WO1999013006A1 - Composition de resine de polyamide - Google Patents

Composition de resine de polyamide Download PDF

Info

Publication number
WO1999013006A1
WO1999013006A1 PCT/JP1998/004023 JP9804023W WO9913006A1 WO 1999013006 A1 WO1999013006 A1 WO 1999013006A1 JP 9804023 W JP9804023 W JP 9804023W WO 9913006 A1 WO9913006 A1 WO 9913006A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
weight
parts
resin composition
particles
Prior art date
Application number
PCT/JP1998/004023
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Wakamura
Masaaki Yamazaki
Katsumi Kuratani
Hiroshi Fujii
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to EP98941765A priority Critical patent/EP1022313A4/en
Publication of WO1999013006A1 publication Critical patent/WO1999013006A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a polyamide resin composition, and a molded article made of the polyamide resin composition is lightweight and has excellent rigidity, heat resistance, impact resistance, and thermal discoloration resistance. A beautiful metallic color tone can be developed without painting on the surface.
  • the present invention relates to a polyimide resin composition that can be suitably used as an interior and exterior cover of an engine cover of an automobile, a home appliance, and the like.
  • the interior and exterior covers of automobile engine covers and home electric appliances are formed of a thermoplastic resin such as a polyamide resin.
  • the outer shell of such a resin molded product may be required to have a metallic color tone such as steel or an aluminum alloy.
  • a metallic color tone such as steel or an aluminum alloy.
  • the demand for aesthetic appearance of resin molded products has increased, and not only has a metallic color tone, but also a metallic material that has a glossy feeling and suppresses high luster. Color tone is required.
  • various types of metallic tones are required, from silver-gray to slightly whitish gray-white.
  • metal powder such as aluminum and glossy particles whose surface is coated with metal such as Myriki, Wallacetonite, and glass are added to thermoplastic resin such as polyamide resin. Filled resin compositions have been proposed.
  • Japanese Patent Publication No. 57-41081 proposes a resin composition in which aluminum powder is mixed with a synthetic resin such as polyethylene / polyvinyl chloride.
  • molded articles made of the above-mentioned resin composition can obtain a good color tone, but have problems in rigidity and heat resistance.
  • Japanese Patent Application Laid-Open No. Hei 9-76272 proposes a resin composition in which conductive particles and piezoelectric particles are mixed with a thermoplastic resin such as polypropylene. Molded articles made of this resin composition have excellent impact resistance, but have low rigidity and high cost.
  • the above-mentioned resin composition is suitable for interior and exterior covers of home electric appliances and the like, but when used in a high temperature state for a long time, such as an engine power cover of an automobile, the heat discoloration resistance is further increased. Required.
  • a resin composition capable of forming a molded article having both good appearance and sufficient heat discoloration resistance has not yet been obtained.
  • the present invention can provide a molded article that is lightweight and has excellent rigidity, heat resistance, impact resistance, and heat discoloration resistance.
  • the surface of the molded article is beautifully coated without being coated.
  • An object of the present invention is to provide a polyamide resin composition capable of developing an evening color tone. Disclosure of the invention
  • the present inventors have made intensive studies to solve the above problems, and as a result, have accomplished the present invention.
  • the polyimide resin composition according to the present invention is characterized in that 0.1 to 10% by weight of a layered silicate is uniformly dispersed at a molecular level in 100 parts by weight of a reinforced polyamide resin,
  • the particles are characterized by comprising 0.1 to 10 parts by weight of particles exhibiting a black color.
  • a reinforced polyamide resin in which a layered silicate is uniformly dispersed at the molecular level in the polyamide resin is used as a main component, whereby the polyimide is obtained.
  • Molded products made of resin compositions In addition, rigidity, heat resistance, and impact resistance can be improved.
  • the polyamide resin composition can be reused, the cost can be reduced.
  • the polyamide resin composition of the present invention has a metallic color with respect to 100 parts by weight of a reinforced polyamide resin in which 0.1 to 10% by weight of a layered silicate is uniformly dispersed at a molecular level. It is necessary to mix 0.1 to 10 parts by weight of the particles which express the above.
  • a molding made of the polyamide resin composition of the present invention is used.
  • the product can be lightweight and have excellent mechanical properties such as rigidity, heat resistance and impact resistance.
  • a molded article made of the obtained resin composition has excellent rigidity and a high quality. It can produce a glossy, metallic color tone on the surface. In addition, since it can be produced simply by blending particles exhibiting a metallic color with the reinforced polyamide resin, the cost can be reduced as compared with the above-mentioned conventional metallic coating method.
  • the resin that is the main component of the polyamide resin composition of the present invention includes It is necessary to use 0.1 to 10% by weight, preferably 1 to 10% by weight, of layered silicate in the amide resin, and use a reinforced polyamide resin in which this layered silicate is uniformly dispersed at the molecular level. There is.
  • the mixing ratio of the layered silicate is less than 0.1% by weight, the resulting molded article will have poor mechanical strength such as bending strength and flexural modulus and poor heat resistance.
  • the mixing ratio of the layered silicate is more than 10% by weight, it becomes difficult to perform injection molding when forming a molded product.
  • the phyllosilicate When the phyllosilicate is uniformly dispersed at the molecular level in the polyamide resin, it means that when the silicate layer disperses in the polyamide resin matrix, the phyllosilicate is on average 20%. A case where the interlayer distance of A or more is maintained.
  • the interlayer distance refers to the distance between the centers of gravity of the silicate layers
  • a uniform dispersion means that one layer of the silicate layers or a multilayer having an average overlap of 5 layers or less, Parallel or random, or a mixture of parallel and random, with 50% or more, preferably 70% or more, dispersed without forming clumps.
  • the swellable fluorine mica-based mineral when used as the layered silicate, if the swellable fluoromica mineral is uniformly dispersed at the molecular level in a polyamide resin, the resin pellets When a wide-angle X-ray diffraction measurement is performed on the sample, the peak of 12 to 13 A caused by the thickness direction of the swellable fluorine mica mineral disappears. Therefore, the dispersion state of the swellable fluorine mica-based mineral can be confirmed by this measurement.
  • the reinforced polyamide resin in which the layered silicate is uniformly dispersed at the molecular level in the polyamide resin is a layered silicate resin in comparison with a fiber-reinforced reinforcing material such as glass fiber and a reinforced polyamide resin reinforced with a mineral such as talc. Can be strengthened only by adding a small amount of, so that a lightweight molded article can be obtained.
  • a layered silicate is added to monomers such as aminocarboxylic acid, lactam, diamine and dicarboxylic acid (including a pair of salts thereof) which form the polyamide resin.
  • monomers such as aminocarboxylic acid, lactam, diamine and dicarboxylic acid (including a pair of salts thereof) which form the polyamide resin.
  • a layered silicate pretreated with a long-chain quaternary ammonium salt and a polyamide resin are melt-kneaded using a twin-screw extruder.
  • the polyamide resin constituting the reinforced polyamide resin is obtained by polycondensation of aminocarbonic acid, polymerization of lactam, or polycondensation of diamin and dicarbonic acid.
  • polyamide resins include polycabroamide (Nylon 6), polytetramethylene adipamide (Nylon 46), and polyhexamethylene azinomid (Nylon 6). 6), polyhexamethylene sebacamide (Nylon 610), polyhexamethylene dodecamide (Nylon 612), polydecamethylene adipamide (Nylon 116), Polydecamide (Nylon 11), Polydodecamide (Nylon 12), Polybis (4-aminocyclohexyl) methande Decamide (Nylon PACM 12) , Polybis (3-methylol 4-amino cyclohexyl) methandodecamide (nylondimethyl PACM 12), polymethylylene adipamide (nylon MXD6), polyhexamethylene te Futaruami de (Nai Russia down 6 T), Kisamechire to poly N'i soft evening Ruami de (nylon 6 I), port re-Roh Namethylene terephthalamide (Nylon 9
  • the relative viscosity of the polyamide resin is not particularly limited. However, it is preferable that the relative viscosity measured at a temperature of 25 ° C and a concentration of 1 g / d1 be in the range of 1.5 to 5.0 using 96 wt% concentrated sulfuric acid as a solvent. . If the relative viscosity is less than 1.5, the mechanical strength such as the bending strength and flexural modulus of the molded article will decrease, and if the relative viscosity exceeds 5.0, the moldability will decrease rapidly.
  • Examples of the layered silicate to be mixed with the polyamide resin include smectite-based minerals such as montmorillonite, neulide, savonite, hectolite, and sauconite, and vermiculite-based minerals such as vermiculite.
  • Minerals such as muscovite, biotite, paragonite, levitrite, and swelling fluorine mica, brittle mica-based minerals such as margarite, clintonite, and anandite, and dombasai Minerals such as chlorite, suidoite, cookeite, clinochlore, chamosite, and dimite; and hydrous inokeate minerals such as sepiolite.
  • swellable fluorine mica minerals and montmorillonite can be suitably used.
  • the swellable fluorine mica mineral has good uniform dispersibility in the reinforced polyamide resin and, in order to spread the layers, it is necessary to use an ammonium carboxylic acid salt such as an ammonium salt or a sodium salt of an amino carboxylic acid. Since no special treatment is required, it can be suitably used.
  • the swellable fluorine mica-based mineral is, specifically, one in which the hydroxyl group of mica is replaced with fluorine, and its chemical structure is represented by the following formula.
  • MF ⁇ 5 (a M g F 2 ⁇ b M g 0) ⁇ ⁇ S i 0 2 1
  • M represents Na Application Benefits um or lithium
  • a swellable fluorine mica-based mineral for example, silicon oxide or magnesium oxide is mixed with various fluorides, and the mixture is mixed in an electric furnace or a gas furnace.
  • a so-called melting method in which the melt is completely melted at a temperature of up to 150 ° C and the fluorine mica-based mineral grows in the reaction vessel during the cooling process.
  • talc is used as a starting material, and alkali ions are added thereto to obtain a fluorine mica-based mineral (Japanese Patent Application Laid-Open No. 2-149495). ).
  • talc is mixed with calcium fluoride or alkali fluoride, and is heated in a magnetic crucible at 700 to 1200 ° C for a short time to expand the swelling. Fluorine mica minerals can be obtained.
  • the silicate layer of the fluoromica mineral is spread between layers, and the polyimide resin is interposed between the layers.
  • the swellable fluorine mica mineral is dispersed at the molecular level to form a reinforced polyamide resin.
  • the swellable fluorine mica mineral has good uniform dispersibility in the polyamide resin even when added in a small amount, so the finished reinforced polyamide resin can be converted to a reinforced polyamide resin containing a fibrous reinforcing material. It is lighter and has improved heat resistance.
  • aminocaproic acid, lactam, diamine and dicarboxylic acid forming the polyamide resin are used.
  • the monomer may be polymerized in a state where a predetermined amount of the above-mentioned layered silicate is present in a monomer (including a pair of salts thereof).
  • the non-reinforced polyamide resin may be further blended in an amount of 200 parts by weight or less with respect to 100 parts by weight of the reinforced polyamide resin. That is, by using a mixture of the polyamide resin composition and a non-reinforced polyamide resin chip at the time of molding, the obtained polyamide resin composition is obtained by mixing the non-reinforced polyamide resin with a non-reinforced polyamide resin. It is preferable to the amide resin composition because the tensile / elastic strength of the molded article is improved.
  • non-reinforced polyamide resins that can be incorporated into reinforced polyamide resins include polyproamide (Nylon 6), polytetramethylene azinomid (Nylon 46) ), Polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dedecamide (nylon 612), poly ⁇ Ndecamethylene adipamide (Nylon 116), polyundecamide (Nylon 11), polydodecamide (Nylon 12), polybis (4-aminocyclohexyl) ) Methane dodecamide, (Nylon PACM 12), polybis (3-methyl-14-aminocyclohexyl) methandodecamide (Nylon dimethyl PACM 12), polydimethylsiloxane Release Azinomid IRON MX D 6), polyhexamethylene terephthalamide (Nylon 6T), polyhexamethylene terephthalamide (Nylon 61), polynonamethylene
  • the non-reinforced polyamide resin of the present invention contains a nucleating agent at a ratio of 1% by weight or less, the crystallinity of the polyamide resin composition is improved and the moldability is improved. So more preferred.
  • a crystal nucleating agent include talc, silica, kaolin, graphite, magnesium oxide, aluminum oxide and the like, and talc is particularly preferred.
  • the particles exhibiting a metallic color to be added to the polyamide resin composition of the present invention include particles having a metal reflecting surface, or particles having the metal reflecting surface and particles having an off-white or white reflecting surface. It is a mixture of
  • Examples of the particles having a metal reflection surface include metal particles and particles having a metal film formed on the surface.
  • metal particles examples include particles of aluminum, nickel, tin, copper, iron, gold, silver, platinum, and the like, and particles of alloys such as brass and stainless steel using these metals as substrates.
  • Nickel and tin particles are preferred, and aluminum particles are particularly preferred.
  • the metal film formed on the fill is a metal film made of 1: 1: gold on a granular substrate made of a material other than metal such as resin or glass.
  • the substrate is not particularly limited as long as the substrate has a film made of the above metal on the surface of the substrate.
  • Specific examples of the substrate include various glass particles, carbon particles, and various resin particles.
  • Specific examples of the various resins include a fluororesin, an epoxy resin, a phenol resin, a nylon resin, a cross-linked acrylic resin, a cross-linked polystyrene resin, and the like.
  • the temperature must be determined in consideration of the molding temperature of the reinforced polyamide resin that will become the trix.
  • the heat resistant temperature of the base resin is significantly lower than the molding temperature of the reinforced polyamide resin, which is a matrix, the resin particles with the metal film adhered during melt-kneading are unnecessary. In some cases, a molded article that exhibits thermal deformation and exhibits a desired color may not be obtained.
  • a metal film to the substrate surface such as various glass particles, carbon particles, and various resin particles.
  • Examples of the fine particles having an off-white or white reflective surface include particles obtained by coating base particles such as mica-glass flakes with off-white or white materials such as titanium oxide.
  • the off-white to white material preferably has luster. More specifically, a my power par pigment obtained by coating my power particles with titanium oxide can be suitably used.
  • the method of forming a film on the surface of a substrate made of a metal or a glass flake is not particularly limited.
  • the polyamide resin composition of the present invention is described in detail in the following.
  • Is aluminum powder, particles that have a gray or yellow reflective surface are My power pearl pigments, and
  • the average particle diameter is 10 to 100 ⁇ m, the aspect ratio is 5 to 300, and the average particle diameter of the above-mentioned My power pearl pigment is 10 to 500 ⁇ m.
  • the mixing ratio of the aluminum powder and the My power pearl pigment is 50/50 to 98/2 by weight ratio of aluminum powder / My power pearl pigment. It is particularly preferable to mix the mixture prepared so as to be 0.1 to 10 parts by weight with respect to 100 parts by weight of the above-mentioned reinforced polyamide resin.
  • the appearance when the polyamide resin composition is formed into a molded article depends on the particle diameter and the aspect ratio, which is a value obtained by dividing the particle diameter by its thickness. If the average particle size of the aluminum powder is less than 10 / m, a metallic color tone cannot be obtained as a molded product, and if the average particle size exceeds 100 ⁇ m, dispersibility in polyamide resin And becomes a metallic color with high shine. Further, when the aspect ratio is smaller than 5, the color tone of the molded article becomes closer to white and becomes less glossy with poor glossiness, and those having an aspect ratio of more than 300 are manufactured. Difficult to do.
  • the average particle size of the pearl pigment made by My power is less than 10 m, a metallic color tone cannot be obtained as a molded product, and if it exceeds 50 m, dispersibility becomes poor, It does not exhibit glossiness.
  • the weight ratio of aluminum powder / My power pearl pigment 50/50 to 98/2 is a beautiful metadata. It is preferable in that it provides a cool color tone.
  • the mixture with the pearl pigment must be mixed in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the reinforced polyamide resin. If the blending ratio of the mixture is less than 0.1 part by weight, a metallic color tone cannot be obtained and the glossiness becomes poor when formed into a molded product, and the blending ratio is 10 parts by weight. If it exceeds, the moldability will be poor.
  • the polyamide resin composition of the present invention includes a reinforced polyamide resin.
  • thermal discoloration inhibitor selected from the group consisting of phosphite-based compounds, hindered phenol-based compounds, thioether-based compounds and copper halide in a proportion of 5 parts by weight or less. It is preferable to do so.
  • a molded article is formed from a polyamide resin composition containing such a thermal discoloration inhibitor, the surface of the molded article can be used even when the molded article is exposed to a high temperature for a long time when the molded article is used. Excellent heat discoloration resistance without discoloration can be obtained.
  • the thermal discoloration inhibitor exhibits the desired performance only by adding a small amount to the reinforced polyamide resin.
  • the polyamide resin composition having excellent heat discoloration resistance in the present invention specifically means Is a polyamide resin composition having a color difference value ⁇ of 12 or less when a heat discoloration test described below is performed.
  • a polyamide resin composition having such heat-resistant discoloration properties for example, a material having a high temperature when used, such as an engine cover of an automobile, specifically, a high temperature of about 120 ° C. Even if it is used for a long period of time, thermal discoloration can be prevented.
  • examples of the thermal discoloration inhibitor to be added for the purpose of imparting heat discoloration resistance include a phosphite-based compound, a hindered phenol-based compound, a thioether-based compound, and a copper halide, as described above.
  • phosphite compounds and hindered phenol compounds are preferred, and phosphite compounds are particularly preferred.
  • the phosphite-based compound is a compound represented by the following formula (1) or the following formula (3), which is a white powder or a white powder at room temperature (25 ° C). A rake shape is used.
  • R 13 R 2 represents an alkyl group having 1 to 20 carbon atoms.
  • R 3 , R 4 and R 5 represent an alkyl group having 1 to 5 carbon atoms and a hydrogen atom.]
  • Examples of the compounds as described above include, for example, trade names of ADK STAB PEP-8, PEP-8F, PEP-8W, PEP-11C, PEP-11G, PEP-24G, PEP-3 6, etc., and PEP-24G and PEP-36 can be suitably used, and PEP-36 can be particularly preferably used.
  • hindered phenolic compound a compound represented by the following formula (1) or a general formula of the following formula (2) and having a molecular weight of 450 or more is ffl.
  • R 6 is an alkyl group having 1 to 20 carbon atoms, and R nowadays ⁇ . Represents an independent hydrogen atom, an alkyl group having 1 to 30 carbon atoms or a monovalent organic group.
  • RH is an alkyl group having 0 2 1 carbon atoms
  • R 1 2 to R 1 5 sac Chi 3 are each independently hydrogen atom, 'an alkyl group or a monovalent organic group having 1 to 3 0 carbon atoms Wherein one is a bond, n is an integer of 2 to 4, and Z is an n-valent group.
  • the molecular weight is less than 450, the hindered phenol-based compound is easily decomposed and gas is generated, which is not preferable.
  • hindered phenolic compounds include triethylene glycol-bis-3- (3'-t-butyl-14'-hydroxy-15-methylphenyl) propionate, 1, 3,5—tris (3 ', 5'—di_t—butyl-1 4'-hydroxybenzoyl) isocyanurate—1,3,5—trimethyl-1,2,4,6 — Tris (3,5'-di-t-butyl-14'-hydroxybenzyl) benzene, hexamethyleneglycol-bis-[?-1 (3,5-di-t-butyl-1-4) 6- (4'-Hydroxy-1 3 ', 5'-G-t-Butylanilino) 1,2,4—Bisoctylthio 1,3,5—Tri- Azin, Tetorakis [Methylene 1 3 (3 ', 5'-di-t-butyl-1-4'-hydroxy-phenyl) probione] methane, 2,2'-thio [Jetyl-bis-3 (3'-
  • the thioether compounds correspond to, for example, ADK STAB AO-23, AO-412S, AO-503A manufactured by Asahi Denka Kogyo KK.
  • Examples of the copper halide include cuprous chloride, cupric chloride, cuprous iodide, and cupric iodide, and cuprous chloride is preferably used.
  • the mixing ratio of the fluidity improver is 5 parts by weight per 100 parts of reinforced polyamide resin. It is preferred that: If the mixing ratio of the fluidity improver exceeds 5 parts by weight, mechanical strength and heat resistance tend to decrease.
  • the fluidity improver is not particularly limited, any of polyethylene oxide wax, aliphatic bisamide, and a metal salt of a higher fatty acid can be preferably used.
  • Neowax E examples include Neowax E, Neowax E-20, Neowax E-3, and Neowax AE-3 manufactured by Yashara Chemical Co., Ltd., and especially Neowax. E-20 can be suitably used.
  • aliphatic bisamide examples include methylene bisstearyl amide, methylene bis lauryl amide, ethylene bis stearyl amide, ethylene bis lauryl amide, ethylene bis oleyl amide, and ethylene bis benzyl amide. Among them, ethylene bisstearyl amide is particularly preferred.
  • Examples of the metal salt of a higher fatty acid include various metal salts such as stearic acid, palmitic acid, lauric acid, and mythric acid, and a metal salt of stearinic acid is particularly preferable. Specific examples thereof include magnesium stearate, calcium stearate, nordium stearate, aluminum stearate, and zinc stearate.
  • the polyamide resin composition of the present invention preferably contains an impact modifier in an amount of 100 parts by weight or less based on 100 parts by weight of the reinforced polyamide resin.
  • the impact resistance improver is not particularly limited as long as it can improve the impact resistance of the molded article.
  • Echile Impact modifier comprising a copolymer obtained from ethylene and an unsaturated carboxylic acid or from ethylene and a metal salt of an unsaturated carboxylic acid; a copolymer containing 0.01 to 10 mol% of an acid group; A block copolymer obtained from a vinyl aromatic compound containing 0.01 to 10 mol% of an acid group and a conjugated diene compound, At least one selected from impact modifiers composed of hydrogenated polymers can be used.
  • an impact modifier comprising a copolymer obtained from ethylene and an unsaturated carboxylic acid or from ethylene and a metal salt of an unsaturated carboxylic acid
  • the proportion of ethylene units in the copolymer is 90 to 98 mol%.
  • the remainder substantially comprises an unsaturated carboxylic acid unit and an unsaturated carboxylic acid metal salt unit. If the proportion of ethylene units is too small, it is not preferable because it is a material having high rigidity but low impact resistance, and the impact strength is not sufficiently improved and the layer may be peeled off Not good for.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methyl acrylic acid, and ethyl acrylic acid. Some of the unsaturated carboxylic acids include methyl ester, ethyl ester, and propyl acid. It may be an ester or a butyl ester.
  • the metal salt of an unsaturated carboxylic acid is a salt of the unsaturated carboxylic acid with a metal of the fourth period of the IA, IB, IIA, IIB, IIIA and Vffl group of the Periodic Table of the Elements.
  • metals include sodium, calcium, copper, magnesium, calcium, nordium, zinc, cadmium, aluminum, iron, cobalt, and nickel. Of these, sodium, calcium, magnesium, calcium Palladium, lithium and zinc are preferred.
  • the olefin copolymer may contain 70 units of ethylene units and 70 units of propylene units. It is a block copolymer or a random copolymer containing at least mol%.
  • the mixing ratio of the ethylene unit and the propylene unit is 1: 2 to 6: 1 in molar ratio. It is preferred that the melt copolymer has a melt flow rate value of 1 to 10 at 2.16 kg / 230 ° C. of the above-mentioned copolymer.
  • Specific examples include copolymers obtained from olefinic hydrocarbons such as ethylene, propylene, butylene, isoprene, and amylen.
  • the olefin copolymer must contain from 0.01 to 10 mol% of an acid group, and the content of the acid group is less than 0.01 mol%. In this case, the compatibility with the polyamide resin becomes poor, and the impact resistance is not improved much. If the content of the acid group exceeds 10 mol%, the effect of improving the impact resistance will level off, and the productivity will deteriorate, which is not preferable.
  • a radical-generating agent such as benzoylperoxide or t-butylhydroperoxide during copolymerization, and maleic anhydride or acrylyl are used. A method of reacting an acid or the like can be applied.
  • the above-mentioned copolymer may contain a structural unit having an unsaturated bond.
  • the structural unit having an unsaturated bond can be guided by copolymerizing dicyclopentene or ethylidenenorbornene.
  • Block J formed by a vinyl aromatic compound having an acid group of 0.01 to 10 mol% and a compound having the role of II, and In the impact modifier comprising a hydrogenated product of a block copolymer, styrene, vinyl xylene, and vinyl naphthylene are used as the vinyl-based aromatic compound as a raw material of the block copolymer. And methyl styrene and vinyl toluene. These can be used alone or in combination of two or more.
  • a polymer (I) composed of a vinyl aromatic compound unit and a polymer (II) composed of a conjugated diene compound unit have I-II-I (I is the same, A block structure represented by) is preferred.
  • the polymer (II) may be partially hydrogenated.
  • the ratio of the polymer (I) to the polymer (II) constituting the copolymer is preferably such that the ratio of the polymer (II) is 60 mol% or more. If the proportion of the polymer (II) is too small, it is not preferable because the effect of improving the impact resistance is not exhibited.
  • Such a copolymer contains 0.01 to 10 mol% of acid groups.
  • the content of the acid group is out of this range, it is preferable for the same reason as that of the impact resistance improver composed of the olefin copolymer containing 0.01 to 10 mol% of the acid group. Absent.
  • the same method as that for the impact modifier described above comprising an olefin copolymer containing 0.01 to 10 mol% of an acid group is used. Can be applied.
  • the reinforcing material may be disposed at a ratio of not more than 10 ⁇ parts to the shadow portion of the reinforced polyamide resin. it can.
  • mechanical strength such as bending strength and bending elastic modulus and impact resistance are improved. If the compounding ratio of the reinforcing material exceeds 10 parts by weight, a metallic color tone will not be exhibited.
  • a fibrous reinforcing material such as glass fiber, a mineral such as talc, myriki, or wallacetonite, or a mixture of a fibrous reinforcing material and a mineral can be suitably used.
  • fibrous reinforcing material examples include heat-resistant, fiber-like compound materials such as short fibers, whiskers, and fibrils having excellent mechanical properties such as elastic modulus, strength, and elastic recovery.
  • fibrils having excellent mechanical properties such as elastic modulus, strength, and elastic recovery.
  • examples thereof include glass fibers, aluminum fibers, inorganic fibers such as potassium titanate whiskers and aluminum borate whiskers, and organic fibers such as aramide fibers. Of these, glass fibers are preferred in consideration of mechanical properties, economics, and the like.
  • the fibrous reinforcing material is glass fiber
  • a fiber length of 0.1 to 7 mm is preferable, and a fiber length of 0.3 to 5 mm is particularly preferable.
  • the diameter of the glass fiber is preferably in the range of 9 to 13 ⁇ m.
  • Minerals include talc, my strength, wallath tonite, cray, kaolin, silica, alumina, calcium carbonate, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate Examples include um, magnesium silicate, hydrotalcite, and the like, and talc, my strength, wallath tonite, and the like are preferred.
  • the polyamide resin composition of the present invention has a light stability, a weathering agent, a plasticizer, a lubricant, a coloring agent as long as its properties are not significantly impaired.
  • Additives such as reinforcing agents other than layered silicates, such as release agents, pigments, and flame retardants, may be added.These may be used when melt kneading or melt molding the polyamide resin composition. Added.
  • the method for producing the polyamide resin composition of the present invention is not particularly limited, a reinforced polyamide resin, particles exhibiting a mechanical color, and various additives such as a thermal discoloration inhibitor are used. It is preferable that the mixture is melt-kneaded using a twin-screw extruder and pelletized.
  • the resin composition thus obtained can be made into a target molded article by a usual molding method. Examples of the molding method include a hot melt molding method such as injection molding and extrusion molding, and a method by injection molding is particularly preferable.
  • the molded article obtained by using the polyamide resin composition of the present invention has good rigidity, heat resistance and impact resistance, and is lightweight and has a metallic appearance.
  • Example 1 Example 1
  • Dispersibility of layered silicate The dispersibility of the layered silicate in the resin pellet was measured using a wide-angle X-ray diffraction apparatus (Rigaku Corporation, model number RAD-rB).
  • Relative viscosity of reinforced polyamide resin and non-reinforced polyamide resin 96% by weight of concentrated sulfuric acid as solvent, and dry pellet of each resin to 1g / d1 And dissolved at 25 ° C.
  • Izod impact strength J / m: According to the method described in ASTM-D-648, a 3.2 mm thick test piece is provided with a notch of a specified depth. It was measured.
  • ASTM-D-638-I-type dumbbell test piece was prepared according to the method described in ASTM-D-638. That is, a 3.2-mm-thick dumbbell test piece having a jewel line at the center was prepared using a dumbbell piece mold having gates at two locations on both ends, and a tensile test was performed using this.
  • The degree of light reflection was large and the degree of dispersion was uniform. :: The degree of light reflection and dispersion was normal.
  • Falling ball impact energy (J): Prepare a 1.6 t-100 ⁇ test piece, drop it with an additional 1 kg according to the Dupont-type falling ball impact test, and use the following formula to drop the ball. Seeking energy.
  • Fluidity (mm) Measured according to a measurement method using a vacuum flow.
  • the resin temperature is raised to 250.
  • ° C and Nylon 66 When used, the resin temperature was 280 ° C, the mold temperature was 80 ° C, the injection pressure was 80MPa, and the flow length was measured.
  • a swellable fluorine mica-based mineral was synthesized. That is, to 80% by weight of talc pulverized by a ball mill so that the average particle size becomes 2 m, 20% by weight of sodium silicate having the same average particle size and 2 m is mixed. A mixture was prepared. Then, the mixture was put into a magnetic crucible and kept at 800 ° C. for 1 hour in an electric furnace to synthesize a fluorine mica-based mineral.
  • the resulting fluoromica-based mineral powder was subjected to wide-angle X-ray diffraction measurement using an RAD-rB type wide-angle X-ray diffractometer manufactured by Rigaku Corporation.
  • the peak for the thickness of 9.2 A in the C-axis direction of the raw material talc disappeared, and the peak corresponding to 12 to 13 A indicating the formation of swellable fluoromica-based mineral was found. It was admitted.
  • the obtained reinforced nylon 6 resin had a relative viscosity of 2.5, and contained 2.0% by weight of a swellable fluoromica-based mineral with a total of 100% by weight.
  • the particles exhibiting a metallic color have an average particle diameter of 15 m and an aspect ratio of 7500.
  • 1 part by weight of aluminum powder manufactured by Sumitomo Color Co., Ltd., EPC-8E-2977
  • a twin-screw kneader Toshiba Machine Co., Ltd., TEM- A pellet was made using 37 BS).
  • injection molding was performed using an injection molding machine (Toshiba Machine Co., model number IS-80) with the cylinder temperature set at 250 ° C, and the bending strength, bending elastic modulus, Test specimens were prepared to measure the deflection temperature under load, Izod impact strength, tensile weld strength, metallic appearance, and specific gravity.
  • injection molding machine Toshiba Machine Co., model number IS-80
  • Table 1 shows the physical properties of the obtained test pieces.
  • a polyamide resin composition having a mixing ratio different from that of Example 1 was produced. That is, 400 g of the swellable fluoromica-based mineral synthesized by the above-described method and 1 kg of water were added to £ 1 force prolactam, which is a raw material of Nylon 6, and placed in a reaction vessel.
  • the obtained reinforced nylon 6 resin had a relative viscosity of 2.2, and contained 4.0% by weight of a swellable fluorine mica-based mineral with the whole being 100% by weight. Further, as in Example 1, the swellable fluorine mica-based mineral was uniformly dispersed at the molecular level in the nylon 6 resin.
  • Example 1 100 parts by weight of the reinforced nylon 6 resin was mixed with 1 part by weight of aluminum powder having an average particle size of 15 m and an aspect ratio of 750 as in Example 1. did. Then, a test piece was prepared in the same manner as in Example 1.
  • Table 1 shows the physical properties of the obtained test pieces.
  • Example 2 With respect to 100 parts by weight of the pellets of the reinforced nylon 6 resin prepared in Example 2, the average particle size as particles exhibiting a metallic color was 50 ⁇ m, and the aspect ratio was 100%. 2 parts by weight of aluminum powder of 250 (EPC-8E-340, manufactured by Sumitomo Color Co., Ltd.) and nylon 6 resin of relative viscosity 2.5 as unreinforced polyamide resin A 1 0 3 0 JR) 1 And 100 parts by weight. Other than that, each test piece was produced in the same manner as in Example 1.
  • Table 1 shows the physical properties of the obtained test pieces.
  • the polyamide resin compositions obtained in Examples 1 to 3 used the reinforced swellable fluorine mica mineral in which the compounding ratio of the mica mineral was within the range of the present invention. It has good mechanical strength, impact resistance and heat resistance, and low specific gravity. Furthermore, since the blending ratio of the aluminum powder exhibiting a metallic color was within the range of the present invention, a metallic-like appearance having good appearance was obtained.
  • Example 3 a polyamide resin composition comprising a reinforced polyamide resin and an aluminum powder exhibiting a metallic color, and a non-reinforced polyamide resin, Nylon 6, were included within the scope of the present invention. In particular, tensile weld strength was improved.
  • Example 1 100 parts by weight of Nylon 6 (A100, JR JR) with a relative viscosity of 2.5, a non-reinforced polyamide resin containing no swellable fluoromica mineral
  • 1 part by weight of aluminum powder having an average particle size of 15 m and an aspect ratio of 7500 was mixed as in Example 1.
  • each test piece was produced in the same manner as in Example 1.
  • Table 1 shows the physical properties of the obtained test pieces.
  • Example 3 The same average particle size as that of Example 3 was 50% with respect to 100 parts by weight of a total of 85 parts by weight of a nylon 6 resin pellet and 15 parts by weight of glass fiber as in Comparative Example 2. One part by weight of aluminum powder having an aspect ratio of 250 in m was mixed. Other than that, each test piece was prepared in the same manner as in Example 1.
  • Comparative Example 1 was inferior in flexural strength and flexural modulus / heat resistance because no reinforced polyamide resin was blended.
  • the particles exhibiting a medium color had an average particle diameter of 50 ⁇ m and an aspect ratio of 50% by weight.
  • each test piece was produced in the same manner as in Example 1.
  • Table 2 shows the physical properties of the obtained test piece.
  • A2 * Reinforced polyamide resin containing 4% by weight of swellable fluoromica mineral in nylon 6.
  • each test piece was prepared in the same manner as in Example 4.
  • Example 4 similarly to Examples 1 to 3, the reinforced swelling fluororesin having a compounding ratio of the swellable fluorine mica mineral within the range of the present invention, and an aluminum powder exhibiting a medium color were used. Is within the range of the present invention, it is possible to obtain a material having good mechanical strength such as bending strength and flexural modulus, good impact resistance and heat resistance, low specific gravity, and good appearance. Was.
  • Example 5 to 8 in addition to the components of Example 4 described above, various types of thermal discoloration inhibitors were blended within the scope of the present invention, and thus all of the polyamides obtained in Example 4 were used. A resin having a smaller color difference value than that of the resin composition was obtained, and excellent heat discoloration resistance was obtained.
  • nanocomposite nylon 6 (M2350, manufactured by Unitichi Riki Co., Ltd.) in which swellable fluoromica-based mineral, which is a layered silicate, was uniformly dispersed at the molecular level was used.
  • This nanocomposite nylon 6 resin has a relative viscosity of 2.4, and contains 2.0% by weight of a swellable fluoromica-based mineral out of 100% by weight. Yes, it is produced by polymerization.
  • the particles exhibiting a metallic color have an average particle size of 50 / m and an aspect ratio of 250 / m2.
  • Example 9 Example 1 0 Ding - Bruno / * co- ⁇ Roh ,, / +
  • Lamiaceae (parts by weight) 1 ⁇ 1 UU
  • nanocomposite nylon 6 (1015C2, manufactured by Ube Industries, Ltd.), in which monmorillonite, a layered silicate, was uniformly dispersed at the molecular level was used.
  • This nanocomposite nylon 6 has a relative viscosity of 2.6 and contains 2% by weight of montmorillonite of 100% by weight, and is produced by polymerization. It is a thing.
  • Example 9 a resin molded product was produced in the same manner as in Example 9, and the physical properties of the obtained resin molded product are shown in Table 3.
  • the surface reflectance was 60% or more because the polyamide resin reinforced with layered silicate contained particles having a metallic color. Thus, a good metallic feeling was obtained.
  • the main component was a reinforced polyamide resin reinforced with layered silicate, a material with good flexural modulus and heat resistance and low specific gravity was obtained.
  • a nanocomposite nylon 6 resin which is a resin used in Example 9, was used.
  • the average particle size is 50 ⁇ m and the aspect ratio is as a particle exhibiting a metallic color.
  • the mold temperature was set to 80 ° C using an injection molding machine (Toshiba Machine Co., model number IS-450) with the cylinder temperature set at 250 ° C. C,
  • the engine power was injection molded at an injection pressure of 10 OMPa.
  • Table 4 shows the results of the appearance inspection of the obtained engine cover.
  • Example 1 Example 1 2
  • Example 1 3 Example 1 4 Nanocomho. Sit nanocomo ° Sit nanocomo. Sit nanocomo “Sit” Type
  • Aluminum particles having an average particle size of 50 m and an aspect ratio of 250 are particles that exhibit a metallic color.
  • Aluminum powder with an average particle size of 95 ⁇ m and an aspect ratio of 38 (Daiwa Metal Powder) (102 B) 2 parts by weight only.
  • aluminum powder with an average particle size of 55 / m and an aspect ratio of 7.3 (Daiwa Gold Co., Ltd.) was used without mixing with My power pearl pigment. (Manufactured by Tohoku Co., Ltd., 102 C) 1.6 parts by mass and an average particle size of 9 At a distance of 5 m, an aluminum powder having an aspect ratio of S38 (0.42 parts by weight, manufactured by Daiwa Metal Mining Co., Ltd.) was added.
  • Table 4 shows the results of the appearance inspection of the obtained engine cover.
  • Example 11 since the aluminum powder and the pearl pigment made by Myric had a large aspect ratio, the oil line and the flow mark became somewhat noticeable on the surface of the obtained engine cover.
  • the pearl pigment made by My Power was blended in addition to the aluminum powder, it had an excellent metallic-like appearance.
  • Example 12 similarly to Example 11 above, aluminum powder having a high aspect ratio and pearl pigment made by My Power were used. In addition, aluminum having a low aspect ratio was used. Since the powder was mixed with pearl pigments made by My Power, the well lines and flow marks were reduced to a level that would be noticeable when viewed closely. In addition, in the same manner as described above, not only aluminum powder but also pearl pigment made by My Power Co., Ltd., was obtained, which had good gloss and good metallic appearance.
  • Example 13 only the aluminum powder having a slightly smaller aspect ratio was used, so that the well line and the flow mark were suppressed to such an extent that they would be bothersome when viewed closely. However, since no Myriki pearl pigment was blended, a high luster was generated, and the appearance was somewhat inferior to that of the above Examples 11 and 12 in terms of a metallic appearance.
  • Example 14 in addition to the aluminum powder used in Example 13, aluminum powder having a smaller aspect ratio was blended. Good appearance with less noticeable dry flow mark was obtained. However, due to an increase in the proportion of aluminum powder having a low aspect ratio, the surface of the molded product became gray with poor glossiness and slightly inferior in metallic appearance.
  • Example 15 in addition to the aluminum powder used in Example 13, aluminum powder having a smaller aspect ratio was blended. Good appearance with less noticeable dry flow mark was obtained. However, due to an increase in the proportion of aluminum powder having a low aspect ratio, the surface of the molded product became gray with poor glossiness and slightly inferior in metallic appearance.
  • the nanocomposite nylon 6 (M2350, manufactured by Unitika Ltd.) used in Example 9 was used. With respect to 97 parts by weight of the pellets of the nanocomposite nylon 6, particles having an average particle size of 50 m and an aspect ratio of 250 as particles exhibiting a metallic color.
  • Aluminum powder (EPC-8E-340, manufactured by Sumitomo Color Co., Ltd.), 1.2 parts by weight, with an average particle size of 45 ⁇ m and a powder ratio of 64 Riki Pearl Co., Ltd. (manufactured by Hotsu Trading Co.) 0.4 parts by weight, and in addition to ethylene ⁇ propylene-based polymer, maleic anhydride was graph-polymerized to improve impact resistance.
  • this pellet was used to perform injection molding on an injection molding machine (Toshiba Machine Co., model number IS-80) with the cylinder temperature set at 250 ° C, and the falling ball impact energy was measured. Test pieces were prepared.
  • Table 5 shows the physical properties of the obtained test pieces. For comparison, Table 5 shows the physical properties of Example 11 in which the impact modifier was not added. Table 5
  • Table 5 shows the mixing ratios of the pellets and impact modifiers of Nanocomposite Nylon 6.
  • Example 15 a test piece was prepared in the same manner as in Example 15. Table 5 shows the measurement results of the falling ball impact energy of the obtained test pieces. In Examples 15 to 17, the falling ball impact energy was larger than that of Example 11 in which the impact modifier was not added. Such a molded product having a large falling ball impact energy was suitable for use as a housing such as an engine power bar.
  • Example 18
  • the nanocomposite nylon 6 (M2350, manufactured by Unitika Ltd.) used in Example 9 was used as the resin component.
  • the particles exhibiting a metallic color have an average particle size of 50 ⁇ m and an aspect ratio of Of aluminum powder (EPC-8E—340) manufactured by Sumitomo Color Co., Ltd. is 1.2 parts by weight, the average particle size is 45 m, and the aspect ratio is 64 My pearl pigment (manufactured by Takatsu Trading Co., Ltd.) 0.4 parts by weight, and glass fiber (manufactured by Nippon Electric Glass Co., Ltd., T-289) for the purpose of further improving impact resistance.
  • EPC-8E—340 Of aluminum powder manufactured by Sumitomo Color Co., Ltd.
  • the aspect ratio is 64 My pearl pigment (manufactured by Takatsu Trading Co., Ltd.) 0.4 parts by weight
  • glass fiber manufactured by Nippon Electric Glass Co., Ltd., T-289) for the purpose of further improving impact resistance.
  • talc manufactured by Nippon Talc, Micro Ace K-11
  • twin-screw kneader manufactured by Toshiba Machine Co., Ltd.
  • a pellet was prepared using TEM_37 BS).
  • injection molding was carried out using an injection molding machine (3 ⁇ 4 ⁇ Machinery 1: Made, Model IS-450) with a cylinder temperature set at 250 ° C. An engine cover was prepared and a drop test was performed.
  • Table 6 shows the results of the drop test of the obtained engine cover. For comparison, Table 6 shows the physical properties of Example 11 in which the impact modifier and the reinforcing material were not blended and Example 15 in which only the impact modifier was blended.
  • Table 6 shows the pellets of nanocomposite nylon 6 and the mixing ratio of glass fiber and talc as a reinforcing material.
  • Example 18 was less susceptible to treatment conditions 1 and 2 than those of Example 11 in which the impact modifier and the reinforcing material were not blended. In addition, although the performance was slightly inferior to that of Example 15 in which an impact resistance improving agent was blended, all of them could withstand actual use as engine covers.
  • Example 20
  • the pellet of Nanocomposite Nylon 6 (manufactured by Unitika Ltd., M2350) used in Example 9 had a pellet of 84%, a particle size of 50 ⁇ m, and an aspect ratio of 250 12% aluminum powder (EPC-8E-340, manufactured by Sumitomo Color Co., Ltd.), a pearl pigment made by Mica with a particle size of 45 ⁇ m and an aspect ratio of 64 (manufactured by Takara Tsusho) 4% and a single-shaft kneader (ED-65, manufactured by Enpla Sangyo Co., Ltd.) with a cylinder temperature set at 260 ° C to produce a pigment mass (CM-1) did.
  • Table 7 shows the results of the appearance inspection of the obtained test pieces.
  • Table 7 shows Example 11 in which the pellets of Nanocomposite Nylon 6, aluminum powder, and pearl pigment made by Mikuri were directly melt-kneaded without producing a pigment mass. Show.
  • GM-1 * Aluminum powder 12%, made of mica. Color pigment 4%, nano combo.
  • Pellets of 92% of the nanocomposite nylon 6 used in Example 9 and aluminum powder having a particle diameter of 50 m and an aspect ratio of 250 (EPC— 8 E — 2 9 7)
  • Pigment master (CM— 2) consisting of 6% and 2% of my pearl pigment (manufactured by Takara Tsusho) with a particle size of 45 ⁇ m and an aspect ratio of 64 A pellet was produced in the same manner as in Example 20.
  • the mixing ratio of this pigment master (CM-2) pellet to the pellet of the nanocomposite nylon 6 was as shown in Table 7, and otherwise the same as in Example 20.
  • a test piece was prepared by using this method and its appearance was inspected.
  • Table 7 shows the results of the inspection of the appearance of the obtained test pieces.
  • pigment pellets were prepared in advance, and pellets of nanocomposite nylon 6 (pellets of reinforced polyamide resin) and pellets were blended. Therefore, compared to Example 11 in which the pigment was directly blended with the nanocomposite nylon 6 pellet (pellet of reinforced polyamide resin), it was white and glossy and had good appearance. was gotten.
  • Example 2 3
  • the particles exhibiting a metallic color have an average particle size of 50 ⁇ m and an aspect ratio of 25%.
  • a pellet was prepared using 7BS). Next, using an injection molding machine (manufactured by Toshiba Machine Co., model number IS-100E) with the cylinder temperature set to 250 ° C using this pellet, the mold temperature was set to 80 ° C. A test piece was prepared by injection molding at an injection pressure of 100 MPa, and the heat discoloration resistance and the flow length were measured.
  • Table 8 shows the measurement results.
  • Example 2 5 instead of 1 part by weight of polyethylene oxide wax, 0.65 parts by weight of ethylene bis stearyl amide (Nippon Kasei Co., Sulinox E) and zinc stearate (Sakai) were used as flow improvers. 0.25 parts by weight). Other than that, a resin pellet was prepared in the same manner as in Example 23, and the heat discoloration resistance and the flow length were measured according to the above-mentioned methods. Table 8 shows the measurement results.
  • Example 2 5 instead of 1 part by weight of polyethylene oxide wax, 0.65 parts by weight of ethylene bis stearyl amide (Nippon Kasei Co., Sulinox E) and zinc stearate (Sakai) were used as flow improvers. 0.25 parts by weight).
  • a resin pellet was prepared in the same manner as in Example 23, and the heat discoloration resistance and the flow length were measured according to the above-mentioned methods. Table 8 shows the measurement results.
  • Example 2 5 instead of 1 part by weight of polyethylene
  • Example 2 7 As a fluidity improver, 0.9 parts by weight of zinc stearate (manufactured by Sakai Chemical Co., Ltd.) was used instead of 1 part by weight of polyethylene oxide wax. Otherwise, a resin pellet was prepared in the same manner as in Example 23, and the heat discoloration resistance and the flow length were measured in accordance with the above-mentioned methods. Table 8 shows the measurement results.
  • Example 2 7 As a fluidity improver, 0.9 parts by weight of zinc stearate (manufactured by Sakai Chemical Co., Ltd.) was used instead of 1 part by weight of polyethylene oxide wax. Otherwise, a resin pellet was prepared in the same manner as in Example 23, and the heat discoloration resistance and the flow length were measured in accordance with the above-mentioned methods. Table 8 shows the measurement results.
  • Example 2 7 As a fluidity improver, 0.9 parts by weight of zinc stearate (manufactured by Sakai Chemical Co., Ltd.) was used instead of 1 part by
  • Table 8 shows the measurement results.
  • 100 parts by weight of the nanocomposite nylon 6 resin were mixed with aluminum powder and a phosphite-based compound (Pep36) as a thermal discoloration inhibitor. Since they were blended within the scope of the present invention, those having excellent metallic color and heat discoloration resistance were obtained. Further, in Examples 23 to 26, since a fluidity improver was blended for the purpose of suppressing a rise in viscosity of the resin composition due to the addition of the phosphite-based compound (Pep 36), As a result, a material having a longer flow length and better moldability was obtained. Industrial applicability
  • the polyamide resin composition of the present invention is suitable for internal and external covers of home electric appliances and housings of electric appliances.
  • the polyamide resin composition of the present invention can be suitably used particularly as an engine cover.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 ポリアミ ド樹脂組成物 技術分野
本発明は、 ポリ アミ ド樹脂組成物に関し、 このポリ アミ ド樹脂組 成物からなる成形品は、 軽量でかつ、 剛性、 耐熱性、 耐衝撃性、 耐 熱変色性に優れ、 前記成形品の表面には塗装を施すことな く 美麗な メ タ リ ッ クな色調を発現するこ とができる。 特に本発明は、 自動車 のエンジンカバーや家電製品などの内外装カバーと して好適に使用 できるポ リ アミ ド樹脂組成物に関する。
背景技術
自動車のエンジンカバーや家電製品などの内外装カバーは、 ポ リ アミ ド樹脂などの熱可塑性樹脂にて形成されるこ とが一般的である 。 このような樹脂成形品の外親には、 鋼やアルミ ニウム合金のよう なメタ リ ックな色調が要求される場合がある。 特に近年では、 樹脂 成形品の美観に対する要求が高ま り、 単にメ タ リ ッ クな色調を有す るだけでな く 、 光沢感を有したうえで高輝感を抑えたメ タ リ ッ クな 色調が要求されている。 また、 メ タ リ ッ クな色調も、 銀灰色からや や白みがかった灰白色のものまで様々な種類の色調が要求されてい る。
このような要求を満たすために、 従来よ り、 樹脂成形品の表面に アルミニウムなどの金属粉を含有する ^料を塗装する方法いわゆる メ タ リ ック '塗装が行なわれている。 しかし、 このメ タ リ ッ ク塗装で は、 有機溶剤を使用するために、 作業環境面で問題がある。 また、 生産性に劣り コス トが高く なる。
上記の問題点を解消する方法と して、 ポリアミ ド樹脂などの熱可 塑性樹脂に、 アルミニウムなどの金属粉や、 マイ 力、 ワラス トナイ ト、 ガラスなどの表面に金属を被覆した光沢性粒子を充填した樹脂 組成物が提案されている。
例えば特公昭 5 7 — 4 0 1 8 1号公報には、 ポリェチレンゃポリ 塩化ビニルなどの合成樹脂に、 アルミ二ゥム粉を混ぜた樹脂組成物 が提案されている。
また、 ウエル ドライ ンなどの流れ模様を抑制する目的で特定の粒 子径とァスぺク ト比とを有するアルミ二ゥム粉を熱可塑性樹脂に配 合した樹脂組成物が提案されている (特公平 6 - 9 9 5 9 2号公報 、 特公平 6 — 9 9 5 9 3号公報、 特公平 6 — 9 9 5 9 4号公報) 。
さらに、 ポリエチレンテレフ夕 レー ト樹脂や A B S樹脂などの熱 可塑性樹脂に、 アルミニウム粉とマイ 力製パール顔料とを配合して 金属光沢性を改良した樹脂組成物が種々提案されている (特開昭 5 0 - 8 9 4 4 3号公報、 特開昭 5 5 — 4 5 7 5 3号公報、 特許第 2 5 2 4 9 2 2号など) 。
しかし、 上記した樹脂組成物からなる成形品は、 いずれもメ夕 リ ックな色調は得られるが、 剛性や耐熱性の点で問題がある。
一方、 剛性や耐熱性を改良する目的でアルミニウム粉などを含有 した熱可塑性樹脂にマイ 力やガラス繊維を配合した樹脂組成物が提 案されている (特許第 2 7 1 8 0 8 3号) 。 しかし、 この樹脂組成 物からなる成形品は、 耐熱性や剛性は高く なるものの、 美麗なメ タ リ ッ クな色調を有する外観を得るこ とが難し く、 しかも重いという 問題がある。
さ らに、 特開平 9 一 7 6 2 7 2号公報には、 ポリ プロピレンなど の熱可塑性樹脂に導電性粒子と圧電性粒子とを混ぜた樹脂組成物が 提案されている。 この樹脂組成物からなる成形品は耐衝撃性に優れ るものの、 剛性が低く またコス ト高になる。
ところで、 上述した樹脂組成物は、 家電製品などの内外装カバ一 には適しているが、 自動車のェンジン力バ一のように高温状態で長 期間使用される場合には、 耐熱変色性もさらに要求される。 しかし 、 上述のように良好な外観性と十分な耐熱変色性とを兼ね備えた成 形品とすることのできる樹脂組成物は未だ得られていない。
本発明は、 軽量であるとともに、 剛性、 耐熱性、 耐衝撃性、 耐熱 変色性に優れた成形品とすることができ、 前記成形品の表面には塗 装を施すことな く、 美麗なメ 夕 リ ックな色調を発現することができ るポリアミ ド樹脂組成物を提供することを技術的課題とする。 発明の開示
本発明者らは、 上記課題を解決するために鋭意検討をした結果、 本発明をなすに至ったものである。
本発明のポ リ アミ ド樹脂組成物は、 層状珪酸塩 0 . 1 〜 1 0重量 %が分子レベルで均一に分散された強化ポリ アミ ド樹脂 1 0 0重量 部に対して、 メ タ リ ック色を発現する粒子 0 . 1 〜 1 0重量部を配 合してなることを特徴とする。
本発明のポ リ アミ ド樹脂組成物によれば、 ポリアミ ド樹脂に層状 迕酸塩を分子レベルで均一に分散させた強化ポリ アミ ド樹脂を主成 分とするこ とで、 このポ リ アミ ド樹脂組成物からなる成形品を軽 ¾ で、 しかも剛性、 耐熱性、 耐衝撃性に優れたものとすることができ る。
また、 上記の強化ポリ アミ ド樹脂 1 0 0重量部に対しメ夕 リ ック 色を発現する粒子 0 . 1 〜 1 0重量部を配合することで、 このポ リ ァミ ド樹脂組成物からなる成形品の表面にメ夕 リ ック色を発現させ ることができる。
さ らに、 このポリ アミ ド樹脂組成物は、 再利用が可能であるこ と からコス トダウンを図ることができる。
発明を実施するための形態
本発明のポリアミ ド樹脂組成物は、 層状珪酸塩 0 . 1 ~ 1 0重量 %が分子レベルで均一に分散された強化ポリ アミ ド樹脂 1 0 0重量 部に対して、 メ タ リ ック色を発現する粒子 0 . 1 〜 1 0重量部を配 合してなる必要がある。
主成分となる樹脂と して、 層状珪酸塩 0 . 1 〜 1 0重量%が分子 レベルで均一に分散された強化ポリ アミ ド樹脂を用いることで、 本 発明のポリアミ ド樹脂組成物からなる成形品を、 軽量で、 しかも剛 性、 耐熱性、 耐衝撃性などの機械的特性に優れたものとすることが できる。
また、 上記のように構成された強化ポリ アミ ド樹脂 1 0 0重量部 には、 メタ リ ック色を発現する粒子を 0 . 1 〜 1 0重量部の割合で 配合する必要がある。 メタ リ ック色を発現する粒子の配合割合が 0 . 1重量部よ り も少ないと樹脂成形品と した時に、 その表面にメ タ リ ック感が発現しない。 メタ リ ク色を発現する粒子の配合割合が 1 0重量部を超えると、 樹脂組成物に対する強化ポリアミ ド樹脂の 割合が少なく なるため、 成形性に劣るものとなる。
このようにメタ リ ツク色を発現する粒子を強化ポリ アミ ド樹脂に 対して特定の割合で配合することで、 得られた樹脂組成物からなる 成形品は、 剛性に優れ、 かつその成形品の表面に光沢感のあるメ 夕 リ ックな色調を発現することができる。 また、 強化ポリ アミ ド樹脂 にメタ リ ック色を発現する粒子を配合するだけで作製することがで きるため、 上記従来のメタ リ ック塗装法に較べてコス トダウンが図 れる。
本発明のポ リ アミ ド樹脂組成物の主成分となる樹脂と しては、 ポ リ アミ ド樹脂に層状珪酸塩を 0 . 1 〜 1 0重量%好ま しく は 1 〜 1 0重量%配合し、 この層状珪酸塩を分子レベルで均一に分散した強 化ポリ アミ ド樹脂を用いる必要がある。
層状珪酸塩の配合割合が 0 . 1重量%よ り少なく なると、 成形品 と した際に、 曲げ強度や曲げ弾性率といった機械的強度や、 耐熱性 に劣るものとなる。 また、 層状珪酸塩の配合割合が 1 0重量%よ り 多 く なる と、 成形品とする際の射出成形が困難となる。
ポリ アミ ド樹脂中に層状珪酸塩が分子レベルで均一に分散する と は、 珪酸塩層がポリ アミ ド樹脂マ ト リ ックス中に分散する際に、 そ れそれの層状珪酸塩が平均 2 0 A以上の層間距離を保っている場合 をいう。 ここで、 層間距離とは珪酸塩層の重心間の距離を指し、 均 一に分散するとは前記珪酸塩層の一層一層、 も しく は平均的な重な り が 5層以下の多層物が、 平行あるいはランダム、 も しく は平行と ラ ンダムが混在した状態で、 その 5 0 %以上、 好ま し く は 7 0 %以 上が塊を形成するこ とな く分散している状態をいう。 例えば層状珪 酸塩と して膨潤性フ ッ素雲母系鉱物を用いた場合には、 前記膨潤性 フ ヅ素雲母鉱物がポリ アミ ド樹脂中に分子レベルで均一に分散され る と、 樹脂ペレ ッ トについて広角 X線回折測定を行った際に、 膨潤 性フ ッ素雲母系鉱物の厚み方向に起因する 1 2〜 1 3 Aのピークが 消失される。 したがって、 この測定によ り膨潤性フ ッ素雲母系鉱物 の分散状態が確認できる。 このようにポリ アミ ド樹脂に層状珪酸塩 を分子レベルで均一に分散させた強化ポ リ アミ ド樹脂を用いるこ と で、 本発明のポリ アミ ド樹脂組成物を成形品と した際に、 曲げ強度 や fillげ弹性率といった機械的強度だけでな く、 耐熱性、 耐衝撃性に 優れたものとするこ とができる。 また、 層状珪酸塩が分子レベルで均一に分散された強化ポリ アミ ド樹脂は、 ガラス繊維などの繊維状強化材ゃタルクなどのミネラル で強化した強化ポ リ アミ ド樹脂に較べて、 層状珪酸塩を少量配合す るだけで強化できるため、 軽量な成形品とすることができる。
本発明における強化ポリアミ ド樹脂を得るには、 ポリ アミ ド樹脂 を形成するァミ ノ カルボン酸、 ラクタム、 ジァミ ンとジカルボン酸 (それらの一対の塩も含まれる) などのモノマーに、 層状珪酸塩を 所定量存在させた状態で、 モノマーを重合する方法が挙げられる。 も し く は、 長鎖 4級アンモニゥム塩で前処理した層状珪酸塩とポ リ アミ ド樹脂とを二軸押出機を用いて溶融混練する方法がある。
強化ポリ アミ ド樹脂を構成するポ リ アミ ド樹脂は、 ァミ ノカルボ ン酸の重縮合、 も しく はラクタムの重合、 又はジァミ ンとジカルボ ン酸との重縮合によって得られる。
このようなポリ アミ ド樹脂の好ま しい例と しては、 ポリ カブロア ミ ド (ナイ ロン 6 ) 、 ポリテ ト ラメチレ ンアジパミ ド (ナイ ロン 4 6 ) 、 ポリへキサメチレンアジノ ミ ド (ナイ ロ ン 6 6 ) 、 ポリへキ サメチレンセバカ ミ ド (ナイ ロ ン 6 1 0 ) 、 ポリへキサメチレン ド デカ ミ ド (ナイ ロ ン 6 1 2 ) 、 ポリ ゥンデカメチレンアジパミ ド ( ナイ ロン 1 1 6 ) 、 ポリ ゥンデカ ミ ド (ナイ ロ ン 1 1 ) 、 ポリ ドデ カ ミ ド (ナイ ロ ン 1 2 ) 、 ポリ ビス ( 4 —アミ ノ シクロへキシル) メ タン ドデカ ミ ド (ナイ ロ ン P A C M 1 2 ) 、 ポリ ビス ( 3 —メチ ルー 4 —アミ ノ シクロへキシル) メ タ ン ドデカ ミ ド (ナイ ロ ンジメ チル P A C M 1 2 ) 、 ポリ メ タキシ リ レンアジパミ ド (ナイ ロ ン M X D 6 ) 、 ポリへキサメチレンテレフタルアミ ド (ナイ ロ ン 6 T ) 、 ポリへキサメチレ ンイ ソフ夕ルアミ ド (ナイ ロン 6 I ) 、 ポ リ ノ ナメチレンテレフタルアミ ド (ナイ ロ ン 9 T ) 、 ポリ ゥンデカメチ レンテレフタルアミ ド (ナイ ロ ン 1 1 T ) 、 ポリ ゥンデカメチレン へキサヒ ドロテレフタルアミ ド (ナイ ロン 1 1 T ( Η ) ) 、 ポリ ト リ メチルへキサメチレンテレフタルアミ ド (ナイ ロ ン Τ Μ Η Τ ) 又 はこれらの共重合ポリ アミ ド、 混合ポリ アミ ドなどがあ り、 中でも 特にナイ ロ ン 6又はこれらの共重合体が好適に使用できる。
ポリ アミ ド樹脂の相対粘度は、 特に限定されるものではない。 し かし、 溶媒として 9 6重量%濃硫酸を用い、 温度 2 5 °C、 濃度 1 g / d 1の条件で測定した相対粘度が 1 . 5 〜 5 . 0の範囲であるこ とが好ま しい。 相対粘度が 1 . 5未満であると成形品と したときの 曲げ強度や曲げ弾性率といつた機械的強度が低下し、 相対粘度が 5 . 0 を超えると成形性が急速に低下する。
ポリ アミ ド樹脂に配合する層状珪酸塩と しては、 モンモ リ ロナイ ト、 ノ イデライ ト、 サボナイ ト、 ヘク トライ ト、 ソーコナイ ト等の スメ クタイ ト系鉱物や、 バーミ キユラィ ト等のバーミキユラィ ト系 鉱物や、 白雲母、 黒雲母、 パラゴナイ ト、 レビ トライ ト、 膨潤性フ ッ素雲母等の雲母系鉱物や、 マーガライ ト、 ク リ ン トナイ ト、 アナ ンダイ 卜等の脆雲母系鉱物や、 ドンバサイ ト、 ス ド一アイ ト、 ク ッ ケアイ ト、 ク リ ノ クロア、 シャモサイ ト、 二マイ ト等の緑泥石系鉱 物や、 セピオライ ト等の含水イ ノケィ酸塩系鉱物等が挙げられ、 中 でも膨潤性フ ッ素雲母鉱物やモンモ リ ロナイ 卜が好適に使用できる 。 特に膨潤性フ ッ素雲母鉱物は、 強化ポリ アミ ド樹脂中における均 一分散性が良く、 また、 層間を広げるために、 アミ ノ カルボン酸の アンモニゥム塩ゃォニゥム塩などの冇機塩での前処现を特に必要と しないため好適に使用できる。 膨潤性フ ッ素雲母系鉱物は、 具体的には、 雲母の水酸基をフ ッ素 で置換したものであ り、 その化学構造は次式で示される。
( M F ) · 5 ( a M g F 2 · b M g 0 ) ·ァ S i 0 2 ① (式中、 Mはナ ト リ ウム又はリチウムを表し、 α 、 β ヽ ァ、 a及び bは各々係数を表し、 0 . 1 ≤ひ≤ 2、 2 ≤ ?≤ 3 . 5、 3 ≤ァ 4、 0 ≤ a≤ 1 , 0 ≤ b≤ 1 , a + b = l である。 )
このような膨潤性フ ッ素雲母系鉱物の製造法と しては、 例えば、 酸化珪素や酸化マグネシウムを各種のフ ッ化物と混合し、 その混合 物を電気炉あるいはガス炉で 1 4 0 0〜 1 5 0 0 °Cの温度で完全に 溶融し、 その冷却過程で反応容器内にフ ッ素雲母系鉱物を結晶生長 させるいわゆる溶融法がある。
また、 タルクを出発物質と して用い、 これにアルカ リイオンをィ ン夕ーカレ一シヨ ンしてフ ッ素雲母系鉱物を得る方法がある (特開 平 2 — 1 4 9 4 1 5号公報) 。 この方法では、 タルクに珪フ ッ化ァ ルカ リあるいはフ ヅ化アルカ リ を混合し、 磁性ルツボ内で 7 0 0〜 1 2 0 0 °Cで短時間加熱処理するこ とによつて膨潤性フ ッ素雲母系 鉱物を得ることができる。
このような膨潤性フ ッ素雲母鉱物をポリ アミ ド樹脂を形成するモ ノマ一中に分散させて重合すると、 フ ッ素雲母鉱物の珪酸塩層の層 間が広がり、 各層間にポリアミ ド樹脂が挿入されて、 膨潤性フ ヅ素 雲母鉱物が分子レベルで分散された強化ポリ アミ ド樹脂とするこ と ができる。 しかも膨潤性フ ッ素雲母鉱物は、 少量の添加でもポリ ア ミ ド樹脂への均一分散性が良いため、 出来上がった強化ポリ アミ ド 樹脂は、 繊維状強化材を配合した強化ポリ アミ ド樹脂に比べて軽く な り、 さ らに耐熱性も向上する。 本発明における強化ポリ アミ ド樹脂を得るには、 ポリ アミ ド樹脂 を形成するアミ ノカプロン酸、 ラクタム、 ジァミ ンとジカルボン
(それらの一対の塩も含まれる) などのモノマーに、 上記の層状珪 酸塩を所定量存在させた状態で、 モノマーを重合すればよい。
なお、 本発明においては、 上記の強化ポリアミ ド樹脂 1 0 0重量 部に対してさらに非強化ポリ アミ ド樹脂を 2 0 0重量部以下の割合 で配合してもよい。 すなわち、 ポリ アミ ド樹脂組成物のチヅプと非 強化ポリアミ ド樹脂のチッブとを成形時に混ぜて使用することで、 得られたポリ アミ ド樹脂組成物は非強化ポリアミ ド樹脂を配合して いないポリ アミ ド樹脂組成物よ り も、 成形品と したときの引張り ゥ エル ド強度が向上するため好ま しい。
強化ポリ アミ ド樹脂に配合するこ とができる非強化ポリアミ ド樹 脂の好ま しい例と しては、 ポリ 力プロアミ ド (ナイ ロン 6 ) 、 ポリ テ トラメチレンアジノ ミ ド (ナイ ロ ン 4 6 ) 、 ポリへキサメチレ ン アジパミ ド (ナイ ロン 6 6 ) 、 ポリへキサメチレンセバカ ミ ド (ナ ィ ロ ン 6 1 0 ) 、 ポリへキサメチレ ン ドデカ ミ ド (ナイ ロン 6 1 2 ) 、 ポリ ゥンデカメチレンアジパミ ド (ナイ ロ ン 1 1 6 ) 、 ポリ ウ ンデカ ミ ド (ナイ ロ ン 1 1 ) 、 ポリ ドデカ ミ ド (ナイ ロン 1 2 ) 、 ポリ ビス ( 4 _アミ ノ シク ロへキシル) メタン ドデカ ミ ド、 (ナイ ロ ン P A C M 1 2 ) 、 ポリ ビス ( 3 —メチル一 4 _アミ ノ シクロへ キシル) メ タ ン ドデカ ミ ド (ナイ ロ ンジメチル P A C M 1 2 ) 、 ポ リ メ 夕キシ リ レ ンアジノ ミ ド (ナイ ロ ン MX D 6 ) 、 ポリへキサメ チレンテレフタルアミ ド (ナイ ロ ン 6 T ) 、 ポリへキサメチレンィ ソフ夕ルアミ ド (ナイ ロ ン 6 1 ) 、 ポリ ノナメチレンテレフ夕ルァ ミ ド (ナイ ロ ン 9 T ) 、 ポリ ゥンデカメチレンテレフタルアミ ド ( ナイ ロ ン 1 I T ) 、 ポリ ゥンデカメチレンへキサヒ ドロテレフタル アミ ド (ナイ ロ ン 1 I T ( H ) ) 、 ポ リ ト リ メチルへキサメチレ ン テレフタルアミ ド (ナイ ロン T M H T ) 及びこれらの共重合ポリ ア ミ ド、 混合ポリ アミ ド等があ り、 中でもナイ ロ ン 6、 ナイ ロ ン 6 6 、 ナイ ロン 4 6、 ナイ ロン 1 1 、 ナイ ロ ン 1 2、 その中でも特にナ ィ ロ ン 6、 ナイ ロン 6 6又はこれらの共重合ポリ アミ ド、 混合ポリ アミ ドが好適に使用できる。
なお、 本発明における非強化ポリ アミ ド樹脂には、 1 重量%以下 の割合で結晶核剤が配合されていると、 ポリ アミ ド樹脂組成物の結 晶性が向上して成形性が改善されるのでよ り好ま しい。 かかる結晶 核剤と してはタルク、 シ リカ、 カオ リ ン、 グラフアイ 卜、 酸化マグ ネシゥム、 酸化アルミニウム等を挙げることができ、 タルクが特に 好ま しい。
本発明のポリアミ ド樹脂組成物に配合するメタ リ ック色を発現す る粒子は、 金属反射面を有する粒子、 あるいは前記金属反射面を有 する粒子と灰白色ないし白色の反射面を有する粒子との混合物であ る。
金属反射面を有する粒子と しては、 金属粒子や金属皮膜が表面に 形成された粒子が挙げられる。
金属粒子と しては、 アルミニウム、 ニッケル、 錫、 銅、 鉄、 金、 銀、 白金などの粒子、 またはこれらの金属を基質とする黄銅、 ステ ンレスなどの合金の粒子が挙げられ、 中でもアルミニウム、 ニッケ ル、 錫の粒子が好ま しく、 アルミニウムの粒子が特に好ま しい。
金属皮膜が fillに形成された粒 -了-と しては、 樹脂やガラスなどの 金属以外の素材からなる粒状の基材に、 1: の金厲からなる金厲膜 を付着させた粒子が好適である。 このように基材表面に上記の金属 からなる皮膜を有していれば基材は特に限定されるものではない。 前記基材の具体例と しては、 各種のガラス粒子、 力一ボン粒子、 各 種樹脂の粒子などが挙げられる。 各種樹脂の具体例と しては、 フ ッ 素樹脂、 エポキシ樹脂、 フ エノール樹脂、 ナイ ロ ン樹脂、 架橋ァク リル樹脂、 架橋ポリスチレン樹脂などを用いることができるが、 そ の耐熱温度はマ ト リ ックスとなる強化ポリアミ ド樹脂の成形時の温 度を考慮して決める必要がある。 基材樹脂の耐熱温度がマ ト リ ッ ク スとなる強化ポリ アミ ド樹脂の成形時の温度よ り も著し く低いと、 溶融混練するときに金属皮膜を付着させた樹脂粒子が必要以上に熱 変形し'、 所望のメ夕 リ ック色を発現する成形品が得られない場合が ある。 なお、 各種のガラス粒子、 カーボン粒子、 各種樹脂の粒子な どの基材表面に金属皮膜を施す方法は、 特に限定されるものではな い
灰白色ないし白色の反射面を有する微粒子と しては、 マイカゃガ ラスフ レークなどの基材となる粒子を、 酸化チタ ンなどの灰白色な いし白色の材料でコーティ ングしたものが挙げられる。 この灰白色 ないし白色の材料は、 光沢を有するものであるのが好適である。 具 体的にはマイ 力粒子を酸化チタ ンでコーティ ングしたマイ 力製パー ル顔料が好適に使用できる。 なお、 マイ 力やガラスフ レークなどか らなる基材表面に皮膜を施す方法は、 特に限定されるものではない 上記本発明のポリ アミ ド樹脂組成物は、 詳細には、 金属反射面を 有する粒子がアルミ ニウム粉であ り、 灰 色ないし ¾色の反射面を 冇する粒子がマイ 力製パール顔料であ り、 前 /!iiアルミ ニウム粉の平 均粒子径が 1 0 〜 1 0 0〃 mでァスぺク ト比が 5 〜 3 0 0 0、 前記 マイ 力製パール顔料の平均粒子径が 1 0 〜 5 0〃 mでァスぺク ト比 が 5 〜 5 0 0であ り、 さらに前記アルミニウム粉とマイ力製パール 顔料とをその配合割合が重量比でアルミニウム粉/マイ 力製パール 顔料 = 5 0 / 5 0 〜 9 8 / 2 となるように配合した混合物を、 上述 の強化ポリアミ ド樹脂 1 0 0重量部に対して、 0 . 1 〜 1 0重量部 配合することが特に好ま しい。
ポリ アミ ド樹脂組成物を成形品にしたときの外観は、 粒子径と、 粒子径をその厚みで除算した値であるアスペク ト比とに依存する。 アルミニウム粉の平均粒子径が 1 0 / m未満では、 成形品と した際 にメタ リ ックな色調が得られず、 平均粒子径が 1 0 0〃mを超える とポリアミ ド樹脂への分散性が悪く な り高輝感のぁるメタ リ ック色 なものとなる。 また、 アスペク ト比が 5 よ り も小さ く なると、 成形 品の色調が白色に近づき光沢感に劣る艷のないものとな り、 ァスぺ ク 卜比が 3 0 0 0 を超えるものは製造するのが難しい。 また、 マイ 力製パール顔料の平均粒径が 1 0〃m未満では、 成形品と した際に メタ リ ックな色調が得られず、 5 0〃 mを超えると分散性が悪く な り、 光沢感を発現しないものとなる。 また、 アスペク ト比が 5未満 であるものは製造するのが難しく、 ァスぺク ト比が 5 0 0 を超える とメ タ リ ック色を発現しに く く なる。
アルミニウム粉とマイ 力製パール顔料とを混合して用いる場合に は、 重量比でアルミニウム粉/マイ 力製パール顔料 = 5 0 / 5 0 〜 9 8 / 2 とするこ とが美麗なメ タ リ ックな色調が得られる点で好ま しい。
また、 上 i记の配合割合にて されたアルミニウム粉とマイ 力製 パール顔料との混合物は、 強化ポリ アミ ド樹脂 1 0 0重量部に対し て 0 . 1 〜 1 0重量部の範囲で混合する必要がある。 混合物の配合 割合が 0 . 1 重量部よ り少なく なる と、 成形品と した際にメタ リ ツ クな色調が得られず、 光沢感にも劣るものとな り、 配合割合が 1 0 重量部を超えると、 成形性に劣るものとなる。
また、 本発明のポリアミ ド樹脂組成物には、 強化ポリ アミ ド樹脂
1 0 0重量部に対して、 ホスファイ ト系化合物、 ヒンダ一 ドフエノ ール系化合物、 チォエーテル系化合物及びハロゲン化銅からなる群 よ り選ばれた熱変色防止剤を 5重量部以下の割合で配合することが 好ましい。 このような熱変色防止剤を配合したポリ アミ ド樹脂組成 物にて成形品を形成すると、 成形品を使用する際に、 成形品が高温 状態に長時間さらされても、 成形品の表面が変色するこ との無い耐 熱変色性に優れたものとすることができる。 熱変色防止剤は、 強化 ポリアミ ド樹脂に対してわずかな量を配合するだけで所望の性能を 発揮するので、 上述のように強化ポリ アミ ド樹脂 1 0 0重量部に対 して 5重量部以下配合するだけでよい。 熱変色防止材の配合割合が 5重量部を超えると、 コス ト高にな り、 また機械的強度も低下する なお、 本発明において耐熱変色性に優れるポリアミ ド樹脂組成物 とは、 具体的には、 後述の耐熱変色試験を行った際に、 色差値 Δ Ε が 1 2以下になるようなポリアミ ド樹脂組成物である。 このような 耐熱変色性を有するポリ アミ ド樹脂組成物とするこ とで、 例えば自 動車のエンジンカバ一のように使用時に高温となるもの、 具体的に は 1 2 0 °C位の高温になるものに長時問使用 しても、 熱変色を防止 するこ とができる。 本発明において耐熱変色性を付与する目的で配合する熱変色防止 剤と しては、 上述のようにホス フアイ 卜系化合物、 ヒンダー ドフ エ ノ ール系化合物、 チォエーテル系化合物及びハロゲン化銅が挙げら れ、 中でもホス フアイ 卜系化合物及びヒンダー ドフエノール系化合 物が好ま しく、 ホスフアイ ト系化合物が特に好ま しい。
ホス フアイ 卜系化合物と しては、 具体的には、 下記②式または下 記③式の一般式で表される化合物であって、 常温 ( 2 5 °C) で白色 粉末も しく は白色フ レーク状のものが用いられる。
Figure imgf000017_0001
[ただし、 R 1 3 R 2は炭素数 1〜 2 0のアルキル基を示す。 ] RS R5
Figure imgf000017_0002
[ただし、 R 3 , R 4 , R 5は炭素数 1 ~ 5のアルキル基、 水素原子 を示す。 ]
上記のような化合物と しては、 例えば、 旭電化工業社製の商品名 アデカスタブ P E P— 8、 P E P— 8 F、 P E P _ 8 W、 P E P— 1 1 C、 P E P— 2 4 G、 P E P— 3 6などが相当 し、 P E P— 2 4 G、 P E P— 3 6が好適に使用でき、 P E P— 3 6が特に好適に 使用できる。
ヒ ンダー ドフ エ ノ ール系化合物と しては、 下記④式または下記⑤ 式の 般式で表される化合物であって分子量が 4 5 0以上の化合物 が fflいられる。
Figure imgf000018_0001
[ただし、 R 6は炭素数 1 ~ 2 0のアルキル基、 R ? !^。はそれ それ独立した水素原子、 炭素数 1 ~ 3 0のアルキル基または 1価の 有機基を示す。 ]
Figure imgf000018_0002
[ただし、 R Hは炭素数 1〜 2 0のアルキル基、 R 1 2〜R 1 5のう ち 3個はそれぞれ独立した水素原子、 炭素数 1 ~ 3 0の'アルキル基 または 1価の有機基で、 1個は結合手、 nは 2〜4の整数、 Zは n 価の基を示す。 ]
分子量が 4 5 0 よ り小さ く なると ヒンダー ドフエノ一ル系化合物 が分解し易く なり、 ガスの発生などが生じるため好ま し く ない。
ヒンダ一 ドフエノ一ル系化合物の具体例と しては、 ト リエチレン グリ コ一ル一ビス一 3 — ( 3 '— t —ブチル一 4 'ーヒ ドロキシ一 5 —メチルフエニル) プロ ピオネー ト、 1 , 3, 5 — ト リス ( 3 ', 5 '—ジ _ t —プチル一 4 'ーヒ ドロキシベンゾィル) イ ソシァヌ レ — ト、 1 , 3, 5 — ト リ メチル一 2, 4, 6 — ト リ ス ( 3,, 5 '— ジ一 t 一ブチル一 4 '—ヒ ドロキシーベンジル) ベンゼン、 へキサ メチレ ングリ コール一ビス一 [ ?一 ( 3 , 5 —ジ一 t _ブチル一 4 ーヒ ドロキシ一フ エニル) プロ ピオネー ト ] 、 6 — ( 4 '—ヒ ドロ キシ一 3 ', 5 '—ジー t —プチルァニ リ ノ ) 一 2 , 4 — ビスーォク チルーチォー 1, 3, 5 — 卜 リ アジン、 テ トラキス [メチレン一 3 ( 3 ' , 5 '—ジ一 t 一ブチル一 4 'ーヒ ドロキシ一フ エニル) プロビ ォネ一 卜 ] メ タン、 2 , 2 '—チォ [ジェチル一 ビス一 3 ( 3 "", 5 "—ジ一 t —ブチル一 4 "ーヒ ドロキシフ エニル) プロ ピオネー ト ] 、 n—ォク夕デシルー 3 — ( 4,ーヒ ドロキシ一 3,, 5 '—ジー t —ブチルフエノール) プロビオネ一 卜、 N , N'—へキサメチレン — ビス一 3 — ( 3 5 '—ジ一 t —プチルー 4 'ーヒ ドロキシ一プロ ノ ミ ド) 、 1, 3, 5 — ト リ ス ( 3,, 5 '—ジ一 t 一ブチル一 4 '一 ヒ ドロキシベンジル) イ ソシァヌ レー ト、 3 ' , 5 '—ジ一 t ーブチ ル一 4 'ーヒ ドロキシ一べンジルホスホ リ ックァシッ ドジメチルェ ステル、 ビス ( ( 3, 5 —ジ一 t 一ブチル一 4 ーヒ ドロキシベンジ ルホスホリ ヅクァシッ ド) モノメチルエステルのニッケル塩などが 挙げられ、 N , Ν'—へキサメチレン一ビス一 3 — ( 3 ', 5 '—ジー t —プチルー 4 'ーヒ ドロキシープロノ ミ ド) が好適に用いられる 。 これらは単独又は 2種類以上を組み合わせて用いられる。 具体的 には、 例えば、 チバガイ ギ一社製の B 1 1 7 1 や、 味の素社製のレ オファス T P Pなどが好適に使用できる。
チォエーテル系化合物は、 例えば、 旭電化工業社製の商品名アデ カスタブ A O— 2 3、 A O— 4 1 2 S、 A O— 5 0 3 Aなどが相当 する。
ハロゲン化銅と しては、 塩化第一銅、 塩化第二銅、 ヨウ化第一銅 、 ヨウ化第二銅が挙げられ、 塩化第 --銅が好適に使用できる。
なお、 熱変色防止剤と してホスフアイ 卜系化合物を使用 した場合 には、 樹脂組成物の粘度上昇が ¾生するため、 この粘度上昇を抑制 する 的で流動性改良剤を配合することが好ま しい。 流動性改良剤 の配合割合は、 強化ポリ アミ ド樹脂 1 0 0 ffi量部に対して 5 ¾ 部 以下であることが好ま しい。 流動性改良剤の配合割合が 5重量部を 超えると、 機械的強度や耐熱性が低下する傾向にある。
流動性改良剤は特に限定されるものではないが、 酸化ポリエチレ ンワ ッ クス、 脂肪族ビスアミ ド、 高級脂肪酸の金属塩のいずれかが 好適に使用できる。
酸化ポリエチレンワ ックスと しては、 例えば、 ヤスハラケミ カル 社製の商品名ネオワ ックス E、 ネオワ ックス E— 2 0、 ネオヮ ック ス E— 3、 ネオワ ックス A E — 3などが相当し、 特にネオワ ックス E — 2 0が好適に使用できる。
脂肪族ビスアミ ドと しては、 例えば、 メチレンビスステアリルァ ミ ド、 メチレンビスラウ リルアミ ド、 エチレンビスステアリルアミ ド、 エチレンビスラウ リルアミ ド、 エチレンビスォレイルアミ ド、 エチレンビスべへニルアミ ドが挙げられるが、 エチレンビスステア リルアミ ドが特に好ま しい。
また、 高級脂肪酸の金属塩と しては、 ステアリ ン酸、 パルミチン 酸、 ラウ リ ン酸、 ミスチ リ ン酸などの各種金属塩が挙げられるが、 ステアリ ン酸の金属塩が特に好ま しい。 その具体例を挙げると、 ス テアリ ン酸マグネシウム、 ステアリ ン酸カルシウム、 ステアリ ン酸 ノ リ ウム、 ステア リ ン酸アルミニウム、 ステアリ ン酸亜鉛などがあ る。
また、 本発明のポリ アミ ド樹脂組成物には、 強化ポリ アミ ド樹脂 1 0 0重量部に対して、 耐衝撃性改良剤を 1 0重量部以下の割合で 配合するこ とが好ま しい。
耐衝撃性改良剤と しては、 成形体の耐衝撃性を改] ¾できるもので あれば特に制限されるものではない。 4体的には、 例えば、 ェチレ ンと不飽和カルボン酸あるいはエチレンと不飽和カルボン酸金属塩 とから得られる共重合体からなる耐衝撃性改良剤、 0 . 0 1 〜 1 0 モル%の酸基を含有するォレフ ィ ン共重合体からなる耐衝撃性改良 剤、 0 . 0 1 〜 1 0モル%の酸基を含有するビニル系芳香族化合物 と共役ジェン系化合物とから得られるブロ ック共重合体または前記 ブロ ック共重合体の水素添加物からなる耐衝撃性改良剤などから選 ばれる少な く とも 1種のものを用いることができる。
エチレンと不飽和カルボン酸あるいはエチレンと不飽和カルボン 酸金属塩とから得られる共重合体からなる耐衝撃性改良剤において は、 前記共重合体中のエチレン単位の割合が 9 0 ~ 9 8モル%であ り、 残部が実質的に不飽和カルボン酸単位および不飽和カルボン酸 金属塩単位からなるものが好適に使用できる。 エチレン単位の割合 があま り少なすぎる場合は、 剛性は高いが耐衝撃性の低い材料とな るために好ま しく な く、 また衝撃強度の向上があま りな く な り層剥 離する場合もあるために好ま し く ない。
不飽和カルボン酸と しては、 アク リル酸、 メ夕ク リル酸、 ェ夕ク リル酸などを例示することができ、 この不飽和カルボン酸は、 その 一部がメチルエステル、 ェチルエステル、 プロ ピルエステルまたは ブチルエステルなどであってもよい。
不飽和カルボン酸の金属塩は、 前記不飽和カルボン酸と元素周期 律表の I A、 I B、 II A、 II B、 III A族および Vffl族の第 4周期の金 属との塩である。 かかる金属と しては、 ナ ト リ ウム、 カ リ ウム、 銅 、 マグネシウム、 カルシウム、 ノ リ ウム、 亜鉛、 カ ド ミ ウム、 アル ミ ニゥム、 鉄、 コバル トおよびニッケルなどを例示するこ とができ 、 これらのなかでもナ ト リ ウム、 カ リ ウム、 マグネシウム、 カルシ ゥム、 ノ 'リ ウムおよび亜鉛が好ま しい。
0 . 0 1 〜 1 0モル%の酸基を含有するォレフ ィ ン共重合体から なる耐衝撃性改良剤において、 前記ォレフ ィ ン共重合体は、 ェチレ ン単位とプロ ピレン単位とを 7 0モル%以上含有するブロ ック共重 合体も し く はランダム共重合体である。 前記エチレン単位とプロ ピ レ ン単位との配合割合はモル比で、 1 : 2 〜 6 : 1 である。 前記ォ レフ ィ ン共重合体の 2 . 1 6 k g / 2 3 0 °Cにおけるメル ト フロー レー ト値は 1 〜 1 0であるものが好ま しい。 具体的には、 エチレ ン 、 プロ ピ レ ン、 ブチ レ ン、 イ ソ プレ ン、 ア ミ レ ンな どの才レ フ ィ ン 系炭化水素から得られる共重合体が挙げられる。
前記ォレ フ ィ ン共重合体には、 0 . 0 1 〜 1 0 モル%の酸基を含 有する必要があ り、 酸基の含有量が 0 . 0 1 モル%よ り も少な く な ると、 ポリ アミ ド樹脂との相容性が悪く な り、 耐衝撃性があま り 向 上しない。 酸基の含有量が 1 0 モル%を超えると、 耐衝撃性の向上 の効果が頭打ち状態とな り、 また生産性が悪く なるために好ま し く ない。 ォレフ ィ ン共重合体に酸基を導入する方法と しては、 共重合 時にベンゾィルペルォキシ ド、 t —ブチルヒ ドロペルォキシ ドなど のラジカル発生材剤と、 無水マレイ ン酸またはァク リル酸などを反 応させる方法を適用するこ とができる。
なお、 上記のォレフ ィ ン共重合体には、 不飽和結合を有する構成 単位を含有させてもよい。 前記不飽和結合を有する構成単位は、 ジ シク ロペン夕ジェン、 ェチ リデンノルボルネンなどを共重合させる ことによって導人するこ とができる。
0 . 0 1 〜 1 0 モル%の酸基を含有する ビニル系芳香族化合物と I I役ジェン系化合物とから ^られるブロ ッ ク J ίΤί 休または ι' 記ブ 口 ック共重合体の水素添加物からなる耐衝撃性改良剤において、 前 記プロ ック共重合体の製造原料である ビニル系芳香族化合物と して は、 スチレン、 ビニルキシレ ン、 ビニルナフ夕 レン、 ひーメチルス チレンおよびビニル トルエンなどが挙げられ、 これらは単体で使用 することもできるが、 2種類以上を併用しても良い。
前記プロ ック共重合体は、 ビニル系芳香族化合物単位からなる重 合体 ( I ) と共役ジェン系化合物単位からなる重合体 ( II ) とが、 I — II 一 I ( I は同一でも、 相異になつていてもよい。 ) で示され るブロ ック構造であるものが好ま しい。 前記ブ口 ック共重合体がこ のような構成であることによ り、 耐衝撃性の向上と良好な成形性と を維持できるものである。 また、 重合体 ( II ) は、 その一部が水素 添加されていてもよい。
前記共重合体を構成する前記重合体 ( I ) と重合体 ( II ) の割合 は、 重合体 ( II ) の割合が 6 0モル%以上であるものが好ましい。 重合体 ( II ) の割合があま り に少なすぎると耐衝撃性向上効果が発 揮されないために好ま し く ない。
かかる共重合体は、 0 . 0 1 〜 1 0モル%の酸基を含有するもの である。 酸基の含有量がこの範囲外であるとすると、 前記 0 . 0 1 ~ 1 0モル%の酸基を含有するォレフ ィ ン共重合体からなる耐衝撃 性改良剤と同様な理由から好ま しく ない。 ビニル芳香族化合物に酸 基を導入する方法と しては、 前記 0 . 0 1 〜 1 0モル%の酸基を含 有するォレフ ィ ン共重合体からなる耐衝撃性改ょ 剤と同様な方法を 適用することができる。
本発明のポ リ アミ ド樹脂組成物には、 強化ポリ アミ ド樹脂 1 0 0 ffi翳部に対して、 強化材を 1 0 ^部以下の割 ^で配 / するこ とも できる。 強化材を配合したポリ アミ ド樹脂組成物にて成形品を形成 する と、 曲げ強度や曲げ弾性率といった機械的強度や、 耐衝撃性が. 向上する。 強化材の配合割合が 1 0重量部を超えると、 メ タ リ ッ ク な色調が発現しないものとなる。
強化材と しては、 ガラス繊維などの繊維状強化材、 タルク、 マイ 力、 ワラス トナイ トなどのミネラル、 あるいは繊維状強化材と ミ ネ ラルとの混合物が好適に使用できる。
繊維状強化材と しては、 耐熱性を有し、 弾性率、 強度、 弾性回復 率等の力学特性に優れた短繊維、 ゥ イ スカー、 フ イ ブリ ツ ド等の繊 維状の配合材であ り、 例えばガラス繊維、 アルミニウム繊維、 チタ ン酸カ リ ウムゥイ スカー、 ホウ酸アルミニウムウイ スカ一等の無機 繊維、 ァラ ミ ド繊維等の有機繊維等を挙げることができる。 これら の中で力学特性、 経済性等を総合的に考慮するとガラス繊維が好ま しい。
また、 繊維状強化材がガラス繊維である場合には、 繊維長が 0 . l ~ 7 m mのものが好ま し く、 0 . 3 ~ 5 m mのものが特に好ま し い。 また、 ガラス繊維の径は 9 〜 1 3 〃 mの範囲にあるものが好ま しい。
ミネラルと しては、 タルク、 マイ 力、 ワラス トナイ ト、 ク レー、 カオリ ン、 シ リ カ、 アルミナ、 炭酸カルシウム、 酸化マグネシウム 、 珪酸カルシウム、 アルミ ン酸ナ ト リ ウム、 アルミ ノ珪酸ナ ト リ ウ ム、 珪酸マグネシウム、 ハイ ド ロタルサイ 卜などを挙げることがで き、 タルク、 マイ 力、 ワラス トナイ トなどが好ま しい。
なお、 本発明のポリ アミ ド樹脂組成物には、 その特性を大き く 損 なわない限り において、 光安定剂、 耐候剤、 可塑剤、 滑剤、 着色剤 、 離型剤、 顔料、 難燃剤等の層状珪酸塩以外の強化材等の添加剤を 添加してもよ く、 これらはポリ アミ ド樹脂組成物を溶融混練も し く は溶融成形する際に加え られる。
本発明のポリ アミ ド樹脂組成物の製造方法は特に限定されるもの ではないが、 強化ポリ アミ ド樹脂とメ 夕 リ ック色を発現する粒子と 熱変色防止剤などの各種添加剤とを二軸押出機を用いて溶融混練し 、 ペレ ッ ト化するこ とが好ま しい。 このようにして得られた樹脂組 成物は、 通常の成形加工法で目的の成形品とすることができる。 成 形加工法と しては、 例えば、 射出成形、 押出成形などの熱溶融成形 法が挙げられ、 特に射出成形による方法が好ま しい。
本発明のポリアミ ド樹脂組成物を用いて得られる成形品は、 剛性 や耐熱性ゃ耐衝撃性が良好で、 軽量でかつメタ リ ック調の外観を有 するので、 自動車のエンジンカバー、 シ リ ンダーヘッ ドカバ一、 夕 イ ミ ングベル ト カノ、一、 フ ヱ ンダ一、 フー ド、 ト ラ ンク リ ツ ド、 ピ ラ一、 ルーフ、 バンバ一、 ドアノヽン ドル、 ホイ 一ルキャ ッ プ、 二輪 マフ ラーカバ一、 フ一 ドガ一ニッシュ、 ベン トル一バ一等の車体部 品や、 クラスターやコンソールやビラ一等の内装部品や、 ランプリ フ レク夕一などの家電製品の内外装カバ一や、 電動工具ハウジング や、 食器乾燥器、 フ ァ ン ヒーター、 熱器具、 電磁調理器な どのカバ —材と して好適に使用でき、 中でも特に自動車のエンジンカバーと して好適に使用できる。 実施例
以下に本発明の具体例を説明する。 しかし、 本発明はこれらの実 施例のみに限定されるものではない。
また、 以下に説明する実施例および比較例において、 各種物性値 の測定は以下の方法によ り行なわれた。
( 1 ) 層状珪酸塩の分散性 : 広角 X線回析装置 ( リ ガク社製、 型番 R A D - r B ) を用いて、 樹脂ペレ ヅ ト中における層状珪酸塩の分 散性を測定した。
( 2 ) 強化ポリ アミ ド樹脂および非強化ポリ アミ ド樹脂の相対粘度 : 9 6重量%濃度の濃硫酸を溶媒と してそれぞれの樹脂の乾燥ペレ ヅ トを濃度が 1 g / d 1 となるように溶解し、 温度 2 5 °Cで測定し た。
( 3 ) 曲げ強度 ( M P a ) および曲げ弾性率 ( G P a ) : A S T M
- D - 7 9 ◦ に記載の方法に準じて測定した。
( 4 ) 荷重たわみ温度 ( °C ) : A S T M— D— 6 4 8記載の方法に 準じて、 荷重 1 . 8 6 M P aの応力下で測定した。
( 5 ) アイ ゾヅ ト衝撃強度 ( J /m) : A S T M— D— 6 4 8 に記 載の方法に準じて、 厚み 3 . 2 mmの試験片に所定の深みのノ ッチ を付けて測定した。
( 6 ) 引張り ウエル ド強度 : A S T M— D— 6 3 8 に記載の方法に 準じて、 A S T M— D— 6 3 8 — I型ダンベル試験片を作製した。 すなわち、 両端 2個所にゲー ト を持つダンベル片用金型を用いて、 中心部にゥエル ドライ ンを有する厚み 3 . 2 m mのダンベル試験片 を作製し、 これを用いて引張試験を行った。
( 7 ) メ タ リ ック調の外 : 幅 5 0 m m、 長さ 9 0 mm, 厚さ 2 m mのプレー ト を作製して試料と した。 この試料を室内の蛍光灯の下 であらゆる角度から、 その見栄えと均一分散性とを肉眼によ り観察 し、 以下の 3段階にて評価した。
〇 : 光の反射が多くて、 分散の度合いが均一であった 厶 : 光の反射および分散の度合いが普通であった
X : 光の反射が少な く、 分散の度合いが不均一であった ( 8 ) 比重 : J I S— K 7 1 1 2に記載の方法に準じて、 水中置換 法によ り測定した。
( 9 ) 耐熱変色性 : 5 0 x 9 0 mm角 X厚さ 2 mmのプレー トを作 製し、 これらのプレー トを角板を 1 2 0 °Cのオーブンに入れ、 4 0 0時間放置した。 そして、 角板の表面を分光式色差計 (日本電色ェ 業社製、 S Z—∑ 9 0 ) を用いて測定し、 色差値 Δ Eを指標と して 評価した。 なお、 Δ Εは、 値が小さいほど耐熱変色性が良好である
( 1 0 ) エンジン力バ一の外観検査 : 成形品の表面においてゥエル ドライ ンゃフ ローマークの有無を肉眼で判定し、 以下の 3段階で評 価した
◎ : ほとんど目立たなかった
〇 : よ く 見ると気になった
△ : 目立った
( 1 1 ) エンジンカバーのメ タ リ ック感 成形品の表面のメタ リ ヅ ク感について以下の 3段階で評価した。
◎ 金属調の光沢が美しかつた
〇 金属粉の高輝感があつた
Δ 光沢感が少なく灰色であつた ( 1 2 ) 落球衝撃エネルギー ( J ) : 1 . 6 t — 1 0 0 øの試験片 を作製し、 デュポン式落球衝撃試験に準じて付加 1 k gで落球させ 、 以下の式によ り落球衝撃エネルギーを求めた。
落球衝撃エネルギー = G 0 + ( G 1 - G 0 ) / 2 G O : 破壊しない最高高さ x重力加速度 x落下荷重
G 1 : 破壊する最低高さ X重力加速度 X落下荷重
( 1 3 ) 落下試験 : 肉厚 3 mm、 縦 5 0 0 mm x横 5 0 0 mm、 深 さ約 1 0 0 m mのエンジンカバーを作製し、 この製品に 1 3 0 °Cで 6 5時間のァニール処理を施した。 そ して、 このァニール処理を施 したエンジン力バーを下記の処理条件 1 あるいは 2 にて処理した後 、 高さ l mよ り コンク リー ト面に落下させ、 それぞれの処理条件に ついて平面落下と角落下についてエンジンカバ一の状態を観察した 。 なお、 平面落下とは、 天面 (意匠面) が落下面となるように落下 させたものであ り、 角落下とはカバ一四隅の角部が落下面となるよ うに落下させたものである。
処理条件 1 : 2 3 °C— 5 0 % R H - 3 H
処理条件 2 : 2 3 °C - 5 0 % R H - 7 2 H
( 1 4 ) 外観検査 : 肉厚 2 t、 7 0 mm X 9 0 mmの板状の試験片 を作製し、 この成形品の外観を以下の 2段階で評価した。
◎ : 白っぽい金属感があ り、 光沢感に優れていた
〇 : 若干黒ずみが見られた
( 1 5 ) 流動性 ( mm) : バ一フローによる測定法に準じて測定し た。 すなわち、 幅 2 0 m m、 厚さ 2 m mのスパイ ラル状の金型を用 い、 ポリアミ ド樹脂と してナノコンポジッ トナイ ロン 6およびナイ ロ ン 6 を用いた場合は、 樹脂温度を 2 5 0 °Cと し、 ナイ ロ ン 6 6 を 用いた場合は樹脂温度を 2 8 0 °Cと して、 金型温度 8 0 °C、 射出圧 力 8 0 M P aで射出し、 流動長を測定した。 実施例 1
ポリ アミ ド樹脂を製造するに際し、 まず、 膨潤性フ ッ素雲母系鉱 物の合成を行った。 すなわち、 ボールミルによ り平均粒径が 2 m となるように粉砕したタルク 8 0重量%に対し、 平均粒径が同じ く 2 mの珪フ ッ化ナ ト リ ウム 2 0重量%を混合し、 混合物を作製し た。 そして、 前記混合物を磁性ルヅボに入れ、 電気炉で 8 0 0 °Cに 1時間保持してフ ッ素雲母系鉱物を合成した。
生成したフ ッ素雲母系鉱物の粉末について、 リ ガク社製の R A D 一 r B型広角 X線回折装置を用いて広角 X線回折測定を行った。 得 られた測定結果は、 原料タルクの C軸方向の厚み 9 · 2 Aに対する ピークが消失しており、 膨潤性フ ッ素雲母系鉱物の生成を示す 1 2 〜 1 3 Aに対応するピークが認めるものであった。
次にこの膨潤性フ ッ素系雲母鉱物を用いて強化ナイ 口 ン 6樹脂を 作製した。
ナイ ロン 6の原料である £ 一力プロラクタム 1 0 k gに対し、 1 k gの水と 2 0 0 gの膨潤性フ ッ素雲母系鉱物とを添加し、 これを 内容積 3 0 リ ッ トルの反応缶に入れ、 £ 一力プロラクタムを重合し た。 そして、 この原料混合物を攪拌しながら 2 5 0 °Cに加熱し、 徐 々に水蒸気を放出しつつ、 1 5 K g / c m の圧力まで昇圧した。 次いで、 常圧まで放圧し、 2 6 0 °Cで 3時間重合した。 重合の終了 した時点で反応缶から強化ナイ ロ ン 6樹脂を払い出し、 これを切断 してペレ ッ ト と した。 このペレ ッ トを 9 5 °Cの熱水で処理して精純 を行つた後、 真空乾燥した。
得られた強化ナイ ロ ン 6樹脂は、 相対粘度が 2 . 5であ り、 全体 を 1 0 0重量%と して膨潤性フ ッ素雲母系鉱物を 2. 0重量%含有 するものであった。
また、 この強化ナイ ロ ン 6樹脂のペレッ トについて、 広角 X線回 折測定を行った結果、 膨潤性フ ッ素雲母系鉱物の厚み方向のピーク は完全に消失しており、 ナイ ロン 6樹脂中に膨潤性フ ッ素雲母系鉱 物が分子レベルで均一に分散されていることがわかった。
この強化ナイ ロ ン 6樹脂のペレ ツ ト 1 0 0重量部に対し、 メ タ リ ック色を発現する粒子と して平均粒径が 1 5 mでァスぺク ト比が 7 5 0のアルミニウム粉 (住友カラー社製、 E P C— 8 E— 2 9 7 ) 1重量部を配合し、 シリ ンダー温度を 2 6 0 °Cに設定した二軸混 練機 (東芝機械社製、 T E M— 3 7 B S ) を用いてペレ ッ トを作製 した。
次にこのペレ ッ トを用い、 シ リ ンダ一温度を 2 5 0 °Cに設定した 射出成形機 (東芝機械社製、 型番 I S— 8 0 ) で射出成形し、 曲げ 強度、 曲げ弾性率、 荷重たわみ温度、 アイゾッ 卜衝撃強度、 引張り ウエル ド強度、 メタ リ ック調の外観、 比重を測定するための各試験 片を作製した。
得られた試験片の物性を表 1 に示す。 表 1
Figure imgf000031_0001
Α1 *:ナイロン 6に膨潤性フッ素雲母鉱物を 2重量%配合した強化ポリアミド樹脂 Α2*:ナイロン 6に膨潤性フッ素雲母鉱物を 4重量%配合した強化ポリアミド樹脂
実施例 2
ポリ アミ ド樹脂組成物を製造するに際し、 上記実施例 1 とは別の 配合割合を有するポリ アミ ド樹脂組成物を作製した。 すなわち、 ナ ィ ロン 6の原料である £ 一力プロラクタムに対し、 上記方法で合成 した膨潤性フ ッ素雲母系鉱物 4 0 0 gと水 1 k gとを加え、 反応缶 に入れた。
そして、 それ以外は実施例 1 と同様にして樹脂ペレ ッ ト を作製し た。
得られた強化ナイ ロン 6樹脂は、 相対粘度が 2 . 2で、 全体を 1 0 0重量%と して膨潤性フ ッ素雲母系鉱物を 4 . 0重量%含有する ものであった。 また、 実施例 1 と同様にナイ ロン 6樹脂中に膨潤性 フ ッ素雲母系鉱物が分子レベルで均一に分散されているものであつ た。
この強化ナイ ロン 6樹脂のペレ ツ ト 1 0 0重量部に対し実施例 1 と同様の平均粒径が 1 5 mでァスぺク ト比が 7 5 0のアルミニゥ ム粉 1重量部を配合した。 そして実施例 1 と同様にして試験片を作 製した。
得られた試験片の物性を表 1 に示す。 実施例 3
実施例 2で作製した強化ナイ ロン 6樹脂のペレ ツ ト 1 0 0重量部 に対し、 メタ リ ック色を発現する粒子と して平均粒径が 5 0 〃 mで ァスぺク 卜比が 2 5 0 0のアルミニウム粉 (住友カラー社製、 E P C - 8 E - 3 4 0 ) 2重量部と、 非強化ポリアミ ド樹脂と して相対 粘度 2 . 5のナイ ロ ン 6樹脂 (ュニチカ社製、 A 1 0 3 0 J R ) 1 0 0重量部とを配合した。 そしてそれ以外は、 実施例 1 と同様に し て各試験片を作製した。
得られた試験片の物性を表 1 に示す。 実施例 1 〜 3で得られたポリ アミ ド樹脂組成物は、 膨潤性フ ッ素 雲母鉱物の配合割合が本発明の範囲内である強化ポリアミ ド樹脂を 用いたため、 曲げ強度や曲げ弾性率などの機械的強度や、 耐衝撃性 や、 耐熱性が良好で、 比重の小さいものとなった。 さ らに、 メ夕 リ ック色を発現するアルミニウム粉の配合割合を本発明の範囲内と し たため、 メタ リ ック調の外観性の良いものが得られた。
中でも実施例 3では、 強化ポリアミ ド樹脂とメ タ リ ック色を発現 するアルミニウム粉とからなるポリアミ ド樹脂組成物に、 さらに非 強化ポリ アミ ド樹脂であるナイ ロン 6 を本発明の範囲内で配合した ため、 特に引張り ウエル ド強度が向上した。
その結果、 自動車用のエンジンカバ一と して好適に使用できるも のとなつた。 比較例 1
膨潤性フ ッ素雲母鉱物を配合していない非強化ポリアミ ド樹脂で ある相対粘度 2 . 5のナイ ロ ン 6 (ュニチカ社製、 A 1 0 3 0 J R ) のペレ ッ ト 1 0 0重量部に対し、 実施例 1 と同様の平均粒径が 1 5 mでァスぺク ト比が 7 5 0のアルミニウム粉 1 重量部を配合し た。 そして、 それ以外は実施例 1 と同様に して、 各試験片を作製し た。
得られた試験片の物性を表 1 に示す。 P
一 32—
比較例 2
膨潤性フ ッ素雲母鉱物を配合していない非強化ポリアミ ド樹脂で ある相対粘度 2. 5のナイ ロン 6 (ュニチカ社製、 A 1 0 3 0 J R ) のペレ ヅ ト 8 0重量部と、 繊維径 1 3〃m、 繊維長 3 mmのガラ ス繊維 (日本電気硝子社製、 T— 2 8 9 ) 2 0重量部との合計 1 0 0重量部に対し、 実施例 1 と同様の平均粒径が 1 5〃mでァスぺク ト比が 7 5 0のアルミニウム粉 1重量部を配合した。 そして、 それ 以外は実施例 1 と同様に して、 各試験片を作製した。
得られた試験片の物性を表 1 に示す。 比較例 3
比較例 2 と同様のナイ ロン 6樹脂のペレ ツ ト 8 5重量部とガラス 繊維 1 5重量部との合計 1 0 0重量部に対し、 実施例 3 と同様の平 均粒径が 5 0〃mでァスぺク ト比が 2 5 0 0のアルミニウム粉 1重 量部を配合した。 そ して、 それ以外は実施例 1 と同様にして、 各試 験片を作製した。
得られた試験片の物性を表 1 に示す。 比較例 4
膨潤性フ ッ素雲母鉱物を配合していない非強化ポリアミ ド樹脂で ある相対粘度 2 . 5のナイ ロン 6 (ュニチカ社製、 A 1 0 3 0 J R ) のペレ ッ ト 7 0重量部とワラス トナイ ト (キンセイマテック社製 、 E P W - 4 0 0 ) 3 0 S量部との合計 1 0 0重量部に対し、 実施 例 3 と同様の平均粒径が 5 0〃 mでァスぺク 卜比が 2 5 0 0のアル ミ ニゥム粉 1 重量部を配合した。 そしてそれ以外は、 実施例 1 と同 様に して各試験片を作製した。
得られた試験片の物性を表 1 に示す。 比較例 1 は、 強化ポリ アミ ド樹脂が配合されていなかったため、 曲げ強度や曲げ弾性率ゃ耐熱性に劣るものとなった。
比較例 2、 3は、 強化ポリ アミ ド樹脂が配合されていないことに 加えて強化材と してガラス繊維が配合されていたため、 光沢感に劣 り良好なメ タ リ ック調の外観を得るこ とができず、 また、 比重も大 き く軽量なポリアミ ド樹脂組成物は得られなかつた。
比較例 4は、 強化ポリ アミ ド樹脂が配合されていないことに加え て強化材と してワラス トナイ トを配合していたため、 成形品表面は 白っぽく な りメタ リ ック調の外観を得ることができず、 また比重も 大き く な り、 軽量なポリアミ ド樹脂組成物は得られなかった。 実施例 4
実施例 2で作製した強化ナイ ロン 6樹脂のペレ ッ ト 5 0重量部に 対し、 メ 夕 リ ック色を発現する粒子と して平均粒径 5 0 〃 mでァス ぺク ト比が 2 5 0 0のアルミニウム粉 (住友カラ一社製、 E P C— 8 E - 3 4 0 ) 1 重量部と、 非強化ポリ アミ ド樹脂と して相対粘度 2 , 5のナイ ロン 6樹脂のペレ ッ ト (ュニチカ社製、 A 1 0 3 0 J R ) 5 0重量部とを配合した。 そ してそれ以外は、 実施例 1 と同様 に して各試験片を作製した。
得られた試験片の物性を衷 2 に示す。 表 2
Figure imgf000036_0001
A2*:ナイロン 6に膨潤性フッ素雲母鉱物を 4重量%配合した強化ポリアミド樹脂
実施例 5
強化ナイ ロン 6樹脂のペレ ッ ト と、 アルミニゥム粉と、 非強化ポ リ アミ ド樹脂のペレ ッ ト とに加えて、 さらに熱変色防止剤と してホ ス フアイ ト系化合物 (旭電化工業社製、 アデカスタブ P E P 3 6 ) 1重量部を配合した。 そしてそれ以外は、 実施例 4 と同様に して各 試験片を作製した。
得られた試験片の物性を表 2に示す。 実施例 6
強化ナイ ロン 6樹脂のペレツ 卜 と、 アルミニウム粉と、 非強化ポ リ アミ ド樹脂のペレ ッ ト とに加えて、 さらに熱変色防止剤と してヒ ンダー ドフエノール (チバガイギ一社製、 B 1 1 7 1 ) 1重量部を 配合した。 そしてそれ以外は、 実施例 4 と同様にして各試験片を作 製した。
得られた試験片の物性を表 2に示す。 実施例 7
強化ナイ ロン 6樹脂のペレ ッ ト と、 アルミニウム粉と、 非強化ポ リ アミ ド樹脂のペレツ 卜 とに加えて、 さ らに熱変色防止剤と して塩 化第一銅 (試薬) 1 重量部を配合した。 そしてそれ以外は、 実施例 4 と同様にして各試験片を作製した。
得られた試験片の物性を表 2 に示す。 実施例 8
強化ナイ ロ ン 6樹脂のペレ ッ ト と、 アルミニウム粉と、 非強化ポ リ アミ ド樹脂のペレ ツ 卜 とに加えて、 さ らに熱変色防止剤と してチ ォエーテル系化合物 (旭電化工業社製、 アデスタブ A 0— 2 3 ) 1 重量部を配合した。 そ してそれ以外は、 実施例 4 と同様に して各試 験片を作製した。
得られた試験片の物性を表 2 に示す。 実施例 4は、 上記実施例 1 〜 3 と同様に、 膨潤性フ ッ素雲母鉱物 の配合割合が本発明の範囲内である強化ポリアミ ド樹脂と、 メ夕 リ ック色を発現するアルミニウム粉との配合割合を本発明の範囲内と したため、 曲げ強度や曲げ弾性率などの機械的強度や、 耐衝撃性や 、 耐熱性が良好で、 比重が小さ く、 外観性の良いものが得られた。
また、 実施例 5 〜 8は、 前記実施例 4の成分に加えてさ らに各種 の熱変色防止剤が本発明の範囲内で配合されていたため、 いずれも 実施例 4で得られたポリ アミ ド樹脂組成物よ り も色差値の小さいも のが得られ、 耐熱変色性に優れたものとなった。
その結果、 上記実施例 1 〜 4 よ り もさ らに自動車用のエンジン力 バーと して好適に使用できるものとなった。 実施例 9
樹脂成分と して、 層状珪酸塩である膨潤性フ ッ素雲母系鉱物が分 子レベルで均一に分散されたナノ コ ンポジッ トナイ ロン 6 (ュニチ 力社製、 M 2 3 5 0 ) を用いた。 このナノ コ ンポジッ トナイ ロ ン 6 樹脂は、 相対粘度が 2 . 4であ り、 この 1 0 0 重量%のう ちに膨潤 性フ ッ素雲母系鉱物を 2 . 0 重量%含おするものであ り、 重合によ り製造されたものである。 このナノコンポジッ 卜ナイ ロ ン 6のペレ ツ ト 1 0 0重量部に対し 、 メタ リ ック色を発現する粒子と して平均粒径 5 0 / mでァスぺク ト比が 2 5 0 0のアルミニウム粉 (住友カラー社製、 E P C— 8 E - 3 4 0 ) 1重量部と、 平均粒径 2 0 〃 mでアスペク ト比が 6 7 の マイ 力製パール顔料 (メルクジャパン社製、 ィ リオジン # 1 0 0 ) 0 . 2重量部とを配合し、 シ リ ンダ一温度を 2 6 0 °Cに設定した二 軸混練機 (東芝機械社製、 T E M— 3 7 B S ) を用いてペレ ッ ト を 作製した。 次にこのペレ ツ トを用いてシ リ ンダー温度を 2 5 0 °Cに 設定した射出成形機 (東芝機械社製、 型番 I S — 1 0 0 E ) を用い て、 金型温度 8 0 °C、 射出圧力 l O O M P aで、 幅 5 0 mm、 長さ 9 0 mm, 厚さ 2 m mの長方形板状の樹脂成形品を射出成形した。 得られた樹脂成形品の表面反射率、 メ タ リ ック感、 曲げ弾性率、 荷重たわみ温度、 比重を表 3 に示す。
表 3 実施例 9 実施例 1 0 丁-ノ /*コιノ、, /+|、β、ン* 、ッ "し卜 Γ/コノ不 ノッ卜 ナイロン 6 ナイロン 6 Μ2350 1015C2 強化ポリアミド樹脂 Tffl"日 J ^刀 ナイ πン 6 ナイ ΓΤ fi
膨潤性フッ素
モンモリロナイト 層状珪酸塩 2
2
†ォ科 (重量部) 1 ΠΠ 1 UU
(圣、 m) ςη 50 アルミ粉 アスペクト比 2500 2500 メタリック感を (重量部) 1 1 発現する粒子 ¾1径 μ m) 20 20
パール アスペクト比 67 67 顔料 (重量部) 0.2 0.2 表面反射率 ( %) 66 65 成形品 メタリック感 〇 〇 物性 曲げ弾性率 (GPa) 4.1 3.5
荷重たわみ温度 (°C) 147 147 比重 1.15 1.15
実施例 1 ◦
樹脂成分と して、 層状珪酸塩であるモ ンモ リ ロナイ 卜が分子レべ ルで均一に分散されたナノコ ンポジッ トナイ ロン 6 (宇部興産社製 、 1 0 1 5 C 2 ) を用いた。 このナノ コ ンポジッ トナイ ロン 6は、 相対粘度が 2 . 6であ り、 この 1 0 0重量%のうちのモンモ リ ロナ ィ トを 2重量%含有するものであ り、 重合によ り製造されたもので ある。
そしてそれ以外は実施例 9 と同様に して、 樹脂成形品を作製した 得られた樹脂成形品の物性を表 3 に示す。 実施例 9、 1 0で得られた樹脂成形品は、 層状珪酸塩で強化した ポリ アミ ド樹脂にメ タ リ ック色を有する粒子を含有させたため、 表 面反射率が 6 0 %以上とな り、 良好なメ タ リ ック感が得られた。
また、 層状珪酸塩で強化した強化ポ リ アミ ド樹脂を主成分と して いたため、 曲げ弾性率や耐熱性が良好で、 比重の小さいものが得ら れた。
従って、 これらの樹脂成形品は、 自動車用のエンジンカバーと し て好適に使用できるものであった。 実施例 1 1
樹脂成分と して、 実施例 9で用いた樹脂であるナノ コ ンポジッ ト ナイ ロ ン 6樹脂を用いた。 このナノ コ ンポジッ トナイ ロ ン 6のペレ ッ ト 1 0 0重量部に対し、 メタ リ ッ ク色を発現する粒子と して、 平 均粒^が 5 0 〃 mでァスぺク ト比が 2 5 0 0のアルミニウム粉 (住 友カラー社製、 E P C— 8 E— 3 4 0 ) 1 . 2重量部と、 平均粒径 が 4 5 mでァスぺク ト比が 6 4のマイ 力製パール顔料 (宝通商社 製) 0. 4重量部を配合し、 シ リ ンダ一温度を 2 6 0 °Cに設定して 、 二軸混練機 (東芝機械社製、 T E M— 3 7 B S ) を用いてペレ ツ トを作製した。
次にこのペレツ トを用いて、 シ リ ンダ一温度を 2 5 0 °Cに設定し た射出成形機 (東芝機械社製、 型番 I S— 4 5 0 ) を用いて、 金型 温度 8 0 °C、 射出圧力 1 0 O M P aでエンジン力バ一を射出成形し た。
得られたエンジンカバ一の外観検査の結果を表 4に示す。
表 4 実施例 1 1 実施例 1 2 実施例 1 3 実施例 1 4 ナノコンホ。シ 'ッ卜ナノコンホ °シ"ッ卜ナノコンホ。シ'ットナノコンホ "シ'ット 種類
ナイロン 6 ナイロン 6 ナイロン 6 ナイロン 6 強化ポリアミド樹脂 PC1名 M2350 M2350 M2350 M2350
(重量部) 100 100 100 100 ネ ( m) 50 50 95 55 アスペクト比 2500 2500 38 7.3 アルミ粉 (重量部) 1 .2 0.6 2 1 .6
¼1圣( μ m) 55 95 材料 アスペクト比 7.3 38
メタリック感を (重量部) 0.3 0.4 発現する粒子 粒径 m) 45 1 5
アスペクト比 64 10
パール (重量部) 0.4 0.2
顔料 ¾i径、 Ai m) 45
アスペクト比 64
(重量部) 0.4
ェンシンカハ"一 成形品外観検査 ウェルト'ライン、フローマーク △ 〇 〇 ◎ 物性 (感性試験) メタリック調の外観 ◎ ◎ 〇 Δ
実施例 1 2
メ タ リ ッ ク色を発現する粒子と して、 平均粒径が 5 0 mでァス ぺク ト比が 2 5 0 0のアルミニウム粉 (住友カラ一社製、 E P C— 8 E - 3 4 0 ) 0 . 6重量部と、 平均粒径が 5 5〃 mでアスペク ト 比が 7 . 3のアルミニウム粉 (大和金属粉工業社製、 1 0 2 C ) 0 . 3重量部と、 平均粒径が 1 5 〃 mでアスペク ト比が 6 4のマイ 力 製パール顔料 (メルクジャパン社製、 ィ リオジン # 1 1 1 ) 0 . 2 重量部と、 平均粒径が 4 5 / mでァスぺク ト比が 6 4のマイ カ製パ ール顔料 (宝通商社製) 0 . 4重量部とを配合した。
そしてそれ以外は実施例 1 1 と同様にして、 エンジンカバ一を作 製した。
得られたエンジンカバーの外観検査の結果を表 4に示す。 実施例 1 3
メ タ リ ック色を発現する粒子と して、 マイ 力製パール顔料は配合 せずに、 平均粒径が 9 5 〃 mでァスぺク ト比が 3 8のアルミニウム 粉 (大和金属粉社製、 1 0 2 B ) 2重量部のみを配合した。
そしてそれ以外は実施例 1 1 と同様にして、 エンジンカバ一を作 製した。
得られたエンジンカバ一の外観検査の結果を表 4に示す。 実施例 1 4
メ タ リ ツク色を発現する粒子と して、 マイ 力製パール顔料は配合 せずに、 平均粒径が 5 5 / mでァスぺク ト比が 7 . 3のアルミニゥ ム粉 (大和金厲粉社製、 1 0 2 C ) 1 . 6虛量部と、 平均粒径が 9 5 mでァスぺク ト比カ S 3 8のアルミ ニウム粉 (大和金属鉱業社製 、 1 0 2 B ) 0 . 4重量部とを配合した。
そしてそれ以外は実施例 1 1 と同様に して、 エンジンカバ一を作 製した。
得られたエンジンカバ一の外観検査の結果を表 4に示す。 実施例 1 1 は、 アルミニウム粉やマイ 力製パール顔料のァスぺク ト比が大きかったため、 得られたエンジンカバーの表面にはゥエル ドライ ンやフローマークがやや目立つものとなった。 しかし、 アル ミニゥム粉に加えてマイ 力製パール顔料が配合されていたため、 光 沢の良いメタ リ ック調の外観に優れたものであった。
実施例 1 2は、 上記実施例 1 1 と同様にァスぺク ト比の大きいァ ルミニゥム粉とマイ 力製パール顔料を使用したが、 さ らに加えてァ スぺク ト比の小さいアルミニウム粉とマイ 力製パール顔料とが配合 されていたため、 ウエル ドライ ンやフローマークは良く見ると気に なる程度にまで抑え られた。 また、 上記と同様にアルミニウム粉だ けでなく マイ 力製パール顔料を配合したため、 光沢が良く メタ リ ッ ク調の外観の良いものが得られた。
実施例 1 3は、 ァスぺク 卜比のやや小さいアルミニウム粉のみを 使用 したため、 ウエル ドライ ンやフ ローマークは良く見ると気にな る程度にまで抑えられた。 しかし、 マイ 力製パール顔料は配合され ていなかつたため、 高輝感が発生し、 上記実施例 1 1、 1 2 よ り も ややメ タ リ ック調の外観に劣るものとなった。
実施例 1 4は、 実施例 1 3で使用 したアルミニウム粉に加えてさ らにアスペク ト比の小さいアルミニウム粉を配合したため、 ゥエル ドライ ンゃフローマークの目立たない外観性の良いものが得られた 。 しかし、 ァスぺク 卜比の小さいアルミニウム粉の配合割合が増え たため、 成形品の表面は光沢感に劣る灰色とな り、 メタ リ ック調の 外観にやや劣るものとなった。 実施例 1 5
樹脂成分と して、 実施例 9で用いたナノコンポジッ 卜ナイ ロン 6 (ュニチカ社製、 M 2 3 5 0 ) を用いた。 このナノコンポジッ トナ ィ ロ ン 6のペレツ ト 9 7重量部に対し、 メタ リ ック色を発現する粒 子と して、 平均粒径が 5 0 mでァスぺク ト比が 2 5 0 0のアルミ 二ゥム粉 (住友カラ一社製、 E P C— 8 E— 3 4 0 ) 1 . 2重量部 と、 平均粒径が 4 5 〃 mでァスぺク ト比が 6 4のマイ 力製パール顔 料 (宝通商社製) 0 . 4重量部と、 さ らに加えて耐衝撃性を向上さ せるためにエチレン ■ プロ ピレン系重合体に無水マレイ ン酸をグラ フ ト重合した耐衝撃性改良剤 (三井化学社製、 タフマー M 1 3 0 7 ) を 3重量部配合し、 シ リ ンダ一温度を 2 6 0 °Cに設定して、 二軸 混練機 (東芝機械社製、 T E M— 3 7 B S ) を用いてペレ ッ トを作 製した。
次にこのペレ ツ ト を用いてシ リ ンダー温度を 2 5 0 °Cに設定した 射出成形機 (東芝機械社製、 型番 I S — 8 0 ) で射出成形し、 落球 衝撃エネルギーを測定するための試験片を作製した。
得られた試験片の物性を表 5 に示す。 合わせて比較のために耐衝 撃性改良剤の配合されていない実施例 1 1 の物性を表 5 に示す。 表 5
Figure imgf000047_0001
1 *:エチレン'プロピレン共重合体に無水マレイン酸をグラフト重合したもの (タフマ- M1307)
実施例 1 6、 1 7
ナノコンポジッ トナイ ロ ン 6のペレ ツ トおよび耐衝撃性改良剤の 配合割合を表 5に示すようにした。
そしてそれ以外は実施例 1 5 と同様にして、 試験片を作製した。 得られた試験片の落球衝撃エネルギーの測定結果を表 5 に示す。 実施例 1 5〜 1 7は、 耐衝撃性改良剤の配合されていない実施例 1 1 に較べて、 その落球衝撃エネルギーが大きいものであった。 こ のような落球衝撃エネルギーの大きい成形品は、 エンジン力バーな どの筐体と して好適に使用できるものであった。 実施例 1 8
樹脂成分と して、 実施例 9で用いたナノコンポジッ トナイ ロン 6 (ュニチカ社製、 M 2 3 5 0 ) を用いた。 このナノ コ ンポジッ トナ ィ ロ ン 6のペレ ッ ト 9 4重量部に対し、 メ タ リ ッ ク色を発現する粒 子と して、 平均粒径が 5 0〃 mでァスぺク ト比が 2 5 0 0のアルミ 二ゥム粉 (住友カラ一社製、 E P C— 8 E — 3 4 0 ) 1 . 2重量部 と、 平均粒径が 4 5〃 mでァスぺク ト比が 6 4のマイ 力製パール顔 料 (宝通商社製) 0 . 4重量部と、 さらに加えて耐衝撃性を向上さ せる 目的で、 ガラス繊維 (日本電気硝子社製、 T 一 2 8 9 ) 2重量 部とタルク (日本タルク社製、 ミ クロエース K 一 1 ) 4重量部とを 配合し、 シ リ ンダ一温度を 2 6 0 °Cに設定した二軸混練機 (東芝機 械社製、 T E M _ 3 7 B S ) を用いてペレ ッ トを作製した。
次にこのペレ ツ トを用いて、 シ リ ンダー温度を 2 5 0 °Cに設定し た射出成形機 ( ¾ ^機械ネ 1:製、 型桥 I S — 4 5 0 ) で射出成形して エンジンカバーを作製し、 落下試験を行った。
得られたエンジンカバーの落下試験の結果を表 6 に示す。 合わせ て比較のために耐衝撃性改良剤および強化材の配合されていない実 施例 1 1 と耐衝撃性改良剤のみが配合された実施例 1 5の物性を表 6 に示す。
表 6 実施例 1 1 実施例 1 5 実施例 1 8 実施例 1 9 ナノコンホンット ナノコノホンット ナノコノホンット ナノコノ ンット 種類
ナイロン 6 ナイロン 6 ナイロン6 ナイロン 6 強化ポリアミド樹脂 名 2350 M2350 2350 2350
、 Ψ- aVノ 100 97 94 85
¾11圣( μ m) 50 50 50 50 アルミ粉 了スぺク卜 hh 2500 2500 2500 2500 材料 メタリック感を (重量部) 1.2 1 .2 1 .2 1.2 発現する粒子 粒径( μ m) 45 45 45 45
パール顔料 アスペクト比 64 64 64 64
(重量部) 0.4 0.4 0.4 0.4 耐衝撃性改良剤 (重量部) 3
ガラス繊維 (重量部) 2 5 タルク (重量部) 4 3
処理 平面落下 3回目ヮレ 3回目 OK 3回目ヒビヮレ 3回目ヒビヮレ 物性 製品落下 条件 1 角落下 2回目ヒビヮレ
試験 処理 平面落下 3回目 OK 3回目 OK 3回目 OK 3回目 OK
条件 2 角落下 1回目ヮレ 2回目ヒビヮレ 1回目ヒビヮレ 1回目ヒビヮレ
実施例 1 9
ナノコンポジッ 卜ナイ ロン 6のペレ ツ ト と、 強化材と してのガラ ス繊維とタルクの配合割合を表 6に示すように した。
そしてそれ以外は実施例 1 8 と同様にして試験片を作製した。 得られた試験片の落下試験の結果を表 6に示す。 実施例 1 8、 1 9は、 耐衝撃性改良剤および強化材の配合されて いない実施例 1 1に比べて処理条件 1、 2のいずれの場合において もわれに く く なつていた。 また、 耐衝撃性改良剤の配合された実施 例 1 5に比べるとややその性能に劣るものであつたが、 いずれもェ ンジンカバーと して実使用に耐えう るものであった。 実施例 2 0
樹脂成形品を製造するに際し、 まず、 顔料マス夕一の作製を行つ た。 すなわち、 実施例 9で使用 したナノコンポジッ トナイ ロン 6 ( ュニチカ社製、 M 2 3 5 0 ) のペレ ッ ト 8 4 %と、 粒径 5 0〃m、 ァスぺク ト比 2 5 0 0のアルミ ニウム粉 (住友カラ一社製、 E P C - 8 E - 3 4 0 ) 1 2 %と、 粒径 4 5〃m、 アスペク ト比 6 4のマ イ カ製パール顔料 (宝通商社製) 4 %とを配合し、 シ リ ンダ一温度 を 2 6 0 °Cに設定した単軸混練機 (エンプラ産業社製、 E D— 6 5 ) を用いて顔料マス夕一 ( C M— 1 ) を作製した。
この顔料マスター ( C M— 1 ) のペレ ッ ト 1 0重量部と、 上記と 同様のナノコンポジッ トナイ ロ ン 6のペレツ ト 9 0重量部とを配合 し、 シ リ ンダー温度を 2 5 0 °Cに設定した射出成形機 (東芝機械社 製、 ^ I S— 8 0 ) で射出成形して ^験片を作製し、 その外観検 査を行った。
得られた試験片の外観検査の結果を表 7 に示す。 合わせて比較の ために、 ナノ コ ンポジッ トナイ ロ ン 6のペレ ツ 卜 とアルミニウム粉 とマイ 力製パール顔料とを顔料マス夕一を作製せずに直接溶融混練 した実施例 1 1 を表 7 に示す。
表 7
Figure imgf000053_0001
GM-1 *:アルミ粉 12%、マイカ製ハ。ール顔料 4%、ナノコンホ。シ'ットナイロン 6(M2350)84% CM-2 *:アルミ粉 6°んマイカ製ハ。-ル顔料 2%、ナノコンホ。シ'ツトナイロン6 (M2350)92¾ CM-3 *:ァルミ粉 3%、マイカ製ハ。ール顔料 1 %、ナノコンホ。シ 'ットナイロン 6(M2350)96%
実施例 2 1
実施例 9で用いたナノ コ ンポジ ヅ 卜ナイ ロ ン 6のペレ ツ 卜 9 2 % と、 粒径 5 0 m、 アスペク ト比 2 5 0 0のアルミニウム粉 (住友 力ラ一社製、 E P C— 8 E — 2 9 7 ) 6 %と、 粒径 4 5 〃 m、 ァス ぺク ト比 6 4のマイ 力製パール顔料 (宝通商社製) 2 %とからなる 顔料マスター ( C M— 2 ) ペレ ツ 卜を実施例 2 0 と同様に して作製 した。 この顔料マスター ( C M— 2 ) ペレッ ト と上記のナノコ ンポ ジッ トナイ ロン 6のペレ ツ 卜 との配合割合を表 7 に示すようにした そ してそれ以外は実施例 2 0 と同様に して試験片を作製し、 その 外観検査を行った。
得られた試験片の外観検査の結果を表 7に示す。 実施例 2 2
実施例 9で用いたナノコ ンポジッ 卜ナイ ロン 6のペレ ツ ト 9 6 % と、 粒径 5 0 〃m、 ァスぺク 卜比 2 5 0 0のアルミニウム粉 (住友 カラ一社製、 E P C— 8 E— 2 9 7 ) 3 %と、 粒径 4 5〃 m、 ァス ぺク ト比 6 4のマイ 力製パール顔料 (宝通商社製) 1 %とからなる 顔料マス夕一 ( C M— 3 ) ペレ ッ ト を実施例 2 0 と同様にして作製 した。 この顔料マスター ( C M— 3 ) ペレ ツ 卜 と上記のナノ コンポ ジッ トナイ ロン 6のペレ ツ 卜 との配合割合を表 7 に示すようにした そ してそれ以外は実施例 2 0 と同様に して試験片を作製し、 その 外観検査を行った。
得られた試験片の外観検杏の結果を表 7 に示す。 実施例 2 0〜 2 2は、 予め顔料マス夕一ペレ ッ トを作製してナノ コンポジヅ トナイ ロン 6のペレ ツ ト (強化ポリ アミ ド樹脂のペレ ツ ト) とペレ ヅ トブレン ド してレ、るため、 ナノコンポジヅ トナイ ロ ン 6のペレ ッ ト (強化ポリ アミ ド樹脂のペレ ッ ト) に直接顔料を配合 した実施例 1 1 よ り も、 白つぼく しかも光沢感のある外観性の良い ものが得られた。 実施例 2 3
樹脂成分と して、 実施例 9で使用したナノコンポジッ トナイ ロン
6 (ュニチカ社製、 M 2 3 5 0 ) を用いた。 このナノ コンポジッ ト ナイ ロ ン 6のペレツ ト 1 0 0重量部に対し、 メ タ リ ック色を発現す る粒子と して平均粒径 5 0〃mでァスぺク ト比が 2 5 0 0のアルミ 二ゥム粉 (住友カラ一社製、 E P C— 8 E— 3 4 0 ) 1 . 0重量部 と、 熱変色防止剤と してホスフアイ ト系化合物である P e p 3 6 ( 旭電化社製) 1重量部と、 流動性改良剤と して酸化ポリエチレンヮ ックス (ヤスハラケミ カル社製) 1重量部とを配合し、 シリ ンダー 温度を 2 6 0 °Cに設定した二軸混練機 (東芝機械社製、 T E M— 3
7 B S ) を用いてペレ ッ トを作製した。 次にこのペレ ッ トを用いて シ リ ンダー温度を 2 5 0 °Cに設定した射出成形機 (東芝機械社製、 型番 I S— 1 0 0 E ) を用いて、 金型温度 8 0 °C、 射出圧力 1 0 0 M P aで射出成形し、 試験片を作製し、 耐熱変色性と流動長とを測 定した。
その測定結果を表 8に示す。 表 8
Figure imgf000056_0001
* Pewax:酸化ポリエチレンワックス *EB:エチレンビスステアリルアミド
実施例 2 4
流動性改良剤と して酸化ポリエチレ ンワ ックス 1 重量部の代りに エチレ ン ビスステア リ ルア ミ ド ( 日本化成社製、 ス リ ノ ヅ クス E ) 0 . 6 5重量部とステアリ ン酸亜鉛 (堺化学社製) 0 . 2 5重量部 とを用いた。 そしてそれ以外は実施例 2 3 と同様にして樹脂ペレ ツ トを作成し、 上記の方法に従い耐熱変色性と流動長とを測定した。 その測定結果を表 8 に示す。 実施例 2 5
流動性改良剤と して酸化ポリエチレンワ ックス 1 重量部の代りに エチレンビスステアリルア ミ ド (日本化成社製、 ス リ ノ ックス E ) 0 . 9重量部を用いた。 そ してそれ以外は実施例 2 3 と同様にして 樹脂ペレ ッ トを作成し、 上記の方法に従い耐熱変色性と流動長とを 測定した。
その測定結果を表 8 に示す。 実施例 2 6
流動性改良剤と して酸化ポリエチレンワ ックス 1 重量部の代りに ステア リ ン酸亜鉛 (堺化学社製) 0 . 9重量部を用いた。 そしてそ れ以外は実施例 2 3 と同様に して樹脂ペレ ツ トを作成し、 上記の方 法に従い耐熱変色性と流動長とを測定した。 その測定結果を表 8 に 示す。 実施例 2 7
比較のために流動性改 ]¾剤を配合せず、 熱変色防 Iヒ剤と して P e P 3 6 (旭電化社製) 1重量部のみを用いた。 そしてそれ以外は実 施例 2 3 と同様にして樹脂ペレ ツ 卜 を作成し、 上記の方法に従い耐 熱変色性と流動長とを測定した。
その測定結果を表 8に示す。 実施例 2 3〜 2 7は、 いずれもナノ コ ンポジッ トナイ ロ ン 6樹脂 1 0 0重量部に対し、 アルミニウム粉と熱変色防止剤と してのホス フアイ 卜系化合物 ( P e p 3 6 ) が本発明の範囲内で配合されてい たため、 メタ リ ック色や耐熱変色性に優れたものが得られた。 また 、 実施例 2 3 ~ 2 6は、 ホス フアイ ト系化合物 ( P e p 3 6 ) の添 加による樹脂組成物の粘度上昇を抑える目的で流動性改良剤が配合 されていたため、 実施例 2 7に較べて流動長が長く成形性の良いも のが得られた。 産業上の利用可能性
以上のように本発明のポリ アミ ド樹脂組成物は、 家電製品の内外 装カバーや電気機器の筐体に適する。 本発明のポリ アミ ド樹脂組成 物は、 特にエンジンカバ一と して好適に使用できる。

Claims

請 求 の 範 囲
1 . 層状珪酸塩 0 . 1 〜 1 0重量%が分子レベルで均一に分散され た強化ポリ アミ ド樹脂 1 0 0重量部に対して、 メ タ リ ツク色を発現 する粒子 0 . 1 〜 1 0重量部を配合したことを特徴とするポリアミ ド樹脂組成物。
2 . 層状珪酸塩が、 膨潤性フ ッ素雲母系鉱物、 モンモリ ロナイ トの う ちのいずれかであることを特徴とする請求項 1記載のポリアミ ド 樹脂組成物。
3 . 強化ポリ アミ ド樹脂 1 0 0重量部に対して、 さ らに非強化ポリ アミ ド樹脂を 2 0 0重量部以下の割合で配合してなることを特徴と する請求項 1記載のポリ アミ ド樹脂組成物。
4 . メ タ リ ック色を発現する粒子が、 金属反射面を有する粒子、 あ るいは前記金属反射面を有する粒子と灰白色ないし白色の反射面を 有する粒子との混合物であることを特徴とする請求項 1記載のポ リ ァミ ド樹脂組成物。
5 . 金属反射面を有する粒子が、 アルミニウム、 ニッケルも しく は 錫の粒子であるこ とを特徴とする請求項 4記載のポリ アミ ド樹脂組 成物。
6 . 灰白色ないし白色の反射面を有する粒子が、 マイ 力製パ一ル顔 料であることを特徴とする請求項 4記載のポリ アミ ド樹脂組成物。
7 . 金属反射面を有する粒子がアルミニウム粉であ り、 このアルミ ニゥム粉の平均粒径が 1 0〜 1 0 0 / mでァスぺク ト比が 5〜 3 0 0 0であるこ とを特徴とする請求項 5記載のポリ アミ ド樹脂組成物
8 . 灰白色ないし白色の反射面を有する粒子がマイ 力製パール顔料 であ り、 このマイ 力製パール顔料の平均粒径が 1 0〜 5 0 111でァ スぺク ト比が 5〜 5 0 0であることを特徴とする請求項 6記載のポ リ アミ ド樹脂組成物。
9 . 金属反射面を有する粒子と灰白色ないし白色の反射面を有する 粒子との混合物が、 アルミニウム粉とマイ 力製パール顔料の混合物 であ り、 その配合割合が重量比でアルミ ニウム粉/マイ 力製パール 顔料 = 5 0 / 5 0〜 9 8 / 2であることを特徴とする請求項 4記載 のポリアミ ド樹脂組成物。
1 0 . 強化ポリ アミ ド樹脂 1 0 0重量部に対して、 ホスフアイ ト系 化合物、 ヒンダー ドフエノール系化合物、 チォェ一テル系化合物及 びハロゲン化銅からなる群よ り選ばれた熱変色防止剤を 5重量部以 下の割合で配合してなることを特徴とする請求項 1記載のポリアミ ド樹脂組成物。
1 1 . 強化ポリ アミ ド樹脂 1 0 0重量部に対して、 耐衝撃性改良剤 を 1 0 ¾ 部以 ドの割合で配合してなることを特徴とする請求項 1 記載のポリ アミ ド樹脂組成物。
1 2. 強化ポリアミ ド樹脂 1 0 0重量部に対して、 強化材を 1 0重 量部以下の割合で配合してなることを特徴とする請求項 1記載のポ リアミ ド樹脂組成物。
1 3. 強化ポリアミ ド樹脂 1 0 0重量部に対して、 熱変色防止剤と してホスフアイ ト系化合物 5重量部以下と、 流動性改良剤 5重量部 以下とを配合してなるこ とを特徴とする請求項 1記載のポリ アミ ド 樹脂組成物。
1 4. 流動性改良剤は、 酸化ポ リ エチレ ンワ ッ クス、 脂肪族ビスァ ミ ド、 高級脂肪酸の金属塩のいずれかであることを特徴とする請求 項 1 3記載のポリ アミ ド樹脂組成物。
PCT/JP1998/004023 1997-09-08 1998-09-07 Composition de resine de polyamide WO1999013006A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98941765A EP1022313A4 (en) 1997-09-08 1998-09-07 POLYAMIDE RESIN COMPOSITION

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/242245 1997-09-08
JP24224597 1997-09-08
JP6751498 1998-03-18
JP10/67514 1998-03-18
JP10/130897 1998-05-14
JP13089798 1998-05-14

Publications (1)

Publication Number Publication Date
WO1999013006A1 true WO1999013006A1 (fr) 1999-03-18

Family

ID=27299472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004023 WO1999013006A1 (fr) 1997-09-08 1998-09-07 Composition de resine de polyamide

Country Status (3)

Country Link
US (1) US20030004248A1 (ja)
EP (1) EP1022313A4 (ja)
WO (1) WO1999013006A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088239A (ja) * 2000-09-12 2002-03-27 Toray Ind Inc ポリアミド樹脂組成物およびそれからなる成形品
JP2002212440A (ja) * 2001-01-17 2002-07-31 Mitsui Chemicals Inc 熱可塑性樹脂組成物およびその成形物
EP1407975A2 (en) * 1999-09-01 2004-04-14 Owens-Illinois Closure Inc. Multi-layer plastic closure with barrier properties
JP2005538201A (ja) * 2002-09-06 2005-12-15 エーエムエス−ヒェミー・アクチェンゲゼルシャフト ポリアミドナノ複合材料の製造法およびそれから製造しうる射出成形品
JP2006009034A (ja) * 2005-09-16 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd フリップフロップ性メタリック感を有する成形品用熱可塑性樹脂組成物
JP2006522192A (ja) * 2003-04-04 2006-09-28 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 薄層被覆アルミニウム顔料、その製造方法、およびそのアルミニウム顔料の使用
JP2007137963A (ja) * 2005-11-16 2007-06-07 Sumitomo Chemical Co Ltd 光輝材含有樹脂組成物
US7491763B2 (en) 2002-07-10 2009-02-17 Asahi Kasei Chemicals Corporation Polyamide composition
JP2013241506A (ja) * 2012-05-18 2013-12-05 Asahi Kasei Chemicals Corp 耐熱変色性メタリック調ポリアミド樹脂組成物
CN103649204A (zh) * 2011-07-12 2014-03-19 三菱化学株式会社 树脂组合物和离型膜
JP2014065792A (ja) * 2012-09-25 2014-04-17 Unitika Ltd ポリアミド樹脂組成物、およびそれよりなる成形体
JP2014080574A (ja) * 2012-09-27 2014-05-08 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2014167049A (ja) * 2013-02-28 2014-09-11 Unitika Ltd ポリアミド樹脂組成物、およびそれよりなる成形体
JP2014198796A (ja) * 2013-03-29 2014-10-23 ユニチカ株式会社 ポリアミド樹脂組成物、およびそれよりなる成形体
JP2015059162A (ja) * 2013-09-18 2015-03-30 ユニチカ株式会社 ポリアミド樹脂組成物、およびそれより得られるブロー成形体。
JP2016053137A (ja) * 2014-09-04 2016-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2016065235A (ja) * 2014-09-24 2016-04-28 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2017036378A (ja) * 2015-08-07 2017-02-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
WO2019021593A1 (ja) * 2017-07-28 2019-01-31 本田技研工業株式会社 鞍乗り型車両のフロアステップ構造
WO2019021540A1 (ja) * 2017-07-28 2019-01-31 本田技研工業株式会社 鞍乗り型車両のマフラーカバー構造
WO2020090741A1 (ja) 2018-10-31 2020-05-07 ユニチカ株式会社 メタリック調熱可塑性樹脂ペレット
WO2021085056A1 (ja) 2019-10-30 2021-05-06 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2393545T3 (es) * 2001-08-07 2012-12-26 Pacific Engineering Corporation Composición de resina de poliamida para elemento fusible y elemento fusible
US7488764B2 (en) * 2003-01-23 2009-02-10 Sabic Innovative Plastics Ip B.V. Polymer encapsulation of high aspect ratio materials and methods of making same
US7312257B2 (en) * 2003-01-23 2007-12-25 General Electric Company Polymer encapsulation of high aspect ratio materials and methods of making same
CA2562345C (en) * 2004-04-07 2014-01-21 Revcor, Inc. Polymer nanocomposites for air movement devices
US8178194B2 (en) * 2004-12-10 2012-05-15 National Institute Of Advanced Industrial Science And Technology Clay film product
US8686082B2 (en) * 2006-03-24 2014-04-01 Applied Nanotech Holdings, Inc. Nylon based composites
DE202006013873U1 (de) * 2006-09-11 2006-12-28 Heinrich Gillet Gmbh Bestandteil von Abgasanlagen von Kraftfahrzeugen mit Verbrennungsmotor
US20090142585A1 (en) * 2007-11-08 2009-06-04 Toshikazu Kobayashi Nanocomposite compositions of polyamides, sepiolite-type clays and copper species and articles thereof
US7902287B2 (en) * 2008-01-21 2011-03-08 Basf Aktiengesellschaft Polyamide resin composition and method of preparing
JP5463622B2 (ja) * 2008-03-19 2014-04-09 スズキ株式会社 メタリック調樹脂成型品の製造方法及び金型
CN102015870B (zh) * 2008-05-08 2013-07-24 纳幕尔杜邦公司 包含可再生聚酰胺树脂组合物的便携式电子装置外壳
DE102008064202A1 (de) 2008-12-22 2010-06-24 Merck Patent Gmbh Pigmentgranulate
US9472776B2 (en) * 2011-10-14 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sealed structure including welded glass frits
CN103694692B (zh) * 2012-09-27 2017-08-11 尤尼吉可株式会社 聚酰胺树脂组合物及将其成型而成的成型体
CN105754331B (zh) * 2014-12-18 2019-01-11 旭化成株式会社 聚酰胺树脂组合物及成型体
JP6246419B2 (ja) * 2015-03-16 2017-12-13 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
US11608423B2 (en) * 2016-01-21 2023-03-21 Ticona Llc Polyamide composition containing a metallic pigment
KR102479091B1 (ko) * 2016-06-07 2022-12-19 한국자동차연구원 무도장 고광택 나노 수지 조성물
TW201811976A (zh) 2016-08-08 2018-04-01 美商堤康那責任有限公司 用於散熱器之導熱聚合物組合物
EP3378883A1 (en) * 2017-03-21 2018-09-26 Solvay Specialty Polymers USA, LLC. Thermoplastic composites and corresponding fabrication methods and articles
CN108384228A (zh) * 2018-02-12 2018-08-10 广东新会美达锦纶股份有限公司 一种免喷涂纳米尼龙6复合材料的制备方法
CN108299820A (zh) * 2018-02-12 2018-07-20 广东新会美达锦纶股份有限公司 一种免喷涂纳米尼龙6复合材料
CN114907726B (zh) * 2022-06-29 2023-01-31 长沙族兴新材料股份有限公司 一种水溶性条状铝颜料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397755A (ja) * 1989-09-11 1991-04-23 Adeka Argus Chem Co Ltd 安定化されたポリアミド系樹脂組成物
JPH0593091A (ja) * 1991-09-30 1993-04-16 Dainichiseika Color & Chem Mfg Co Ltd メタリツク感を有する熱可塑性樹脂組成物
JPH069866A (ja) * 1992-06-26 1994-01-18 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH0770448A (ja) * 1993-09-07 1995-03-14 Asahi Chem Ind Co Ltd 耐ドリップ性と流動性の優れた難燃耐熱性樹脂組成物
JPH0812883A (ja) * 1994-06-28 1996-01-16 Unitika Ltd 樹脂組成物およびその製造方法
JPH08283566A (ja) * 1995-04-13 1996-10-29 Unitika Ltd ポリアミド樹脂製自動車用部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739007A (en) * 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
US5164440A (en) * 1988-07-20 1992-11-17 Ube Industries, Ltd. High rigidity and impact resistance resin composition
JP2718083B2 (ja) * 1988-08-29 1998-02-25 三菱瓦斯化学株式会社 成形材料
US5414042A (en) * 1992-12-29 1995-05-09 Unitika Ltd. Reinforced polyamide resin composition and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397755A (ja) * 1989-09-11 1991-04-23 Adeka Argus Chem Co Ltd 安定化されたポリアミド系樹脂組成物
JPH0593091A (ja) * 1991-09-30 1993-04-16 Dainichiseika Color & Chem Mfg Co Ltd メタリツク感を有する熱可塑性樹脂組成物
JPH069866A (ja) * 1992-06-26 1994-01-18 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH0770448A (ja) * 1993-09-07 1995-03-14 Asahi Chem Ind Co Ltd 耐ドリップ性と流動性の優れた難燃耐熱性樹脂組成物
JPH0812883A (ja) * 1994-06-28 1996-01-16 Unitika Ltd 樹脂組成物およびその製造方法
JPH08283566A (ja) * 1995-04-13 1996-10-29 Unitika Ltd ポリアミド樹脂製自動車用部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1022313A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407975A2 (en) * 1999-09-01 2004-04-14 Owens-Illinois Closure Inc. Multi-layer plastic closure with barrier properties
EP1407975A3 (en) * 1999-09-01 2004-04-21 Owens-Illinois Closure Inc. Multi-layer plastic closure with barrier properties
JP2002088239A (ja) * 2000-09-12 2002-03-27 Toray Ind Inc ポリアミド樹脂組成物およびそれからなる成形品
JP2002212440A (ja) * 2001-01-17 2002-07-31 Mitsui Chemicals Inc 熱可塑性樹脂組成物およびその成形物
US7491763B2 (en) 2002-07-10 2009-02-17 Asahi Kasei Chemicals Corporation Polyamide composition
JP2005538201A (ja) * 2002-09-06 2005-12-15 エーエムエス−ヒェミー・アクチェンゲゼルシャフト ポリアミドナノ複合材料の製造法およびそれから製造しうる射出成形品
JP2006522192A (ja) * 2003-04-04 2006-09-28 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 薄層被覆アルミニウム顔料、その製造方法、およびそのアルミニウム顔料の使用
JP2006009034A (ja) * 2005-09-16 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd フリップフロップ性メタリック感を有する成形品用熱可塑性樹脂組成物
JP2007137963A (ja) * 2005-11-16 2007-06-07 Sumitomo Chemical Co Ltd 光輝材含有樹脂組成物
CN103649204A (zh) * 2011-07-12 2014-03-19 三菱化学株式会社 树脂组合物和离型膜
JP2013241506A (ja) * 2012-05-18 2013-12-05 Asahi Kasei Chemicals Corp 耐熱変色性メタリック調ポリアミド樹脂組成物
JP2014065792A (ja) * 2012-09-25 2014-04-17 Unitika Ltd ポリアミド樹脂組成物、およびそれよりなる成形体
JP2014080574A (ja) * 2012-09-27 2014-05-08 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2014167049A (ja) * 2013-02-28 2014-09-11 Unitika Ltd ポリアミド樹脂組成物、およびそれよりなる成形体
JP2014198796A (ja) * 2013-03-29 2014-10-23 ユニチカ株式会社 ポリアミド樹脂組成物、およびそれよりなる成形体
JP2015059162A (ja) * 2013-09-18 2015-03-30 ユニチカ株式会社 ポリアミド樹脂組成物、およびそれより得られるブロー成形体。
JP2016053137A (ja) * 2014-09-04 2016-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2016065235A (ja) * 2014-09-24 2016-04-28 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2017036378A (ja) * 2015-08-07 2017-02-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
JPWO2019021540A1 (ja) * 2017-07-28 2020-07-02 本田技研工業株式会社 鞍乗り型車両のマフラーカバー構造
WO2019021593A1 (ja) * 2017-07-28 2019-01-31 本田技研工業株式会社 鞍乗り型車両のフロアステップ構造
WO2019021540A1 (ja) * 2017-07-28 2019-01-31 本田技研工業株式会社 鞍乗り型車両のマフラーカバー構造
JPWO2019021593A1 (ja) * 2017-07-28 2020-06-11 本田技研工業株式会社 鞍乗り型車両のフロアステップ構造
WO2020090741A1 (ja) 2018-10-31 2020-05-07 ユニチカ株式会社 メタリック調熱可塑性樹脂ペレット
JP6733986B1 (ja) * 2018-10-31 2020-08-05 ユニチカ株式会社 メタリック調熱可塑性樹脂ペレット
JP2020169340A (ja) * 2018-10-31 2020-10-15 ユニチカ株式会社 メタリック調熱可塑性樹脂ペレット
WO2021085056A1 (ja) 2019-10-30 2021-05-06 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP6886219B1 (ja) * 2019-10-30 2021-06-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体

Also Published As

Publication number Publication date
EP1022313A4 (en) 2002-05-22
US20030004248A1 (en) 2003-01-02
EP1022313A1 (en) 2000-07-26

Similar Documents

Publication Publication Date Title
WO1999013006A1 (fr) Composition de resine de polyamide
JP5092401B2 (ja) 熱可塑性樹脂組成物
WO2005121243A1 (ja) 難燃性樹脂組成物および成形品
WO2000006649A1 (fr) Composition de resine de polyamide et son procede de production
US20030153677A1 (en) Impact-resistance modified polymer compositions
JP6076664B2 (ja) ポリアミド樹脂組成物、およびそれよりなる成形体
US20040235999A1 (en) Modified shock-resistant polymer compositions
JPH11279289A (ja) 樹脂成形品
JP5105677B2 (ja) ポリアミド樹脂組成物およびこれを用いた成形品
JP3341974B2 (ja) 難燃性ポリアミド樹脂組成物
JP3364993B2 (ja) 難燃性樹脂組成物
JPH08311292A (ja) 熱可塑性成形組成物
JP3432606B2 (ja) 安定化ポリカーボネート系樹脂組成物
JP2004250562A (ja) ポリアミド樹脂組成物及びそれからなる成形品
KR100493201B1 (ko) 난연성수지조성물
JP3017234B2 (ja) 樹脂組成物
JP4426346B2 (ja) 非ハロゲン熱可塑性難燃樹脂組成物
JP3385104B2 (ja) 樹脂組成物
KR20200100638A (ko) 폴리카르보네이트, 활석 및 왁스를 함유하는 기판 층을 포함하는 다층체
JP3017232B2 (ja) 樹脂組成物
KR20040039389A (ko) 개질된 내충격성 중합체 조성물
US20030073773A1 (en) Impact-modified polymer compositions
KR20090088367A (ko) 고도로 가교된 유기 나노입자를 포함하는 성형 물질
JP2003105197A (ja) ポリアミド樹脂組成物およびこれを用いた成形品
JPH11315203A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998941765

Country of ref document: EP

Ref document number: 09508202

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998941765

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998941765

Country of ref document: EP