EP1294913B1 - Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges - Google Patents

Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges Download PDF

Info

Publication number
EP1294913B1
EP1294913B1 EP01943549A EP01943549A EP1294913B1 EP 1294913 B1 EP1294913 B1 EP 1294913B1 EP 01943549 A EP01943549 A EP 01943549A EP 01943549 A EP01943549 A EP 01943549A EP 1294913 B1 EP1294913 B1 EP 1294913B1
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
chorismate mutase
sequence
gene
vitamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943549A
Other languages
English (en)
French (fr)
Other versions
EP1294913A1 (de
Inventor
Ralf Badur
Michael Geiger
Irene Kunze
Susanne Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunGene GmbH
Original Assignee
SunGene GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000130647 external-priority patent/DE10030647A1/de
Priority claimed from DE2000164454 external-priority patent/DE10064454A1/de
Application filed by SunGene GmbH filed Critical SunGene GmbH
Publication of EP1294913A1 publication Critical patent/EP1294913A1/de
Application granted granted Critical
Publication of EP1294913B1 publication Critical patent/EP1294913B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a process for the production of fine chemicals, in particular vitamin E, by culturing organisms, in particular plants, which have a genetically modified shikimate pathway in relation to the wild type.
  • Organisms in particular plants, have a number of metabolic products which have a high economic value as fine chemicals.
  • fine chemicals are aromatic amino acids, salicylic acid derivatives, phenylpropanoids, flavonoids, stilbenes, xanthones and quinones, in particular the mixed prenyl lipid compounds with vitamin E or vitamin K activity.
  • Economically important fine chemicals are, for example, plastoquinones, ubiquinones and compounds having vitamin E or vitamin K activity, which have an isoprenoid side chain linked to an aromatic nucleus.
  • the naturally occurring eight compounds with vitamin E activity are derivatives of 6-chromanol ( Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Publishing Company, Chapter 4, 478-488 , Vitamin E).
  • vitamin E is understood to mean all of the above-mentioned tocopherols and tocotrienols with vitamin E activity.
  • Vitamin E compounds are important natural fat-soluble antioxidants. Lack of vitamin E leads to pathophysiological situations in humans and animals. Vitamin E compounds therefore have high economic value as additives in the food and feed sector, in pharmaceutical formulations and in cosmetic applications.
  • Vitamin K The naturally occurring compounds with vitamin K activity are derivatives of 1,4-naphthoquinone ( Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Publishing Company, Chapter 5., 488-506 , Vitamin K).
  • Phylloquinone (formerly termed vitamin K 1 ) has a largely saturated side chain, while the group of menaquinone-n (formerly termed vitamin K 2 ) has an unsaturated side chain with 4 to 13 isoprenyl radicals.
  • vitamin K is understood as meaning all compounds having vitamin K activity, in particular the compounds mentioned above.
  • IPP isopentenyl pyrophosphate
  • DMAPP dimethylallyl pyrophosphate
  • C10 monoterpene
  • GPP monoterpene
  • Addition of additional IPP units results in sesquiterpene (C15) farnesy pyrophosphate (FPP) and diterpene (C20) geranylgeranyl pyrophosphate (GGPP).
  • Phylloquinone contains a C20 phytyl chain in which only the first isoprene unit contains a double bond.
  • GGPP is transformed by geranylgeranyl pyrophosphate oxidoreductase (GGPPOR) into phytyl pyrophosphate (PPP), the starting material for further tocopherol production.
  • GGPPOR geranylgeranyl pyrophosphate oxidoreductase
  • PPP phytyl pyrophosphate
  • the ring structures of the mixed prenyl lipids which lead to the formation of vitamins E and K, are quinones whose starting metabolites originate from the shikimate pathway.
  • Chorismate is derived from erythrose-4-phosphate and phosphoenolpyruvate (PEP) by condensation to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) via the intermediates 3'-dehydroquinate, 3'-dehydroshikimate, shikimate, shikimate 3-phosphate and 5'-enolpyruvylshikimate-3-phosphate.
  • PEP phosphoenolpyruvate
  • DAHP 3-deoxy-D-arabino-heptulosonate-7-phosphate
  • the erythrose-4-phosphate is formed by the calvary cycle and the PEP is provided by the glycolysis.
  • tyrosine is formed from chorismate via prephenate and androgenate.
  • the aromatic amino acid tyrosine is converted into hydroxyphenyl pyruvate, which is converted by dioxygenation into homogentisic acid.
  • the homogentisic acid is then bound to phytyl pyrophosphate (PPP) or geranylgeranyl pyrophosphate to form the precursors of ⁇ -tocopherol and ⁇ -tocotrienol, the 2-methyl-6-phytylhydroquinone and the 2-methyl-6-geranylgeranylhydroquinone, respectively.
  • PPP phytyl pyrophosphate
  • geranylgeranyl pyrophosphate to form the precursors of ⁇ -tocopherol and ⁇ -tocotrienol, the 2-methyl-6-phytylhydroquinone and the 2-methyl-6-geranylgeranylhydroquinone, respectively.
  • S-adenosylmethionine as a methyl group donor initially 2,3-dimethyl-6-phytylquinol, then by cyclization ⁇ -tocopherol and by re-methylation ⁇ -tocopherol.
  • vitamin E in plants can be modified by overexpression or down-regulation of biosynthesis genes of the tocopherol biosynthesis pathway, which in the present invention is understood as meaning the biosynthesis pathway of hydroxyphenylpyruvate to tocopherol.
  • WO 97/27285 describes a modification of the tocopherol content by increased expression or by down-regulation of the enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD).
  • HPPD p-hydroxyphenylpyruvate dioxygenase
  • WO 99/23231 shows that expression of a geranylgeranyl reductase in transgenic plants results in increased tocopherol biosynthesis.
  • WO 00/08169 describes gene sequences encoding a 1-deoxy-D-xylose-5-phosphate synthase and a geranyl-geranyl-pyrophosphate oxidoreductase and their incorporation into transgenic plants having a modified vitamin E content.
  • the invention was therefore based on the object of another method for the production of fine chemicals by culturing organisms, or transgenic organisms can produce the fine chemicals, to provide with optimized properties that do not have the disadvantages of the prior art.
  • Shikimate pathway in the present invention is understood to mean the above-described biosynthesis pathway starting from D-erythrose-4-phosphate through shikimate, chorismate, prephenate, arogenate, tyrosine up to and including 4-hydroxyphenylpyruvate ( G. Michal, Biochemical Pathways, Biochemistry Atlas, Spectrum Academic Publishing Heidelberg, Berlin, 1999, pages 59 to 60, Figs. 4.7-1 and 4.7.1 )
  • the shikimate route is preferably understood as meaning the metabolic pathway of shikimate to 4-hydroxyphenylpyruvate, particularly preferably the metabolic pathway from chorismate to 4-hydroxyphenylpyruvate, the pathway for plants starting from chorismate via prephenate, arogenate and tyrosine.
  • Fine chemicals are metabolic products of the organism resulting from the shikimate pathway.
  • the shikimate route starts with D-erythrose-4-phosphate and ends with 4-hydroxyphenylpyruvate, as described above.
  • the starting compound is D-erythrose-4-phosphate
  • the end compound is 4-hydroxyphenylpyruvate
  • all of the abovementioned intermediates of the shikimate pathway are the starting compounds, hereinafter also referred to as intermediates, which are biosynthetically converted by the organism into the metabolites.
  • Preferred fine chemicals are the aromatic amino acids, such as phenylalanine, tyrosine and tryptophan, salicylic acid derivatives, folic acid derivatives, phenylpropanoids, such as lignin, lignans or coumarins, in particular scopoletin or scopolin, flavonoids, such as chalcones, flavanones, flavanols, anthocyanidins or isoflavonoids, stilbenes, Xanthones, or quinone derivatives such as vitamin E, vitamin K, ubiquinones, plastoquinones or shikonin.
  • aromatic amino acids such as phenylalanine, tyrosine and tryptophan
  • salicylic acid derivatives such as lignin, lignans or coumarins
  • phenylpropanoids such as lignin, lignans or coumarins, in particular scopoletin or scopolin
  • flavonoids such as chalcones, fla
  • Particularly preferred fine chemicals are vitamin E, vitamin K or ubiquinone, in particular vitamin E.
  • the content of the fine chemical is produced biosynthetically in the organism from this interconnector.
  • Genetic modification of the shikimate pathway thus preferably means the increase or decrease of the metabolite flow to an intermediate connection of the shikimate pathway.
  • the genetic modification of the shikimate pathway in the organism leads to an increase in the metabolite flux to a desired intermediate compound and thus to the corresponding desired fine chemical.
  • the increase in the metabolite flow to a desired intermediate compound of the shikimate route and thus to the desired fine chemical is carried out by at least one measure selected from the group of measure A and B, ie by the measure A and / or B, wherein the measures A and B have the meaning described above to have.
  • Increasing the activity of at least one enzyme of the wild-type shikimate pathway after measure A may, for example, by overexpression of nucleic acids, ie genes of the shikimate pathway, encode the proteins having this enzymatic activity by eliminating negative regulatory mechanisms of metabolic pathways leading to the interconnect, such as switching off the feedback inhibition or the introduction of orthologous genes that are not subject to regulation in the desired organism.
  • the activity of at least one enzyme of the shikimate pathway of the wild-type is increased according to measure A by overexpression of nucleic acids of the shikimate pathway which encode proteins having this enzymatic activity.
  • the implementation of measure A is carried out by introducing a nucleic acid encoding a chorismate mutase into the organism.
  • chorismate mutase a protein having the enzymatic activity to convert chorismate to prephenate.
  • all chorismate mutases are useful in the method of the invention, such as Petroselinum Crispum chorismate mutase (accession number: T14902, T14901), Streptomyces coelicolor chorismate mutase (T36865), Bacillus subtilis chorismate mutase (A33894), Aspergillus nidulans chorismate mutase (AAD30065), or the following described chorismate mutases from Arabidopsis thaliana or the chorismate mutase activity described below chorismate mutase prephenate dehydrogenase (tyrA) from E. coli.
  • Petroselinum Crispum chorismate mutase accession number: T14902, T14901
  • Streptomyces coelicolor chorismate mutase T36865
  • chorismate mutase genes are used which encode a chorismate mutase whose activity is subject to reduced post-translational regulation in the organism.
  • a reduced regulation is understood to mean a regulation of the activity of not more than 99%, preferably not more than 70%, particularly preferably 50%, particularly preferably 0%, ie no regulation of the activity, compared with the wild-type regulation.
  • Chorismatmutasegene which encode a Chorismatmutase whose activity in the organism is subject to a reduced, in particular no regulation are, for example, Chorismatmutasegene of genus different organisms or Chorismatmutasegene from the same organism or genus-related organisms which are subject to the localization of expression of a reduced, in particular no post-translational regulation.
  • organisms are understood to mean prokaryotic organisms or eukaryotic organisms, such as, for example, bacteria, yeasts, algae, mosses, fungi or plants, which are able to produce, as wild-type or by genetic modification, the abovementioned fine chemicals.
  • Preferred organisms are photosynthetically active Organisms, such as cyanobacteria, mosses, algae or plants, which are already able as wild-type to produce the aforementioned fine chemicals.
  • Particularly preferred organisms are plants.
  • chorismate mutase genes which code for a chorismate mutase whose activity in plants is subject to reduced post-translational regulation are introduced into plants.
  • these are some bacterial or derived chorismate mutase genes ie nucleic acids encoding a protein containing the amino acid sequence of a bacterial chorismate mutase whose activity in plants is subject to reduced post-translational activity, for example the nucleic acid encoding chorismate mutase activity of chorismate mutase-prephenate dehydrogenase (tyrA ) from E. coli.
  • substitution refers to the replacement of one or more amino acids by one or more amino acids.
  • conservative substitutions are carried out in which the replaced amino acid has a similar property to the original amino acid, for example exchange of Glu by Asp, GIn by Asn, Val by Ile, Leu by Ile, Ser by Thr.
  • Deletion is the replacement of an amino acid by a direct bond.
  • Preferred positions for deletions are the termini of the polypeptide and the linkages between the individual protein domains.
  • Insertions are insertions of amino acids into the polypeptide chain, formally replacing a direct bond with one or more amino acids.
  • homology between two proteins is preferably the identity of the amino acids over the respective entire protein length preferably the identity which is calculated by comparison with the help of the program algorithm GAP (UWGCG, University of Wisconsin, Genetic Computer Group) with setting of the following parameters: Gap Weight: 12 Length Weight: 4 Average Match: 2,912 Average Mismatch: -2,003
  • a protein which has a homology of at least 30% at the amino acid level with the sequence of the above-described chorismate mutase from E. coli is understood as meaning a protein which compares its sequence with the sequence of the chorismate mutase described above, preferably according to the above-mentioned program algorithm with the above parameter set has a homology of at least 30%.
  • the bacterial or derived chorismate mutase genes may also encode proteins having the property of a chorismate mutase and the property of another enzyme, such as the chorismate mutase-prephenate dehydrogenase (tyrA) gene from E. coli K12 described below. As described below, this embodiment is particularly preferred when the actions A and B are performed in combination.
  • tyrA chorismate mutase-prephenate dehydrogenase
  • the chorismate mutase genes are brought into specific locations in the organism to which the corresponding chorismate mutases are subject to reduced post-translational regulation.
  • nucleic acids encoding a chorismate mutase from the same or genus-related organisms are used, which are subject to reduced post-translational regulation at the site of expression.
  • the isoforms of chorismate mutases isolated from different compartments of an organism have different regulation.
  • Corismatmutasegene from a specific compartment of the organism or genus-related organisms can in other compartments of the organism in which the coded chorismate mutases are not subject to post-translational regulation.
  • a nucleic acid encoding a cytosolic chorimatum mutase is introduced from plants into plastids of plants.
  • nucleic acids which encode a cytosolic chorismate mutase from plants preferably the nucleic acid encoding a cytosolic chorismate mutase from Arabidopsis thaliana (SEQ ID NO: 3) and natural or non-natural nucleic acids derived therefrom, are suitable for this purpose.
  • chorismate mutase-1 is located plastidally and is controlled by the aromatic amino acids allosterically.
  • the cytosolic isoenzyme chorismate mutase-2 is not subject to any known regulation ( Benesova, M. Bode, R, Phytochemistry 1992, 31, 2983-2987 ).
  • Nucleic acids encoding an Arabidopsis thaliana cytosolic chorismate mutase and natural or non-natural nucleic acids derived therefrom are understood to be nucleic acids encoding a protein containing the amino acid sequence of the cytosolic chorismate mutase (SEQ ID NO: 4) or one of this sequence by substitution, insertion or deletion of amino acid-derived sequence having a homology of at least 30%, preferably at least 50%, more preferably at least 70%, most preferably at least 90% at the amino acid level with the sequence SEQ ID NO. 4 and have the enzymatic property of a chorismate mutase.
  • a nucleic acid encoding the Arabidopsis thaliana cytosolic chorismate mutase (SEQ ID NO: 4) is introduced into plastids of plants.
  • Suitable nucleic acid sequences are obtainable, for example, by back translation of the polypeptide sequence according to the genetic code.
  • codons are used for this; which are commonly used according to the plant-specific codon usage.
  • the codon usage can easily be determined by computer evaluations of other, known genes of the relevant plant.
  • a nucleic acid of the sequence SEQ ID NO. 3 introduced into plastids of plants represents the gene of the Arabidopsis thaliana cytosolic chorismate mutase (chorismate mutase-2).
  • nucleic acids encoding a chorismate mutase into plastids of plants can be accomplished by introducing expression cassettes into plants whose nucleic acid sequence encodes a chorismate mutase fusion protein, wherein a portion of the fusion protein is a transit peptide that controls the translocation of the polypeptide. Preference is given to the chloroplasts specific transit peptides, which are cleaved enzymatically after translocation of the cytosolic chorismate mutase into the chloroplasts of Chorismatmutase part.
  • a nucleic acid construct is introduced into the plant, containing a nucleic acid encoding a plastid transit peptide and a nucleic acid encoding a protein, containing the amino acid sequence SEQ ID NO. 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has a homology of at least 30% at the amino acid level with the sequence SEQ ID NO. 4 and the enzymatic Has property of a Chorismatmutase.
  • a nucleic acid construct is introduced into the plant, comprising a nucleic acid encoding a plastidic transit peptide of the plastidic Chorismatmutase-1 from Arabidopsis thaliana and a nucleic acid encoding a protein containing the amino acid sequence SEQ ID NO. 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has a homology of at least 30% at the amino acid level with the sequence SEQ ID NO. 4 and has the enzymatic property of a chorismate mutase.
  • a of the method according to the invention particular preference is given to introducing a nucleic acid construct containing the sequence (SEQ ID NO. 5) into plants.
  • SEQ ID NO. Figure 5 depicts a nucleic acid construct from the nucleic acid encoding the plastidic transit peptide of the Arabidopsis thaliana plastid Chorismate Mutase-1 and the nucleic acid encoding the Arabidopsis thaliana cytosolic chorismate mutase-2.
  • the present application also relates in particular to the use of these nucleic acid constructs in measure A of the method according to the invention.
  • FIG. 1 For example, the biosynthetic scheme starting from erythrose 4-phosphate to vitamin E is shown. Additional expression of a chorismate mutase gene genetically modifies the wild type shikimate pathway and increases the metabolite flux to hydroxyphenylpyruvate. The now increasingly available Hydroxyphenylpyruvat is further reacted towards tocopherols. An increased content of hydroxyphenylpyruvate leads to an increased conversion in the direction of vitamin E and / or vitamin K. Preferably, an increased content of hydroxyphenylpyruvate leads to an increase in the vitamin E content.
  • an expression cassette is carried out, as described in detail below, by fusion of a suitable promoter with a suitable chorismate mutase nucleic acid sequence and preferably a nucleic acid inserted between promoter and chorismate mutase nucleic acid sequence which codes for a plastid transit peptide, ie preferably by fusion of a suitable promoter with a suitable nucleic acid construct described above, as well as a polyadenylation signal according to common recombination and Cloning techniques, such as those in T. Maniatis, EF Fritsch and J.
  • Measure B for modifying the wild-type shikimate pathway is carried out as set forth above by introducing at least one gene into the organism to which the wild type has no orthologous gene and which bridges the metabolic pathway of the wild-type shikimate pathway.
  • This gene encodes an enzyme which, by virtue of the new enzymatic activity, causes an increase in the flux of the substance to the intermediate compound at which bridging ends.
  • This new enzymatic activity is preferably not subject to regulation by the organism, thus short-circuiting the metabolic pathway, for example to circumvent limiting regulatory sites in the metabolism. This makes it possible to decouple the metabolite flow to limiting substances from existing regulations.
  • a gene orthologous to the wild-type gene is understood as meaning a gene derived from another organism, the enzyme activity encoding the gene already being present in the wild-type.
  • the term "gene to which the wild type has no orthologous gene” means a gene from another organism, wherein the enzyme activity encoding the gene was absent or unactivated prior to wild-type transformation.
  • a gene orthologous to the wild type is understood to mean a functional equivalent from another organism, functional equivalent meaning the entirety of the properties of the gene product (protein).
  • the term "gene to which the wild type has no orthologous gene” is preferably understood to mean a gene to which the wild-type has no functional equivalent as defined above and thus establish a metabolic activity that produces an alternative metabolic pathway produce already present in the plant product (contained metabolites).
  • organisms are understood, as described above for measure A, to be prokaryotic organisms or eukaryotic organisms, such as, for example, bacteria, yeasts, algae, mosses, fungi or plants, which are capable of, as wild-type or by genetic modification, the abovementioned fine chemicals manufacture.
  • Preferred organisms are photosynthetically active organisms, such as, for example, cyanobacteria, mosses, algae or plants, which are already able, as a wild-type, to produce the abovementioned fine chemicals.
  • Particularly preferred organisms are plants.
  • plants are used as organisms to be transformed.
  • bacterial genes are preferably suitable for carrying out the measure B as genes to which the plant has no orthologous gene.
  • the metabolic pathway of the shikimate pathway of the plant is bridged by the at least one introduced gene.
  • a nucleic acid encoding a prephenate dehydrogenase is introduced into a plant.
  • all genes which encode a prephenate dehydrogenase are suitable.
  • prephenate dehydrogenase an enzyme having the enzymatic activity to convert prephenate to 4-hydroxyphenylpyruvate.
  • nucleic acids which code for a prephenate dehydrogenase and can be used in the process according to the invention are the known and accessible in databases on the Internet Prephenatdehydrogenasegene from Lactococcus lactis (Accession X78413), Synechocystis spec PCC 6803 (slr2081), Deinococcus radiodurans (AAF10695) or Bacillus subtilis (P20692).
  • prephenate dehydrogenase genes such as the potential prephenate dehydrogenase from Termotoga maitima (AAD35430) or Heliobacter pylori 26695 (Accession AAD08422).
  • a nucleic acid encoding a protein containing the amino acid sequence of the prephenate dehydrogenase from Synechocystis spec PCC 6803 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, containing a Homology of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90% at the amino acid level with the sequence of the prephenate dehydrogenase from Synechocystis spec PCC 6803 and the enzymatic property of prephenate dehydrogenase.
  • a protein which has a homology of at least 30% at the amino acid level with the sequence of the prephenate dehydrogenase from Synechocystis spec PCC 6803 is understood as meaning a protein which, when comparing its sequence with the sequence of the prephenate dehydrogenase from Synechocystis spec PCC 6803, preferably after has a homology of at least 30% in the preceding program algorithm with the above parameter set.
  • FIG. 1 For example, the biosynthetic scheme starting from erythrose 4-phosphate shows the tocopherols.
  • a prephenate dehydrogenase gene genetically modifies the wild-type shikimate pathway and increases the metabolite flux to hydroxyphenylpyruvate.
  • the now increasingly available Hydroxyphenylpyruvat is further reacted towards tocopherols.
  • An increased content of hydroxyphenylpyruvate leads to an increased conversion in the direction of vitamin E and / or vitamin K.
  • an increased content of hydroxyphenylpyruvate leads to an increase in the vitamin E content.
  • a nucleic acid encoding a prephenate dehydrogenase in combination with a nucleic acid encoding a chorismate mutase is introduced into a plant.
  • This combination may be accomplished, for example, by introducing two nucleic acids each encoding an enzyme having the activity of a chorismate mutase and an enzyme having the activity of a prephenate dehydrogenase.
  • this combination is carried out in a nucleic acid in which a nucleic acid encoding a chorismate mutase-prephenate dehydrogenase is introduced into a plant.
  • the chorismate mutase-prephenate dehydrogenase gene encodes a protein that has both the enzymatic properties of a chorismate mutase and a prephenate dehydrogenase.
  • a nucleic acid an enzymatic activity is overexpressed or an enzymatic activity is introduced which is subject to reduced post-translational regulation (chorismate mutase) and an enzymatic property (prephenate dehydrogenase) is newly introduced.
  • chorismate mutase-prephenate dehydrogenase an enzyme having the enzymatic activity to convert chorismate to 4-hydroxyphenylpyruvate.
  • a nucleic acid encoding a protein containing the amino acid sequence SEQ ID NO. 2 or one derived from this sequence by substitution, insertion or deletion of amino acids sequence having a homology of at least 30%, preferably at least 50%, more preferably at least 70%, most preferably at least 90% at the amino acid level with the sequence SEQ ID NO. 2 and the enzymatic property of a chorismate mutase-prephenate dehydrogenase.
  • the protein with the amino acid sequence SEQ ID NO. Figure 2 represents chorismate mutase prephenate dehydrogenase ( tyrA ) from E. coli K12.
  • a protein having a homology of at least 30% at the amino acid level with the sequence SEQ ID NO. 2 is understood as meaning a protein which, when comparing its sequence with the sequence SEQ ID NO. 2, preferably according to the above program algorithm with the above Parameter set a homology of at least 30% having.
  • nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
  • Suitable nucleic acid sequences are obtainable, as described above, by back translation of the polypeptide sequence according to the genetic code.
  • codon usage can easily be determined by computer evaluations of other known genes of the organism concerned.
  • the protein is to be expressed, for example, in a plant, it is often advantageous to use the codon usage of the plant in the reverse translation.
  • chorismate mutase-prephenate dehydrogenases or their coding nucleic acids are in particular nucleic acids of bacterial origin, such as, for example, the chorismate mutase-prephenate dehydrogenase genes from Erwinia herbicola (Accession X60420; this protein can also be converted into a monofunctional prephenate dehydrogenase by deleting a 109 bp region at the 5 'end and then, for example, as described above as prephenate dehydrogenase) or Bordetella bronchiseptica (Accession AAF01289) or can be known, for example, from various organisms whose genomic sequence is known by homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases having SEQ ID NO. 2 or the other sequences described above, such as the potential chorismate mutase-prephenate dehydrogenase genes from Methanococcus janaschi
  • Nucleic acids particularly preferably used encode a chorismate mutase-prephenate dehydrogenase from bacteria.
  • a particularly preferably used nucleic acid has the sequence SEQ ID NO. 1.
  • This nucleic acid represents a prokaryotic genomic DNA from E. Coli K12 which contains the chorismate mutase-prephenate dehydrogenase of the sequence SEQ ID NO. 2, also called tyrA gene, encoded.
  • FIG. 1 For example, the biosynthetic scheme starting from erythrose 4-phosphate shows the tocopherols. Additional expression of a chorismate mutase-prephenate dehydrogenase gene genetically modifies the wild-type shikimate pathway and increases the metabolite flux to hydroxyphenylpyruvate. The now increasingly available Hydroxyphenylpyruvat is further reacted towards tocopherols. An increased content of hydroxyphenylpyruvate leads to an increased conversion towards vitamin E and / or vitamin K. Preferably, an increased content of hydroxyphenylpyruvate in the method according to the invention leads to an increase in the vitamin E content.
  • the culture step of the transgenic organisms is followed by harvesting the organisms and isolating the fine chemicals from the organisms.
  • Microorganisms such as bacteria, mosses, yeasts and fungi or plant cells cultured by fermentation in liquid nutrient media can be separated by, for example, centrifuging, decanting or filtering. Plants are grown in a conventional manner on nutrient media and harvested accordingly.
  • the isolation of the fine chemicals from the harvested biomass is carried out in a conventional manner, for example by extraction and optionally further chemical or physical purification processes, such as precipitation methods, crystallography, thermal separation methods, such as rectification or physical separation methods, such as chromatography.
  • chemical or physical purification processes such as precipitation methods, crystallography, thermal separation methods, such as rectification or physical separation methods, such as chromatography.
  • the isolation of vitamin E from oil-containing plants is preferably carried out, for example, by chemical conversion and distillation from vegetable oils or from the steam distillates obtained in the deodorization of vegetable oils (damper condensates).
  • the transgenic organisms are preferably produced by transformation of the starting organisms, in particular plants, with a nucleic acid construct which contains the nucleic acids described above, in particular the nucleic acids encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase prephenate dehydrogenase or the above-described nucleic acid constructs, in particular the nucleic acid construct encoding a plastid transit peptide and a cytosolic chorismate mutase.
  • nucleic acid constructs in which the coding nucleic acid sequence or the coding nucleic acid construct are functionally linked to one or more regulatory signals which ensure transcription and translation in organisms, in particular in plants, are also termed expression cassettes below.
  • the invention further describes nucleic acid constructs acting as an expression cassette, comprising a nucleic acid encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase prephenate dehydrogenase or the nucleic acid constructs described above, in particular the nucleic acid construct encoding a plastid transit peptide and a cytosolic chorismate mutase which are functionally linked to one or more regulatory signals which ensure transcription and translation in the host organism, especially in plants.
  • the expression cassette contains a nucleic acid encoding a plastid transit peptide which ensures localization in plastids.
  • the expression cassettes contain regulatory signals, ie regulatory nucleic acid sequences which control the expression of the coding sequence in the host cell.
  • an expression cassette comprises upstream, ie at the 5'-end of the coding sequence, a promoter and downstream, ie at the 3'-end, a polyadenylation signal and optionally further regulatory elements having, with the intervening coding sequence for at least one of the above described genes are operatively linked. Operative linkage is understood as meaning the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended.
  • nucleic acid constructs In the following, the preferred nucleic acid constructs, expression cassettes for plants and methods for producing transgenic plants are described by way of example.
  • the operative but not restricted sequences are targeting sequences for ensuring subcellular localization in the apoplast, vacuole, plastids, mitochondrion, endoplasmic reticulum (ER), nucleus, oil bodies or other compartments, and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus ( Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711 ).
  • a promoter of the expression cassette is basically any promoter that can control the expression of foreign genes in plants.
  • a plant promoter or a promoter derived from a plant virus Particularly preferred is the CaMV 35S promoter from the cauliflower mosaic virus ( Franck et al., Cell 21 (1980), 285-294 ).
  • This promoter is known to contain different recognition sequences for transcriptional effectors, which in their entirety lead to a permanent and constitutive expression of the introduced gene ( Benfey et al., EMBO J. 8 (1989), 2195-2202 ).
  • the expression cassette may also contain a chemically inducible promoter by which expression of the exogenous tyrA gene in the plant can be controlled at a particular time.
  • Promoters such as the PRP1 promoter ( Ward et al., Plant. Mol. Biol. 22 (1993), 361-366 ), a salicylic acid inducible promoter ( WO 95/19443 ), a benzenesulfonamide-inducible ( EP-A 388186 ), a tetracycline-inducible ( Gatz et al., (1992) Plant J.
  • promoters which ensure expression in tissues or parts of plants in which, for example, the biosynthesis of the corresponding fine chemicals, in particular vitamin E or its precursors, takes place are particularly preferred. Particular mention should be made of promoters which ensure leaf-specific expression. Mention may be made of the potato cytosolic FBPase promoter or potato ST-LSI promoter ( Stockhaus et al., EMBO J. 8 (1989), 2445-245 ).
  • the expression cassette can therefore be, for example, a seed-specific promoter (preferably the phaseolin promoter ( US 5504200 ), the USP ( Baumlein, H. et al., Mol. Genet. (1991) 225 (3), 459-467 ), LEB4 promoter (Fiedler and Conrad, 1995), sucrose-binding protein promoter, the LEB4 signal peptide, the gene to be expressed, and an ER retention signal.
  • a seed-specific promoter preferably the phaseolin promoter ( US 5504200 ), the USP ( Baumlein, H. et al., Mol. Genet. (1991) 225 (3), 459-467 ), LEB4 promoter (Fiedler and Conrad, 1995), sucrose-binding protein promoter, the LEB4 signal peptide, the gene to be expressed, and an ER retention signal.
  • the preparation of an expression cassette is preferably carried out by fusion of a suitable promoter with a suitable nucleic acid sequence described above, in particular the nucleic acid sequence encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase-prephenate dehydrogenase and preferably a nucleic acid inserted between promoter and nucleic acid sequence, the encoding a chloroplast-specific transit peptide, as well as a polyadenylation signal according to conventional recombination and cloning techniques, as described for example in T. Maniatis, EF Fritsch and J.
  • inserted sequences which, as described above for the chorismate mutase, ensure targeting in the plastids.
  • expression cassettes whose nucleic acid sequence encodes a fusion protein, in particular a chorismate mutase, prephenate dehydrogenase or chorismate mutase-prephenate dehydrogenase fusion protein, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
  • transit peptide derived from the plastidic Nicotiana tabacum transketolase or other transit peptide eg Rubisco small subunit transit peptide or ferredoxin NADP oxidoreductase as well as isopentenyl pyrophosphate isomerase-2
  • transit peptide derived from the plastidic Nicotiana tabacum transketolase or other transit peptide (eg Rubisco small subunit transit peptide or ferredoxin NADP oxidoreductase as well as isopentenyl pyrophosphate isomerase-22) or its functional equivalent.
  • cytosolic chorismate mutase or the nucleic acid encoding a cytosolic chorismate mutase as described above, in particular the use of the transit peptide of the plastid Chorismatmutase, or their coding nucleic acid is preferred.
  • photosynthetically active organisms such as cyanobacteria, mosses, algae or plants, more preferably plants as starting organisms and accordingly also used as genetically modified organisms.
  • Plants according to the invention are especially monocotyledonous and dicotyledonous plants.
  • Preferred plants are Tagetes, Sunflower, Arabidopsis, Tobacco, Red Pepper, Soy, Tomato, Eggplant, Pepper, Carrot, Carrot, Potato, Corn, Salads and Cabbage, Cereals, Alfalfa, Oats, Barley, Rye, Wheat, Triticale, Millet, Rice, alfalfa, flax, cotton, hemp, Brassicacaen such as oilseed rape or canola, sugar beet, sugar cane, nut and wine species or woody plants such as aspen or yew.
  • Arabidopsis thaliana is particularly preferred, Tagetes erecta , Brassica napus, Nicotiana tabacum , canola, potatoes and other oilseeds, such as soybean.
  • the genetically modified organisms in particular plants, can be used as described above for the preparation of fine chemicals, in particular for the production of vitamin E.
  • Genetically modified plants which can be consumed by humans and animals and have an elevated content of fine chemicals, in particular with an increased content of vitamin E, can also be used, for example, directly or according to known processing used as food or feed.
  • Increasing the content of fine chemicals in the context of the present invention means the artificially acquired ability of increased biosynthetic performance of these compounds in the plant compared to the non-genetically modified plant for the duration of at least one plant generation.
  • An elevated content of vitamin E is generally understood as meaning an increased content of total tocopherol.
  • an increased content of vitamin E is also understood as meaning in particular an altered content of the above-described 8 compounds with tocopherol activity.
  • introducing a chorismate mutase-prephenate dehydrogenase gene into plants surprisingly results in a particularly increased increase in the tocotrienol content.
  • both the content of tocopherols or tocotrienols can be increased.
  • the content of tocopherols is increased.
  • the biosynthesis site of vitamin E for example, in plants is, inter alia, the leaf tissue, so that a leaf-specific expression of the nucleic acids according to the invention, in particular the nucleic acids encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase-prephenate dehydrogenase is useful.
  • a leaf-specific expression of the nucleic acids according to the invention in particular the nucleic acids encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase-prephenate dehydrogenase is useful.
  • this is not restrictive, since the expression in all other parts of the plant - especially in fatty seeds - can be made tissue-specific.
  • a further preferred embodiment of the methods and uses according to the invention therefore relates to a seed-specific expression of the nucleic acids according to the invention, in particular of the nucleic acids encoding a chorismate mutase, a prephenate dehydrogenase or a chorismate mutase-prephenate dehydrogenase.
  • the efficiency of the expression of the transgenically expressed chorismate mutase, prephenate dehydrogenase or chorismate mutase-prephenate dehydrogenase gene can be determined, for example, in vitro by shoot meristem propagation.
  • an altered in type and level of expression of the chorismate mutase, prephenate dehydrogenase or chorismate mutase prephenate dehydrogenase gene and their effect on the vitamin E biosynthesis performance of test plants can be tested in greenhouse experiments.
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from Licor (sold by MWG Biotech, Ebersbach) according to the method of Sanger ( Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467 ).
  • the DNA coding for the tyrA gene was determined by means of polymerase chain reaction (PCR) from E. coli K12 using a sense-specific primer (tyrA5 'SEQ ID NO. 10) and an antisense-specific primer (tyrA3' SEQ ID NO. 9). amplified.
  • PCR polymerase chain reaction
  • the PCR conditions were the following:
  • the amplicon was cloned into the PCR cloning vector pGEM-T (Promega) using standard methods. The identity of the generated amplicon was confirmed by sequencing using the M13F (-40) primer.
  • Example 2 Production of expression cassettes containing the tyrA gene coding for the chorismate mutase-prephenate dehydrogenase from E. coli K12
  • Transgenic Nicotiana tabacum and Arabidopsis thaliana plants were generated carrying the chorismate mutase-prephenate dehydrogenase from E. coli K12 under the control of the constitutive 35S promoter of CaMV (cauliflower mosaic virus) ( Franck et al., Cell 21: 285-294, 1980 express).
  • the basis of the plasmid generated for constitutive expression of the chorismate mutase-prephenate dehydrogenase from E. coli K12 was the pBinAR-TkTp-10 ( Ralf Badur, Dissertation University of Göttingen, 1998 ). This vector is a derivative of pBinAR ( Höfgen and Willmitzer, Plant Sci.
  • the tyrA gene was isolated from plasmid pGEM-T / tyrA using the flanking SmaI and SalI restriction sites, respectively. This fragment was ligated into a SmaI / SalI cut pBinAR-TkTp-10 using standard methods (see FIG. 2 ). This plasmid (pBinAR-TkTp-10 / tyrA) was used to generate transgenic Nicotiana tabacum and A. thaliana plants.
  • Fragment A (529 bp) in FIG. 2 contains the 35S promoter of CaMV (nucleotides 6909 to 7437 of cauliflower mosaic virus), fragment B (245bp) encodes the transit peptide of Nicotiana tabacum transketolase, fragment C (1232 bp) encodes the tyrA gene from E. coli K12, fragment D (219 bp) encodes the termination signal of the octopine synthase gene.
  • CaMV nucleotides 6909 to 7437 of cauliflower mosaic virus
  • fragment B (245bp) encodes the transit peptide of Nicotiana tabacum transketolase
  • fragment C (1232 bp) encodes the tyrA gene from E. coli K12
  • fragment D (219 bp) encodes the termination signal of the octopine synthase gene.
  • This vector is a derivative of pGPTVkan ( D. Becker, E. Kemper, J. Schell, R. Masterson. Plant Molecular Biology 20: 1195-1197, 1992 ) the uidA gene was deleted. Instead, the vector pPTVkanLeP-IPP-TP-9 contains the seed-specific promoter of the legumin B4 gene ( Kafatos et al., Nuc. Acid. Res., 14 (6): 2707-2720, 1986 ), the sequence coding for the transit peptide of A. thaliana plastid-specific isopentenyl pyrophosphate isomerase-2 (IPP-2) (Badur, unpublished) and the termination signal of nopaline synthase from A. tumefaciens ( Depicker et al., J. Mol. Appl. Genet. 1, 561-73, 1982 ).
  • IPP-2 A. thaliana plastid-specific isopentenyl pyrophosphate isomerase-2
  • the nucleic acid fragment coding for the tyrA from E. coli K12 was inserted into the vector pPTVkanLeP-IPP-TP-9 as a SmaI / SalI fragment with blunt ends filled in by the T4 polymerase. FIG. 3 ), resulting in translational fusion with the transit peptide of IPP-2.
  • This plasmid (pPTVkanLeP-IPP-TP-9 / TyrA) was used to generate transgenic Nicotiana tabacum, A. thaliana and Brassica napus plants, respectively.
  • Fragment A (2700 bp) in FIG. 3 includes the promoter of the Vicia faba legumin B4 gene , fragment B (206bp) fragment encoding the A. thaliana isopentenyl pyrophosphate isomerase-2 transit peptide.
  • Fragment C (1234 bp) encodes the tyrA gene from E. coli K12.
  • Fragment D (272 bp) for the termination signal of the nopaline synthase gene.
  • Example 4 Preparation of transgenic Arabidopis thaliana plants expressing the tyrA gene
  • Wild-type Arabidopsis thaliana plants (Columbia) were transformed with the Agrobacterium tumefaciens strain (GV3101 [pMP90]) on the basis of a modified vacuum infiltration method ( Steve Clough and Andrew Bent. Floral dip: a simplified method for Agrobacterium mediated transformation of A. thaliana. Plant J 16 (6): 735-43, 1998 ; of the Bechtold, N. Ellis, J. and Pelltier, G., in: Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CRAcad Sci Paris, 1993, 1144 (2): 204-212 ).
  • the Agrobacterium tumefaciens cells used were in advance with the plasmids pBinAR-TkTp-10 / tyrA and pPTVkanLeP-IPP-TP-9 / tyrA ( FIG. 2 or 3) has been transformed.
  • Seeds of primary transformants were selected based on antibiotic resistance. Antibiotic resistant seedlings were planted in soil and used as fully developed plants for biochemical analysis.
  • transgenic rape plants were based on a protocol of Bade, JB and Damm, B. (Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38 ), in which the composition of the media used and buffer is given.
  • the transformations were performed with Agrobacterium tumefaciens strain GV3101 [pMP90].
  • the plasmid pPTVkanLeP-IPP-TP-9 / tyrA was used ( FIG. 3 ).
  • Seeds of Brassica napus var. Westar were surface sterilized with 70% ethanol (v / v), washed in water at 55 ° C for 10 minutes, in 1% hypochlorite solution (25% v / v Teepol, 0.1% v / v) / v Tween 20) for 20 minutes and washed six times with sterile water for 20 minutes each.
  • the seeds were dried on filter paper for three days and germinated for 10-15 seeds in a glass flask containing 15 ml of germination medium. From several seedlings (about 10 cm in size), the roots and apices were removed and the remaining hypocotyledons cut into pieces about 6 mm long. The approximately 600 explants thus obtained were washed for 30 minutes with 50 ml of basal medium and transferred to a 300 ml flask. After adding 100 ml of callus induction medium, the cultures were incubated for 24 hours at 100 rpm.
  • the callus induction medium was removed with sterile pipettes, 50 ml of Agrobacterium solution added, gently mixed and incubated for 20 min.
  • the Agrobacterium suspension was removed, the rape explants were washed for 1 min with 50 ml of callus induction medium and then added to 100 ml of callus induction medium.
  • the co-cultivation was carried out for 24 hours on a rotary shaker at 100 rpm.
  • the co-cultivation was stopped by removing the callus induction medium and the explants were washed twice for 25 minutes each for 1 minute and twice for 60 minutes each with 100 ml of washing medium at 100 rpm.
  • the wash medium containing the explants was transferred to 15 cm Petri dishes and the medium was removed with sterile pipettes.
  • the wild-type plants from sterile culture were obtained by vegetative replication. For this purpose, only the tip of the plant was cut and transferred to fresh 2MS medium in a sterile mason jar. From the rest of the plant the hairs on the top of the leaves and the midribs of the leaves were removed. The leaves were cut with a razor blade into about 1cm 2 pieces. The agrobacteria culture was transferred to a small petri dish (diameter 2 cm). The leaf pieces were briefly pulled through this solution and placed with the leaf underside on 2MS medium in Petri dishes (diameter 9 cm) so that they touched the medium.
  • the explants were transferred to plates with callus induction medium and tempered to 28 ° C in the climatic chamber. The medium had to be changed every 7 to 10 days.
  • the explants were placed in sterile preserving jars on shoot induction medium containing claforan (0.6% BiTec agar (g / v), 2.0 mg / l zeatinribose, 0.02 mg / l naphthylacetic acid, 0.02 mg / g Gibberelic acid, 0.25 g / ml Claforan, 1.6% glucose (w / v), and 50 mg / l kanamycin. "After about one month, organogenesis occurred and the shoots formed could be cut off 2MS medium with claforan and selection marker was performed, and once a vigorous root ball had formed, the plants could be potted in a pikierde.
  • the tocopherol and tocotrienol contents in leaves and seeds of the plants transformed with the described constructs were analyzed.
  • the transgenic plants were cultivated in the greenhouse and plants which express the gene coding for the chorismate mutase-prephenate dehydrogenase from E. coli K12 were analyzed on the Northern and Western levels.
  • the tocopherol content and the Tocotrienolgehalt was determined by HPLC.
  • the tocopherol and / or tocotrienol content was increased in transgenic plants that additionally express a tyrA gene compared to untransformed plants.
  • Table 1A young leaves
  • 1B senescent leaves
  • Table A young leaves ⁇ -tocopherol ⁇ -tocopherol ⁇ -tocotrienol Total vitamin E Wild-type SNN 19.0 ⁇ 2.9 0.31 ⁇ 0.03 ⁇ 0.20 19.3 ⁇ 2.8 Line 8 27.6 1.25 1.03 30.0 Line 15 35.7 0.73 1.00 37.4 Line 54 32.3 4.60 1.60 38.7 Line 86 15.7 4.47 0.98 21.4 Line 113 32.3 0.71 0.62 33.6 ⁇ -tocopherol ⁇ -tocopherol ⁇ -tocotrienol Total vitamin E Wild-type SNN 32.9 ⁇ 2.1 0.31 ⁇ 0.05 ⁇ 0.20 33.1 ⁇ 2.1 Line 8 50.7 0.69 2.69 54.2 Line 15 54.7 0.69 0.81 56.2 Line 54 37.0 2.60 0.35 40.0 Line 86 36.5 1.51 0.43 38.4 Line 113 3 46.2 0.45 2.29 48.9
  • Example 8 Cloning of a subfragment of the gene coding for the plastidically expressed chorismate mutase-1 from Arabidopsis thaliana
  • the DNA sequence coding for the transit peptide of the chorismate mutase 1 gene was determined by means of polymerase chain reaction (PCR) from Arabidopsis thaliana using a sense-specific primer (CM-1TP 5 'SEQ ID No. 11) and an antisense-specific primer ( CM-1TP 3 'SEQ ID NO: 12).
  • the amplicon was cloned using standard methods into the PCR cloning vector pCR-Script (Stratagene). The identity of the generated amplicon was confirmed by sequencing using a vector specific primer.
  • the DNA coding for the chorismate mutase 2 gene was determined by means of polymerase chain reaction (PCR) from Arabidopsis thaliana using a sense-specific primer (CM-2 5 'SEQ ID NO. 13) and an antisense-specific primer (CM-2 3 'SEQ ID NO. 14).
  • PCR polymerase chain reaction
  • the amplicon was cloned into the PCR cloning vector pGEM-T (Promega) using standard methods. The identity of the generated amplicon was confirmed by sequencing using the M13F (-40) primer.
  • the plasmid pCR-Script / CM-1-TP was digested with the restriction enzymes NcoI / SalI.
  • Transgenic plants have been generated which express the A. thaliana CM-1-TP-CM2 chimeric gene under the control of the constitutive 35S promoter of CaMV (cauliflower mosaic virus) ( Franck et al., Cell 21: 285-294, 1980 ) and on the other hand under the control of the seed-specific promoter of the Vicia faba legumin gene ( Kafatos et al., Nuc. Acid. Res., 14 (6): 2707-2720, 1986 express).
  • CaMV cauliflower mosaic virus
  • the basis for the constitutive expression of the chimeric gene CM-1TP-CM-2 was the vector pBinAR ( Höfgen and Willmitzer, Plant Sci. 66: 221-230, 1990 ).
  • This vector contains the 35S promoter of CaMV (cauliflower mosaic virus) (Franck et al., 1980) and the termination signal of the octopine synthase gene ( Gielen et al., EMBO J. 3: 835-846, 1984 ).
  • the chimeric gene CM-1-TP-CM2 was prepared using the flanking restriction sites KpnI / SalI from the plasmid pCR-Script / AtCM-ITP-AtCM-2 ( Fig. 4 ) isolated.
  • This fragment was ligated into a KpnI / SalI cut pBinAR using standard methods.
  • the resulting plasmid (pBinAR / CM-1TP / CM-2, Fig. 5 ) was used to generate transgenic Arabidopsis thaliana and Nicotiana tabacum .
  • the seed-specific promoter of the legumin B4 gene ( Kafatos et al., Nuc. Acid. Res., 14 (6): 2707-2720, 1986 ) used.
  • the plasmid pGEMTeasy / lePNOS From the plasmid pGEMTeasy / lePNOS, the 2.7 Kb fragment of the Legumin B4 gene promoter was isolated using the promoter 5 'flanking EcoR1 and the 3' flanking Kpn1 cleavage sites.
  • the plasmid pBinAR / CM-1TP / CM-2 was also treated with the restriction enzymes EcoR1 and Kpn1.
  • the 35S promoter of CaMV was excised from this plasmid, see FIG. 5 ).
  • the promoter of the legumin gene was then cloned into this vector as an EcoR1 / Kpn1 fragment, generating a plasmid which put the expression of the chimeric gene CM-ITP-CM-2 under the control of this seed-specific promoter, see FIG. 6 ).
  • This plasmid (pBinLeP / CM-1TP / CM-2) was used to generate transgenic Arabidopsis thaliana, and Nicotiana tabacum plants.
  • the plants were prepared analogously to Example 4 using the plasmids (pBinAR / AtCM-1TP / CM-2) and (pBinLeP / CM-1TP / CM-2).
  • the plants were prepared analogously to Example 5 using the plasmids (pBinAR / AtCM-1TP / CM-2) and (pBinLeP / CM-1TP / CM-2).
  • the plants were prepared analogously to Example 6 using the plasmids (pBinAR / AtCM-1TP / CM-2) and (pBinAR1eP / CM-1TP / CM-2).
  • the tocopherol and tocotrienol contents in leaves and seeds of the plants transformed with the described constructs were analyzed.
  • the transgenic plants were cultivated in the greenhouse and plants encoding the gene for the cytosolic Expressing chorismate mutase at the Northern and Western levels.
  • the tocopherol content and the Tocotrienolgehalt was determined by HPLC.
  • the tocopherol and / or tocotrienol content in transgenic plants that additionally express chorismate mutase genes was increased compared to untransformed plants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Feinchemikalien, insbesondere Vitamin E, durch Kultivierung von Organismen, insbesondere Pflanzen, die gegenüber dem Wildtyp einen genetisch veränderten Shikimatweg aufweisen.
  • Organismen, insbesondere Pflanzen, weisen eine Reihe von Stoffwechselprodukten auf, die als Feinchemikalien einen hohen wirtschaftlichen Wert haben. Als Feinchemikalien sind beispielsweise aromatische Aminosäuren, Salicylsäurederivate, Phenylpropanoide, Flavonoide, Stilbene, Xanthone und Chinone, insbesondere die gemischten Prenyllipid-Verbindungen mit Vitamin E oder Vitamin K Aktivität zu nennen.
  • In biotechnologischen Verfahren zur Herstellung von Feinchemikalien werden Organismen, die in der Lage sind diese Feinchemikalien herzustellen, kultiviert und die gewünschten Feinchemikalien aus den Organismen isoliert.
  • Für wirtschaftliche Verfahren zur biotechnologischen Herstellung von Feinchemikalien, aber auch für die Verwendung der Organismen als prozessierte oder nicht prozessierte Lebens- oder Futtermittel, ist es wünschenswert, den Gehalt an Feinchemikalien in den Organismen gezielt zu verändern, wie beispielsweise den Gehalt der gewünschten Feinchemikalie zu erhöhen und/oder den Metabolitfluß zu nicht gewünschten Feinchemikalien zu hemmen.
  • Wirtschaftlich bedeutende Feinchemikalien sind beispielsweise Plastochinone, Ubichinone sowie Verbindungen mit Vitamin E- oder Vitamin K-Aktivität, die eine Isoprenoid-Seitenkette aufweisen, die mit einem aromatischen Kern verbunden ist.
  • Die in der Natur vorkommenden acht Verbindungen mit Vitamin E-Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E). Die Gruppe der Tocopherole (1a-d) weist eine gesättigte Seitenkette auf, die Gruppe der Tocotrienole (2a-d) eine ungesättigte Seitenkette:
    Figure imgb0001
    1a, α-Tocopherol: R1 = R2 = R3 = CH3
    1b, β-Tocopherol : R1 = R3 = CH3, R2 = H
    1c, γ-Tocopherol: R1 = H, R2 = R3 = CH3
    1d, δ-Tocopherol : R1 = R2 = H, R3 = CH3
    Figure imgb0002
    2a, α-Tocotrienol: R1 = R2 = R3 =CH3
    2b, β-Tocotrienol : R1 = R3 = CH3, R2 = H
    2c, γ-Tocotrienol: R1 = H, R2 = R3 = CH3 ,
    2d, δ-Tocotrienol: R1 = R2 = H, R3 = CH3
  • In der vorliegenden Erfindung werden unter Vitamin E alle vorstehend erwähnten Tocopherole und Tocotrienole mit Vitamin-E-Aktivität verstanden.
  • Diese Verbindungen mit Vitamin-E-Aktivität sind wichtige natürliche fett-lösliche Antioxidantien. Ein Mangel an Vitamin E führt bei Menschen und Tieren zu pathophysiologischen Situationen. Vitamin E-Verbindungen haben daher einen hohen wirtschaftlichen Wert als Zusatzstoffe im Food- und Feed-Bereich, in pharmazeutischen Formulierungen und in kosmetischen Anwendungen.
  • Die in der Natur vorkommenden Verbindungen mit Vitamin K-Aktivität sind Derivate des 1,4-Naphthochinons (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 5., 488-506, Vitamin K).
    Phyllochinon (frühere Bezeichnung: Vitamin K1) weist eine größtenteils gesättigte Seitenkette auf, während die Gruppe der Menachinone-n (frühere Bezeichnung: Vitamin K2) eine ungesättigte Seitenkette mit 4 bis 13 Isoprenylresten aufweist.
  • In der vorliegenden Erfindung werden unter Vitamin K alle Verbindungen mit Vitamin K-Aktivität verstanden, insbesondere die vorstehend erwähnten Verbindungen.
  • Ausgangspunkt der Biosynthese der Isoprenoidseitenkette ist Isopentenylpyrophosphat (IPP). IPP steht im Gleichgewicht mit seinem Isomer Dimethylallyl Pyrophosphat (DMAPP). Eine Kondensation von IPP mit DMAPP in Kopf-Schwanz Anlagerung ergibt das Monoterpen (C10) Geranyl-Pyrophosphat (GPP). Die Addition von weiteren IPP Einheiten führt zum Sesquiterpen (C15) Farnesy-Pyrophosphat (FPP) und zum Diterpen (C20) Geranyl-Geranyl-Pyrophosphat (GGPP).
  • Phyllochinon enthält eine C20 Phytyl-Kette, in der nur die erste Isopren-Einheit eine Doppelbindung enthält. GGPP wird durch die Geranylgeranyl-Pyrophosphat-Oxidoreduktase (GGPPOR) zum Phytyl-Pyrophosphat (PPP) umgeformt, dem Ausgangsstoff für die weitere Bildung von Tocopherolen.
  • Bei den Ringstrukturen der gemischten Prenyllipide, die zur Bildung der Vitamine E und K führen, handelt es sich um Chinone, deren Ausgangsmetabolite aus dem Shikimat-Weg stammen.
  • Chorismat wird ausgehend von Erythrose-4-Phosphat und Phosphoenolpyruvat (PEP) durch deren Kondensation zu 3-deoxy-D-Arabino-heptulosonat-7-Phosphat (DAHP) über die Zwischenstufen 3'-Dehydroquinat, 3'-Dehydroshikimat, Shikimat, Shikimat-3-Phosphat und 5'-Enolpyruvylshikimat-3-Phosphat gebildet. Dabei wird das Erythrose-4-Phosphat vom Calvinzyklus gebildet und das PEP von der Glykolyse bereitgestellt.
  • In höheren Pflanzen wird Tyrosin ausgehend von Chorismat über Prephenat und Arogenat gebildet. Die aromatische Aminosäure Tyrosin wird in Hydroxyphenyl-Pyruvat umgewandelt, welches durch Dioxygenierung in Homogentisinsäure überführt wird.
  • Die Homogentisinsäure wird anschließend an Phytylpyrophosphat (PPP) bzw. Geranylgeranylpyrophosphat gebunden, um die Vorläufer von α-Tocopherol und α-Tocotrienol, das 2-Methyl-6-phytylhydrochinon bzw. das 2-Methyl-6-geranylgeranylhydrochinon zu bilden. Durch Methylierungsschritte mit S-Adenosylmethionin als Methyl-Gruppen-Donor entsteht zunächst 2,3-Dimethyl-6-phytylquinol, dann durch Zyklisierung γ-Tocopherol und durch nochmalige Methylierung α-Tocopherol.
  • Es ist bekannt, durch Überexpression bzw. Herunterregulation von Biosynthesegenen des Tocopherolbiosyntheseweges, unter dem in der vorliegenden Erfindung der Biosyntheseweg von Hydroxyphenylpyruvat bis Tocopherol verstanden wird, den Gehalt an Vitamin E in Pflanzen zu modifizieren.
  • WO 97/27285 beschreibt eine Modifikation des Tocopherol-Gehaltes durch verstärkte Expression bzw. durch Herunterregulation des Enzyms p-Hydroxyphenylpyruvatdioxygenase (HPPD).
  • WO 99/04622 bzw. D. DellaPenna et al., Science 1998, 282, 2098-2100 beschreiben Gensequenzen codierend für eine γ-Tocopherolmethyltransferase aus Synechocystis PCC6803 und Arabidopsis thaliana und deren Einbau in transgene Pflanzen, die einen modifizierten Vitamin E-Gehalt aufweisen.
  • Ferner ist bekannt, durch Überexpression bzw. Herunterregulation von Biosynthesegenen des Biosyntheseweges der Isoprenoid-Seitenkette, den Gehalt an Vitamin E in Pflanzen zu modifizieren.
  • WO 99/23231 zeigt, daß die Expression einer Geranylgeranyl-Reductase in transgenen Pflanzen eine gesteigerte Tocopherolbiosynthese zur Folge hat.
  • WO 00/08169 beschreibt Gensequenzen codierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und eine Geranyl-Geranyl-Pyrophosphat Oxidoreduktase un deren Einbau in transgene Pflanzen, die einen modifizierten Vitamin E-Gehalt aufweisen.
  • Alle diese Methoden liefern zwar Organismen, insbesondere Pflanzen, die einen modifizierten Gehalt an der Feinchemikalie Vitamin E aufweisen, dennoch ist oft die Höhe des Gehalts an Vitamin E für Verfahren zur Herstellung von Vitamin E durch Isolierung aus diesen transgenen Organismen noch nicht zufriedenstellend.
  • Der Erfindung lag daher die Aufgabe zugrunde ein weiteres Verfahren zur Herstellung von Feinchemikalien durch Kultivieren von Organismen, bzw. transgene Organismen die Feinchemikalien herstellen können, mit optimierten Eigenschaften zur Verfügung zu stellen, die die geschilderten Nachteile des Standes der Technik nicht aufweisen.
  • Demgemäß wurde ein Verfahren zur Herstellung von Vitamin E gefunden, indem man Organismen kultiviert, die gegenüber dem Wildtyp einen genetisch veränderten Shikimatweg aufweisen.
  • Unter Shikimatweg wird in der vorliegenden Erfindung, insbesondere für höhere Pflanzen der vorstehend beschriebene Biosyntheseweg ausgehend von D-Erythrose-4-Phosphat über Shikimat, Chorismat, Prephenat, Arogenat, Tyrosin bis einschließlich zu 4-Hydroxyphenylpyruvat verstanden (G. Michal, Biochemical Pathways, Biochemie-Atlas, Spektrum Akademischer Verlag Heidelberg, Berlin, 1999, Seite 59 bis 60, Abb. 4.7-1 und Kapitel 4.7.1)
  • Vorzugsweise wird in der vorliegenden Erfindung unter Shikimatweg der Stoffwechselweg von Shikimat bis 4-Hydroxyphenylpyruvat, besonders bevorzugt der Stoffwechselweg von Chorismat bis 4-Hydroxyphenylpyruvat verstanden, wobei für Pflanzen der Stoffwechselweg ab Chorismat über Prephenat, Arogenat und Tyrosin verläuft.
  • Unter Feinchemikalien werden Stoffwechselprodukte des Organismus verstanden, die aus dem Shikimatweg resultieren. Der Shikimatweg beginnt dabei bei D-Erythrose-4-Phosphat und endet bei 4-Hydroxyphenylpyruvat, wie vorstehend beschrieben. Für diese Stoffwechselprodukte stellen die Ausgangsverbindung D-Erythrose-4-Phosphat, die Endverbindung 4-Hydroxyphenylpyruvat sowie alle, vorstehend erwähnten, Zwischenstufen des Shikimatweges, die Ausgangsverbindungen, nachstehend auch Zwischenverbindungen bezeichnet, dar, die biosynthetisch vom Organismus in die Stoffwechselprodukte umgewandelt werden.
  • Bevorzugte Feinchemikalien sind die aromatischen Aminosäuren, wie beispielsweise Phenylalanin, Tyrosin und Tryptophan, Salicylsäurederivate, Folsäurederivate, Phenylpropanoide, wie beispielsweise Lignin, Lignane oder Coumarine, insbesondere Scopoletin oder Scopolin, Flavonoide, wie beispielsweise Chalcone, Flavanone, Flavanole, Anthocyanidine oder Isoflavonoide, Stilbene, Xanthone, oder Chinonderivate, wie beispielsweise Vitamin E, Vitamin K, Ubichinone, Plastochinone oder Shikonin.
  • Besonders bevorzugte Feinchemikalien sind Vitamin E, Vitamin K oder Ubichinon, insbesondere Vitamin E.
  • Je nachdem ob die genetische Veränderung des Shikimatweges zu einer Erhöhung oder Erniedrigung des Metabolitflusses zu einer bestimmten Zwischenverbindung - die Teil des Shikimatweges ist - führt, erhöht sich bzw. erniedrigt sich der Gehalt der Feinchemikalie die biosynthetisch im Organismus aus dieser Zwischenverbindung hergestellt wird. Unter genetischer Veränderung des Shikimatweges wird somit vorzugsweise die Erhöhung oder Erniedrigung des Metabolitflußes zu einer Zwischenverbindung des Shikimatweges verstanden.
  • Genetische Veränderungen des Shikimatweges, die zu einer Erhöhung des Metabolitflusses zu einer Zwischenverbindung und damit der entsprechenden Feinchemikalie führen, sind beispielsweise die folgenden Maßnahmen A, B oder C:
    • A: Erhöhung der Aktivität mindestens eines Enzyms des Shikimatweges des Wildtyps,
      beispielsweise durch Überexpression von Genen des Shikimatweges, die Proteine mit dieser enzymatischen Aktivität codieren, durch das Ausschalten von negativen Regulationsmechanismen von zur Zwischenverbindung führenden Stoffwechselwegen, wie beispielsweise das Ausschalten der Feed-back-Inhibierung oder das Einbringen von orthologen Genen die im gewünschten Organismus keiner Regulation unterliegen.
    • B: Einbringen mindestens eines Gens in den Organismus zu dem der Wildtyp kein orthologes Gen aufweist und das den Stoffwechselweg des Shikimatweges des Wildtyps überbrückt. Dieses Gen kann beispielsweise durch die neue Genfunktion eine Erhöhung des Stoffflusses zu der Zwischenverbindung bewirken, bei der die Überbrückung endet.
    • C: Inaktivierung von Genen die Enzyme kodieren, die mit den Enzymen des Stoffwechselwegs, der zum gewünschten Produkt führt, konkurrieren.
      Genetische Veränderung des Shikimatweges die zu einer Erniedrigung des Metabolitflusses zu einer Zwischenverbindung und damit der entsprechenden Feinchemikalie führen, sind beispielsweise die folgenden Maßnahmen D, E oder F.
    • D: Überexpression eines Stoffwechselgens und damit die Erhöhung der entsprechenden Enzymaktivität, die von dieser Zwischenverbindung wegführt;
    • E: Inaktivierung von Genen die Enzyme kodieren, die zu dieser Zwischenverbindung führen, beispielsweise durch Antisense-Technik oder Kosuppression;
    • F: Expression eines Gens zu dem der Wildtyp kein orthologes Gen aufweist. Dieses Gen kann beispielsweise den Stoffwechselweg des Shikimatweges des Wildtyps überbrücken und durch die neue Genfunktion eine Erniedrigung des Stofflusses zu den überbrückten Zwischenverbindungen bewirken.
  • In dem erfindungsgemäßen Verfahrens führt die genetische Veränderung des Shikimatweges im Organismus zu einer Erhöhung des Metabolitflusses zu einer gewünschten Zwischenverbindung und damit der entsprechenden gewünschten Feinchemikalie.
  • Die Erhöhung des Metabolitflusses zu einer gewünschten Zwischenverbindung des Shikimatweges und damit zur gewünschten Feinchemikalie erfolgt durch mindestens eine Maßnahme ausgewählt aus der Gruppe der Maßnahme A und B, also durch die Maßnahme A und/oder B, wobei die Maßnahmen A und B die vorstehend beschriebene Bedeutung haben.
  • Das erfindungsgemäße Verfahren ist daher dadurch gekennzeichnet, daß man zur genetischen Veränderung des Shikimatweges mindestens eine Maßnahme ausgewählt aus der Gruppe der Maßnahmen A und B durchführt, wobei A und B folgende Bedeutung haben:
    • A: Erhöhung der Aktivität mindestens eines Enzyms des Shikimatweges des Wildtyps;
    • B: Einbringen mindestens eines Gens in den Organismus zu dem der Wildtyp kein orthologes Gen aufweist und das den Stoffwechselweg des Shikimatweges des Wildtyps überbrückt.
  • Die Erhöhung der Aktivität mindestens eines Enzyms des Shikimatweges des Wildtyps nach Maßnahme A kann beispielsweise durch Überexpression von Nukleinsäuren, also Genen des Shikimatweges, die Proteine mit dieser enzymatischen Aktivität codieren, durch das Ausschalten von negativen Regulationsmechanismen von zur Zwischenverbindung führenden Stoffwechselwegen, wie beispielsweise das Ausschalten der Feed-back-Inhibierung oder das Einbringen von orthologen Genen erfolgen, die im gewünschten Organismus keiner Regulation unterliegen.
  • Vorzugsweise erfolgt die Erhöhung der Aktivität mindestens eines Enzyms des Shikimatweges des Wildtyps gemäß Maßnahme A durch Überexpression von Nukleinsäuren des Shikimatweges, die Proteine mit dieser enzymatischen Aktivität codieren.
  • In dem erfindungsgemäßen Verfahren erfolgt die Durchführung der Maßnahme A dadurch, daß man eine Nukleinsäure, codierend eine Chorismatmutase, in den Organismus einbringt.
  • Unter einer Chorismatmutase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Chorismat in Prephenat umzuwandeln.
  • Prinzipiell sind alle Chorismatmutasen im erfindungsgemäßen Verfahren verwendbar, wie beispielsweise die Chorismatmutase aus Petroselinum Crispum (Accessionsnummer: T14902, T14901), Chorismatmutase aus Streptomyces coelicolor (T36865), Chorismatmutase aus Bacillus subtilis (A33894), Chorismatmutase aus Aspergillus nidulans (AAD30065) oder die nachstehend beschriebenen Chorismatmutasen aus Arabidopsis thaliana oder die nachstehend beschriebene Chorismatmutase Aktivität der Chorismatmutase-Prephenatdehydrogenase (tyrA) aus E. coli.
  • In einer bevorzugten Ausführungsform werden Chorismatmutasegene verwendet, die eine Chorismatmutase kodieren, deren Aktivität einer reduzierten posttranslationalen Regulation im Organismus unterliegt. Unter einer reduzierten Regulation wird eine Regulation der Aktivität von höchstens 99 %, vorzugsweise höchstens 70 %, besonders bevorzugt 50 %, insbesondere bevorzugt 0 %, also keine Regulation der Aktivität, verglichen mit der Wildtypregulation verstanden.
  • Chorismatmutasegene, die eine Chorismatmutase kodieren, deren Aktivität im Organismus einer reduzierten, insbesondere keiner Regulation unterliegt, sind beispielsweise Chorismatmutasegene aus gattungsverschiedenen Organismen oder Chorismatmutasegene aus dem gleichen Organismus oder gattungsverwandten Organismen die an der Lokalisation der Expression einer reduzierten, insbesondere keiner posttranslationalen Regulation unterliegen.
  • Unter Organismen werden erfindungsgemäß prokaryontische Organismen oder eukaryontische Organismen, wie beispielsweise Bakterien, Hefen, Algen, Moose, Pilze oder Pflanzen, verstanden, die in der Lage sind, als Wildtyp oder durch genetische Veränderung die vorstehend erwähnten Feinchemikalien herzustellen. Bevorzugte Organismen sind photosynthetisch aktive Organismen, wie beispielsweise Cyanobakterien, Moose, Algen oder Pflanzen, die bereits als Wildtyp in der Lage sind, die vorstehend erwähnten Feinchemikalien herzustellen.
  • Besonders bevorzugte Organismen sind Pflanzen.
  • In einer weiter bevorzugten Ausführungsform der Maßnahme A des erfindungsgemäßen Verfahrens werden Chorismatmutasegene, die eine Chorismatmutase kodieren, deren Aktivität in Pflanzen einer reduzierten posttranslationalen Regulation unterliegt, in Pflanzen eingebracht.
  • Beispielsweise sind dies einige bakterielle oder davon abgeleitete Chorismatmutasegene, also Nukleinsäuren, die ein Protein kodieren, enthaltend die Aminosäuresequenz einer bakteriellen Chorismatmutase deren Aktivität in Pflanzen einer reduzierten posttranslationalen Aktivität unterliegt, beispielsweise die nachstehend beschriebene Nukleinsäure kodierend für die Chorismatmutase Aktivität der Chorismatmutase-Prephenatdehydrogenase (tyrA) aus E. coli. oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz der bakteriellen Chorismatmutase und die enzymatische Eigenschaft einer Chorismatmutase aufweist.
  • Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, GIn durch Asn, Val durch Ile, Leu durch Ile, Ser durch Thr.
  • Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.
  • Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.
  • Unter Homologie zwischen zwei Proteinen wird vorzugsweise die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, vorzugsweise die Identität die durch Vergleich mit Hilfe des Programmalgorithmus GAP (UWGCG, University of Wisconsin, Genetic Computer Group) unter Einstellung folgender Parameter berechnet wird:
    Gap Weight: 12
    Length Weight: 4
    Average Match: 2,912
    Average Mismatch: -2,003
  • Unter einem Protein, das eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz der vorstehend beschriebenen Chorismatmutase aus E. coli aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz der vorstehend beschriebenen Chorismatmutase, vorzugsweise nach obigen Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 30 % aufweist.
  • Die bakteriellen oder davon abgeleiteten Chorismatmutasegene können auch Proteine kodieren die die Eigenschaft einer Chorismatmutase und die Eigenschaft eines weiteren Enzyms aufweisen, wie beispielsweise das nachstehend beschriebene Chorismatmutase-Prephenatdehydrogenase-Gen (tyrA) aus E.coli K12. Diese Ausführungsform ist, wie nachstehend beschrieben, besonders bevorzugt, wenn die Maßnahmen A und B in Kombination durchgeführt werden.
  • In einer besonders bevorzugten Ausführungsform der Maßnahme A des erfindungsgemäßen Verfahren, insbesondere bei der Durchführung der Maßnahme A alleine, werden die Chorismatmutasegene in spezifische Orte-in den Organismus gebracht, an denen die entsprechenden Chorismatmutasen einer reduzierten posttranslationalen Regulation unterliegen.
  • Vorzugsweise werden dabei Nukleinsäuren, kodierend eine Chorismatmutase aus dem gleichen oder aus gattungsverwandten Organismen verwendet, die am Ort der Expression einer reduzierten posttranslationalen Regulation unterliegen.
  • Die Isoformen von Chorismatmutasen die aus unterschiedlichen Kompartimenten eines Organismus isoliert werden, weisen eine unterschiedliche Regulation auf.
  • Die entsprechenden Corismatmutasegene aus einem spezifischen Kompartiment des Organismus oder aus gattungsverwandten Organismen können in andere Kompartimente des Organismus eingebracht werden, in denen die kodierten Chorismatmutasen keiner posttranslationalen Regulation unterliegen.
  • In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens in Pflanzen wird zur Durchführung der Maßnahme A eine Nukleinsäure, codierend eine cytosolische Chorimatmutase aus Pflanzen in Plastiden von Pflanzen eingebracht.
  • Prinzipiell eignen sich dafür alle Nukleinsäuren, die eine cytosolische Chorismatmutase aus Pflanzen kodieren, vorzugsweise die Nukleinsäure kodierend eine cytosolische Chorismatmutase aus Arabidopsis thaliana (Seq ID NO. 3) und davon abgeleitete natürliche oder nicht natürliche Nukleinsäuren.
  • Die Existenz verschiedener Isoformen der Chorismatmutase konnte für verschiedene Organismen nachgewiesen werden. So konnten aus Arabidopsis thaliana drei verschiedene Chorismatmutasen isoliert werden (Eberhard et al.1993. FEBS 334, 233-236; Eberhard et al. 1996. Plant J. 10, 815-821; Mobley et a1.1999.Gene 15;240(1):115-123).
  • Diese Isoformen unterschieden sich in ihrer Lokalisation als auch in ihren enzymatischen Eigenschaften. So ist die Chorismatmutase-1 plastidär lokalisiert und wird durch die aromatischen Aminosäuren allosterisch kontrolliert.
  • Das cytosolische Isoenzym Chorismatmutase-2 unterliegt keiner bekannten Regulation (Benesova, M. Bode, R, Phytochemistry 1992, 31, 2983-2987).
  • Unter Nukleinsäuren, kodierend eine cytosolische Chorismatmutase aus Arabidopsis thaliana und.davon abgeleitete natürliche oder nicht natürliche Nukleinsäuren werden Nukleinsäuren verstanden, die ein Protein kodieren, enthaltend die Aminosäuresequenz der cytosolischen Chorismatmutase (SEQ ID NO. 4) oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweisen.
  • Unter einem Protein, das eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO. 4, vorzugsweise nach vorstehendem Programmalgorithmus mit vorstehenden Parametersatz eine Homologie von mindestens 30 % aufweist.
  • In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Nukleinsäure, codierend die cytosolische Chorismatmutase aus Arabidopsis thaliana (SEQ ID NO. 4) in Plastiden von Pflanzen eingebracht.
  • Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
  • Bevorzugt werden dafür solche Codons verwendet; die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage läßt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Pflanze leicht ermitteln.
  • In einer weiter besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Nukleinsäure der Sequenz SEQ ID NO. 3 in Plastiden von Pflanzen eingebracht. Die Sequenz SEQ ID NO. 3 stellt das Gen der cytosolischen Chorismatmutase aus Arabidopsis thaliana (Chorismatmutase-2) dar.
  • Das Einbringen der Nukleinsäuren, codierend eine Chorismatmutase in Plastiden von Pflanzen kann beispielsweise, wie nachstehend für die Chorismatmutase-Prephenatdehydrogenase näher beschrieben, durch Einbringen von Expressionskassetten in Pflanzen erreicht werden, deren Nukleinsäure-Sequenz für ein Chorismatmutase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation der cytosolischen Chorismatmutase in die Chloroplasten vom Chorismatmutase-Teil enzymatisch abgespalten werden.
  • In einer weiteren besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bringt man daher ein Nukleinsäurekonstrukt in die Pflanze ein, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30% auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweist.
  • Nukleinsäuren, codierend plastidäre Transitpeptide sind beispielsweise DNA-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als KpnI/BamHI Fragmente mit einem ATG-Codon in der NcoI Schnittstelle:
    • pTP09
      Figure imgb0003
    • pTP10
      Figure imgb0004
    • pTP11
      Figure imgb0005
      oder die Nukleinsäure, codierend das plastidäre Transitpeptid der plastidären Chorismatmutase-1 aus Arabidopsis thaliana (SEQ ID NO. 7):
      Figure imgb0006
      Vorzugsweise wird zur plastidären Lokalisation einer cytosolischen Chorismatmutase die Nukleinsäure, codierend das plastidäre Transitpeptid der plastidären Chorismatmutase-1 aus Arabidopsis thaliana verwendet.
  • In einer weiteren besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bringt man daher ein Nukleinsäurekonstrukt in die Pflanze ein, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid der plastidären Chorismatmutase-1 aus Arabidopsis thaliana und eine Nukleinsäure die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweist.
  • Besonders bevorzugt wird für Maßnahme A des erfindungsgemäßen Verfahrens ein Nukleinsäurekonstrukt enthaltend die Sequenz (SEQ ID NO. 5) in Pflanzen eingebracht.
  • SEQ ID NO. 5 stellt ein Nukleinsäurekonstrukt aus der Nukleinsäure, codierend das plastidäre Transitpeptid der plastidären Chorismatmutase-1 aus Arabidopsis thaliana und der Nukleinsäure, codierend die cytosolische Chorismatmutase-2 aus Arabidopsis thaliana dar.
  • Die vorliegende Anmeldung betrifft insbesondere auch die Verwendung dieser Nukleinsäurekonstrukte in der Maßnahme A des erfindungsgemäßen Verfahrens.
  • Figur 1 zeigt beispielsweise das Biosyntheseschema ausgehend von Erythrose-4-Phosphat zu Vitamin E. Durch die zusätzliche Expression eines Chorismatmutasegens wird der Shikimatweg des Wildtyps genetisch verändert und der Metabolitfluß zu Hydroxyphenylpyruvat erhöht. Das nun vermehrt zur Verfügung stehende Hydroxyphenylpyruvat wird weiter in Richtung Tocopherole umgesetzt. Ein erhöhter Gehalt an Hydroxyphenylpyruvat führt zu einer erhöhten Umsetzung Richtung Vitamin E und/oder Vitamin K. Vorzugsweise führt ein erhöhter Gehalt an Hydroxyphenylpyruvat zu-einer Erhöhung des Vitamin E-Gehalts.
  • Die Herstellung einer Expressionskassette erfolgt, wie nachstehend ausführlich beschrieben, durch Fusion eines geeigneten Promotors mit einer geeigneten Chorismatmutase-Nukleinsäure-Sequenz und vorzugsweise einer zwischen Promotor und Chorismatmutase-Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidäres Transitpeptid kodiert, also vorzugsweise durch Fusion eines geeigneten Promotors mit einem geeigneten, vorstehend beschriebenen Nukleinsäurekonstrukt, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E. F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.
  • Die Maßnahme B zur Veränderung des Shikimatweges des Wildtyps erfolgt, wie vorstehend ausgeführt durch Einbringen mindestens eines Gens in den Organismus zu dem der Wildtyp kein orthologes Gen aufweist und das den Stoffwechselweg des Shikimatweges des Wildtyps überbrückt. Dieses Gen codiert ein Enzym, daß durch die neue enzymatische Aktivität eine Erhöhung des Stoffflusses zu der Zwischenverbindung bewirkt, bei der die Überbrückung endet. Diese neue enzymatische Aktivität unterliegt vorzugsweise keiner Regulation durch den Organismus, schließt also den Stoffwechselweg kurz, um beispielsweise limitierende Regulationsstellen im Stoffwechsel zu umgehen. Dadurch ist es möglich, den Metabolitfluß zu limitierenden Substanzen von vorhandenen Regulationen zu entkoppeln.
  • Unter einem zum Wildtyp orthologen Gen wird ein Gen verstanden, das aus einem anderen Organismus stammt, wobei die Enzymaktivität die das Gen kodiert bereits im Wildtyp vorhanden ist.
  • Dementsprechend wird unter der Formulierung "Gen, zu dem der Wildtyp kein orthologes Gen aufweist" ein Gen aus einem anderen Organismus verstanden, wobei die Enzymaktivität die das Gen kodiert vor der Transformation im Wildtyp nicht vorhanden oder nicht aktiviert war.
  • Vorzugsweise wir unter einem zum Wildtyp orthologen Gen ein funktionelles Äquivalent aus einem anderen Organismus verstanden, wobei unter funktionellem Äquivalent die Gesamtheit der Eigenschaften des Genproduktes (Protein) verstanden wird.
  • Dementsprechend wird vorzugsweise unter der Formulierung "Gen, zu dem der Wildtyp kein orthologes Gen aufweist" ein Gen verstanden, zu dem der Wildtyp kein funktionelles Äquivalent gemäß der vorstehend gegebenen Definition besitzt und somit eine Stoffwechselleistung etabliert wird, die einen alternativen Stoffwechselweg erzeugt, um ein bereits in der Pflanze vorhandenes Produkt (enthaltenen Metaboliten) zu produzieren.
  • Unter Organismen werden erfindungsgemäß, wie vorstehend für Maßnahme A beschrieben, prokaryontische Organismen oder eukaryontische Organismen, wie beispielsweise Bakterien, Hefen, Algen, Moose, Pilze oder Pflanzen, verstanden, die in der Lage sind, als Wildtyp oder durch genetische Veränderung die vorstehend erwähnten Feinchemikalien herzustellen. Bevorzugte Organismen sind photosynthetisch aktive Organismen, wie beispielsweise Cyanobakterien, Moose, Algen oder Pflanzen, die bereits als Wildtyp in der Lage sind, die vorstehend erwähnten Feinchemikalien herzustellen.
  • Besonders bevorzugte Organismen sind Pflanzen.
  • In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man deshalb Pflanzen als zu transformierende Organismen. In diesem Fall eignen sich für die Durchführung der Maßnahme B vorzugsweise bakterielle Gene als Gene zu denen die Pflanze kein orthologes Gen aufweist.
    In einer bevorzugten Ausführungsform der Maßnahme B des erfindungsgemäßen Verfahrens wird der Stoffwechselweg des Shikimatweges der Pflanze durch das mindestens eine eingebrachte Gen überbrückt.
  • In einer besonders bevorzugten Ausführungsform der Maßnahme B des erfindungsgemäßen Verfahrens bringt man eine Nukleinsäure, codierend eine Prephenatdehydrogenase in eine Pflanze ein. Für die bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens eignen sich alle Gene die eine Prephenatdehydrogenase kodieren.
  • Unter einer Prephenatdehydrogenase wird ein Enzym verstanden, das die enzymatische Aktivität aufweist, Prephenat in 4-Hydroxyphenylpyruvat umzuwandeln.
  • Beispiele für Nukleinsäuren, die eine Prephenatdehydrogenase codieren und im erfindungsgemäßen Verfahren verwendet werden können sind die bekannten und beispielsweise in Datenbanken im Internet zugänglichen Prephenatdehydrogenasegene aus Lactococcus lactis (Accession X78413), Synechocystis spec PCC 6803 (slr2081), Deinococcus radiodurans (AAF10695) oder Bacillus subtilis (P20692). Weitere Beispiele können durch Vergleich der Homologien der Sequenzen mit diesen bekannten Prephenatdehydrogenasegenen gefunden werden, wie beispielsweise die potentiellen Prephenatdehydrogenase aus Termotoga maitima (AAD35430) oder Heliobacter pylori 26695 (Accession AAD08422).
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens unter Verwendung eines Prephenatdehydrogenasegens bringt man eine Nukleinsäure ein, die ein Protein kodiert, enthaltend die Aminosäuresequenz der Prephenatdehydrogenase aus Synechocystis spec PCC 6803 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz der Prephenatdehydrogenase aus Synechocystis spec PCC 6803 und die enzymatische Eigenschaft Prephenatdehydrogenase aufweist.
  • Unter einem Protein, das eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz der Prephenatdehydrogenase aus Synechocystis spec PCC 6803 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz der Prephenatdehydrogenase aus Synechocystis spec PCC 6803, vorzugsweise nach vorstehendem Programmalgorithmus mit vorstehendem Parametersatz eine Homologie von mindestens 30 % aufweist. Figur 1 zeigt beispielsweise das Biosyntheseschema ausgehend von Erythrose-4-Phosphat zu den Tocopherolen. Durch die zusätzliche Expression eines Prephenatdehydrogenase-Gens wird der Shikimatweg des Wildtyps genetisch verändert und der Metabolitfluß zu Hydroxyphenylpyruvat erhöht. Das nun vermehrt zur Verfügung stehende Hydroxyphenylpyruvat wird weiter in Richtung Tocopherole umgesetzt. Ein erhöhter Gehalt an Hydroxyphenylpyruvat führt zu einer erhöhten Umsetzung Richtung Vitamin E und/oder Vitamin K. Vorzugsweise führt ein erhöhter Gehalt an Hydroxyphenylpyruvat zu einer Erhöhung des Vitamin E-Gehalts.
  • Es ist jedoch vorteilhaft, gegebenenfalls in Kombination mit der erfindungsgemäßen Überbrückung des Stoffwechselweges weitere Enzyme des Shikimatweges überzuexprimieren, um einen erhöhten Metabolitfluß zu den gewünschten Feinchemikalien zu erreichen.
  • In einer weiteren, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden daher die Maßnahmen A und B in Kombination durchgeführt.
  • In einer besonders bevorzugten Ausführungsform dieser erfindungsgemäßen Verfahrensvariante bringt man eine Nukleinsäure codierend eine Prephenatdehydrogenase in Kombination mit einer Nukleinsäure codierend eine Chorismatmutase in eine Pflanze ein.
  • Diese Kombination kann beispielsweise durch Einbringen von zwei Nukleinsäuren erfolgen, die jeweils ein Enzym mit der Aktivität einer Chorismatmutase und ein Enzym mit der Aktivität einer Prephenatdehydrogenase codieren. Für diese Ausführungsform ist es notwendig, zwei verschiedene Nukleinsäuren, die jeweils eines dieser Enzyme kodieren, in die Pflanze einzubringen.
  • In einer insbesondere bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt diese Kombination in einer Nukleinsäure, in dem man eine Nukleinsäure, codierend eine Chorismatmutase-Prephenatdehydrogenase in eine Pflanze einbringt.
  • Das Chorismatmutase-Prephenatdehydrogenase-Gen, codiert ein Protein, das sowohl die enzymatischen Eigenschaften einer Chorismatmutase als auch einer Prephenatdehydrogenase aufweist. Dadurch wird durch Einbringen einer Nukleinsäure eine enzymatische Aktivität überexprimiert, bzw. eine enzymatische Aktivität eingebracht, die einer reduzierten posttranslationalen Regulation unterliegt (Chorismatmutase) und eine enzymatische Eigenschaft (Prephenatdehydrogenase) neu eingeführt.
  • Unter einer-Chorismatmutase-Prephenatdehydrogenase wird ein Enzym verstanden, das die enzymatische Aktivität aufweist, Chorismat in 4-Hydroxyphenylpyruvat umzuwandeln.
  • In einer weiter besonders bevorzugten Ausführungsform dieser erfindungsgemäßen Verfahrensvariante bringt man eine Nukleinsäure ein, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Chorismatmutase-Prephenatdehydrogenase aufweist.
  • Das Protein mit der Aminosäuresequenz SEQ ID NO. 2 stellt die Chorismatmutase-Prephenatedehydrogenase (tyrA) aus E.coli K12 dar.
  • Unter einem Protein, das eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO.2 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO.2, vorzugsweise nach vorstehendem Programmalgorithmus mit vorstehendem Parametersatz eine Homologie von mindestens 30 % aufweist.
  • Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.
  • Geeignete Nukleinsäuresequenzen sind, wie vorstehend beschrieben, durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
  • Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismus spezifischen codon usage häufig verwendet werden. Die codon usage läßt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.
  • Soll das Protein beispielsweise in einer Pflanze exprimiert werden, so ist es häufig vorteilhaft, die codon usage der Pflanze bei der Rückübersetzung zu verwenden.
  • Weitere bevorzugte Chorismatmutase-Prephenatdehydrogenasen bzw. deren kodierende Nukleinsäuren sind insbesondere Nukleinsäuren bakterieller Herkunft, wie beispielsweise, die Chorismatmutase-Prephenatdehydrogenasegene aus Erwinia herbicola (Accession X60420; Dieses Protein kann durch Deletion eines 109 Bp Bereiches am 5'Ende auch in eine monofunktionelle Prephenatdehydrogenase umgewandelt werden und dann beispielsweise wie vorstehend beschrieben als Prephenatdehydrogenase verwendet werden) oder Bordetella bronchiseptica (Accession AAF01289) oder lassen sich beispielsweise aus verschiedenen Organismen deren genomische Sequenz bekannt ist durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO. 2 oder den anderen vorstehend beschriebenen Sequenzen leicht auffinden, wie beispielsweise die potentielle Chorismatmutase-Prephenatdehydrogenasegene aus Methanococcus janaschii (Accession Q58029).
  • Besonders bevorzugt verwendete Nukleinsäuren kodieren eine Chorismatmutase-Prephenatdehydrogenase aus Bakterien.
  • Eine besonders bevorzugt verwendete Nukleinsäure hat die Sequenz SEQ ID NO. 1. Diese Nukleinsäure stellt eine prokaryontische genomische DNA aus E. Coli K12 dar, die die Chorismatmutase-Prephenatdehydrogenase der Sequenz SEQ ID NO. 2, auch tyrA-Gen genannt, kodiert.
  • Figur 1 zeigt beispielsweise das Biosyntheseschema ausgehend von Erythrose-4-Phosphat zu den Tocopherolen. Durch die zusätzliche Expression eines Chorismatmutase-Prephenatdehydrogenase-Gens wird der Shikimatweg des Wildtyps genetisch verändert und der Metabolitfluß zu Hydroxyphenylpyruvat erhöht. Das nun vermehrt zur Verfügung stehende Hydroxyphenylpyruvat wird weiter in Richtung Tocopherole umgesetzt. Ein erhöhter Gehalt an Hydroxyphenylpyruvat führt zu einer erhöhten Umsetzung Richtung Vitamin E und/oder Vitamin K. Vorzugsweise führt ein erhöhter Gehalt an Hydroxyphenylpyruvat im erfindungsgemäßen Verfahren zu einer Erhöhung des Vitamin E-Gehalts.
  • Im erfindungsgemäßen Verfahren zur Herstellung von Vitamin E wird vorzugsweise dem Kultivierungsschritt der transgenen Organismen ein Ernten der Organismen und ein Isolieren der Feinchemikalien aus den Organismen angeschlossen.
  • Das Ernten der Organismen erfolgt in an sich bekannter Weise dem jeweiligen Organismus entsprechend. Mikroorganismen, wie Bakterien, Moose, Hefen und Pilze oder Pflanzenzellen, die durch Fermentation in flüssigen Nährmedien kultiviert werden, können beispielsweise durch Zentrifugieren, Dekantieren oder Filtrieren abgetrennt werden. Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.
  • Die Isolierung der Feinchemikalien aus der geernteten Biomasse erfolgt in an sich bekannter Weise, beispielsweise durch Extraktion und gegebenenfalls weiterer chemische oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie.
  • Die Isolierung von Vitamin E aus Öl-haltigen Pflanzen erfolgt beispielsweise bevorzugt durch chemische Umwandlung und Destillation aus Pflanzenölen oder aus den bei der Desodorierung pflanzlicher Öle anfallenden Wasserdampfdestillaten (Dämpferkondensate).
  • Weitere Isolierverfahren von Vitamin E aus Dämpferkondensaten sind beispielsweise in DE 31 26 110 A1 , EP 171 009 A2 , GB 2 145 079 , EP 333 472 A2 und WO 94/05650 beschrieben.
  • Die Herstellung der transgenen Organismen, insbesondere Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangsorganismen, insbesondere Pflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren, insbesondere die Nukleinsäuren codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase oder die vorstehen beschriebenen Nukleinsäurekonstrukte, insbesondere das Nukleinsäurekonstrukt, kodierend für ein plastidäres Transitpeptid und eine cytosolische Chorismatmutase enthält.
  • Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz oder das kodierende Nukleinsäurekonstrukt mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Organismen, insbesondere in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.
  • Dementsprechend beschreibt die Erfindung ferner als Expressionskassette fungierende Nukleinsäurekonstrukte, enthaltend eine, vorstehend beschriebene Nukleinsäure, insbesondere die Nukleinsäure codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase oder die vorstehend beschriebenen Nukleinsäurekonstrukte, insbesondere das Nukleinsäurekonstrukt, kodierend für ein plastidäres Transitpeptid und eine cytosolische Chorismatmutase, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation im Wirtsorganismus, insbesondere in Pflanzen gewährleisten. Vorzugsweise enthält die Expressionskassette eine Nukleinsäure kodierend ein plastidäres Transitpeptid, das die Lokalisation in Plastiden gewährleistet.
  • Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
  • Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen beschrieben.
  • Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
  • Als Promotor der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285-294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202).
  • Die Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen tyrA-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der PRP1-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salizylsäure induzierbarer Promotor ( WO 95/19443 ), ein durch Benzenesulfonamid-induzierbarer ( EP-A 388186 ), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer ( EP-A 335528 ) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer ( WO 93/21334 ) Promotor können u.a. verwendet werden.
  • Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese der entsprechenden Feinchemikalien, insbesondere Vitamin E bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989), 2445-245).
  • Mit Hilfe eines samenspezifischen Promotors konnte ein Fremdprotein stabil bis zu einem Anteil von 0,67 % des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology 10 (1995), 1090-1094). Die Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin-Promotor ( US 5504200 ), den USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459-467), LEB4-Promotor (Fiedler und Conrad, 1995), Sucrose-Bindeprotein-Promotor, das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.
  • Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer geeigneten, vorstehend beschriebenen Nukleinsäure-Sequenz, insbesondere der Nukleinsäure-Sequenz codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein chloroplastenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E. F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.
  • Insbesondere bevorzugt sind insertierte Sequenzen, die, wie vorstehend für die Chorismatmutase beschrieben, ein Targeting in den Plastiden gewährleisten.
  • Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure-Sequenz für ein Fusionsprotein, insbesondere ein Chorismatmutase-, Prephenatdehydrogenase- oder Chorismatmutase-Prephenatdehydrogenase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation der Proteine, insbesondere der Chorismatmutase, Prephenatdehydrogenase oder Chorismatmutase-Prephenatdehydrogenase in die Chloroplasten vom Proteinteil, insbesondere vom Chorismatmutase-, Prephenatdehydrogenase- bzw. Chorismatmutase-Prephenatdehydrogenase-Teil enzymatisch abgespalten werden. Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.
  • Für die Verwendung der cytosolischen Chorismatmutase bzw. der Nukleinsäure, codierend eine cytosolische Chorismatmutase ist, wie vorstehend beschrieben, insbesondere die Verwendung des Transitpeptids der plastidären Chorismatmutase, bzw. deren kodierende Nukleinsäure bevorzugt.
  • Besonders bevorzugt bei der erfindungsgemäßen Verwendung der anderen, erfindungsgemäßen Nukleinsäuren sind DNA-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als KpnI/BamHI Fragmente mit einem ATG-Codon in der NcoI Schnittstelle:
    • pTP09
      Figure imgb0007
    • pTP10
      Figure imgb0008
    • pTP11
      Figure imgb0009

      Ein weiteres Beispiel für ein plastidäres Transitpeptid ist das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana.
      Die Nukleinsäuren, insbesondere die Nukleinsäuren codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.
      Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.
      Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
      Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
      Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B.
      Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerrepair", Restriktion oder Ligation verwendet werden.
      Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
      Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.
      Ferner betrifft die Erfindung die Verwendung der vorstehend beschriebenen Nukleinsäuren, insbesondere der Nukleinsäuren kodierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase oder der vorstehend beschriebenen Nukleinsäurekonstrukte oder Proteine, insbesondere der Chorismatmutasen, der Prephenatdehydrogenasen oder der Chorismatmutase-Prephenatdehydrogenasen zur Herstellung von transgenen Pflanzen.
      Vorzugsweise weisen diese transgenen Pflanze gegenüber dem Wildtyp einen erhöhten Gehalt an Feinchemikalien, insbesondere an Ubichinon, Vitamin E und/oder Vitamin K, vorzugsweise an Vitamin E auf.
      Es ist bekannt, daß Pflanzen mit einem hohen Vitamin-E-Gehalt eine erhöhte Resistenz gegenüber abiotischem Streß aufweisen. Unter abiotischem Streß wird beispielsweise Kälte, Frost, Trockenheit, Hitze und Salz verstanden.
      Daher betrifft die Erfindung weiterhin die Verwendung der vorstehend erwähnten Nukleinsäuren zur Herstellung transgener Pflanzen, die gegenüber dem Wildtyp eine erhöhte Resistenz gegenüber abiotischem Streß aufweisen.
      Die vorstehend beschriebenen Proteine und Nukleinsäuren können zur Herstellung von Feinchemikalien in transgenen Organismen, vorzugsweise zur Herstellung von Vitamin E, Vitamin K und/oder Ubichinon, insbesondere Vitamin E in transgenen Pflanzen verwendet werden.
      Die Übertragung von Fremdgenen in das Genom eines Organismus, insbesondere einer Pflanze wird als Transformation bezeichnet. Dazu können insbesondere bei Pflanzen an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.
      Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.
      Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).
      Dementsprechend beschreibt die Erfindung weiterhin Vektoren enthaltend die vorstehend beschriebenen Nukleinsäuren, Nukleinsäurekonstrukte oder Expressionskassetten.
      Mit einer Expressionskassette transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
      Die Expressionskassette kann über die Pflanzen hinaus auch zur Transformation von Bakterien, insbesondere Cyanobakterien, Moosen, Hefen, filamentösen Pilzen und Algen eingesetzt werden.
      Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die ein Protein, insbesondere eine Chorismatmutase, Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase kodiert, vorzugsweise in einen Vektor, beispielsweise pBin19, kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren.
      Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
      Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression eines Gens, insbesondere einer Nukleinsäure kodierend eine eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase enthalten.
      Zur Transformation einer Wirtspflanze mit einer für eine Chorismatmutase, Prephenatdehydrogenase oder Chorismatmutase-Prephenatdehydrogenase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder. Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.
      Beispielhaft kann die pflanzliche Expressionskassette in ein Derivat des Transformationsvektors pBin-19 mit 35s Promotor (Bevan, M., Nucleic Acids Research 12: 8711-8721 (1984)) eingebaut werden. Figur 2 zeigt ein Derivat des Transformationsvektors pBin-19 mit samenspezifischem Legumin B4-Promotor.
      Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
      Die Erfindung betrifft daher die Verwendung der vorstehend beschriebenen Nukleinsäuren, insbesondere die Nukleinsäuren koodierend eine Chorismatmutase, Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase, der vorstehend beschriebenen Nukleinsäurekonstrukte, insbesondere der Expressionskassetten zur Herstellung von genetisch veränderten Pflanzen oder zur Transformation von Pflanzen, -zellen, -geweben oder Pflanzenteilen. Vorzugsweise ist Ziel der Verwendung die Erhöhung des Gehaltes der Pflanze oder Pflanzenteile an Vitamin E.
      Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen, Blütenblättern oder anderen Teilen der Pflanze erfolgen.
      Dementsprechend betrifft die Erfindung ferner ein Verfahren zur Herstellung von genetisch veränderten Organismen indem man eine vorstehend beschriebene Nukleinsäure oder ein vorstehend beschriebenes Nukleinsäurekonstrukt in das Genom des Ausgangsorganismus einführt.
      Vorzugsweise betrifft die Erfindung ein Verfahren zur Transformation einer Pflanze dadurch gekennzeichnet, daß man Expressionskassetten enthaltend Nukleinsäuresequenzen, kodierend eine kodierend eine Chorismatmutase, Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase in eine Pflanzenzelle oder Protoplasten von Pflanzen einbringt und diese zu ganzen Pflanzen regeneriert.
      Die Erfindung beschreibt auch die genetisch veränderte Organismen, wobei die genetische Veränderung den Metabolitfluß des Shikimatweges gegenüber dem Wildtyp verändert und der Organismus gegenüber dem Wildtyp einen veränderten Gehalt an Feinchemikalien aufweist.
      Wie vorstehend erwähnt, weisen bevorzugte genetisch veränderte. Organismen einen erhöhten Gehalt an Feinchemikalien, insbesondere einen erhöhten Gehalt an Vitamin E, Vitamin K und Ubichinon, vorzugsweise einen erhöhten Gehalt an Vitamin E gegenüber dem Wildtyp auf.
      Unter einem genetisch veränderter Organismus wird insbesondere ein Organismus verstanden, bei dem die genetische Veränderung die Genexpression einer Nukleinsäure kodierend eine Chorismatmutase, Prephenatdehydrogenase oder Choroismatmutase-Prephenatdehydrogenase gegenüber einem Wildtyp
      für den Fall, daß der Ausgangsorganismus die entsprechende Nukleinsäure enthält, erhöht oder
      für den Fall, daß der Ausgangsorganismus die entsprechende Nukleinsäure nicht enthält, verursacht.
  • Als Organismen und zur Herstellung von Organismen mit einem erhöhten Gehalt an Feinchemikalien im Vergleich zum Wildtyp werden in einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren und Verwendungen, wie vorstehend erwähnt, photosynthetisch aktive Organismen wie beispielsweise Cyanobakterien, Moose, Algen oder Pflanzen, besonders bevorzugt Pflanzen als Ausgangsorganismen und dementsprechend auch als genetisch veränderte Organismen verwendet.
  • Pflanzen im Sinne der Erfindung sind insbesondere mono- und dikotyle Pflanzen.
  • Bevorzugte Pflanzen sind Tagetes, Sonnenblume, Arabidopsis, Tabak, Roter Pfeffer, Soja, Tomate, Aubergine, Paprika, Möhre, Karotte, Kartoffel, Mais, Salate und Kohlarten, Getreide, Alfalfa, Hafer, Gerste, Roggen, Weizen, Triticale, Hirse, Reis, Luzerne, Flachs, Baumwolle, Hanf, Brassicacaen wie beispielsweise Raps oder Canola, Zuckerrübe, Zuckerrohr, Nuß- und Weinspezies oder Holzgewächse wie beispielsweise Espe oder Eibe.
  • Besonders bevorzugt sind Arabidopsis thaliana, Tagetes erecta, Brassica napus, Nicotiana tabacum, Canola, Kartoffeln sowie weitere Ölsaaten, wie beispielsweise Soja.
  • Die genetisch veränderten Organismen, insbesondere Pflanzen können, wie vorstehend beschrieben zur Herstellung von Feinchemikalien, insbesondere zur Herstellung von Vitamin E verwendet werden.
  • Von Menschen und Tieren verzehrbare, genetisch veränderte Pflanzen mit erhöhtem Gehalt an Feinchemikalien, insbesondere mit einem erhöhten Gehalt an Vitamin-E, können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel verwendet werden.
  • Erhöhung des Gehaltes an Feinchemikalien bedeutet im Rahmen der vorliegenden Erfindung die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung dieser Verbindungen in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.
  • Unter einem erhöhten Gehalt an Vitamin E wird in der Regel ein erhöhter Gehalt an Gesamt-Tocopherol verstanden. Unter einem erhöhten Gehalt an Vitamin E wird aber auch insbesondere ein veränderter Gehalt der vorstehend beschriebenen 8 Verbindungen mit Tocopherolaktivität verstanden.
  • Beispielsweise führt das Einbringen eines Chorismatmutase-Prephenatdehydrogenase-Gens in Pflanzen überraschenderweise zu einem besonders erhöhten Anstieg des Gehalts an Tocotrienolen.
  • Im Falle der Erhöhung des Gehalts an Vitamin E kann sowohl der Gehalt an Tocopherolen oder Tocotrienolen gesteigert werden. Vorzugsweise wird der Gehalt an Tocopherolen gesteigert. Aber es ist auch möglich unter bestimmten Bedingungen vorzugsweise den Gehalt an Tocotrienolen zu steigern.
  • Der Biosyntheseort von Vitamin E beispielsweise ist in Pflanzen unter anderem das Blattgewebe, so daß eine blattspezifische Expression der erfindungsgemäßen Nukleinsäuren, insbesondere der Nukleinsäuren codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenase sinnvoll ist. Dies ist jedoch nicht einschränkend, da die Expression auch in allen übrigen Teilen der Pflanze - besonders in fetthaltigen Samen - gewebespezifisch erfolgen kann.
  • Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Verfahren und Verwendungen betrifft deshalb eine samenspezifische Expression der erfindungsgemäßen Nukleinsäuren, insbesondere der Nukleinsäuren codierend eine Chorismatmutase, eine Prephenatdehydrogenase oder eine Chorismatmutase-Prephenatdehydrogenases.
  • Darüber hinaus ist eine konstitutive Expression von exogenen Chorismatmutase-, Prephenatdehydrogenase- oder Chorismatmutase-Prephenatdehydrogenase-Genen von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.
  • Die Wirksamkeit der Expression des transgen exprimierten Chorismatmutase-, Prephenatdehydrogenase- oder Chorismatmutase-Prephenatdehydrogenase-Gens kann beispielsweise in vitro durch Sproßmeristemvermehrung ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des Chorismatmutase-, Prephenatdehydrogenase- oder Chorismatmutase-Prephenatdehydrogenase-Gens und deren Auswirkung auf die Vitamin E-Biosyntheseleistung an Testpflanzen in Gewächshausversuchen getestet werden.
  • Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:
    • Allgemeine Experimentelle Bedingungen:
    • Sequenzanalyse rekombinanter DNA
  • Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).
  • Beispiel 1 - Klonierung des tyrA-Gens kodierend für die Chorismatmutase-Prephenatdehydrogenase aus E. coli K12
  • Die DNA kodierend für das tyrA-Gen wurde mittels polymerase chain reaction (PCR) aus E. coli K12 unter Verwendung eines sense spezifischen Primers (tyrA5' SEQ ID NO. 10) und eines antisense spezifischen Primers (tyrA3' SEQ ID NO. 9) amplifiziert.
  • Die PCR Bedingungen waren die folgenden:
  • Die PCR erfolgte in einem 50µl Reaktionsansatz in dem enthalten war:
    • 2 µl einer E. coli K12 Zellsuspension
    • 0,2 mM dATP, dTTP, dGTP, dCTP
    • 1,5 mM Mg(OAc)2
    • 5 µg Rinderserum-Albumin
    • 40 pmol tyrA5'
    • 40 pmol tyrA3'
    • 15 µl 3,3 x rTth DNA Polymerase XLPuffer (PE Applied Biosystems)
    • 5 U rTth DNA Polymerase XL (PE Applied Biosystems)
  • Die PCR wurde unter folgenden Zyklus Bedingungen durchgeführt:
    • Schritt 1: 5 Minuten 94°C (Denaturierung)
    • Schritt 2: 3 Sekunden 94°C
    • Schritt 3: 1 Minute 55°C (Annealing)
    • Schritt 9: 2 Minuten 72°C (Elongation)
    • 30 Wiederholungen der Schritte 2 bis 4
    • Schritt 5: 10 Minuten 72°C (Post-Elongation)
    • Schritt 6: 4°C (Warteschleife)
  • Das Amplikon wurde unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pGEM-T (Promega) kloniert. Die Identität des erzeugten Amplikons wurde durch Sequenzierung unter Verwendung des M13F (-40) Primers bestätigt.
  • Beispiel 2 - Herstellung von Expressionskassetten enthaltend das tyrA-Gen, kodierend für die Chorismatmutase-Prephenatdehydrogenase aus E.coli K12
  • Transgene Nicotiana tabacum und Arabidopsis thaliana Pflanzen wurden erzeugt, die die Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 unter Kontrolle des konstitutiven 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al., Cell 21: 285-294, 1980) exprimieren. Die Grundlage des zur konstitutiven Expression der Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 erzeugten Plasmides war der pBinAR-TkTp-10 (Ralf Badur, Dissertation Universität Göttingen, 1998). Dieser Vektor ist ein Derivat des pBinAR (Höfgen und Willmitzer, Plant Sci. 66: 221-230, 1990) und enthält den 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al., 1980) das Terminations-signal des Octopin-Synthase Gens (Gielen et al., EMBO J. 3: 835-846, 1984) sowie die für das Transitpeptid der Nicotiana tabacum plastidären Transketolase kodierenden DNA Sequenz. Die unter Berücksichtigung des korrekten Leserasters erfolgte Klonierung der Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 in diesen Vektor, erzeugt eine Translationsfusion der Chorismatmutase-Prephenatdehydrogenase mit dem plastidären Transitpeptid. Dadurch erfolgt ein Transport des Transgens in die Plastiden.
  • Zur Erstellung dieses Plasmides wurde das tyrA-Gen unter Verwendung der flankierenden SmaI bzw. SalI Restriktionsschnittstellen aus dem Plasmid pGEM-T/tyrA isoliert. Dieses Fragment wurde unter Anwendung von Standardmethoden in einen SmaI / SalI geschnittenen pBinAR-TkTp-10 ligiert (siehe Figur 2). Dieses Plasmid (pBinAR-TkTp-10/tyrA) wurde zur Erzeugung transgener Nicotiana tabacum und A.thaliana Pflanzen verwendet.
  • Fragment A (529 bp) in Figur 2 beinhaltet den 35S-Promotor des CaMV (Nukleotide 6909 bis 7437 des Blumenkohlmosaikvirus), Fragment B (245bp) kodiert für das Transitpeptid der Nicotiana tabacum Transketolase, Fragment C (1232 Bp) kodiert für das tyrA-Gen aus E. coli K12, Fragment D (219Bp) kodiert für das Terminationssignal des Octopin-Synthase Gens.
  • Beispiel 3 - Erzeugung von Nukleinsäurekonstrukten zur Expression der Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 unter Kontrolle eines samenspezifischen Promotors
  • Zur Herstellung von chimären DNA Konstrukten zur Erzeugung transgener Arabidopsos thaliana, Nicotiana tabacum bzw. Brassica napus Pflanzen, die die Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 unter Kontrolle eines samenspezifischen Promotors exprimieren, wurde der Vektor pPTVkanLeP-IPP-TP-9 verwendet.
  • Dieser Vektor ist ein Derivat des pGPTVkan (D. Becker, E. Kemper, J. Schell, R. Masterson. Plant Molecular Biology 20: 1195-1197, 1992) dem das uidA Gen deletiert wurde. Stattdessen enthält der Vektor pPTVkanLeP-IPP-TP-9 den samenspezifischen Promotor des Legumin B4 Gens (Kafatos et al., Nuc. Acid. Res., 14 (6) : 2707-2720, 1986), die Sequenz kodierend für das Transitpeptid der A.thaliana plastiden-spezifischen Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) (Badur, unveröffentlicht) und das Terminationssignal der Nopalinsynthase aus A. tumefaciens (Depicker et al., J. Mol. Appl. Genet. 1, 561-73, 1982).
  • Das Nukleinsäure-Fragment kodierend für die tyrA aus E. coli K12 wurde als SmaI/SalI Fragment mit durch die T4-Polymerase aufgefüllten stumpfen Enden in den Vektor pPTVkanLeP-IPP-TP-9 (Figur 3) kloniert, wodurch eine Translationsfusion mit dem Transitpeptid der IPP-2 erzeugt wurde. Somit konnte ein Import der Chorismatmutase-Prephenatdehydrogenase in die Plastiden gewährleistet werden. Dieses Plasmid (pPTVkanLeP-IPP-TP-9/TyrA) wurde zur Erzeugung transgener Nicotiana tabacum, A. thaliana bzw. Brassica napus Pflanzen verwendet.
  • Fragment A (2700 bp) in Figur 3 beinhaltet den Promotor des Legumin B4 Gens aus Vicia faba, Fragment B (206bp) Fragment kodierend für das Transitpeptid der A. thaliana Isopentenyl-pyrophosphat-Isomerase-2. Fragment C (1234Bp) kodiert für das tyrA-Gen aus E. coli K12. Fragment D (272Bp) für das Terminationssignal des Nopalin-Synthase Gens. Beispiel 4 - Herstellung transgener Arabidopis thaliana Pflanzen, die das tyrA-Gen exprimieren
  • Wildtyp Arabidopsis thaliana Pflanzen (Columbia) wurden mit dem Agrabacterium tumefaciens Stamm (GV3101 [pMP90]) auf Grundlage einer modifizierten Vakuuminfiltrationsmethode transformiert (Steve Clough und Andrew Bent. Floral dip: a simplified method for Agrobacterium mediated transformation of A. thaliana. Plant J 16(6):735-43, 1998; der Bechtold, N. Ellis, J. und Pelltier, G., in: Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CRAcad Sci Paris, 1993, 1144(2):204-212). Die verwendeten Agrobacterium tumefaciens Zellen waren im Vorfeld mit den Plasmiden pBinAR-TkTp-10/tyrA bzw. pPTVkanLeP-IPP-TP-9/tyrA (Figur 2 bzw. 3) transformiert worden.
  • Samen der Primärtransformanden wurden auf Grundlage der Antibiotikaresistenz selektioniert. Antibiotika resistente Keimlinge wurden in Erde gepflanzt und als vollentwickelte Pflanzen zur biochemischen Analyse verwendet.
  • Beispiel 5 - Herstellung transgener Brassica napus Pflanzen, die das tyrA-Gen exprimieren
  • Die Herstellung transgener Raps Pflanzen orientierte sich an einem Protokoll von Bade, J.B. und Damm,B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38), in welchem auch die Zusammensetzung der verwendeten Medien und Puffer angegeben ist.
  • Die Transformationen erfolgten mit dem Agrobacterium tumefaciens Stamm GV3101 [pMP90]. Zur Transformation wurde das Plasmid pPTVkanLeP-IPP-TP-9/tyrA verwendet (Figur 3). Samen von Brassica napus var. Westar wurden mit 70 % Ethanol (v/v) oberflächensteril gemacht, 10 Minuten bei 55°C in Wasser gewaschen, in 1%iger Hypochlorit-Lösung (25 % v/v Teepol, 0,1 % v/v Tween 20) für 20 Minuten inkubiert und sechsmal mit sterilem Wasser für jeweils 20 Minuten gewaschen. Die Samen wurden drei Tage auf Filterpapier getrocknet und 10-15 Samen in einem Glaskolben mit 15 ml Keimungsmedium zur Keimung gebracht. Von mehreren Keimlingen (ca. 10 cm groß) wurden die Wurzeln und Apices entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange Stücke geschnitten. Die so gewonnenen ca. 600 Explantate wurden 30 Minuten mit 50 ml Basalmedium gewaschen und in einem 300 ml Kolben überführt. Nach Zugabe von 100 ml Kallusinduktionsmedium wurden die Kulturen für 24 Stunden bei 100 U/min inkubiert.
  • Vom Agrobacterium Stamm wurde eine Übernachtkultur bei 29°C in Luria Broth-Medium mit Kanamycin (20 mg/1) angesetzt, davon 2 ml in 50 ml Luria Broth-Medium ohne Kanamycin für 4 Stunden bei 29°C bis zu einer OD600 von 0,4 bis 0, 5 inkubiert. Nach der Pelletierung der Kultur bei 2000 U/min für 25 min wurde das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wurde durch Zugabe von weiterem Basalmedium auf eine OD600 von 0,3 eingestellt.
  • Aus den Raps-Explanten wurde das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml Agrobakterium-Lösung hinzugefügt, vorsichtig gemischt und für 20 min inkubiert. Die Agrobacterien-Suspension wurde entfernt, die Raps-Explante für 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend 100 ml Kallus-Induktionsmedium hinzugefügt. Die Co-Kultivierung wurde für 24 h auf einem Rotationsschüttler bei 100 U/min durchgeführt. Die Co-Kultivierung wurde durch Wegnahme des Kallus-Induktionsmediums gestoppt und die Explante zweimal für jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 U/min gewaschen. Das Waschmedium mit den Explanten wurde in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt.
  • Zur Regeneration wurden jeweils 20 bis 30 Explante in 90 mm Petrischalen überführt, welche 25 ml Sproß-Induktionsmedium mit Kanamycin enthielten. Die Petrischalen wurden mit 2 Lagen Leukopor verschlossen und bei 25°C und 2000 lux bei Photoperioden von 16 Stunden Licht/8 Stunden Dunkelheit inkubiert. Alle 12 Tage wurden die sich entwickelnden Kalli auf frische Petrischalen mit Sproß-Induktionsmedium umgesetzt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen wurden wie von Bade, J.B und Damm, B. (in: Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) beschrieben durchgeführt.
  • Beispiel 6 - Herstellung transgener Nicotiana tabacum Pflanzen, die das tyrA-Gen exprimieren
  • Zehn ml YEB-Medium mit Antibiotikum (5 g/l Rinder-Extrakt, 1 g/l Hefe-Extrakt, 5 g/l Pepton, 5 g/l Saccharose und 2 mM MgSO4.) wurden mit einer Kolonie von Agrobacterium tumefaciens beimpft und über Nacht bei 28°C kultiviert. Die Zellen wurden 20 min bei 4°C, 3500 U/min in einer Tischzentrifuge pelletiert und danach in frischem YEB-Medium ohne Antibiotika unter sterilen Bedingungen resuspendiert. Die Zellsuspension wurde für die Transformation eingesetzt.
  • Die Wildtyp-Pflanzen aus Sterilkultur wurden durch vegetative Replikation erhalten. Dazu wurde nur die Spitze der Pflanze abgeschnitten und auf frisches 2MS-Medium in ein steriles Einweckglas überführt. Vom Rest der Pflanze wurden die Haare auf der Blattoberseite und die Mittelrippen der Blätter entfernt. Die Blätter wurden mit einer Rasierklinge in etwa 1cm2 große Stücke geschnitten. Die Agrobakterienkultur wurde in eine kleine Petrischale überführt (Durchmesser 2 cm). Die Blattstücke wurden kurz durch diese Lösung gezogen und mit der Blattunterseite auf 2MS-Medium in Petrischalen (Durchmesser 9 cm) gelegt, so daß sie das Medium berührten. Nach zwei Tagen im Dunkeln bei 25°C wurden die Explantate auf Platten mit Kallusinduktionsmedium überführt und in der Klimakammer auf 28°C temperiert. Das Medium mußte alle 7 bis 10 Tage gewechselt werden. Sobald sich Kalli bildeten, wurden die Explantate in sterile Einweckgläser auf Sproßinduktionsmedium mit Claforan (0,6 % BiTec-Agar (g/v), 2,0 mg/l Zeatinribose, 0,02 mg/l Naphthylessigsäure, 0,02 mg/l Gibberelinsäure, 0,25 g/ml Claforan, 1,6 % Glukose (g/v) und 50 mg/l Kanamycin überführt. Nach etwa einem Monat trat Organogenese ein und die gebildeten Sprosse konnten abgeschnitten werden. Die Kultivierung der Sprosse wurde auf 2MS-Medium mit Claforan und Selektionsmarker durchgeführt. Sobald sich ein kräftiger Wurzelballen gebildet hatte, konnten die Pflanzen in Pikiererde getopft werden.
  • Beispiel 7 - Charakterisierung der transgenen Pflanzen aus Beispiel 4, 5 und 6
  • Es wurden die Tocopherol- und Tocotrienol-Gehalte in Blätter und Samen der mit den beschriebenen Konstrukten transformierten Pflanzen (Arabidopsis thaliana, Brassica napus und Nicotiana tabacum) analysiert. Dazu wurden die transgenen Pflanzen im Gewächshaus kultiviert und Pflanzen die das Gen kodierend für die Chorismatmutase-Prephenatdehydrogenase aus E.coli K12 exprimieren auf Northern- und Western Ebene analysiert. In Blättern und Samen dieser Pflanzen wurde der Tocopherolgehalt und der Tocotrienolgehalt mittels HPLC ermittelt. In allen Fällen war der Tocopherol- und/oder Tocotrienol-Gehalt in transgenen Pflanzen, die zusätzlich ein tyrA-Gen exprimieren, im Vergleich zu nicht transformierten Pflanzen erhöht.
  • Tabelle 1A (junge Blätter) und 1B (seneszierende Blätter) zeigen die Gehalte [µg/gFG] an α-Tocopherol, γ-Tocopherol, α-Tocotrienol und Gesamt-Vitamin E in Blättern unterschiedlichen Alters in Nicotiana tabacum, cv. SNN-Wildtyp (angegebene Werte MW +/-SD, n = 9) und Pflanzen, die das Tyr A Gen aus E. coli überexprimieren. Tabelle A: junge Blätter
    α-Tocopherol γ-Tocopherol α-Tocotrienol Gesamt Vitamin E
    Wildtyp SNN 19,0 ±2,9 0,31 ±0,03 <0,20 19,3 ±2,8
    Linie 8 27,6 1,25 1,03 30,0
    Linie 15 35,7 0,73 1,00 37,4
    Linie 54 32,3 4,60 1,60 38,7
    Linie 86 15,7 4,47 0,98 21,4
    Linie 113 32,3 0,71 0,62 33,6
    Tabelle B: seneszierende Blätter
    α-Tocopherol γ-Tocopherol α-Tocotrienol Gesamt Vitamin E
    Wildtyp SNN 32,9 ±2,1 0,31 ±0,05 <0,20 33,1 ±2,1
    Linie 8 50,7 0,69 2,69 54,2
    Linie 15 54,7 0,69 0,81 56,2
    Linie 54 37,0 2,60 0,35 40,0
    Linie 86 36,5 1,51 0,43 38,4
    Linie 113 3 46,2 0,45 2,29 48,9
  • Beispiel 8 - Klonierung eines Subfragmentes des Gens kodierend für die plastidär exprimierte Chorismat Mutase-1 aus Arabidopsis thaliana
  • Die DNA Sequenz kodierend für das Transitpeptid des Chorismat-Mutase-1-Gen wurde mittels polymerase chain reaction (PCR) aus Arabidopsis thaliana unter Verwendung eines sense spezifischen Primers (CM-1TP 5' SEQ ID Nr. 11) und eines antisense spezifischen Primers (CM-1TP 3' SEQ ID NO. 12) amplifiziert.
  • Die PCR Bedingungen waren die folgenden:
    Die PCR erfolgte in einem 50 µl Reaktionsansatz in dem enthalten war:
    • 2 µl einer Arabidopsis thaliana cDNA
    • 0,2 mM dATP, dTTP, dGTP, dCTP
    • 1,5 mM Mg(OAc)2
    • 5 µg Rinderserum-Albumin
    • 40 pmol CM-1TP 5'Primer
    • 40 pmol CM-1TP 3'Primer
    • 15 µl 3,3 x rTth DNA Polymerase XLPuffer (PE Applied Biosystems)
    • 5 U rTth DNA Polymerase XL (PE Applied Biosystems)
  • Die PCR wurde unter folgenden Zyklus Bedingungen durchgeführt:
    • Schritt 1: 5 Minuten 94°C (Denaturierung)
    • Schritt 2: 3 Sekunden 94°C
    • Schritt 3: 1 Minute 55°C (Annealing)
    • Schritt 4: 2 Minuten 72°C (Elongation)
    • 30 Wiederholungen der Schritte 2 bis 4
    • Schritt 5: 10 Minuten 72°C (Post-Elongation)
    • Schritt 6: 4°C (Warteschleife)
  • Das Amplikon wurde unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pCR-Script (Stratagene) kloniert. Die Identität des erzeugten Amplikons wurde durch Sequenzierung unter Verwendung eines Vektor-spezifischen Primers bestätigt.
  • Beispiel 9 - Klonierung des Gens kodierend für die cytosolisch exprimierte Chorismat Mutase-2 aus Arabidopsis thaliana
  • Die DNA kodierend für das Chorismat-Mutase-2-Gen wurde mittels polymerase chain reaction (PCR) aus Arabidopsis thaliana unter Verwendung eines sense spezifischen Primers (CM-2 5' SEQ ID NO. 13) und eines antisense spezifischen Primers (CM-2 3' SEQ ID NO. 14) amplifiziert.
  • Die PCR Bedingungen waren die folgenden:
    Die PCR erfolgte in einem 50 µl Reaktionsansatz in dem enthalten war:
    • 2 µl einer Arabidopsis thaliana cDNA
    • 0,2 mM dATP, dTTP, dGTP, dCTP
    • 1,5 mM Mg(OAc)2
    • 5 µg Rinderserum-Albumin
    • 40 pmol CM-2 5'Primer
    • 40 pmol CM-2 3'Primer
    • 15 µl 3, 3 x rTth DNA Polymerase XLPuffer (PE Applied Biosystems)
    • 5 U rTth DNA Polymerase XL (PE Applied Biosystems)
  • Die PCR wurde unter folgenden Zyklus Bedingungen durchgeführt:
    • Schritt 1: 5 Minuten 94°C (Denaturierung)
    • Schritt 2: 3 Sekunden 94°C
    • Schritt 3: 1 Minute 55°C (Annealing)
    • Schritt 4: 2 Minuten 72°C (Elongation)
    • 30 Wiederholungen der Schritte 2 bis 4
    • Schritt 5: 10 Minuten 72°C (Post-Elongation)
    • Schritt 6: 4°C (Warteschleife)
  • Das Amplikon wurde unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pGEM-T (Promega) kloniert. Die Identität des erzeugten Amplikons wurde durch Sequenzierung unter Verwendung des M13F (-40) Primers bestätigt.
  • Beispiel 10 - Erzeugung des chimären Genkonstruktes CM-1-TP-CM-2 bestehend aus der DNA Sequenz kodierend für das Transitpeptid (TP) der Chorismatmutase-1 (CM-1) und der DNA Sequenz kodierend für die Chorismatmutase-2 (CM-2)
  • Zur Erzeugung des chimären Gens CM-1-TP-CM-2, wurde das Plasmid pCR-Script/CM-1-TP mit den Restriktionsenzyme NcoI/SalI verdaut.
  • In dieses Plasmid wurde das aus dem Plasmid pGEM-Teasy/CM-2 mittels der Restriktionsenzyme NcoI/SalI isolierte DNA-Fragment der CM-2 ligiert. Die Translation dieses chimären DNA-Konstruktes (SEQ ID No. 5) (pCR-Script/AtCM-1TP-AtCM-2, Figur 4 hat die Bildung eines Fusionsproteins zur Folge, indem das Transitpeptid der CM-1 mit der CM-2 kombiniert ist (SEQ ID NO. 6).
  • Beispiel 11 - Herstellung pflanzlicher Expressionskassetten enthaltend das chimäre Gen CM-1-TP-CM-2
  • Transgene Pflanzen wurden erzeugt, die das chimäre Gen CM-1-TP-CM2 aus A.thaliana zum einen unter Kontrolle des konstitutiven 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al., Cell 21: 285-294, 1980) und zum anderen unter Kontrolle des samenspezifischen Promotors des Legumin Gens aus Vicia faba (Kafatos et al., Nuc. Acid. Res.,14(6): 2707-2720, 1986) exprimieren.
  • Die Grundlage des zur konstitutiven Expression des chimären Gens CM-1TP-CM-2 war der Vektor pBinAR (Höfgen und Willmitzer, Plant Sci. 66: 221-230, 1990). Dieser Vektor enthält den 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al., 1980) und das Terminationssignal des Octopin-Synthase Gens (Gielen et al., EMBO J. 3: 835-846, 1984). Zur Erstellung dieses Plasmides wurde das chimäre Gen CM-1-TP-CM2 unter Verwendung der flankierenden Restriktionsschnittstellen KpnI/SalI aus dem Plasmid pCR-Script/AtCM-ITP-AtCM-2 (Abb. 4) isoliert. Dieses Fragment wurde unter Anwendung von Standardmethoden in einen KpnI/SalI geschnittenen pBinAR ligiert. Das resultierende Plasmid (pBinAR/CM-1TP/CM-2, Abb. 5) wurde zur Erzeugung transgener Arabidopsis thaliana und Nicotiana tabacum verwendet.
  • Zur Erzeugung eines Plasmides, welches die samenspezifische Expression des chimären Gens CM-1TP/CM-2 in Pflanzen ermöglicht, wurde der samenspezifiche Promotor des Legumin B4 Gens (Kafatos et al., Nuc. Acid. Res.,l4(6):2707-2720, 1986) verwendet. Aus dem Plasmid pGEMTeasy/lePNOS wurde das 2,7 Kb Fragment des Legumin B4 Gen Promotors unter Verwendung der den Promotor 5' flankierenden EcoR1 und der 3' flankierenden Kpn1 Schnittstellen isoliert. Das Plasmid pBinAR/CM-1TP/CM-2 wurde ebenfalls mit den Restriktionsenzymen EcoR1 und Kpn1 behandelt. Dies hatte zur Folge, daß der 35S-Promotor des CaMV aus diesem Plasmid herausgetrennt wurde, siehe Figur 5). Der Promotor des Legumin Gens wurde anschließend als EcoR1/Kpn1 Fragment in diesen Vektor kloniert, wodurch ein Plasmid erzeugt wurde, welches die Expression des chimären Gens CM-ITP-CM-2 unter die Kontrolle dieses samenspezifischen Promotors stellte, siehe Figur 6). Dieses Plasmid (pBinLeP/CM-1TP/CM-2) wurde zur Erzeugung transgener Arabidopsis thaliana, und Nicotiana tabacum Pflanzen verwendet.
  • Beispiel 12 - Herstellung transgener Arabidopis thaliana Pflanzen, die das chimären Gen CM-1-TP-CM-2 exprimieren
  • Die Herstellung der Pflanzen erfolgte analog zu Beispiel 4 unter Verwendung der Plasmide (pBinAR/AtCM-1TP/CM-2) und (pBinLeP/CM-1TP/CM-2).
  • Beispiel 13 - Herstellung transgener Brassica napus Pflanzen, die das tyrA-Gen exprimieren
  • Die Herstellung der Pflanzen erfolgte analog zu Beispiel 5 unter Verwendung der Plasmide (pBinAR/AtCM-1TP/CM-2) und (pBinLeP/CM-1TP/CM-2).
  • Beispiel 14 - Herstellung transgener Nicotiana tabacum Pflanzen, die das tyrA-Gen exprimieren
  • Die Herstellung der Pflanzen erfolgte analog zu Beispiel 6 unter Verwendung der Plasmide (pBinAR/AtCM-1TP/CM-2) und (pBinAR1eP/CM-1TP/CM-2).
  • Beispiel 15 - Charakterisierung der transgenen Pflanzen aus Beispiel 12, 13 und 14
  • Es wurden die Tocopherol- und Tocotrienol-Gehalte in Blätter und Samen der mit den beschriebenen Konstrukten transformierten Pflanzen (Arabidopsis thaliana, Brassica napus und Nicotiana tabacum) analysiert. Dazu wurden die transgenen Pflanzen im Gewächshaus kultiviert und Pflanzen die das Gen kodierend für die cytosolische Chorismatmutase exprimieren auf Northern- und Western Ebene analysiert. In Blättern und Samen dieser Pflanzen wurde der Tocopherolgehalt und der Tocotrienolgehalt mittels HPLC ermittelt. In allen Fällen war der Tocopherol- und/oder Tocotrienol-Gehalt in transgenen Pflanzen, die zusätzlich Chorismatmutase-Gene exprimieren, im Vergleich zu nicht transformierten Pflanzen erhöht.
  • SEQUENZPROTOKOLL
    • <110> SunGene GmbH & Co. KGaA
    • <120> Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
    • <130> 0817/780/2000
    • <140>
      <141>
    • <160> 14
    • <170> PatentIn Vers. 2.0
    • <210> 1
      <211> 1238
      <212> DNA
      <213> Escherichia coli
    • <220>
      <221> CDS
      <222> (25)..(1143)
    • <400> 1
      Figure imgb0010
      Figure imgb0011
      Figure imgb0012
    • <210> 2
      <211> 373
      <212> PRT
      <213> Escherichia coli
    • <400> 2
      Figure imgb0013
      Figure imgb0014
      Figure imgb0015
    • <210> 3
      <211> 1006
      <212> DNA
      <213> Arabidopsis thaliana
    • <220>
      <221> CDS
      <222> (64)..(858)
    • <400> 3
      Figure imgb0016
      Figure imgb0017
    • <210> 4
      <211> 265
      <212> PRT
      <213> Arabidopsis thaliana
    • <400> 4
      Figure imgb0018
      Figure imgb0019
    • <210> 5
      <211> 993
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz: Chimäre
      Nukleins.: Transitpept. der plastid.
      Chorismatm.+kod. Sequenz der cytosolischen
      Chorismatmutase
    • <220>
      <221> CDS
      <222> (1)..(993)
    • <400> 5
      Figure imgb0020
      Figure imgb0021
    • <210> 6
      <211> 330
      <212> PRT
      <213> Artificial Sequence
    • <400> 6
      Figure imgb0022
      Figure imgb0023
    • <210> 7
      <211> 218
      <212> DNA
      <213> Arabidopsis thaliana
    • <220>
      <221> CDS
      <222> (20)..(217)
    • <400> 7
      Figure imgb0024
    • <210> 8
      <211> 66
      <212> PRT
      <213> Arabidopsis thaliana
    • <400> 8
      Figure imgb0025
    • <210> 9
      <211> 29
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz:Primer
    • <220>
      <221> primer_bind
      <222> (1)..(29)
    • <400> 9
      aagtcgacgc tgttacccaa gtgagaacg    29
    • <210> 10
      <211> 30
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz:Primer
    • <220>
      <221> primer_bind
      <222> (1)..(30)
    • <400> 10
      aacccgggtg gcttaagagg tttattatgg    30
    • <210> 11
      <211> 28
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz:Primer
    • <220>
      <221> primer_bind
      <222> (1)..(28)
    • <400> 11
      ggtaccggcg tcattgttga tgagatcg    28
    • <210> 12
      <211> 24
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz: Primer
    • <220>
      <221> primer_bind
      <222> (1)..(24)
    • <400> 12
      ccatggtggc gagtgtcata acgg    24
    • <210> 13
      <211> 27
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <221> primer_bind
      <222> (1)..(27)
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz:Primer
    • <400> 13
      gtcgactcaa tcgagacgac gtagaag    27 <210> 14
      <211> 25
      <212> DNA
      <213> Artificial Sequence
    • <220>
      <223> Die Beschreibung von Knstliche Sequenz:Primer
    • <220>
      <221> primer_bind
      <222> (1)..(25)
    • <400> 14
      ccatgggcaa gagtcttcga atcgg    25

Claims (25)

  1. Verfahren zur Herstellung von Vitamin E durch Kultivierung von photosynthetisch aktiven Organismen mit einem gegenüber dem Wildtyp genetisch veränderten Shikimatweg, dadurch gekennzeichnet, dass man zur genetischen Veränderung des Shikimatweges mindestens eine Maßnahme ausgewählt aus der Gruppe der Maßnahmen A und B durchführt, wobei A und B folgende Bedeutung haben:
    A: Erhöhung der Aktivität der Chorismatmutase des Wildtyps; B: Einbringen mindestens eines Gens in den Organismus, das für ein Protein mit einer Prephenatdehydrogenaseaktivität oder mit einer Chorismatmutaseprephenatdehydrogenaseaktivität kodiert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei Maßnahme A die Aktivität mindestens eines Enzyms des Shikimatweges durch Überexpression von Nukleinsäuren erhöht, die Proteine mit dieser enzymatischen Aktivität codieren.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man eine Nukleinsäure codierend eine Chorismatmutase in den Organismus einbringt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man eine Nukleinsäure codierend eine Chorismatmutase in den Organismus einbringt, deren Aktivität einer reduzierten posttranslationalen Regulation im Organismus unterliegt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man eine Nukleinsäure codierend eine Chorismatmutase in den Organismus einbringt, die an der Lokalisation der Expression im Organismus einer reduzierten posttranslationalen Regulation unterliegt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man als Organismus eine Pflanze verwendet.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man eine cytosolische Chorismatmutase in Plastiden einer Pflanze einbringt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß man ein Nukleinsäurekonstrukt in die Pflanze einbringt, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweist.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man als Nukleinsäure, kodierend ein plastidäres Transitpeptid eine Nukleinsäure verwendet, die das plastidäre Transitpeptid einer plastidären Chorismatmutase kodiert.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man ein Nukleinsäurekonstrukt der Nukleinsäuresequenz SEQ ID NO. 5 in Pflanzen einbringt.
  11. Verwendung eines Nukleinsäurekonstruktes, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweist, zur Erhöhung des Gehalts an Vitamin E in photosynthetisch aktiven Organismen.
  12. Verwendung eines Nukleinsäurekonstruktes, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 4 und die enzymatische Eigenschaft einer Chorismatmutase aufweist, zur Herstellung von Vitamin E in photosynthetisch aktiven Organismen.
  13. Verwendung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß man als Nukleinsäure, kodierend ein plastidäres Transitpeptid eine Nukleinsäure verwendet, die das plastidäre Transitpeptid einer plastidären Chorismatmutase kodiert.
  14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß es die Nukleinsäuresequenz SEQ ID NO. 5 aufweist.
  15. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man als Organismus eine Pflanze verwendet und daß man bei Maßnahme B als Gen eine Nukleinsäure codierend eine Prephenatdehydrogenase in eine Pflanze einbringt, wobei der Wildtyp zu dem Gen kein orthologes Gen aufweist.
  16. Verfahren nach einem der Ansprüche 1 bis 10 und 15, dadurch gekennzeichnet, daß man eine Nukleinsäure codierend eine Prephenatdehydrogenase in Kombination mit einer Nukleinsäure codierend eine Chorismatmutase in eine Pflanze einbringt.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß man eine Nukleinsäure codierend eine Chorismatmutase-Prephenatdehydrogenase in eine Pflanze einbringt.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man eine Nukleinsäure einbringt, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Chorismatmutase-Prephenatdehydrogenase aufweist.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man eine Nukleinsäure bakterieller Herkunft verwendet.
  20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß man eine Nukleinsäure verwendet, die die in SEQ ID NO. 1 dargestellte Sequenz enthält.
  21. Verwendung eines Nukleinsäurekonstruktes, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Chorismatmutase-Prephenatdehydrogenase aufweist, zur Erhöhung des Gehalts an Vitamin E in photosynthetisch aktiven Organismen.
  22. Verwendung eines Nukleinsäurekonstruktes, enthaltend eine Nukleinsäure kodierend ein plastidäres Transitpeptid und eine Nukleinsäure, die ein Protein kodiert, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Homologie von mindestens 30 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Chorismatmutase-Prephenatdehydrogenase aufweist, zur Herstellung von Vitamin E in photosynthetisch aktiven Organismen.
  23. Verwendung der Nukleinsäurekonstrukte wie in einem der Ansprüche 11 bis 14, 21 und 22 definiert zur Herstellung von transgenen Pflanzen.
  24. Verwendung nach Anspruch 23, dadurch gekennzeichnet, daß die transgene Pflanze gegenüber dem Wildtyp einen erhöhten Gehalt an Vitamin E aufweist.
  25. Verwendung nach Anspruch 24, dadurch gekennzeichnet, daß die transgene Pflanze gegenüber dem Wildtyp eine erhöhte Resistenz gegenüber abiotischem Streß aufweist.
EP01943549A 2000-06-29 2001-06-28 Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges Expired - Lifetime EP1294913B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE2000130647 DE10030647A1 (de) 2000-06-29 2000-06-29 Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
DE10030647 2000-06-29
DE2000164454 DE10064454A1 (de) 2000-12-21 2000-12-21 Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
DE10064454 2000-12-21
PCT/EP2001/007391 WO2002000901A1 (de) 2000-06-29 2001-06-28 Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges

Publications (2)

Publication Number Publication Date
EP1294913A1 EP1294913A1 (de) 2003-03-26
EP1294913B1 true EP1294913B1 (de) 2008-03-12

Family

ID=26006169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943549A Expired - Lifetime EP1294913B1 (de) 2000-06-29 2001-06-28 Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges

Country Status (13)

Country Link
US (1) US7332649B2 (de)
EP (1) EP1294913B1 (de)
JP (1) JP2004501649A (de)
CN (1) CN1439054A (de)
AR (1) AR030430A1 (de)
AT (1) ATE389025T1 (de)
AU (1) AU2001266096A1 (de)
BR (1) BR0112052A (de)
CA (1) CA2413049A1 (de)
CZ (1) CZ20024144A3 (de)
DE (1) DE50113727D1 (de)
PL (1) PL360365A1 (de)
WO (1) WO2002000901A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU776316B2 (en) 1999-04-15 2004-09-02 Monsanto Company Nucleic acid sequences to proteins involved in tocopherol synthesis
US6872815B1 (en) 2000-10-14 2005-03-29 Calgene Llc Nucleic acid sequences to proteins involved in tocopherol synthesis
CA2418436C (en) 2000-08-07 2017-07-11 Monsanto Technology, Llc Methyl-d-erythritol phosphate pathway genes
FR2817557B1 (fr) * 2000-12-05 2005-05-06 Aventis Cropscience Sa Nouvelles cibles pour herbicides et plantes transgeniques resistantes a ces herbicides
AU2007249135B2 (en) * 2000-12-05 2010-03-04 Bayer S.A.S. Novel targets for herbicides and transgenic plants resistant to said herbicides
JP2004533244A (ja) * 2001-05-09 2004-11-04 モンサント テクノロジー リミテッド ライアビリティー カンパニー TyrA遺伝子及びその使用法
EP1950305A1 (de) * 2001-05-09 2008-07-30 Monsanto Technology, LLC Tyr-A-Gene und ihre Verwendung
AU2002329759A1 (en) 2001-08-17 2003-03-03 Monsanto Technology Llc Methyltransferase genes and uses thereof
DE10212703A1 (de) * 2002-03-21 2003-10-02 Sungene Gmbh & Co Kgaa Erhöhung Vitamin-E-Gehalts in Organismen durch Erhöhung der 2-Methyl-6-phytythydrochinon-Methyltransferase-Aktivität
DE10231587A1 (de) * 2002-07-11 2004-01-29 Sungene Gmbh & Co. Kgaa Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
DE10232483A1 (de) * 2002-07-17 2004-02-05 Sungene Gmbh & Co. Kgaa Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
FR2844142B1 (fr) * 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
CA2735922A1 (en) * 2008-09-30 2010-04-08 Basf Plant Science Gmbh Method for producing a transgenic plant cell, a plant or a part thereof with increased resistance biotic stress
MX2011007920A (es) * 2009-01-28 2011-09-06 Basf Plant Science Co Gmbh Plantas transgenicas que tienen metabolismo de nitrogeno alterado.
CN113061619B (zh) * 2021-04-30 2022-06-24 中国烟草总公司郑州烟草研究院 与烟气苯酚释放量相关的突变基因TyrA

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956282A (en) * 1985-07-29 1990-09-11 Calgene, Inc. Mammalian peptide expression in plant cells
JPS63105688A (ja) * 1986-10-21 1988-05-10 Kyowa Hakko Kogyo Co Ltd L−フエニルアラニンの製造法
JP2578488B2 (ja) * 1988-03-04 1997-02-05 協和醗酵工業株式会社 アミノ酸の製造法
US5120837A (en) * 1989-09-20 1992-06-09 The Nutrasweet Company Dna encoding phe a feedback inhibition resistant enzyme analogues
US6087563A (en) 1996-01-29 2000-07-11 Arizona Board Of Regents On Behalf Of The University Of Arizona Cloned arabidopsis p-hydroxyphenyl pyruvic acid dioxygenase DNA
US6642434B1 (en) 1997-07-25 2003-11-04 University Of Community College System Of Nevada Transgenic plants with γ-tocopherol methyltransferase
DE19752647C1 (de) 1997-10-29 1999-06-24 Inst Pflanzengenetik & Kultur Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
EP1102852A1 (de) * 1998-08-05 2001-05-30 Sungene GmbH &amp; Co. KgAA Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen

Also Published As

Publication number Publication date
WO2002000901A1 (de) 2002-01-03
EP1294913A1 (de) 2003-03-26
DE50113727D1 (de) 2008-04-24
CN1439054A (zh) 2003-08-27
AU2001266096A1 (en) 2002-01-08
JP2004501649A (ja) 2004-01-22
BR0112052A (pt) 2004-02-10
CZ20024144A3 (cs) 2003-05-14
CA2413049A1 (en) 2002-01-03
US20060057687A1 (en) 2006-03-16
US7332649B2 (en) 2008-02-19
AR030430A1 (es) 2003-08-20
ATE389025T1 (de) 2008-03-15
PL360365A1 (en) 2004-09-06

Similar Documents

Publication Publication Date Title
EP1294913B1 (de) Veränderung des gehalts an feinchemikalien in organismen durch genetische veränderung des shikimatweges
WO1999004021A1 (de) Dna-sequenz codierend für eine hydroxyphenylpyruvatdioxygenase und deren überproduktion in pflanzen
EP1102852A1 (de) Dna-sequenz kodierend für eine 1-deoxy-d-xylulose-5-phosphat synthase und deren überproduktion in pflanzen
DE10009002A1 (de) Homogentisatphytyltransferase
EP1194577A1 (de) Indentifizierung und ueberexpression einer dna-sequenz kodierend fuer eine 2-methyl-6-phytylhydrochinon-methyltransferase in pflanzen
DE19918949A1 (de) Überexpression einer DNA-Sequenz codierend für eine 1-Desoxy-D-Xylulose-5-Phosphat Reduktoisomerase in Pflanzen
DE10046462A1 (de) Verbesserte Verfahren zur Vitamin E Biosynthese
WO1999023231A2 (de) Beeinflussung des tocopherolgehaltes in transgenen pflanzen
DE19937957A1 (de) Homogentisat-Dioxygenase
DE19835219A1 (de) DNA-Sequenz codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und deren Überproduktion in Pflanzen
EP1373533B1 (de) Erhöhung des vitamin-e-gehalts in organismen durch erhöhung der tyrosinaminotransferase-aktivität
DE10064454A1 (de) Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
WO2000044911A1 (de) Überexpression einer dna-sequenz codierend für transketolase in pflanzen
DE10030647A1 (de) Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges
EP1576164A2 (de) VERFAHREN ZUR HERSTELLUNG VON TRANSGENEN PFLANZEN MIT ERHöHT EM VITAMIN E-GEHALT DURCH VER äNDERUNG DES SERIN-ACETYLTRANSF ERASE-GEHALTS
WO2003080844A2 (de) Erhöhung des vitamin-e-gehalts in organismen durch erhöhung der 2-methyl-6-phytylhydrochinon-methyltransferase-aktivität
DE19845231A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Pphosphat Synthase, eine Hydroxyphenylpyruvat Dioxygenase und eine Geranylgeranylpyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen
DE19845224A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Geranylgeranyl-Pyrosphat Oxidoreduktase und deren Überproduktion in Pflanzen
DE19845216A1 (de) DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Hydroxyphenylpyruvat Dioxygenase und deren Überproduktion in Pflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOMMER, SUSANNE

Inventor name: GEIGER, MICHAEL

Inventor name: KUNZE, IRENE

Inventor name: BADUR, RALF

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOMMER, SUSANNE

Inventor name: KUNZE, IRENE

Inventor name: BADUR, RALF

Inventor name: GEIGER, MICHAEL

17Q First examination report despatched

Effective date: 20030930

17Q First examination report despatched

Effective date: 20030930

17Q First examination report despatched

Effective date: 20030930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV RO SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113727

Country of ref document: DE

Date of ref document: 20080424

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20080312

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

BERE Be: lapsed

Owner name: SUNGENE G.M.B.H. & CO. KGAA

Effective date: 20080630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080628

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140630

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140829

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140630

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50113727

Country of ref document: DE

Owner name: SUNGENE GMBH, DE

Free format text: FORMER OWNER: SUNGENE GMBH & CO. KGAA, 06466 GATERSLEBEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113727

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150628

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630