pflanzliche Genom integriert vorliegen. Ebenfalls Gegenstand der Erfindung sind Pflanzen, in deren Zellen die erfindungsgemäße Nukleinsäuresequenz in selbstreplizierender Form vorliegt, d.h. die Pflanzenzelle enthält die fremde DNA auf einem eigenständigen Nukleinsäuremolekül, z. B. einem Plasmid. Dies ist als transiente Expression bekannt.
Erfindungsgemäß zeichnet sich die genetisch veränderte Pflanze oder deren Teile, Gewebe oder Zellen und deren Nachkommen dadurch aus, daß sie aufgrund der Gegenwart und Expression der erfindungsgemäßen Nukleotidsequenzen Proteine synthetisiert, welche die entsprechend nicht genetisch veränderte Pflanze, z. B. der Wildtyp, nicht produziert. Ferner ist erfindungsgemäß eine genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen umfaßt, die eine Nettoproduktivität an S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase aufweist, die gegenüber derjenigen der entsprechend nicht genetisch veränderten Pflanze, insbesondere eines Wildtyps, erhöht ist. Bevorzugt handelt es sich dabei erfindungsgemäß um eine genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen, die einen veränderten Chlorophyllgehalt aufweist, der gegenüber demjenigen der entsprechend nicht genetisch veränderten Pflanze erhöht oder erniedrigt ist. Gegenstand der voriiegenden Erfindung ist ferner eine genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen, die eine S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase aufweist, die eine Toleranz gegenüber Verbindungen mit herbizider Wirkung aufweist.
Die vorliegende Erfindung betrifft somit auch eine Herbizid-tolerante Pflanze, Pflanzengewebe, Pflanzenzelle und deren Nachkommen, enthaltend in replizierender Form ein zuvor beschriebenes S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase-Gen, eine Genstruktur oder einen Vektor, enthaltend eine Genstruktur der zuvor erwähnten Art. Auch sind Herbizid-tolerante Pflanzen, Pflanzengeweben, Pflanzenzellen und deren Nachkommen, die eine Nettoproduktivität an S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase aufweisen, die gegenüber der entsprechend nicht genetisch veränderten Form erhöht ist, Gegenstand der Erfindung. Femer betrifft die Erfindung eine transgene Pflanze und deren Nachkommen, die ein S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase-Gen exprimiert, das gegenüber S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase-lnhibitoren resistent ist.
Eine besonders bevorzugte Ausführungsvariante betrifft eine genetisch veränderte Pflanze oder Teile davon, Pflanzengewebe, Zellen und deren Nachkommen, die eine veränderte Kontrolle der Chlorophyllbiosynthese und/oder einen veränderten Chlorophyllgehalt und/oder eine Herbizidtoleranz gegenüber einer entsprechenden nicht genetisch veränderten Pflanze aufweist.
Die Erfindung betrifft aber auch solche Pflanzen, in denen die Übertragung der erfindungsgemäßen Nukleotidsequenzen zu einer Verringerung des Chlorophyllgehalts führt. Eine derartige reduzierte Chlorophyllbiosyntheseleistung kann beispielsweise durch den Transfer von Antisense-Konstrukten oder durch andere
Suppressionsmechanismen, wie beispielsweise Cosuppressionen, erreicht werden. Diese Pflanzen zeichnen sich gegenüber den genetisch nicht veränderten Kontrollpflanzen durch verminderten Wuchs, einen ausgebleichten Phänotyp, reduzierte RNA- und Proteingehalte für PMT sowie einen stark verminderten Chlorophyllgehalt aus. Die Verwendung solcher transgener Pflanzen bei der Aufklärung von Schlüsselenzymen und Schlüssel-Metaboliten des Chlorophyllbiosyntheseweges bzw. zur Identifizierung oder (Neu)-Synthese von Herbiziden oder Verbindungen mit inhibitorischer Wirkung auf diese zentralen Schlüsseienzyme des Chlorophyllbiosyntheseweges ist ebenfalls erfindungsgemäß umfaßt.
Prinzipiell kann jede beliebige Pflanze für eine Übertragung des erfindungsgemäßen genetischen Materials verwendet werden. Dabei kann es sich um monokotyle oder dikotyle Nutzpflanzen handeln. Nicht limitierende Beispiele für monokotyle Pflanzen sind Pflanzen, die zu den Gattungen Avena (Hafer), Triticum (Weizen), Seeale (Roggen), Hordeum (Gerste), Oryza (Reis), Panicum, Pennisetum, Setaria, Sorghum (Hirse), Zea (Mais) gehören. Bei den dikotylen Nutzpflanzen sind u.a. zu nennen Leguminosen, wie Hülsenfrüchte und insbesondere Alfalfa, Sojabohne, Raps, Tomate, Zuckerrübe, Canola, Kartoffel, Zierpflanzen oder Bäume. Weitere Nutzpflanzen können beispielsweise Obst (insbesondere Äpfel, Birnen, Kirschen, Weintrauben, Citrus, Ananas und Bananen), Ölpalmen, Tee-, Kakao- und Kaffeesträucher, Tabak, Sisal, Baumwolle, Lein, Sonnenblume sowie Heilpflanzen und Weidegräser sowie Futterpflanzen sein. Besonders bevorzugt sind die Getreide Weizen, Roggen, Hafer, Gerste, Reis, Mais und Hirse, Futtergetreide, Zuckerrübe, Raps, Soja, Tomate, Kartoffel, Süßgräser, Futtergräser und Klee. Es ergibt sich von selbst, daß die Erfindung insbesondere übliche Nahrungs- bzw. Futterpflanzen betrifft. Hier sind neben den bereits erwähnten Pflanzen zusätzlich Erdnuß, Linse, Ackerbohne, Runkelrübe, Buchweizen, Möhre, Sonnenblume, Topinambur, Rübsen, Weißer Senf, Kohlrübe und Stoppelrübe zu nennen.
Gegenstand der Erfindung sind ferner Samen der erfindungsgemäß genetisch veränderten Pflanzen. Die Erfindung betrifft auch fortpflanzungsfähiges Material von einem ein- oder mehrzelligen Wirtsorganismus oder von transgenen Pflanzen, Pflanzengewebe oder - zellen der zuvor beschriebenen Art. Hierbei sind unter fortpflanzungsfähigem Material oder Emteprodukten der erfindungsgemäß genetisch veränderten Pflanzen beispielsweise Samen, Früchte, Stecklinge, Knollen, Wurzelstöcke usw., sowie Teile dieser Pflanzen, wie Protoplasten, Pflanzenzellen und Kalli zu verstehen.
Die vorliegende Erfindung schließt auch ein Verfahren zur Identifizierung von Zellen aus einer Zellpopulation ein, die eine Herbizid-tolerante S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase enthalten. Dieses Verfahren umfaßt dabei folgende Schritte: Mutagenese der Zellpopulation, durch chemische oder gentechnische Behandlung der Zellen, Kultivierung der Population von Zellen in Anwesenheit wenigstens einer Verbindung mit herbizider Wirkung, welche die Aktivität der S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase hemmt, Selektion der Zellen, deren Wachstum unverändert, d.h. nicht gehemmt ist. Daran können sich Verfahrensschritte wie ggf. eine Regeneration genetisch veränderter Pflanzen aus den Herbizid-toleranten Zellen anschließen sowie ggf. eine Isolierung, Identifizierung und/oder Charakterisierung einer Herbizid-toleranten S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase aus den selektionierten Zellen oder ggf. eine Isolierung, Identifizierung und/oder Charakterisierung einer Nukleotidsequenz kodierend für eine Herbizid-tolerante S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase aus den selektionierten Zellen.
Ebenfalls ist ein Verfahren bzw. ein Meßsystem zur Identifizierung von Verbindungen mit herbizider Wirkung Gegenstand der vorliegenden Erfindung. Dieses Meßsystem enthält wenigstens eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase sowie
Verbindungen, die potentiell mit diesem Protein in Wechselwirkung treten und es in seiner Aktivität verändern. Hierbei kann es sich um in-vitro- Meßsysteme handeln, bei dem in einem Reaktionsansatz u.a. isoliertes Protein mit der Aktivität einer erfindungsgemäßen PMT sowie die geeignete Substrate und potentiell Herbizid-wirkende Verbindungen enthalten sind. Gegebenenfalls wird dazu die durch eine entsprechende Nukleotidsequenz kodierte S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase in vorangehenden Schritten aufgereinigt, anschließend diese S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase mit Verbindungen, die beispielsweise an das katalytische oder regulatorische Zentrum des Enzyms binden, inkubiert und anschließend die spezifische Aktivität der S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-
Methyltransferase gemessen. Oder aber es handelt sich um ein in-vivo-Meßsystem, wie beispielsweise ein mit einer erfindungsgemäßen Nukleotidsequenz kodierend für eine S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase transformierter Organismus, dem potentiell Herbizid-wirkende Verbindungen zugesetzt werden. Aufgrund der Messung von Unterschieden der spezifischen Enzymaktivität, d.h. einer Verringerung der spezifischen PMT-Aktivität, läßt sich die Wirkung der zugesetzten Verbindungen als Herbizid oder Inhibitor der PMT identifizieren. Die mit Hilfe des zuvor beschriebenen Meßsystems identifizierten Verbindungen mit inhibitorischer und/oder herbizider Wirkung auf die spezifische Aktivität der erfindungsgemäßen S-Adenosylmethioπin:Mg-Protoporphyrin-IX-0- Methyltransferase aus Pflanzen sind ebenfalls Gegenstand der vorliegenden Erfindung.
Sie können wiederum Vorstufen zur Synthese weiterer Verbindungen sein, die in der Pflanzenzucht oder dem Pflanzenschutz Einsatz finden.
Die vorliegende Erfindung bezieht sich ferner auf die Verwendung einer erfindungsgemäßen Nukleotidsequenz der beschriebenen Art und/oder einer anhand der erfindungsgemäßen Nukleotidsequenz erstellten bzw. isolierten Sonde zur Isolierung und/oder Amplifizierung einer Nukleotidsequenz, bevorzugt aus Eukaryonten, die für eine S- Adenosyimethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile davon kodiert.
Ferner umfaßt die vorliegende Erfindung die Verwendung einer erfindungsgemäßen Nukleotidsequenz zur Herstellung von Pflanzen oder Teilen, Gewebe oder Zellen davon mit einer veränderten Kontrolle der Chlorophyllbiosynthese und/oder einem veränderten Chlorophyllgehalt und/oder einer veränderten Herbizidtoleranz.
Ebenfalls umfaßt ist die Verwendung der genetisch veränderten ein- oder mehrzelligen Wirtsorganismen und/oder der genetisch veränderten Pflanzen, deren Teile, Gewebe oder Zellen zur Bereitstellung von isolierten und ggf. gereinigten und konzentrierten S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferasen oder
Herbizid-toleranten Formen dieses Enzyms. Gegenüber chemischen Synthesen ist hier die Verwendung dieser Enzyme zur biologischen (in- vitro-) Herstellung von Chlorophyll oder dessen Derivaten als wirtschaftlich interessantem Pflanzenvitamin denkbar.
Gegenstand der Erfindung ist auch die Verwendung einer erfindungsgemäßen konzentrierten S-Adenosylmethionin:Mg-
Protoporphyrin-IX-O-Methyltransferase kodiert durch eine
Nukleotidsequenz der zuvor beschriebenen Art und/oder genetisch veränderter Organismen mit neuer oder veränderter PMT-Aktivität zur
Identifizierung von Herbiziden und/oder Verbindungen mit inhibitorischer Wirkung auf die Chlorophyllbiosynthese. Dank der Schlüsselsteilung der
PMT innerhalb der Chlorophyllbiosynthese stellen die erfindungsgemäßen
DNA-Sequenzen und die durch sie kodierten Proteine ein äußerst wertvolles „Target" für die Herbizidforschung dar. So können beispielsweise die erfindungsgemäßen Proteine mit enzymatischer PMT- Aktivität für die Röntgenstrukturanalyse, NMR-Spektroskopie, molecular modeiing und drug design eingesetzt werden, um auf der Basis der aus diesen Methoden gewonnenen Erkenntnisse Inhibitoren und/oder Effektoren der PMT und somit potentielle Herbizide zu identifizieren oder zu synthetisieren.
Die vorliegende Erfindung sieht ebenfalls die Verwendung der zuvor beschriebenen und erfindungsgemäß genetisch veränderten Pflanzen in Bereichen der Pflanzenzüchtung, des Pflanzenschutzes und der Landwirtschaft vor.
Im folgenden wird die vorliegende Erfindung unter Bezugnahme auf die Beispiele näher erläutert, die aber keinesfalls limitierend für die Erfindung sind:
1. Allgemeine Klonierunqsverfahren
Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose- Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli-ZeWen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press, ISBN 0-87969-309-6) beschrieben durchgeführt. Die Transformation von Agrobacterium tumefaciens wurde entsprechend der Methode von Höfgen und Wiilmitzer (Nucl. Acid Res. (1988) 16, 9877) ausgeführt. Die Anzucht der Agrobakterien erfolgte in YEB Medium (Vervliet et al., J. Gen. Virol. (1 975) 26, 33),
Die verwendeten Bakterienstämme (E. coli, XL-1 Blue) wurden von
Stratagene (Heidelberg, Germany) oder Qiagen (Hilden, Germany) bezogen. Der zur Pflanzentransformation verwendete Agrobakterienstamm (Agrobacterium tumefaciens, C5SC1 mit dem Plasmid pGV2260 oder pGV3B50kan) wurde von Deblaere et al. in Nucl. Acids Res. 13 (1985), 4777 beschrieben. Alternativ können auch der Agrobakterienstamm LBA4404 (Clontech) oder andere geeignete Stämme eingesetzt werden. Zur Klonierung können die Vektoren pUC19 (Yanish- Perron, Gene 33 (1985), 103-119) pBluescript SK (Stratagene, Heidelberg), PGEM-T (Promega), pZerO (Invitrogen), pBIN19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711-8720) und pBINAR (Höfgen und Willmitzer, Plant Science 66 (1990), 221-230) benutzt werden.
2. Erzeugung der Physcomitrella patens cDNA-Bibliothek
Zur Herstellung dieser Physcomitrella cDNA-Bibliothek wurde Gesamt- RNA aus 9 Tage alten Protonema nach einer von Logemann et al. (Anal. Biochem. (1987) 163,21) beschriebenen Methode isoliert. Anschließend wurde die poly(A)-RNA über Oligo(dT)-Cellulose Type 7 (Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Nach photometrischer Konzentrationsbestimmung wurden 5 μg der so erhaltenen RNA für die cDNA Synthese eingesetzt. Alle für die Herstellung der cDNA notwendigen Chemikalien und Enzyme wurden durch die Firma Stratagene (La Jolla CA 9203-7, USA) bezogen. Die angewandten Methoden wurden nach Angaben des Herstellers durchgeführt. Die Synthese des ersten und zweiten Stranges der cDNA wurde mit dem Lambda ZAPII-CDNA Synthese Kit durchgeführt.
Die erhaltenen doppelsträngigen cDNAs wurden anschließend mit EcoRI- Adaptoren versehen und in einen EcoRI gespaltenen Lambda ZAPII Vektor kloniert. Nach in vitro Verpackung (Gigapack II Verpackungsextrakt) der rekombinanten Lambda DNA wurden XL-1 E. coli Zellen (Stratagene, Heidelberg) transformiert. Durch Auszählen der gebildeten Plaques wurde der Titer der cDNA-Bibliothek bestimmt. In analoger Weise wird zur Herstellung sogenannter EST-Sequenzen (Expressed Sequence Tags) verfahren. Nach an sich bekannten Methoden, wie z. B. durch Homologievergleiche mit in Datenbanken gespeicherten Sequenzen, können aus einer cDNA-Bank potentielle Kandidaten von EST-Sequenzen, die für eine (partielle) PMT kodieren eingegrenzt und/oder identifiziert werden.
Eine partielle DNA-Sequenz des S-Adenosylmethionin:Mg-Protoporphyτin- IX-O-Methyltransferase-Gens aus Physcomitrella patens ist in den SEQ ID NO 2 oder 3 oder 4 dargestellt, wobei die Sequenz gemäß SEQ ID NO 2 das 5'-Ende des für die S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase kodierenden Gens und die SEQ ID NO 3 das 3'-Ende dieses Gens aus Physcomitrella patens darstellt. Beide Fragmente sind voneinander nur durch etwa 4 Aminosäurereste getrennt. Die erfindungsgemäßen Fragmente gemäß SEQ ID NO 2, 3 und 4 lassen sich somit für den Fachmann in einfacher Weise zu einem Gen gesamter Länge verbinden. Ebenso ist mit jedem der drei EST-Klone gemäß SEQ ID NO 2, 3 oder 4 eine Nukleotidsequenz als Vollängenklon eukaryontischer PMT-Gene isolierbar, wie oben beschrieben. Die zu der SEQ ID NO 2 bzw. SEQ ID NO 3 entsprechende partielle Aminosäuresequenz der S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase ist in SEQ ID NO 6 oder SEQ ID NO 7 dargestellt.
3. Durchmusterung einer cDNA-Bibliothek mittels homologer DNA-Sonde 2x105 rekombinante Lambda Phagen (Lambda ZAPII) der Physcomitrella patens cDNA-Bibliothek wurden auf Agarplatten ausplattiert. Die Phagen- DNA wurde mittels Standardverfahren (Sambrook et al. (1989); Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) auf Nylon- Membranen (Hybond N, Amersham Buchler) transferiert und durch Inkubation für 2 Stunden bei 80°C auf den Filtern fixiert. Als Hybridisierungssonden diente ein 555 bp langes S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase-cDNA- Fragment (SEQ ID NO 2), welches mit Hilfe eines "Multiprime DNA labelling Systems" (Amersham Buchler) in Anwesenheit von α-32P-dCTP (spezifische Aktivität 3000 Ci/mmol) nach Herstellerangaben radioaktiv markiert wurden. Hybridisierung der Membran erfolgte nach Prähybridisierung bei 42°C in PEG-Puffer (Amasino (1986) Anal. Biochem. 152, 304-307) für 12-16 Stunden. Anschließend wurden die Filter 3 x 20 Minuten in 2x SSC, 0,1% SDS bei 42°C gewaschen. Positiv hybridisierende Phagen wurden durch Autoradiographie sichtbar gemacht und durch Standardtechniken gereinigt.
4. Klonierung des Physcomitrella patens S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferase-Gens in Expressionsvektoren heterologer Expressionssysteme und Nachweis der enzymatischen Aktivität. Aus der Physcomitrella patens cDNA-Bibliothek wurde ein Klon, der für eine S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase- Sequenz voller Länge kodiert, mit Hilfe der partiellen DNA Sequenz der S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase in SEQ ID NO 2 identifiziert. Geeignet sind Expressionsvektoren für die Expression rekombinanter Proteine in E. coli, aber auch Baculoviren-Vektoren zur Expression von S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase in
Insektenzellen (Gibco BRL). Bakterielle Expressionsvektoren sind z.B. abgeleitet von pBR322 und tragen für die Expression einen Bakteriophagen-T7-Promotor. Zur Expression wird das Plasmid in einem E. coli-Stamm vermehrt, welcher ein induzierbares Gen für die T7- Polymerase trägt (z.B. JM109(DE3); Promega). Die Expression des rekombinanten Proteins wird aktiviert über die Induktion der T7- Polymerase durch IPTG. Soll das rekombinante Protein zur verbesserten Aufreinigung über eine Ni-Affinitätschromatographie mit einem His-Tag versehen werden, bieten sich IPTG-induzierbare Systeme von Qiagen (pQE-Vektoren) oder Novagen (pET-Vektoren) an. Je nach zur Verfügung stehenden Schnittstellen gibt es alle Vektoren mit allen Leserastern. Der mit die S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-
Methyltransferase enthaltenden Vektoren transformierte E. coli Stamm wurde im Anzuchtsmedium "2xYT" (pro 1 Liter: Bacto-Trypton 16 g, Hefe- Extrakt 10 g, NaC1 5g) inkubiert. Die Anzucht erfolgte bei 37°C bis zu einer OD5eo von 0,6. Nach Zugabe von IPTG (1 mM) erfolgte das Wachstum weitere 10 min bei 37°C, dann weitere 4h bei 28°C bis zur Ernte. Die Zellen wurden abzentrifugiert und in 1 % NaCI gewaschen. Nach Aufbruch der Zellen (50 bis 500 ml Zellkultur (OD56o von 1 ,0)) mittels French Press wurde entweder ein Protein-Rohextrakt für Enzymtests verwendet (in 4 ml Extraktionspuffer (Tris/HCI (pH 7,5) 100 mM, MgCI2 5 mM, DTT 2 mM, PMSF 0,1 mM)) oder eine Affinitätschromatographie (nach Herstellerangaben Qiagen, Novagen) an Ni-NTA durchgeführt. Das Eluat wurde anschließend in Enzymtests verwendet.
5. Klonierung der Physcomitrella patens S-Adenosylmethionin:Mg-
Protoporphyrin-IX-O-Methyltransferase [n den
Pflanzentransformationsvektor pBIN19AR-TP pBIN19AR-TP enthält eine im Polylinker des Vektors integrierte Plastiden- Targetingsequenz (TP; siehe Fig. 2), die über die Schnittstellen Kpnl (als Asp718 Isoschizomer) und BamHI eingefügt wurde (Höfgen und Willmitzer, Plant Science 66 (1990), 221-230).
6. Herstellung von S-Adenosylmethionin:Mg-Protoporphyrin-IX-Q- Methyltransferase-Antisense-Konstrukten
Das 555 Basenpaar-Fragment kodierend für die Physcomitrella-S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase gemäß SEQ ID NO 2 wurde in Antisense-Orientierung in einen binären Vektor (PBIN-AR-TP; siehe Fig. 2B) unter der Kontrolle des 35S-Promotors kloniert. Zur Klonierung der S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase in einen binären Vektor in Antisense-Orientierung wurden folgende Primer gewählt.
PpS-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase- ASpBINI vorwärts 5' TATGTCGACTATCGAATTCGGCACGAGCT
3'
PpS-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase- ASpBIN2 rückwärts 5' TATGGATCCAGCTTTGGAAACGGGAACGCA 3'
Die Primer PpS-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltrans- ferase-ASpBINI vorwärts und PpS-Adenosylmethionin:Mg-Protoporphyrin- !X-0-Methyltransferase-ASpBIN2 rückwärts enthielten eine Sall- bzw. eine BamHI- Schnittstelle (jeweils unterstrichen). Das PCR-Produkt wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und mit Sall und BamHI verdaut. Zur Ligation wurde der Vektor pBIN19AR-TP09 ebenfalls mit Sall und BamHI geschnitten, der zusätzlich das Transitpeptid der Transketolase aus Kartoffel hinter dem CAMV 35S Promotor enthält. In diesem Fall dient die heterologe Signalsequenz (aus Kartoffel) als zusätzlich detektierbare Sequenz in transgenen Tabakpflanzen (via Northern Blot oder via PCR), über die Detektion der S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-MethyltransferaseAntisense- RNA hinaus. Das Konstrukt ist in Fig. 2B dargestellt.
Dieses Konstrukt wurde durch Agrobakterium-vermittelte Transformation in Tabak übertragen. Regenerierte Pflanzen wurden auf S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase mRNA- Mengen hin untersucht. Alle untersuchten Aπtisense-Pflanzen mit reduzierten S-Adenosyimethionin:Mg-Protoporphyrin-IX-0- Methyltransferase-mRNA-Mengen zeigten hinsichtlich der Pflanzengröße deutliche Unterschiede auf. Es wurden Pflanzen gefunden, die in ihrer Größe reduziert waren sowie Pflanzen, die deutliche Ausbleichungen zeigten. Diese Ausbleichungen sind auf stark reduzierte Chlorophyllmengen zurückzuführen. Die Bestimmung der Chlorophyllmengen wurde wie in Lichtenthaler und Wellbum (1983) beschrieben mit 100% Acetonextrakten durchgeführt. Außerdem wurde eine Akkumulation des Edukts dieser S-Adenosylmethionin:Mg- Protoporphyrin-IX-O-Methyltransferarse-vermittelten Reaktion, das Mg- Protoporphyrin-IX gefunden.
7. Bestimmung der S-Adenosylmethionin:Mg-Protoporphyrin-IX-Q-Methyl- transferase-Aktivität
Zum Nachweis der enzymatischen Aktivität wurden folgende Enzymtests eingesetzt.
A) nach Vothknecht et al. 1995, Plant Physiol. Biochem. 33: 759-763:
Die Reaktion erfolgt in einem Gesamtvolumen 150 μl mit 20 μg Proteinextrakt (heterolog exprimiert als His-Tag-Protein in E. coli mit oder ohne anschließende Affinitätsreinigung über NTA-Agarose), 0.35 M S- Adenosylmethionin (SAM; Sigma) oder 3,7 kBq [Methyl- C]SAM (NEN, Boston, USA; spezifische Aktivität 2.1 GBq mmol"1), 20 μM Mg- Protoporphyrin-IX, 0.1 M Tricine-NaOH (pH 7.9), 0.3 M Glycerol, 25 mM MgCI2 und 1 mM Dithiotreitol. Zur Inhibierung der Reaktion wurde Sinefungin (Sigma) gelöst in Wasser nach Herstellerangaben zur Reaktion hinzugefügt. Der Ansatz wurde für 30 min bei 30°C schüttelnd inkubiert. Der Mg-Protoporphyrin-IXMethylester wurde über HPLC nachgewiesen. Dazu wurden die Ansätze mit 850 μl eines Aceton/Wasser/32% Ammoniak (80/20/1 , v/v/v) und 200 μl Hexan versetzt, um Carotinoidreste (und im Falle von aus Blattmaterial isoliertem Enzym auch Chlorophyllreste) zu entfernen. Ein Aliquot der wässrigen Phase wurde in einem HPLC-Lauf in einer C18 Säule (10 min Lineargradient von
Wasser/Acetonitril/Triethylamin (1 5/85/0.1) zu Acetonitril) analysiert.
B) modifiziert nach Ellmans, 1956, Archives of Biochamistry and Biophysics 82:70-77
Dieser Test basiert auf dem Nachweis von Sufhydrylgruppen. In der Reaktion werden Mg-Protoporphyrin-IX und S-Adenosyimethionin zum Mg-Protoporphyrin-IX Monomethylester und S-Adenosylhomocystein umgesetzt. Durch Kopplung der S-Adenosylmethionin:Mg-Protoporphyrin- IX-O-Methyltransferasevermittelten Reaktion mit dem Enzym S- Adenosyihomocystein-Hydrolase (Sigma) wird das entstandene S- Adenosylhomocystein zu Homocystein und Adenosin umgesetzt. Homocystein besitzt freie Sufhydrylgruppen, die mit dem Ellman-Reagenz (5,5'-Dithio-bis(2-Nitrobenzoic Aeid; DTNB; Sigma) reagieren. Der Nachweis erfolgt photometrisch bei einer Absorptionswellenlänge von 412 nm. DTNB wird nach Herstellerangaben gelöst (3.96 mg/ml in 0.1 M Phosphatpuffer pH 7.0), und im Volumenverhältnis 1 :500 zum zu messenden Ansatz (20 μg E. coli Gesamtproteinextrakt in 0,1 M Phosphatputer pH 8.0) gegeben. Mehrmals während der bis zu 45 min. Inkubationszeit wurde die Absorption bei 412 nm nach folgender Formel bestimmt:
Co= A/ε x D (mit Co als Ausgangskonzentration, A als Absorption bei 412 nm, ε als Extinktionskoeffizient (= 18.600/M/cm), D als Verdünnungsfaktor)
8. Herstellung von transgenen Tabakpflanzen (Nicotiana tabacum L. cv. Samsun NN)
Für die Herstellung transgener Tabakpflanzen wurden Tabakblattscheiben mit Sequenzen der S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase aus P. patens transformiert. Zur Transformation von Tabakpflanzen wurden 10 ml einer unter Selektion gewachsenen Übernachtkultur von Agrobacterium tumefaciens abzentrifugiert, der Überstand verworfen und die Bakterien in gleichem Volumen Antibiotikafreien Mediums resuspendiert. In einer sterilen Petrischale wurden Blattscheiben steriler Pflanzen (Durchmesser ca. 1 cm) in dieser Bakteriensuspension gebadet. Anschließend wurden die Blattscheiben in Petrischalen auf MS-Medium (Murashige und Skoog, Physial, Plant (1962) 15, 473) mit 2% Saccharose und 0.8% Bacto-Agar ausgelegt. Nach 2- tägiger Inkubation im Dunkeln bei 25°C wurden sie auf MS-Medium mit 100mg/l Kanamycin, 500mg/l Claforan, 1 mg/l Benzylaminopurin (BAP), 0,2mg/l Naphtylessigsäure (NAA), 1.6% Glukose und 0.8% Bacto-Agar übertragen und die Kultivierung (16 Stunden Licht / 8 Stunden Dunkelheit) fortgesetzt. Wachsende Sprosse wurden auf hormonfreies MSMedium mit 2% Saccharose, 250mg/l Claforan und 0.8% Bacto-Agar überführt.
9. Klonierung einer für eine PMT kodierenden cDNA aus Tabak (Nicotiana tabacum):
Die cDNA-Sequenz, die für die PMT aus Tabak kodiert, wurde mit Hilfe einer Durchmusterung einer Lambda-ZAP-ll-cDNA-Bibliothek aus Nicotiana tabacum (SR1 , Stratagene, USA) unter Verwendung eines partiellen EST-Klons aus dem Moos Physcomitrella (SEQ ID NO 4) gemäß eines standardisierten Protokolls identifiziert.
Ein 548 bp langes Restriktionsfragment der EST-Sequenz gemäß SEQ ID NO 4 wurde als Sonde für die Hybridisierung der cDNA-Bibliothek verwendet und mit cc- 32-P-DCTP mittels dem Random Primer Labelling Kit (GIBCO Life Technologies, Eggenstein) radioaktiv markiert. Die Hybridisierung wurde nach folgendem Protokoll durchgeführt: a) 4 Stunden Vorhybridisierung bei 51 °C mit einer Hybridisierungsiösung der folgenden Zusammensetzung: 5 x SSC, 0,1 % SDS, 5 x Denhardts- Reagenz, 100 μg/ml denaturierte Fisch-DNA, b) 16 Stunden Haupthybridisierung bei 51 °C mit frischer Hybridisierungsiösung folgender Zusammensetzung: 5 x SSC, 0,1 % SDS, 5 x Denhardts-Reagenz, 100 μg/ml denaturierte Fisch-DNA mit radioaktiv markierter cDNA-Sonde, c) Waschbedingungen: 1x mit 5xSSC, 0,1 %SDS, 10 Minuten, 51 °C; 2x mit 2xSSC, 0,1% SDS, je 10 Minuten, 51 °C.
Es wurden ca. 2 Millionen Phagenklone überprüft, von denen 26 putative positive cDNA-Klone erhalten wurden. Die längste cDNA-Sequenz wurde sequenziert (ABI-Sequenzer, Perkin-Elmer). Die identifizierte und in SEQ ID NO 1 dargestellte PMT-cDNA-Sequenz umfaßt 1134 Basenpaare (ohne den PolyA-Schwanz) mit einem Startkodon an Position 12-14 und einem Stoppcodon an Position 987-989. Die Nukleotide 12-986 kodieren für 325 Aminosäuren. Die abgeleitete Aminosäuresequenz des PMT-Gens ist in SEQ ID NO 5 gezeigt.
Zur DNA-RNA-Isolierung, Sequenzanalyse, Restriktion, Klonierung, Gelelektrophorese, radioaktiven Markierung, Southern-, Northern- und Western-Blot-Analysen, Hybridisierung und dgl. wurden gängige Methoden angewandt, wie sie in einschlägigen Laborhandbüchem, wie Sambrook et al. (1989), supra beschrieben sind.
10. Überexpression aktiver PMT in E. coli.
Für die Herstellung von Expressionsklonen, durch die die erfindungsgemäße PMT aus Tabak in E coli überexprimiert werden kann, wurde das offene Leseraster für das vollständige unprozessierte Protein mittels der Oligonukleotid-Primer Forward-Primer: Exe-F 1 (Ncol) 5'-GAT CCC ATG GCT TTC TCT TCG CCA CTA TTC-3' und Reverse Primer:
Exe-RI(pET) 5'-GAT CGG ATC CGC AGG GAC AGC CTC AAT AAG CTT-3' von der DNA-Sequenz gemäß SEQ ID NO: 1 mittels PCR amplifiziert. Die PCR-Bedingungen waren wie folgt: 5 Min. Denaturierung bei 95 °C, dann für 25 Zyklen: 1 Min. bei 94°C 12 Min. bei 60°C /1 Min. bei 72°C, zum Schluß weitere 3 Min. Verlängerung bei 72°C.
Die PCR wurde mit dem PWO-Enzym von Stratagene (La Jolla, USA) auf einem ThermoCycler 9700 von Perkin-Elmer durchgeführt. Das amplifizierte PCR-Fragment wurde mit dem Qiagen PCR-Purification Kit (Qiagen, Hilden) aufgereinigt, mit den Restriktionsenzymen Ncol und BamHI (Amersharn, Freiburg, Deutschland) geschnitten und in den mit den selben Enzymen geschnittenen Expressionsvektor pET20B (Novagen) hineinligiert (Ligation mit TF-DNA-Ligase von Amersharn für 20 Stunden bei 15°C). Dieser pET-Vektor exprimiert das Fremdprotein unter der Kontrolle eines von der T7Polymerase erkannten Promotors und kodiert am N-terrninalen Ende des rekombinanten Proteins die PelB- Leader-Sequenz und am C-terminalen Ende einen Histidin-Tag (F.W. Studier et al. (1990), Meth. Enzymol. 185: 60-89). Die Synthese des Fremdproteins wird nach der Induktion der Synthese der Bacteriophagen T7 RNA-Poiymerase in den E. coli-Zellen ermöglicht. Der ligierte Vektor wurde in den E. coli-Stamm MOS blue (Amersharn, Freiburg) und anschließend in den Stamm E coli BL 21 (Novagen, Madison, Wl, USA) transformiert. Hinter dem Initiationskodon ATG, der Bestandteil der Ncol- Erkennungssequenz ist, folgte die kodierende PMT-Sequenz, beginnend mit dem Nukleotid 15 des offenen Leserahmens, das gleichzeitig das letzte 3'-gelegene Nukleotid der Ncol-Schnittstelle ist. Für die Expression des pflanzlichen PMT wurde der E. coli-Stamm BL21 in LB-Medium bis zu einer optischen Dichte von 0,6 angezogen, und anschließend wurde die Expression durch Zugabe von 1 mM IPTG für 5 Stunden induziert. Es wurde ein rekombinantes Protein mit dem Molekulargewicht 33 kDa synthetisiert. Das Protein befand sich in der löslichen Proteinfraktion aufgeschlossener E. coli-Zellen. Das überexprimierte Protein wurde mitteis der TALON-beads (Clontech) über eine Cobalt-Affinitätssäule gemäß den Instruktionen des Herstellers aufgereinigt. Das aufgereinigte Protein wurde zur Antikörperherstellung in Kaninchen infiziert. Der enzymatische Nachweis des rekombinanten Proteins erfolgte gemäß der Methode von Gibson and Hunter (FEBS Letters 352:127-130). Der bakterielle Extrakt wurde in einem 500 μl- Assayvolumen in einem Puffer bestehend aus 50 mM Tris-HCI, pH 8,4, 5 MM EGTA mit 20 gM Mg-Protoporphyrin IX (Porphyrin Products Inc., Utah, USA) und 0,5 MM S-Adenosyl-L-Methioniπ (Sigrna, Deisenhofen) als Cofaktor bei 33°C für 60 Minuten inkubiert. An sechs Messpunkten (0 sek., 30 sek., 10 min., 25 min., 40 min. und 60 min.) wurde ein 100 μl Aliquot des Reaktionsgemisches entnommen und die Reaktion mit 200 μl 100% Methanol gestoppt, um die Mg-Porphyrine zu extrahieren. Anschließend wurde 5 Minuten lang bei 13.000 rpm zentrifugiert. Der Überstand wurde abgenommen und das Pellet erneut mit 100 μl KaliumphosphatPuffer, pH 7,2, aufgenommen, erneut zentrifugiert, der Überstand mit dem vorherigen vereint und das Pellet erneut mit 200 μl Extraktionspuffer (bestehend aus 10 Volumeneinheiten Aceton, 9 Volumeneinheiteπ Methanol und einer Volumeneinheit NH4OH) ausgeschüttelt. Nach erneuter Zentrifugation wurden die drei Extrakte vereint und das Gesamtvolumen 30 Minuten lang bei 4°C erneut zentrifugiert und der Überstand in ein neues Reaktionsgefäß überführt. Für die Analyse der Mg-Porphyrine auf einer HPLC-Anlage der Fa. Waters unter Verwendung einer Nova-Pak C 1 8-fach verdünnt. Die Mg- Porphyrine wurden mit dem folgenden linearen Gradienten eluiert: von Lösung A (10% 1 M NH4-Acetat, 10% Methanol) zu Lösung B (10% 1 M NH -Acetat, 90% Methanol) innerhalb der ersten 7 Minuten, von der 7. bis zur 21. Minute 100% Lösung B, von der 21. bis zur 23. Minute von Lösung B zu Lösung A, von der 23. bis zur 29. Minute Lösung A. Die Flußrate betrug 1 ml/min, die Mg-Porphyrine wurden mittels des Fluoreszenzdetektors bei λex, = 420 nm und λem, = 595 mn delektiert. Das Elutionsprofil der Mg-Porphyrine aus den Extrakten des PMT-Assays, die zu den angegebenen Reaktionszeiten entnommen sind, sind in der Fig. 3 wiedergegeben. Mg-Protoporphyrin hat in der Regel eine Elutionszeit von 14,8 Minuten und Mg-Protoporphyrin IX-Monomethylester eine Elutionszeit von 16,25 Minuten.
11. Transformation von Tabakpflanzen und Regeneration intakter Pflanzen:
Für die Herstellung transgener Pflanzen, die die Tabak-PMT-Sequenz überexprimieren und daher eine gegenüber den nicht-transfortnierten Pflanzen erhöhte Aktivität des Enzyms PMT aufweisen, wurde die DNA- Sequenz gemäß SEQ ID NO 1 mittels der Restriktionsenzyme Smal und Sall in der multiplen Klonierungsschnittstelle des pBluescript-Vektors (Stratagene, Amsterdam, Niederlande) aus dem Vektor herausgeschnitten und in Sense-Orientierung in den binären Vektor BinAR-TX (Höfgen und Willmitzer (1 990) Plant Science 66: 221-23 0), einem pBIB-Abkömmling, der mit den selben Restriktionsendonukleasen verdaut wurde, hinter den CAMV 35S-Promotor hineinligiert. Zur Verdeutlichung ist eine Restriktionskarte des Vektors BinAR-TX als Fig. 4 beigefügt. Der rekombinante Vektor pPMTbin wurde sodann in Agrobacterium tumefaciens (Stanun GV2260; Horsch et al. (1 985), Science 227, 1229- 123 1 ) transformiert und zur Transformation von Tabakpflanzen (SNN) mitteis der Blattscheiben-Transformationstechnik (Horsch et al., supra) eingesetzt.
Hierzu wurde eine Übernachtkultur des entsprechenden Agrobacterium tumefaciens-Klons für 10 Minuten bei 5000 rpm abzentrifugiert, und die Bakterien wurden in 2YT-Medium resuspendiert. Junge Tabakblätter einer Sterilkultur (Nicotiana tabacum cv. Samsun NN) wurden in kleine, etwa 1 cm 2 große Stücke zerschnitten und kurzzeitig in die Bakteriensuspension gelegt. Die Blattstücke wurden anschließend auf MS-Medium (Murashige und Skoog (1 962), Physiol. Plant. 15, 473; 0,7% Agar) gelegt und zwei Tage im Dunkeln inkubiert. Anschließend wurden die Blattstücke zur Sproßinduktion auf MS-Medium (0,7% Agar) mit 1 ,6% Glukose, 1 mg/l 6- Benzylaminopurin, 0,2 mg/l Naphthylessigsäure, 500 mg/l Claforan (Cefotaxim, Hoechst, Frankfurt) und 50 mg/l Kanamycin gelegt. Das Medium wurde alle sieben bis zehn Tage gewechselt. Wenn sich Sprosse entwickelt hatten, wurden die Blattstücke in Glasgefäße, die das selbe Medium enthielten, überführt. Entstehende Sprosse wurden abgeschnitten und auf MSMedium mit 2% Saccharose und 250 mg/l Claforan gegeben und zu ganzen Pflanzen regeneriert.
12. Herstellung von PMT-Antisense-Konstrukten und Übertragung des Gens auf Tabak:
Im Vergleich zu Beispiel 11 , in dem transgene Pflanzen beschrieben werden, die aufgrund der Überexpression der erfindungsgemäßen DNA- Sequenz eine erhöhe Aktivität der PMT aufweisen, wurde für die Herstellung von transgenen Tabakpflanzen, die eine reduzierte Aktivität von PMT aufweisen, die cDNA-Sequenz gemäß SEQ ID NO 1 mittels der Restriktionsenzyme EcoRV und Xbal aus dem pBluescript-Vektor herausgeschnitten und in einen mit den selben Enzymen verdauten binären Vektor BinAR-TX hinter den 35S-Promotor von CAMV hineinligiert (siehe Fig. 4). Das rekombinante Plasmid wurde zunächst in den E. coli- Stamm pMOS und anschließend in den Agrobacterium tumefaciens- Stamm GV 2260 transferiert. Die rekombinanten Agrobakterien mit dem binären Vektor pPMTASdin wurden gemäß der Blattscheiben- Transformation in das Tabakgenom integriert (siehe Beispiel 11). 13. Analyse transgener Tabakpflanzen, die die PMT-cDNA-Seαuenz aus Tabak in Sense- bzw. Antisense-Orientierung exprimieren: Jeweils 100 transgene Linien pro Transformationsansatz wurden erhalten, in steriler Gewebekultur regeneriert, verdoppelt und im Gewächshaus in Erdkultur für die Primäranalyse angezogen (60%-70% Luftfeuchtigkeit und 20-25°C für 16 Stunden Licht und 8 Stunden Dunkelheit bei 18-24°C). Die Transformanten mit dem PMT-Sense-Genkonstrukt zeigten zwei unterschiedliche äußere Erscheinungsbilder. Etwa 30 Pflanzen zeigten schwachgrüne bis grün-gelbliche Blätter und einen verminderten Wuchs. Die restlichen Linien wiesen im Vergleich zu den Kontrollpflanzen keine auffälligen Unterschiede auf, obwohl auch in diesen Linien das Vorhandensein des Transgens mittels genomischer Southern-Blot- Analyse nachgewiesen wurde.
Mit Northern-, Westem-Blot-Analyse und Enzymaktivitätsbestimmungen wurde nachgewiesen, daß die Pflanzen mit den PMT-Genen in Sense- Orientierung entweder eine verringerte Synthese der PMT-RNA und des Proteins aufweisen und somit eine typische Cosuppression erfuhren, oder in den anderen Fällen tatsächliche PMT-Überproduzenten waren. Für die weitere Beschreibung des Beispiels wurden Ergebnisse von drei transgenen Linien ausgewählt, die nachgewiesenermaßen die PMT- Proteine überexprimierten.
Die PMT-Antisense-Pflanzen zeigten einen im Vergleich zu den Kontrollpflanzen verminderten Wuchs, einen ausgebleichten Phänotyp, reduzierte RNA- und Proteingehalte für PMT sowie einen stark verminderten Chlorophyllgehalt. Die Primärtransformanten zeigten gegenüber den Kontrollpflanzen eine bis mehrere Kopien des PMT- Transgens. Drei Antisense-RNAsynthetisierende Linien wurden einer detaillierten Analyse unterzogen. Die transgenen Pflanzen mit den Kopien des PMT-Transgens in Sense- bzw. AntisenseOrientierung wurden in Southern-Blot-Verfahren analysiert. Die Hybridisierung ergab mit einem markierten cDNA Fragment für PMT eine bis mehrere zusätzliche Hybridisierungsbanden der mit einem Restriktionsenzym verdauten genomischen DNA.
Eine Northem-Blot-Analyse ergab eine gegenüber den PMT-RNA- Gehalten der Kontrollpflanzen erhöhte Menge an spezifischer RNA im Fall der PMT-Sense-Linien und eine verringerte Menge im Fall der Transformanten mit PMT-Antisense-Genen.
Erhöhte PMT-Gehalte konnten mittels Westem-Blot-Analyse in den Linien mit PMT-SenseGenkonstrukten ermittelt werden und verringerte PMT- Gehalte in Linien mit dem PMTAntisense-Konstrukt. Die Transformanten, die Antisense-RNA synthetisierten, reicherten im Vergleich zu den Kontrollpflanzen eine bis zu 8-fache Menge an Mg- Protoporphyrin IX an, während die SenseTransformanten gegenüber den Kontrollen verringerte Mengen an Mg-Protoporphyrin, das Substrat der PMT, aufwiesen (Fig. 5). Desweiteren wurde die PMT-Aktivität der Transformanten in vivo bestimmt. Parallel zu den angestiegenen Proteingehalten konnte für die PMT-Sense-Linien eine erhöhte Enzymaktivität bestimmt werden, während die Linien mit Antisense-RNA verringerte Aktivitäten zeigten (Fig. 6).
Des weiteren wurde die Synthesekapazität des 5- Aminolävulinatsynthesewegs bestimmt, um den Einfluß der PMT- Expression und die Aktivität auf andere Enzymschritte des Stoffwechselweges zu untersuchen. PMT-Überproduzenten zeigten gegenüber den Kontrollpflanzen eine erhöhte Syntheserate der 5-Aminolävulinsäure (ALA), während für die Antisense-Pflanzen verringerte Syntheseraten bestimmt wurden (Fig. 7).
Diese Ergebnisse sind relevant für die Interpretation der Bedeutung der PMT-Expression für die Kontrolle des Gesamtmetabolitflusses. Dabei ist besonders wichtig, daß die ALA-Syntheserate mit der Aktivität der PMT in den transgenen Pflanzen mit modifzierten PMT-Gehalten korreliert. Die ALA-Synthese ist der ratenlimitierende Schritt der Tetrapyrrolsynthese und wird durch viele äußere (wie z.B. Licht, Tag/Nacht-Rhythmus, Lichtintensität) und endogene Faktoren (wie z.B. endogene Uhr, Hormone, Entwicklung) beeinflusst. Die Ergebnisse implizieren einen Regulationsmechanismus, der die Aktivitäten der frühen Schritte mit denjenigen der späteren Schritte, hier der der PMT, abstimmt. Es wird angenommen, daß die Anpassung der ALA-Biosyntheseleistung an die Aktivitäten im Mg-Porphyrinsyntheseweg auf einer gemeinsamen Koordination der transkriptioneilen und posttranslationellen Expressionskontrolle beruht.
Beschreibung der Figuren:
Fig. 1 : Darstellung der drei Kassetten für die drei verschiedenen Leseraster des Plastiden-Transitpeptids der plastidären S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase aus Kartoffel.
Fig. 2: (A): Pflanzentransformationsvektor pBIN19AR-TP.
(B): Pflanzentransformationsvektor pBIN19AR-TP zur Expression der S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase aus Physcomitrella patens in Antisense-
Orientierung. Die Abbkürzungen haben dabei folgende
Bedeutung:
35S: CAMV-35S-Promotor aus dem Blumenkohl-Mosaik- Virus
TK-Tp: Transitpeptid der Transketolase aus Kartoffel OCS: Octopin-Synthase-Terminator Außerdem sind solche Restriktionsschnittstellen eingezeichnet, die nur einmal den Vektor schneiden.
Fig. 3: Enzymaktivität des rekombinanten Mg-PMT-Proteins dargestellt als Genkarte und Elutionsprofil der Mg-Porphyrine aus den Extrakten des PMT-Enzymtests.
Fig. 4: Genkonstrukte enthaltend die für die PMT kodierende Nukleotidsequenz in Sense- und Antisense-Orientierung in dem Vektor pBINAR.
Fig. 5: Balkendiagramm zur Darstellung des Mg-Porphyrin-Gehaltes von selektierten transgenen Mg-PMT-Tabakpflanzen enthaltend Genkonstrukte mit kodierenden Nukleotidsequenzen in Sense- und
Antisense-Orientierung, bezeichnet als Sense und Antisense.
Fig. 6: Balkendiagramm zur Darstellung der Mg-PMT-Aktivität in modifizierten Tabakpflanzen (Mg-PMT-Gehalt nach 1 Stunde Inkubation).
Fig. 7: Balkendiagramm zur Darstellung des ALA-Gehaltes in transgenen Mg-PMT-Tabaklinien enthaltend Genkonstrukte mit kodierenden Nukleotidsequenzen in Sense- und Antisense-Orientierung, bezeichnet als Sense und Antisense.

Claims

Patentansprüche:
1. Nukleotidsequenz kodierend für eine pflanzliche S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile, Derivate, Homologe oder Isoformen davon.
2. Nukleotidsequenz gemäß Anspruch 1 , dadurch gekennzeichnet, daß sie die kodierende Sequenz gemäß SEQ ID NO 1 enthält.
3. Nukleotidsequenz gemäß Anspruch 1 , dadurch gekennzeichnet, daß sie die kodierende Sequenz gemäß SEQ ID NO 2 und/oder SEQ ID
NO 3 enthält.
4. Nukleotidsequenz gemäß Anspruch 1 , dadurch gekennzeichnet, daß sie die kodierende Sequenz gemäß SEQ ID NO 4 enthält.
5. Nukleotidsequenz gemäß Anspruch 1 , dadurch gekennzeichnet, daß das durch sie kodierte pflanzliche Protein eine Aminosäuresequenz gemäß SEQ ID NO 5 enthält.
6. Nukleotidsequenz gemäß Anspruch 1 , dadurch gekennzeichnet, daß das durch sie kodierte pflanzliche Protein eine Aminosäuresequenz gemäß SEQ ID NO 6 und/oder SEQ ID NO 7 enthält.
7. Nukleotidsequenz gemäß einem der Ansprüche 1 , 3, 4 oder 6, dadurch gekennzeichnet, daß sie für eine Aminosäuresequenz aus
Physcomitrella patens kodiert.
8. Nukleotidsequenz gemäß einem der Ansprüche 1 , 2 oder 5, dadurch gekennzeichnet, daß sie für eine Aminosäuresequenz aus Tabak kodiert.
. Nukleotidsequenz gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie für eine modifizierte S- Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile, Derivate, Homologe oder Isoformen davon kodiert, die eine Toleranz gegenüber Verbindungen mit herbizider Wirkung aufweist.
10. Genstruktur enthaltend eine Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 oder Teile davon sowie mit dieser operativ verknüpfte regulative Nukleotidsequenzen.
11. Genstruktur gemäß Anspruch 10 enthaltend regulatorische Nukleotidsequenzen aus der Gruppe der Promotoren, Enhancer, Operatoren, Terminatoren, Polyadenylierungssignale, Targeting- Sequenzen, Retentionssignale oder Translationsverstärker.
12. Genstruktur gemäß einem der Ansprüche 10 oder 11 enthaltend als regulative Nukleotidsequenz einen konstitutiven Promotor.
13. Genstruktur gemäß einem der Ansprüche 10 bis 12 enthaltend als regulative Nukleotidsequenz einen blatt- und/oder samenspezifischen und/oder einen induzierbaren, bevorzugt einen Licht-induzierbaren Promotor.
14. Vektor, enthaltend wenigstens eine Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 oder eine Genstruktur gemäß einem der
Ansprüche 10 bis 13.
15. Vektor gemäß Anspruch 14 enthaltend zusätzliche Nukleotidsequenzen zur Selektion und/oder zur Replikation in einer Wirtszelle und/oder zur Integration in das Wirtszell-Genom.
16. S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase oder Teile davon kodiert durch eine Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9.
17. S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase gemäß Anspruch 16 oder Teile davon enthaltend eine Aminosäuresequenz gemäß SEQ ID NO 5 oder Teile davon.
18. S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase gemäß Anspruch 16 oder Teile davon enthaltend eine
Aminosäuresequenz gemäß SEQ ID NO 6 und/oder SEQ ID NO 7 oder Teile davon.
19. S-Adenosylmethionin:Mg-Protoporphyrin-IX-0-Methyltransferase gemäß einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß sie eine Toleranz gegenüber Verbindungen mit herbizider Wirkung aufweist.
20. Genetisch veränderter ein- oder mehrzelliger Wirtsorganismus und dessen Nachkommen, enthaltend in replizierbarer Form eine
Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 und/oder eine
Genstruktur gemäß einem der Ansprüche 10 bis 13 und/oder einen
Vektor gemäß einem der Ansprüche 14 oder 15.
21 . Genetisch veränderter ein- oder mehrzelliger Wirtsorganismus gemäß Anspruch 20, dadurch gekennzeichnet, daß er ein Mikroorganismus, bevorzugt ein Bakterium, oder ein Pilz ist.
22. Genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen enthaltend in replizierbarer Form eine Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 und/oder ein
Genkonstrukt gemäß einem der Ansprüche 10 bis 13 und/oder einen Vektor gemäß einem der Ansprüche 14 oder 15.
23. Genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen gemäß Anspruch 22, dadurch gekennzeichnet, daß sie Proteine synthetisiert, welche die entsprechend nicht genetisch veränderte Pflanze nicht produziert.
24. Genetisch veränderte Pflanze oder Teile, Gewebe oder Zellen davon und deren Nachkommen gemäß einem der Ansprüche 22 oder 23, dadurch gekennzeichnet, daß sie eine veränderte Kontrolle der Chlorophyllbiosynthese und/oder einen veränderten Chlorophyllgehalt und/oder eine Herbizidtoleranz gegenüber einer entsprechenden nicht genetisch veränderten Pflanze aufweist.
25. Samen der Pflanzen gemäß einem der Ansprüche 22 bis 24.
26. Fortpflanzungsfähiges Material von einem ein- oder mehrzelligen Wirtsorganismus gemäß einem der Ansprüche 20 oder 21 oder von Pflanzen, Pflanzengewebe oder -zellen gemäß einem der Ansprüche
22 bis 24.
27. Verfahren zur Herstellung von Pflanzen oder Teilen, Geweben oder Zellen davon mit veränderter Kontrolle der Chlorophyllbiosynthese und/oder mit verändertem Chlorophyllgehalt, umfassend die Schritte a) Herstellung eines Genkonstrukts gemäß einem der Ansprüche 10 bis 13 oder eines Vektors gemäß einem der Ansprüche 14 oder 15, b) Übertragung des Genkonstrukts oder des Vektors aus a) auf Pflanzenzellen.
8. Verfahren zur Herstellung von Herbizid-toleranten Pflanzen, Teilen, Geweben oder Zellen davon, umfassend die Schritte a) Herstellung eines Genkonstrukts gemäß einem der Ansprüche 10 bis 13 oder eines Vektors gemäß einem der Ansprüche 14 oder 15, b) Übertragung des Genkonstrukts oder des Vektors aus a) auf Pflanzenzellen.
29. Verfahren nach einem der Ansprüche 27 oder 28, weiter umfassend in Schritt c) die Regeneration transgener Pflanzen aus den
Pflanzenzellen.
30. Verwendung einer Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 zur Herstellung von Pflanzen oder Teilen, Gewebe oder Zellen davon mit einer veränderten Kontrolle der Chlorophyllbiosynthese und/oder einem veränderten Chlorophyllgehalt und/oder einer veränderten Herbizidtoleranz.
31. Verwendung einer S-Adenosylmethionin:Mg-Protoporphyrin-IX-0- Methyltransferase gemäß einem der Ansprüche 16 bis 19 kodiert durch eine Nukleotidsequenz gemäß einem der Ansprüche 1 bis 9 zur Identifizierung von Herbiziden und/oder Verbindungen mit inhibitorischer Wirkung auf die Chlorophyllbiosynthese.
EP00958357A 1999-08-03 2000-08-02 Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz Withdrawn EP1198578A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19935610 1999-08-03
DE19935610 1999-08-03
DE10014114 2000-03-22
DE10014114 2000-03-22
PCT/EP2000/007472 WO2001009355A2 (de) 1999-08-03 2000-08-02 PFLANZLICHE S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PFLANZEN MIT VERÄNDERTEM CHLOROPHYLLGEHALT UND/ODER HERBIZIDTOLERANZ UND VERFAHREN ZU DEREN HERSTELLUNG

Publications (1)

Publication Number Publication Date
EP1198578A2 true EP1198578A2 (de) 2002-04-24

Family

ID=26004952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958357A Withdrawn EP1198578A2 (de) 1999-08-03 2000-08-02 Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz

Country Status (3)

Country Link
EP (1) EP1198578A2 (de)
AU (1) AU6990800A (de)
WO (1) WO2001009355A2 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650216A1 (de) * 1996-12-04 1998-06-10 Inst Pflanzengenetik & Kultur Verfahren zur Beeinflussung der Chlorophyllbiosynthese in Pflanzen
DE19717656A1 (de) * 1997-04-25 1998-10-29 Hoechst Schering Agrevo Gmbh DNA-Sequenzen kodierend für die Untereinheit CHLD pflanzlicher Magnesium-Chelatasen, sowie Verfahren zur Aktivitätsbestimmung pflanzlicher Magnesium-Chelatasen
AU1156399A (en) * 1997-10-29 1999-05-17 Institut Fur Pflanzengenetik Und Kulturpflanzenforschung Reduction of chlorophyll content in oil plant seeds
EP1033405A3 (de) * 1999-02-25 2001-08-01 Ceres Incorporated DNS-fragmente mit bestimmter Sequenz und die dadurch kodierte Polypeptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0109355A3 *

Also Published As

Publication number Publication date
AU6990800A (en) 2001-02-19
WO2001009355A2 (de) 2001-02-08
WO2001009355A3 (de) 2001-09-07

Similar Documents

Publication Publication Date Title
WO1999004021A1 (de) Dna-sequenz codierend für eine hydroxyphenylpyruvatdioxygenase und deren überproduktion in pflanzen
WO2001014569A2 (de) Erhöhung des polysaccharidgehaltes in pflanzen
EP1102852A1 (de) Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen
EP1294913B1 (de) Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges
EP1212439B1 (de) Pflanzen mit verändertem aminosäuregehalt und verfahren zu deren herstellung
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
DE10046462A1 (de) Verbesserte Verfahren zur Vitamin E Biosynthese
DE19918949A1 (de) Überexpression einer DNA-Sequenz codierend für eine 1-Desoxy-D-Xylulose-5-Phosphat Reduktoisomerase in Pflanzen
EP1194577A1 (de) Indentifizierung und ueberexpression einer dna-sequenz kodierend fuer eine 2-methyl-6-phytylhydrochinon-methyltransferase in pflanzen
WO1999029880A2 (de) Verfahren zur herstellung transgener pflanzen mit veränderter 5-aminolävulinsäure-biosynthese und verfahren zur identifizierung von effektoren der 5-aminolävulinsäure-synthese
DE19835219A1 (de) DNA-Sequenz codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und deren Überproduktion in Pflanzen
WO2001009355A2 (de) PFLANZLICHE S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PFLANZEN MIT VERÄNDERTEM CHLOROPHYLLGEHALT UND/ODER HERBIZIDTOLERANZ UND VERFAHREN ZU DEREN HERSTELLUNG
DE10111676A1 (de) Erhöhung des Vitamin-E-Gehalts in Organismen durch Erhöhung der Tyrosinaminotransferase-Aktivität
WO1999022011A1 (de) Reduktion des chlorophyllgehaltes in ölpflanzensamen
DE19903493A1 (de) Überexpression einer DNA-Sequenz codierend für eine Transketolase in Pflanzen
WO1999050400A1 (de) Amp-deaminase
EP1576164A2 (de) VERFAHREN ZUR HERSTELLUNG VON TRANSGENEN PFLANZEN MIT ERHöHT EM VITAMIN E-GEHALT DURCH VER äNDERUNG DES SERIN-ACETYLTRANSF ERASE-GEHALTS
EP1210437B1 (de) Dihydroorotase aus pflanzen
DE19914792A1 (de) Metabolische Selektionsmarker für Pflanzen
DE102004036466B4 (de) Verfahren zur Herstellung von C6- und/oder C9-Aldehyden und -Alkoholen in Pflanzen durch 9/13-Divinylethersynthase
DE19845231A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Pphosphat Synthase, eine Hydroxyphenylpyruvat Dioxygenase und eine Geranylgeranylpyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen
WO2001036606A2 (de) Protoporphyrinogen-ix-oxidase und seine verwendung
DE19845216A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Hydroxyphenylpyruvat Dioxygenase und deren Überproduktion in Pflanzen
DE19845224A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Geranylgeranyl-Pyrosphat Oxidoreduktase und deren Überproduktion in Pflanzen
WO2001064861A2 (de) Phosphoribosyl-pyrophosphat synthetase 1 als herbizides target

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060425