WO1999013202A1 - Elektromagnetisch betätigbare stellvorrichtung und verfahren zum betreiben der stellvorrichtung - Google Patents

Elektromagnetisch betätigbare stellvorrichtung und verfahren zum betreiben der stellvorrichtung Download PDF

Info

Publication number
WO1999013202A1
WO1999013202A1 PCT/EP1998/005670 EP9805670W WO9913202A1 WO 1999013202 A1 WO1999013202 A1 WO 1999013202A1 EP 9805670 W EP9805670 W EP 9805670W WO 9913202 A1 WO9913202 A1 WO 9913202A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
actuator
electromagnets
speed
displacement sensor
Prior art date
Application number
PCT/EP1998/005670
Other languages
English (en)
French (fr)
Inventor
Nils Hein
Peter Hille
Thomas Ganser
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to EP98951360A priority Critical patent/EP1012447A1/de
Priority to US09/508,423 priority patent/US6321700B1/en
Priority to JP2000510967A priority patent/JP2001515984A/ja
Publication of WO1999013202A1 publication Critical patent/WO1999013202A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a method for controlling an electromagnetically actuated actuating device, in particular a periodically operated gas exchange valve for internal combustion engines, and an actuating device for carrying out the method according to the preamble of the independent claims.
  • Electromagnetically actuated actuators in particular actuators for actuating gas exchange valves on internal combustion engines, are known in the literature.
  • US-A-5, 636,601 discloses a control method for such an actuator.
  • the actuating device consists of a plunger which acts on the actuating member and which is connected to an armature which is axially movably guided between pole faces by two electromagnets arranged at an axial distance.
  • Two counter-rotating actuating springs hold the armature in an intermediate position approximately midway between the pole faces of the electromagnets when the electromagnets are switched off.
  • the control is intended to adapt the operation of the actuating device to different operating conditions.
  • EP 0 11 038 A2 discloses a method for operating an actuating device in which a position sensor is used to determine the valve position.
  • the switch-on and switch-off duration of the closer and / or opener magnet is derived from various operating parameters, such as the crank angle, the accelerator pedal position or the air-fuel ratio.
  • the position sensor registers the position of the valve to avoid possible collisions with the piston.
  • CONFIRMATION OPIE eliminate. This can lead to a malfunction of the actuating device, in particular to increased wear of the actuating device, undesirable noise development and excessive energy consumption. A safe continuous operation of the actuating device is not possible.
  • the invention is based on the object of specifying a method for controlling an actuating device and an arrangement for carrying out the method, which enables safe continuous operation of the actuating device and reduces wear on the actuating device.
  • the current flow through the electromagnets is set so that the armature and / or the actuator moves along a predetermined position-speed characteristic.
  • the position of the actuator and / or the armature is preferably detected with a displacement sensor and / or the speed of the actuator and / or the armature is determined from the position and the position and / or speed are fed to a regulating and control unit, which is more current taking into account
  • Actuating variables of the actuating device which are made available by a data source, processes the signals into a control signal for the electromagnets and influences the current flow through the electromagnets with the control signal.
  • the determination of position and / or speed by determining the inductance and / or the inductance change of a coil, which is used as a displacement sensor element, is particularly preferred.
  • the coil is preferably part of an oscillating circuit whose frequency is a measure of the inductance of the coil.
  • the frequency is advantageously a measure of the position of the armature and / or the actuator, in particular the change in frequency is a measure of the speed of the armature and / or the actuator. It is favorable that the current flow through the electromagnets is adjusted with the method according to the invention in such a way that the armature and / or the actuator moves safely along a predetermined position-speed characteristic. In particular, the current flow through the electromagnets is adjusted so that the speed of the armature touching the pole surface is less than 3 m / sec.
  • the shape of the coil is expediently chosen so that the position-frequency relationship is at least approximately linear.
  • a preferred shape for the spool is a screw shape.
  • Another preferred shape is the cylindrical shape.
  • the electromagnetically actuated actuating device has an actuating element, in particular a periodically operated gas exchange valve for internal combustion engines, and a connecting rod which is non-positively connected to it and which has an armature fixed transversely to its longitudinal axis, which can be moved within a magnet unit between opposing pole faces of two electromagnets arranged at an axial distance is, wherein two return springs acting in the axial direction are arranged on the actuating device, so that the armature is in a de-energized state of the electromagnet in a central position between the electromagnets.
  • the actuating device is at least indirectly connected to a displacement sensor element which determines the current position of the armature and / or the actuating member.
  • the speed of the actuator and / or the armature is preferably determined from the position by means of a displacement sensor.
  • the displacement sensor is preferably assigned to the push rod of the actuating device, in connection therewith and / or part of the latter.
  • the displacement sensor element is arranged on the push rod end remote from the actuator. In a further preferred embodiment, the displacement sensor element is arranged closely adjacent to the magnet unit. In a further preferred embodiment, the displacement sensor element is arranged within a region of the electromagnet that is essentially free of magnetic fields, in particular within the electromagnet closest to the push rod end. The displacement sensor element is particularly preferably arranged between the pole faces of the electromagnets. In a preferred embodiment, the displacement sensor is a semiconductor sensor, in particular a Hall sensor. In a further preferred embodiment, the displacement sensor is a magnetic sensor. In a further preferred embodiment, the displacement sensor is an optical sensor. In a further preferred embodiment, the displacement sensor is a capacitive sensor.
  • the displacement sensor element particularly preferably has a coil, the inductance of which can be changed at least indirectly by the push rod.
  • the displacement sensor is formed by a coil into which the push rod of the actuating device can at least temporarily dip.
  • the push rod is expediently designed such that the inductance of the coil is influenced by the push rod.
  • the push rod end remote from the actuator expediently has metal and / or magnetic material and / or ferrite material.
  • the actual touchdown position and / or the touchdown time of the armature can also be exactly determined by means of the displacement sensor.
  • the actuating device can be connected to a control and regulating unit, which is provided for processing signals from the displacement sensor element and operating parameters of a machine connected to the actuating device.
  • FIG. 1 shows an actuating device according to the invention
  • FIG. 2 shows an arrangement according to the invention with a displacement sensor
  • FIG. 3 shows an actuating device according to the invention with a control and regulating unit
  • FIG. 4 shows a flowchart of an inventive control and regulating method
  • FIG. 5 shows a path-time diagram of an actuating device according to the invention.
  • the armature touchdown speed is too high, the armature bounces off the pole face and the armature cannot be held by the electromagnet. In this case, a gas exchange valve cannot close and / or open.
  • the force when the armature impacts leads to increased wear on the actuator of the actuator. If the touchdown speed is high but just low enough to hold the armature against the spring force due to the magnetic attraction at the pole surface, the large impulse of the armature at the point of impact also leads to increased wear and material fatigue of the actuator and armature.
  • a speed of 0 m / s is aimed at when the armature is placed on the pole face; the speed of the armature when it is placed on a pole face is preferably less than 3 m / s.
  • Any gas exchange valve can thus safely close and open, the material of the actuating device is also protected against increased wear, undesirable noise development during the movement of the armature and / or the actuating member is avoided, and energy consumption is also advantageously reduced.
  • the adjusting device is at least indirectly connected to a displacement sensor with which the position and / or the speed of the armature can be determined. If the position of the armature is known, the position of the actuator is preferably known at the same time. A control and regulating unit picks up these signals from the displacement sensor and regulates the current flow through the electromagnets in such a way that the touchdown speed falls below a predetermined limit at the touchdown point.
  • the adjusting device is shown by way of example using a gas exchange valve, in particular for an internal combustion engine, but the invention is not restricted to this application.
  • the method according to the invention is suitable for actuating devices which are operated by means of electromagnets.
  • the adjusting device 1 consists of an actuator 2, in particular a valve, with a push rod 3 and an anchor 4 arranged transversely to the push rod.
  • the push rod 3 is non-positively connected to the valve 2.
  • the push rod 3 projects into a magnet unit 5.
  • two electromagnets 6 and 7 are arranged axially to the push rod 3, the pole faces 6.1 and 7.1 of which lie opposite one another.
  • the armature 4 is movable between the lower and the upper electromagnets 6 and 7 in the axial direction.
  • Two counter-acting return springs 8.1 and 8.2 which are arranged between the valve 2 and the magnet unit 5 and which surround the lower region of the push rod 3 of the adjusting unit 1, cause the armature 4 in the de-energized state of the electromagnets 6 and 7 in approximately one The middle position lingers between the pole faces 6.1 and 7.1.
  • the springs can also be arranged on both sides of the armature 4 within the magnet unit 5. Since electrical current flows alternately through the electromagnets 6, 7, the armature 4 is alternately attracted to one of the pole faces 6.1, 7.1 of the electromagnets 6, 7 which are energized in each case. The armature moves back and forth periodically, thereby moving the actuator 2.
  • valve 2 If the electromagnet 7 is switched on, the armature 4 comes to rest against its pole face 7.1, the spring element 8.2 being compressed and the spring element 8.1 being substantially relieved. In this position, valve 2 is open. To close the valve 2, the electromagnet 7 is switched off and the electromagnet 6 is switched on. The armature 4 is no longer held on the pole face 7.1, but is pulled in the direction of the pole face 6.1 by the spring force of the spring element 8.2 and the attraction force of the electromagnet 6. The armature / spring system swings beyond the central position to the pole face 6.1 and is held there by the energized electromagnet 6 on its pole face 6.1. In this position, the spring element 8.1 is compressed and the spring element 8.2 is substantially relieved. The valve 2 is closed.
  • a displacement sensor element 9 is arranged in the upper region of the push rod 3 of the actuating device 1.
  • the displacement sensor element 9 has one displacement sensor or a plurality of displacement sensors.
  • the displacement sensors can be the same or different. Only one displacement sensor 9 is described below.
  • the displacement sensor 9 preferably registers the position of the push rod 3 and thus at the same time the position of the armature 4 and the actuator 2.
  • the position signal of the displacement sensor 9 is preferably processed in a unit 10, in particular a speed signal v is determined from position signals s, and from there it is input into a control and regulating unit 11. It is also possible to process the sensor signals directly in the control and regulating unit 11; In this embodiment, a separate processing unit 10 is not necessary.
  • the speed of the armature 4 be ⁇ leaves from the sensor signal to agree on a simple manner by time-discrete preferably, especially in short time intervals vergli- chen with the total duration of the anchor from one pole face to another pole face 6.1, 7.1 takes the position Armature 4 is determined, in particular the distance traveled by the armature 4 and / or the actuator 2 is also determined. A time difference of a few tenths or hundredths of a millisecond between the measuring points is expedient.
  • the control and regulating unit 1 1 evaluates and / or processes the position signal of the actuating device 1 and leads to a targeted influencing of the output stages 12 and 13 for the two electromagnets 6 and 7.
  • the control and regulating unit can expediently still be via a line 14 to a central control unit of the device, in particular the internal combustion engine, which is equipped with the actuating device 1.
  • the central control unit is not shown separately.
  • Such a possible control unit can contain manipulated variables, in particular operating parameters such as opening and / or closing angle, opening and / or closing times, speed and / or load of an internal combustion engine, temperature values of coolants and lubricants and / or temperature values of semiconductor switches.
  • manipulated variables are expediently made available to the control and regulating unit 11 and, together with the position value and / or the speed of the actuating device 1 derived therefrom, into one Control signal for the electromagnets 6, 7 of the actuating device 1 processed.
  • the control signal is such that the speed at which the armature 4 touches the pole faces 6.1, 7.1 is minimal, preferably less than 3 m / s.
  • the displacement sensor 9 is in the end positions of the armature 4, i.e. calibrated in the mounting positions of the armature 4 on the respective pole faces 6.1 and 7.1 and / or in the rest position of the armature 4 by means of the control and regulating unit 11.
  • the displacement sensor 9 is preferably a semiconductor sensor, in particular a Hall sensor, a magnetic sensor, an optical sensor or a capacitive sensor. All types of displacement sensors which enable a clock frequency, preferably in the range from tenths to hundredths ms, for reading out the positions of the armature 4 are favorable.
  • the displacement sensor 9 is formed by a coil into which the push rod 3 of the actuating device 1 can at least partially be immersed.
  • the push rod 3 is expediently designed such that the inductance of the coil is changed.
  • the inductance of the coil is preferably measured using a frequency measurement, in particular in an oscillating circuit.
  • the measured frequency is a measure of the position and the change in frequency is a measure of the speed of the armature 4.
  • the design of the coil 9 is preferably selected so that the relationship between the path covered by the armature 4 and the frequency of the resonant circuit containing the coil 9 is as linear as possible or at least approximately linear. This makes the evaluation of the position signals and the regulation and / or control particularly simple and reliable. Since the speed of the armature 4 can also be determined from the position, the relationship between the speed and the frequency change is at least approximately linear.
  • the moving parts of the adjusting device 1, in particular the push rod 3, are expediently made of materials, at least in the areas that can be detected by the measuring coil, that can change the inductance of the coil 9.
  • the areas detectable by the measuring coil 9 are preferably electrically conductive, particularly preferably metallic.
  • the push rod 3 itself is preferably metallic, at least in some areas. It is advantageous to operate the measuring coil 9 with an alternating current of a sufficiently high frequency, in particular> 1 MHz, so that the inductance of the measuring coil 9, which decreases with increasing eddy currents in the connecting rod 3, is detected.
  • the phase-locked loop preferably contains a voltage-controlled oscillator, the control voltage of which serves as the output signal,
  • the voltage of the output signal of the frequency measurement in FIG. 10 is a measure of the position of the armature 4 in the adjusting device 1.
  • FIG. 2 shows a section through a particularly preferred arrangement of an actuating device with a displacement sensor 9 according to the invention.
  • a gas exchange valve of an internal combustion engine is shown here as actuator 2.
  • the measuring coil 9 is arranged in the yoke 7.2 of the upper electromagnet 7, where it is essentially unaffected by any energization of the electromagnet 7 and thus enables a largely undisturbed measurement of the inductance change in the coil 9 caused by the periodic immersion of the push rod 3 in the coil 9 .
  • the push rod end is preferably metallic.
  • the push rod end has a magnetic material.
  • the push rod end has ferrite.
  • the push rod 3 can in particular itself be formed from a material that changes the inductance of the coil 9. Another preferred arrangement is to provide means on a push rod 3 which influence the inductance of the coil 9.
  • a favorable embodiment is to attach a push rod made of a different material to an actuator 2 made of ceramic.
  • the magnet unit 5 is surrounded by a sleeve 15.
  • the electromagnets 6, 7 consist of the pole faces 6.1, 7.1, the windings 6.3, 7.3 and their associated yoke 6.2, 7.2.
  • the push rod 3 of the actuating device 1 is mounted with slide bearings 16.1, 16.2 in the electromagnets 7 and 6 and the valve 2 with a slide bearing 16.3 in the cylinder head 18.
  • the sleeve 15 is connected to the cylinder head 18.
  • the return springs 8.1 and 8.2 are arranged inside the sleeve 15 and below the magnet unit 5 around the push rod 3 and are supported on plate-shaped shoulders 17.1 and 17.2 between the two springs 8.1, 8.2.
  • the approach 17.1 is connected to the push rod 3, the approach 17.2 is connected to the cylinder head 18.
  • the advantage of this arrangement is that with respect to the coil 9 induktelless Snde We ⁇ effect of the push rod end 3 especially easy by the measuring coil 9 must be recognized and that the entire assembly is compact and insensitive to interference.
  • the installation location of the displacement sensor 9 is also suitable for other sensor types, in particular for semiconductor sensor types.
  • a controller with an attached control is used to operate the actuating device 1.
  • the movement of the adjusting device 1 is constantly compared with the setpoint characteristics by the control and is not left to its own dynamics. It is thereby achieved that smaller deviations from target specifications due to disturbance variables occurring during the operation of the adjusting device 1 can be reliably compensated for by the control. Since only small deviations have to be corrected by the control, the control is fast enough.
  • control and regulation unit 1 1 is outlined according to the invention.
  • the control and regulating unit 1 1 consists of a control unit 1 1.1, a multiplexer unit 1 1.2, a data memory 1 1.3 and a pulse width modulation unit 1 1.4.
  • a measuring coil is used as the position sensor 9.
  • the position of the armature 4 is determined indirectly via the immersion depth of the push rod 3 in the measuring coil 4 by registering the inductance of the coil 9.
  • the coil 9 forms, together with a capacitance in element 10.1, an oscillator, in particular with a customary damping.
  • the oscillation frequency of the oscillator is converted into a voltage or a current, in particular by means of a phase locked loop.
  • Changes the immersion depth of the push rod end in the coil 9, the frequency of the oscillator is detuned, which too a change in the output of element 10.2 leads. From two closely adjacent position measurements of the armature 4, its speed v can be determined in a simple manner by time differentiation, in particular by time-discrete differentiation.
  • the output signal of element 10.2 is fed into multiplexer unit 1 1.2 of control and regulating unit 1 1.
  • the control unit 1 1.1 retrieves the data from the multiplexer unit 1 1.2.
  • the control unit 1 1.1 additionally receives data from a central control unit (not shown) which reaches the control and regulating unit 11 via the data line 14. These data preferably contain details of the operating state of the internal combustion engine and the desired control angles for the gas exchange valves.
  • the control unit 1 1.1 links the position and / or speed data and / or current data from the multiplexer unit 1 1.2 with the operating parameters and the characteristic data of the data memory 1 1.3 and forms a control signal for the pulse width modulation unit 1 1.4. This controls the output stages 12 and 13, which measure the current flowing through the electromagnets 6 and 7 and pass them on to the multiplexer unit 1 1.2.
  • the data line 14 can advantageously be used not only to transmit operating parameters from the central control unit to the control and regulating unit 11, but also to transmit diagnostic data back to the central control device.
  • These diagnostic data preferably contain information about the availability of the actuating device 1 or all other data known to the control and regulating unit 11.
  • the regulating and control unit 1 1 can thus be used expediently to support any existing control devices.
  • the diagnostic data preferably contain information about any malfunctions of the electromagnetic actuating device 1 and / or status information that can be processed by the central control unit, if any. This makes it possible, e.g. switch off defective actuating devices and / or store error messages in a memory and / or inform the user of the internal combustion engine of the malfunction.
  • the control and regulating method of the actuating device 1 according to the invention is based on the principle of the trajectory control.
  • the aim is to control the actuating device 1 so that the movement of the armature 4 follows a predetermined travel-time characteristic. That is also the speed-time characteristic of the armature 4 and thus the actuator 2 is determined.
  • stored in a data memory 1 1.3 a characteristic or a family of characteristic curves, the position s of the armature 4 linked v with its desired speed, in particular at different operating conditions of the internal combustion engine or the influence of the adjusting 5 • apparatus 1 component.
  • a target characteristic curve in the s-v plane supplies the speed soil value v for every possible actual value of the anchor position s.
  • the deviation between the actual value and the target value of the speed v and the actual value of the position s of the armature 4 become a controller
  • the precontrol in particular the switching on and off times of the energization of the electromagnets 6, 7, can advantageously remain unchanged.
  • frequent, similar control deviations are registered by the control and regulating unit 11 and the control is adapted by means of correction maps in the data memory 11.3. This makes it possible to compensate for long-term changes in the operating conditions, especially in the event of aging and / or wear of the components involved.
  • the anchor 4 is on a pole face 6.1, 7.1 of one of the electromagnets 6, 7, the control and regulating unit 11 regulates the current through the respective electromagnet 6, 7 to a strength which is sufficient to hold the armature 4 permanently.
  • the control unit 1 1.1 calibrates the displacement sensor 9 in the two end positions of the armature 4 on the pole faces 6.1, 7.1, since the position of the armature 4 is well known and reproducibly adjustable here. This makes it simple and reliable succeed, eliminate errors due to temperature influences and / or aging to ".
  • the switching on and off times of the electromagnets 6, 7, target characteristics of the speed-position profile of the armature 4 and target characteristics of the current-position profile are stored, in particular in digital form. It is expedient to store different switching times and / or target characteristics for different operating conditions, in particular load, speed and / or temperature ranges.
  • the advantage is that the actuator can be optimally controlled under different operating conditions.
  • a particular advantage of the invention is that the armature / spring system can swing out of the rest position through its own start mode by the control and regulating unit 1 1. Since, according to the invention, the current position of the armature 4 is known, the necessary energy can be injected into the system at the optimal times. The armature 4 can thus be brought into one of the two end positions on the pole faces 6.1, 7.1 of the two electromagnets 6, 7 with high reliability and low energy expenditure.
  • FIG. 4 shows a flow diagram of the preferred control and regulating method for a gas exchange valve of an internal combustion engine.
  • operating data of the component supplied by the actuating device 1, in particular the opening and closing angle of the valve 2 are read into the control and regulating unit 11 via the data line 14. This is done from a possible data memory or from a possible central control unit or another available data source.
  • information about anticipated counterforces, in particular the exhaust gas back pressure is preferably transmitted.
  • a characteristic curve is selected from the data memory 1 1.3 of the control and regulating unit 11, which enables the armature 4 to move with the best possible energy consumption and minimal wear.
  • the switch-on and switch-off times of the electromagnets 6, 7 are determined from these data.
  • the flow diagram arrives at a loop which ends when the armature 4 ′′ reaches the pole face 6.1 or 7.1 of the attracting electromagnet 6 or 7.
  • the position s, the speed v and the current i through the magnet are measured repeatedly.
  • the set course of the armature speed v -. »(S) and the set course of the current (s) are read out from the selected characteristic curves in the data memory 1 1.3.
  • the target and actual data are compared and the energy in the electromagnet 6, 7 is then reduced, increased or maintained.
  • the loop is then repeated.
  • the sequence is continued in a current control loop.
  • the current through the holding electromagnet 6 or 7 is measured, compared with a desired value and increased or decreased or held in accordance with the control specifications.
  • the pulse width can be adapted by means of pulse width modulation.
  • the placement position is preferably calibrated in the placement position of the armature 4.
  • the vibrating armature / spring system ideally exhibits a sinusoidal curve of position and speed of the armature over time with neglected friction and magnet that can be switched quickly. Since the friction is not negligible in real operation, the control and regulating unit 11 compensates for this by metering the energy to the electromagnets 6, 7 at the optimum times in each case. This enables the anchor / spring system to closely approximate the ideal course of position and speed over time.

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung einer elektromagnetisch betätigbaren Stellvorrichtung, insbesondere ein periodisch betriebenes Gaswechselventil für Brennkraftmaschinen, sowie eine Stellvorrichtung zur Durchführung des Verfahrens, wobei die Stellvorrichtung mit einem Wegsensor verbunden ist und die Geschwindigkeit des stellorgans gesteuert wird.

Description

Elektromagnetisch betätigbare Stellvorrichtung und Verfahren zum Betreiben der Stellvorrichtung -
Beschreibung ~~
Die Erfindung betrifft ein Verfahren zur Steuerung einer elektromagnetisch betätigbaren Stellvorrichtung, insbesondere ein periodisch betriebenes Gaswechselventil für Brennkraft- maschinen, sowie eine Stellvorrichtung zur Durchführung des Verfahrens gemäß dem Oberbegriff der unabhängigen Ansprüche.
Elektromagnetisch betätigbare Stellvorrichtungen, insbesondere Stellvorrichtungen zur Betätigung von Gaswechselventilen an Brennkraftmaschinen, sind in der Literatur bekannt. In der US-A-5, 636,601 ist ein Steuerungsverfahren für eine derartige Stellvorrichtung offenbart. Die Stellvorrichtung besteht aus einem Stößel, der auf das Stellorgan einwirkt und der mit einem Anker verbunden ist, der zwischen Polflächen von zwei in axialem Abstand angeordneten Elektromagneten axial bewegbar geführt ist. Zwei gegensinnig arbeitende Stellfedern halten den Anker bei stromlos geschalteten Elektromagneten in einer Zwischenstellung in etwa in der Mitte zwischen den Polflächen der Elektromagnete. Mit der Steuerung soll bewirkt werden, den Betrieb der Stellvorrichtung an unterschiedliche Betriebsbedingungen anzupassen.
In der EP 0 11 038 A2, von der die Erfindung ausgeht, ist ein Verfahren zum Betreiben einer Stellvorrichtung offenbart, bei der ein Positionssensor zur Bestimmung der Ventilposition eingesetzt wird. Die Ein- der Ausschaltdauer des Schließer- und/oder Öffnermagneten wird aus verschiedenen Betriebsparametern abgeleitet, wie etwa dem Stellwinkel der Kurbelwelle, der Fahrpedal-Stellung oder dem Luft-Brennstoff-Verhältnis. Der Positionssensor registriert die Stellung des Ventils, um etwaige Koliisionen mit dem Kolben zu vermeiden.
Ungelöst ist jedoch das Problem, den Einfluß betriebsbedingter Störgrößen, insbesondere Temperaturschwankungen, Viskositätsänderungen des Öls bei Gaswechselventilen, Verschleiß der Stellvorrichtung oder Verschmutzung der Stellvorrichtung, in der Steuerung zu
BESTÄTIGUMGS OPIE eliminieren. Dies kann zu einer Fehlfunktion der Stellvorrichtung führen, insbesondere zu erhöhtem Verschleiß der Stellvorrichtung, unerwünschter Geräuschentwicklung und überhöhtem Energieverbrauch. Ein sicherer Dauerbetrieb der Stellvorrichtung ist damit nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Steuern einer Stellvorrichtung sowie eine Anordnung zur Durchführung des Verfahrens anzugeben, womit ein sicherer Dauerbetrieb der Stellvorrichtung ermöglicht wird und der Verschleiß der Stellvorrichtung verringert ist.
Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Weiterführende und vorteilhafte Ausgestaltungen sind den weiteren Ansprüchen und der Beschreibung zu entnehmen.
In einem erfindungsgemäßen Verfahren wird der Stromfluß durch die Elektromagnete so eingestellt, daß der Anker und/oder das Stellorgan sich entlang einer vorgegebenen Positi- ons-Geschwindigkeitskennlinie bewegt.
Bevorzugt wird die Position des Stellorgans und/oder des Ankers mit einem Wegsensor erfaßt und/oder aus der Position die Geschwindigkeit des Stellorgans und/oder des Ankers bestimmt wird und Position und/oder Geschwindigkeit einer Regel- und Steuereinheit zugeführt werden, welche unter Berücksichtigung aktueller Stellgrößen der Stellvorrichtung, die von einer Datenquelle zur Verfügung gestellt werden, die Signale zu einem Ansteuersignal für die Elektromagnete verarbeitet und mit dem Ansteuersignal der Stromfluß durch die Elektromagneten beeinflußt wird.
Besonders bevorzugt ist die Bestimmung von Position und/oder Geschwindigkeit durch Bestimmung der Induktivität und/oder der Induktivitätsänderung einer Spule, die als Wegsensorelement eingesetzt wird. Bevorzugt ist die Spule Bestandteil eines Schwingkreises, des- sen Frequenz ein Maß für die Induktivität der Spule ist. Günstigerweise ist die Frequenz ein Maß für die Position des Ankers und/oder des Stellorgans, insbesondere ist die Frequenzänderung ein Maß für die Geschwindigkeit des Ankers und/oder der Stellvorrichtung. Günstig ist, daß mit dem erfindungsgemäßen Verfahren der Stromfluß durch die Elektromagnete so eingestellt wird, daß der Anker und/oder das Stellorgan sich sicher entlang einer vorgegebenen Positions-Geschwindigkeitskennlinie bewegt. Insbesondere wird der Stromfluß durch die Elektromagnete so eingestellt, daß die Aufsetzgeschwindigkeit des Ankers auf der Polfläche geringer als 3 m/sec ist.
Zweckmäßigerweise wird die Form der Spule so gewählt, daß der Positions-Frequenz- Zusammenhang zumindest näherungsweise linear ist. Eine bevorzugte Form für die Spule ist eine Schneckenform. Eine weitere bevorzugte Form ist die Zylinderform.
Die elektromagnetisch betätigbare Stellvorrichtung weist ein Stellorgan auf, insbesondere ein periodisch betriebenes Gaswechselventil für Brennkraftmaschinen, und einer mit diesem kraftschlüssig verbundenen Schubstange, die einen quer zu deren Längsachse befestigten Anker aufweist, welcher innerhalb einer Magneteinheit zwischen sich gegenüberliegenden Polflächen zweier in axialem Abstand angeordneter Elektromagnete bewegbar ist, wobei zwei in axialer Richtung wirkende Rückstellfedern an der Stellvorrichtung angeordnet sind, so daß der Anker in stromlosem Zustand der Elektromagnete in einer Mittellage zwischen den Elektromagneten ist. Erfindungsgemäß ist die Stellvorrichtung zumindest mittelbar mit einem Wegsensorelement verbunden, das die aktuelle Position des Ankers und/oder des Stellorgans bestimmt.
Vorzugsweise wird aus der Position die Geschwindigkeit des Stellorgans und/oder des Ankers mittels eines Wegsensors bestimmt. Vorzugsweise ist der Wegsensor der Schubstange der Stellvorrichtung zugeordnet, mit diesem in Verbindung und/oder Bestandteil von die- sem.
In einer bevorzugten Ausführung ist das Wegsensorelement an dem stellorganfemen Schubstangenende angeordnet. In einer weiteren bevorzugten Ausführung ist das Wegsensorelement eng benachbart zur Magneteinheit angeordnet. In einer weiteren bevorzugten Ausführung ist das Wegsensorelement innerhalb eines im wesentlichen magnetfeldfreien Bereichs des Elektromagneten, insbesondere innerhalb des dem Schubstangenende nächsten Elektromagneten, angeordnet. Besonders bevorzugt ist das Wegsensorelement zwischen den Polfächen der Elektromagnete angeordnet. In einer bevorzugten Ausführung ist der Wegsensor ein Halbleitersensor, insbesondere ein Hallsensor. In einer weiteren bevorzugten Ausführung ist der Wegsensor ein magnetischer Sensor. In einer weiteren bevorzugten Ausführung ist der Wegsensor ein optischer Sensor. In einer weiteren bevorzugten Ausführung ist der Wegsensor ein kapazitiver Sensor.
Besonders bevorzugt weist das Wegsensorelement eine Spule auf, deren Induktivität durch die Schubstange zumindest mittelbar veränderbar ist. In einer besonders bevorzugten Ausführung ist der Wegsensor durch eine Spule gebildet, in die der Schubstange der Stellvorrichtung zumindest zeitweise eintauchen kann. Zweckmäßigerweise ist die Schubstange so ausgebildet, daß durch die Schubstange die Induktivität der Spule beeinflußt wird.
Zweckmäßigerweise weist das stellorganferne Schubstangenende Metall und/oder magnetisches Material und/oder Ferritmaterial auf.
Besonders vorteilhaft ist, daß mittels des Wegsensors zusätzlich die tatsächliche Aufsetzposition und/oder der Aufsetzzeitpunkt des Ankers genau bestimmbar ist.
Die Stellvorrichtung kann mit einer Steuer- und Regeleinheit verbunden sein, welche zur Verarbeitung von Signalen des Wegsensorelements und von Betriebsparametern einer mit der Stellvorrichtung in Verbindung stehenden Maschine vorgesehen ist.
Im folgenden sind die Merkmale, soweit sie für die Erfindung wesentlich sind, eingehend erläutert und anhand von Figuren näher beschrieben. Es zeigen Fig. 1 eine erfindungsgemäße Stellvorrichtung, Fig. 2 eine erfindungsgemäße Anordnung mit Wegsensor,
Fig. 3 eine erfindungsgemäße Stellvorrichtung mit Steuer- und Regeleinheit, Fig. 4 ein Flußdiagramm eines erfindungsgemäßen Steuer- und Regelverfahrens, Fig. 5 ein Weg-Zeitdiagramm einer erfindungsgemäßen Stellvorrichtung.
Entscheidend für einen sicheren Dauerbetrieb und die Funktion einer Stellvorrichtung, bei der sich ein mit dem Stellorgan verbundener Anker zwischen den Polflächen zweier gegenüberliegender Elektromagnete bewegt, ist die Aufsetzgeschwindigkeit des Ankers auf die Polflächen des jeweiligen Elektromagneten. Der Anker ist dabei insbesondere an einer kraftschlüssig mit dem Stellorgan verbundenen Schubstange angeordnet.
Ist die Aufsetzgeschwindigkeit des Ankers zu hoch, so prallt der Anker von der Polfläche ab, und der Anker kann nicht vom Elektromagneten gehalten werden. Ein Gaswechselventil kann in diesem Fall nicht schließen und/oder öffnen. Die Wucht beim Aufprallen des Ankers führt gleichzeitig zu einem erhöhten Verschleiß des Stellorgans der Stellvorrichtung. Ist die Aufsetzgeschwindigkeit hoch, jedoch gerade noch niedrig genug, um den Anker gegen die Federkraft durch die magnetische Anziehung noch an der Polfläche zu halten, führt der gro- ße Impuls des Ankers im Auftreffpunkt ebenfalls zu erhöhtem Verschleiß und Materialermüdung von Stellorgan und Anker.
Ist die Aufsetzgeschwindigkeit des Ankers vor der Polfläche zu gering, so kehrt der Anker seine Bewegungsrichtung um, ohne die Polfläche zu berühren, da er von den Stellfedern in eine Mittellage zwischen den Poiflächen zurückgezogen wird. Das Magnetfeld des Elektromagneten ist zu schwach, um die Federkraft der Rückstellfedern in diesem Fall zu übertreffen.
Wünschenswert ist es, eine möglichst geringe Aufsetzgeschwindigkeit des Ankers zu errei- chen. Im Idealfall ist eine Geschwindigkeit von 0 m/s beim Aufsetzen des Ankers auf die Polfläche angestrebt, vorzugsweise ist die Geschwindigkeit des Ankers beim Aufsetzen auf eine Polfläche geringer als 3 m/s. Damit kann ein etwaiges Gaswechselventil sicher schließen und öffnen, außerdem wird das Material der Stellvorrichtung vor erhöhtem Verschleiß geschützt, eine unerwünschte Geräuschentwicklung bei der Bewegung des Ankers und/oder des Stellorgans ist vermieden, ebenso ist der Energieverbrauch vorteilhaft vermindert.
Erfindungsgemäß ist die Stellvorrichtung zumindest mittelbar mit einem Wegsensor verbunden, mit dem sich die Position und/oder die Geschwindigkeit des Ankers bestimmen läßt. Ist die Position des Ankers bekannt, ist vorzugsweise gleichzeitig die Position des Stellorgans bekannt. Eine Steuer- und Regeleinheit nimmt diese Signale des Wegsensors auf und regelt den Stromfluß durch die Elektromagnete so, daß die Aufsetzgeschwindigkeit im Aufsetzpunkt eine vorgegebene Grenze unterschreitet. Die Stellvorrichtung ist beispielhaft anhand eines Gaswechselventils insbesondere für eine Brennkraftmaschine dargestellt, die Erfindung ist jedoch nicht auf diese Anwendung beschränkt. Insbesondere ist das erfindungsgemäße Verfahren für Stellvorrichtungen geeignet, die mittels Elektromagneten betrieben werden.
Ein erfindungsgemäße Anordnung ist in Fig. 1 dargestellt. Die Stellvorrichtung 1 besteht aus einem Stellorgan 2, insbesondere einem Ventil, mit einer Schubstange 3 und einem quer zur Schubstange angeordneten Anker 4. Die Schubstange 3 ist mit dem Ventil 2 kraftschlüssig verbunden. Die Schubstange 3 ragt in eine Magneteinheit 5 hinein. In der Magneteinheit 5 sind zwei Elektromagnete 6 und 7 axial zur Schubstange 3 angeordnet, deren Polflächen 6.1 und 7.1 sich gegenüberliegen. Der Anker 4 ist zwischen dem unteren und dem oberen Elektromagneten 6 und 7 in axialer Richtung bewegbar. Zwei gegensinnig wirkende Rückstellfedern 8.1 und 8.2, welche zwischen dem Ventil 2 und der Magneteinheit 5 angeordnet sind und die den unteren Bereich der Schubstange 3 der Verstelleinheit 1 umgeben, bewirken, daß der Anker 4 im stromlosen Zustand der Elektromagnete 6 und 7 in etwa in einer Mittelstellung zwischen den Polflächen 6.1 und 7.1 verweilt. Die Federn können auch beiderseits des Ankers 4 innerhalb der Magneteinheit 5 angeordnet sein. Indem die Elektromagnete 6, 7 abwechselnd von elektrischem Strom durchflössen werden, wird der Anker 4 abwech- selnd von einer der Polfläche 6.1, 7.1 des jeweils bestromten Elektromagneten 6, 7 angezogen. Der Anker bewegt sich periodisch hin und her und bewegt dadurch das Stellorgan 2.
Wird der Elektromagnet 7 eingeschaltet, kommt der Anker 4 an dessen Polfläche 7.1 zur Anlage, wobei das Federelement 8.2 zusammengedrückt und das Federelement 8.1 im we- sentlichen entlastet wird. In dieser Stellung ist das Ventil 2 geöffnet. Zum Schließen des Ventils 2 wird der Elektromagnet 7 abgeschaltet und der Elektromagnet 6 eingeschaltet. Der Anker 4 wird nicht mehr an der Polfläche 7.1 gehalten, sondern von der Federkraft des Federelements 8.2 und die Anzugskraft des Elektromagneten 6 in die Richtung der Polfläche 6.1 gezogen. Dabei schwingt das System Anker/Feder über die Mittellage hinaus bis zur Polfläche 6.1 und wird dort vom bestromten Elektromagneten 6 an seiner Polfläche 6.1 gehalten. In dieser Stellung ist das Federelement 8.1 zusammengedrückt und das Federelement 8.2 im wesentlichen entlastet. Das Ventil 2 ist geschlossen. Ein Wegsensorelement 9 ist im oberen Bereich der Schubstanges 3 der Stelleinrichtung 1 angeordnet. Das Wegsensorelement 9 weist einen Wegsensor oder mehrere Wegsensoren auf. Die Wegsensoren können gleich oder verschiedenartig sein. Im folgenden ist nur ein Wegsensor 9 beschrieben. Der Wegsensor 9 registriert vorzugsweise die Position der Schubstange 3 und damit gleichzeitig die Position des Ankers 4 und des Stellorgans 2.
Das Positionssignal des Wegsensors 9 wird vorzugsweise in einer Einheit 10 aufbereitet, insbesondere wird aus Positionssignalen s ein Geschwindigkeitssignal v bestimmt, und von dort in eine Steuer- und Regeleinheit 1 1 eingegeben werden. Es ist auch möglich, die Aufbe- reitung der Sensorsignale direkt in der Steuer- und Regeleinheit 1 1 durchzuführen; in dieser Ausführung ist eine gesonderte Aufbereitungseinheit 10 nicht notwendig.
Aus dem Sensorsignal läßt sich auf einfache Weise die Geschwindigkeit des Ankers 4 be¬ stimmen, indem vorzugsweise zeitdiskret, insbesondere in kurzem zeitlichen Abstand vergli- chen mit der Gesamtdauer, die der Anker von einer Polfläche zur anderen Polfläche 6.1, 7.1 braucht, die Position des Ankers 4 bestimmt wird, insbesondere ist damit auch der zurückgelegte Weg des Ankers 4 und/oder des Stellorgans 2 bestimmt. Zweckmäßig ist eine Zeitdifferenz von wenigen zehntel oder hundertstel Millisekunden zwischen den Meßpunkten.
In der Steuer- und Regeleinheit 1 1 erfolgt die Auswertung und/oder Weiterverarbeitung des Positionssignals der Stellvorrichtung 1 und führt zu einer gezielten Beeinflussung der Endstufen 12 und 13 für die beiden Elektromagnete 6 und 7. Zweckmäßigerweise kann die Steuer- und Regeleinheit noch über eine Leitung 14 mit einer zentralen Steuerungseinheit der Einrichtung, insbesondere der Brennkraftmaschine, verbunden sein, welche mit der Stellvorrichtung 1 ausgestattet ist. Die zentrale Steuerungseinheit ist nicht gesondert dargestellt.
Eine solche etwaige Steuerungseinheit kann Stellgrößen enthalten, insbesondere Betriebsparameter wie Öffnungs- und/oder Schließwinkel, Öffnungs- und/oder Schließzeiten, Dreh- zahl und/oder Last einer Brennkraftmaschine, Temperaturwerte von Kühl- und Schmiermitteln und/oder Temperaturwerte von Halbleiterschaltern. Diese Stellgrößen werden zweckmäßigerweise der Steuer- und Regeleinheit 1 1 zur Verfügung gestellt und mit dem Positionswert und/oder der daraus abgeleiteten Geschwindigkeit der Stellvorrichtung 1 zu einem Ansteuersignal für die Elektromagnete 6, 7 der Stellvorrichtung 1 verarbeitet. Das Ansteuersignal ist so beschaffen, daß die Aufsetzgeschwindigkeit des Ankers 4 auf den Polflächen 6.1 , 7.1 minimal ist, vorzugsweise geringer als 3 m/s.
Vorzugsweise wird der Wegsensor 9 in den Endlagen des Ankers 4, d.h. in den Aufsetzpositionen des Ankers 4 auf den jeweiligen Polflächen 6.1 und 7.1 und/oder in der Ruhelage des Ankers 4 mittels der Steuer- und Regeleinheit 1 1 kalibriert.
Vorzugsweise ist der Wegsensor 9 ein Halbleitersensor, insbesondere ein Hallsensor, ein magnetischer Sensor, ein optischer Sensor oder ein kapazitiver Sensor. Günstig sind alle Arten von Wegsensoren, die eine Taktfrequenz vorzugsweise im Bereich von zehntel bis hundertstel ms zum Auslesen der Positionen des Ankers 4 ermöglichen.
In einer besonders bevorzugten Ausführung ist der Wegsensor 9 durch eine Spule gebildet, in die die Schubstange 3 der Stellvorrichtung 1 zumindest teilweise eintauchen kann. Zweckmäßigerweise ist die Schubstange 3 so ausgebildet, daß dabei die Induktivität der Spule verändert wird. Die Induktivität der Spule wird vorzugsweise mit einer Frequenzmessung, insbesondere in einem Schwingkreis, gemessen. Die gemessene Frequenz ist ein Maß für die Position und die Frequenzänderung ein Maß für die Geschwindigkeit des Ankers 4.
Die Bauform der Spule 9 wird vorzugsweise so gewählt, daß der Zusammenhang zwischen dem vom Anker 4 zurückgelegten Weg und der Frequenz des die Spule 9 enthaltenden Schwingkreises möglichst linear oder zumindest annähernd linear ist. Damit wird die Auswertung der Positionssignale und die Regelung und/oder Steuerung besonders einfach und zuverlässig. Da aus der Position auch die Geschwindigkeit des Ankers 4 bestimmbar ist, ist damit auch der Zusammenhang zwischen Geschwindigkeits und Frequenzänderung zumindest annähernd linear.
Zweckmäßigerweise sind die bewegten Teile der Stellvorrichtung 1, insbesondere die Schubstange 3 zumindest in den Bereichen, die von der Meßspule erfaßt werden können, aus Materialien gefertigt, welche die Induktivität der Spule 9 verändern können. Bevorzugt sind die von der Meßspule 9 erfaßbaren Bereiche elektrisch leitfähig, besonders bevorzugt metallisch. Bevorzugt ist die Schubstange 3 selbst zumindest bereichsweise metallisch. Vorteilhaft ist, die Meßspule 9 mit einem Wechselstrom ausreichend hoher Frequenz zu betreiben, insbesondere > 1 MHz, so daß die mit zunehmenden Wirbelströmen in der Schubstange 3 abnehmende Induktivität der Meßspule 9 erfaßt wird.
Besonders vorteilhaft ist es, die Induktivität der Spule 9 zu bestimmen, indem die Induktivität in einen Schwingkreis integriert ist, wo sie zusammen mit einer "Kapazität und einer üblichen aktiven Entdämpfung einen Oszillator bildet, dessen Schwingfrequenz von einer Pha- senregelschleife erfaßbar ist. Dies ist vorzugsweise in Element 10 enthalten. Die Phasenre- gelschleife enthält vorzugsweise einen spannungsgesteuerten Oszillator, dessen Steuer- Spannung als Ausgangssignal dient. Die Spannung des Ausgangssignals der Frequenzmessung in 10 ist ein Maß für die Position des Ankers 4 in der Stellvorrichtung 1.
In Fig. 2 ist ein Schnitt durch eine besonders bevorzugte Anordnung einer Stellvorrichtung mit einem Wegsensor 9 gemäß der Erfindung dargestellt. Als Stellorgan 2 ist hier ein Gas- wechselventil einer Brennkraftmaschine dargestellt. Die Meßspule 9 ist im Joch 7.2 des oberen Elektromagneten 7 angeordnet, wo sie im wesentlichen unbeeinflußt von einer etwaigen Bestromung des Elektromagneten 7 ist und so eine weitgehend ungestörte Messung der durch das periodische Eintauchen der Schubstanges 3 in die Spule 9 hervorgerufenen Induktivitätsänderung der Spule 9 ermöglicht. Das Schubstangenende ist vorzugsweise me- tallisch. In einer weiteren bevorzugten Ausführung weist das Schubstangenende ein magnetisches Material auf. In einer weiteren bevorzugten Ausführung weist das Schubstangenende Ferrit auf. Die Schubstange 3 kann insbesondere selbst aus einem die Induktivität der Spule 9 verändernden Material gebildet sein. Eine weitere bevorzugte Anordnung ist, an einer Schubstange 3 Mittel vorzusehen, welche die Induktivität der Spule 9 beeinflussen.
Eine günstige Ausführungsform ist, an ein Stellorgan 2 aus Keramik eine Schubstange aus einem anderen Material zu befestigen.
Die Magneteinheit 5 ist mit einer Hülse 15 umgeben. Die Elektromagnete 6, 7 bestehen aus den Polflächen 6.1 , 7.1 , den Wicklungen 6.3, 7.3 und deren zugehörigem Joch 6.2, 7.2. Die Schubstange 3 der Stellvorrichtung 1 wird mit Gleitlagern 16.1 , 16.2 in den Elektromagneten 7 und 6 und das Ventil 2 mit einem Gleitlager 16.3 im Zylinderkopf 18 gelagert. Die Hülse 15 ist mit dem Zylinderkopf 18 verbunden. Die Rückstellfedern 8.1 und 8.2 sind innerhalb der Hülse 15 und unterhalb der Magneteinheit 5 um die Schubstange 3 angeordnet und auf tellerförmigen Ansätzen 17.1 und 17.2 zwischen den beiden Federn 8.1 , 8.2 abgestützt. Der Ansatz 17.1 ist mit der Schubstange 3, der Ansatz 17.2 ist mit dem Zylinderkopf 18 verbunden.
Der Vorteil dieser Anordnung ist, daß die bezüglich der Spule 9 induktivitätsändernde Wir¬ kung des Schubstangenendes 3 besonders einfach von der Meßspule 9 zu erfassen ist und daß die gesamte Anordnung kompakt und störunempfindlich ist. Der Einbauort des Wegs- ensors 9 ist auch für andere Sensortypen geeignet, insbesondere für Halbleitersensortypen.
Aufgrund der Trägheit der elektromagnetischen Stellvorrichtung 1 , insbesondere aufgrund der Induktivität der Elektromagneten 6, 7, ist es nicht ausreichend, ausschließlich einen Regler zum Betreiben der Stellvorrichtung 1 zu verwenden. Erfindungsgemäß wird daher eine Steuerung mit aufgesetzter Regelung zum Betreiben der Stellvorrichtung 1 verwendet. Die Stellvorrichtung 1 wird in ihrer Bewegung ständig durch die Regelung mit den Sollkennlinien abgeglichen und nicht ihrer Eigendynamik überlassen. Damit wird erreicht, daß kleinere Abweichungen von Sollvorgaben aufgrund von im Betrieb der Stellvorrichtung 1 auftretenden Störgrößen sicher mit der Regelung ausgeglichen werden können. Da nur kleine Ab- weichungen durch die Regelung ausgeregelt werden müssen, ist die Regelung schnell genug.
In Fig. 3 ist eine bevorzugte Steuer- und Regeleinheit 1 1 gemäß der Erfindung skizziert. Die Steuer- und Regeleinheit 1 1 besteht aus einer Kontrolleinheit 1 1.1 , einer Multiplexereinheit 1 1.2, einem Datenspeicher 1 1.3 und einer Pulsweitenmodulationseinheit 1 1.4.
Als Positionssensor 9 wird eine Meßspule verwendet. Die Position des Ankers 4 wird mittelbar über die Eintauchtiefe der Schubstange 3 in die Meßspule 4 bestimmt, indem die Induktivität der Spule 9 registriert wird. Die Spule 9 bildet zusammen mit einer Kapazität in Ele- ment 10.1 einen Oszillator, insbesondere mit einer üblichen Entdämpfung. In Element 10.2 wird die Schwingfrequenz des Oszillators in eine Spannung oder einen Strom umgewandelt, insbesondere mittels einer Phasenregelschleife. Verändert sich die Eintauchtiefe des Schubstangenendes in die Spule 9, wird die Frequenz des Oszillators verstimmt, was zu einer Änderung des Ausgangssignals von Element 10.2 führt. Aus zwei eng benachbarten Positionsmessungen des Ankers 4 läßt sich auf einfache Weise dessen Geschwindigkeit v durch zeitliche Differenzierung, insbesondere durch zeitdiskrete Differenzierung bestimmen.
Das Ausgangssignal des Elements 10.2 wird in die Multiplexereinheit 1 1.2 der Steuer- und Regeleinheit 1 1 geführt. Die Kontrolleinheit 1 1.1 ruft die Daten aus der Multiplexereinheit 1 1.2 ab. Die Kontrolleinheit 1 1.1 erhält zusätzlich Daten aus einer nicht dargestellten zentralen Steuereinheit, die über die Datenleitung 14 in die Steuer- und Regeleinheit 1 1 gelangen. Diese Daten enthalten vorzugsweise Angaben über den Betriebszustand der Brenn- kraftmaschine, sowie die gewünschten Steuerwinkel für die Gaswechselventile. Die Kontrolleinheit 1 1.1 verknüpft die Positions- und/oder Geschwindigkeitsdaten und/oder Stromdaten aus der Multiplexereinheit 1 1.2 mit den Betriebsparametern und den Kennliniendaten des Datenspeichers 1 1.3 und bildet daraus ein Steuersignal für die Pulsweiten- modulationseinheit 1 1.4. Diese steuert die Endstufen 12 und 13 an, welche den durch die Elektromagnete 6 und 7 fließenden Strom messen und an die Multiplexereinheit 1 1.2 weiterleiten.
Die Datenleitung 14 kann vorteilhafterweise dazu verwendet werden, nicht nur Betriebsparameter von der zentralen Steuereinheit zur Steuer- und Regeleinheit 1 1 , sondern auch Diagnosedaten zu der zentralen Steuereinrichtung zurück zu übertragen. Vorzugsweise beinhalten diese Diagnosedaten Angaben über die Verfügbarkeit der Stellvorrichtung 1 oder alle anderen der Steuer- und Regeleinheit 1 1 bekannten Daten. Die Regel- und Steuereinheit 1 1 kann damit zweckmäßig zur Unterstützung etwaiger vorhandener Steuereinrichtungen herangezogen werden. Die Diagnosedaten enthalten vorzugsweise Informationen über etwaige Fehlfunktionen der elektromagnetischen Stellvorrichtung 1 und/oder Statusinformationen, die von der etwaigen zentralen Steuereinheit verarbeitet werden können. Damit ist es möglich, z.B. fehlerhafte Stellvorrichtungen abzuschalten und/oder Fehlermeldungen in einen Speicher abzulegen und/oder den Benutzer der Brennkraftmaschine über die Fehlfunktion zu informieren.
Das erfindungsgemäße Steuer- und Regelverfahren der Stellvorrichtung 1 beruht auf dem Prinzip der Trajektorienregelung. Es wird angestrebt, die Stellvorrichtung 1 so zu steuern, daß die Bewegung des Ankers 4 einer vorgegebenen Weg-Zeitkennlinie folgt. Damit ist auch die Geschwindigkeits-Zeitkennlinie des Ankers 4 und damit des Stellorgans 2 festgelegt. Dazu wird in einem Datenspeicher 1 1.3 eine Kennlinie oder eine Kennlinienschar abgelegt, die die Position s des Ankers 4 mit seiner Soll-Geschwindigkeit v verknüpft, insbesondere bei unterschiedlichen Betriebsbedingungen der Brennkraftmaschine oder der von der Stell- 5 Vorrichtung 1 beeinflußten Komponente.
Eine Sollkennlinie in der s-v-Ebene liefert den Geschwindigkeits-Soilwert v zu jedem möglichen Istwert der Ankerposition s. Die Abweichung zwischen dem Istwert und dem Sollwert der Geschwindigkeit v sowie der Istwert der Position s des Ankers 4 werden einem Regler
10 zugeführt, insbesondere einem Dreipunktregler. Ist die Abweichung negativ, d.h. die Geschwindigkeit des Ankers 4 zu gering, wird der Regierausgang den vorgesteuerten Strom der Wicklungen des entsprechenden anziehenden Elektromagneten 6 oder 7 erhöhen, um den Anker 4 durch das zusätzliche, stärkere Magnetfeld anzuziehen. Bei einer positiven Ab¬ weichung bewirkt der Reglerausgang eine Senkung des Stroms durch die Wicklung des an-
15 ziehenden Magneten und/oder eine Erhöhung des Stroms durch den zweiten Elektromagneten, um den Anker 4 abzubremsen. Innerhalb von bei einem Dreipunkteregler gegebenen Toleranzgrenzen kann günstigerweise die Vorsteuerung, insbesondere Ein- und Ausschaltzeitpunkte der Bestromung der Elektromagnete 6, 7, unverändert bleiben.
o o Die Verwendung eines einfacheren Zweipunktreglers ist ebenfalls möglich, um etwaige Abweichungen des Ankers 4 von seiner vorbestimmten Positions-Geschwindigkeitskurve auszugleichen. Der Aufbau ist weniger aufwendig und kostengünstig.
Besonders vorteilhaft ist, das Regel- und Steuerverhalten der Stellvorrichtung 1 adaptiv zu 25 verändern und bei im wesentlichen gleichartigen, über längere Zeit auftretenden Regelabweichungen die Parameter der Steuerung anzupassen, um die Regelabweichungen zu minimieren. Insbesondere werden häufige, gleichartige Regelabweichungen von der Steuer- und Regeleinheit 1 1 registriert und die Steuerung durch Korrekturkennfelder im Datenspeicher 1 1.3 adaptiert. Damit gelingt es, längerfristige Änderungen der Betriebsbedingungen auszu- 30 gleichen, insbesondere bei Alterung und/oder Verschleiß der beteiligten Komponenten.
Zur Anpassung des Regel- und Steuerverhaltens werden zweckmäßigerweise regelmäßige, insbesondere automatische, Kalibrierschritte durchgeführt. Befindet sich der Anker 4 an einer Polfläche 6.1 , 7.1 eines der Elektromagneten 6, 7, so regelt die Steuer- und Regeleinheit 1 1 den Strom durch den jeweiligen Elektromagneten 6, 7 auf eine Stärke, die zum dauerhaften Halten des Ankers 4 ausreichend ist. Die Kontrolleinheit 1 1.1 kalibriert den Wegsensor 9 in den beiden Endlagen des Ankers 4 an den Polflächen 6.1 , 7.1 , da hier die Position des Ankers 4 wohlbekannt und reproduzierbar einstellbar ist. Damit gelingt es einfach und zuverlässig, Fehler durch Temperatureinflüsse und/oder Alterung zu "eliminieren.
In einer besonders vorteilhaften Ausführung sind Ein- und Ausschaltzeitpunkte der Elektromagnete 6, 7, Sollkennlinien des Geschwindigkeits-Positions-Verlaufs des Ankers 4 und Sollkennlinien des Strom-Positions-Verlaufs insbesondere in digitaler Form gespeichert. Zweckmäßig ist, für unterschiedliche Betriebsbedingungen, insbesondere Last-, Drehzahl- und/oder Temperaturbereiche unterschiedliche Schaltzeitpunkte und/oder Sollkennlinien zu speichern. Der Vorteil ist, daß die Stellvorrichtung bei unterschiedlichen Betriebsbedingungen optimal gesteuert werden kann.
Ein besonderer Vorteil der Erfindung ist, daß das Anschwingen des Anker/Federsystems aus der Ruhelage heraus durch einen eigenen Start-Modus von der Steuer- und Regeleinheit 1 1 selbständig durchgeführt werden kann. Da gemäß der Erfindung die aktuelle Position des Ankers 4 bekannt ist, kann die notwendige Energie zu den optimalen Zeitpunkten in das System eingekoppelt werden. Der Anker 4 kann so mit hoher Zuverlässigkeit und geringem Energieaufwand in eine der beiden Endlagen auf den Polflächen 6.1 , 7. 1 der beiden Elektromagnete 6, 7 gebracht werden.
In Fig. 4 ist ein Ablaufschema des bevorzugten Steuer- und Regelverfahrens für ein Gas- wechselventil einer Brennkraftmaschine dargestellt. Zunächst werden Betriebsdaten der von der Stellvorrichtung 1 versorgten Komponente, insbesondere Öffnungs- und Schließwinkel des Ventils 2 über die Datenleitung 14 in die Steuer- und Regeleinheit 1 1 eingelesen. Dies erfolgt von einem etwaigen Datenspeicher oder von einer etwaigen zentralen Steuereinheit oder einer anderen verfügbaren Datenquelle. Zusätzlich wird vorzugsweise eine Information über zu erwartende Gegenkräfte, insbesondere den Abgasgegendruck, übermittelt. Mit dem Betrag der zu erwartenden Gegenkräfte wird aus dem Datenspeicher 1 1.3 der Steuer- und Regeleinheit 1 1 eine Kennlinie ausgewählt, die einen Bewegungsablauf des Ankers 4 mit möglichst optimalem Energieverbrauch und geringem Verschleiß ermöglicht. Aus diesen Daten werden die Ein- und Ausschaltzeitpunkte der Elektromagneten 6, 7 bestimmt. Damit ist es insbesondere möglich, die Elektromagnete 6, 7 bereits zeitlich vor der eigentlichen Bewegung des Ankers 4 auf den entsprechenden Magneten hin einzuschalten. Das Ablaufschema gerät an eine Schleife, die erst mit dem Erreichen der Polfläche 6.1 oder 7.1 des anziehenden Elektromagneten 6 oder 7 durch den Anker 4" endet. Dabei wird wiederholt die Position s, die Geschwindigkeit v und der Strom i durch den Magneten gemessen.
Solange die Position s des Ankers 4 keiner Aufsetzposition auf der Polfläche entspricht, wird der Sollverlauf der Ankergeschwindigkeit v-.»(s) und der Sollverlauf des Stromes (s) aus den ausgewählten Kennlinien im Datenspeicher 1 1.3 ausgelesen.
Die Soll- und Istdaten werden verglichen und daraufhin die Energie im Elektromagneten 6, 7 verringert, erhöht oder gehalten. Anschließend wird die Schleife wiederholt.
Wird die Aufsetzposition des Ankers 4 auf einer Polfläche 6.1 oder 7.1 erkannt, so wird der Ablauf in einer Stromregelschleife fortgesetzt. Der Strom durch den haltenden Elektromagneten 6 oder 7 wird gemessen, mit einem Sollwert verglichen und gemäß den Regel- Vorgaben entsprechend erhöht oder verringert oder gehalten. Dabei kann insbesondere die Pulsweite mittels einer Pulsweitenmodulation angepaßt werden. Vorzugsweise wird in der Aufsetzposition des Ankers 4 die Aufsetzposition kalibriert.
In Fig. 5 sind Weg- und Geschwindigkeitskennlinien als Funktion der Zeit dargestellt. Die Zeitachse ist normiert. Die Minimalposition entspricht der ersten Polfläche, die Maximalposition der gegenüberliegenden Polfläche der beiden Elektromagneten. Das schwingungsfähige System Anker/Feder weist im Idealfall bei vernachlässigter Reibung und ideal schnell schaltbarem Magneten einen sinusförmigen Verlauf von Position und Geschwindigkeit des Ankers über der Zeit auf. Da im realen Betrieb die Reibung nicht vernachlässigbar ist, kompensiert die Steuer- und Regeleinheit 1 1 diese durch Energiezumessung zu den Elektromagneten 6, 7 zu den jeweils optimalen Zeitpunkten. Damit kann sich das System Anker/Feder dem idealen Verlauf von Position und Geschwindigkeit über der Zeit stark annähern. Da die Reibungskompensation aufgrund der Systemträgheit nicht vollständig gelingen und insbesondere der Aufbau des magnetischen Feldes im Elektromagneten nicht beliebig schnell erfolgen kann kann, sind für unterschiedliche Betriebspunkte vorzugsweise unter- sohiedliche Kennlinien einzusetzen, die den für den jeweiligen Betriebspunkt optimalen Verlauf bezüglich Verschleiß und Energieverbrauch darstellen.
Mit der erfindungsgemäßen Stellvorrichtung und dem erfindungsgemäßen Steuer- und Regelverfahren gelingt es, die Aufsetzgeschwindigkeit des Ankers 4 auf die jeweiligen Polflä- chen 6.1 , 7.1 auf eine Geschwindigkeit unter 3 m/s, insbesondere bis unter 1 m/s zu reduzieren. Damit ist der Betrieb der Stellvorrichtung 1 , insbesondere der Dauerbetrieb, verbessert und der Verschleiß der Stellvorrichtung verringert.

Claims

1. Verfahren zum Betreiben einer elektromagnetisch betätigbaren Stellvorrichtung, insbe- - sondere eines periodisch betriebenen Ventils für Brennkraftmaschinen, mit einer Schubstange mit wenigstens einem an der Schubstange quer zu deren Längsachse befestigten Anker, welcher zwischen sich gegenüberliegenden Polflächen zweier in axialem Abstand angeordneter Elektromagnete (6, 7) bewegt wird, wobei zwei in axialer Richtung wirkende Rückstellfedern mit der Stellvorrichtung verbunden sind, so daß der Anker in stromlosem Zustand der Elektromagnete (6, 7) in einer Mittellage zwischen den Elektromagneten (6, 7) gehalten wird, wobei die Position (s) des Stellorgans (2) und/oder des Ankers (4) mit einem Wegsensorelement (9) erfaßt wird, dadurch gekennzeichnet, daß der Stromfluß durch die Elektromagnete (6, 7) so eingestellt wird, daß der Anker (4) und/oder das Stellorgan (2) sich entlang einer vorgegebenen Positions- Geschwindigkeitskennlinie bewegt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß aus der Position (s) der Stellvorrichtung die Geschwindigkeit (v) des Stellorgans (2) und/oder des Ankers (4) bestimmt wird, daß Position (s) und/oder Geschwindigkeit (v) einer Regel- und Steuereinheit ( 1 1 ) zugeführt werden, und daß in der Regel- und Steuereinheit ( 1 1 ) mittels Position (s) und/oder Geschwindigkeit (v) ein Ansteuersignal für die Bestromung der Elektromagnete (6, 7) gebildet wird, wobei der Regel- und Steuereinheit ( 1 1 ) von einer externen Datenquelle aktuelle Betriebsparameter zur Bildung des Ansteuersignais Verfügung gestellt werden, so daß das Stellorgan (2) einer vorgegebenen Positions-Geschwindigkeitskennlinie folgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Geschwindigkeit (v) des Stellorgans (2) und/oder des Ankers (4) in einer Aufbereitungseinheit ( 10) außerhalb der Regel- und Steuereinheit ( 1 1 ) bestimmt wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Geschwindigkeit (v) des Stellorgans (2) und/oder des Ankers (4) in der Regel- und Steuereinheit ( 1 1) bestimmt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Stromfluß durch die Elektromagnete (6,7) so eingestellt wird, daß die Aufsetz¬ geschwindigkeit des Ankers (4) auf der Polfläche (6.1, 7.1) geringer als 3 m/sec ist.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Wegsensorelement (9) durch eine Spule gebildet wird, deren Induktivität durch eine Positionsänderung des Stellorgans verändert wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Induktivität der Spule (9) durch eine Frequenzmessung in einem Schwingkreis (9, 10.1 , 10.2) gemessen wird, dessen Bestandteil die Spule (9) ist.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Wegsensor (9) als Sensor für den Aufsetzzeitpunkt des Ankers (4) auf einer Polfläche (6.1 , 7.1) verwendet wird.
9. Elektromagnetisch betätigbare Stellvorrichtung mit einem Stellorgan (2), einer Schubstange, einer Magneteinheit (5) mit Elektromagneten (6, 7) und einem der Stellvorrichtung zugeordneten Wegsensorelement (9) zur Durchführung des Verfahrens nach Anspruch 1 , dadurch gekennzeichnet, daß das Wegsensorelement (9) eine Spule aufweist.
10. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Wegsensorelement (9) benachbart zum stellorganfernen Schubstangenende angeordnet ist.
1 1. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Wegsensorelement (9) innerhalb eines im wesentlichen magnetfeldfreien Be¬ reichs (6.2, 7.2) des Elektromagneten (6, 7) angeordnet ist.
12. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Wegsensorelement (9) zwischen den Poifächen (6. 1 , 7. 1 ) der Elektromagnete (6, 7) angeordnet ist.
13. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das stellorganfeme Schubstangenende Metall und/oder magnetisches Material und/oder Ferritmaterial aufweist.
14. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Spule (9) schneckenförmig oder zylinderförmig ist.
15. Stellvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Wegsensorelement (9) mindestens einen kapazitiven Sensor und/oder mindestens einen optischen Sensor und/oder mindestens einen magnetischen Sensor und/oder mindestens einen Halbleitersensor und/oder mindestens einen Hallsensor aufweist.
PCT/EP1998/005670 1997-09-11 1998-09-07 Elektromagnetisch betätigbare stellvorrichtung und verfahren zum betreiben der stellvorrichtung WO1999013202A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98951360A EP1012447A1 (de) 1997-09-11 1998-09-07 Elektromagnetisch betätigbare stellvorrichtung und verfahren zum betreiben der stellvorrichtung
US09/508,423 US6321700B1 (en) 1997-09-11 1998-09-07 Electromagnetically actuatable adjustment device and method of operation
JP2000510967A JP2001515984A (ja) 1997-09-11 1998-09-07 電磁操作される調整操作装置および該調整操作装置の作動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19739840.5 1997-09-11
DE19739840A DE19739840C2 (de) 1997-09-11 1997-09-11 Verfahren zur Steuerung einer elektromagnetisch betätigbaren Stellvorrichtung, insbesondere eines Ventils für Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO1999013202A1 true WO1999013202A1 (de) 1999-03-18

Family

ID=7841942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/005670 WO1999013202A1 (de) 1997-09-11 1998-09-07 Elektromagnetisch betätigbare stellvorrichtung und verfahren zum betreiben der stellvorrichtung

Country Status (6)

Country Link
US (1) US6321700B1 (de)
EP (2) EP1012447A1 (de)
JP (1) JP2001515984A (de)
AT (1) ATE283969T1 (de)
DE (2) DE19739840C2 (de)
WO (1) WO1999013202A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160422A2 (de) * 2000-06-02 2001-12-05 Nissan Motor Co., Ltd. Steuerungssystem für elektromagnetische Ventile
DE10031237A1 (de) * 2000-06-27 2002-01-31 Daimler Chrysler Ag Vorrichtung, insbesondere elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
WO2003021183A1 (fr) * 2001-08-31 2003-03-13 Mitsubishi Denki Kabushiki Kaisha Capteur de deplacement et dispositif de commande d'une vanne magnetique
EP1167725A3 (de) * 2000-06-29 2003-04-09 Toyota Jidosha Kabushiki Kaisha Vorrichtung und Verfahren zur Steuerung eines Ventiltriebes
EP1162349A3 (de) * 2000-06-06 2003-05-14 Nissan Motor Co., Ltd. Vorrichtung und Verfahren zur Steuerung einer elektromagnetisch betriebenen Ventilanordnung
EP2108789A3 (de) * 2000-12-21 2010-03-31 Toyota Jidosha Kabushiki Kaisha Motorventiltriebsteuerungsvorrichtung und -verfahren
JP2010193709A (ja) * 1999-04-23 2010-09-02 Johnson Controls Automotive Electronics 位置センサを有する線形電磁アクチュエータ
US9909686B2 (en) 2014-06-27 2018-03-06 Buerkert Werke Gmbh Valve comprising a tappet and a sensor

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852230B4 (de) * 1998-11-12 2008-01-03 Bayerische Motoren Werke Ag Verfahren zur Ermittlung der Position eines zwischen zwei Magnetspulen oszillierend bewegten Ankers
DE19852655B4 (de) * 1998-11-16 2005-05-19 Daimlerchrysler Ag Verfahren zum Betreiben eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils
DE19960796C5 (de) * 1998-12-17 2009-09-10 Nissan Motor Co., Ltd., Yokohama-shi Elektromagnetisch betätigbare Ventilsteuervorrichtung und Verfahren zum Steuern eines elektromagnetisch betätigbaren Ventils
DE19918993A1 (de) * 1999-03-23 2000-09-28 Daimler Chrysler Ag Vorrichtung mit einem elektromagnetischen Aktuator
DE19914593C1 (de) * 1999-03-31 2000-09-07 Daimler Chrysler Ag Verfahren zum Betrieb von Aktoren zur elektromagnetischen Ventilsteuerung
JP4066559B2 (ja) * 1999-05-12 2008-03-26 トヨタ自動車株式会社 内燃機関の電磁駆動バルブ制御装置
DE19922969A1 (de) * 1999-05-19 2000-11-23 Fev Motorentech Gmbh Verfahren zum Betrieb eines elektromagnetischen Ventiltriebs zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
WO2000071861A1 (de) * 1999-05-19 2000-11-30 Fev Motorentechnik Gmbh Verfahren zur ansteuerung eines elektromagnetischen ventiltriebs für ein gaswechselventil an einer kolbenbrennkraftmaschine
DE19922971A1 (de) * 1999-05-19 2000-11-23 Fev Motorentech Gmbh Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
ATE223553T1 (de) * 1999-05-27 2002-09-15 Fev Motorentech Gmbh Verfahren zur ansteuerung eines elektromagnetischen aktuators zur betätigung eines gaswechselventils an einer kolbenbrennkraftmaschine
DE19938749B4 (de) * 1999-08-16 2005-08-18 Siemens Ag Verfahren zum Bestimmen des Ventilspiels
IT1311131B1 (it) 1999-11-05 2002-03-04 Magneti Marelli Spa Metodo per il controllo di attuatori elettromagnetici perl'azionamento di valvole di aspirazione e scarico in motori a
DE19954416A1 (de) 1999-11-12 2001-05-17 Bayerische Motoren Werke Ag Verfahren zum Anschwingen eines elektromagnetischen Aktuators
IT1311411B1 (it) * 1999-11-30 2002-03-12 Magneti Marelli Spa Metodo per il controllo di attuatori elettromagnetici perazionamento di valvole di aspirazione e scarico in motori a
IT1311376B1 (it) 1999-12-23 2002-03-12 Magneti Marelli Spa Metodo per la stima delle posizioni di fine corsa di organi mobili diattuatori elettromagnetici per l'azionamento di valvole di aspirazione
JP3873559B2 (ja) * 2000-01-21 2007-01-24 日産自動車株式会社 エンジンの電磁動弁制御装置
DE10010756A1 (de) * 2000-03-04 2001-09-06 Daimler Chrysler Ag Verfahren zur Regelung des Bewegungsverlaufs eines Ankers
IT1321161B1 (it) * 2000-03-24 2003-12-30 Magneti Marelli Spa Metodo per la regolazione di correnti durante fasi di stazionamento inattuatori elettromagnetici per l'azionamento di valvole di
JP2001336431A (ja) * 2000-05-29 2001-12-07 Toyota Motor Corp 電磁駆動弁を有する内燃機関
DE10054308A1 (de) * 2000-11-02 2002-06-13 Conti Temic Microelectronic Aktor zur elektromagnetischen Ventilsteuerung mit zwei Elektromagneten
JP2002231530A (ja) * 2001-02-07 2002-08-16 Honda Motor Co Ltd 電磁アクチュエータ制御装置
JP4803882B2 (ja) * 2001-01-19 2011-10-26 本田技研工業株式会社 電磁アクチュエータ制御装置
JP4244526B2 (ja) 2001-03-13 2009-03-25 トヨタ自動車株式会社 電磁駆動弁の制御装置及び制御方法
ATE299231T1 (de) * 2001-11-21 2005-07-15 Fev Motorentech Gmbh Sensoranordnung zur erfassung der bewegung eines ankers mit unterdrückung von störspannungen
US6644253B2 (en) * 2001-12-11 2003-11-11 Visteon Global Technologies, Inc. Method of controlling an electromagnetic valve actuator
DE10205385A1 (de) * 2002-02-09 2003-08-28 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205387A1 (de) * 2002-02-09 2003-08-21 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
JP4055443B2 (ja) * 2002-03-11 2008-03-05 トヨタ自動車株式会社 電磁駆動弁制御装置
DE10310963A1 (de) * 2003-03-13 2004-09-23 Bayerische Motoren Werke Ag Spulenaufbau für einen elektromagnetischen Aktuator
JP2004285962A (ja) * 2003-03-25 2004-10-14 Toyota Motor Corp 電磁駆動バルブの制御装置
DE10318245B4 (de) * 2003-03-31 2008-03-20 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
JP4372455B2 (ja) * 2003-05-27 2009-11-25 トヨタ自動車株式会社 内燃機関の制御装置
JP4325492B2 (ja) * 2003-06-17 2009-09-02 トヨタ自動車株式会社 可変動弁の制御装置及び方法
ITTO20030926A1 (it) * 2003-11-21 2005-05-22 Fiat Ricerche Metodo per determinare l'istante di raggiungimento della posizione di fine corsa in fase di diseccitazione di un elemento mobile avente funzione di otturatore facente parte di una elettrovalvola a solenoide.
DE10360799B4 (de) * 2003-12-23 2008-06-12 Bayerische Motoren Werke Ag Verfahren zur Regelung eines elektromagnetischen Aktuators
US7072758B2 (en) 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7559309B2 (en) * 2004-03-19 2009-07-14 Ford Global Technologies, Llc Method to start electromechanical valves on an internal combustion engine
US7194993B2 (en) 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7079935B2 (en) * 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7063062B2 (en) * 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7383820B2 (en) 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7240663B2 (en) 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
US7555896B2 (en) 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7128687B2 (en) * 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7165391B2 (en) * 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7021289B2 (en) 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
JP2005351218A (ja) * 2004-06-11 2005-12-22 Toyota Motor Corp 電磁駆動弁
US7032549B1 (en) * 2004-10-19 2006-04-25 General Motors Corporation Valve lift sensor
DE102004054776B3 (de) * 2004-11-12 2006-03-16 Bayerische Motoren Werke Ag Verfahren zur Kalibrierung eines Wegsensors einer Drehaktuatorvorrichtung zur Ansteuerung eines Gaswechselventils einer Brennkraftmaschine
DE102004054759B4 (de) * 2004-11-12 2006-08-10 Bayerische Motoren Werke Ag Verfahren zur Kalibrierung eines Wegsensors einer Drehaktuatorvorrichtung zur Ansteuerung eines Gaswechselventils einer Brennkraftmaschine
DE102005035072B4 (de) * 2005-07-27 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskolbenmotor mit einem elektrischen Stellantrieb zur Hubbetätigung der Gaswechselventile
US20080009393A1 (en) * 2006-07-07 2008-01-10 Glusco Mark C Apparatus and method for physiological testing including cardiac stress test
DE102007016787A1 (de) * 2007-04-05 2008-10-09 Schultz, Wolfgang E., Dipl.-Ing. Verfahren zur Bestimmung der Ankerlage in einem Elektromagneten
DE102007016725B3 (de) * 2007-04-07 2008-01-17 Dräger Medical AG & Co. KG Elektrodynamischer Antrieb für ein Dosierventil
DE102007034768B3 (de) * 2007-07-25 2009-01-02 Ebe Elektro-Bau-Elemente Gmbh Elektrischer Hubmagnet
DE102007052022A1 (de) * 2007-10-31 2009-05-07 Trw Automotive Gmbh Elektromagnetischer Ventilantrieb sowie Verfahren zur Ansteuerung eines Magnetventils
US7980209B2 (en) * 2008-05-20 2011-07-19 Ford Global Technologies, Llc Electromagnetic valve actuator and valve guide having reduced temperature sensitivity
NL2002209C2 (en) * 2008-11-14 2010-05-17 Asco Controls Bv Solenoid valve with sensor for determining stroke, velocities and/or accelerations of a moveable core of the valve as indication of failure modus and health status.
DE102009009204B3 (de) * 2009-02-17 2010-04-15 Dreisbach, Frieder, Dr. Verfahren und Vorrichtung zur Schweberegelung eines Schwebeteils
DE202009006940U1 (de) 2009-04-16 2010-09-02 Eto Magnetic Gmbh Elektromagnetische Nockenwellen-Verstellvorrichtung
US8667954B2 (en) * 2011-09-21 2014-03-11 GM Global Technology Operations LLC Simultaneously firing two cylinders of an even firing camless engine
US9066463B2 (en) * 2012-10-02 2015-06-30 Trimble Navigation Limited Crop feeler system and method
JP6244723B2 (ja) * 2013-08-02 2017-12-13 株式会社デンソー 高圧ポンプの制御装置
US9664158B2 (en) 2014-03-20 2017-05-30 GM Global Technology Operations LLC Actuator with integrated driver
US9726100B2 (en) 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with deadbeat control
US9932947B2 (en) 2014-03-20 2018-04-03 GM Global Technology Operations LLC Actuator with residual magnetic hysteresis reset
DE112015001356T5 (de) 2014-03-20 2016-12-01 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Aufbau eines elektromagnetischen aktors
US9863355B2 (en) 2014-03-20 2018-01-09 GM Global Technology Operations LLC Magnetic force based actuator control
DE112015001345B4 (de) * 2014-03-20 2023-06-01 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Optimalstromantrieb zur Aktorsteuerung
US9657699B2 (en) 2014-03-20 2017-05-23 GM Global Technology Operations LLC Actuator with integrated flux sensor
US9777686B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Actuator motion control
US9777660B2 (en) * 2014-03-20 2017-10-03 GM Global Technology Operations LLC Parameter estimation in an actuator
JP6420685B2 (ja) * 2015-02-18 2018-11-07 日立オートモティブシステムズ株式会社 電子制御装置
DE102016006491B4 (de) * 2016-05-25 2019-03-07 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
CN108955506B (zh) * 2018-06-29 2024-02-02 中国铁建高新装备股份有限公司 一种道钉位置感应装置及方法
GB202005894D0 (en) * 2020-04-22 2020-06-03 Wastling Michael Fast-acting toggling armature uses centring spring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077038A2 (de) 1981-10-09 1983-04-20 Mitsubishi Rayon Co., Ltd. Verfahren zur Herstellung von schlagzähen Harzen
US4957074A (en) * 1989-11-27 1990-09-18 Siemens Automotive L.P. Closed loop electric valve control for I. C. engine
EP0777038A2 (de) * 1995-01-27 1997-06-04 Honda Giken Kogyo Kabushiki Kaisha Steuervorrichtung für Brennkraftmaschinen
US5636601A (en) 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307963A1 (fr) * 1975-04-15 1976-11-12 Tintillier Jean Claude Perfectionnements apportes aux moteurs thermiques
DE3603950A1 (de) * 1986-02-06 1987-08-13 Siemens Ag Induktiver temperaturkompensierter stellungsmelder
JP2748473B2 (ja) * 1988-12-26 1998-05-06 いすゞ自動車株式会社 バルブセンサ
DE4238861C2 (de) * 1992-01-30 1995-08-31 Daimler Benz Ag Vorrichtung zur Bestimmung der Position eines axial beweglichen Körpers
DE4236008C2 (de) * 1992-10-24 2002-03-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
DE4438059C2 (de) * 1993-11-05 2002-06-06 Volkswagen Ag Einrichtung zur meßtechnischen Erfassung von Ventil-Hubbewegungen
FR2714998B1 (fr) * 1994-01-07 1996-02-09 Peugeot Procédé de commande d'un actionneur électromagnétique bistable et dispositif pour sa mise en Óoeuvre.
DE19623698A1 (de) * 1996-06-14 1997-12-18 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Antriebe von Hubventilen an einer Kolbenbrennkraftmaschine
DE29615396U1 (de) * 1996-09-04 1998-01-08 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit Aufschlagdämpfung
JP3465568B2 (ja) * 1998-01-19 2003-11-10 トヨタ自動車株式会社 内燃機関の電磁駆動弁制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077038A2 (de) 1981-10-09 1983-04-20 Mitsubishi Rayon Co., Ltd. Verfahren zur Herstellung von schlagzähen Harzen
US4957074A (en) * 1989-11-27 1990-09-18 Siemens Automotive L.P. Closed loop electric valve control for I. C. engine
US5636601A (en) 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
EP0777038A2 (de) * 1995-01-27 1997-06-04 Honda Giken Kogyo Kabushiki Kaisha Steuervorrichtung für Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"electromagnetic valve actuator with low seating velocity", RESEARCH DISCLOSURE, no. 352, August 1993 (1993-08-01), emsworth,gb, pages 518, XP000395246 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193709A (ja) * 1999-04-23 2010-09-02 Johnson Controls Automotive Electronics 位置センサを有する線形電磁アクチュエータ
EP1160422A2 (de) * 2000-06-02 2001-12-05 Nissan Motor Co., Ltd. Steuerungssystem für elektromagnetische Ventile
EP1160422A3 (de) * 2000-06-02 2003-05-14 Nissan Motor Co., Ltd. Steuerungssystem für elektromagnetische Ventile
EP1162349A3 (de) * 2000-06-06 2003-05-14 Nissan Motor Co., Ltd. Vorrichtung und Verfahren zur Steuerung einer elektromagnetisch betriebenen Ventilanordnung
DE10031237A1 (de) * 2000-06-27 2002-01-31 Daimler Chrysler Ag Vorrichtung, insbesondere elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
DE10031237C2 (de) * 2000-06-27 2003-08-14 Daimler Chrysler Ag Elektromagnetischer Aktuator, insbesondere zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
EP1167725A3 (de) * 2000-06-29 2003-04-09 Toyota Jidosha Kabushiki Kaisha Vorrichtung und Verfahren zur Steuerung eines Ventiltriebes
EP2108789A3 (de) * 2000-12-21 2010-03-31 Toyota Jidosha Kabushiki Kaisha Motorventiltriebsteuerungsvorrichtung und -verfahren
WO2003021183A1 (fr) * 2001-08-31 2003-03-13 Mitsubishi Denki Kabushiki Kaisha Capteur de deplacement et dispositif de commande d'une vanne magnetique
US9909686B2 (en) 2014-06-27 2018-03-06 Buerkert Werke Gmbh Valve comprising a tappet and a sensor

Also Published As

Publication number Publication date
US6321700B1 (en) 2001-11-27
ATE283969T1 (de) 2004-12-15
DE59812342D1 (de) 2005-01-05
EP1262639A3 (de) 2003-03-26
JP2001515984A (ja) 2001-09-25
DE19739840C2 (de) 2002-11-28
EP1262639A9 (de) 2003-11-12
DE19739840A1 (de) 1999-03-18
EP1262639B1 (de) 2004-12-01
EP1012447A1 (de) 2000-06-28
EP1262639A2 (de) 2002-12-04

Similar Documents

Publication Publication Date Title
DE19739840C2 (de) Verfahren zur Steuerung einer elektromagnetisch betätigbaren Stellvorrichtung, insbesondere eines Ventils für Brennkraftmaschinen
EP1099043B1 (de) Verfahren zur ansteuerung eines elektromagnetischen ventiltriebs für ein gaswechselventil an einer kolbenbrennkraftmaschine
EP1054138B1 (de) Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
DE19735375C2 (de) Magnetventil, insbesondere für Ein- und Auslaßventile von Brennkraftmaschinen
DE19526681B4 (de) Verfahren zur zeitgenauen Steuerung der Ankerbewegung eines elektromagnetisch betätigbaren Stellmittels
EP1001142B1 (de) Verfahren zum Betreiben eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils
DE19631909A1 (de) Verfahren zur Justierung der Ruhelage des Ankers an einem elektromganetischen Aktuator
EP0118591A1 (de) Verfahren und Vorrichtung zum Aktivieren einer elektromagnetischen Stelleinrichtung
WO1998038656A1 (de) Verfahren zur bewegungserkennung, insbesondere zur regelung der ankerauftreffgeschwindigkeit an einem elektromagnetischen aktuator sowie aktuator zur durchführung des verfahrens
DE60115766T2 (de) Selbstkompensierender piezoelektrischer Aktuator für ein Steuerventil
DE19723931A1 (de) Einrichtung zum Steuern eines elektromechanischen Stellgeräts
DE4142996A1 (de) Verfahren zum messen der mechanischen bewegung eines magnetventilankers, insbesondere von elektrisch gesteuerten einspritzanlagen
EP1651485B1 (de) Verfahren und vorrichtung zur herstellung und/oder justage eines elektromagnetisch ansteuerbaren stellgeräts
DE102011016895B4 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP1165944A1 (de) Verfahren zum bestimmen der position eines ankers
DE102009009204B3 (de) Verfahren und Vorrichtung zur Schweberegelung eines Schwebeteils
EP0867898B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE60021225T2 (de) Elektromagnetische Hubventilsteuerungseinrichtung und Verfahren zu deren Steuerung
DE2908235A1 (de) Vorrichtung an einer einspritzpumpe
EP1041252A2 (de) Gaswechselventilanordnung mit elektromagnetischem Aktuator
DE19836769C1 (de) Verfahren zum Bestimmen der Position eines Ankers
DE19918993A1 (de) Vorrichtung mit einem elektromagnetischen Aktuator
EP1099828B1 (de) Verfahren zum Anschwingen eines elektromagnetischen Aktuators
DE19825732A1 (de) Verfahren zum Betrieb eines elektromagnetischen Aktuators unter Berücksichtigung der Ankerbewegung
DE19927822C1 (de) Elektromagnetischer Aktuator und Verfahren zur Ermittlung der Gleichgewichtslage seines Ankers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998951360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09508423

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998951360

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998951360

Country of ref document: EP