WO1998052216A1 - Procede de clivage controle - Google Patents
Procede de clivage controle Download PDFInfo
- Publication number
- WO1998052216A1 WO1998052216A1 PCT/US1998/009567 US9809567W WO9852216A1 WO 1998052216 A1 WO1998052216 A1 WO 1998052216A1 US 9809567 W US9809567 W US 9809567W WO 9852216 A1 WO9852216 A1 WO 9852216A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- energy
- particles
- selected depth
- cleave
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 149
- 230000008569 process Effects 0.000 title claims description 84
- 238000003776 cleavage reaction Methods 0.000 title description 5
- 230000007017 scission Effects 0.000 title description 5
- 239000000758 substrate Substances 0.000 claims abstract description 205
- 239000000463 material Substances 0.000 claims abstract description 135
- 230000009471 action Effects 0.000 claims abstract description 62
- 239000002245 particle Substances 0.000 claims abstract description 56
- 239000012530 fluid Substances 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 239000010703 silicon Substances 0.000 claims description 40
- 239000007789 gas Substances 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 16
- 238000005468 ion implantation Methods 0.000 claims description 10
- 239000010432 diamond Substances 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910003460 diamond Inorganic materials 0.000 claims description 7
- 230000001902 propagating effect Effects 0.000 claims description 7
- 238000007654 immersion Methods 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 150000002483 hydrogen compounds Chemical class 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 230000003313 weakening effect Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 87
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 39
- 239000010408 film Substances 0.000 description 32
- 239000010409 thin film Substances 0.000 description 25
- 238000010586 diagram Methods 0.000 description 23
- 239000007788 liquid Substances 0.000 description 21
- 230000000977 initiatory effect Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 238000002513 implantation Methods 0.000 description 13
- 239000012212 insulator Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- -1 gases Chemical class 0.000 description 6
- 239000007943 implant Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 239000002210 silicon-based material Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000005485 electric heating Methods 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000013526 supercooled liquid Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000013590 bulk material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052754 neon Inorganic materials 0.000 description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001050985 Disco Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D3/00—Cutting work characterised by the nature of the cut made; Apparatus therefor
- B26D3/28—Splitting layers from work; Mutually separating layers by cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F3/00—Severing by means other than cutting; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F3/00—Severing by means other than cutting; Apparatus therefor
- B26F3/002—Precutting and tensioning or breaking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
Definitions
- the present invention relates to the manufacture of substrates. More particularly, the invention provides a technique including a method and device for cleaving a substrate in the fabrication of a silicon-on-insulator substrate for semiconductor integrated circuits using a pressurized fluid, for example. But it will be recognized that the invention has a wider range of applicability; it can also be applied to other substrates for multi-layered integrated circuit devices, three- dimensional packaging of integrated semiconductor devices, photonic devices, piezoelectronic devices, microelectromechanical systems (“MEMS”), sensors, actuators, solar cells, flat panel displays (e.g. , LCD, AMLCD), biological and biomedical devices, and the like.
- MEMS microelectromechanical systems
- Craftsmen or more properly crafts-people have been building useful articles, tools, or devices using less useful materials for numerous years.
- articles are assembled by way of smaller elements or building blocks.
- less useful articles are separated into smaller pieces to improve their utility.
- a common example of these articles to be separated include substrate structures such as a glass plate, a diamond, a semiconductor substrate, and others.
- substrate structures are often cleaved or separated using a variety of techniques.
- the substrates can be cleaved using a saw operation.
- the saw operation generally relies upon a rotating blade or tool, which cuts through the substrate material to separate the substrate material into two pieces.
- This technique is often extremely "rough” and cannot generally be used for providing precision separations in the substrate for the manufacture of fine tools and assemblies.
- the saw operation often has difficulty separating or cutting extremely hard and/or brittle materials such as diamond or glass.
- an intense directional thermal/mechanical impulse is directed preferentially along a crystallographic plane of a diamond material.
- This thermal/mechanical impulse generally causes a cleave front to propagate along major crystallographic planes, where cleaving occurs when an energy level from the thermal/mechanical impulse exceeds the fracture energy level along the chosen crystallographic plane.
- a scribe line using a tool is often impressed in a preferred direction on the glass material, which is generally amorphous in character.
- the scribe line causes a higher stress area surrounding the amorphous glass material.
- Mechanical force is placed on each side of the scribe line, which increases stress along the scribe line until the glass material fractures, preferably along the scribe line. This fracture completes the cleaving process of the glass, which can be used in a variety of applications including households.
- the above techniques may be useful for separating one large plane of glass from another, but are often ineffective for splitting off, shaving, or stripping a thin film of material from a larger substrate. Furthermore, the above techniques may often cause more than one cleave front, which join along slightly different planes, which is highly undesirable for precision cutting applications. From the above, it is seen that a technique for separating a thin film of material from a substrate which is cost effective and efficient is often desirable.
- an improved technique for removing a thin film of material from a substrate using a controlled cleaving action using a pressurized fluid or fluid jet is provided.
- This technique allows an initiation of a cleaving process on a substrate using a single or multiple cleave region(s) through the use of controlled energy (e.g. , spatial distribution) and selected conditions to allow an initiation of a cleave front(s) and to allow it to propagate through the substrate to remove a thin film of material from the substrate.
- controlled energy e.g. , spatial distribution
- the present invention provides a process for forming a film of material from a donor substrate using a controlled cleaving process with a pressurized fluid.
- the process includes a step of introducing energetic particles (e.g. , charged or neutral molecules, atoms, or electrons having sufficient kinetic energy) through a surface of a donor substrate to a selected depth underneath the surface, where the particles are at a relatively high concentration to define a thickness of donor substrate material (e.g., thin film of detachable material) above the selected depth.
- energetic particles e.g. , charged or neutral molecules, atoms, or electrons having sufficient kinetic energy
- the method To cleave the donor substrate material, the method provides energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate, whereupon the cleaving action is made using a propagating cleave front(s) to free the donor material from a remaining portion of the donor substrate.
- a cleave is initiated by subjecting the material with sufficient energy to fracture the material in one region, causing a cleave front, without uncontrolled shattering or cracking.
- the cleave front formation energy (E c ) must often be made lower than the bulk material fracture energy (E r ⁇ t ) at each region to avoid shattering or cracking the material.
- the directional energy impulse vector in diamond cutting or the scribe line in glass cutting are, for example, the means in which the cleave energy is reduced to allow the controlled creation and propagation of a cleave front.
- the cleave front is in itself a higher stress region and once created, its propagation requires a lower energy to further cleave the material from this initial region of fracture.
- the energy required to propagate the cleave front is called the cleave front propagation energy (E p ).
- E c E p + [cleave front stress energy]
- a controlled cleaving process is realized by reducing E p along a favored direction(s) above all others and limiting the available energy to be below the E p of other undesired directions.
- a better cleave surface finish occurs when the cleave process occurs through only one expanding cleave front, although multiple cleave fronts do work.
- the present invention uses controlled energy and selected conditions to preferentially cleave a thin film of material from a donor substrate which includes multi-material sandwiched films. This cleaving process selectively removes the thin film of material from the substrate while preventing a possibility of damage to the film or a remaining portion of the substrate. Accordingly, the remaining substrate portion can be re-used repeatedly for other applications.
- the present invention uses a relatively low temperature during the controlled cleaving process of the thin film to reduce temperature excursions of the separated film, donor substrate, or multi-material films according to other embodiments.
- the controlled cleaving process can occur at, for example, room temperature, as well as others.
- This lower temperature approach allows for more material and process latitude such as, for example, cleaving and bonding of materials having substantially different thermal expansion coefficients.
- the present invention limits energy or stress in the substrate to a value below a cleave initiation energy, which generally removes a possibility of creating random cleave initiation sites or fronts.
- Figs. 1-11 are simplified diagrams illustrating a controlled cleaving technique according to an embodiment of the present invention.
- Figs. 12-18 are simplified cross-sectional view diagrams illustrating a method of forming a silicon-on-insulator substrate according to the present invention.
- the present invention provides a technique for removing a thin film of material from a substrate while preventing a possibility of damage to the thin material film and/or a remaining portion of the substrate.
- the thin film of material is attached to or can be attached to a target substrate to form, for example, a silicon-on-insulator wafer.
- the thin film of material can also be used for a variety of other applications. The invention will be better understood by reference to the Figs, and the descriptions below.
- Fig. 1 is a simplified cross-sectional view diagram of a substrate 10 according to the present invention.
- substrate 10 is a silicon wafer which includes a material region 12 to be removed, which is a thin relatively uniform film derived from the substrate material.
- the silicon wafer 10 includes a top surface 14, a bottom surface 16, and a thickness 18.
- Substrate 10 also has a first side (side 1) and a second side (side 2) (which are also referenced below in the Figs.).
- Material region 12 also includes a thickness 20, within the thickness 18 of the silicon wafer.
- the present invention provides a novel technique for removing the material region 12 using the following sequence of steps.
- Selected energetic particles implant 22 through the top surface 14 of the silicon wafer to a selected depth 24, which defines the thickness 20 of the material region 12, termed the thin film of material.
- a variety of techniques can be used to implant the energetic particles into the silicon wafer. These techniques include ion implantation using, for example, beam line ion implantation equipment manufactured from companies such as Applied Materials, Eaton Corporation, Varian, and others. Alternatively, implantation occurs using a plasma immersion ion implantation ("PHI”) technique. Examples of plasma immersion implantation techniques are described in "Recent Applications of Plasma Immersion Ion Implantation, " Paul K. Chu, Chung Chan, and Nathan W. Cheung, SEMICONDUCTOR INTERNATIONAL, pp.
- smaller mass particles are generally selected to reduce a possibility of damage to the material region 12. That is, smaller mass particles easily travel through the substrate material to the selected depth without substantially damaging the material region that the particles traverse through.
- the smaller mass particles or energetic particles
- the particles can be almost any charged (e.g. , positive or negative) and/or neutral atoms or molecules, or electrons, or the like.
- the particles can be neutral and/ or charged particles including ions such as ions of hydrogen and its isotopes, rare gas ions such as helium and its isotopes, and neon.
- the particles can also be derived from compounds such as gases, e.g., hydrogen gas, water vapor, methane, and hydrogen compounds, and other light atomic mass particles.
- gases e.g., hydrogen gas, water vapor, methane, and hydrogen compounds
- the particles can be any combination of the above particles, and/or ions and/or molecular species and/or atomic species.
- the particles generally have sufficient kinetic energy to penetrate through the surface to the selected depth underneath the surface.
- Implantation dose ranges from about 10 15 to about 10 18 atoms/cm 2 , and preferably the dose is greater than about 10 16 atoms/cm 2 .
- Implantation energy ranges from about 1 KeV to about 1 MeV , and is generally about 50 KeV.
- Implantation temperature ranges from about -200 to about 600°C, and is preferably less than about 400 °C to prevent a possibility of a substantial quantity of hydrogen ions from diffusing out of the implanted silicon wafer and annealing the implanted damage and stress.
- the hydrogen ions can be selectively introduced into the silicon wafer to the selected depth at an accuracy of about +/- 0.03 to +/- 0.05 microns.
- the type of ion used and process conditions depend upon the application.
- the implanted particles add stress or reduce fracture energy along a plane parallel to the top surface of the substrate at the selected depth.
- the energies depend, in part, upon the implantation species and conditions. These particles reduce a fracture energy level of the substrate at the selected depth. This allows for a controlled cleave along the implanted plane at the selected depth.
- Implantation can occur under conditions such that the energy state of substrate at all internal locations is insufficient to initiate a non-reversible fracture (i.e. , separation or cleaving) in the substrate material.
- implantation does generally cause a certain amount of defects (e.g. , micro-detects) in the substrate that can be repaired by subsequent heat treatment, e.g. , thermal annealing or rapid thermal annealing.
- defects e.g. , micro-detects
- subsequent heat treatment e.g. , thermal annealing or rapid thermal annealing.
- Fig. 2 is a simplified energy diagram 200 along a cross-section of the implanted substrate 10 according to the present invention.
- the diagram is merely an illustration and should not limit the scope of the claims herein.
- the simplified diagram includes a vertical axis 201 that represents an energy level (E) (or additional energy) to cause a cleave in the substrate.
- a horizontal axis 203 represents a depth or distance from the bottom of the wafer to the top of the wafer.
- E 205 average cleave energy represented as E 205, which is the amount of energy needed to cleave the wafer along various cross-sectional regions along the wafer depth.
- the cleave energy (E c ) is equal to the bulk material fracture energy (E ⁇ ) in non-implanted regions.
- energy (E cz ) 207 is lower since the implanted particles essentially break or weaken bonds in the crystalline structure (or increase stress caused by a presence of particles also contributing to lower energy (E cz ) 207 of the substrate) to lower the amount of energy needed to cleave the substrate at the selected depth.
- the present invention takes advantage of the lower energy (or increased stress) at the selected depth to cleave the thin film in a controlled manner.
- Fig. 3 is a simplified energy diagram 300 across a cleave front for the implanted substrate 10 having these defects.
- the diagram 300 is merely an illustration and should not limit the scope of the claims herein.
- the diagram has a vertical axis 301 which represents additional energy (E) and a horizontal axis 303 which represents a distance from side 1 to side 2 of the substrate, that is, the horizontal axis represents regions along the cleave front of the substrate.
- the cleave front has two regions 305 and 307 represented as region 1 and region 2, respectively, which have cleave energies less than the average cleave energy (E cz ) 207 (possibly due to a higher concentration of defects or the like). Accordingly, it is highly likely that the cleave process begins at one or both of the above regions, since each region has a lower cleave energy than surrounding regions.
- Fig. 4 is a simplified top-view diagram 400 of multiple cleave fronts 401, 403 propagating through the implanted substrate.
- the cleave fronts originate at "weaker" regions in the cleave plane, which specifically includes regions 1 and 2.
- the cleave fronts originate and propagate randomly as shown by the arrows.
- a limitation with the use of random propagation among multiple cleave fronts is the possibility of having different cleave fronts join along slightly different planes or the possibility of forming cracks, which is described in more detail below.
- Fig. 5 is a simplified cross-sectional view 500 of a film cleaved from a wafer having multiple cleave fronts at, for example, regions 1 305 and 2 307.
- This diagram is merely an illustration and should not limit the scope of the claims herein.
- the cleave from region 1 joined with the cleave from region 2 at region 3 309 which is defined along slightly different planes, may initiate a secondary cleave or crack 311 along the film.
- the film may not be of sufficient quality for use in manufacture of substrates for integrated circuits or other applications.
- a substrate having crack 311 generally cannot be used for processing.
- Bruel discloses a technique for an "uncontrollable" cleaving action by way of initiating and maintaining a cleaving action by a global thermal source, which may produce undesirable results. These undesirable results include potential problems such as an imperfect joining of cleave fronts, an excessively rough surface finish on the surface of the cleaved material since the energy level for maintaining the cleave exceeds the amount required, and many others.
- the present invention overcomes the formation of random cleave fronts by a controlled distribution or selective positioning of energy on the implanted substrate.
- Fig. 6 is a simplified cross-sectional view of an implanted substrate 10 using selective positioning of cleave energy according to the present invention.
- the implanted wafer undergoes a step of selective energy placement 601 or positioning or targeting which provides a controlled cleaving action of the material region 12 at the selected depth 603.
- selected energy placement 607 occurs near an edge or corner region of the selected depth 603 of substrate 10.
- the impulse is provided using energy sources. Examples of sources include, among others, a chemical source, a mechanical source, an electrical source, and a thermal sink or source.
- the chemical source can include a variety such as particles, fluids, gases, or liquids.
- chemical sources can also include chemical reaction to increase stress in the material region.
- the chemical source is introduced as flood, time-varying, spatially varying, or continuous.
- a mechanical source is derived from rotational, translational, compressional, expansional, or ultrasonic energies.
- the mechanical source can be introduced as flood, time-varying, spatially varying, or continuous.
- the electrical source is selected from an applied voltage or an applied electro-magnetic field, which is introduced as flood, time-varying, spatially varying, or continuous.
- the thermal source or sink is selected from radiation, convection, or conduction.
- This thermal source can be selected from, among others, a photon beam, a fluid jet, a liquid jet, a gas jet, an electro/magnetic field, an electron beam, a thermo-electric heating, a furnace, and the like.
- the thermal sink can be selected from a fluid jet, a liquid jet, a gas jet, a cryogenic fluid, a super-cooled liquid, a thermo-electric cooling means, an electro/magnetic field, and others. Similar to the previous embodiments, the thermal source is applied as flood, time- varying, spatially varying, or continuous.
- any of the above embodiments can be combined or even separated, depending upon the application.
- the type of source used depends upon the application.
- Fig. 6 is a simplified cross-sectional view of an implanted substrate 10 using selective positioning of cleave energy according to the present invention.
- the implanted wafer undergoes a step of selective energy placement 601 or positioning or targeting which provides a controlled cleaving action of the material region 12 at the selected depth 603.
- selected energy placement 607 occurs near an edge or corner region of the selected depth 603 of substrate 10.
- the impulse is provided using energy sources. Examples of sources include, among others, a chemical source, a mechanical source, an electrical source, and a thermal sink or source.
- the chemical source can include a variety such as particles, fluids, gases, or liquids.
- chemical sources can also include chemical reaction to increase stress in the material region.
- the chemical source is introduced as flood, time-varying, spatially varying, or continuous.
- a mechanical source is derived from rotational, translational, compressional, expansional, or ultrasonic energies.
- the mechanical source can be introduced as flood, time- varying, spatially varying, or continuous.
- the electrical source is selected from an applied voltage or an applied electro-magnetic field, which is introduced as flood, time- varying, spatially varying, or continuous.
- the thermal source or sink is selected from radiation, convection, or conduction.
- This thermal source can be selected from, among others, a photon beam, a fluid jet, a liquid jet, a gas jet, an electro/magnetic field, an electron beam, a thermo-electric heating, a furnace, and the like.
- the thermal sink can be selected from a fluid jet, a liquid jet, a gas jet, a cryogenic fluid, a super-cooled liquid, a thermo-electric cooling means, an electro/magnetic field, and others. Similar to the previous embodiments, the thermal source is applied as flood, time- varying, spatially varying, or continuous. Still further, any of the above embodiments can be combined or even separated, depending upon the application. Of course, the type of source used depends upon the application.
- the energy source can be a fluid jet that is pressurized (e.g., compressional) according to an embodiment of the present invention.
- Fig. 6A shows a simplified cross-sectional view diagram of a fluid jet from a fluid nozzle 608 used to perform the controlled cleaving process according to an embodiment of the present invention.
- the fluid jet 607 (or liquid jet or gas jet) impinges on an edge region of substrate 10 to initiate the controlled cleaving process.
- the fluid jet from a compressed or pressurized fluid source is directed to a region at the selected depth 603 to cleave a thickness of material region 12 from substrate 10 using force, e.g. , mechanical, chemical, thermal.
- the fluid jet separates substrate 10 into two regions, including region 609 and region 611 that separate from each other at selected depth 603.
- the fluid jet can also be adjusted to initiate and maintain the controlled cleaving process to separate material 12 from substrate 10.
- the fluid jet can be adjusted in direction, location, and magnitude to achieve the desired controlled cleaving process.
- the fluid jet can be a liquid jet or a gas jet or a combination of liquid and gas.
- the energy source can be a compressional source such as, for example, compressed fluid that is static.
- Fig. 6B shows a simplified cross-sectional view diagram of a compressed fluid source 607 according to an embodiment of the present invention.
- the compressed fluid source 607 e.g., pressurized liquid, pressurized gas
- a sealed chamber 621 which surrounds a periphery or edge of the substrate 10.
- the chamber is enclosed by device 623, which is sealed by, for example, o-rings 625 or the like, and which surrounds the outer edge of the substrate.
- the chamber has a pressure maintained at P c that is applied to the edge region of substrate 10 to initiate the controlled cleaving process at the selected depth of implanted material.
- the outer surface or face of the substrate is maintained at pressure P A which can be ambient pressure e.g. , 1 atmosphere or less.
- pressure P A can be ambient pressure e.g. , 1 atmosphere or less.
- a pressure differential exists between the pressure in the chamber, which is higher, and the ambient pressure. The pressure difference applies force to the implanted region at the selected depth 603.
- the implanted region at the selected depth is structurally weaker than surrounding regions, including any bonded regions.
- Force is applied via the pressure differential until the controlled cleaving process is initiated.
- the controlled cleaving process separates the thickness of material 609 from substrate material 611 to split the thickness of material from the substrate material at the selected depth.
- pressure P c forces material region 12 to separate by a "prying action" from substrate material 611.
- the pressure in the chamber can also be adjusted to initiate and maintain the controlled cleaving process to separate material 12 from substrate 10.
- the pressure can be adjusted in magnitude to achieve the desired controlled cleaving process.
- the fluid pressure can be derived from a liquid or a gas or a combination of liquid and gas.
- the present invention provides a controlled- propagating cleave.
- the controlled-propagating cleave uses multiple successive impulses to initiate and perhaps propagate a cleaving process 700, as illustrated by Fig. 7.
- Fig. 7 This diagram is merely an illustration, and should not limit the scope of the claims herein.
- the impulse is directed at an edge of the substrate, which propagates a cleave front toward the center of the substrate to remove the material layer from the substrate.
- a source applies multiple pulses (i.e., pulse 1, 2, and 3) successively to the substrate.
- Pulse 1 701 is directed to an edge 703 of the substrate to initiate the cleave action.
- Pulse 2 705 is also directed at the edge 707 on one side of pulse 1 to expand the cleave front.
- Pulse 3 709 is directed to an opposite edge 711 of pulse 1 along the expanding cleave front to further remove the material layer from the substrate. The combination of these impulses or pulses provides a controlled cleaving action 713 of the material layer from the substrate.
- Fig. 8 is a simplified illustration of selected energies 800 from the pulses in the preceding embodiment for the controlled-propagating cleave.
- the pulse 1 has an energy level which exceeds average cleaving energy (E), which is the necessary energy for initiating the cleaving action.
- Pulses 2 and 3 are made using lower energy levels along the cleave front to maintain or sustain the cleaving action.
- the pulse is a laser pulse where an impinging beam heats a selected region of the substrate through a pulse and a thermal pulse gradient causes supplemental stresses which together exceed cleave formation or propagation energies, which create a single cleave front.
- the impinging beam heats and causes a thermal pulse gradient simultaneously, which exceed cleave energy formation or propagation energies. More preferably, the impinging beam cools and causes a thermal pulse gradient simultaneously, which exceed cleave energy formation or propagation energies.
- a built-in energy state of the substrate or stress can be globally raised toward the energy level necessary to initiate the cleaving action, but not enough to initiate the cleaving action before directing the multiple successive impulses to the substrate according to the present invention.
- the global energy state of the substrate can be raised or lowered using a variety of sources such as chemical, mechanical, thermal (sink or source), or electrical, alone or in combination.
- the chemical source can include a variety such as particles, fluids, gases, or liquids. These sources can also include chemical reaction to increase stress in the material region.
- the chemical source is introduced as flood, time- varying, spatially varying, or continuous.
- a mechanical source is derived from rotational, translational, compressional, expansional, or ultrasonic energies.
- the mechanical source can be introduced as flood, time- varying, spatially varying, or continuous.
- the electrical source is selected from an applied voltage or an applied electro-magnetic field, which is introduced as flood, time- varying, spatially varying, or continuous.
- the thermal source or sink is selected from radiation, convection, or conduction. This thermal source can be selected from, among others, a photon beam, a fluid jet, a liquid jet, a gas jet, an electro/magnetic field, an electron beam, a thermo-electric heating, and a furnace.
- the thermal sink can be selected from a fluid jet, a liquid jet, a gas jet, a cryogenic fluid, a super-cooled liquid, a thermo-electric cooling means, an electro/magnetic field, and others. Similar to the previous embodiments, the thermal source is applied as flood, time- varying, spatially varying, or continuous. Still further, any of the above embodiments can be combined or even separated, depending upon the application. Of course, the type of source used also depends upon the application. As noted, the global source increases a level of energy or stress in the material region without initiating a cleaving action in the material region before providing energy to initiate the controlled cleaving action.
- an energy source elevates an energy level of the substrate cleave plane above its cleave front propagation energy but is insufficient to cause self-initiation of a cleave front.
- a thermal energy source or sink in the form of heat or lack of heat e.g. , cooling source
- the energy source can be electrical, chemical, or mechanical.
- a directed energy source provides an application of energy to a selected region of the substrate material to initiate a cleave front which self-propagates through the implanted region of the substrate until the thin film of material is removed.
- a variety of techniques can be used to initiate the cleave action.
- Fig. 9 is a simplified illustration of an energy state 900 for a controlled cleaving action using a single controlled source according to an aspect of the present invention.
- the energy level or state of the substrate is raised using a global energy source above the cleave front propagation energy state, but is lower than the energy state necessary to initiate the cleave front.
- an energy source such as a laser directs a beam in the form of a pulse at an edge of the substrate to initiate the cleaving action.
- the energy source can be a cooling fluid (e.g. , liquid, gas) that directs a cooling medium in the form of a pulse at an edge of the substrate to initiate the cleaving action.
- the global energy source maintains the cleaving action which generally requires a lower energy level than the initiation energy.
- Fig. 10 is a simplified illustration of an implanted substrate 1000 undergoing rotational forces 1001, 1003. This diagram is merely an illustration, and should not limit the scope of the claims herein. As shown, the substrate includes a top surface
- An energy source increases a global energy level of the substrate using a light beam or heat source to a level above the cleave front propagation energy state, but lower than the energy state necessary to initiate the cleave front.
- the substrate undergoes a rotational force turning clockwise 1001 on top surface and a rotational force turning counter-clockwise 1003 on the bottom surface which creates stress at the implanted region 1009 to initiate a cleave front.
- the top surface undergoes a counter-clockwise rotational force and the bottom surface undergoes a clockwise rotational force.
- the direction of the force generally does not matter in this embodiment.
- Fig. 11 is a simplified diagram of an energy state 1100 for the controlled cleaving action using the rotational force according to the present invention.
- This diagram is merely an illustration, and should not limit the scope of the claims herein.
- the energy level or state of the substrate is raised using a global energy source (e.g. , thermal, beam) above the cleave front propagation energy state, but is lower than the energy state necessary to initiate the cleave front.
- a mechanical energy means such as rotational force applied to the implanted region initiates the cleave front.
- rotational force applied to the implanted region of the substrates creates zero stress at the center of the substrate and greatest at the periphery, essentially being proportional to the radius.
- the central initiating pulse causes a radially expanding cleave front to cleave the substrate.
- the removed material region provides a thin film of silicon material for processing.
- the silicon material possesses limited surface roughness and desired planarity characteristics for use in a silicon-on-insulator substrate.
- the surface roughness of the detached film has features that are less than about 60 nm, or less than about 40 nm, or less than about 20 nm. Accordingly, the present invention provides thin silicon films which can be smoother and more uniform than pre-existing techniques.
- the present invention is practiced at temperatures that are lower than those used by pre-existing techniques.
- the present invention does not require increasing the entire substrate temperature to initiate and sustain the cleaving action as pre-existing techniques.
- substrate temperature does not exceed about 400 °C during the cleaving process.
- substrate temperature does not exceed about 350 °C during the cleaving process.
- substrate temperature is kept substantially below implanting temperatures via a thermal sink, e.g. , cooling fluid, cryogenic fluid.
- the present invention reduces a possibility of unnecessary damage from an excessive release of energy from random cleave fronts, which generally improves surface quality of a detached film(s) and/or the substrate(s). Accordingly, the present invention provides resulting films on substrates at higher overall yields and quality.
- the above embodiments are described in terms of cleaving a thin film of material from a substrate.
- the substrate can be disposed on a workpiece such as a stiffener or the like before the controlled cleaving process.
- the workpiece joins to a top surface or implanted surface of the substrate to provide structural support to the thin film of material during controlled cleaving processes.
- the workpiece can be joined to the substrate using a variety of bonding or joining techniques, e.g., electro-statics, adhesives, interatomic. Some of these bonding techniques are described herein.
- the workpiece can be made of a dielectric material (e.g.
- a conductive material silicon, silicon carbide, polysilicon, group III/V materials, metal
- plastics e.g. , polyimide-based materials.
- the type of workpiece used will depend upon the application.
- the substrate having the film to be detached can be temporarily disposed on a transfer substrate such as a stiffener or the like before the controlled cleaving process.
- the transfer substrate joins to a top surface or implanted surface of the substrate having the film to provide structural support to the thin film of material during controlled cleaving processes.
- the transfer substrate can be temporarily joined to the substrate having the film using a variety of bonding or joining techniques, e.g., electro-statics, adhesives, interatomic. Some of these bonding techniques are described herein.
- the transfer substrate can be made of a dielectric material (e.g.
- transfer substrate can be used to remove the thin film of material from the cleaved substrate after the controlled cleaving process.
- a process for fabricating a silicon-on-insulator substrate according to the present invention may be briefly outlined as follows:
- the above sequence of steps provides a step of initiating a controlled cleaving action using an energy applied to a selected region(s) of a multi-layered substrate structure to form a cleave front(s) according to the present invention.
- This initiation step begins a cleaving process in a controlled manner by limiting the amount of energy applied to the substrate. Further propagation of the cleaving action can occur by providing additional energy to selected regions of the substrate to sustain the cleaving action, or using the energy from the initiation step to provide for further propagation of the cleaving action.
- This sequence of steps is merely an example and should not limit the scope of the claims defined herein. Further details with regard to the above sequence of steps are described in below in references to the Figs.
- Figs. 12-18 are simplified cross-sectional view diagrams of substrates undergoing a fabrication process for a silicon-on-insulator wafer according to the present invention.
- the process begins by providing a semiconductor substrate similar to the silicon wafer 2100, as shown by Fig. 12.
- Substrate or donor includes a material region 2101 to be removed, which is a thin relatively uniform film derived from the substrate material.
- the silicon wafer includes a top surface 2103, a bottom surface 2105, and a thickness 2107.
- Material region also includes a thickness (z 0 ), within the thickness 2107 of the silicon wafer.
- a dielectric layer 2102 e.g., silicon nitride, silicon oxide, silicon oxynitride
- the present process provides a novel technique for removing the material region 2101 using the following sequence of steps for the fabrication of a silicon-on-insulator wafer.
- Selected energetic particles 2109 implant through the top surface of the silicon wafer to a selected depth, which defines the thickness of the material region, termed the thin film of material. As shown, the particles have a desired concentration 2111 at the selected depth (z 0 ).
- a variety of techniques can be used to implant the energetic particles into the silicon wafer. These techniques include ion implantation using, for example, beam line ion implantation equipment manufactured from companies such as Applied Materials, Eaton Corporation,
- implantation occurs using a plasma immersion ion implantation ("PHI") technique.
- PHI plasma immersion ion implantation
- implantation can occur using ion shower.
- techniques used depend upon the application.
- smaller mass particles are generally selected to reduce a possibility of damage to the material region. That is, smaller mass particles easily travel through the substrate material to the selected depth without substantially damaging the material region that the particles traversed through.
- the smaller mass particles can be almost any charged (e.g., positive or negative) and/or neutral atoms or molecules, or electrons, or the like.
- the particles can be neutral and/or charged particles including ions of hydrogen and its isotopes, rare gas ions such as helium and its isotopes, and neon.
- the particles can also be derived from compounds such as gases, e.g. , hydrogen gas, water vapor, methane, and other hydrogen compounds, and other light atomic mass particles.
- the particles can be any combination of the above particles, and/ or ions and/or molecular species and/or atomic species.
- the process uses a step of joining the implanted silicon wafer to a workpiece or target wafer, as illustrated in Fig. 13.
- the workpiece may also be a variety of other types of substrates such as those made of a dielectric material (e.g., quartz, glass, silicon nitride, silicon dioxide), a conductive material (silicon, polysilicon, group III/V materials, metal), and plastics (e.g. , polyimide-based materials).
- the workpiece is a silicon wafer.
- the silicon wafers are joined or fused together using a low temperature thermal step.
- the low temperature thermal process generally ensures that the implanted particles do not place excessive stress on the material region, which can produce an uncontrolled cleave action.
- the low temperature bonding process occurs by a self-bonding process.
- one wafer is stripped to remove oxidation therefrom (or one wafer is not oxidized).
- a cleaning solution treats the surface of the wafer to form O-H bonds on the wafer surface.
- An example of a solution used to clean the wafer is a mixture of H 2 O 2 -H 2 SO 4 .
- a dryer dries the wafer surfaces to remove any residual liquids or particles from the wafer surfaces.
- Self-bonding occurs by placing a face of the cleaned wafer against the face of an oxidized wafer.
- a self-bonding process occurs by activating one of the wafer surfaces to be bonded by plasma cleaning.
- plasma cleaning activates the wafer surface using a plasma derived from gases such as argon, ammonia, neon, water vapor, and oxygen.
- the activated wafer surface 2203 is placed against a face of the other wafer, which has a coat of oxidation 2205 thereon.
- the wafers are in a sandwiched structure having exposed wafer faces. A selected amount of pressure is placed on each exposed face of the wafers to self- bond one wafer to the other.
- an adhesive disposed on the wafer surfaces is used to bond one wafer onto the other.
- the adhesive includes an epoxy, polyimide-type materials, and the like.
- Spin-on-glass layers can be used to bond one wafer surface onto the face of another.
- These spin-on-glass (“SOG”) materials include, among others, siloxanes or silicates, which are often mixed with alcohol-based solvents or the like.
- SOG can be a desirable material because of the low temperatures (e.g. , 150 to 250°C) often needed to cure the SOG after it is applied to surfaces of the wafers.
- the method includes a controlled cleaving action to remove the substrate material to provide a thin film of substrate material 2101 overlying an insulator 2305 the target silicon wafer 2201.
- the controlled-cleaving occurs by way of selective energy placement or positioning or targeting 2301, 2303 of energy sources onto the donor and/ or target wafers.
- an energy impluse(s) can be used to initiate the cleaving action.
- the impulse is provided using an energy source which include, among others, a mechanical source, a chemical source, a thermal sink or source, and an electrical source.
- the controlled cleaving action is initiated by way of any of the previously noted techniques and others and is illustrated by way of Fig. 14.
- a process for initiating the controlled cleaving action uses a step of providing energy 2301, 2303 to a selected region of the substrate to initiate a controlled cleaving action at the selected depth (z 0 ) in the substrate, whereupon the cleaving action is made using a propagating cleave front to free a portion of the substrate material to be removed from the substrate.
- the method uses a single impulse to begin the cleaving action, as previously noted.
- the method uses an initiation impulse, which is followed by another impulse or successive impulses to selected regions of the substrate.
- the method provides an impulse to initiate a cleaving action which is sustained by a scanned energy along the substrate.
- energy can be scanned across selected regions of the substrate to initiate and/or sustain the controlled cleaving action.
- an energy or stress of the substrate material is increased toward an energy level necessary to initiate the cleaving action, but not enough to initiate the cleaving action before directing an impulse or multiple successive impulses to the substrate according to the present invention.
- the global energy state of the substrate can be raised or lowered using a variety of sources such as chemical, mechanical, thermal (sink or source), or electrical, alone or in combination.
- the chemical source can include particles, fluids, gases, or liquids. These sources can also include chemical reaction to increase stress in the material region.
- the chemical source is introduced as flood, time-varying, spatially varying, or continuous.
- a mechanical source is derived from rotational, translational, compressional, expansional, or ultrasonic energies.
- the mechanical source can be introduced as flood, time-varying, spatially varying, or continuous.
- the electrical source is selected from an applied voltage or an applied electro-magnetic field, which is introduced as flood, time- varying, spatially varying, or continuous.
- the thermal source or sink is selected from radiation, convection, or conduction.
- This thermal source can be selected from, among others, a photon beam, a fluid jet, a liquid jet, a gas jet, an electro/magnetic field, an electron beam, a thermo-electric heating, and a furnace.
- the thermal sink can be selected from a fluid jet, a liquid jet, a gas jet, a cryogenic fluid, a super-cooled liquid, a thermo-electric cooling means, an electro/magnetic field, and others.
- the thermal source is applied as flood, time- varying, spatially varying, or continuous. Still further, any of the above embodiments can be combined or even separated, depending upon the application. Of course, the type of source used depends upon the application. As noted, the global source increases a level of energy or stress in the material region without initiating a cleaving action in the material region before providing energy to initiate the controlled cleaving action.
- the method maintains a temperature which is below a temperature of introducing the particles into the substrate.
- the substrate temperature is maintained between -200 and
- Substrate temperature can also be maintained at a temperature below 400 °C or below 350°C.
- the method uses a thermal sink to initiate and maintain the cleaving action, which occurs at conditions significantly below room temperature.
- the mechanical and/or thermal source can be a fluid jet that is pressurized (e.g. , compressional) according to an embodiment of the present invention.
- the fluid jet (or liquid jet or gas jet) impinges on an edge region of substrate 2300 to initiate the controlled cleaving process.
- the fluid jet from a compressed or pressurized fluid source is directed to a region at the selected depth 2111 to cleave a thickness of material region 2101 from substrate 2100.
- the fluid jet separates region 2101 from substrate 2100 that separate from each other at selected depth 2111.
- the fluid jet can be adjusted to initiate and maintain the controlled cleaving process to separate material 2101 from substrate 2100.
- the fluid jet can be adjusted in direction, location, and magnitude to achieve the desired controlled cleaving process.
- a final bonding step occurs between the target wafer and thin film of material region according to some embodiments, as illustrated by Fig. 15.
- one silicon wafer has an overlying layer of silicon dioxide, which is thermally grown overlying the face before cleaning the thin film of material.
- the silicon dioxide can also be formed using a variety of other techniques, e.g., chemical vapor deposition. The silicon dioxide between the wafer surfaces fuses together thermally in this process.
- the oxidized silicon surface from either the target wafer or the thin film of material region (from the donor wafer) are further pressed together and are subjected to an oxidizing ambient 2401.
- the oxidizing ambient can be in a diffusion furnace for steam oxidation, hydrogen oxidation, or the like.
- a combination of the pressure and the oxidizing ambient fuses the two silicon wafers together at the oxide surface or interface 2305. These embodiments often require high temperatures (e.g., 700 °C).
- the two silicon surfaces are further pressed together and subjected to an applied voltage between the two wafers.
- the applied voltage raises temperature of the wafers to induce a bonding between the wafers.
- This technique limits the amount of crystal defects introduced into the silicon wafers during the bonding process, since substantially no mechanical force is needed to initiate the bonding action between the wafers.
- the technique used depends upon the application.
- silicon-on-insulator After bonding the wafers, silicon-on-insulator has a target substrate with an overlying film of silicon material and a sandwiched oxide layer between the target substrate and the silicon film, as also illustrated in Fig. 15.
- the detached surface of the film of silicon material is often rough 2404 and needs finishing.
- Finishing occurs using a combination of grinding and/or polishing techniques.
- the detached surface undergoes a step of grinding using, for examples, techniques such as rotating an abrasive material overlying the detached surface to remove any imperfections or surface roughness therefrom.
- a machine such as a "back grinder” made by a company called Disco may provide this technique.
- CMP chemical mechanical polishing or planarization
- the abrasive is often a borosilicate glass, titanium dioxide, titanium nitride, aluminum oxide, aluminum trioxide, iron nitrate, cerium oxide, silicon dioxide (colloidal silica), silicon nitride, silicon carbide, graphite, diamond, and any mixtures thereof.
- This abrasive is mixed in a solution of deionized water and oxidizer or the like.
- the solution is acidic.
- This acid solution generally interacts with the silicon material from the wafer during the polishing process.
- the polishing process preferably uses a poly-urethane polishing pad.
- An example of this polishing pad is one made by
- the polishing pad is rotated at a selected speed.
- a carrier head which picks up the target wafer having the film applies a selected amount of pressure on the backside of the target wafer such that a selected force is applied to the film.
- the polishing process removes about a selected amount of film material, which provides a relatively smooth film surface
- a thin film of oxide 2406 overlies the film of material overlying the target wafer, as illustrated in Fig. 15.
- the oxide layer forms during the thermal annealing step, which is described above for permanently bonding the film of material to the target wafer.
- the finishing process is selectively adjusted to first remove oxide and the film is subsequently polished to complete the process.
- the sequence of steps depends upon the particular application.
- the silicon-on-insulator substrate undergoes a series of process steps for formation of integrated circuits thereon. These processing steps are described in S. Wolf, Silicon Processing for the VLSI Era (Volume 2), Lattice Press (1990), which is hereby incorporated by reference for all purposes.
- a portion of a completed wafer 2700 including integrated circuit devices is illustrated by Fig. 18. As shown, the portion of the wafer 2700 includes active devices regions 2701 and isolation regions 2703.
- the active devices are field effect transistors each having a source/drain region 2705 and a gate electrode 2707.
- a dielectric isolation layer 2709 is defined overlying the active devices to isolate the active devices from any overlying layers.
- the substrate can be almost any monocrystalline, polycrystalline, or even amorphous type substrate.
- the substrate can be made of III/V materials such as gallium arsenide, gallium nitride (GaN), and others.
- the multi-layered substrate can also be used according to the present invention.
- the multi-layered substrate includes a silicon-on-insulator substrate, a variety of sandwiched layers on a semiconductor substrate, and numerous other types of substrates.
- the embodiments above were generally in terms of providing a pulse of energy to initiate a controlled cleaving action.
- the pulse can be replaced by energy that is scanned across a selected region of the substrate to initiate the controlled cleaving action.
- Energy can also be scanned across selected regions of the substrate to sustain or maintain the controlled cleaving action.
- One of ordinary skill in the art would easily recognize a variety of alternatives, modifications, and variations, which can be used according to the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54937198A JP2001525991A (ja) | 1997-05-12 | 1998-05-11 | 制御された劈開プロセス |
EP98924756A EP0995227A4 (fr) | 1997-05-12 | 1998-05-11 | Procede de clivage controle |
CA002290104A CA2290104A1 (fr) | 1997-05-12 | 1998-05-11 | Procede de clivage controle |
AU76851/98A AU7685198A (en) | 1997-05-12 | 1998-05-11 | A controlled cleavage process |
KR1019997010462A KR20010012507A (ko) | 1997-05-12 | 1998-05-11 | 제어된 분할 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4627697P | 1997-05-12 | 1997-05-12 | |
US60/046,276 | 1997-05-12 | ||
US09/026,115 US6155909A (en) | 1997-05-12 | 1998-02-19 | Controlled cleavage system using pressurized fluid |
US09/026,027 | 1998-02-19 | ||
US09/026,027 US5994207A (en) | 1997-05-12 | 1998-02-19 | Controlled cleavage process using pressurized fluid |
US09/026,115 | 1998-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998052216A1 true WO1998052216A1 (fr) | 1998-11-19 |
Family
ID=27362676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/009567 WO1998052216A1 (fr) | 1997-05-12 | 1998-05-11 | Procede de clivage controle |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0995227A4 (fr) |
JP (1) | JP2001525991A (fr) |
CN (1) | CN1146973C (fr) |
AU (1) | AU7685198A (fr) |
CA (1) | CA2290104A1 (fr) |
WO (1) | WO1998052216A1 (fr) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0948032A2 (fr) * | 1998-04-01 | 1999-10-06 | Canon Kabushiki Kaisha | Dispositif de séparation d'éléments et dispositif de traitement |
EP1006567A2 (fr) * | 1998-12-04 | 2000-06-07 | Canon Kabushiki Kaisha | Procédé de fabrication d'une plaquette semiconductrice, méthode de son utilisation et exploitation |
EP1039513A2 (fr) * | 1999-03-26 | 2000-09-27 | Canon Kabushiki Kaisha | Méthode de formation d'une plaquette SOI |
FR2795865A1 (fr) * | 1999-06-30 | 2001-01-05 | Commissariat Energie Atomique | Procede de realisation d'un film mince utilisant une mise sous pression |
WO2001011667A1 (fr) * | 1999-08-04 | 2001-02-15 | Commissariat A L'energie Atomique | Procede de transfert d'une couche mince comportant une etape de surfragilisation |
EP1187182A2 (fr) * | 2000-08-25 | 2002-03-13 | Canon Kabushiki Kaisha | Procédé et dispostif de séparation de substrats |
US6383890B2 (en) | 1997-12-26 | 2002-05-07 | Canon Kabushiki Kaisha | Wafer bonding method, apparatus and vacuum chuck |
EP1212787A2 (fr) * | 1999-08-10 | 2002-06-12 | Silicon Genesis Corporation | Procede de clivage permettant de fabriquer des substrats multicouche a l'aide de faibles doses d'implantation |
WO2002047156A1 (fr) | 2000-12-08 | 2002-06-13 | Commissariat A L'energie Atomique | Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses |
US6418999B1 (en) | 1997-12-26 | 2002-07-16 | Cannon Kabushiki Kaisha | Sample separating apparatus and method, and substrate manufacturing method |
JP2002231909A (ja) * | 2001-01-31 | 2002-08-16 | Canon Inc | 薄膜半導体装置の製造方法 |
JP2003163338A (ja) * | 2001-08-22 | 2003-06-06 | Semiconductor Energy Lab Co Ltd | 剥離方法および半導体装置の作製方法 |
US6653209B1 (en) | 1999-09-30 | 2003-11-25 | Canon Kabushiki Kaisha | Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device |
EP1427002A1 (fr) * | 2002-12-06 | 2004-06-09 | S.O.I. Tec Silicon on Insulator Technologies S.A. | Méthode de recyclage d'un substrat par découpage localisé |
JP2004519093A (ja) * | 2000-11-27 | 2004-06-24 | エス オー イ テク シリコン オン インシュレータ テクノロジース | 基板、特に光学、電子工学または電子光学用基板の製造方法、およびこの製造方法により得られる基板 |
JP2004228374A (ja) * | 2003-01-23 | 2004-08-12 | Seiko Epson Corp | デバイスの製造方法とデバイス、電気光学装置、及び電子機器 |
US6821376B1 (en) | 1999-07-12 | 2004-11-23 | Commissariat A L'energie Atomique | Method for separating two elements and a device therefor |
US6828214B2 (en) | 2001-04-06 | 2004-12-07 | Canon Kabushiki Kaisha | Semiconductor member manufacturing method and semiconductor device manufacturing method |
JP2004537860A (ja) * | 2001-07-31 | 2004-12-16 | インテル コーポレイション | 集積回路及びダイアモンド層を有するダイを含んだ電子組立品及びこの製造方法 |
WO2005091283A1 (fr) * | 2004-03-22 | 2005-09-29 | Oc Oerlikon Balzers Ag | Procede et appareil de separation de substrats en forme de disques |
US7022586B2 (en) | 2002-12-06 | 2006-04-04 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Method for recycling a substrate |
EP1681711A1 (fr) | 2005-01-05 | 2006-07-19 | Siltronic AG | Plaquette de semi-conducteur avec une couche de silicium-germanium et procédé pour sa fabrication |
EP1918999A1 (fr) * | 2006-10-30 | 2008-05-07 | Shin-Etsu Chemical Co., Ltd. | Procédé de production d'une cellule solaire à couche mince en silicium monocrystallin et cellule solaire correspondante |
US7820549B2 (en) | 2004-08-26 | 2010-10-26 | Siltronic Ag | Layered semiconductor wafer with low warp and bow, and process for producing it |
US7892946B2 (en) | 2002-01-03 | 2011-02-22 | S.O.I.Tec Silicon On Insulator Technologies | Device and method for cutting an assembly |
US7994064B2 (en) * | 2009-06-15 | 2011-08-09 | Twin Creeks Technologies, Inc. | Selective etch for damage at exfoliated surface |
JP2012160754A (ja) * | 2000-07-12 | 2012-08-23 | Commissariat A L'energie Atomique & Aux Energies Alternatives | 材料ブロックを切り取るための方法ならびに薄膜の形成方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4365920B2 (ja) * | 1999-02-02 | 2009-11-18 | キヤノン株式会社 | 分離方法及び半導体基板の製造方法 |
FR2809867B1 (fr) * | 2000-05-30 | 2003-10-24 | Commissariat Energie Atomique | Substrat fragilise et procede de fabrication d'un tel substrat |
FR2819099B1 (fr) * | 2000-12-28 | 2003-09-26 | Commissariat Energie Atomique | Procede de realisation d'une structure empilee |
FR2847714B1 (fr) * | 2002-11-27 | 2005-02-18 | Soitec Silicon On Insulator | Procede et dispositif de recuit de tranche de semiconducteur |
JP2005039114A (ja) * | 2003-07-17 | 2005-02-10 | Disco Abrasive Syst Ltd | 半導体ウェーハ移し替え装置 |
KR20070107180A (ko) | 2005-02-28 | 2007-11-06 | 실리콘 제너시스 코포레이션 | 기판 강화 방법 및 그 결과물인 디바이스 |
JP5064692B2 (ja) | 2006-02-09 | 2012-10-31 | 信越化学工業株式会社 | Soi基板の製造方法 |
JP5064693B2 (ja) * | 2006-02-13 | 2012-10-31 | 信越化学工業株式会社 | Soi基板の製造方法 |
US8293619B2 (en) * | 2008-08-28 | 2012-10-23 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled propagation |
JP5284576B2 (ja) * | 2006-11-10 | 2013-09-11 | 信越化学工業株式会社 | 半導体基板の製造方法 |
JP5166745B2 (ja) * | 2007-03-07 | 2013-03-21 | 信越化学工業株式会社 | 単結晶シリコン太陽電池の製造方法 |
US20100193900A1 (en) * | 2007-07-13 | 2010-08-05 | National University Corporation Tohoku University | Soi substrate and semiconductor device using an soi substrate |
JP2010021398A (ja) * | 2008-07-11 | 2010-01-28 | Disco Abrasive Syst Ltd | ウェーハの処理方法 |
CN103890908B (zh) * | 2011-10-18 | 2016-08-24 | 富士电机株式会社 | 固相键合晶片的支承基板的剥离方法及半导体装置的制造方法 |
FR2995447B1 (fr) * | 2012-09-07 | 2014-09-05 | Soitec Silicon On Insulator | Procede de separation d'au moins deux substrats selon une interface choisie |
JP2014138189A (ja) * | 2013-01-16 | 2014-07-28 | Silicon Genesis Corp | 制御されたプロセス及び結果として生じるデバイス |
CN103077885B (zh) * | 2013-01-31 | 2016-06-01 | 上海新傲科技股份有限公司 | 受控减薄方法以及半导体衬底 |
JP6213046B2 (ja) * | 2013-08-21 | 2017-10-18 | 信越半導体株式会社 | 貼り合わせウェーハの製造方法 |
FR3032555B1 (fr) * | 2015-02-10 | 2018-01-19 | Soitec | Procede de report d'une couche utile |
CN104979262B (zh) * | 2015-05-14 | 2020-09-22 | 浙江中纳晶微电子科技有限公司 | 一种晶圆分离的方法 |
CN106529159A (zh) * | 2016-10-28 | 2017-03-22 | 山东理工大学 | 压电控制单原子链纳米弦横向振动固有角频率计算方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4982090A (en) * | 1988-02-05 | 1991-01-01 | Gesellschaft Fur Strahlen- Und Umweltforschung Mbh (Gsf) | Method and apparatus for the quantitative, depth differential analysis of solid samples with the use of two ion beams |
US5242861A (en) * | 1991-06-06 | 1993-09-07 | Nec Corporation | Method for manufacturing semiconductor device having a multilayer wiring structure |
US5269880A (en) * | 1992-04-03 | 1993-12-14 | Northern Telecom Limited | Tapering sidewalls of via holes |
EP0703609A1 (fr) | 1994-09-22 | 1996-03-27 | Commissariat A L'energie Atomique | Procédé de fabrication d'une structure comportant une couche mince semi-conductrice sur un substrat |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4466852A (en) * | 1983-10-27 | 1984-08-21 | At&T Technologies, Inc. | Method and apparatus for demounting wafers |
DE69008927T2 (de) * | 1989-05-08 | 1994-12-01 | Philips Nv | Verfahren zum Spalten einer Platte aus sprödem Werkstoff. |
DE4100526A1 (de) * | 1991-01-10 | 1992-07-16 | Wacker Chemitronic | Vorrichtung und verfahren zum automatischen vereinzeln von gestapelten scheiben |
FR2681472B1 (fr) * | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | Procede de fabrication de films minces de materiau semiconducteur. |
DE69233314T2 (de) * | 1991-10-11 | 2005-03-24 | Canon K.K. | Verfahren zur Herstellung von Halbleiter-Produkten |
FR2715503B1 (fr) * | 1994-01-26 | 1996-04-05 | Commissariat Energie Atomique | Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation. |
JP3257580B2 (ja) * | 1994-03-10 | 2002-02-18 | キヤノン株式会社 | 半導体基板の作製方法 |
JP3293736B2 (ja) * | 1996-02-28 | 2002-06-17 | キヤノン株式会社 | 半導体基板の作製方法および貼り合わせ基体 |
SG65697A1 (en) * | 1996-11-15 | 1999-06-22 | Canon Kk | Process for producing semiconductor article |
JP3667079B2 (ja) * | 1997-03-26 | 2005-07-06 | キヤノン株式会社 | 薄膜の形成方法 |
CA2233096C (fr) * | 1997-03-26 | 2003-01-07 | Canon Kabushiki Kaisha | Substrat et methode de production |
JP2877800B2 (ja) * | 1997-03-27 | 1999-03-31 | キヤノン株式会社 | 複合部材の分離方法、分離された部材、分離装置、半導体基体の作製方法および半導体基体 |
-
1998
- 1998-05-11 WO PCT/US1998/009567 patent/WO1998052216A1/fr not_active Application Discontinuation
- 1998-05-11 EP EP98924756A patent/EP0995227A4/fr not_active Withdrawn
- 1998-05-11 JP JP54937198A patent/JP2001525991A/ja active Pending
- 1998-05-11 AU AU76851/98A patent/AU7685198A/en not_active Abandoned
- 1998-05-11 CN CNB988049767A patent/CN1146973C/zh not_active Expired - Lifetime
- 1998-05-11 CA CA002290104A patent/CA2290104A1/fr not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4982090A (en) * | 1988-02-05 | 1991-01-01 | Gesellschaft Fur Strahlen- Und Umweltforschung Mbh (Gsf) | Method and apparatus for the quantitative, depth differential analysis of solid samples with the use of two ion beams |
US5242861A (en) * | 1991-06-06 | 1993-09-07 | Nec Corporation | Method for manufacturing semiconductor device having a multilayer wiring structure |
US5269880A (en) * | 1992-04-03 | 1993-12-14 | Northern Telecom Limited | Tapering sidewalls of via holes |
EP0703609A1 (fr) | 1994-09-22 | 1996-03-27 | Commissariat A L'energie Atomique | Procédé de fabrication d'une structure comportant une couche mince semi-conductrice sur un substrat |
Non-Patent Citations (2)
Title |
---|
DATABASE INSPEC 1 January 1900 (1900-01-01), XP002910169, Database accession no. 73:481970 * |
See also references of EP0995227A4 |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6860963B2 (en) | 1997-12-26 | 2005-03-01 | Canon Kabushiki Kaisha | Sample separating apparatus and method, and substrate manufacturing method |
US6521078B2 (en) | 1997-12-26 | 2003-02-18 | Canon Kabushiki Kaisha | Sample separating apparatus and method, and substrate manufacturing method |
US6418999B1 (en) | 1997-12-26 | 2002-07-16 | Cannon Kabushiki Kaisha | Sample separating apparatus and method, and substrate manufacturing method |
US6383890B2 (en) | 1997-12-26 | 2002-05-07 | Canon Kabushiki Kaisha | Wafer bonding method, apparatus and vacuum chuck |
EP0948032A3 (fr) * | 1998-04-01 | 2001-09-19 | Canon Kabushiki Kaisha | Dispositif de séparation d'éléments et dispositif de traitement |
US6540861B2 (en) | 1998-04-01 | 2003-04-01 | Canon Kabushiki Kaisha | Member separating apparatus and processing apparatus |
EP0948032A2 (fr) * | 1998-04-01 | 1999-10-06 | Canon Kabushiki Kaisha | Dispositif de séparation d'éléments et dispositif de traitement |
US6656271B2 (en) | 1998-12-04 | 2003-12-02 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor wafer method of using and utilizing the same |
EP1006567A3 (fr) * | 1998-12-04 | 2001-10-24 | Canon Kabushiki Kaisha | Procédé de fabrication d'une plaquette semiconductrice, méthode de son utilisation et exploitation |
EP1006567A2 (fr) * | 1998-12-04 | 2000-06-07 | Canon Kabushiki Kaisha | Procédé de fabrication d'une plaquette semiconductrice, méthode de son utilisation et exploitation |
EP1039513A3 (fr) * | 1999-03-26 | 2008-11-26 | Canon Kabushiki Kaisha | Méthode de formation d'une plaquette SOI |
EP1039513A2 (fr) * | 1999-03-26 | 2000-09-27 | Canon Kabushiki Kaisha | Méthode de formation d'une plaquette SOI |
US6468923B1 (en) | 1999-03-26 | 2002-10-22 | Canon Kabushiki Kaisha | Method of producing semiconductor member |
FR2795865A1 (fr) * | 1999-06-30 | 2001-01-05 | Commissariat Energie Atomique | Procede de realisation d'un film mince utilisant une mise sous pression |
WO2001003171A1 (fr) * | 1999-06-30 | 2001-01-11 | Commissariat A L'energie Atomique | Procede de realisation d'un film mince utilisant une mise sous pression |
US6821376B1 (en) | 1999-07-12 | 2004-11-23 | Commissariat A L'energie Atomique | Method for separating two elements and a device therefor |
JP2003506892A (ja) * | 1999-08-04 | 2003-02-18 | コミツサリア タ レネルジー アトミーク | 過度の脆弱化ステップを有した薄層の移送方法 |
WO2001011667A1 (fr) * | 1999-08-04 | 2001-02-15 | Commissariat A L'energie Atomique | Procede de transfert d'une couche mince comportant une etape de surfragilisation |
EP1212787B1 (fr) * | 1999-08-10 | 2014-10-08 | Silicon Genesis Corporation | Procede de clivage permettant de fabriquer des substrats multicouche a l'aide de faibles doses d'implantation |
EP1212787A2 (fr) * | 1999-08-10 | 2002-06-12 | Silicon Genesis Corporation | Procede de clivage permettant de fabriquer des substrats multicouche a l'aide de faibles doses d'implantation |
US6653209B1 (en) | 1999-09-30 | 2003-11-25 | Canon Kabushiki Kaisha | Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device |
JP2012160754A (ja) * | 2000-07-12 | 2012-08-23 | Commissariat A L'energie Atomique & Aux Energies Alternatives | 材料ブロックを切り取るための方法ならびに薄膜の形成方法 |
EP1187182A2 (fr) * | 2000-08-25 | 2002-03-13 | Canon Kabushiki Kaisha | Procédé et dispostif de séparation de substrats |
US6712288B2 (en) | 2000-08-25 | 2004-03-30 | Canon Kabushiki Kaisha | Method and apparatus for separating sample |
EP1187182A3 (fr) * | 2000-08-25 | 2006-06-14 | Canon Kabushiki Kaisha | Procédé et dispostif de séparation de substrats |
US7017830B2 (en) | 2000-08-25 | 2006-03-28 | Canon Kabushiki Kaisha | Method and apparatus for separating sample |
US7741678B2 (en) | 2000-11-27 | 2010-06-22 | S.O.I.Tec Silicon On Insulator Technologies | Semiconductor substrates having useful and transfer layers |
JP2004519093A (ja) * | 2000-11-27 | 2004-06-24 | エス オー イ テク シリコン オン インシュレータ テクノロジース | 基板、特に光学、電子工学または電子光学用基板の製造方法、およびこの製造方法により得られる基板 |
US7655537B2 (en) | 2000-11-27 | 2010-02-02 | S.O.I.Tec Silicon On Insulator Technologies | Semiconductor substrates having useful and transfer layers |
US7622330B2 (en) | 2000-11-27 | 2009-11-24 | S.O.I.Tec Silicon On Insulator Technologies | Semiconductor substrates having useful and transfer layers |
WO2002047156A1 (fr) | 2000-12-08 | 2002-06-13 | Commissariat A L'energie Atomique | Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses |
JP2002231909A (ja) * | 2001-01-31 | 2002-08-16 | Canon Inc | 薄膜半導体装置の製造方法 |
US6828214B2 (en) | 2001-04-06 | 2004-12-07 | Canon Kabushiki Kaisha | Semiconductor member manufacturing method and semiconductor device manufacturing method |
US7008701B2 (en) | 2001-04-06 | 2006-03-07 | Canon Kabushiki Kaisha | Semiconductor member manufacturing method and semiconductor device manufacturing method |
JP2004537860A (ja) * | 2001-07-31 | 2004-12-16 | インテル コーポレイション | 集積回路及びダイアモンド層を有するダイを含んだ電子組立品及びこの製造方法 |
US11296131B2 (en) | 2001-08-22 | 2022-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US10529748B2 (en) | 2001-08-22 | 2020-01-07 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US9842994B2 (en) | 2001-08-22 | 2017-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
JP2003163338A (ja) * | 2001-08-22 | 2003-06-06 | Semiconductor Energy Lab Co Ltd | 剥離方法および半導体装置の作製方法 |
US9755148B2 (en) | 2001-08-22 | 2017-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US7825002B2 (en) | 2001-08-22 | 2010-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device |
US9281403B2 (en) | 2001-08-22 | 2016-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US8674364B2 (en) | 2001-08-22 | 2014-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US7892946B2 (en) | 2002-01-03 | 2011-02-22 | S.O.I.Tec Silicon On Insulator Technologies | Device and method for cutting an assembly |
EP1427002A1 (fr) * | 2002-12-06 | 2004-06-09 | S.O.I. Tec Silicon on Insulator Technologies S.A. | Méthode de recyclage d'un substrat par découpage localisé |
US7022586B2 (en) | 2002-12-06 | 2006-04-04 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Method for recycling a substrate |
JP2004228374A (ja) * | 2003-01-23 | 2004-08-12 | Seiko Epson Corp | デバイスの製造方法とデバイス、電気光学装置、及び電子機器 |
WO2005091283A1 (fr) * | 2004-03-22 | 2005-09-29 | Oc Oerlikon Balzers Ag | Procede et appareil de separation de substrats en forme de disques |
US7820549B2 (en) | 2004-08-26 | 2010-10-26 | Siltronic Ag | Layered semiconductor wafer with low warp and bow, and process for producing it |
EP1681711A1 (fr) | 2005-01-05 | 2006-07-19 | Siltronic AG | Plaquette de semi-conducteur avec une couche de silicium-germanium et procédé pour sa fabrication |
EP1918999A1 (fr) * | 2006-10-30 | 2008-05-07 | Shin-Etsu Chemical Co., Ltd. | Procédé de production d'une cellule solaire à couche mince en silicium monocrystallin et cellule solaire correspondante |
US8021910B2 (en) | 2006-10-30 | 2011-09-20 | Shin-Etsu Chemical Co., Ltd. | Method for producing single crystal silicon solar cell and single crystal silicon solar cell |
US7994064B2 (en) * | 2009-06-15 | 2011-08-09 | Twin Creeks Technologies, Inc. | Selective etch for damage at exfoliated surface |
Also Published As
Publication number | Publication date |
---|---|
EP0995227A4 (fr) | 2000-07-05 |
AU7685198A (en) | 1998-12-08 |
CA2290104A1 (fr) | 1998-11-19 |
CN1146973C (zh) | 2004-04-21 |
CN1255237A (zh) | 2000-05-31 |
JP2001525991A (ja) | 2001-12-11 |
EP0995227A1 (fr) | 2000-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5994207A (en) | Controlled cleavage process using pressurized fluid | |
US6582999B2 (en) | Controlled cleavage process using pressurized fluid | |
US6291313B1 (en) | Method and device for controlled cleaving process | |
US6291314B1 (en) | Controlled cleavage process and device for patterned films using a release layer | |
WO1998052216A1 (fr) | Procede de clivage controle | |
US6248649B1 (en) | Controlled cleavage process and device for patterned films using patterned implants | |
US7776717B2 (en) | Controlled process and resulting device | |
US9159605B2 (en) | Controlled process and resulting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98804976.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2290104 Country of ref document: CA Ref document number: 2290104 Country of ref document: CA Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 1998 549371 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997010462 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998924756 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1998924756 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997010462 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997010462 Country of ref document: KR |